xref: /linux/net/ipv4/tcp.c (revision 18a7e218cfcdca6666e1f7356533e4c988780b57)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/inet_ecn.h>
274 #include <net/tcp.h>
275 #include <net/tcp_ecn.h>
276 #include <net/mptcp.h>
277 #include <net/proto_memory.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/psp.h>
281 #include <net/sock.h>
282 #include <net/rstreason.h>
283 
284 #include <linux/uaccess.h>
285 #include <asm/ioctls.h>
286 #include <net/busy_poll.h>
287 #include <net/hotdata.h>
288 #include <trace/events/tcp.h>
289 #include <net/rps.h>
290 
291 #include "../core/devmem.h"
292 
293 /* Track pending CMSGs. */
294 enum {
295 	TCP_CMSG_INQ = 1,
296 	TCP_CMSG_TS = 2
297 };
298 
299 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
301 
302 DEFINE_PER_CPU(u32, tcp_tw_isn);
303 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
304 
305 long sysctl_tcp_mem[3] __read_mostly;
306 EXPORT_IPV6_MOD(sysctl_tcp_mem);
307 
308 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
309 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
310 
311 #if IS_ENABLED(CONFIG_SMC)
312 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
313 EXPORT_SYMBOL(tcp_have_smc);
314 #endif
315 
316 /*
317  * Current number of TCP sockets.
318  */
319 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
320 EXPORT_IPV6_MOD(tcp_sockets_allocated);
321 
322 /*
323  * TCP splice context
324  */
325 struct tcp_splice_state {
326 	struct pipe_inode_info *pipe;
327 	size_t len;
328 	unsigned int flags;
329 };
330 
331 /*
332  * Pressure flag: try to collapse.
333  * Technical note: it is used by multiple contexts non atomically.
334  * All the __sk_mem_schedule() is of this nature: accounting
335  * is strict, actions are advisory and have some latency.
336  */
337 unsigned long tcp_memory_pressure __read_mostly;
338 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
339 
tcp_enter_memory_pressure(struct sock * sk)340 void tcp_enter_memory_pressure(struct sock *sk)
341 {
342 	unsigned long val;
343 
344 	if (READ_ONCE(tcp_memory_pressure))
345 		return;
346 	val = jiffies;
347 
348 	if (!val)
349 		val--;
350 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
351 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
352 }
353 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
354 
tcp_leave_memory_pressure(struct sock * sk)355 void tcp_leave_memory_pressure(struct sock *sk)
356 {
357 	unsigned long val;
358 
359 	if (!READ_ONCE(tcp_memory_pressure))
360 		return;
361 	val = xchg(&tcp_memory_pressure, 0);
362 	if (val)
363 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
364 			      jiffies_to_msecs(jiffies - val));
365 }
366 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
367 
368 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)369 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
370 {
371 	u8 res = 0;
372 
373 	if (seconds > 0) {
374 		int period = timeout;
375 
376 		res = 1;
377 		while (seconds > period && res < 255) {
378 			res++;
379 			timeout <<= 1;
380 			if (timeout > rto_max)
381 				timeout = rto_max;
382 			period += timeout;
383 		}
384 	}
385 	return res;
386 }
387 
388 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)389 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
390 {
391 	int period = 0;
392 
393 	if (retrans > 0) {
394 		period = timeout;
395 		while (--retrans) {
396 			timeout <<= 1;
397 			if (timeout > rto_max)
398 				timeout = rto_max;
399 			period += timeout;
400 		}
401 	}
402 	return period;
403 }
404 
tcp_compute_delivery_rate(const struct tcp_sock * tp)405 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
406 {
407 	u32 rate = READ_ONCE(tp->rate_delivered);
408 	u32 intv = READ_ONCE(tp->rate_interval_us);
409 	u64 rate64 = 0;
410 
411 	if (rate && intv) {
412 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
413 		do_div(rate64, intv);
414 	}
415 	return rate64;
416 }
417 
418 #ifdef CONFIG_TCP_MD5SIG
tcp_md5_destruct_sock(struct sock * sk)419 void tcp_md5_destruct_sock(struct sock *sk)
420 {
421 	struct tcp_sock *tp = tcp_sk(sk);
422 
423 	if (tp->md5sig_info) {
424 
425 		tcp_clear_md5_list(sk);
426 		kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 1));
427 		static_branch_slow_dec_deferred(&tcp_md5_needed);
428 		tcp_md5_release_sigpool();
429 	}
430 }
431 EXPORT_IPV6_MOD_GPL(tcp_md5_destruct_sock);
432 #endif
433 
434 /* Address-family independent initialization for a tcp_sock.
435  *
436  * NOTE: A lot of things set to zero explicitly by call to
437  *       sk_alloc() so need not be done here.
438  */
tcp_init_sock(struct sock * sk)439 void tcp_init_sock(struct sock *sk)
440 {
441 	struct inet_connection_sock *icsk = inet_csk(sk);
442 	struct tcp_sock *tp = tcp_sk(sk);
443 	int rto_min_us, rto_max_ms;
444 
445 	tp->out_of_order_queue = RB_ROOT;
446 	sk->tcp_rtx_queue = RB_ROOT;
447 	tcp_init_xmit_timers(sk);
448 	INIT_LIST_HEAD(&tp->tsq_node);
449 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
450 
451 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
452 
453 	rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
454 	icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
455 
456 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
457 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
458 	icsk->icsk_delack_max = TCP_DELACK_MAX;
459 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
460 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
461 
462 	/* So many TCP implementations out there (incorrectly) count the
463 	 * initial SYN frame in their delayed-ACK and congestion control
464 	 * algorithms that we must have the following bandaid to talk
465 	 * efficiently to them.  -DaveM
466 	 */
467 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
468 
469 	/* There's a bubble in the pipe until at least the first ACK. */
470 	tp->app_limited = ~0U;
471 	tp->rate_app_limited = 1;
472 
473 	/* See draft-stevens-tcpca-spec-01 for discussion of the
474 	 * initialization of these values.
475 	 */
476 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
477 	tp->snd_cwnd_clamp = ~0;
478 	tp->mss_cache = TCP_MSS_DEFAULT;
479 
480 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
481 	tcp_assign_congestion_control(sk);
482 
483 	tp->tsoffset = 0;
484 	tp->rack.reo_wnd_steps = 1;
485 
486 	sk->sk_write_space = sk_stream_write_space;
487 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
488 
489 	icsk->icsk_sync_mss = tcp_sync_mss;
490 
491 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
492 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
493 	tcp_scaling_ratio_init(sk);
494 
495 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
496 	sk_sockets_allocated_inc(sk);
497 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
498 }
499 EXPORT_IPV6_MOD(tcp_init_sock);
500 
tcp_tx_timestamp(struct sock * sk,struct sockcm_cookie * sockc)501 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
502 {
503 	struct sk_buff *skb = tcp_write_queue_tail(sk);
504 	u32 tsflags = sockc->tsflags;
505 
506 	if (tsflags && skb) {
507 		struct skb_shared_info *shinfo = skb_shinfo(skb);
508 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
509 
510 		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
511 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
512 			tcb->txstamp_ack |= TSTAMP_ACK_SK;
513 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
514 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
515 	}
516 
517 	if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
518 	    SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
519 		bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
520 }
521 
tcp_stream_is_readable(struct sock * sk,int target)522 static bool tcp_stream_is_readable(struct sock *sk, int target)
523 {
524 	if (tcp_epollin_ready(sk, target))
525 		return true;
526 	return sk_is_readable(sk);
527 }
528 
529 /*
530  *	Wait for a TCP event.
531  *
532  *	Note that we don't need to lock the socket, as the upper poll layers
533  *	take care of normal races (between the test and the event) and we don't
534  *	go look at any of the socket buffers directly.
535  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)536 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
537 {
538 	__poll_t mask;
539 	struct sock *sk = sock->sk;
540 	const struct tcp_sock *tp = tcp_sk(sk);
541 	u8 shutdown;
542 	int state;
543 
544 	sock_poll_wait(file, sock, wait);
545 
546 	state = inet_sk_state_load(sk);
547 	if (state == TCP_LISTEN)
548 		return inet_csk_listen_poll(sk);
549 
550 	/* Socket is not locked. We are protected from async events
551 	 * by poll logic and correct handling of state changes
552 	 * made by other threads is impossible in any case.
553 	 */
554 
555 	mask = 0;
556 
557 	/*
558 	 * EPOLLHUP is certainly not done right. But poll() doesn't
559 	 * have a notion of HUP in just one direction, and for a
560 	 * socket the read side is more interesting.
561 	 *
562 	 * Some poll() documentation says that EPOLLHUP is incompatible
563 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
564 	 * all. But careful, it tends to be safer to return too many
565 	 * bits than too few, and you can easily break real applications
566 	 * if you don't tell them that something has hung up!
567 	 *
568 	 * Check-me.
569 	 *
570 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
571 	 * our fs/select.c). It means that after we received EOF,
572 	 * poll always returns immediately, making impossible poll() on write()
573 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
574 	 * if and only if shutdown has been made in both directions.
575 	 * Actually, it is interesting to look how Solaris and DUX
576 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
577 	 * then we could set it on SND_SHUTDOWN. BTW examples given
578 	 * in Stevens' books assume exactly this behaviour, it explains
579 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
580 	 *
581 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
582 	 * blocking on fresh not-connected or disconnected socket. --ANK
583 	 */
584 	shutdown = READ_ONCE(sk->sk_shutdown);
585 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
586 		mask |= EPOLLHUP;
587 	if (shutdown & RCV_SHUTDOWN)
588 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
589 
590 	/* Connected or passive Fast Open socket? */
591 	if (state != TCP_SYN_SENT &&
592 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
593 		int target = sock_rcvlowat(sk, 0, INT_MAX);
594 		u16 urg_data = READ_ONCE(tp->urg_data);
595 
596 		if (unlikely(urg_data) &&
597 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
598 		    !sock_flag(sk, SOCK_URGINLINE))
599 			target++;
600 
601 		if (tcp_stream_is_readable(sk, target))
602 			mask |= EPOLLIN | EPOLLRDNORM;
603 
604 		if (!(shutdown & SEND_SHUTDOWN)) {
605 			if (__sk_stream_is_writeable(sk, 1)) {
606 				mask |= EPOLLOUT | EPOLLWRNORM;
607 			} else {  /* send SIGIO later */
608 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
609 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
610 
611 				/* Race breaker. If space is freed after
612 				 * wspace test but before the flags are set,
613 				 * IO signal will be lost. Memory barrier
614 				 * pairs with the input side.
615 				 */
616 				smp_mb__after_atomic();
617 				if (__sk_stream_is_writeable(sk, 1))
618 					mask |= EPOLLOUT | EPOLLWRNORM;
619 			}
620 		} else
621 			mask |= EPOLLOUT | EPOLLWRNORM;
622 
623 		if (urg_data & TCP_URG_VALID)
624 			mask |= EPOLLPRI;
625 	} else if (state == TCP_SYN_SENT &&
626 		   inet_test_bit(DEFER_CONNECT, sk)) {
627 		/* Active TCP fastopen socket with defer_connect
628 		 * Return EPOLLOUT so application can call write()
629 		 * in order for kernel to generate SYN+data
630 		 */
631 		mask |= EPOLLOUT | EPOLLWRNORM;
632 	}
633 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
634 	smp_rmb();
635 	if (READ_ONCE(sk->sk_err) ||
636 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
637 		mask |= EPOLLERR;
638 
639 	return mask;
640 }
641 EXPORT_SYMBOL(tcp_poll);
642 
tcp_ioctl(struct sock * sk,int cmd,int * karg)643 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
644 {
645 	struct tcp_sock *tp = tcp_sk(sk);
646 	int answ;
647 	bool slow;
648 
649 	switch (cmd) {
650 	case SIOCINQ:
651 		if (sk->sk_state == TCP_LISTEN)
652 			return -EINVAL;
653 
654 		slow = lock_sock_fast(sk);
655 		answ = tcp_inq(sk);
656 		unlock_sock_fast(sk, slow);
657 		break;
658 	case SIOCATMARK:
659 		answ = READ_ONCE(tp->urg_data) &&
660 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
661 		break;
662 	case SIOCOUTQ:
663 		if (sk->sk_state == TCP_LISTEN)
664 			return -EINVAL;
665 
666 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
667 			answ = 0;
668 		else
669 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
670 		break;
671 	case SIOCOUTQNSD:
672 		if (sk->sk_state == TCP_LISTEN)
673 			return -EINVAL;
674 
675 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
676 			answ = 0;
677 		else
678 			answ = READ_ONCE(tp->write_seq) -
679 			       READ_ONCE(tp->snd_nxt);
680 		break;
681 	default:
682 		return -ENOIOCTLCMD;
683 	}
684 
685 	*karg = answ;
686 	return 0;
687 }
688 EXPORT_IPV6_MOD(tcp_ioctl);
689 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)690 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
691 {
692 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
693 	tp->pushed_seq = tp->write_seq;
694 }
695 
forced_push(const struct tcp_sock * tp)696 static inline bool forced_push(const struct tcp_sock *tp)
697 {
698 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
699 }
700 
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)701 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
702 {
703 	struct tcp_sock *tp = tcp_sk(sk);
704 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
705 
706 	tcb->seq     = tcb->end_seq = tp->write_seq;
707 	tcb->tcp_flags = TCPHDR_ACK;
708 	__skb_header_release(skb);
709 	psp_enqueue_set_decrypted(sk, skb);
710 	tcp_add_write_queue_tail(sk, skb);
711 	sk_wmem_queued_add(sk, skb->truesize);
712 	sk_mem_charge(sk, skb->truesize);
713 	if (tp->nonagle & TCP_NAGLE_PUSH)
714 		tp->nonagle &= ~TCP_NAGLE_PUSH;
715 
716 	tcp_slow_start_after_idle_check(sk);
717 }
718 
tcp_mark_urg(struct tcp_sock * tp,int flags)719 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
720 {
721 	if (flags & MSG_OOB)
722 		tp->snd_up = tp->write_seq;
723 }
724 
725 /* If a not yet filled skb is pushed, do not send it if
726  * we have data packets in Qdisc or NIC queues :
727  * Because TX completion will happen shortly, it gives a chance
728  * to coalesce future sendmsg() payload into this skb, without
729  * need for a timer, and with no latency trade off.
730  * As packets containing data payload have a bigger truesize
731  * than pure acks (dataless) packets, the last checks prevent
732  * autocorking if we only have an ACK in Qdisc/NIC queues,
733  * or if TX completion was delayed after we processed ACK packet.
734  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)735 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
736 				int size_goal)
737 {
738 	return skb->len < size_goal &&
739 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
740 	       !tcp_rtx_queue_empty(sk) &&
741 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
742 	       tcp_skb_can_collapse_to(skb);
743 }
744 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)745 void tcp_push(struct sock *sk, int flags, int mss_now,
746 	      int nonagle, int size_goal)
747 {
748 	struct tcp_sock *tp = tcp_sk(sk);
749 	struct sk_buff *skb;
750 
751 	skb = tcp_write_queue_tail(sk);
752 	if (!skb)
753 		return;
754 	if (!(flags & MSG_MORE) || forced_push(tp))
755 		tcp_mark_push(tp, skb);
756 
757 	tcp_mark_urg(tp, flags);
758 
759 	if (tcp_should_autocork(sk, skb, size_goal)) {
760 
761 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
762 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
763 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
764 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
765 			smp_mb__after_atomic();
766 		}
767 		/* It is possible TX completion already happened
768 		 * before we set TSQ_THROTTLED.
769 		 */
770 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
771 			return;
772 	}
773 
774 	if (flags & MSG_MORE)
775 		nonagle = TCP_NAGLE_CORK;
776 
777 	__tcp_push_pending_frames(sk, mss_now, nonagle);
778 }
779 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)780 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
781 				unsigned int offset, size_t len)
782 {
783 	struct tcp_splice_state *tss = rd_desc->arg.data;
784 	int ret;
785 
786 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
787 			      min(rd_desc->count, len), tss->flags);
788 	if (ret > 0)
789 		rd_desc->count -= ret;
790 	return ret;
791 }
792 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)793 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
794 {
795 	/* Store TCP splice context information in read_descriptor_t. */
796 	read_descriptor_t rd_desc = {
797 		.arg.data = tss,
798 		.count	  = tss->len,
799 	};
800 
801 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
802 }
803 
804 /**
805  *  tcp_splice_read - splice data from TCP socket to a pipe
806  * @sock:	socket to splice from
807  * @ppos:	position (not valid)
808  * @pipe:	pipe to splice to
809  * @len:	number of bytes to splice
810  * @flags:	splice modifier flags
811  *
812  * Description:
813  *    Will read pages from given socket and fill them into a pipe.
814  *
815  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)816 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
817 			struct pipe_inode_info *pipe, size_t len,
818 			unsigned int flags)
819 {
820 	struct sock *sk = sock->sk;
821 	struct tcp_splice_state tss = {
822 		.pipe = pipe,
823 		.len = len,
824 		.flags = flags,
825 	};
826 	long timeo;
827 	ssize_t spliced;
828 	int ret;
829 
830 	sock_rps_record_flow(sk);
831 	/*
832 	 * We can't seek on a socket input
833 	 */
834 	if (unlikely(*ppos))
835 		return -ESPIPE;
836 
837 	ret = spliced = 0;
838 
839 	lock_sock(sk);
840 
841 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
842 	while (tss.len) {
843 		ret = __tcp_splice_read(sk, &tss);
844 		if (ret < 0)
845 			break;
846 		else if (!ret) {
847 			if (spliced)
848 				break;
849 			if (sock_flag(sk, SOCK_DONE))
850 				break;
851 			if (sk->sk_err) {
852 				ret = sock_error(sk);
853 				break;
854 			}
855 			if (sk->sk_shutdown & RCV_SHUTDOWN)
856 				break;
857 			if (sk->sk_state == TCP_CLOSE) {
858 				/*
859 				 * This occurs when user tries to read
860 				 * from never connected socket.
861 				 */
862 				ret = -ENOTCONN;
863 				break;
864 			}
865 			if (!timeo) {
866 				ret = -EAGAIN;
867 				break;
868 			}
869 			/* if __tcp_splice_read() got nothing while we have
870 			 * an skb in receive queue, we do not want to loop.
871 			 * This might happen with URG data.
