xref: /freebsd/sys/net80211/ieee80211_crypto_ccmp.c (revision 685dc743dc3b5645e34836464128e1c0558b404b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 /*
30  * IEEE 802.11i AES-CCMP crypto support.
31  *
32  * Part of this module is derived from similar code in the Host
33  * AP driver. The code is used with the consent of the author and
34  * it's license is included below.
35  */
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 
45 #include <sys/socket.h>
46 
47 #include <net/if.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 
53 #include <crypto/rijndael/rijndael.h>
54 
55 #define AES_BLOCK_LEN 16
56 
57 struct ccmp_ctx {
58 	struct ieee80211vap *cc_vap;	/* for diagnostics+statistics */
59 	struct ieee80211com *cc_ic;
60 	rijndael_ctx	     cc_aes;
61 };
62 
63 static	void *ccmp_attach(struct ieee80211vap *, struct ieee80211_key *);
64 static	void ccmp_detach(struct ieee80211_key *);
65 static	int ccmp_setkey(struct ieee80211_key *);
66 static	void ccmp_setiv(struct ieee80211_key *, uint8_t *);
67 static	int ccmp_encap(struct ieee80211_key *, struct mbuf *);
68 static	int ccmp_decap(struct ieee80211_key *, struct mbuf *, int);
69 static	int ccmp_enmic(struct ieee80211_key *, struct mbuf *, int);
70 static	int ccmp_demic(struct ieee80211_key *, struct mbuf *, int);
71 
72 static const struct ieee80211_cipher ccmp = {
73 	.ic_name	= "AES-CCM",
74 	.ic_cipher	= IEEE80211_CIPHER_AES_CCM,
75 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
76 			  IEEE80211_WEP_EXTIVLEN,
77 	.ic_trailer	= IEEE80211_WEP_MICLEN,
78 	.ic_miclen	= 0,
79 	.ic_attach	= ccmp_attach,
80 	.ic_detach	= ccmp_detach,
81 	.ic_setkey	= ccmp_setkey,
82 	.ic_setiv	= ccmp_setiv,
83 	.ic_encap	= ccmp_encap,
84 	.ic_decap	= ccmp_decap,
85 	.ic_enmic	= ccmp_enmic,
86 	.ic_demic	= ccmp_demic,
87 };
88 
89 static	int ccmp_encrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
90 static	int ccmp_decrypt(struct ieee80211_key *, u_int64_t pn,
91 		struct mbuf *, int hdrlen);
92 
93 /* number of references from net80211 layer */
94 static	int nrefs = 0;
95 
96 static void *
ccmp_attach(struct ieee80211vap * vap,struct ieee80211_key * k)97 ccmp_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
98 {
99 	struct ccmp_ctx *ctx;
100 
101 	ctx = (struct ccmp_ctx *) IEEE80211_MALLOC(sizeof(struct ccmp_ctx),
102 		M_80211_CRYPTO, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
103 	if (ctx == NULL) {
104 		vap->iv_stats.is_crypto_nomem++;
105 		return NULL;
106 	}
107 	ctx->cc_vap = vap;
108 	ctx->cc_ic = vap->iv_ic;
109 	nrefs++;			/* NB: we assume caller locking */
110 	return ctx;
111 }
112 
113 static void
ccmp_detach(struct ieee80211_key * k)114 ccmp_detach(struct ieee80211_key *k)
115 {
116 	struct ccmp_ctx *ctx = k->wk_private;
117 
118 	IEEE80211_FREE(ctx, M_80211_CRYPTO);
119 	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
120 	nrefs--;			/* NB: we assume caller locking */
121 }
122 
123 static int
ccmp_setkey(struct ieee80211_key * k)124 ccmp_setkey(struct ieee80211_key *k)
125 {
126 	struct ccmp_ctx *ctx = k->wk_private;
127 
128 	if (k->wk_keylen != (128/NBBY)) {
