1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2001 Eduardo Horvath.
5 * Copyright (c) 2001-2003 Thomas Moestl
6 * Copyright (c) 2007-2009 Marius Strobl <marius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
31 * from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius
32 */
33
34 #include <sys/cdefs.h>
35 /*
36 * driver for Sun Cassini/Cassini+ and National Semiconductor DP83065
37 * Saturn Gigabit Ethernet controllers
38 */
39
40 #if 0
41 #define CAS_DEBUG
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/callout.h>
48 #include <sys/endian.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/module.h>
54 #include <sys/mutex.h>
55 #include <sys/refcount.h>
56 #include <sys/resource.h>
57 #include <sys/rman.h>
58 #include <sys/socket.h>
59 #include <sys/sockio.h>
60 #include <sys/taskqueue.h>
61
62 #include <net/bpf.h>
63 #include <net/ethernet.h>
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/if_arp.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_types.h>
70 #include <net/if_vlan_var.h>
71
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/tcp.h>
76 #include <netinet/udp.h>
77
78 #include <machine/bus.h>
79 #if defined(__powerpc__)
80 #include <dev/ofw/ofw_bus.h>
81 #include <dev/ofw/openfirm.h>
82 #include <machine/ofw_machdep.h>
83 #endif
84 #include <machine/resource.h>
85
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88
89 #include <dev/cas/if_casreg.h>
90 #include <dev/cas/if_casvar.h>
91
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94
95 #include "miibus_if.h"
96
97 #define RINGASSERT(n , min, max) \
98 CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max))
99
100 RINGASSERT(CAS_NRXCOMP, 128, 32768);
101 RINGASSERT(CAS_NRXDESC, 32, 8192);
102 RINGASSERT(CAS_NRXDESC2, 32, 8192);
103 RINGASSERT(CAS_NTXDESC, 32, 8192);
104
105 #undef RINGASSERT
106
107 #define CCDASSERT(m, a) \
108 CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0)
109
110 CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN);
111 CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN);
112 CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN);
113
114 #undef CCDASSERT
115
116 #define CAS_TRIES 10000
117
118 /*
119 * According to documentation, the hardware has support for basic TCP
120 * checksum offloading only, in practice this can be also used for UDP
121 * however (i.e. the problem of previous Sun NICs that a checksum of 0x0
122 * is not converted to 0xffff no longer exists).
123 */
124 #define CAS_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
125
126 static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx);
127 static int cas_attach(struct cas_softc *sc);
128 static int cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr,
129 uint32_t set);
130 static void cas_cddma_callback(void *xsc, bus_dma_segment_t *segs,
131 int nsegs, int error);
132 static void cas_detach(struct cas_softc *sc);
133 static int cas_disable_rx(struct cas_softc *sc);
134 static int cas_disable_tx(struct cas_softc *sc);
135 static void cas_eint(struct cas_softc *sc, u_int status);
136 static void cas_free(struct mbuf *m);
137 static void cas_init(void *xsc);
138 static void cas_init_locked(struct cas_softc *sc);
139 static void cas_init_regs(struct cas_softc *sc);
140 static int cas_intr(void *v);
141 static void cas_intr_task(void *arg, int pending __unused);
142 static int cas_ioctl(if_t ifp, u_long cmd, caddr_t data);
143 static int cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head);
144 static int cas_mediachange(if_t ifp);
145 static void cas_mediastatus(if_t ifp, struct ifmediareq *ifmr);
146 static void cas_meminit(struct cas_softc *sc);
147 static void cas_mifinit(struct cas_softc *sc);
148 static int cas_mii_readreg(device_t dev, int phy, int reg);
149 static void cas_mii_statchg(device_t dev);
150 static int cas_mii_writereg(device_t dev, int phy, int reg, int val);
151 static void cas_reset(struct cas_softc *sc);
152 static int cas_reset_rx(struct cas_softc *sc);
153 static int cas_reset_tx(struct cas_softc *sc);
154 static void cas_resume(struct cas_softc *sc);
155 static u_int cas_descsize(u_int sz);
156 static void cas_rint(struct cas_softc *sc);
157 static void cas_rint_timeout(void *arg);
158 static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum);
159 static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp);
160 static u_int cas_rxcompsize(u_int sz);
161 static void cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs,
162 int nsegs, int error);
163 static void cas_setladrf(struct cas_softc *sc);
164 static void cas_start(if_t ifp);
165 static void cas_stop(if_t ifp);
166 static void cas_suspend(struct cas_softc *sc);
167 static void cas_tick(void *arg);
168 static void cas_tint(struct cas_softc *sc);
169 static void cas_tx_task(void *arg, int pending __unused);
170 static inline void cas_txkick(struct cas_softc *sc);
171 static void cas_watchdog(struct cas_softc *sc);
172