872 			 */
873 			if (!skb_queue_empty(&sk->sk_receive_queue))
874 				break;
875 			ret = sk_wait_data(sk, &timeo, NULL);
876 			if (ret < 0)
877 				break;
878 			if (signal_pending(current)) {
879 				ret = sock_intr_errno(timeo);
880 				break;
881 			}
882 			continue;
883 		}
884 		tss.len -= ret;
885 		spliced += ret;
886 
887 		if (!tss.len || !timeo)
888 			break;
889 		release_sock(sk);
890 		lock_sock(sk);
891 
892 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
893 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
894 		    signal_pending(current))
895 			break;
896 	}
897 
898 	release_sock(sk);
899 
900 	if (spliced)
901 		return spliced;
902 
903 	return ret;
904 }
905 EXPORT_IPV6_MOD(tcp_splice_read);
906 
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)907 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
908 				     bool force_schedule)
909 {
910 	struct sk_buff *skb;
911 
912 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
913 	if (likely(skb)) {
914 		bool mem_scheduled;
915 
916 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
917 		if (force_schedule) {
918 			mem_scheduled = true;
919 			sk_forced_mem_schedule(sk, skb->truesize);
920 		} else {
921 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
922 		}
923 		if (likely(mem_scheduled)) {
924 			skb_reserve(skb, MAX_TCP_HEADER);
925 			skb->ip_summed = CHECKSUM_PARTIAL;
926 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
927 			return skb;
928 		}
929 		__kfree_skb(skb);
930 	} else {
931 		sk->sk_prot->enter_memory_pressure(sk);
932 		sk_stream_moderate_sndbuf(sk);
933 	}
934 	return NULL;
935 }
936 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)937 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
938 				       int large_allowed)
939 {
940 	struct tcp_sock *tp = tcp_sk(sk);
941 	u32 new_size_goal, size_goal;
942 
943 	if (!large_allowed)
944 		return mss_now;
945 
946 	/* Note : tcp_tso_autosize() will eventually split this later */
947 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
948 
949 	/* We try hard to avoid divides here */
950 	size_goal = tp->gso_segs * mss_now;
951 	if (unlikely(new_size_goal < size_goal ||
952 		     new_size_goal >= size_goal + mss_now)) {
953 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
954 				     sk->sk_gso_max_segs);
955 		size_goal = tp->gso_segs * mss_now;
956 	}
957 
958 	return max(size_goal, mss_now);
959 }
960 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)961 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
962 {
963 	int mss_now;
964 
965 	mss_now = tcp_current_mss(sk);
966 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
967 
968 	return mss_now;
969 }
970 
971 /* In some cases, sendmsg() could have added an skb to the write queue,
972  * but failed adding payload on it. We need to remove it to consume less
973  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
974  * epoll() users. Another reason is that tcp_write_xmit() does not like
975  * finding an empty skb in the write queue.
976  */
tcp_remove_empty_skb(struct sock * sk)977 void tcp_remove_empty_skb(struct sock *sk)
978 {
979 	struct sk_buff *skb = tcp_write_queue_tail(sk);
980 
981 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
982 		tcp_unlink_write_queue(skb, sk);
983 		if (tcp_write_queue_empty(sk))
984 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
985 		tcp_wmem_free_skb(sk, skb);
986 	}
987 }
988 
989 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)990 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
991 {
992 	if (unlikely(skb_zcopy_pure(skb))) {
993 		u32 extra = skb->truesize -
994 			    SKB_TRUESIZE(skb_end_offset(skb));
995 
996 		if (!sk_wmem_schedule(sk, extra))
997 			return -ENOMEM;
998 
999 		sk_mem_charge(sk, extra);
1000 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
1001 	}
1002 	return 0;
1003 }
1004 
1005 
tcp_wmem_schedule(struct sock * sk,int copy)1006 int tcp_wmem_schedule(struct sock *sk, int copy)
1007 {
1008 	int left;
1009 
1010 	if (likely(sk_wmem_schedule(sk, copy)))
1011 		return copy;
1012 
1013 	/* We could be in trouble if we have nothing queued.
1014 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
1015 	 * to guarantee some progress.
1016 	 */
1017 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
1018 	if (left > 0)
1019 		sk_forced_mem_schedule(sk, min(left, copy));
1020 	return min(copy, sk->sk_forward_alloc);
1021 }
1022 
tcp_free_fastopen_req(struct tcp_sock * tp)1023 void tcp_free_fastopen_req(struct tcp_sock *tp)
1024 {
1025 	if (tp->fastopen_req) {
1026 		kfree(tp->fastopen_req);
1027 		tp->fastopen_req = NULL;
1028 	}
1029 }
1030 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1031 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1032 			 size_t size, struct ubuf_info *uarg)
1033 {
1034 	struct tcp_sock *tp = tcp_sk(sk);
1035 	struct inet_sock *inet = inet_sk(sk);
1036 	struct sockaddr *uaddr = msg->msg_name;
1037 	int err, flags;
1038 
1039 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1040 	      TFO_CLIENT_ENABLE) ||
1041 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1042 	     uaddr->sa_family == AF_UNSPEC))
1043 		return -EOPNOTSUPP;
1044 	if (tp->fastopen_req)
1045 		return -EALREADY; /* Another Fast Open is in progress */
1046 
1047 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1048 				   sk->sk_allocation);
1049 	if (unlikely(!tp->fastopen_req))
1050 		return -ENOBUFS;
1051 	tp->fastopen_req->data = msg;
1052 	tp->fastopen_req->size = size;
1053 	tp->fastopen_req->uarg = uarg;
1054 
1055 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1056 		err = tcp_connect(sk);
1057 		/* Same failure procedure as in tcp_v4/6_connect */
1058 		if (err) {
1059 			tcp_set_state(sk, TCP_CLOSE);
1060 			inet->inet_dport = 0;
1061 			sk->sk_route_caps = 0;
1062 		}
1063 	}
1064 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1065 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1066 				    msg->msg_namelen, flags, 1);
1067 	/* fastopen_req could already be freed in __inet_stream_connect
1068 	 * if the connection times out or gets rst
1069 	 */
1070 	if (tp->fastopen_req) {
1071 		*copied = tp->fastopen_req->copied;
1072 		tcp_free_fastopen_req(tp);
1073 		inet_clear_bit(DEFER_CONNECT, sk);
1074 	}
1075 	return err;
1076 }
1077 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1078 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1079 {
1080 	struct net_devmem_dmabuf_binding *binding = NULL;
1081 	struct tcp_sock *tp = tcp_sk(sk);
1082 	struct ubuf_info *uarg = NULL;
1083 	struct sk_buff *skb;
1084 	struct sockcm_cookie sockc;
1085 	int flags, err, copied = 0;
1086 	int mss_now = 0, size_goal, copied_syn = 0;
1087 	int process_backlog = 0;
1088 	int sockc_err = 0;
1089 	int zc = 0;
1090 	long timeo;
1091 
1092 	flags = msg->msg_flags;
1093 
1094 	sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) };
1095 	if (msg->msg_controllen) {
1096 		sockc_err = sock_cmsg_send(sk, msg, &sockc);
1097 		/* Don't return error until MSG_FASTOPEN has been processed;
1098 		 * that may succeed even if the cmsg is invalid.
1099 		 */
1100 	}
1101 
1102 	if ((flags & MSG_ZEROCOPY) && size) {
1103 		if (msg->msg_ubuf) {
1104 			uarg = msg->msg_ubuf;
1105 			if (sk->sk_route_caps & NETIF_F_SG)
1106 				zc = MSG_ZEROCOPY;
1107 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1108 			skb = tcp_write_queue_tail(sk);
1109 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb),
1110 						    !sockc_err && sockc.dmabuf_id);
1111 			if (!uarg) {
1112 				err = -ENOBUFS;
1113 				goto out_err;
1114 			}
1115 			if (sk->sk_route_caps & NETIF_F_SG)
1116 				zc = MSG_ZEROCOPY;
1117 			else
1118 				uarg_to_msgzc(uarg)->zerocopy = 0;
1119 
1120 			if (!sockc_err && sockc.dmabuf_id) {
1121 				binding = net_devmem_get_binding(sk, sockc.dmabuf_id);
1122 				if (IS_ERR(binding)) {
1123 					err = PTR_ERR(binding);
1124 					binding = NULL;
1125 					goto out_err;
1126 				}
1127 			}
1128 		}
1129 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1130 		if (sk->sk_route_caps & NETIF_F_SG)
1131 			zc = MSG_SPLICE_PAGES;
1132 	}
1133 
1134 	if (!sockc_err && sockc.dmabuf_id &&
1135 	    (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) {
1136 		err = -EINVAL;
1137 		goto out_err;
1138 	}
1139 
1140 	if (unlikely(flags & MSG_FASTOPEN ||
1141 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1142 	    !tp->repair) {
1143 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1144 		if (err == -EINPROGRESS && copied_syn > 0)
1145 			goto out;
1146 		else if (err)
1147 			goto out_err;
1148 	}
1149 
1150 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1151 
1152 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1153 
1154 	/* Wait for a connection to finish. One exception is TCP Fast Open
1155 	 * (passive side) where data is allowed to be sent before a connection
1156 	 * is fully established.
1157 	 */
1158 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1159 	    !tcp_passive_fastopen(sk)) {
1160 		err = sk_stream_wait_connect(sk, &timeo);
1161 		if (err != 0)
1162 			goto do_error;
1163 	}
1164 
1165 	if (unlikely(tp->repair)) {
1166 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1167 			copied = tcp_send_rcvq(sk, msg, size);
1168 			goto out_nopush;
1169 		}
1170 
1171 		err = -EINVAL;
1172 		if (tp->repair_queue == TCP_NO_QUEUE)
1173 			goto out_err;
1174 
1175 		/* 'common' sending to sendq */
1176 	}
1177 
1178 	if (sockc_err) {
1179 		err = sockc_err;
1180 		goto out_err;
1181 	}
1182 
1183 	/* This should be in poll */
1184 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1185 
1186 	/* Ok commence sending. */
1187 	copied = 0;
1188 
1189 restart:
1190 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1191 
1192 	err = -EPIPE;
1193 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1194 		goto do_error;
1195 
1196 	while (msg_data_left(msg)) {
1197 		int copy = 0;
1198 
1199 		skb = tcp_write_queue_tail(sk);
1200 		if (skb)
1201 			copy = size_goal - skb->len;
1202 
1203 		trace_tcp_sendmsg_locked(sk, msg, skb, size_goal);
1204 
1205 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1206 			bool first_skb;
1207 
1208 new_segment:
1209 			if (!sk_stream_memory_free(sk))
1210 				goto wait_for_space;
1211 
1212 			if (unlikely(process_backlog >= 16)) {
1213 				process_backlog = 0;
1214 				if (sk_flush_backlog(sk))
1215 					goto restart;
1216 			}
1217 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1218 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1219 						   first_skb);
1220 			if (!skb)
1221 				goto wait_for_space;
1222 
1223 			process_backlog++;
1224 
1225 #ifdef CONFIG_SKB_DECRYPTED
1226 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1227 #endif
1228 			tcp_skb_entail(sk, skb);
1229 			copy = size_goal;
1230 
1231 			/* All packets are restored as if they have
1232 			 * already been sent. skb_mstamp_ns isn't set to
1233 			 * avoid wrong rtt estimation.
1234 			 */
1235 			if (tp->repair)
1236 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1237 		}
1238 
1239 		/* Try to append data to the end of skb. */
1240 		if (copy > msg_data_left(msg))
1241 			copy = msg_data_left(msg);
1242 
1243 		if (zc == 0) {
1244 			bool merge = true;
1245 			int i = skb_shinfo(skb)->nr_frags;
1246 			struct page_frag *pfrag = sk_page_frag(sk);
1247 
1248 			if (!sk_page_frag_refill(sk, pfrag))
1249 				goto wait_for_space;
1250 
1251 			if (!skb_can_coalesce(skb, i, pfrag->page,
1252 					      pfrag->offset)) {
1253 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1254 					tcp_mark_push(tp, skb);
1255 					goto new_segment;
1256 				}
1257 				merge = false;
1258 			}
1259 
1260 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1261 
1262 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1263 				if (tcp_downgrade_zcopy_pure(sk, skb))
1264 					goto wait_for_space;
1265 				skb_zcopy_downgrade_managed(skb);
1266 			}
1267 
1268 			copy = tcp_wmem_schedule(sk, copy);
1269 			if (!copy)
1270 				goto wait_for_space;
1271 
1272 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1273 						       pfrag->page,
1274 						       pfrag->offset,
1275 						       copy);
1276 			if (err)
1277 				goto do_error;
1278 
1279 			/* Update the skb. */
1280 			if (merge) {
1281 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1282 			} else {
1283 				skb_fill_page_desc(skb, i, pfrag->page,
1284 						   pfrag->offset, copy);
1285 				page_ref_inc(pfrag->page);
1286 			}
1287 			pfrag->offset += copy;
1288 		} else if (zc == MSG_ZEROCOPY)  {
1289 			/* First append to a fragless skb builds initial
1290 			 * pure zerocopy skb
1291 			 */
1292 			if (!skb->len)
1293 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1294 
1295 			if (!skb_zcopy_pure(skb)) {
1296 				copy = tcp_wmem_schedule(sk, copy);
1297 				if (!copy)
1298 					goto wait_for_space;
1299 			}
1300 
1301 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg,
1302 						       binding);
1303 			if (err == -EMSGSIZE || err == -EEXIST) {
1304 				tcp_mark_push(tp, skb);
1305 				goto new_segment;
1306 			}
1307 			if (err < 0)
1308 				goto do_error;
1309 			copy = err;
1310 		} else if (zc == MSG_SPLICE_PAGES) {
1311 			/* Splice in data if we can; copy if we can't. */
1312 			if (tcp_downgrade_zcopy_pure(sk, skb))
1313 				goto wait_for_space;
1314 			copy = tcp_wmem_schedule(sk, copy);
1315 			if (!copy)
1316 				goto wait_for_space;
1317 
1318 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy);
1319 			if (err < 0) {
1320 				if (err == -EMSGSIZE) {
1321 					tcp_mark_push(tp, skb);
1322 					goto new_segment;
1323 				}
1324 				goto do_error;
1325 			}
1326 			copy = err;
1327 
1328 			if (!(flags & MSG_NO_SHARED_FRAGS))
1329 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1330 
1331 			sk_wmem_queued_add(sk, copy);
1332 			sk_mem_charge(sk, copy);
1333 		}
1334 
1335 		if (!copied)
1336 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1337 
1338 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1339 		TCP_SKB_CB(skb)->end_seq += copy;
1340 		tcp_skb_pcount_set(skb, 0);
1341 
1342 		copied += copy;
1343 		if (!msg_data_left(msg)) {
1344 			if (unlikely(flags & MSG_EOR))
1345 				TCP_SKB_CB(skb)->eor = 1;
1346 			goto out;
1347 		}
1348 
1349 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1350 			continue;
1351 
1352 		if (forced_push(tp)) {
1353 			tcp_mark_push(tp, skb);
1354 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1355 		} else if (skb == tcp_send_head(sk))
1356 			tcp_push_one(sk, mss_now);
1357 		continue;
1358 
1359 wait_for_space:
1360 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1361 		tcp_remove_empty_skb(sk);
1362 		if (copied)
1363 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1364 				 TCP_NAGLE_PUSH, size_goal);
1365 
1366 		err = sk_stream_wait_memory(sk, &timeo);
1367 		if (err != 0)
1368 			goto do_error;
1369 
1370 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1371 	}
1372 
1373 out:
1374 	if (copied) {
1375 		tcp_tx_timestamp(sk, &sockc);
1376 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1377 	}
1378 out_nopush:
1379 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1380 	if (uarg && !msg->msg_ubuf)
1381 		net_zcopy_put(uarg);
1382 	if (binding)
1383 		net_devmem_dmabuf_binding_put(binding);
1384 	return copied + copied_syn;
1385 
1386 do_error:
1387 	tcp_remove_empty_skb(sk);
1388 
1389 	if (copied + copied_syn)
1390 		goto out;
1391 out_err:
1392 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1393 	if (uarg && !msg->msg_ubuf)
1394 		net_zcopy_put_abort(uarg, true);
1395 	err = sk_stream_error(sk, flags, err);
1396 	/* make sure we wake any epoll edge trigger waiter */
1397 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1398 		sk->sk_write_space(sk);
1399 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1400 	}
1401 	if (binding)
1402 		net_devmem_dmabuf_binding_put(binding);
1403 
1404 	return err;
1405 }
1406 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1407 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1408 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1409 {
1410 	int ret;
1411 
1412 	lock_sock(sk);
1413 	ret = tcp_sendmsg_locked(sk, msg, size);
1414 	release_sock(sk);
1415 
1416 	return ret;
1417 }
1418 EXPORT_SYMBOL(tcp_sendmsg);
1419 
tcp_splice_eof(struct socket * sock)1420 void tcp_splice_eof(struct socket *sock)
1421 {
1422 	struct sock *sk = sock->sk;
1423 	struct tcp_sock *tp = tcp_sk(sk);
1424 	int mss_now, size_goal;
1425 
1426 	if (!tcp_write_queue_tail(sk))
1427 		return;
1428 
1429 	lock_sock(sk);
1430 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1431 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1432 	release_sock(sk);
1433 }
1434 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1435 
1436 /*
1437  *	Handle reading urgent data. BSD has very simple semantics for
1438  *	this, no blocking and very strange errors 8)
1439  */
1440 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1441 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1442 {
1443 	struct tcp_sock *tp = tcp_sk(sk);
1444 
1445 	/* No URG data to read. */
1446 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1447 	    tp->urg_data == TCP_URG_READ)
1448 		return -EINVAL;	/* Yes this is right ! */
1449 
1450 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1451 		return -ENOTCONN;
1452 
1453 	if (tp->urg_data & TCP_URG_VALID) {
1454 		int err = 0;
1455 		char c = tp->urg_data;
1456 
1457 		if (!(flags & MSG_PEEK))
1458 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1459 
1460 		/* Read urgent data. */
1461 		msg->msg_flags |= MSG_OOB;
1462 
1463 		if (len > 0) {
1464 			if (!(flags & MSG_TRUNC))
1465 				err = memcpy_to_msg(msg, &c, 1);
1466 			len = 1;
1467 		} else
1468 			msg->msg_flags |= MSG_TRUNC;
1469 
1470 		return err ? -EFAULT : len;
1471 	}
1472 
1473 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1474 		return 0;
1475 
1476 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1477 	 * the available implementations agree in this case:
1478 	 * this call should never block, independent of the
1479 	 * blocking state of the socket.
1480 	 * Mike <pall@rz.uni-karlsruhe.de>
1481 	 */
1482 	return -EAGAIN;
1483 }
1484 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1485 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1486 {
1487 	struct sk_buff *skb;
1488 	int copied = 0, err = 0;
1489 
1490 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1491 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1492 		if (err)
1493 			return err;
1494 		copied += skb->len;
1495 	}
1496 
1497 	skb_queue_walk(&sk->sk_write_queue, skb) {
1498 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1499 		if (err)
1500 			break;
1501 
1502 		copied += skb->len;
1503 	}
1504 
1505 	return err ?: copied;
1506 }
1507 
1508 /* Clean up the receive buffer for full frames taken by the user,
1509  * then send an ACK if necessary.  COPIED is the number of bytes
1510  * tcp_recvmsg has given to the user so far, it speeds up the
1511  * calculation of whether or not we must ACK for the sake of
1512  * a window update.
1513  */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1514 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1515 {
1516 	struct tcp_sock *tp = tcp_sk(sk);
1517 	bool time_to_ack = false;
1518 
1519 	if (inet_csk_ack_scheduled(sk)) {
1520 		const struct inet_connection_sock *icsk = inet_csk(sk);
1521 
1522 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1523 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1524 		    /*
1525 		     * If this read emptied read buffer, we send ACK, if
1526 		     * connection is not bidirectional, user drained
1527 		     * receive buffer and there was a small segment
1528 		     * in queue.
1529 		     */
1530 		    (copied > 0 &&
1531 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1532 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1533 		       !inet_csk_in_pingpong_mode(sk))) &&
1534 		      !atomic_read(&sk->sk_rmem_alloc)))
1535 			time_to_ack = true;
1536 	}
1537 
1538 	/* We send an ACK if we can now advertise a non-zero window
1539 	 * which has been raised "significantly".
1540 	 *
1541 	 * Even if window raised up to infinity, do not send window open ACK
1542 	 * in states, where we will not receive more. It is useless.