129 		IEEE80211_DPRINTF(ctx->cc_vap, IEEE80211_MSG_CRYPTO,
130 			"%s: Invalid key length %u, expecting %u\n",
131 			__func__, k->wk_keylen, 128/NBBY);
132 		return 0;
133 	}
134 	if (k->wk_flags & IEEE80211_KEY_SWENCRYPT)
135 		rijndael_set_key(&ctx->cc_aes, k->wk_key, k->wk_keylen*NBBY);
136 	return 1;
137 }
138 
139 static void
ccmp_setiv(struct ieee80211_key * k,uint8_t * ivp)140 ccmp_setiv(struct ieee80211_key *k, uint8_t *ivp)
141 {
142 	struct ccmp_ctx *ctx = k->wk_private;
143 	struct ieee80211vap *vap = ctx->cc_vap;
144 	uint8_t keyid;
145 
146 	keyid = ieee80211_crypto_get_keyid(vap, k) << 6;
147 
148 	k->wk_keytsc++;
149 	ivp[0] = k->wk_keytsc >> 0;		/* PN0 */
150 	ivp[1] = k->wk_keytsc >> 8;		/* PN1 */
151 	ivp[2] = 0;				/* Reserved */
152 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
153 	ivp[4] = k->wk_keytsc >> 16;		/* PN2 */
154 	ivp[5] = k->wk_keytsc >> 24;		/* PN3 */
155 	ivp[6] = k->wk_keytsc >> 32;		/* PN4 */
156 	ivp[7] = k->wk_keytsc >> 40;		/* PN5 */
157 }
158 
159 /*
160  * Add privacy headers appropriate for the specified key.
161  */
162 static int
ccmp_encap(struct ieee80211_key * k,struct mbuf * m)163 ccmp_encap(struct ieee80211_key *k, struct mbuf *m)
164 {
165 	const struct ieee80211_frame *wh;
166 	struct ccmp_ctx *ctx = k->wk_private;
167 	struct ieee80211com *ic = ctx->cc_ic;
168 	uint8_t *ivp;
169 	int hdrlen;
170 	int is_mgmt;
171 
172 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
173 	wh = mtod(m, const struct ieee80211_frame *);
174 	is_mgmt = IEEE80211_IS_MGMT(wh);
175 
176 	/*
177 	 * Check to see if we need to insert IV/MIC.
178 	 *
179 	 * Some offload devices don't require the IV to be inserted
180 	 * as part of the hardware encryption.
181 	 */
182 	if (is_mgmt && (k->wk_flags & IEEE80211_KEY_NOIVMGT))
183 		return 1;
184 	if ((! is_mgmt) && (k->wk_flags & IEEE80211_KEY_NOIV))
185 		return 1;
186 
187 	/*
188 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
189 	 */
190 	M_PREPEND(m, ccmp.ic_header, IEEE80211_M_NOWAIT);
191 	if (m == NULL)
192 		return 0;
193 	ivp = mtod(m, uint8_t *);
194 	ovbcopy(ivp + ccmp.ic_header, ivp, hdrlen);
195 	ivp += hdrlen;
196 
197 	ccmp_setiv(k, ivp);
198 
199 	/*
200 	 * Finally, do software encrypt if needed.
201 	 */
202 	if ((k->wk_flags & IEEE80211_KEY_SWENCRYPT) &&
203 	    !ccmp_encrypt(k, m, hdrlen))
204 		return 0;
205 
206 	return 1;
207 }
208 
209 /*
210  * Add MIC to the frame as needed.
211  */
212 static int
ccmp_enmic(struct ieee80211_key * k,struct mbuf * m,int force)213 ccmp_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
214 {
215 
216 	return 1;
217 }
218 
219 static __inline uint64_t
READ_6(uint8_t b0,uint8_t b1,uint8_t b2,uint8_t b3,uint8_t b4,uint8_t b5)220 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
221 {
222 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
223 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
224 	return (((uint64_t)iv16) << 32) | iv32;
225 }
226 
227 /*
228  * Validate and strip privacy headers (and trailer) for a
229  * received frame. The specified key should be correct but
230  * is also verified.