173 MODULE_DEPEND(cas, ether, 1, 1, 1);
174 MODULE_DEPEND(cas, miibus, 1, 1, 1);
175
176 #ifdef CAS_DEBUG
177 #include <sys/ktr.h>
178 #define KTR_CAS KTR_SPARE2
179 #endif
180
181 static int
cas_attach(struct cas_softc * sc)182 cas_attach(struct cas_softc *sc)
183 {
184 struct cas_txsoft *txs;
185 if_t ifp;
186 int error, i;
187 uint32_t v;
188
189 /* Set up ifnet structure. */
190 ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
191 if_setsoftc(ifp, sc);
192 if_initname(ifp, device_get_name(sc->sc_dev),
193 device_get_unit(sc->sc_dev));
194 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
195 if_setstartfn(ifp, cas_start);
196 if_setioctlfn(ifp, cas_ioctl);
197 if_setinitfn(ifp, cas_init);
198 if_setsendqlen(ifp, CAS_TXQUEUELEN);
199 if_setsendqready(ifp);
200
201 callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
202 callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0);
203 /* Create local taskq. */
204 NET_TASK_INIT(&sc->sc_intr_task, 0, cas_intr_task, sc);
205 TASK_INIT(&sc->sc_tx_task, 1, cas_tx_task, ifp);
206 sc->sc_tq = taskqueue_create_fast("cas_taskq", M_WAITOK,
207 taskqueue_thread_enqueue, &sc->sc_tq);
208 error = taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
209 device_get_nameunit(sc->sc_dev));
210 if (error != 0) {
211 device_printf(sc->sc_dev, "could not start threads\n");
212 goto fail_taskq;
213 }
214
215 /* Make sure the chip is stopped. */
216 cas_reset(sc);
217
218 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
219 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
220 BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL,
221 &sc->sc_pdmatag);
222 if (error != 0)
223 goto fail_taskq;
224
225 error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
226 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
227 CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag);
228 if (error != 0)
229 goto fail_ptag;
230
231 error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
232 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
233 MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES,
234 BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
235 if (error != 0)
236 goto fail_rtag;
237
238 error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0,
239 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
240 sizeof(struct cas_control_data), 1,
241 sizeof(struct cas_control_data), 0,
242 NULL, NULL, &sc->sc_cdmatag);
243 if (error != 0)
244 goto fail_ttag;
245
246 /*
247 * Allocate the control data structures, create and load the
248 * DMA map for it.
249 */
250 if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
251 (void **)&sc->sc_control_data,
252 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
253 &sc->sc_cddmamap)) != 0) {
254 device_printf(sc->sc_dev,
255 "unable to allocate control data, error = %d\n", error);
256 goto fail_ctag;
257 }
258
259 sc->sc_cddma = 0;
260 if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
261 sc->sc_control_data, sizeof(struct cas_control_data),
262 cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
263 device_printf(sc->sc_dev,
264 "unable to load control data DMA map, error = %d\n",
265 error);
266 goto fail_cmem;
267 }
268
269 /*
270 * Initialize the transmit job descriptors.
271 */
272 STAILQ_INIT(&sc->sc_txfreeq);
273 STAILQ_INIT(&sc->sc_txdirtyq);
274
275 /*
276 * Create the transmit buffer DMA maps.
277 */
278 error = ENOMEM;
279 for (i = 0; i < CAS_TXQUEUELEN; i++) {
280 txs = &sc->sc_txsoft[i];
281 txs->txs_mbuf = NULL;
282 txs->txs_ndescs = 0;
283 if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
284 &txs->txs_dmamap)) != 0) {
285 device_printf(sc->sc_dev,
286 "unable to create TX DMA map %d, error = %d\n",
287 i, error);
288 goto fail_txd;
289 }
290 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
291 }
292
293 /*
294 * Allocate the receive buffers, create and load the DMA maps
295 * for them.
296 */
297 for (i = 0; i < CAS_NRXDESC; i++) {
298 if ((error = bus_dmamem_alloc(sc->sc_rdmatag,
299 &sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK,
300 &sc->sc_rxdsoft[i].rxds_dmamap)) != 0) {
301 device_printf(sc->sc_dev,
302 "unable to allocate RX buffer %d, error = %d\n",
303 i, error);
304 goto fail_rxmem;
305 }
306
307 sc->sc_rxdptr = i;
308 sc->sc_rxdsoft[i].rxds_paddr = 0;
309 if ((error = bus_dmamap_load(sc->sc_rdmatag,
310 sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf,
311 CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 ||
312 sc->sc_rxdsoft[i].rxds_paddr == 0) {
313 device_printf(sc->sc_dev,
314 "unable to load RX DMA map %d, error = %d\n",
315 i, error);
316 goto fail_rxmap;
317 }
318 }
319
320 if ((sc->sc_flags & CAS_SERDES) == 0) {
321 CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII);
322 CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4,
323 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
324 cas_mifinit(sc);
325 /*
326 * Look for an external PHY.