1543 	 */
1544 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1545 		__u32 rcv_window_now = tcp_receive_window(tp);
1546 
1547 		/* Optimize, __tcp_select_window() is not cheap. */
1548 		if (2*rcv_window_now <= tp->window_clamp) {
1549 			__u32 new_window = __tcp_select_window(sk);
1550 
1551 			/* Send ACK now, if this read freed lots of space
1552 			 * in our buffer. Certainly, new_window is new window.
1553 			 * We can advertise it now, if it is not less than current one.
1554 			 * "Lots" means "at least twice" here.
1555 			 */
1556 			if (new_window && new_window >= 2 * rcv_window_now)
1557 				time_to_ack = true;
1558 		}
1559 	}
1560 	if (time_to_ack)
1561 		tcp_send_ack(sk);
1562 }
1563 
tcp_cleanup_rbuf(struct sock * sk,int copied)1564 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1565 {
1566 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1567 	struct tcp_sock *tp = tcp_sk(sk);
1568 
1569 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1570 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1571 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1572 	__tcp_cleanup_rbuf(sk, copied);
1573 }
1574 
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1575 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1576 {
1577 	__skb_unlink(skb, &sk->sk_receive_queue);
1578 	if (likely(skb->destructor == sock_rfree)) {
1579 		sock_rfree(skb);
1580 		skb->destructor = NULL;
1581 		skb->sk = NULL;
1582 		return skb_attempt_defer_free(skb);
1583 	}
1584 	__kfree_skb(skb);
1585 }
1586 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1587 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1588 {
1589 	struct sk_buff *skb;
1590 	u32 offset;
1591 
1592 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1593 		offset = seq - TCP_SKB_CB(skb)->seq;
1594 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1595 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1596 			offset--;
1597 		}
1598 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1599 			*off = offset;
1600 			return skb;
1601 		}
1602 		/* This looks weird, but this can happen if TCP collapsing
1603 		 * splitted a fat GRO packet, while we released socket lock
1604 		 * in skb_splice_bits()
1605 		 */
1606 		tcp_eat_recv_skb(sk, skb);
1607 	}
1608 	return NULL;
1609 }
1610 EXPORT_SYMBOL(tcp_recv_skb);
1611 
1612 /*
1613  * This routine provides an alternative to tcp_recvmsg() for routines
1614  * that would like to handle copying from skbuffs directly in 'sendfile'
1615  * fashion.
1616  * Note:
1617  *	- It is assumed that the socket was locked by the caller.
1618  *	- The routine does not block.
1619  *	- At present, there is no support for reading OOB data
1620  *	  or for 'peeking' the socket using this routine
1621  *	  (although both would be easy to implement).
1622  */
__tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1623 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1624 			   sk_read_actor_t recv_actor, bool noack,
1625 			   u32 *copied_seq)
1626 {
1627 	struct sk_buff *skb;
1628 	struct tcp_sock *tp = tcp_sk(sk);
1629 	u32 seq = *copied_seq;
1630 	u32 offset;
1631 	int copied = 0;
1632 
1633 	if (sk->sk_state == TCP_LISTEN)
1634 		return -ENOTCONN;
1635 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1636 		if (offset < skb->len) {
1637 			int used;
1638 			size_t len;
1639 
1640 			len = skb->len - offset;
1641 			/* Stop reading if we hit a patch of urgent data */
1642 			if (unlikely(tp->urg_data)) {
1643 				u32 urg_offset = tp->urg_seq - seq;
1644 				if (urg_offset < len)
1645 					len = urg_offset;
1646 				if (!len)
1647 					break;
1648 			}
1649 			used = recv_actor(desc, skb, offset, len);
1650 			if (used <= 0) {
1651 				if (!copied)
1652 					copied = used;
1653 				break;
1654 			}
1655 			if (WARN_ON_ONCE(used > len))
1656 				used = len;
1657 			seq += used;
1658 			copied += used;
1659 			offset += used;
1660 
1661 			/* If recv_actor drops the lock (e.g. TCP splice
1662 			 * receive) the skb pointer might be invalid when
1663 			 * getting here: tcp_collapse might have deleted it
1664 			 * while aggregating skbs from the socket queue.
1665 			 */
1666 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1667 			if (!skb)
1668 				break;
1669 			/* TCP coalescing might have appended data to the skb.
1670 			 * Try to splice more frags
1671 			 */
1672 			if (offset + 1 != skb->len)
1673 				continue;
1674 		}
1675 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1676 			tcp_eat_recv_skb(sk, skb);
1677 			++seq;
1678 			break;
1679 		}
1680 		tcp_eat_recv_skb(sk, skb);
1681 		if (!desc->count)
1682 			break;
1683 		WRITE_ONCE(*copied_seq, seq);
1684 	}
1685 	WRITE_ONCE(*copied_seq, seq);
1686 
1687 	if (noack)
1688 		goto out;
1689 
1690 	tcp_rcv_space_adjust(sk);
1691 
1692 	/* Clean up data we have read: This will do ACK frames. */
1693 	if (copied > 0) {
1694 		tcp_recv_skb(sk, seq, &offset);
1695 		tcp_cleanup_rbuf(sk, copied);
1696 	}
1697 out:
1698 	return copied;
1699 }
1700 
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1701 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1702 		  sk_read_actor_t recv_actor)
1703 {
1704 	return __tcp_read_sock(sk, desc, recv_actor, false,
1705 			       &tcp_sk(sk)->copied_seq);
1706 }
1707 EXPORT_SYMBOL(tcp_read_sock);
1708 
tcp_read_sock_noack(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1709 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1710 			sk_read_actor_t recv_actor, bool noack,
1711 			u32 *copied_seq)
1712 {
1713 	return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1714 }
1715 
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1716 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1717 {
1718 	struct sk_buff *skb;
1719 	int copied = 0;
1720 
1721 	if (sk->sk_state == TCP_LISTEN)
1722 		return -ENOTCONN;
1723 
1724 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1725 		u8 tcp_flags;
1726 		int used;
1727 
1728 		__skb_unlink(skb, &sk->sk_receive_queue);
1729 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1730 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1731 		used = recv_actor(sk, skb);
1732 		if (used < 0) {
1733 			if (!copied)
1734 				copied = used;
1735 			break;
1736 		}
1737 		copied += used;
1738 
1739 		if (tcp_flags & TCPHDR_FIN)
1740 			break;
1741 	}
1742 	return copied;
1743 }
1744 EXPORT_IPV6_MOD(tcp_read_skb);
1745 
tcp_read_done(struct sock * sk,size_t len)1746 void tcp_read_done(struct sock *sk, size_t len)
1747 {
1748 	struct tcp_sock *tp = tcp_sk(sk);
1749 	u32 seq = tp->copied_seq;
1750 	struct sk_buff *skb;
1751 	size_t left;
1752 	u32 offset;
1753 
1754 	if (sk->sk_state == TCP_LISTEN)
1755 		return;
1756 
1757 	left = len;
1758 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1759 		int used;
1760 
1761 		used = min_t(size_t, skb->len - offset, left);
1762 		seq += used;
1763 		left -= used;
1764 
1765 		if (skb->len > offset + used)
1766 			break;
1767 
1768 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1769 			tcp_eat_recv_skb(sk, skb);
1770 			++seq;
1771 			break;
1772 		}
1773 		tcp_eat_recv_skb(sk, skb);
1774 	}
1775 	WRITE_ONCE(tp->copied_seq, seq);
1776 
1777 	tcp_rcv_space_adjust(sk);
1778 
1779 	/* Clean up data we have read: This will do ACK frames. */
1780 	if (left != len)
1781 		tcp_cleanup_rbuf(sk, len - left);
1782 }
1783 EXPORT_SYMBOL(tcp_read_done);
1784 
tcp_peek_len(struct socket * sock)1785 int tcp_peek_len(struct socket *sock)
1786 {
1787 	return tcp_inq(sock->sk);
1788 }
1789 EXPORT_IPV6_MOD(tcp_peek_len);
1790 
1791 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1792 int tcp_set_rcvlowat(struct sock *sk, int val)
1793 {
1794 	struct tcp_sock *tp = tcp_sk(sk);
1795 	int space, cap;
1796 
1797 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1798 		cap = sk->sk_rcvbuf >> 1;
1799 	else
1800 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1801 	val = min(val, cap);
1802 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1803 
1804 	/* Check if we need to signal EPOLLIN right now */
1805 	tcp_data_ready(sk);
1806 
1807 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1808 		return 0;
1809 
1810 	space = tcp_space_from_win(sk, val);
1811 	if (space > sk->sk_rcvbuf) {
1812 		WRITE_ONCE(sk->sk_rcvbuf, space);
1813 
1814 		if (tp->window_clamp && tp->window_clamp < val)
1815 			WRITE_ONCE(tp->window_clamp, val);
1816 	}
1817 	return 0;
1818 }
1819 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1820 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1821 void tcp_update_recv_tstamps(struct sk_buff *skb,
1822 			     struct scm_timestamping_internal *tss)
1823 {
1824 	if (skb->tstamp)
1825 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1826 	else
1827 		tss->ts[0] = (struct timespec64) {0};
1828 
1829 	if (skb_hwtstamps(skb)->hwtstamp)
1830 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1831 	else
1832 		tss->ts[2] = (struct timespec64) {0};
1833 }
1834 
1835 #ifdef CONFIG_MMU
1836 static const struct vm_operations_struct tcp_vm_ops = {
1837 };
1838 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1839 int tcp_mmap(struct file *file, struct socket *sock,
1840 	     struct vm_area_struct *vma)
1841 {
1842 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1843 		return -EPERM;
1844 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1845 
1846 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1847 	vm_flags_set(vma, VM_MIXEDMAP);
1848 
1849 	vma->vm_ops = &tcp_vm_ops;
1850 	return 0;
1851 }
1852 EXPORT_IPV6_MOD(tcp_mmap);
1853 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1854 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1855 				       u32 *offset_frag)
1856 {
1857 	skb_frag_t *frag;
1858 
1859 	if (unlikely(offset_skb >= skb->len))
1860 		return NULL;
1861 
1862 	offset_skb -= skb_headlen(skb);
1863 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1864 		return NULL;
1865 
1866 	frag = skb_shinfo(skb)->frags;
1867 	while (offset_skb) {
1868 		if (skb_frag_size(frag) > offset_skb) {
1869 			*offset_frag = offset_skb;
1870 			return frag;
1871 		}
1872 		offset_skb -= skb_frag_size(frag);
1873 		++frag;
1874 	}
1875 	*offset_frag = 0;
1876 	return frag;
1877 }
1878 
can_map_frag(const skb_frag_t * frag)1879 static bool can_map_frag(const skb_frag_t *frag)
1880 {
1881 	struct page *page;
1882 
1883 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1884 		return false;
1885 
1886 	page = skb_frag_page(frag);
1887 
1888 	if (PageCompound(page) || page->mapping)
1889 		return false;
1890 
1891 	return true;
1892 }
1893 
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1894 static int find_next_mappable_frag(const skb_frag_t *frag,
1895 				   int remaining_in_skb)
1896 {
1897 	int offset = 0;
1898 
1899 	if (likely(can_map_frag(frag)))
1900 		return 0;
1901 
1902 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1903 		offset += skb_frag_size(frag);
1904 		++frag;
1905 	}
1906 	return offset;
1907 }
1908 
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1909 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1910 					  struct tcp_zerocopy_receive *zc,
1911 					  struct sk_buff *skb, u32 offset)
1912 {
1913 	u32 frag_offset, partial_frag_remainder = 0;
1914 	int mappable_offset;
1915 	skb_frag_t *frag;
1916 
1917 	/* worst case: skip to next skb. try to improve on this case below */
1918 	zc->recv_skip_hint = skb->len - offset;
1919 
1920 	/* Find the frag containing this offset (and how far into that frag) */
1921 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1922 	if (!frag)
1923 		return;
1924 
1925 	if (frag_offset) {
1926 		struct skb_shared_info *info = skb_shinfo(skb);
1927 
1928 		/* We read part of the last frag, must recvmsg() rest of skb. */
1929 		if (frag == &info->frags[info->nr_frags - 1])
1930 			return;
1931 
1932 		/* Else, we must at least read the remainder in this frag. */
1933 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1934 		zc->recv_skip_hint -= partial_frag_remainder;
1935 		++frag;
1936 	}
1937 
1938 	/* partial_frag_remainder: If part way through a frag, must read rest.
1939 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1940 	 * in partial_frag_remainder.
1941 	 */
1942 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1943 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1944 }
1945 
1946 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1947 			      int flags, struct scm_timestamping_internal *tss,
1948 			      int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1949 static int receive_fallback_to_copy(struct sock *sk,
1950 				    struct tcp_zerocopy_receive *zc, int inq,
1951 				    struct scm_timestamping_internal *tss)
1952 {
1953 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1954 	struct msghdr msg = {};
1955 	int err;
1956 
1957 	zc->length = 0;
1958 	zc->recv_skip_hint = 0;
1959 
1960 	if (copy_address != zc->copybuf_address)
1961 		return -EINVAL;
1962 
1963 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1964 			  &msg.msg_iter);
1965 	if (err)
1966 		return err;
1967 
1968 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1969 				 tss, &zc->msg_flags);
1970 	if (err < 0)
1971 		return err;
1972 
1973 	zc->copybuf_len = err;
1974 	if (likely(zc->copybuf_len)) {
1975 		struct sk_buff *skb;
1976 		u32 offset;
1977 
1978 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1979 		if (skb)
1980 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1981 	}
1982 	return 0;
1983 }
1984 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1985 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1986 				   struct sk_buff *skb, u32 copylen,
1987 				   u32 *offset, u32 *seq)
1988 {
1989 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1990 	struct msghdr msg = {};
1991 	int err;
1992 
1993 	if (copy_address != zc->copybuf_address)
1994 		return -EINVAL;
1995 
1996 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1997 			  &msg.msg_iter);
1998 	if (err)
1999 		return err;
2000 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2001 	if (err)
2002 		return err;
2003 	zc->recv_skip_hint -= copylen;
2004 	*offset += copylen;
2005 	*seq += copylen;
2006 	return (__s32)copylen;
2007 }
2008 
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)2009 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2010 				  struct sock *sk,
2011 				  struct sk_buff *skb,
2012 				  u32 *seq,
2013 				  s32 copybuf_len,
2014 				  struct scm_timestamping_internal *tss)
2015 {
2016 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2017 
2018 	if (!copylen)
2019 		return 0;
2020 	/* skb is null if inq < PAGE_SIZE. */
2021 	if (skb) {
2022 		offset = *seq - TCP_SKB_CB(skb)->seq;
2023 	} else {
2024 		skb = tcp_recv_skb(sk, *seq, &offset);
2025 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2026 			tcp_update_recv_tstamps(skb, tss);
2027 			zc->msg_flags |= TCP_CMSG_TS;
2028 		}
2029 	}
2030 
2031 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2032 						  seq);
2033 	return zc->copybuf_len < 0 ? 0 : copylen;
2034 }
2035 
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)2036 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2037 					      struct page **pending_pages,
2038 					      unsigned long pages_remaining,
2039 					      unsigned long *address,
2040 					      u32 *length,
2041 					      u32 *seq,
2042 					      struct tcp_zerocopy_receive *zc,
2043 					      u32 total_bytes_to_map,
2044 					      int err)
2045 {
2046 	/* At least one page did not map. Try zapping if we skipped earlier. */
2047 	if (err == -EBUSY &&
2048 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2049 		u32 maybe_zap_len;
2050 
2051 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2052 				*length + /* Mapped or pending */
2053 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2054 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2055 		err = 0;
2056 	}
2057 
2058 	if (!err) {
2059 		unsigned long leftover_pages = pages_remaining;
2060 		int bytes_mapped;
2061 
2062 		/* We called zap_page_range_single, try to reinsert. */
2063 		err = vm_insert_pages(vma, *address,
2064 				      pending_pages,
2065 				      &pages_remaining);
2066 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2067 		*seq += bytes_mapped;
2068 		*address += bytes_mapped;
2069 	}
2070 	if (err) {
2071 		/* Either we were unable to zap, OR we zapped, retried an
2072 		 * insert, and still had an issue. Either ways, pages_remaining
2073 		 * is the number of pages we were unable to map, and we unroll
2074 		 * some state we speculatively touched before.
2075 		 */
2076 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2077 
2078 		*length -= bytes_not_mapped;
2079 		zc->recv_skip_hint += bytes_not_mapped;
2080 	}
2081 	return err;
2082 }
2083 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2084 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2085 					struct page **pages,
2086 					unsigned int pages_to_map,
2087 					unsigned long *address,
2088 					u32 *length,
2089 					u32 *seq,
2090 					struct tcp_zerocopy_receive *zc,
2091 					u32 total_bytes_to_map)
2092 {
2093 	unsigned long pages_remaining = pages_to_map;
2094 	unsigned int pages_mapped;
2095 	unsigned int bytes_mapped;
2096 	int err;
2097 
2098 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2099 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2100 	bytes_mapped = PAGE_SIZE * pages_mapped;
2101 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2102 	 * mapping (some but not all of the pages).