231  */
232 static int
ccmp_decap(struct ieee80211_key * k,struct mbuf * m,int hdrlen)233 ccmp_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
234 {
235 	const struct ieee80211_rx_stats *rxs;
236 	struct ccmp_ctx *ctx = k->wk_private;
237 	struct ieee80211vap *vap = ctx->cc_vap;
238 	struct ieee80211_frame *wh;
239 	uint8_t *ivp, tid;
240 	uint64_t pn;
241 
242 	rxs = ieee80211_get_rx_params_ptr(m);
243 
244 	if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP))
245 		goto finish;
246 
247 	/*
248 	 * Header should have extended IV and sequence number;
249 	 * verify the former and validate the latter.
250 	 */
251 	wh = mtod(m, struct ieee80211_frame *);
252 	ivp = mtod(m, uint8_t *) + hdrlen;
253 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
254 		/*
255 		 * No extended IV; discard frame.
256 		 */
257 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
258 			"%s", "missing ExtIV for AES-CCM cipher");
259 		vap->iv_stats.is_rx_ccmpformat++;
260 		return 0;
261 	}
262 	tid = ieee80211_gettid(wh);
263 	pn = READ_6(ivp[0], ivp[1], ivp[4], ivp[5], ivp[6], ivp[7]);
264 	if (pn <= k->wk_keyrsc[tid] &&
265 	    (k->wk_flags & IEEE80211_KEY_NOREPLAY) == 0) {
266 		/*
267 		 * Replay violation.
268 		 */
269 		ieee80211_notify_replay_failure(vap, wh, k, pn, tid);
270 		vap->iv_stats.is_rx_ccmpreplay++;
271 		return 0;
272 	}
273 
274 	/*
275 	 * Check if the device handled the decrypt in hardware.
276 	 * If so we just strip the header; otherwise we need to
277 	 * handle the decrypt in software.  Note that for the
278 	 * latter we leave the header in place for use in the
279 	 * decryption work.
280 	 */
281 	if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
282 	    !ccmp_decrypt(k, pn, m, hdrlen))
283 		return 0;
284 
285 finish:
286 	/*
287 	 * Copy up 802.11 header and strip crypto bits.
288 	 */
289 	if (! ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP))) {
290 		ovbcopy(mtod(m, void *), mtod(m, uint8_t *) + ccmp.ic_header,
291 		    hdrlen);
292 		m_adj(m, ccmp.ic_header);
293 	}
294 
295 	/*
296 	 * XXX TODO: see if MMIC_STRIP also covers CCMP MIC trailer.
297 	 */
298 	if (! ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_MMIC_STRIP)))
299 		m_adj(m, -ccmp.ic_trailer);
300 
301 	/*
302 	 * Ok to update rsc now.
303 	 */
304 	if (! ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP))) {
305 		k->wk_keyrsc[tid] = pn;
306 	}
307 
308 	return 1;
309 }
310 
311 /*
312  * Verify and strip MIC from the frame.
313  */
314 static int
ccmp_demic(struct ieee80211_key * k,struct mbuf * m,int force)315 ccmp_demic(struct ieee80211_key *k, struct mbuf *m, int force)
316 {
317 	return 1;
318 }
319 
320 static __inline void
xor_block(uint8_t * b,const uint8_t * a,size_t len)321 xor_block(uint8_t *b, const uint8_t *a, size_t len)
322 {
323 	int i;
324 	for (i = 0; i < len; i++)
325 		b[i] ^= a[i];
326 }
327 
328 /*
329  * Host AP crypt: host-based CCMP encryption implementation for Host AP driver
330  *
331  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
332  *
333  * This program is free software; you can redistribute it and/or modify
334  * it under the terms of the GNU General Public License version 2 as
335  * published by the Free Software Foundation. See README and COPYING for
336  * more details.