327 */
328 error = ENXIO;
329 v = CAS_READ_4(sc, CAS_MIF_CONF);
330 if ((v & CAS_MIF_CONF_MDI1) != 0) {
331 v |= CAS_MIF_CONF_PHY_SELECT;
332 CAS_WRITE_4(sc, CAS_MIF_CONF, v);
333 CAS_BARRIER(sc, CAS_MIF_CONF, 4,
334 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
335 /* Enable/unfreeze the GMII pins of Saturn. */
336 if (sc->sc_variant == CAS_SATURN) {
337 CAS_WRITE_4(sc, CAS_SATURN_PCFG,
338 CAS_READ_4(sc, CAS_SATURN_PCFG) &
339 ~CAS_SATURN_PCFG_FSI);
340 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
341 BUS_SPACE_BARRIER_READ |
342 BUS_SPACE_BARRIER_WRITE);
343 DELAY(10000);
344 }
345 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
346 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
347 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
348 }
349 /*
350 * Fall back on an internal PHY if no external PHY was found.
351 */
352 if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) {
353 v &= ~CAS_MIF_CONF_PHY_SELECT;
354 CAS_WRITE_4(sc, CAS_MIF_CONF, v);
355 CAS_BARRIER(sc, CAS_MIF_CONF, 4,
356 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
357 /* Freeze the GMII pins of Saturn for saving power. */
358 if (sc->sc_variant == CAS_SATURN) {
359 CAS_WRITE_4(sc, CAS_SATURN_PCFG,
360 CAS_READ_4(sc, CAS_SATURN_PCFG) |
361 CAS_SATURN_PCFG_FSI);
362 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
363 BUS_SPACE_BARRIER_READ |
364 BUS_SPACE_BARRIER_WRITE);
365 DELAY(10000);
366 }
367 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
368 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
369 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
370 }
371 } else {
372 /*
373 * Use the external PCS SERDES.
374 */
375 CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES);
376 CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, BUS_SPACE_BARRIER_WRITE);
377 /* Enable/unfreeze the SERDES pins of Saturn. */
378 if (sc->sc_variant == CAS_SATURN) {
379 CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0);
380 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
381 BUS_SPACE_BARRIER_WRITE);
382 }
383 CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD);
384 CAS_BARRIER(sc, CAS_PCS_SERDES_CTRL, 4,
385 BUS_SPACE_BARRIER_WRITE);
386 CAS_WRITE_4(sc, CAS_PCS_CONF, CAS_PCS_CONF_EN);
387 CAS_BARRIER(sc, CAS_PCS_CONF, 4,
388 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
389 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
390 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
391 CAS_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_DOPAUSE);
392 }
393 if (error != 0) {
394 device_printf(sc->sc_dev, "attaching PHYs failed\n");
395 goto fail_rxmap;
396 }
397 sc->sc_mii = device_get_softc(sc->sc_miibus);
398
399 /*
400 * From this point forward, the attachment cannot fail. A failure
401 * before this point releases all resources that may have been
402 * allocated.
403 */
404
405 /* Announce FIFO sizes. */
406 v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE);
407 device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
408 CAS_RX_FIFO_SIZE / 1024, v / 16);
409
410 /* Attach the interface. */
411 ether_ifattach(ifp, sc->sc_enaddr);
412
413 /*
414 * Tell the upper layer(s) we support long frames/checksum offloads.
415 */
416 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
417 if_setcapabilities(ifp, IFCAP_VLAN_MTU);
418 if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
419 if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
420 if_sethwassist(ifp, CAS_CSUM_FEATURES);
421 }
422 if_setcapenable(ifp, if_getcapabilities(ifp));
423
424 return (0);
425
426 /*
427 * Free any resources we've allocated during the failed attach
428 * attempt. Do this in reverse order and fall through.