2103 	 */
2104 	*seq += bytes_mapped;
2105 	*address += bytes_mapped;
2106 
2107 	if (likely(!err))
2108 		return 0;
2109 
2110 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2111 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2112 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2113 		err);
2114 }
2115 
2116 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2117 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2118 				      struct tcp_zerocopy_receive *zc,
2119 				      struct scm_timestamping_internal *tss)
2120 {
2121 	unsigned long msg_control_addr;
2122 	struct msghdr cmsg_dummy;
2123 
2124 	msg_control_addr = (unsigned long)zc->msg_control;
2125 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2126 	cmsg_dummy.msg_controllen =
2127 		(__kernel_size_t)zc->msg_controllen;
2128 	cmsg_dummy.msg_flags = in_compat_syscall()
2129 		? MSG_CMSG_COMPAT : 0;
2130 	cmsg_dummy.msg_control_is_user = true;
2131 	zc->msg_flags = 0;
2132 	if (zc->msg_control == msg_control_addr &&
2133 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2134 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2135 		zc->msg_control = (__u64)
2136 			((uintptr_t)cmsg_dummy.msg_control_user);
2137 		zc->msg_controllen =
2138 			(__u64)cmsg_dummy.msg_controllen;
2139 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2140 	}
2141 }
2142 
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2143 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2144 					   unsigned long address,
2145 					   bool *mmap_locked)
2146 {
2147 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2148 
2149 	if (vma) {
2150 		if (vma->vm_ops != &tcp_vm_ops) {
2151 			vma_end_read(vma);
2152 			return NULL;
2153 		}
2154 		*mmap_locked = false;
2155 		return vma;
2156 	}
2157 
2158 	mmap_read_lock(mm);
2159 	vma = vma_lookup(mm, address);
2160 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2161 		mmap_read_unlock(mm);
2162 		return NULL;
2163 	}
2164 	*mmap_locked = true;
2165 	return vma;
2166 }
2167 
2168 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2169 static int tcp_zerocopy_receive(struct sock *sk,
2170 				struct tcp_zerocopy_receive *zc,
2171 				struct scm_timestamping_internal *tss)
2172 {
2173 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2174 	unsigned long address = (unsigned long)zc->address;
2175 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2176 	s32 copybuf_len = zc->copybuf_len;
2177 	struct tcp_sock *tp = tcp_sk(sk);
2178 	const skb_frag_t *frags = NULL;
2179 	unsigned int pages_to_map = 0;
2180 	struct vm_area_struct *vma;
2181 	struct sk_buff *skb = NULL;
2182 	u32 seq = tp->copied_seq;
2183 	u32 total_bytes_to_map;
2184 	int inq = tcp_inq(sk);
2185 	bool mmap_locked;
2186 	int ret;
2187 
2188 	zc->copybuf_len = 0;
2189 	zc->msg_flags = 0;
2190 
2191 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2192 		return -EINVAL;
2193 
2194 	if (sk->sk_state == TCP_LISTEN)
2195 		return -ENOTCONN;
2196 
2197 	sock_rps_record_flow(sk);
2198 
2199 	if (inq && inq <= copybuf_len)
2200 		return receive_fallback_to_copy(sk, zc, inq, tss);
2201 
2202 	if (inq < PAGE_SIZE) {
2203 		zc->length = 0;
2204 		zc->recv_skip_hint = inq;
2205 		if (!inq && sock_flag(sk, SOCK_DONE))
2206 			return -EIO;
2207 		return 0;
2208 	}
2209 
2210 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2211 	if (!vma)
2212 		return -EINVAL;
2213 
2214 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2215 	avail_len = min_t(u32, vma_len, inq);
2216 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2217 	if (total_bytes_to_map) {
2218 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2219 			zap_page_range_single(vma, address, total_bytes_to_map,
2220 					      NULL);
2221 		zc->length = total_bytes_to_map;
2222 		zc->recv_skip_hint = 0;
2223 	} else {
2224 		zc->length = avail_len;
2225 		zc->recv_skip_hint = avail_len;
2226 	}
2227 	ret = 0;
2228 	while (length + PAGE_SIZE <= zc->length) {
2229 		int mappable_offset;
2230 		struct page *page;
2231 
2232 		if (zc->recv_skip_hint < PAGE_SIZE) {
2233 			u32 offset_frag;
2234 
2235 			if (skb) {
2236 				if (zc->recv_skip_hint > 0)
2237 					break;
2238 				skb = skb->next;
2239 				offset = seq - TCP_SKB_CB(skb)->seq;
2240 			} else {
2241 				skb = tcp_recv_skb(sk, seq, &offset);
2242 			}
2243 
2244 			if (!skb_frags_readable(skb))
2245 				break;
2246 
2247 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2248 				tcp_update_recv_tstamps(skb, tss);
2249 				zc->msg_flags |= TCP_CMSG_TS;
2250 			}
2251 			zc->recv_skip_hint = skb->len - offset;
2252 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2253 			if (!frags || offset_frag)
2254 				break;
2255 		}
2256 
2257 		mappable_offset = find_next_mappable_frag(frags,
2258 							  zc->recv_skip_hint);
2259 		if (mappable_offset) {
2260 			zc->recv_skip_hint = mappable_offset;
2261 			break;
2262 		}
2263 		page = skb_frag_page(frags);
2264 		if (WARN_ON_ONCE(!page))
2265 			break;
2266 
2267 		prefetchw(page);
2268 		pages[pages_to_map++] = page;
2269 		length += PAGE_SIZE;
2270 		zc->recv_skip_hint -= PAGE_SIZE;
2271 		frags++;
2272 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2273 		    zc->recv_skip_hint < PAGE_SIZE) {
2274 			/* Either full batch, or we're about to go to next skb
2275 			 * (and we cannot unroll failed ops across skbs).
2276 			 */
2277 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2278 							   pages_to_map,
2279 							   &address, &length,
2280 							   &seq, zc,
2281 							   total_bytes_to_map);
2282 			if (ret)
2283 				goto out;
2284 			pages_to_map = 0;
2285 		}
2286 	}
2287 	if (pages_to_map) {
2288 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2289 						   &address, &length, &seq,
2290 						   zc, total_bytes_to_map);
2291 	}
2292 out:
2293 	if (mmap_locked)
2294 		mmap_read_unlock(current->mm);
2295 	else
2296 		vma_end_read(vma);
2297 	/* Try to copy straggler data. */
2298 	if (!ret)
2299 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2300 
2301 	if (length + copylen) {
2302 		WRITE_ONCE(tp->copied_seq, seq);
2303 		tcp_rcv_space_adjust(sk);
2304 
2305 		/* Clean up data we have read: This will do ACK frames. */
2306 		tcp_recv_skb(sk, seq, &offset);
2307 		tcp_cleanup_rbuf(sk, length + copylen);
2308 		ret = 0;
2309 		if (length == zc->length)
2310 			zc->recv_skip_hint = 0;
2311 	} else {
2312 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2313 			ret = -EIO;
2314 	}
2315 	zc->length = length;
2316 	return ret;
2317 }
2318 #endif
2319 
2320 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2321 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2322 			struct scm_timestamping_internal *tss)
2323 {
2324 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2325 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2326 	bool has_timestamping = false;
2327 
2328 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2329 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2330 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2331 				if (new_tstamp) {
2332 					struct __kernel_timespec kts = {
2333 						.tv_sec = tss->ts[0].tv_sec,
2334 						.tv_nsec = tss->ts[0].tv_nsec,
2335 					};
2336 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2337 						 sizeof(kts), &kts);
2338 				} else {
2339 					struct __kernel_old_timespec ts_old = {
2340 						.tv_sec = tss->ts[0].tv_sec,
2341 						.tv_nsec = tss->ts[0].tv_nsec,
2342 					};
2343 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2344 						 sizeof(ts_old), &ts_old);
2345 				}
2346 			} else {
2347 				if (new_tstamp) {
2348 					struct __kernel_sock_timeval stv = {
2349 						.tv_sec = tss->ts[0].tv_sec,
2350 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2351 					};
2352 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2353 						 sizeof(stv), &stv);
2354 				} else {
2355 					struct __kernel_old_timeval tv = {
2356 						.tv_sec = tss->ts[0].tv_sec,
2357 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2358 					};
2359 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2360 						 sizeof(tv), &tv);
2361 				}
2362 			}
2363 		}
2364 
2365 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2366 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2367 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2368 			has_timestamping = true;
2369 		else
2370 			tss->ts[0] = (struct timespec64) {0};
2371 	}
2372 
2373 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2374 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2375 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2376 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2377 			has_timestamping = true;
2378 		else
2379 			tss->ts[2] = (struct timespec64) {0};
2380 	}
2381 
2382 	if (has_timestamping) {
2383 		tss->ts[1] = (struct timespec64) {0};
2384 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2385 			put_cmsg_scm_timestamping64(msg, tss);
2386 		else
2387 			put_cmsg_scm_timestamping(msg, tss);
2388 	}
2389 }
2390 
tcp_inq_hint(struct sock * sk)2391 static int tcp_inq_hint(struct sock *sk)
2392 {
2393 	const struct tcp_sock *tp = tcp_sk(sk);
2394 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2395 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2396 	int inq;
2397 
2398 	inq = rcv_nxt - copied_seq;
2399 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2400 		lock_sock(sk);
2401 		inq = tp->rcv_nxt - tp->copied_seq;
2402 		release_sock(sk);
2403 	}
2404 	/* After receiving a FIN, tell the user-space to continue reading
2405 	 * by returning a non-zero inq.
2406 	 */
2407 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2408 		inq = 1;
2409 	return inq;
2410 }
2411 
2412 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2413 struct tcp_xa_pool {
2414 	u8		max; /* max <= MAX_SKB_FRAGS */
2415 	u8		idx; /* idx <= max */
2416 	__u32		tokens[MAX_SKB_FRAGS];
2417 	netmem_ref	netmems[MAX_SKB_FRAGS];
2418 };
2419 
tcp_xa_pool_commit_locked(struct sock * sk,struct tcp_xa_pool * p)2420 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2421 {
2422 	int i;
2423 
2424 	/* Commit part that has been copied to user space. */
2425 	for (i = 0; i < p->idx; i++)
2426 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2427 			     (__force void *)p->netmems[i], GFP_KERNEL);
2428 	/* Rollback what has been pre-allocated and is no longer needed. */
2429 	for (; i < p->max; i++)
2430 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2431 
2432 	p->max = 0;
2433 	p->idx = 0;
2434 }
2435 
tcp_xa_pool_commit(struct sock * sk,struct tcp_xa_pool * p)2436 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2437 {
2438 	if (!p->max)
2439 		return;
2440 
2441 	xa_lock_bh(&sk->sk_user_frags);
2442 
2443 	tcp_xa_pool_commit_locked(sk, p);
2444 
2445 	xa_unlock_bh(&sk->sk_user_frags);
2446 }
2447 
tcp_xa_pool_refill(struct sock * sk,struct tcp_xa_pool * p,unsigned int max_frags)2448 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2449 			      unsigned int max_frags)
2450 {
2451 	int err, k;
2452 
2453 	if (p->idx < p->max)
2454 		return 0;
2455 
2456 	xa_lock_bh(&sk->sk_user_frags);
2457 
2458 	tcp_xa_pool_commit_locked(sk, p);
2459 
2460 	for (k = 0; k < max_frags; k++) {
2461 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2462 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2463 		if (err)
2464 			break;
2465 	}
2466 
2467 	xa_unlock_bh(&sk->sk_user_frags);
2468 
2469 	p->max = k;
2470 	p->idx = 0;
2471 	return k ? 0 : err;
2472 }
2473 
2474 /* On error, returns the -errno. On success, returns number of bytes sent to the
2475  * user. May not consume all of @remaining_len.
2476  */
tcp_recvmsg_dmabuf(struct sock * sk,const struct sk_buff * skb,unsigned int offset,struct msghdr * msg,int remaining_len)2477 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2478 			      unsigned int offset, struct msghdr *msg,
2479 			      int remaining_len)
2480 {
2481 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2482 	struct tcp_xa_pool tcp_xa_pool;
2483 	unsigned int start;
2484 	int i, copy, n;
2485 	int sent = 0;
2486 	int err = 0;
2487 
2488 	tcp_xa_pool.max = 0;
2489 	tcp_xa_pool.idx = 0;
2490 	do {
2491 		start = skb_headlen(skb);
2492 
2493 		if (skb_frags_readable(skb)) {
2494 			err = -ENODEV;
2495 			goto out;
2496 		}
2497 
2498 		/* Copy header. */
2499 		copy = start - offset;
2500 		if (copy > 0) {
2501 			copy = min(copy, remaining_len);
2502 
2503 			n = copy_to_iter(skb->data + offset, copy,
2504 					 &msg->msg_iter);
2505 			if (n != copy) {
2506 				err = -EFAULT;
2507 				goto out;
2508 			}
2509 
2510 			offset += copy;
2511 			remaining_len -= copy;
2512 
2513 			/* First a dmabuf_cmsg for # bytes copied to user
2514 			 * buffer.
2515 			 */
2516 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2517 			dmabuf_cmsg.frag_size = copy;
2518 			err = put_cmsg_notrunc(msg, SOL_SOCKET,
2519 					       SO_DEVMEM_LINEAR,
2520 					       sizeof(dmabuf_cmsg),
2521 					       &dmabuf_cmsg);
2522 			if (err)
2523 				goto out;
2524 
2525 			sent += copy;
2526 
2527 			if (remaining_len == 0)
2528 				goto out;
2529 		}
2530 
2531 		/* after that, send information of dmabuf pages through a
2532 		 * sequence of cmsg
2533 		 */
2534 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2535 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2536 			struct net_iov *niov;
2537 			u64 frag_offset;
2538 			int end;
2539 
2540 			/* !skb_frags_readable() should indicate that ALL the
2541 			 * frags in this skb are dmabuf net_iovs. We're checking
2542 			 * for that flag above, but also check individual frags
2543 			 * here. If the tcp stack is not setting
2544 			 * skb_frags_readable() correctly, we still don't want
2545 			 * to crash here.
2546 			 */
2547 			if (!skb_frag_net_iov(frag)) {
2548 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2549 				err = -ENODEV;
2550 				goto out;
2551 			}
2552 
2553 			niov = skb_frag_net_iov(frag);
2554 			if (!net_is_devmem_iov(niov)) {
2555 				err = -ENODEV;
2556 				goto out;
2557 			}
2558 
2559 			end = start + skb_frag_size(frag);
2560 			copy = end - offset;
2561 
2562 			if (copy > 0) {
2563 				copy = min(copy, remaining_len);
2564 
2565 				frag_offset = net_iov_virtual_addr(niov) +
2566 					      skb_frag_off(frag) + offset -
2567 					      start;
2568 				dmabuf_cmsg.frag_offset = frag_offset;
2569 				dmabuf_cmsg.frag_size = copy;
2570 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2571 							 skb_shinfo(skb)->nr_frags - i);
2572 				if (err)
2573 					goto out;
2574 
2575 				/* Will perform the exchange later */
2576 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2577 				dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2578 
2579 				offset += copy;
2580 				remaining_len -= copy;
2581 
2582 				err = put_cmsg_notrunc(msg, SOL_SOCKET,
2583 						       SO_DEVMEM_DMABUF,
2584 						       sizeof(dmabuf_cmsg),
2585 						       &dmabuf_cmsg);
2586 				if (err)
2587 					goto out;
2588 
2589 				atomic_long_inc(&niov->pp_ref_count);
2590 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2591 
2592 				sent += copy;
2593 
2594 				if (remaining_len == 0)
2595 					goto out;
2596 			}
2597 			start = end;
2598 		}
2599 
2600 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2601 		if (!remaining_len)
2602 			goto out;
2603 
2604 		/* if remaining_len is not satisfied yet, we need to go to the
2605 		 * next frag in the frag_list to satisfy remaining_len.
2606 		 */
2607 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2608 
2609 		offset = offset - start;
2610 	} while (skb);
2611 
2612 	if (remaining_len) {
2613 		err = -EFAULT;
2614 		goto out;
2615 	}
2616 
2617 out:
2618 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2619 	if (!sent)
2620 		sent = err;
2621 
2622 	return sent;
2623 }
2624 
2625 /*
2626  *	This routine copies from a sock struct into the user buffer.
2627  *
2628  *	Technical note: in 2.3 we work on _locked_ socket, so that
2629  *	tricks with *seq access order and skb->users are not required.
2630  *	Probably, code can be easily improved even more.
2631  */
2632 
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2633 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2634 			      int flags, struct scm_timestamping_internal *tss,
2635 			      int *cmsg_flags)
2636 {
2637 	struct tcp_sock *tp = tcp_sk(sk);
2638 	int last_copied_dmabuf = -1; /* uninitialized */
2639 	int copied = 0;
2640 	u32 peek_seq;
2641 	u32 *seq;
2642 	unsigned long used;
2643 	int err;
2644 	int target;		/* Read at least this many bytes */
2645 	long timeo;
2646 	struct sk_buff *skb, *last;
2647 	u32 peek_offset = 0;
2648 	u32 urg_hole = 0;
2649 
2650 	err = -ENOTCONN;
2651 	if (sk->sk_state == TCP_LISTEN)
2652 		goto out;
2653 
2654 	if (tp->recvmsg_inq) {
2655 		*cmsg_flags = TCP_CMSG_INQ;
2656 		msg->msg_get_inq = 1;
2657 	}
2658 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2659 
2660 	/* Urgent data needs to be handled specially. */
2661 	if (flags & MSG_OOB)
2662 		goto recv_urg;
2663 
2664 	if (unlikely(tp->repair)) {
2665 		err = -EPERM;
2666 		if (!(flags & MSG_PEEK))
2667 			goto out;
2668 
2669 		if (tp->repair_queue == TCP_SEND_QUEUE)
2670 			goto recv_sndq;
2671 
2672 		err = -EINVAL;
2673 		if (tp->repair_queue == TCP_NO_QUEUE)
2674 			goto out;
2675 
2676 		/* 'common' recv queue MSG_PEEK-ing */
2677 	}
2678 
2679 	seq = &tp->copied_seq;
2680 	if (flags & MSG_PEEK) {
2681 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2682 		peek_seq = tp->copied_seq + peek_offset;
2683 		seq = &peek_seq;
2684 	}
2685 
2686 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2687 
2688 	do {
2689 		u32 offset;
2690 
2691 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2692 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2693 			if (copied)
2694 				break;
2695 			if (signal_pending(current)) {
2696 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2697 				break;
2698 			}
2699 		}
2700 
2701 		/* Next get a buffer. */
2702 
2703 		last = skb_peek_tail(&sk->sk_receive_queue);
2704 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2705 			last = skb;
2706 			/* Now that we have two receive queues this
2707 			 * shouldn't happen.
2708 			 */
2709 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2710 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2711 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2712 				 flags))
2713 				break;
2714 
2715 			offset = *seq - TCP_SKB_CB(skb)->seq;
2716 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2717 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2718 				offset--;
2719 			}
2720 			if (offset < skb->len)
2721 				goto found_ok_skb;
2722 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2723 				goto found_fin_ok;
2724 			WARN(!(flags & MSG_PEEK),
2725 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2726 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2727 		}
2728 
2729 		/* Well, if we have backlog, try to process it now yet. */
2730 
2731 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2732 			break;
2733 
2734 		if (copied) {
2735 			if (!timeo ||
2736 			    sk->sk_err ||
2737 			    sk->sk_state == TCP_CLOSE ||
2738 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2739 			    signal_pending(current))
2740 				break;
2741 		} else {
2742 			if (sock_flag(sk, SOCK_DONE))
2743 				break;
2744 
2745 			if (sk->sk_err) {
2746 				copied = sock_error(sk);
2747 				break;
2748 			}
2749 
2750 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2751 				break;
2752 
2753 			if (sk->sk_state == TCP_CLOSE) {
2754 				/* This occurs when user tries to read
2755 				 * from never connected socket.
2756 				 */
2757 				copied = -ENOTCONN;
2758 				break;
2759 			}
2760 
2761 			if (!timeo) {
2762 				copied = -EAGAIN;
2763 				break;
2764 			}
2765 
2766 			if (signal_pending(current)) {
2767 				copied = sock_intr_errno(timeo);
2768 				break;
2769 			}
2770 		}
2771 
2772 		if (copied >= target) {
2773 			/* Do not sleep, just process backlog. */
2774 			__sk_flush_backlog(sk);
2775 		} else {
2776 			tcp_cleanup_rbuf(sk, copied);
2777 			err = sk_wait_data(sk, &timeo, last);
2778 			if (err < 0) {
2779 				err = copied ? : err;
2780 				goto out;
2781 			}
2782 		}
2783 
2784 		if ((flags & MSG_PEEK) &&
2785 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2786 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2787 					    current->comm,
2788 					    task_pid_nr(current));
2789 			peek_seq = tp->copied_seq + peek_offset;
2790 		}
2791 		continue;
2792 
2793 found_ok_skb:
2794 		/* Ok so how much can we use? */
2795 		used = skb->len - offset;
2796 		if (len < used)
2797 			used = len;
2798 
2799 		/* Do we have urgent data here? */
2800 		if (unlikely(tp->urg_data)) {
2801 			u32 urg_offset = tp->urg_seq - *seq;
2802 			if (urg_offset < used) {
2803 				if (!urg_offset) {
2804 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2805 						WRITE_ONCE(*seq, *seq + 1);
2806 						urg_hole++;
2807 						offset++;
2808 						used--;
2809 						if (!used)
2810 							goto skip_copy;
2811 					}
2812 				} else
2813 					used = urg_offset;
2814 			}
2815 		}
2816 
2817 		if (!(flags & MSG_TRUNC)) {
2818 			if (last_copied_dmabuf != -1 &&
2819 			    last_copied_dmabuf != !skb_frags_readable(skb))
2820 				break;
2821 
2822 			if (skb_frags_readable(skb)) {
2823 				err = skb_copy_datagram_msg(skb, offset, msg,
2824 							    used);
2825 				if (err) {
2826 					/* Exception. Bailout! */
2827 					if (!copied)
2828 						copied = -EFAULT;
2829 					break;
2830 				}
2831 			} else {
2832 				if (!(flags & MSG_SOCK_DEVMEM)) {
2833 					/* dmabuf skbs can only be received
2834 					 * with the MSG_SOCK_DEVMEM flag.