337  *
338  * Alternatively, this software may be distributed under the terms of BSD
339  * license.
340  */
341 
342 static void
ccmp_init_blocks(rijndael_ctx * ctx,struct ieee80211_frame * wh,u_int64_t pn,size_t dlen,uint8_t b0[AES_BLOCK_LEN],uint8_t aad[2* AES_BLOCK_LEN],uint8_t auth[AES_BLOCK_LEN],uint8_t s0[AES_BLOCK_LEN])343 ccmp_init_blocks(rijndael_ctx *ctx, struct ieee80211_frame *wh,
344 	u_int64_t pn, size_t dlen,
345 	uint8_t b0[AES_BLOCK_LEN], uint8_t aad[2 * AES_BLOCK_LEN],
346 	uint8_t auth[AES_BLOCK_LEN], uint8_t s0[AES_BLOCK_LEN])
347 {
348 #define	IS_QOS_DATA(wh)	IEEE80211_QOS_HAS_SEQ(wh)
349 
350 	/* CCM Initial Block:
351 	 * Flag (Include authentication header, M=3 (8-octet MIC),
352 	 *       L=1 (2-octet Dlen))
353 	 * Nonce: 0x00 | A2 | PN
354 	 * Dlen */
355 	b0[0] = 0x59;
356 	/* NB: b0[1] set below */
357 	IEEE80211_ADDR_COPY(b0 + 2, wh->i_addr2);
358 	b0[8] = pn >> 40;
359 	b0[9] = pn >> 32;
360 	b0[10] = pn >> 24;
361 	b0[11] = pn >> 16;
362 	b0[12] = pn >> 8;
363 	b0[13] = pn >> 0;
364 	b0[14] = (dlen >> 8) & 0xff;
365 	b0[15] = dlen & 0xff;
366 
367 	/* AAD:
368 	 * FC with bits 4..6 and 11..13 masked to zero; 14 is always one
369 	 * A1 | A2 | A3
370 	 * SC with bits 4..15 (seq#) masked to zero
371 	 * A4 (if present)
372 	 * QC (if present)
373 	 */
374 	aad[0] = 0;	/* AAD length >> 8 */
375 	/* NB: aad[1] set below */
376 	aad[2] = wh->i_fc[0] & 0x8f;	/* XXX magic #s */
377 	aad[3] = wh->i_fc[1] & 0xc7;	/* XXX magic #s */
378 	/* NB: we know 3 addresses are contiguous */
379 	memcpy(aad + 4, wh->i_addr1, 3 * IEEE80211_ADDR_LEN);
380 	aad[22] = wh->i_seq[0] & IEEE80211_SEQ_FRAG_MASK;
381 	aad[23] = 0; /* all bits masked */
382 	/*
383 	 * Construct variable-length portion of AAD based
384 	 * on whether this is a 4-address frame/QOS frame.
385 	 * We always zero-pad to 32 bytes before running it
386 	 * through the cipher.
387 	 *
388 	 * We also fill in the priority bits of the CCM
389 	 * initial block as we know whether or not we have
390 	 * a QOS frame.