429 */
430 fail_rxmap:
431 for (i = 0; i < CAS_NRXDESC; i++)
432 if (sc->sc_rxdsoft[i].rxds_paddr != 0)
433 bus_dmamap_unload(sc->sc_rdmatag,
434 sc->sc_rxdsoft[i].rxds_dmamap);
435 fail_rxmem:
436 for (i = 0; i < CAS_NRXDESC; i++)
437 if (sc->sc_rxdsoft[i].rxds_buf != NULL)
438 bus_dmamem_free(sc->sc_rdmatag,
439 sc->sc_rxdsoft[i].rxds_buf,
440 sc->sc_rxdsoft[i].rxds_dmamap);
441 fail_txd:
442 for (i = 0; i < CAS_TXQUEUELEN; i++)
443 if (sc->sc_txsoft[i].txs_dmamap != NULL)
444 bus_dmamap_destroy(sc->sc_tdmatag,
445 sc->sc_txsoft[i].txs_dmamap);
446 bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
447 fail_cmem:
448 bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
449 sc->sc_cddmamap);
450 fail_ctag:
451 bus_dma_tag_destroy(sc->sc_cdmatag);
452 fail_ttag:
453 bus_dma_tag_destroy(sc->sc_tdmatag);
454 fail_rtag:
455 bus_dma_tag_destroy(sc->sc_rdmatag);
456 fail_ptag:
457 bus_dma_tag_destroy(sc->sc_pdmatag);
458 fail_taskq:
459 taskqueue_free(sc->sc_tq);
460 if_free(ifp);
461 return (error);
462 }
463
464 static void
cas_detach(struct cas_softc * sc)465 cas_detach(struct cas_softc *sc)
466 {
467 if_t ifp = sc->sc_ifp;
468 int i;
469
470 ether_ifdetach(ifp);
471 CAS_LOCK(sc);
472 cas_stop(ifp);
473 CAS_UNLOCK(sc);
474 callout_drain(&sc->sc_tick_ch);
475 callout_drain(&sc->sc_rx_ch);
476 taskqueue_drain(sc->sc_tq, &sc->sc_intr_task);
477 taskqueue_drain(sc->sc_tq, &sc->sc_tx_task);
478 if_free(ifp);
479 taskqueue_free(sc->sc_tq);
480 device_delete_child(sc->sc_dev, sc->sc_miibus);
481
482 for (i = 0; i < CAS_NRXDESC; i++)
483 if (sc->sc_rxdsoft[i].rxds_dmamap != NULL)
484 bus_dmamap_sync(sc->sc_rdmatag,
485 sc->sc_rxdsoft[i].rxds_dmamap,
486 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
487 for (i = 0; i < CAS_NRXDESC; i++)
488 if (sc->sc_rxdsoft[i].rxds_paddr != 0)
489 bus_dmamap_unload(sc->sc_rdmatag,
490 sc->sc_rxdsoft[i].rxds_dmamap);
491 for (i = 0; i < CAS_NRXDESC; i++)
492 if (sc->sc_rxdsoft[i].rxds_buf != NULL)
493 bus_dmamem_free(sc->sc_rdmatag,
494 sc->sc_rxdsoft[i].rxds_buf,
495 sc->sc_rxdsoft[i].rxds_dmamap);
496 for (i = 0; i < CAS_TXQUEUELEN; i++)
497 if (sc->sc_txsoft[i].txs_dmamap != NULL)
498 bus_dmamap_destroy(sc->sc_tdmatag,
499 sc->sc_txsoft[i].txs_dmamap);
500 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
501 bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
502 bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
503 sc->sc_cddmamap);
504 bus_dma_tag_destroy(sc->sc_cdmatag);
505 bus_dma_tag_destroy(sc->sc_tdmatag);
506 bus_dma_tag_destroy(sc->sc_rdmatag);
507 bus_dma_tag_destroy(sc->sc_pdmatag);
508 }
509
510 static void
cas_suspend(struct cas_softc * sc)511 cas_suspend(struct cas_softc *sc)
512 {
513 if_t ifp = sc->sc_ifp;
514
515 CAS_LOCK(sc);
516 cas_stop(ifp);
517 CAS_UNLOCK(sc);
518 }
519
520 static void
cas_resume(struct cas_softc * sc)521 cas_resume(struct cas_softc *sc)
522 {
523 if_t ifp = sc->sc_ifp;
524
525 CAS_LOCK(sc);
526 /*
527 * On resume all registers have to be initialized again like
528 * after power-on.
529 */
530 sc->sc_flags &= ~CAS_INITED;
531 if (if_getflags(ifp) & IFF_UP)
532 cas_init_locked(sc);
533 CAS_UNLOCK(sc);
534 }
535
536 static inline void
cas_rxcksum(struct mbuf * m,uint16_t cksum)537 cas_rxcksum(struct mbuf *m, uint16_t cksum)
538 {
539 struct ether_header *eh;
540 struct ip *ip;
541 struct udphdr *uh;
542 uint16_t *opts;
543 int32_t hlen, len, pktlen;
544 uint32_t temp32;
545
546 pktlen = m->m_pkthdr.len;
547 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
548 return;
549 eh = mtod(m, struct ether_header *);
550 if (eh->ether_type != htons(ETHERTYPE_IP))
551 return;
552 ip = (struct ip *)(eh + 1);
553 if (ip->ip_v != IPVERSION)
554 return;
555
556 hlen = ip->ip_hl << 2;
557 pktlen -= sizeof(struct ether_header);
558 if (hlen < sizeof(struct ip))
559 return;
560 if (ntohs(ip->ip_len) < hlen)
561 return;
562 if (ntohs(ip->ip_len) != pktlen)
563 return;
564 if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
565 return; /* Cannot handle fragmented packet. */
566
567 switch (ip->ip_p) {
568 case IPPROTO_TCP:
569 if (pktlen < (hlen + sizeof(struct tcphdr)))
570 return;
571 break;
572 case IPPROTO_UDP:
573 if (pktlen < (hlen + sizeof(struct udphdr)))
574 return;
575 uh = (struct udphdr *)((uint8_t *)ip + hlen);
576 if (uh->uh_sum == 0)
577 return; /* no checksum */
578 break;
579 default:
580 return;
581 }
582
583 cksum = ~cksum;
584 /* checksum fixup for IP options */
585 len = hlen - sizeof(struct ip);
586 if (len > 0) {
587 opts = (uint16_t *)(ip + 1);
588 for (; len > 0; len -= sizeof(uint16_t), opts++) {
589 temp32 = cksum - *opts;
590 temp32 = (temp32 >> 16) + (temp32 & 65535);
591 cksum = temp32 & 65535;
592 }
593 }
594 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
595 m->m_pkthdr.csum_data = cksum;
596 }
597
598 static void
cas_cddma_callback(void * xsc,bus_dma_segment_t * segs,int nsegs,int error)599 cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