2835 					 */
2836 					if (!copied)
2837 						copied = -EFAULT;
2838 
2839 					break;
2840 				}
2841 
2842 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2843 							 used);
2844 				if (err < 0) {
2845 					if (!copied)
2846 						copied = err;
2847 
2848 					break;
2849 				}
2850 				used = err;
2851 			}
2852 		}
2853 
2854 		last_copied_dmabuf = !skb_frags_readable(skb);
2855 
2856 		WRITE_ONCE(*seq, *seq + used);
2857 		copied += used;
2858 		len -= used;
2859 		if (flags & MSG_PEEK)
2860 			sk_peek_offset_fwd(sk, used);
2861 		else
2862 			sk_peek_offset_bwd(sk, used);
2863 		tcp_rcv_space_adjust(sk);
2864 
2865 skip_copy:
2866 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2867 			WRITE_ONCE(tp->urg_data, 0);
2868 			tcp_fast_path_check(sk);
2869 		}
2870 
2871 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2872 			tcp_update_recv_tstamps(skb, tss);
2873 			*cmsg_flags |= TCP_CMSG_TS;
2874 		}
2875 
2876 		if (used + offset < skb->len)
2877 			continue;
2878 
2879 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2880 			goto found_fin_ok;
2881 		if (!(flags & MSG_PEEK))
2882 			tcp_eat_recv_skb(sk, skb);
2883 		continue;
2884 
2885 found_fin_ok:
2886 		/* Process the FIN. */
2887 		WRITE_ONCE(*seq, *seq + 1);
2888 		if (!(flags & MSG_PEEK))
2889 			tcp_eat_recv_skb(sk, skb);
2890 		break;
2891 	} while (len > 0);
2892 
2893 	/* According to UNIX98, msg_name/msg_namelen are ignored
2894 	 * on connected socket. I was just happy when found this 8) --ANK
2895 	 */
2896 
2897 	/* Clean up data we have read: This will do ACK frames. */
2898 	tcp_cleanup_rbuf(sk, copied);
2899 	return copied;
2900 
2901 out:
2902 	return err;
2903 
2904 recv_urg:
2905 	err = tcp_recv_urg(sk, msg, len, flags);
2906 	goto out;
2907 
2908 recv_sndq:
2909 	err = tcp_peek_sndq(sk, msg, len);
2910 	goto out;
2911 }
2912 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2913 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2914 		int *addr_len)
2915 {
2916 	int cmsg_flags = 0, ret;
2917 	struct scm_timestamping_internal tss;
2918 
2919 	if (unlikely(flags & MSG_ERRQUEUE))
2920 		return inet_recv_error(sk, msg, len, addr_len);
2921 
2922 	if (sk_can_busy_loop(sk) &&
2923 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2924 	    sk->sk_state == TCP_ESTABLISHED)
2925 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2926 
2927 	lock_sock(sk);
2928 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2929 	release_sock(sk);
2930 
2931 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2932 		if (cmsg_flags & TCP_CMSG_TS)
2933 			tcp_recv_timestamp(msg, sk, &tss);
2934 		if (msg->msg_get_inq) {
2935 			msg->msg_inq = tcp_inq_hint(sk);
2936 			if (cmsg_flags & TCP_CMSG_INQ)
2937 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2938 					 sizeof(msg->msg_inq), &msg->msg_inq);
2939 		}
2940 	}
2941 	return ret;
2942 }
2943 EXPORT_IPV6_MOD(tcp_recvmsg);
2944 
tcp_set_state(struct sock * sk,int state)2945 void tcp_set_state(struct sock *sk, int state)
2946 {
2947 	int oldstate = sk->sk_state;
2948 
2949 	/* We defined a new enum for TCP states that are exported in BPF
2950 	 * so as not force the internal TCP states to be frozen. The
2951 	 * following checks will detect if an internal state value ever
2952 	 * differs from the BPF value. If this ever happens, then we will
2953 	 * need to remap the internal value to the BPF value before calling
2954 	 * tcp_call_bpf_2arg.
2955 	 */
2956 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2957 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2958 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2959 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2960 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2961 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2962 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2963 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2964 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2965 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2966 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2967 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2968 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2969 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2970 
2971 	/* bpf uapi header bpf.h defines an anonymous enum with values
2972 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2973 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2974 	 * But clang built vmlinux does not have this enum in DWARF
2975 	 * since clang removes the above code before generating IR/debuginfo.
2976 	 * Let us explicitly emit the type debuginfo to ensure the
2977 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2978 	 * regardless of which compiler is used.
2979 	 */
2980 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2981 
2982 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2983 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2984 
2985 	switch (state) {
2986 	case TCP_ESTABLISHED:
2987 		if (oldstate != TCP_ESTABLISHED)
2988 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2989 		break;
2990 	case TCP_CLOSE_WAIT:
2991 		if (oldstate == TCP_SYN_RECV)
2992 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2993 		break;
2994 
2995 	case TCP_CLOSE:
2996 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2997 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2998 
2999 		sk->sk_prot->unhash(sk);
3000 		if (inet_csk(sk)->icsk_bind_hash &&
3001 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
3002 			inet_put_port(sk);
3003 		fallthrough;
3004 	default:
3005 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
3006 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
3007 	}
3008 
3009 	/* Change state AFTER socket is unhashed to avoid closed
3010 	 * socket sitting in hash tables.
3011 	 */
3012 	inet_sk_state_store(sk, state);
3013 }
3014 EXPORT_SYMBOL_GPL(tcp_set_state);
3015 
3016 /*
3017  *	State processing on a close. This implements the state shift for
3018  *	sending our FIN frame. Note that we only send a FIN for some
3019  *	states. A shutdown() may have already sent the FIN, or we may be
3020  *	closed.
3021  */
3022 
3023 static const unsigned char new_state[16] = {
3024   /* current state:        new state:      action:	*/
3025   [0 /* (Invalid) */]	= TCP_CLOSE,
3026   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3027   [TCP_SYN_SENT]	= TCP_CLOSE,
3028   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3029   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
3030   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
3031   [TCP_TIME_WAIT]	= TCP_CLOSE,
3032   [TCP_CLOSE]		= TCP_CLOSE,
3033   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
3034   [TCP_LAST_ACK]	= TCP_LAST_ACK,
3035   [TCP_LISTEN]		= TCP_CLOSE,
3036   [TCP_CLOSING]		= TCP_CLOSING,
3037   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
3038 };
3039 
tcp_close_state(struct sock * sk)3040 static int tcp_close_state(struct sock *sk)
3041 {
3042 	int next = (int)new_state[sk->sk_state];
3043 	int ns = next & TCP_STATE_MASK;
3044 
3045 	tcp_set_state(sk, ns);
3046 
3047 	return next & TCP_ACTION_FIN;
3048 }
3049 
3050 /*
3051  *	Shutdown the sending side of a connection. Much like close except
3052  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3053  */
3054 
tcp_shutdown(struct sock * sk,int how)3055 void tcp_shutdown(struct sock *sk, int how)
3056 {
3057 	/*	We need to grab some memory, and put together a FIN,
3058 	 *	and then put it into the queue to be sent.
3059 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3060 	 */
3061 	if (!(how & SEND_SHUTDOWN))
3062 		return;
3063 
3064 	/* If we've already sent a FIN, or it's a closed state, skip this. */
3065 	if ((1 << sk->sk_state) &
3066 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3067 	     TCPF_CLOSE_WAIT)) {
3068 		/* Clear out any half completed packets.  FIN if needed. */
3069 		if (tcp_close_state(sk))
3070 			tcp_send_fin(sk);
3071 	}
3072 }
3073 EXPORT_IPV6_MOD(tcp_shutdown);
3074 
tcp_orphan_count_sum(void)3075 int tcp_orphan_count_sum(void)
3076 {
3077 	int i, total = 0;
3078 
3079 	for_each_possible_cpu(i)
3080 		total += per_cpu(tcp_orphan_count, i);
3081 
3082 	return max(total, 0);
3083 }
3084 
3085 static int tcp_orphan_cache;
3086 static struct timer_list tcp_orphan_timer;
3087 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3088 
tcp_orphan_update(struct timer_list * unused)3089 static void tcp_orphan_update(struct timer_list *unused)
3090 {
3091 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3092 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3093 }
3094 
tcp_too_many_orphans(int shift)3095 static bool tcp_too_many_orphans(int shift)
3096 {
3097 	return READ_ONCE(tcp_orphan_cache) << shift >
3098 		READ_ONCE(sysctl_tcp_max_orphans);
3099 }
3100 
tcp_out_of_memory(const struct sock * sk)3101 static bool tcp_out_of_memory(const struct sock *sk)
3102 {
3103 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3104 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3105 		return true;
3106 	return false;
3107 }
3108 
tcp_check_oom(const struct sock * sk,int shift)3109 bool tcp_check_oom(const struct sock *sk, int shift)
3110 {
3111 	bool too_many_orphans, out_of_socket_memory;
3112 
3113 	too_many_orphans = tcp_too_many_orphans(shift);
3114 	out_of_socket_memory = tcp_out_of_memory(sk);
3115 
3116 	if (too_many_orphans)
3117 		net_info_ratelimited("too many orphaned sockets\n");
3118 	if (out_of_socket_memory)
3119 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3120 	return too_many_orphans || out_of_socket_memory;
3121 }
3122 
__tcp_close(struct sock * sk,long timeout)3123 void __tcp_close(struct sock *sk, long timeout)
3124 {
3125 	bool data_was_unread = false;
3126 	struct sk_buff *skb;
3127 	int state;
3128 
3129 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3130 
3131 	if (sk->sk_state == TCP_LISTEN) {
3132 		tcp_set_state(sk, TCP_CLOSE);
3133 
3134 		/* Special case. */
3135 		inet_csk_listen_stop(sk);
3136 
3137 		goto adjudge_to_death;
3138 	}
3139 
3140 	/*  We need to flush the recv. buffs.  We do this only on the
3141 	 *  descriptor close, not protocol-sourced closes, because the
3142 	 *  reader process may not have drained the data yet!
3143 	 */
3144 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
3145 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3146 
3147 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3148 			end_seq--;
3149 		if (after(end_seq, tcp_sk(sk)->copied_seq))
3150 			data_was_unread = true;
3151 		tcp_eat_recv_skb(sk, skb);
3152 	}
3153 
3154 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3155 	if (sk->sk_state == TCP_CLOSE)
3156 		goto adjudge_to_death;
3157 
3158 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3159 	 * data was lost. To witness the awful effects of the old behavior of
3160 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3161 	 * GET in an FTP client, suspend the process, wait for the client to
3162 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3163 	 * Note: timeout is always zero in such a case.
3164 	 */
3165 	if (unlikely(tcp_sk(sk)->repair)) {
3166 		sk->sk_prot->disconnect(sk, 0);
3167 	} else if (data_was_unread) {
3168 		/* Unread data was tossed, zap the connection. */
3169 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3170 		tcp_set_state(sk, TCP_CLOSE);
3171 		tcp_send_active_reset(sk, sk->sk_allocation,
3172 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3173 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3174 		/* Check zero linger _after_ checking for unread data. */
3175 		sk->sk_prot->disconnect(sk, 0);
3176 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3177 	} else if (tcp_close_state(sk)) {
3178 		/* We FIN if the application ate all the data before
3179 		 * zapping the connection.
3180 		 */
3181 
3182 		/* RED-PEN. Formally speaking, we have broken TCP state
3183 		 * machine. State transitions:
3184 		 *
3185 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3186 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3187 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3188 		 *
3189 		 * are legal only when FIN has been sent (i.e. in window),
3190 		 * rather than queued out of window. Purists blame.
3191 		 *
3192 		 * F.e. "RFC state" is ESTABLISHED,
3193 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3194 		 *
3195 		 * The visible declinations are that sometimes
3196 		 * we enter time-wait state, when it is not required really
3197 		 * (harmless), do not send active resets, when they are
3198 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3199 		 * they look as CLOSING or LAST_ACK for Linux)
3200 		 * Probably, I missed some more holelets.
3201 		 * 						--ANK
3202 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3203 		 * in a single packet! (May consider it later but will
3204 		 * probably need API support or TCP_CORK SYN-ACK until
3205 		 * data is written and socket is closed.)
3206 		 */
3207 		tcp_send_fin(sk);
3208 	}
3209 
3210 	sk_stream_wait_close(sk, timeout);
3211 
3212 adjudge_to_death:
3213 	state = sk->sk_state;
3214 	sock_hold(sk);
3215 	sock_orphan(sk);
3216 
3217 	local_bh_disable();
3218 	bh_lock_sock(sk);
3219 	/* remove backlog if any, without releasing ownership. */
3220 	__release_sock(sk);
3221 
3222 	tcp_orphan_count_inc();
3223 
3224 	/* Have we already been destroyed by a softirq or backlog? */
3225 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3226 		goto out;
3227 
3228 	/*	This is a (useful) BSD violating of the RFC. There is a
3229 	 *	problem with TCP as specified in that the other end could
3230 	 *	keep a socket open forever with no application left this end.
3231 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3232 	 *	our end. If they send after that then tough - BUT: long enough
3233 	 *	that we won't make the old 4*rto = almost no time - whoops
3234 	 *	reset mistake.
3235 	 *
3236 	 *	Nope, it was not mistake. It is really desired behaviour
3237 	 *	f.e. on http servers, when such sockets are useless, but
3238 	 *	consume significant resources. Let's do it with special
3239 	 *	linger2	option.					--ANK
3240 	 */
3241 
3242 	if (sk->sk_state == TCP_FIN_WAIT2) {
3243 		struct tcp_sock *tp = tcp_sk(sk);
3244 		if (READ_ONCE(tp->linger2) < 0) {
3245 			tcp_set_state(sk, TCP_CLOSE);
3246 			tcp_send_active_reset(sk, GFP_ATOMIC,
3247 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3248 			__NET_INC_STATS(sock_net(sk),
3249 					LINUX_MIB_TCPABORTONLINGER);
3250 		} else {
3251 			const int tmo = tcp_fin_time(sk);
3252 
3253 			if (tmo > TCP_TIMEWAIT_LEN) {
3254 				tcp_reset_keepalive_timer(sk,
3255 						tmo - TCP_TIMEWAIT_LEN);
3256 			} else {
3257 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3258 				goto out;
3259 			}
3260 		}
3261 	}
3262 	if (sk->sk_state != TCP_CLOSE) {
3263 		if (tcp_check_oom(sk, 0)) {
3264 			tcp_set_state(sk, TCP_CLOSE);
3265 			tcp_send_active_reset(sk, GFP_ATOMIC,
3266 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3267 			__NET_INC_STATS(sock_net(sk),
3268 					LINUX_MIB_TCPABORTONMEMORY);
3269 		} else if (!check_net(sock_net(sk))) {
3270 			/* Not possible to send reset; just close */
3271 			tcp_set_state(sk, TCP_CLOSE);
3272 		}
3273 	}
3274 
3275 	if (sk->sk_state == TCP_CLOSE) {
3276 		struct request_sock *req;
3277 
3278 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3279 						lockdep_sock_is_held(sk));
3280 		/* We could get here with a non-NULL req if the socket is
3281 		 * aborted (e.g., closed with unread data) before 3WHS
3282 		 * finishes.