391 	 */
392 	if (IEEE80211_IS_DSTODS(wh)) {
393 		IEEE80211_ADDR_COPY(aad + 24,
394 			((struct ieee80211_frame_addr4 *)wh)->i_addr4);
395 		if (IS_QOS_DATA(wh)) {
396 			struct ieee80211_qosframe_addr4 *qwh4 =
397 				(struct ieee80211_qosframe_addr4 *) wh;
398 			aad[30] = qwh4->i_qos[0] & 0x0f;/* just priority bits */
399 			aad[31] = 0;
400 			b0[1] = aad[30];
401 			aad[1] = 22 + IEEE80211_ADDR_LEN + 2;
402 		} else {
403 			*(uint16_t *)&aad[30] = 0;
404 			b0[1] = 0;
405 			aad[1] = 22 + IEEE80211_ADDR_LEN;
406 		}
407 	} else {
408 		if (IS_QOS_DATA(wh)) {
409 			struct ieee80211_qosframe *qwh =
410 				(struct ieee80211_qosframe*) wh;
411 			aad[24] = qwh->i_qos[0] & 0x0f;	/* just priority bits */
412 			aad[25] = 0;
413 			b0[1] = aad[24];
414 			aad[1] = 22 + 2;
415 		} else {
416 			*(uint16_t *)&aad[24] = 0;
417 			b0[1] = 0;
418 			aad[1] = 22;
419 		}
420 		*(uint16_t *)&aad[26] = 0;
421 		*(uint32_t *)&aad[28] = 0;
422 	}
423 
424 	/* Start with the first block and AAD */
425 	rijndael_encrypt(ctx, b0, auth);
426 	xor_block(auth, aad, AES_BLOCK_LEN);
427 	rijndael_encrypt(ctx, auth, auth);
428 	xor_block(auth, &aad[AES_BLOCK_LEN], AES_BLOCK_LEN);
429 	rijndael_encrypt(ctx, auth, auth);
430 	b0[0] &= 0x07;
431 	b0[14] = b0[15] = 0;
432 	rijndael_encrypt(ctx, b0, s0);
433 #undef	IS_QOS_DATA
434 }
435 
436 #define	CCMP_ENCRYPT(_i, _b, _b0, _pos, _e, _len) do {	\
437 	/* Authentication */				\
438 	xor_block(_b, _pos, _len);			\
439 	rijndael_encrypt(&ctx->cc_aes, _b, _b);		\
440 	/* Encryption, with counter */			\
441 	_b0[14] = (_i >> 8) & 0xff;			\
442 	_b0[15] = _i & 0xff;				\
443 	rijndael_encrypt(&ctx->cc_aes, _b0, _e);	\
444 	xor_block(_pos, _e, _len);			\
445 } while (0)
446 
447 static int
ccmp_encrypt(struct ieee80211_key * key,struct mbuf * m0,int hdrlen)448 ccmp_encrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
449 {
450 	struct ccmp_ctx *ctx = key->wk_private;
451 	struct ieee80211_frame *wh;
452 	struct mbuf *m = m0;
453 	int data_len, i, space;
454 	uint8_t aad[2 * AES_BLOCK_LEN], b0[AES_BLOCK_LEN], b[AES_BLOCK_LEN],
455 		e[AES_BLOCK_LEN], s0[AES_BLOCK_LEN];
456 	uint8_t *pos;
457 
458 	ctx->cc_vap->iv_stats.is_crypto_ccmp++;
459 
460 	wh = mtod(m, struct ieee80211_frame *);
461 	data_len = m->m_pkthdr.len - (hdrlen + ccmp.ic_header);
462 	ccmp_init_blocks(&ctx->cc_aes, wh, key->wk_keytsc,
463 		data_len, b0, aad, b, s0);
464 
465 	i = 1;
466 	pos = mtod(m, uint8_t *) + hdrlen + ccmp.ic_header;
467 	/* NB: assumes header is entirely in first mbuf */
468 	space = m->m_len - (hdrlen + ccmp.ic_header);
469 	for (;;) {
470 		if (space > data_len)
471 			space = data_len;
472 		/*
473 		 * Do full blocks.
474 		 */
475 		while (space >= AES_BLOCK_LEN) {
476 			CCMP_ENCRYPT(i, b, b0, pos, e, AES_BLOCK_LEN);
477 			pos += AES_BLOCK_LEN, space -= AES_BLOCK_LEN;
478 			data_len -= AES_BLOCK_LEN;
479 			i++;
480 		}
481 		if (data_len <= 0)		/* no more data */
482 			break;
483 		m = m->m_next;
484 		if (m == NULL) {		/* last buffer */
485 			if (space != 0) {
486 				/*
487 				 * Short last block.