600 {
601 struct cas_softc *sc = xsc;
602
603 if (error != 0)
604 return;
605 if (nsegs != 1)
606 panic("%s: bad control buffer segment count", __func__);
607 sc->sc_cddma = segs[0].ds_addr;
608 }
609
610 static void
cas_rxdma_callback(void * xsc,bus_dma_segment_t * segs,int nsegs,int error)611 cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
612 {
613 struct cas_softc *sc = xsc;
614
615 if (error != 0)
616 return;
617 if (nsegs != 1)
618 panic("%s: bad RX buffer segment count", __func__);
619 sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr;
620 }
621
622 static void
cas_tick(void * arg)623 cas_tick(void *arg)
624 {
625 struct cas_softc *sc = arg;
626 if_t ifp = sc->sc_ifp;
627 uint32_t v;
628
629 CAS_LOCK_ASSERT(sc, MA_OWNED);
630
631 /*
632 * Unload collision and error counters.
633 */
634 if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
635 CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) +
636 CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT));
637 v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) +
638 CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT);
639 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, v);
640 if_inc_counter(ifp, IFCOUNTER_OERRORS, v);
641 if_inc_counter(ifp, IFCOUNTER_IERRORS,
642 CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) +
643 CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) +
644 CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) +
645 CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL));
646
647 /*
648 * Then clear the hardware counters.
649 */
650 CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
651 CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
652 CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
653 CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
654 CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
655 CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
656 CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
657 CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
658
659 mii_tick(sc->sc_mii);
660
661 if (sc->sc_txfree != CAS_MAXTXFREE)
662 cas_tint(sc);
663
664 cas_watchdog(sc);
665
666 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
667 }
668
669 static int
cas_bitwait(struct cas_softc * sc,bus_addr_t r,uint32_t clr,uint32_t set)670 cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set)
671 {
672 int i;
673 uint32_t reg;
674
675 for (i = CAS_TRIES; i--; DELAY(100)) {
676 reg = CAS_READ_4(sc, r);
677 if ((reg & clr) == 0 && (reg & set) == set)
678 return (1);
679 }
680 return (0);
681 }
682
683 static void
cas_reset(struct cas_softc * sc)684 cas_reset(struct cas_softc *sc)
685 {
686
687 #ifdef CAS_DEBUG
688 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
689 #endif
690 /* Disable all interrupts in order to avoid spurious ones. */
691 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
692
693 cas_reset_rx(sc);
694 cas_reset_tx(sc);
695
696 /*
697 * Do a full reset modulo the result of the last auto-negotiation
698 * when using the SERDES.
699 */
700 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX |
701 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
702 CAS_BARRIER(sc, CAS_RESET, 4,
703 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
704 DELAY(3000);
705 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
706 device_printf(sc->sc_dev, "cannot reset device\n");
707 }
708
709 static void
cas_stop(if_t ifp)710 cas_stop(if_t ifp)
711 {
712 struct cas_softc *sc = if_getsoftc(ifp);
713 struct cas_txsoft *txs;
714
715 #ifdef CAS_DEBUG
716 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
717 #endif
718
719 callout_stop(&sc->sc_tick_ch);
720 callout_stop(&sc->sc_rx_ch);
721
722 /* Disable all interrupts in order to avoid spurious ones. */
723 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
724
725 cas_reset_tx(sc);
726 cas_reset_rx(sc);
727
728 /*
729 * Release any queued transmit buffers.
730 */
731 while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
732 STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
733 if (txs->txs_ndescs != 0) {
734 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
735 BUS_DMASYNC_POSTWRITE);
736 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
737 if (txs->txs_mbuf != NULL) {
738 m_freem(txs->txs_mbuf);
739 txs->txs_mbuf = NULL;
740 }
741 }
742 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
743 }
744
745 /*
746 * Mark the interface down and cancel the watchdog timer.
747 */
748 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
749 sc->sc_flags &= ~CAS_LINK;
750 sc->sc_wdog_timer = 0;
751 }
752
753 static int
cas_reset_rx(struct cas_softc * sc)754 cas_reset_rx(struct cas_softc *sc)
755 {
756
757 /*
758 * Resetting while DMA is in progress can cause a bus hang, so we
759 * disable DMA first.