3283 		 */
3284 		if (req)
3285 			reqsk_fastopen_remove(sk, req, false);
3286 		inet_csk_destroy_sock(sk);
3287 	}
3288 	/* Otherwise, socket is reprieved until protocol close. */
3289 
3290 out:
3291 	bh_unlock_sock(sk);
3292 	local_bh_enable();
3293 }
3294 
tcp_close(struct sock * sk,long timeout)3295 void tcp_close(struct sock *sk, long timeout)
3296 {
3297 	lock_sock(sk);
3298 	__tcp_close(sk, timeout);
3299 	release_sock(sk);
3300 	if (!sk->sk_net_refcnt)
3301 		inet_csk_clear_xmit_timers_sync(sk);
3302 	sock_put(sk);
3303 }
3304 EXPORT_SYMBOL(tcp_close);
3305 
3306 /* These states need RST on ABORT according to RFC793 */
3307 
tcp_need_reset(int state)3308 static inline bool tcp_need_reset(int state)
3309 {
3310 	return (1 << state) &
3311 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3312 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3313 }
3314 
tcp_rtx_queue_purge(struct sock * sk)3315 static void tcp_rtx_queue_purge(struct sock *sk)
3316 {
3317 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3318 
3319 	tcp_sk(sk)->highest_sack = NULL;
3320 	while (p) {
3321 		struct sk_buff *skb = rb_to_skb(p);
3322 
3323 		p = rb_next(p);
3324 		/* Since we are deleting whole queue, no need to
3325 		 * list_del(&skb->tcp_tsorted_anchor)
3326 		 */
3327 		tcp_rtx_queue_unlink(skb, sk);
3328 		tcp_wmem_free_skb(sk, skb);
3329 	}
3330 }
3331 
tcp_write_queue_purge(struct sock * sk)3332 void tcp_write_queue_purge(struct sock *sk)
3333 {
3334 	struct sk_buff *skb;
3335 
3336 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3337 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3338 		tcp_skb_tsorted_anchor_cleanup(skb);
3339 		tcp_wmem_free_skb(sk, skb);
3340 	}
3341 	tcp_rtx_queue_purge(sk);
3342 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3343 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3344 	tcp_sk(sk)->packets_out = 0;
3345 	inet_csk(sk)->icsk_backoff = 0;
3346 }
3347 
tcp_disconnect(struct sock * sk,int flags)3348 int tcp_disconnect(struct sock *sk, int flags)
3349 {
3350 	struct inet_sock *inet = inet_sk(sk);
3351 	struct inet_connection_sock *icsk = inet_csk(sk);
3352 	struct tcp_sock *tp = tcp_sk(sk);
3353 	int old_state = sk->sk_state;
3354 	struct request_sock *req;
3355 	u32 seq;
3356 
3357 	if (old_state != TCP_CLOSE)
3358 		tcp_set_state(sk, TCP_CLOSE);
3359 
3360 	/* ABORT function of RFC793 */
3361 	if (old_state == TCP_LISTEN) {
3362 		inet_csk_listen_stop(sk);
3363 	} else if (unlikely(tp->repair)) {
3364 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3365 	} else if (tcp_need_reset(old_state)) {
3366 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3367 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3368 	} else if (tp->snd_nxt != tp->write_seq &&
3369 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3370 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3371 		 * states
3372 		 */
3373 		tcp_send_active_reset(sk, gfp_any(),
3374 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3375 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3376 	} else if (old_state == TCP_SYN_SENT)
3377 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3378 
3379 	tcp_clear_xmit_timers(sk);
3380 	__skb_queue_purge(&sk->sk_receive_queue);
3381 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3382 	WRITE_ONCE(tp->urg_data, 0);
3383 	sk_set_peek_off(sk, -1);
3384 	tcp_write_queue_purge(sk);
3385 	tcp_fastopen_active_disable_ofo_check(sk);
3386 	skb_rbtree_purge(&tp->out_of_order_queue);
3387 
3388 	inet->inet_dport = 0;
3389 
3390 	inet_bhash2_reset_saddr(sk);
3391 
3392 	WRITE_ONCE(sk->sk_shutdown, 0);
3393 	sock_reset_flag(sk, SOCK_DONE);
3394 	tp->srtt_us = 0;
3395 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3396 	tp->rcv_rtt_last_tsecr = 0;
3397 
3398 	seq = tp->write_seq + tp->max_window + 2;
3399 	if (!seq)
3400 		seq = 1;
3401 	WRITE_ONCE(tp->write_seq, seq);
3402 
3403 	icsk->icsk_backoff = 0;
3404 	WRITE_ONCE(icsk->icsk_probes_out, 0);
3405 	icsk->icsk_probes_tstamp = 0;
3406 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3407 	WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3408 	WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3409 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3410 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3411 	tp->snd_cwnd_cnt = 0;
3412 	tp->is_cwnd_limited = 0;
3413 	tp->max_packets_out = 0;
3414 	tp->window_clamp = 0;
3415 	tp->delivered = 0;
3416 	tp->delivered_ce = 0;
3417 	tp->accecn_fail_mode = 0;
3418 	tp->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN;
3419 	tcp_accecn_init_counters(tp);
3420 	tp->prev_ecnfield = 0;
3421 	tp->accecn_opt_tstamp = 0;
3422 	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3423 		icsk->icsk_ca_ops->release(sk);
3424 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3425 	icsk->icsk_ca_initialized = 0;
3426 	tcp_set_ca_state(sk, TCP_CA_Open);
3427 	tp->is_sack_reneg = 0;
3428 	tcp_clear_retrans(tp);
3429 	tp->total_retrans = 0;
3430 	inet_csk_delack_init(sk);
3431 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3432 	 * issue in __tcp_select_window()
3433 	 */
3434 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3435 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3436 	__sk_dst_reset(sk);
3437 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3438 	tcp_saved_syn_free(tp);
3439 	tp->compressed_ack = 0;
3440 	tp->segs_in = 0;
3441 	tp->segs_out = 0;
3442 	tp->bytes_sent = 0;
3443 	tp->bytes_acked = 0;
3444 	tp->bytes_received = 0;
3445 	tp->bytes_retrans = 0;
3446 	tp->data_segs_in = 0;
3447 	tp->data_segs_out = 0;
3448 	tp->duplicate_sack[0].start_seq = 0;
3449 	tp->duplicate_sack[0].end_seq = 0;
3450 	tp->dsack_dups = 0;
3451 	tp->reord_seen = 0;
3452 	tp->retrans_out = 0;
3453 	tp->sacked_out = 0;
3454 	tp->tlp_high_seq = 0;
3455 	tp->last_oow_ack_time = 0;
3456 	tp->plb_rehash = 0;
3457 	/* There's a bubble in the pipe until at least the first ACK. */
3458 	tp->app_limited = ~0U;
3459 	tp->rate_app_limited = 1;
3460 	tp->rack.mstamp = 0;
3461 	tp->rack.advanced = 0;
3462 	tp->rack.reo_wnd_steps = 1;
3463 	tp->rack.last_delivered = 0;
3464 	tp->rack.reo_wnd_persist = 0;
3465 	tp->rack.dsack_seen = 0;
3466 	tp->syn_data_acked = 0;
3467 	tp->syn_fastopen_child = 0;
3468 	tp->rx_opt.saw_tstamp = 0;
3469 	tp->rx_opt.dsack = 0;
3470 	tp->rx_opt.num_sacks = 0;
3471 	tp->rcv_ooopack = 0;
3472 
3473 
3474 	/* Clean up fastopen related fields */
3475 	req = rcu_dereference_protected(tp->fastopen_rsk,
3476 					lockdep_sock_is_held(sk));
3477 	if (req)
3478 		reqsk_fastopen_remove(sk, req, false);
3479 	tcp_free_fastopen_req(tp);
3480 	inet_clear_bit(DEFER_CONNECT, sk);
3481 	tp->fastopen_client_fail = 0;
3482 
3483 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3484 
3485 	if (sk->sk_frag.page) {
3486 		put_page(sk->sk_frag.page);
3487 		sk->sk_frag.page = NULL;
3488 		sk->sk_frag.offset = 0;
3489 	}
3490 	sk_error_report(sk);
3491 	return 0;
3492 }
3493 EXPORT_SYMBOL(tcp_disconnect);
3494 
tcp_can_repair_sock(const struct sock * sk)3495 static inline bool tcp_can_repair_sock(const struct sock *sk)
3496 {
3497 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3498 		(sk->sk_state != TCP_LISTEN);
3499 }
3500 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3501 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3502 {
3503 	struct tcp_repair_window opt;
3504 
3505 	if (!tp->repair)
3506 		return -EPERM;
3507 
3508 	if (len != sizeof(opt))
3509 		return -EINVAL;
3510 
3511 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3512 		return -EFAULT;
3513 
3514 	if (opt.max_window < opt.snd_wnd)
3515 		return -EINVAL;
3516 
3517 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3518 		return -EINVAL;
3519 
3520 	if (after(opt.rcv_wup, tp->rcv_nxt))
3521 		return -EINVAL;
3522 
3523 	tp->snd_wl1	= opt.snd_wl1;
3524 	tp->snd_wnd	= opt.snd_wnd;
3525 	tp->max_window	= opt.max_window;
3526 
3527 	tp->rcv_wnd	= opt.rcv_wnd;
3528 	tp->rcv_wup	= opt.rcv_wup;
3529 
3530 	return 0;
3531 }
3532 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3533 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3534 		unsigned int len)
3535 {
3536 	struct tcp_sock *tp = tcp_sk(sk);
3537 	struct tcp_repair_opt opt;
3538 	size_t offset = 0;
3539 
3540 	while (len >= sizeof(opt)) {
3541 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3542 			return -EFAULT;
3543 
3544 		offset += sizeof(opt);
3545 		len -= sizeof(opt);
3546 
3547 		switch (opt.opt_code) {
3548 		case TCPOPT_MSS:
3549 			tp->rx_opt.mss_clamp = opt.opt_val;
3550 			tcp_mtup_init(sk);
3551 			break;
3552 		case TCPOPT_WINDOW:
3553 			{
3554 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3555 				u16 rcv_wscale = opt.opt_val >> 16;
3556 
3557 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3558 					return -EFBIG;
3559 
3560 				tp->rx_opt.snd_wscale = snd_wscale;
3561 				tp->rx_opt.rcv_wscale = rcv_wscale;
3562 				tp->rx_opt.wscale_ok = 1;
3563 			}
3564 			break;
3565 		case TCPOPT_SACK_PERM:
3566 			if (opt.opt_val != 0)
3567 				return -EINVAL;
3568 
3569 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3570 			break;
3571 		case TCPOPT_TIMESTAMP:
3572 			if (opt.opt_val != 0)
3573 				return -EINVAL;
3574 
3575 			tp->rx_opt.tstamp_ok = 1;
3576 			break;
3577 		}
3578 	}
3579 
3580 	return 0;
3581 }
3582 
3583 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3584 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3585 
tcp_enable_tx_delay(void)3586 static void tcp_enable_tx_delay(void)
3587 {
3588 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3589 		static int __tcp_tx_delay_enabled = 0;
3590 
3591 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3592 			static_branch_enable(&tcp_tx_delay_enabled);
3593 			pr_info("TCP_TX_DELAY enabled\n");
3594 		}
3595 	}
3596 }
3597 
3598 /* When set indicates to always queue non-full frames.  Later the user clears
3599  * this option and we transmit any pending partial frames in the queue.  This is
3600  * meant to be used alongside sendfile() to get properly filled frames when the
3601  * user (for example) must write out headers with a write() call first and then
3602  * use sendfile to send out the data parts.
3603  *
3604  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3605  * TCP_NODELAY.
3606  */
__tcp_sock_set_cork(struct sock * sk,bool on)3607 void __tcp_sock_set_cork(struct sock *sk, bool on)
3608 {
3609 	struct tcp_sock *tp = tcp_sk(sk);
3610 
3611 	if (on) {
3612 		tp->nonagle |= TCP_NAGLE_CORK;
3613 	} else {
3614 		tp->nonagle &= ~TCP_NAGLE_CORK;
3615 		if (tp->nonagle & TCP_NAGLE_OFF)
3616 			tp->nonagle |= TCP_NAGLE_PUSH;
3617 		tcp_push_pending_frames(sk);
3618 	}
3619 }
3620 
tcp_sock_set_cork(struct sock * sk,bool on)3621 void tcp_sock_set_cork(struct sock *sk, bool on)
3622 {
3623 	lock_sock(sk);
3624 	__tcp_sock_set_cork(sk, on);
3625 	release_sock(sk);
3626 }
3627 EXPORT_SYMBOL(tcp_sock_set_cork);
3628 
3629 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3630  * remembered, but it is not activated until cork is cleared.
3631  *
3632  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3633  * even TCP_CORK for currently queued segments.
3634  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3635 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3636 {
3637 	if (on) {
3638 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3639 		tcp_push_pending_frames(sk);
3640 	} else {
3641 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3642 	}
3643 }
3644 
tcp_sock_set_nodelay(struct sock * sk)3645 void tcp_sock_set_nodelay(struct sock *sk)
3646 {
3647 	lock_sock(sk);
3648 	__tcp_sock_set_nodelay(sk, true);
3649 	release_sock(sk);
3650 }
3651 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3652 
__tcp_sock_set_quickack(struct sock * sk,int val)3653 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3654 {
3655 	if (!val) {
3656 		inet_csk_enter_pingpong_mode(sk);
3657 		return;
3658 	}
3659 
3660 	inet_csk_exit_pingpong_mode(sk);
3661 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3662 	    inet_csk_ack_scheduled(sk)) {
3663 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3664 		tcp_cleanup_rbuf(sk, 1);
3665 		if (!(val & 1))
3666 			inet_csk_enter_pingpong_mode(sk);
3667 	}
3668 }
3669 
tcp_sock_set_quickack(struct sock * sk,int val)3670 void tcp_sock_set_quickack(struct sock *sk, int val)
3671 {
3672 	lock_sock(sk);
3673 	__tcp_sock_set_quickack(sk, val);
3674 	release_sock(sk);
3675 }
3676 EXPORT_SYMBOL(tcp_sock_set_quickack);
3677 
tcp_sock_set_syncnt(struct sock * sk,int val)3678 int tcp_sock_set_syncnt(struct sock *sk, int val)
3679 {
3680 	if (val < 1 || val > MAX_TCP_SYNCNT)
3681 		return -EINVAL;
3682 
3683 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3684 	return 0;
3685 }
3686 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3687 
tcp_sock_set_user_timeout(struct sock * sk,int val)3688 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3689 {
3690 	/* Cap the max time in ms TCP will retry or probe the window
3691 	 * before giving up and aborting (ETIMEDOUT) a connection.
3692 	 */
3693 	if (val < 0)
3694 		return -EINVAL;
3695 
3696 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3697 	return 0;
3698 }
3699 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3700 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3701 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3702 {
3703 	struct tcp_sock *tp = tcp_sk(sk);
3704 
3705 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3706 		return -EINVAL;
3707 
3708 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3709 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3710 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3711 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3712 		u32 elapsed = keepalive_time_elapsed(tp);
3713 
3714 		if (tp->keepalive_time > elapsed)
3715 			elapsed = tp->keepalive_time - elapsed;
3716 		else
3717 			elapsed = 0;
3718 		tcp_reset_keepalive_timer(sk, elapsed);
3719 	}
3720 
3721 	return 0;
3722 }
3723 
tcp_sock_set_keepidle(struct sock * sk,int val)3724 int tcp_sock_set_keepidle(struct sock *sk, int val)
3725 {
3726 	int err;
3727 
3728 	lock_sock(sk);
3729 	err = tcp_sock_set_keepidle_locked(sk, val);
3730 	release_sock(sk);
3731 	return err;
3732 }
3733 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3734 
tcp_sock_set_keepintvl(struct sock * sk,int val)3735 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3736 {
3737 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3738 		return -EINVAL;
3739 
3740 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3741 	return 0;
3742 }
3743 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3744 
tcp_sock_set_keepcnt(struct sock * sk,int val)3745 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3746 {
3747 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3748 		return -EINVAL;
3749 
3750 	/* Paired with READ_ONCE() in keepalive_probes() */
3751 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3752 	return 0;
3753 }
3754 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3755 
tcp_set_window_clamp(struct sock * sk,int val)3756 int tcp_set_window_clamp(struct sock *sk, int val)
3757 {
3758 	u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3759 	struct tcp_sock *tp = tcp_sk(sk);
3760 
3761 	if (!val) {
3762 		if (sk->sk_state != TCP_CLOSE)
3763 			return -EINVAL;
3764 		WRITE_ONCE(tp->window_clamp, 0);
3765 		return 0;
3766 	}
3767 
3768 	old_window_clamp = tp->window_clamp;
3769 	new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3770 
3771 	if (new_window_clamp == old_window_clamp)
3772 		return 0;
3773 
3774 	WRITE_ONCE(tp->window_clamp, new_window_clamp);
3775 
3776 	/* Need to apply the reserved mem provisioning only
3777 	 * when shrinking the window clamp.
3778 	 */
3779 	if (new_window_clamp < old_window_clamp) {
3780 		__tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3781 	} else {
3782 		new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3783 		tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3784 	}
3785 	return 0;
3786 }
3787 
tcp_sock_set_maxseg(struct sock * sk,int val)3788 int tcp_sock_set_maxseg(struct sock *sk, int val)
3789 {
3790 	/* Values greater than interface MTU won't take effect. However
3791 	 * at the point when this call is done we typically don't yet
3792 	 * know which interface is going to be used
3793 	 */
3794 	if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW))
3795 		return -EINVAL;
3796 
3797 	WRITE_ONCE(tcp_sk(sk)->rx_opt.user_mss, val);
3798 	return 0;
3799 }
3800 
3801 /*
3802  *	Socket option code for TCP.
3803  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3804 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3805 		      sockptr_t optval, unsigned int optlen)
3806 {
3807 	struct tcp_sock *tp = tcp_sk(sk);
3808 	struct inet_connection_sock *icsk = inet_csk(sk);
3809 	struct net *net = sock_net(sk);
3810 	int val;
3811 	int err = 0;
3812 
3813 	/* These are data/string values, all the others are ints */
3814 	switch (optname) {
3815 	case TCP_CONGESTION: {
3816 		char name[TCP_CA_NAME_MAX];
3817 
3818 		if (optlen < 1)
3819 			return -EINVAL;
3820 
3821 		val = strncpy_from_sockptr(name, optval,
3822 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3823 		if (val < 0)
3824 			return -EFAULT;
3825 		name[val] = 0;
3826 
3827 		sockopt_lock_sock(sk);
3828 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3829 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3830 								    CAP_NET_ADMIN));
3831 		sockopt_release_sock(sk);
3832 		return err;
3833 	}
3834 	case TCP_ULP: {
3835 		char name[TCP_ULP_NAME_MAX];
3836 
3837 		if (optlen < 1)
3838 			return -EINVAL;
3839 
3840 		val = strncpy_from_sockptr(name, optval,
3841 					min_t(long, TCP_ULP_NAME_MAX - 1,
3842 					      optlen));
3843 		if (val < 0)
3844 			return -EFAULT;
3845 		name[val] = 0;
3846 
3847 		sockopt_lock_sock(sk);
3848 		err = tcp_set_ulp(sk, name);
3849 		sockopt_release_sock(sk);
3850 		return err;
3851 	}
3852 	case TCP_FASTOPEN_KEY: {
3853 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3854 		__u8 *backup_key = NULL;
3855 
3856 		/* Allow a backup key as well to facilitate key rotation
3857 		 * First key is the active one.
3858 		 */
3859 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3860 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3861 			return -EINVAL;
3862 
3863 		if (copy_from_sockptr(key, optval, optlen))
3864 			return -EFAULT;
3865 
3866 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3867 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3868 
3869 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3870 	}
3871 	default:
3872 		/* fallthru */
3873 		break;
3874 	}
3875 
3876 	if (optlen < sizeof(int))
3877 		return -EINVAL;
3878 
3879 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3880 		return -EFAULT;
3881 
3882 	/* Handle options that can be set without locking the socket. */
3883 	switch (optname) {
3884 	case TCP_SYNCNT:
3885 		return tcp_sock_set_syncnt(sk, val);
3886 	case TCP_USER_TIMEOUT:
3887 		return tcp_sock_set_user_timeout(sk, val);
3888 	case TCP_KEEPINTVL:
3889 		return tcp_sock_set_keepintvl(sk, val);
3890 	case TCP_KEEPCNT:
3891 		return tcp_sock_set_keepcnt(sk, val);
3892 	case TCP_LINGER2:
3893 		if (val < 0)
3894 			WRITE_ONCE(tp->linger2, -1);
3895 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3896 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3897 		else
3898 			WRITE_ONCE(tp->linger2, val * HZ);
3899 		return 0;
3900 	case TCP_DEFER_ACCEPT:
3901 		/* Translate value in seconds to number of retransmits */
3902 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3903 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3904 					   TCP_RTO_MAX / HZ));
3905 		return 0;
3906 	case TCP_RTO_MAX_MS:
3907 		if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3908 			return -EINVAL;
3909 		WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3910 		return 0;
3911 	case TCP_RTO_MIN_US: {
3912 		int rto_min = usecs_to_jiffies(val);
3913 
3914 		if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3915 			return -EINVAL;
3916 		WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3917 		return 0;
3918 	}
3919 	case TCP_DELACK_MAX_US: {
3920 		int delack_max = usecs_to_jiffies(val);
3921 
3922 		if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3923 			return -EINVAL;
3924 		WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3925 		return 0;
3926 	}
3927 	case TCP_MAXSEG:
3928 		return tcp_sock_set_maxseg(sk, val);
3929 	}
3930 
3931 	sockopt_lock_sock(sk);
3932 
3933 	switch (optname) {
3934 	case TCP_NODELAY:
3935 		__tcp_sock_set_nodelay(sk, val);
3936 		break;
3937 
3938 	case TCP_THIN_LINEAR_TIMEOUTS:
3939 		if (val < 0 || val > 1)
3940 			err = -EINVAL;
3941 		else
3942 			tp->thin_lto = val;
3943 		break;
3944 
3945 	case TCP_THIN_DUPACK:
3946 		if (val < 0 || val > 1)
3947 			err = -EINVAL;
3948 		break;
3949 
3950 	case TCP_REPAIR:
3951 		if (!tcp_can_repair_sock(sk))
3952 			err = -EPERM;
3953 		else if (val == TCP_REPAIR_ON) {
3954 			tp->repair = 1;
3955 			sk->sk_reuse = SK_FORCE_REUSE;
3956 			tp->repair_queue = TCP_NO_QUEUE;
3957 		} else if (val == TCP_REPAIR_OFF) {
3958 			tp->repair = 0;
3959 			sk->sk_reuse = SK_NO_REUSE;
3960 			tcp_send_window_probe(sk);
3961 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3962 			tp->repair = 0;
3963 			sk->sk_reuse = SK_NO_REUSE;
3964 		} else
3965 			err = -EINVAL;
3966 
3967 		break;
3968 
3969 	case TCP_REPAIR_QUEUE:
3970 		if (!tp->repair)
3971 			err = -EPERM;
3972 		else if ((unsigned int)val < TCP_QUEUES_NR)
3973 			tp->repair_queue = val;
3974 		else
3975 			err = -EINVAL;
3976 		break;
3977 
3978 	case TCP_QUEUE_SEQ:
3979 		if (sk->sk_state != TCP_CLOSE) {
3980 			err = -EPERM;
3981 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3982 			if (!tcp_rtx_queue_empty(sk))
3983 				err = -EPERM;
3984 			else
3985 				WRITE_ONCE(tp->write_seq, val);
3986 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3987 			if (tp->rcv_nxt != tp->copied_seq) {
3988 				err = -EPERM;
3989 			} else {
3990 				WRITE_ONCE(tp->rcv_nxt, val);
3991 				WRITE_ONCE(tp->copied_seq, val);
3992 			}
3993 		} else {
3994 			err = -EINVAL;
3995 		}
3996 		break;
3997 
3998 	case TCP_REPAIR_OPTIONS:
3999 		if (!tp->repair)
4000 			err = -EINVAL;
4001 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
4002 			err = tcp_repair_options_est(sk, optval, optlen);
4003 		else
4004 			err = -EPERM;
4005 		break;
4006 
4007 	case TCP_CORK:
4008 		__tcp_sock_set_cork(sk, val);
4009 		break;
4010 
4011 	case TCP_KEEPIDLE:
4012 		err = tcp_sock_set_keepidle_locked(sk, val);
4013 		break;
4014 	case TCP_SAVE_SYN:
4015 		/* 0: disable, 1: enable, 2: start from ether_header */
4016 		if (val < 0 || val > 2)
4017 			err = -EINVAL;
4018 		else
4019 			tp->save_syn = val;
4020 		break;
4021 
4022 	case TCP_WINDOW_CLAMP:
4023 		err = tcp_set_window_clamp(sk, val);
4024 		break;
4025 
4026 	case TCP_QUICKACK:
4027 		__tcp_sock_set_quickack(sk, val);
4028 		break;
4029 
4030 	case TCP_AO_REPAIR:
4031 		if (!tcp_can_repair_sock(sk)) {
4032 			err = -EPERM;
4033 			break;
4034 		}
4035 		err = tcp_ao_set_repair(sk, optval, optlen);
4036 		break;
4037 #ifdef CONFIG_TCP_AO
4038 	case TCP_AO_ADD_KEY:
4039 	case TCP_AO_DEL_KEY:
4040 	case TCP_AO_INFO: {
4041 		/* If this is the first TCP-AO setsockopt() on the socket,
4042 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
4043 		 * in any state.