488 				 */
489 				CCMP_ENCRYPT(i, b, b0, pos, e, space);
490 			}
491 			break;
492 		}
493 		if (space != 0) {
494 			uint8_t *pos_next;
495 			int space_next;
496 			int len, dl, sp;
497 			struct mbuf *n;
498 
499 			/*
500 			 * Block straddles one or more mbufs, gather data
501 			 * into the block buffer b, apply the cipher, then
502 			 * scatter the results back into the mbuf chain.
503 			 * The buffer will automatically get space bytes
504 			 * of data at offset 0 copied in+out by the
505 			 * CCMP_ENCRYPT request so we must take care of
506 			 * the remaining data.
507 			 */
508 			n = m;
509 			dl = data_len;
510 			sp = space;
511 			for (;;) {
512 				pos_next = mtod(n, uint8_t *);
513 				len = min(dl, AES_BLOCK_LEN);
514 				space_next = len > sp ? len - sp : 0;
515 				if (n->m_len >= space_next) {
516 					/*
517 					 * This mbuf has enough data; just grab
518 					 * what we need and stop.
519 					 */
520 					xor_block(b+sp, pos_next, space_next);
521 					break;
522 				}
523 				/*
524 				 * This mbuf's contents are insufficient,
525 				 * take 'em all and prepare to advance to
526 				 * the next mbuf.
527 				 */
528 				xor_block(b+sp, pos_next, n->m_len);
529 				sp += n->m_len, dl -= n->m_len;
530 				n = n->m_next;
531 				if (n == NULL)
532 					break;
533 			}
534 
535 			CCMP_ENCRYPT(i, b, b0, pos, e, space);
536 
537 			/* NB: just like above, but scatter data to mbufs */
538 			dl = data_len;
539 			sp = space;
540 			for (;;) {
541 				pos_next = mtod(m, uint8_t *);
542 				len = min(dl, AES_BLOCK_LEN);
543 				space_next = len > sp ? len - sp : 0;
544 				if (m->m_len >= space_next) {
545 					xor_block(pos_next, e+sp, space_next);
546 					break;
547 				}
548 				xor_block(pos_next, e+sp, m->m_len);
549 				sp += m->m_len, dl -= m->m_len;
550 				m = m->m_next;
551 				if (m == NULL)
552 					goto done;
553 			}
554 			/*
555 			 * Do bookkeeping.  m now points to the last mbuf
556 			 * we grabbed data from.  We know we consumed a
557 			 * full block of data as otherwise we'd have hit
558 			 * the end of the mbuf chain, so deduct from data_len.
559 			 * Otherwise advance the block number (i) and setup
560 			 * pos+space to reflect contents of the new mbuf.
561 			 */
562 			data_len -= AES_BLOCK_LEN;
563 			i++;
564 			pos = pos_next + space_next;
565 			space = m->m_len - space_next;
566 		} else {
567 			/*
568 			 * Setup for next buffer.