760 */
761 (void)cas_disable_rx(sc);
762 CAS_WRITE_4(sc, CAS_RX_CONF, 0);
763 CAS_BARRIER(sc, CAS_RX_CONF, 4,
764 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
765 if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0))
766 device_printf(sc->sc_dev, "cannot disable RX DMA\n");
767
768 /* Finally, reset the ERX. */
769 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX |
770 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
771 CAS_BARRIER(sc, CAS_RESET, 4,
772 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
773 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX, 0)) {
774 device_printf(sc->sc_dev, "cannot reset receiver\n");
775 return (1);
776 }
777 return (0);
778 }
779
780 static int
cas_reset_tx(struct cas_softc * sc)781 cas_reset_tx(struct cas_softc *sc)
782 {
783
784 /*
785 * Resetting while DMA is in progress can cause a bus hang, so we
786 * disable DMA first.
787 */
788 (void)cas_disable_tx(sc);
789 CAS_WRITE_4(sc, CAS_TX_CONF, 0);
790 CAS_BARRIER(sc, CAS_TX_CONF, 4,
791 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
792 if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0))
793 device_printf(sc->sc_dev, "cannot disable TX DMA\n");
794
795 /* Finally, reset the ETX. */
796 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX |
797 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
798 CAS_BARRIER(sc, CAS_RESET, 4,
799 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
800 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_TX, 0)) {
801 device_printf(sc->sc_dev, "cannot reset transmitter\n");
802 return (1);
803 }
804 return (0);
805 }
806
807 static int
cas_disable_rx(struct cas_softc * sc)808 cas_disable_rx(struct cas_softc *sc)
809 {
810
811 CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
812 CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN);
813 CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
814 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
815 if (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0))
816 return (1);
817 if (bootverbose)
818 device_printf(sc->sc_dev, "cannot disable RX MAC\n");
819 return (0);
820 }
821
822 static int
cas_disable_tx(struct cas_softc * sc)823 cas_disable_tx(struct cas_softc *sc)
824 {
825
826 CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
827 CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN);
828 CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
829 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
830 if (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0))
831 return (1);
832 if (bootverbose)
833 device_printf(sc->sc_dev, "cannot disable TX MAC\n");
834 return (0);
835 }
836
837 static inline void
cas_rxcompinit(struct cas_rx_comp * rxcomp)838 cas_rxcompinit(struct cas_rx_comp *rxcomp)
839 {
840
841 rxcomp->crc_word1 = 0;
842 rxcomp->crc_word2 = 0;
843 rxcomp->crc_word3 =
844 htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO));
845 rxcomp->crc_word4 = htole64(CAS_RC4_ZERO);
846 }
847
848 static void
cas_meminit(struct cas_softc * sc)849 cas_meminit(struct cas_softc *sc)
850 {
851 int i;
852
853 CAS_LOCK_ASSERT(sc, MA_OWNED);
854
855 /*
856 * Initialize the transmit descriptor ring.
857 */
858 for (i = 0; i < CAS_NTXDESC; i++) {
859 sc->sc_txdescs[i].cd_flags = 0;
860 sc->sc_txdescs[i].cd_buf_ptr = 0;
861 }
862 sc->sc_txfree = CAS_MAXTXFREE;
863 sc->sc_txnext = 0;
864 sc->sc_txwin = 0;
865
866 /*
867 * Initialize the receive completion ring.
868 */
869 for (i = 0; i < CAS_NRXCOMP; i++)
870 cas_rxcompinit(&sc->sc_rxcomps[i]);
871 sc->sc_rxcptr = 0;
872
873 /*
874 * Initialize the first receive descriptor ring. We leave
875 * the second one zeroed as we don't actually use it.