4044 		 */
4045 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
4046 			goto ao_parse;
4047 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
4048 					      lockdep_sock_is_held(sk)))
4049 			goto ao_parse;
4050 		if (tp->repair)
4051 			goto ao_parse;
4052 		err = -EISCONN;
4053 		break;
4054 ao_parse:
4055 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
4056 		break;
4057 	}
4058 #endif
4059 #ifdef CONFIG_TCP_MD5SIG
4060 	case TCP_MD5SIG:
4061 	case TCP_MD5SIG_EXT:
4062 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4063 		break;
4064 #endif
4065 	case TCP_FASTOPEN:
4066 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4067 		    TCPF_LISTEN))) {
4068 			tcp_fastopen_init_key_once(net);
4069 
4070 			fastopen_queue_tune(sk, val);
4071 		} else {
4072 			err = -EINVAL;
4073 		}
4074 		break;
4075 	case TCP_FASTOPEN_CONNECT:
4076 		if (val > 1 || val < 0) {
4077 			err = -EINVAL;
4078 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4079 			   TFO_CLIENT_ENABLE) {
4080 			if (sk->sk_state == TCP_CLOSE)
4081 				tp->fastopen_connect = val;
4082 			else
4083 				err = -EINVAL;
4084 		} else {
4085 			err = -EOPNOTSUPP;
4086 		}
4087 		break;
4088 	case TCP_FASTOPEN_NO_COOKIE:
4089 		if (val > 1 || val < 0)
4090 			err = -EINVAL;
4091 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4092 			err = -EINVAL;
4093 		else
4094 			tp->fastopen_no_cookie = val;
4095 		break;
4096 	case TCP_TIMESTAMP:
4097 		if (!tp->repair) {
4098 			err = -EPERM;
4099 			break;
4100 		}
4101 		/* val is an opaque field,
4102 		 * and low order bit contains usec_ts enable bit.
4103 		 * Its a best effort, and we do not care if user makes an error.
4104 		 */
4105 		tp->tcp_usec_ts = val & 1;
4106 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4107 		break;
4108 	case TCP_REPAIR_WINDOW:
4109 		err = tcp_repair_set_window(tp, optval, optlen);
4110 		break;
4111 	case TCP_NOTSENT_LOWAT:
4112 		WRITE_ONCE(tp->notsent_lowat, val);
4113 		sk->sk_write_space(sk);
4114 		break;
4115 	case TCP_INQ:
4116 		if (val > 1 || val < 0)
4117 			err = -EINVAL;
4118 		else
4119 			tp->recvmsg_inq = val;
4120 		break;
4121 	case TCP_TX_DELAY:
4122 		if (val)
4123 			tcp_enable_tx_delay();
4124 		WRITE_ONCE(tp->tcp_tx_delay, val);
4125 		break;
4126 	default:
4127 		err = -ENOPROTOOPT;
4128 		break;
4129 	}
4130 
4131 	sockopt_release_sock(sk);
4132 	return err;
4133 }
4134 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4135 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4136 		   unsigned int optlen)
4137 {
4138 	const struct inet_connection_sock *icsk = inet_csk(sk);
4139 
4140 	if (level != SOL_TCP)
4141 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4142 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4143 								optval, optlen);
4144 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4145 }
4146 EXPORT_IPV6_MOD(tcp_setsockopt);
4147 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)4148 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4149 				      struct tcp_info *info)
4150 {
4151 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4152 	enum tcp_chrono i;
4153 
4154 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4155 		stats[i] = tp->chrono_stat[i - 1];
4156 		if (i == tp->chrono_type)
4157 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4158 		stats[i] *= USEC_PER_SEC / HZ;
4159 		total += stats[i];
4160 	}
4161 
4162 	info->tcpi_busy_time = total;
4163 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4164 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4165 }
4166 
4167 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)4168 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4169 {
4170 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4171 	const struct inet_connection_sock *icsk = inet_csk(sk);
4172 	const u8 ect1_idx = INET_ECN_ECT_1 - 1;
4173 	const u8 ect0_idx = INET_ECN_ECT_0 - 1;
4174 	const u8 ce_idx = INET_ECN_CE - 1;
4175 	unsigned long rate;
4176 	u32 now;
4177 	u64 rate64;
4178 	bool slow;
4179 
4180 	memset(info, 0, sizeof(*info));
4181 	if (sk->sk_type != SOCK_STREAM)
4182 		return;
4183 
4184 	info->tcpi_state = inet_sk_state_load(sk);
4185 
4186 	/* Report meaningful fields for all TCP states, including listeners */
4187 	rate = READ_ONCE(sk->sk_pacing_rate);
4188 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4189 	info->tcpi_pacing_rate = rate64;
4190 
4191 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4192 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4193 	info->tcpi_max_pacing_rate = rate64;
4194 
4195 	info->tcpi_reordering = tp->reordering;
4196 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4197 
4198 	if (info->tcpi_state == TCP_LISTEN) {
4199 		/* listeners aliased fields :
4200 		 * tcpi_unacked -> Number of children ready for accept()
4201 		 * tcpi_sacked  -> max backlog
4202 		 */
4203 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4204 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4205 		return;
4206 	}
4207 
4208 	slow = lock_sock_fast(sk);
4209 
4210 	info->tcpi_ca_state = icsk->icsk_ca_state;
4211 	info->tcpi_retransmits = icsk->icsk_retransmits;
4212 	info->tcpi_probes = icsk->icsk_probes_out;
4213 	info->tcpi_backoff = icsk->icsk_backoff;
4214 
4215 	if (tp->rx_opt.tstamp_ok)
4216 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4217 	if (tcp_is_sack(tp))
4218 		info->tcpi_options |= TCPI_OPT_SACK;
4219 	if (tp->rx_opt.wscale_ok) {
4220 		info->tcpi_options |= TCPI_OPT_WSCALE;
4221 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4222 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4223 	}
4224 
4225 	if (tcp_ecn_mode_any(tp))
4226 		info->tcpi_options |= TCPI_OPT_ECN;
4227 	if (tp->ecn_flags & TCP_ECN_SEEN)
4228 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4229 	if (tp->syn_data_acked)
4230 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4231 	if (tp->tcp_usec_ts)
4232 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4233 	if (tp->syn_fastopen_child)
4234 		info->tcpi_options |= TCPI_OPT_TFO_CHILD;
4235 
4236 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4237 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4238 						tcp_delack_max(sk)));
4239 	info->tcpi_snd_mss = tp->mss_cache;
4240 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4241 
4242 	info->tcpi_unacked = tp->packets_out;
4243 	info->tcpi_sacked = tp->sacked_out;
4244 
4245 	info->tcpi_lost = tp->lost_out;
4246 	info->tcpi_retrans = tp->retrans_out;
4247 
4248 	now = tcp_jiffies32;
4249 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4250 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4251 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4252 
4253 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4254 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4255 	info->tcpi_rtt = tp->srtt_us >> 3;
4256 	info->tcpi_rttvar = tp->mdev_us >> 2;
4257 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4258 	info->tcpi_advmss = tp->advmss;
4259 
4260 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4261 	info->tcpi_rcv_space = tp->rcvq_space.space;
4262 
4263 	info->tcpi_total_retrans = tp->total_retrans;
4264 
4265 	info->tcpi_bytes_acked = tp->bytes_acked;
4266 	info->tcpi_bytes_received = tp->bytes_received;
4267 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4268 	tcp_get_info_chrono_stats(tp, info);
4269 
4270 	info->tcpi_segs_out = tp->segs_out;
4271 
4272 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4273 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4274 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4275 
4276 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4277 	info->tcpi_data_segs_out = tp->data_segs_out;
4278 
4279 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4280 	rate64 = tcp_compute_delivery_rate(tp);
4281 	if (rate64)
4282 		info->tcpi_delivery_rate = rate64;
4283 	info->tcpi_delivered = tp->delivered;
4284 	info->tcpi_delivered_ce = tp->delivered_ce;
4285 	info->tcpi_bytes_sent = tp->bytes_sent;
4286 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4287 	info->tcpi_dsack_dups = tp->dsack_dups;
4288 	info->tcpi_reord_seen = tp->reord_seen;
4289 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4290 	info->tcpi_snd_wnd = tp->snd_wnd;
4291 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4292 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4293 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4294 
4295 	info->tcpi_total_rto = tp->total_rto;
4296 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4297 	info->tcpi_total_rto_time = tp->total_rto_time;
4298 	if (tp->rto_stamp)
4299 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4300 
4301 	info->tcpi_accecn_fail_mode = tp->accecn_fail_mode;
4302 	info->tcpi_accecn_opt_seen = tp->saw_accecn_opt;
4303 	info->tcpi_received_ce = tp->received_ce;
4304 	info->tcpi_delivered_e1_bytes = tp->delivered_ecn_bytes[ect1_idx];
4305 	info->tcpi_delivered_e0_bytes = tp->delivered_ecn_bytes[ect0_idx];
4306 	info->tcpi_delivered_ce_bytes = tp->delivered_ecn_bytes[ce_idx];
4307 	info->tcpi_received_e1_bytes = tp->received_ecn_bytes[ect1_idx];
4308 	info->tcpi_received_e0_bytes = tp->received_ecn_bytes[ect0_idx];
4309 	info->tcpi_received_ce_bytes = tp->received_ecn_bytes[ce_idx];
4310 
4311 	unlock_sock_fast(sk, slow);
4312 }
4313 EXPORT_SYMBOL_GPL(tcp_get_info);
4314 
tcp_opt_stats_get_size(void)4315 static size_t tcp_opt_stats_get_size(void)
4316 {
4317 	return
4318 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4319 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4320 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4321 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4322 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4323 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4324 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4325 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4326 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4327 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4328 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4329 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4330 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4331 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4332 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4333 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4334 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4335 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4336 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4337 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4338 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4339 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4340 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4341 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4342 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4343 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4344 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4345 		0;
4346 }
4347 
4348 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4349 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4350 {
4351 	if (skb->protocol == htons(ETH_P_IP))
4352 		return ip_hdr(skb)->ttl;
4353 	else if (skb->protocol == htons(ETH_P_IPV6))
4354 		return ipv6_hdr(skb)->hop_limit;
4355 	else
4356 		return 0;
4357 }
4358 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4359 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4360 					       const struct sk_buff *orig_skb,
4361 					       const struct sk_buff *ack_skb)
4362 {
4363 	const struct tcp_sock *tp = tcp_sk(sk);
4364 	struct sk_buff *stats;
4365 	struct tcp_info info;
4366 	unsigned long rate;
4367 	u64 rate64;
4368 
4369 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4370 	if (!stats)
4371 		return NULL;
4372 
4373 	tcp_get_info_chrono_stats(tp, &info);
4374 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4375 			  info.tcpi_busy_time, TCP_NLA_PAD);
4376 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4377 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4378 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4379 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4380 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4381 			  tp->data_segs_out, TCP_NLA_PAD);
4382 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4383 			  tp->total_retrans, TCP_NLA_PAD);
4384 
4385 	rate = READ_ONCE(sk->sk_pacing_rate);
4386 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4387 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4388 
4389 	rate64 = tcp_compute_delivery_rate(tp);
4390 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4391 
4392 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4393 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4394 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4395 
4396 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS,
4397 		   READ_ONCE(inet_csk(sk)->icsk_retransmits));
4398 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4399 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4400 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4401 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4402 
4403 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4404 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4405 
4406 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4407 			  TCP_NLA_PAD);
4408 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4409 			  TCP_NLA_PAD);
4410 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4411 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4412 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4413 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4414 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4415 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4416 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4417 			  TCP_NLA_PAD);
4418 	if (ack_skb)
4419 		nla_put_u8(stats, TCP_NLA_TTL,
4420 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4421 
4422 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4423 	return stats;
4424 }
4425 
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4426 int do_tcp_getsockopt(struct sock *sk, int level,
4427 		      int optname, sockptr_t optval, sockptr_t optlen)
4428 {
4429 	struct inet_connection_sock *icsk = inet_csk(sk);
4430 	struct tcp_sock *tp = tcp_sk(sk);
4431 	struct net *net = sock_net(sk);
4432 	int user_mss;
4433 	int val, len;
4434 
4435 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4436 		return -EFAULT;
4437 
4438 	if (len < 0)
4439 		return -EINVAL;
4440 
4441 	len = min_t(unsigned int, len, sizeof(int));
4442 
4443 	switch (optname) {
4444 	case TCP_MAXSEG:
4445 		val = tp->mss_cache;
4446 		user_mss = READ_ONCE(tp->rx_opt.user_mss);
4447 		if (user_mss &&
4448 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4449 			val = user_mss;
4450 		if (tp->repair)
4451 			val = tp->rx_opt.mss_clamp;
4452 		break;
4453 	case TCP_NODELAY:
4454 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4455 		break;
4456 	case TCP_CORK:
4457 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4458 		break;
4459 	case TCP_KEEPIDLE:
4460 		val = keepalive_time_when(tp) / HZ;
4461 		break;
4462 	case TCP_KEEPINTVL:
4463 		val = keepalive_intvl_when(tp) / HZ;
4464 		break;
4465 	case TCP_KEEPCNT:
4466 		val = keepalive_probes(tp);
4467 		break;
4468 	case TCP_SYNCNT:
4469 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4470 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4471 		break;
4472 	case TCP_LINGER2:
4473 		val = READ_ONCE(tp->linger2);
4474 		if (val >= 0)
4475 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4476 		break;
4477 	case TCP_DEFER_ACCEPT:
4478 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4479 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4480 				      TCP_RTO_MAX / HZ);
4481 		break;
4482 	case TCP_WINDOW_CLAMP:
4483 		val = READ_ONCE(tp->window_clamp);
4484 		break;
4485 	case TCP_INFO: {
4486 		struct tcp_info info;
4487 
4488 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4489 			return -EFAULT;
4490 
4491 		tcp_get_info(sk, &info);
4492 
4493 		len = min_t(unsigned int, len, sizeof(info));
4494 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4495 			return -EFAULT;
4496 		if (copy_to_sockptr(optval, &info, len))
4497 			return -EFAULT;
4498 		return 0;
4499 	}
4500 	case TCP_CC_INFO: {
4501 		const struct tcp_congestion_ops *ca_ops;
4502 		union tcp_cc_info info;
4503 		size_t sz = 0;
4504 		int attr;
4505 
4506 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4507 			return -EFAULT;
4508 
4509 		ca_ops = icsk->icsk_ca_ops;
4510 		if (ca_ops && ca_ops->get_info)
4511 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4512 
4513 		len = min_t(unsigned int, len, sz);
4514 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4515 			return -EFAULT;
4516 		if (copy_to_sockptr(optval, &info, len))
4517 			return -EFAULT;
4518 		return 0;
4519 	}
4520 	case TCP_QUICKACK:
4521 		val = !inet_csk_in_pingpong_mode(sk);
4522 		break;
4523 
4524 	case TCP_CONGESTION:
4525 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4526 			return -EFAULT;
4527 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4528 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4529 			return -EFAULT;
4530 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4531 			return -EFAULT;
4532 		return 0;
4533 
4534 	case TCP_ULP:
4535 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4536 			return -EFAULT;
4537 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4538 		if (!icsk->icsk_ulp_ops) {
4539 			len = 0;
4540 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4541 				return -EFAULT;
4542 			return 0;
4543 		}
4544 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4545 			return -EFAULT;
4546 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4547 			return -EFAULT;
4548 		return 0;
4549 
4550 	case TCP_FASTOPEN_KEY: {
4551 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4552 		unsigned int key_len;
4553 
4554 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4555 			return -EFAULT;
4556 
4557 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4558 				TCP_FASTOPEN_KEY_LENGTH;
4559 		len = min_t(unsigned int, len, key_len);
4560 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4561 			return -EFAULT;
4562 		if (copy_to_sockptr(optval, key, len))
4563 			return -EFAULT;
4564 		return 0;
4565 	}
4566 	case TCP_THIN_LINEAR_TIMEOUTS:
4567 		val = tp->thin_lto;
4568 		break;
4569 
4570 	case TCP_THIN_DUPACK:
4571 		val = 0;
4572 		break;
4573 
4574 	case TCP_REPAIR:
4575 		val = tp->repair;
4576 		break;
4577 
4578 	case TCP_REPAIR_QUEUE:
4579 		if (tp->repair)
4580 			val = tp->repair_queue;
4581 		else
4582 			return -EINVAL;
4583 		break;
4584 
4585 	case TCP_REPAIR_WINDOW: {
4586 		struct tcp_repair_window opt;
4587 
4588 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4589 			return -EFAULT;
4590 
4591 		if (len != sizeof(opt))
4592 			return -EINVAL;
4593 
4594 		if (!tp->repair)
4595 			return -EPERM;
4596 
4597 		opt.snd_wl1	= tp->snd_wl1;
4598 		opt.snd_wnd	= tp->snd_wnd;
4599 		opt.max_window	= tp->max_window;
4600 		opt.rcv_wnd	= tp->rcv_wnd;
4601 		opt.rcv_wup	= tp->rcv_wup;
4602 
4603 		if (copy_to_sockptr(optval, &opt, len))
4604 			return -EFAULT;
4605 		return 0;
4606 	}
4607 	case TCP_QUEUE_SEQ:
4608 		if (tp->repair_queue == TCP_SEND_QUEUE)
4609 			val = tp->write_seq;
4610 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4611 			val = tp->rcv_nxt;
4612 		else
4613 			return -EINVAL;
4614 		break;
4615 
4616 	case TCP_USER_TIMEOUT:
4617 		val = READ_ONCE(icsk->icsk_user_timeout);
4618 		break;
4619 
4620 	case TCP_FASTOPEN:
4621 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4622 		break;
4623 
4624 	case TCP_FASTOPEN_CONNECT:
4625 		val = tp->fastopen_connect;
4626 		break;
4627 
4628 	case TCP_FASTOPEN_NO_COOKIE:
4629 		val = tp->fastopen_no_cookie;
4630 		break;
4631 
4632 	case TCP_TX_DELAY:
4633 		val = READ_ONCE(tp->tcp_tx_delay);
4634 		break;
4635 
4636 	case TCP_TIMESTAMP:
4637 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4638 		if (tp->tcp_usec_ts)
4639 			val |= 1;
4640 		else
4641 			val &= ~1;
4642 		break;
4643 	case TCP_NOTSENT_LOWAT:
4644 		val = READ_ONCE(tp->notsent_lowat);
4645 		break;
4646 	case TCP_INQ:
4647 		val = tp->recvmsg_inq;
4648 		break;
4649 	case TCP_SAVE_SYN:
4650 		val = tp->save_syn;
4651 		break;
4652 	case TCP_SAVED_SYN: {
4653 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4654 			return -EFAULT;
4655 
4656 		sockopt_lock_sock(sk);
4657 		if (tp->saved_syn) {
4658 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4659 				len = tcp_saved_syn_len(tp->saved_syn);
4660 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4661 					sockopt_release_sock(sk);
4662 					return -EFAULT;
4663 				}
4664 				sockopt_release_sock(sk);
4665 				return -EINVAL;
4666 			}
4667 			len = tcp_saved_syn_len(tp->saved_syn);
4668 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4669 				sockopt_release_sock(sk);
4670 				return -EFAULT;
4671 			}
4672 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4673 				sockopt_release_sock(sk);
4674 				return -EFAULT;
4675 			}
4676 			tcp_saved_syn_free(tp);
4677 			sockopt_release_sock(sk);
4678 		} else {
4679 			sockopt_release_sock(sk);
4680 			len = 0;
4681 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4682 				return -EFAULT;
4683 		}
4684 		return 0;
4685 	}
4686 #ifdef CONFIG_MMU
4687 	case TCP_ZEROCOPY_RECEIVE: {
4688 		struct scm_timestamping_internal tss;
4689 		struct tcp_zerocopy_receive zc = {};