569 			 */
570 			pos = mtod(m, uint8_t *);
571 			space = m->m_len;
572 		}
573 	}
574 done:
575 	/* tack on MIC */
576 	xor_block(b, s0, ccmp.ic_trailer);
577 	return m_append(m0, ccmp.ic_trailer, b);
578 }
579 #undef CCMP_ENCRYPT
580 
581 #define	CCMP_DECRYPT(_i, _b, _b0, _pos, _a, _len) do {	\
582 	/* Decrypt, with counter */			\
583 	_b0[14] = (_i >> 8) & 0xff;			\
584 	_b0[15] = _i & 0xff;				\
585 	rijndael_encrypt(&ctx->cc_aes, _b0, _b);	\
586 	xor_block(_pos, _b, _len);			\
587 	/* Authentication */				\
588 	xor_block(_a, _pos, _len);			\
589 	rijndael_encrypt(&ctx->cc_aes, _a, _a);		\
590 } while (0)
591 
592 static int
ccmp_decrypt(struct ieee80211_key * key,u_int64_t pn,struct mbuf * m,int hdrlen)593 ccmp_decrypt(struct ieee80211_key *key, u_int64_t pn, struct mbuf *m, int hdrlen)
594 {
595 	struct ccmp_ctx *ctx = key->wk_private;
596 	struct ieee80211vap *vap = ctx->cc_vap;
597 	struct ieee80211_frame *wh;
598 	uint8_t aad[2 * AES_BLOCK_LEN];
599 	uint8_t b0[AES_BLOCK_LEN], b[AES_BLOCK_LEN], a[AES_BLOCK_LEN];
600 	uint8_t mic[AES_BLOCK_LEN];
601 	size_t data_len;
602 	int i;
603 	uint8_t *pos;
604 	u_int space;
605 
606 	ctx->cc_vap->iv_stats.is_crypto_ccmp++;
607 
608 	wh = mtod(m, struct ieee80211_frame *);
609 	data_len = m->m_pkthdr.len - (hdrlen + ccmp.ic_header + ccmp.ic_trailer);
610 	ccmp_init_blocks(&ctx->cc_aes, wh, pn, data_len, b0, aad, a, b);
611 	m_copydata(m, m->m_pkthdr.len - ccmp.ic_trailer, ccmp.ic_trailer, mic);
612 	xor_block(mic, b, ccmp.ic_trailer);
613 
614 	i = 1;
615 	pos = mtod(m, uint8_t *) + hdrlen + ccmp.ic_header;
616 	space = m->m_len - (hdrlen + ccmp.ic_header);
617 	for (;;) {
618 		if (space > data_len)
619 			space = data_len;
620 		while (space >= AES_BLOCK_LEN) {
621 			CCMP_DECRYPT(i, b, b0, pos, a, AES_BLOCK_LEN);
622 			pos += AES_BLOCK_LEN, space -= AES_BLOCK_LEN;
623 			data_len -= AES_BLOCK_LEN;
624 			i++;
625 		}
626 		if (data_len <= 0)		/* no more data */
627 			break;
628 		m = m->m_next;
629 		if (m == NULL) {		/* last buffer */
630 			if (space != 0)		/* short last block */
631 				CCMP_DECRYPT(i, b, b0, pos, a, space);
632 			break;
633 		}
634 		if (space != 0) {
635 			uint8_t *pos_next;
636 			u_int space_next;
637 			u_int len;
638 
639 			/*
640 			 * Block straddles buffers, split references.  We
641 			 * do not handle splits that require >2 buffers
642 			 * since rx'd frames are never badly fragmented
643 			 * because drivers typically recv in clusters.
644 			 */
645 			pos_next = mtod(m, uint8_t *);
646 			len = min(data_len, AES_BLOCK_LEN);
647 			space_next = len > space ? len - space : 0;
648 			KASSERT(m->m_len >= space_next,
649 				("not enough data in following buffer, "
650 				"m_len %u need %u\n", m->m_len, space_next));
651 
652 			xor_block(b+space, pos_next, space_next);
653 			CCMP_DECRYPT(i, b, b0, pos, a, space);
654 			xor_block(pos_next, b+space, space_next);
655 			data_len -= len;
656 			i++;
657 
658 			pos = pos_next + space_next;
659 			space = m->m_len - space_next;
660 		} else {
661 			/*
662 			 * Setup for next buffer.
663 			 */
664 			pos = mtod(m, uint8_t *);
665 			space = m->m_len;
666 		}
667 	}
668 	if (memcmp(mic, a, ccmp.ic_trailer) != 0) {
669 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
670 		    "%s", "AES-CCM decrypt failed; MIC mismatch");
671 		vap->iv_stats.is_rx_ccmpmic++;
672 		return 0;
673 	}
674 	return 1;
675 }
676 #undef CCMP_DECRYPT
677 
678 /*
679  * Module glue.
680  */
681 IEEE80211_CRYPTO_MODULE(ccmp, 1);
682