876 */
877 for (i = 0; i < CAS_NRXDESC; i++)
878 CAS_INIT_RXDESC(sc, i, i);
879 sc->sc_rxdptr = 0;
880
881 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
882 }
883
884 static u_int
cas_descsize(u_int sz)885 cas_descsize(u_int sz)
886 {
887
888 switch (sz) {
889 case 32:
890 return (CAS_DESC_32);
891 case 64:
892 return (CAS_DESC_64);
893 case 128:
894 return (CAS_DESC_128);
895 case 256:
896 return (CAS_DESC_256);
897 case 512:
898 return (CAS_DESC_512);
899 case 1024:
900 return (CAS_DESC_1K);
901 case 2048:
902 return (CAS_DESC_2K);
903 case 4096:
904 return (CAS_DESC_4K);
905 case 8192:
906 return (CAS_DESC_8K);
907 default:
908 printf("%s: invalid descriptor ring size %d\n", __func__, sz);
909 return (CAS_DESC_32);
910 }
911 }
912
913 static u_int
cas_rxcompsize(u_int sz)914 cas_rxcompsize(u_int sz)
915 {
916
917 switch (sz) {
918 case 128:
919 return (CAS_RX_CONF_COMP_128);
920 case 256:
921 return (CAS_RX_CONF_COMP_256);
922 case 512:
923 return (CAS_RX_CONF_COMP_512);
924 case 1024:
925 return (CAS_RX_CONF_COMP_1K);
926 case 2048:
927 return (CAS_RX_CONF_COMP_2K);
928 case 4096:
929 return (CAS_RX_CONF_COMP_4K);
930 case 8192:
931 return (CAS_RX_CONF_COMP_8K);
932 case 16384:
933 return (CAS_RX_CONF_COMP_16K);
934 case 32768:
935 return (CAS_RX_CONF_COMP_32K);
936 default:
937 printf("%s: invalid dcompletion ring size %d\n", __func__, sz);
938 return (CAS_RX_CONF_COMP_128);
939 }
940 }
941
942 static void
cas_init(void * xsc)943 cas_init(void *xsc)
944 {
945 struct cas_softc *sc = xsc;
946
947 CAS_LOCK(sc);
948 cas_init_locked(sc);
949 CAS_UNLOCK(sc);
950 }
951
952 /*
953 * Initialization of interface; set up initialization block
954 * and transmit/receive descriptor rings.
955 */
956 static void
cas_init_locked(struct cas_softc * sc)957 cas_init_locked(struct cas_softc *sc)
958 {
959 if_t ifp = sc->sc_ifp;
960 uint32_t v;
961
962 CAS_LOCK_ASSERT(sc, MA_OWNED);
963
964 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
965 return;
966
967 #ifdef CAS_DEBUG
968 CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev),
969 __func__);
970 #endif
971 /*
972 * Initialization sequence. The numbered steps below correspond
973 * to the sequence outlined in section 6.3.5.1 in the Ethernet
974 * Channel Engine manual (part of the PCIO manual).
975 * See also the STP2002-STQ document from Sun Microsystems.
976 */
977
978 /* step 1 & 2. Reset the Ethernet Channel. */
979 cas_stop(ifp);
980 cas_reset(sc);
981 #ifdef CAS_DEBUG
982 CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev),
983 __func__);
984 #endif
985
986 if ((sc->sc_flags & CAS_SERDES) == 0)
987 /* Re-initialize the MIF. */
988 cas_mifinit(sc);
989
990 /* step 3. Setup data structures in host memory. */
991 cas_meminit(sc);
992
993 /* step 4. TX MAC registers & counters */
994 cas_init_regs(sc);
995
996 /* step 5. RX MAC registers & counters */
997
998 /* step 6 & 7. Program Ring Base Addresses. */
999 CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI,
1000 (((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32));
1001 CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO,
1002 CAS_CDTXDADDR(sc, 0) & 0xffffffff);
1003
1004 CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI,
1005 (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
1006 CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO,
1007 CAS_CDRXCADDR(sc, 0) & 0xffffffff);
1008
1009 CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI,
1010 (((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32));
1011 CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO,
1012 CAS_CDRXDADDR(sc, 0) & 0xffffffff);
1013
1014 if ((sc->sc_flags & CAS_REG_PLUS) != 0) {
1015 CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI,
1016 (((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32));
1017 CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO,
1018 CAS_CDRXD2ADDR(sc, 0) & 0xffffffff);
1019 }
1020
1021 #ifdef CAS_DEBUG
1022 CTR5(KTR_CAS,
1023 "loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx",
1024 CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0),
1025 CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma);
1026 #endif
1027
1028 /* step 8. Global Configuration & Interrupt Masks */
1029
1030 /* Disable weighted round robin. */
1031 CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS);
1032
1033 /*
1034 * Enable infinite bursts for revisions without PCI issues if
1035 * applicable. Doing so greatly improves the TX performance.
1036 */
1037 CAS_WRITE_4(sc, CAS_INF_BURST,
1038 (sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN :
1039 0);
1040
1041 /* Set up interrupts. */
1042 CAS_WRITE_4(sc, CAS_INTMASK,
1043 ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
1044 CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
1045 CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
1046 CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
1047 CAS_INTR_PCI_ERROR_INT
1048 #ifdef CAS_DEBUG
1049 | CAS_INTR_PCS_INT | CAS_INTR_MIF
1050 #endif
1051 ));
1052 /* Don't clear top level interrupts when CAS_STATUS_ALIAS is read. */
1053 CAS_WRITE_4(sc, CAS_CLEAR_ALIAS, 0);
1054 CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW);
1055 CAS_WRITE_4(sc, CAS_MAC_TX_MASK,
1056 ~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR));
1057 #ifdef CAS_DEBUG
1058 CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1059 ~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1060 CAS_MAC_CTRL_NON_PAUSE));
1061 #else
1062 CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1063 CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1064 CAS_MAC_CTRL_NON_PAUSE);
1065 #endif
1066
1067 /* Enable PCI error interrupts. */
1068 CAS_WRITE_4(sc, CAS_ERROR_MASK,
1069 ~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO |
1070 CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO));
1071
1072 /* Enable PCI error interrupts in BIM configuration. */
1073 CAS_WRITE_4(sc, CAS_BIM_CONF,
1074 CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN);
1075
1076 /*
1077 * step 9. ETX Configuration: encode receive descriptor ring size,
1078 * enable DMA and disable pre-interrupt writeback completion.