4690 		int err;
4691 
4692 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4693 			return -EFAULT;
4694 		if (len < 0 ||
4695 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4696 			return -EINVAL;
4697 		if (unlikely(len > sizeof(zc))) {
4698 			err = check_zeroed_sockptr(optval, sizeof(zc),
4699 						   len - sizeof(zc));
4700 			if (err < 1)
4701 				return err == 0 ? -EINVAL : err;
4702 			len = sizeof(zc);
4703 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4704 				return -EFAULT;
4705 		}
4706 		if (copy_from_sockptr(&zc, optval, len))
4707 			return -EFAULT;
4708 		if (zc.reserved)
4709 			return -EINVAL;
4710 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4711 			return -EINVAL;
4712 		sockopt_lock_sock(sk);
4713 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4714 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4715 							  &zc, &len, err);
4716 		sockopt_release_sock(sk);
4717 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4718 			goto zerocopy_rcv_cmsg;
4719 		switch (len) {
4720 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4721 			goto zerocopy_rcv_cmsg;
4722 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4723 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4724 		case offsetofend(struct tcp_zerocopy_receive, flags):
4725 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4726 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4727 		case offsetofend(struct tcp_zerocopy_receive, err):
4728 			goto zerocopy_rcv_sk_err;
4729 		case offsetofend(struct tcp_zerocopy_receive, inq):
4730 			goto zerocopy_rcv_inq;
4731 		case offsetofend(struct tcp_zerocopy_receive, length):
4732 		default:
4733 			goto zerocopy_rcv_out;
4734 		}
4735 zerocopy_rcv_cmsg:
4736 		if (zc.msg_flags & TCP_CMSG_TS)
4737 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4738 		else
4739 			zc.msg_flags = 0;
4740 zerocopy_rcv_sk_err:
4741 		if (!err)
4742 			zc.err = sock_error(sk);
4743 zerocopy_rcv_inq:
4744 		zc.inq = tcp_inq_hint(sk);
4745 zerocopy_rcv_out:
4746 		if (!err && copy_to_sockptr(optval, &zc, len))
4747 			err = -EFAULT;
4748 		return err;
4749 	}
4750 #endif
4751 	case TCP_AO_REPAIR:
4752 		if (!tcp_can_repair_sock(sk))
4753 			return -EPERM;
4754 		return tcp_ao_get_repair(sk, optval, optlen);
4755 	case TCP_AO_GET_KEYS:
4756 	case TCP_AO_INFO: {
4757 		int err;
4758 
4759 		sockopt_lock_sock(sk);
4760 		if (optname == TCP_AO_GET_KEYS)
4761 			err = tcp_ao_get_mkts(sk, optval, optlen);
4762 		else
4763 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4764 		sockopt_release_sock(sk);
4765 
4766 		return err;
4767 	}
4768 	case TCP_IS_MPTCP:
4769 		val = 0;
4770 		break;
4771 	case TCP_RTO_MAX_MS:
4772 		val = jiffies_to_msecs(tcp_rto_max(sk));
4773 		break;
4774 	case TCP_RTO_MIN_US:
4775 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4776 		break;
4777 	case TCP_DELACK_MAX_US:
4778 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4779 		break;
4780 	default:
4781 		return -ENOPROTOOPT;
4782 	}
4783 
4784 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4785 		return -EFAULT;
4786 	if (copy_to_sockptr(optval, &val, len))
4787 		return -EFAULT;
4788 	return 0;
4789 }
4790 
tcp_bpf_bypass_getsockopt(int level,int optname)4791 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4792 {
4793 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4794 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4795 	 */
4796 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4797 		return true;
4798 
4799 	return false;
4800 }
4801 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4802 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4803 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4804 		   int __user *optlen)
4805 {
4806 	struct inet_connection_sock *icsk = inet_csk(sk);
4807 
4808 	if (level != SOL_TCP)
4809 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4810 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4811 								optval, optlen);
4812 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4813 				 USER_SOCKPTR(optlen));
4814 }
4815 EXPORT_IPV6_MOD(tcp_getsockopt);
4816 
4817 #ifdef CONFIG_TCP_MD5SIG
4818 int tcp_md5_sigpool_id = -1;
4819 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id);
4820 
tcp_md5_alloc_sigpool(void)4821 int tcp_md5_alloc_sigpool(void)
4822 {
4823 	size_t scratch_size;
4824 	int ret;
4825 
4826 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4827 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4828 	if (ret >= 0) {
4829 		/* As long as any md5 sigpool was allocated, the return
4830 		 * id would stay the same. Re-write the id only for the case
4831 		 * when previously all MD5 keys were deleted and this call
4832 		 * allocates the first MD5 key, which may return a different
4833 		 * sigpool id than was used previously.
4834 		 */
4835 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4836 		return 0;
4837 	}
4838 	return ret;
4839 }
4840 
tcp_md5_release_sigpool(void)4841 void tcp_md5_release_sigpool(void)
4842 {
4843 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4844 }
4845 
tcp_md5_add_sigpool(void)4846 void tcp_md5_add_sigpool(void)
4847 {
4848 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4849 }
4850 
tcp_md5_hash_key(struct tcp_sigpool * hp,const struct tcp_md5sig_key * key)4851 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4852 		     const struct tcp_md5sig_key *key)
4853 {
4854 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4855 	struct scatterlist sg;
4856 
4857 	sg_init_one(&sg, key->key, keylen);
4858 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4859 
4860 	/* We use data_race() because tcp_md5_do_add() might change
4861 	 * key->key under us
4862 	 */
4863 	return data_race(crypto_ahash_update(hp->req));
4864 }
4865 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4866 
4867 /* Called with rcu_read_lock() */
4868 static enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4869 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4870 		     const void *saddr, const void *daddr,
4871 		     int family, int l3index, const __u8 *hash_location)
4872 {
4873 	/* This gets called for each TCP segment that has TCP-MD5 option.
4874 	 * We have 3 drop cases:
4875 	 * o No MD5 hash and one expected.
4876 	 * o MD5 hash and we're not expecting one.
4877 	 * o MD5 hash and its wrong.
4878 	 */
4879 	const struct tcp_sock *tp = tcp_sk(sk);
4880 	struct tcp_md5sig_key *key;
4881 	u8 newhash[16];
4882 	int genhash;
4883 
4884 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4885 
4886 	if (!key && hash_location) {
4887 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4888 		trace_tcp_hash_md5_unexpected(sk, skb);
4889 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4890 	}
4891 
4892 	/* Check the signature.
4893 	 * To support dual stack listeners, we need to handle
4894 	 * IPv4-mapped case.
4895 	 */
4896 	if (family == AF_INET)
4897 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4898 	else
4899 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4900 							 NULL, skb);
4901 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4902 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4903 		trace_tcp_hash_md5_mismatch(sk, skb);
4904 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4905 	}
4906 	return SKB_NOT_DROPPED_YET;
4907 }
4908 #else
4909 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4910 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4911 		     const void *saddr, const void *daddr,
4912 		     int family, int l3index, const __u8 *hash_location)
4913 {
4914 	return SKB_NOT_DROPPED_YET;
4915 }
4916 
4917 #endif
4918 
4919 /* Called with rcu_read_lock() */
4920 enum skb_drop_reason
tcp_inbound_hash(struct sock * sk,const struct request_sock * req,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4921 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4922 		 const struct sk_buff *skb,
4923 		 const void *saddr, const void *daddr,
4924 		 int family, int dif, int sdif)
4925 {
4926 	const struct tcphdr *th = tcp_hdr(skb);
4927 	const struct tcp_ao_hdr *aoh;
4928 	const __u8 *md5_location;
4929 	int l3index;
4930 
4931 	/* Invalid option or two times meet any of auth options */
4932 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4933 		trace_tcp_hash_bad_header(sk, skb);
4934 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4935 	}
4936 
4937 	if (req) {
4938 		if (tcp_rsk_used_ao(req) != !!aoh) {
4939 			u8 keyid, rnext, maclen;
4940 
4941 			if (aoh) {
4942 				keyid = aoh->keyid;
4943 				rnext = aoh->rnext_keyid;
4944 				maclen = tcp_ao_hdr_maclen(aoh);
4945 			} else {
4946 				keyid = rnext = maclen = 0;
4947 			}
4948 
4949 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4950 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4951 			return SKB_DROP_REASON_TCP_AOFAILURE;
4952 		}
4953 	}
4954 
4955 	/* sdif set, means packet ingressed via a device
4956 	 * in an L3 domain and dif is set to the l3mdev
4957 	 */
4958 	l3index = sdif ? dif : 0;
4959 
4960 	/* Fast path: unsigned segments */
4961 	if (likely(!md5_location && !aoh)) {
4962 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4963 		 * for the remote peer. On TCP-AO established connection
4964 		 * the last key is impossible to remove, so there's
4965 		 * always at least one current_key.
4966 		 */
4967 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4968 			trace_tcp_hash_ao_required(sk, skb);
4969 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4970 		}
4971 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4972 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4973 			trace_tcp_hash_md5_required(sk, skb);
4974 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4975 		}
4976 		return SKB_NOT_DROPPED_YET;
4977 	}
4978 
4979 	if (aoh)
4980 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4981 
4982 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4983 				    l3index, md5_location);
4984 }
4985 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4986 
tcp_done(struct sock * sk)4987 void tcp_done(struct sock *sk)
4988 {
4989 	struct request_sock *req;
4990 
4991 	/* We might be called with a new socket, after
4992 	 * inet_csk_prepare_forced_close() has been called
4993 	 * so we can not use lockdep_sock_is_held(sk)
4994 	 */
4995 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4996 
4997 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4998 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4999 
5000 	tcp_set_state(sk, TCP_CLOSE);
5001 	tcp_clear_xmit_timers(sk);
5002 	if (req)
5003 		reqsk_fastopen_remove(sk, req, false);
5004 
5005 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
5006 
5007 	if (!sock_flag(sk, SOCK_DEAD))
5008 		sk->sk_state_change(sk);
5009 	else
5010 		inet_csk_destroy_sock(sk);
5011 }
5012 EXPORT_SYMBOL_GPL(tcp_done);
5013 
tcp_abort(struct sock * sk,int err)5014 int tcp_abort(struct sock *sk, int err)
5015 {
5016 	int state = inet_sk_state_load(sk);
5017 
5018 	if (state == TCP_NEW_SYN_RECV) {
5019 		struct request_sock *req = inet_reqsk(sk);
5020 
5021 		local_bh_disable();
5022 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
5023 		local_bh_enable();
5024 		return 0;
5025 	}
5026 	if (state == TCP_TIME_WAIT) {
5027 		struct inet_timewait_sock *tw = inet_twsk(sk);
5028 
5029 		refcount_inc(&tw->tw_refcnt);
5030 		local_bh_disable();
5031 		inet_twsk_deschedule_put(tw);
5032 		local_bh_enable();
5033 		return 0;
5034 	}
5035 
5036 	/* BPF context ensures sock locking. */
5037 	if (!has_current_bpf_ctx())
5038 		/* Don't race with userspace socket closes such as tcp_close. */
5039 		lock_sock(sk);
5040 
5041 	/* Avoid closing the same socket twice. */
5042 	if (sk->sk_state == TCP_CLOSE) {
5043 		if (!has_current_bpf_ctx())
5044 			release_sock(sk);
5045 		return -ENOENT;
5046 	}
5047 
5048 	if (sk->sk_state == TCP_LISTEN) {
5049 		tcp_set_state(sk, TCP_CLOSE);
5050 		inet_csk_listen_stop(sk);
5051 	}
5052 
5053 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
5054 	local_bh_disable();
5055 	bh_lock_sock(sk);
5056 
5057 	if (tcp_need_reset(sk->sk_state))
5058 		tcp_send_active_reset(sk, GFP_ATOMIC,
5059 				      SK_RST_REASON_TCP_STATE);
5060 	tcp_done_with_error(sk, err);
5061 
5062 	bh_unlock_sock(sk);
5063 	local_bh_enable();
5064 	if (!has_current_bpf_ctx())
5065 		release_sock(sk);
5066 	return 0;
5067 }
5068 EXPORT_SYMBOL_GPL(tcp_abort);
5069 
5070 extern struct tcp_congestion_ops tcp_reno;
5071 
5072 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)5073 static int __init set_thash_entries(char *str)
5074 {
5075 	ssize_t ret;
5076 
5077 	if (!str)
5078 		return 0;
5079 
5080 	ret = kstrtoul(str, 0, &thash_entries);
5081 	if (ret)
5082 		return 0;
5083 
5084 	return 1;
5085 }
5086 __setup("thash_entries=", set_thash_entries);
5087 
tcp_init_mem(void)5088 static void __init tcp_init_mem(void)
5089 {
5090 	unsigned long limit = nr_free_buffer_pages() / 16;
5091 
5092 	limit = max(limit, 128UL);
5093 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
5094 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
5095 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
5096 }
5097 
tcp_struct_check(void)5098 static void __init tcp_struct_check(void)
5099 {
5100 	/* TX read-mostly hotpath cache lines */
5101 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5102 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5103 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5104 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5105 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5106 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5107 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5108 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, tcp_clean_acked);
5109 #endif
5110 
5111 	/* TXRX read-mostly hotpath cache lines */
5112 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5113 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5114 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5115 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5116 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5117 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5118 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5119 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5120 
5121 	/* RX read-mostly hotpath cache lines */
5122 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5123 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5124 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5125 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5126 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5127 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5128 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5129 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5130 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5131 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5132 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5133 
5134 	/* TX read-write hotpath cache lines */
5135 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5136 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5137 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5138 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5139 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5140 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5141 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5142 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5143 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5144 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5145 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5146 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, accecn_opt_tstamp);
5147 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5148 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5149 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5150 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5151 
5152 	/* TXRX read-write hotpath cache lines */
5153 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5154 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5155 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5156 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5157 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5158 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5159 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5160 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5161 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5162 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5163 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5164 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5165 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, received_ce);
5166 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, received_ecn_bytes);
5167 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5168 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5169 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_tstamp);
5170 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5171 
5172 	/* RX read-write hotpath cache lines */
5173 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5174 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5175 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5176 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5177 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5178 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5179 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5180 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5181 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5182 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_ecn_bytes);
5183 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5184 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5185 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5186 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5187 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5188 }
5189 
tcp_init(void)5190 void __init tcp_init(void)
5191 {
5192 	int max_rshare, max_wshare, cnt;
5193 	unsigned long limit;
5194 	unsigned int i;
5195 
5196 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5197 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5198 		     sizeof_field(struct sk_buff, cb));
5199 
5200 	tcp_struct_check();
5201 
5202 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5203 
5204 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5205 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5206 
5207 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5208 			    thash_entries, 21,  /* one slot per 2 MB*/
5209 			    0, 64 * 1024);
5210 	tcp_hashinfo.bind_bucket_cachep =
5211 		kmem_cache_create("tcp_bind_bucket",
5212 				  sizeof(struct inet_bind_bucket), 0,
5213 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5214 				  SLAB_ACCOUNT,
5215 				  NULL);
5216 	tcp_hashinfo.bind2_bucket_cachep =
5217 		kmem_cache_create("tcp_bind2_bucket",
5218 				  sizeof(struct inet_bind2_bucket), 0,
5219 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5220 				  SLAB_ACCOUNT,
5221 				  NULL);
5222 
5223 	/* Size and allocate the main established and bind bucket
5224 	 * hash tables.
5225 	 *
5226 	 * The methodology is similar to that of the buffer cache.
5227 	 */
5228 	tcp_hashinfo.ehash =
5229 		alloc_large_system_hash("TCP established",
5230 					sizeof(struct inet_ehash_bucket),
5231 					thash_entries,
5232 					17, /* one slot per 128 KB of memory */
5233 					0,
5234 					NULL,
5235 					&tcp_hashinfo.ehash_mask,
5236 					0,
5237 					thash_entries ? 0 : 512 * 1024);
5238 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5239 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5240 
5241 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5242 		panic("TCP: failed to alloc ehash_locks");
5243 	tcp_hashinfo.bhash =
5244 		alloc_large_system_hash("TCP bind",
5245 					2 * sizeof(struct inet_bind_hashbucket),
5246 					tcp_hashinfo.ehash_mask + 1,
5247 					17, /* one slot per 128 KB of memory */
5248 					0,
5249 					&tcp_hashinfo.bhash_size,
5250 					NULL,
5251 					0,
5252 					64 * 1024);
5253 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5254 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5255 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5256 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5257 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5258 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5259 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5260 	}
5261 
5262 	tcp_hashinfo.pernet = false;
5263 
5264 	cnt = tcp_hashinfo.ehash_mask + 1;
5265 	sysctl_tcp_max_orphans = cnt / 2;
5266 
5267 	tcp_init_mem();
5268 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5269 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5270 	max_wshare = min(4UL*1024*1024, limit);
5271 	max_rshare = min(32UL*1024*1024, limit);
5272 
5273 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5274 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5275 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5276 
5277 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5278 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5279 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5280 
5281 	pr_info("Hash tables configured (established %u bind %u)\n",
5282 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5283 
5284 	tcp_v4_init();
5285 	tcp_metrics_init();
5286 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5287 	tcp_tsq_work_init();
5288 	mptcp_init();
5289 }
5290