1079 */
1080 v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT;
1081 CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN |
1082 CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS);
1083
1084 /* step 10. ERX Configuration */
1085
1086 /*
1087 * Encode receive completion and descriptor ring sizes, set the
1088 * swivel offset.
1089 */
1090 v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT;
1091 v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT;
1092 if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1093 v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT;
1094 CAS_WRITE_4(sc, CAS_RX_CONF,
1095 v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT));
1096
1097 /* Set the PAUSE thresholds. We use the maximum OFF threshold. */
1098 CAS_WRITE_4(sc, CAS_RX_PTHRS,
1099 (111 << CAS_RX_PTHRS_XOFF_SHFT) | (15 << CAS_RX_PTHRS_XON_SHFT));
1100
1101 /* RX blanking */
1102 CAS_WRITE_4(sc, CAS_RX_BLANK,
1103 (15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT));
1104
1105 /* Set RX_COMP_AFULL threshold to half of the RX completions. */
1106 CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS,
1107 (CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT);
1108
1109 /* Initialize the RX page size register as appropriate for 8k. */
1110 CAS_WRITE_4(sc, CAS_RX_PSZ,
1111 (CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) |
1112 (4 << CAS_RX_PSZ_MB_CNT_SHFT) |
1113 (CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) |
1114 (CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT));
1115
1116 /* Disable RX random early detection. */
1117 CAS_WRITE_4(sc, CAS_RX_RED, 0);
1118
1119 /* Zero the RX reassembly DMA table. */
1120 for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) {
1121 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_ADDR, v);
1122 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_LO, 0);
1123 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_MD, 0);
1124 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_HI, 0);
1125 }
1126
1127 /* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */
1128 CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0);
1129 CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0);
1130
1131 /* Finally, enable RX DMA. */
1132 CAS_WRITE_4(sc, CAS_RX_CONF,
1133 CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN);
1134
1135 /* step 11. Configure Media. */
1136
1137 /* step 12. RX_MAC Configuration Register */
1138 v = CAS_READ_4(sc, CAS_MAC_RX_CONF);
1139 v &= ~(CAS_MAC_RX_CONF_STRPPAD | CAS_MAC_RX_CONF_EN);
1140 v |= CAS_MAC_RX_CONF_STRPFCS;
1141 sc->sc_mac_rxcfg = v;
1142 /*
1143 * Clear the RX filter and reprogram it. This will also set the
1144 * current RX MAC configuration and enable it.
1145 */
1146 cas_setladrf(sc);
1147
1148 /* step 13. TX_MAC Configuration Register */
1149 v = CAS_READ_4(sc, CAS_MAC_TX_CONF);
1150 v |= CAS_MAC_TX_CONF_EN;
1151 (void)cas_disable_tx(sc);
1152 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v);
1153
1154 /* step 14. Issue Transmit Pending command. */
1155
1156 /* step 15. Give the receiver a swift kick. */
1157 CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4);
1158 CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0);
1159 if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1160 CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4);
1161
1162 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1163 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1164
1165 mii_mediachg(sc->sc_mii);
1166
1167 /* Start the one second timer. */
1168 sc->sc_wdog_timer = 0;
1169 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1170 }
1171
1172 static int
cas_load_txmbuf(struct cas_softc * sc,struct mbuf ** m_head)1173 cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head)
1174 {
1175 bus_dma_segment_t txsegs[CAS_NTXSEGS];
1176 struct cas_txsoft *txs;
1177 struct ip *ip;
1178 struct mbuf *m;
1179 uint64_t cflags;
1180 int error, nexttx, nsegs, offset, seg;
1181
1182 CAS_LOCK_ASSERT(sc, MA_OWNED);
1183
1184 /* Get a work queue entry. */
1185 if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1186 /* Ran out of descriptors. */
1187 return (ENOBUFS);
1188 }
1189
1190 cflags = 0;
1191 if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) {
1192 if (M_WRITABLE(*m_head) == 0) {
1193 m = m_dup(*m_head, M_NOWAIT);
1194 m_freem(*m_head);
1195 *m_head = m;
1196 if (m == NULL)
1197 return (ENOBUFS);
1198 }
1199 offset = sizeof(struct ether_header);
1200 m = m_pullup(*m_head, offset + sizeof(struct ip));
1201 if (m == NULL) {
1202 *m_head = NULL;
1203 return (ENOBUFS);
1204 }
1205 ip = (struct ip *)(mtod(m, caddr_t) + offset);
1206 offset += (ip->ip_hl << 2);
1207 cflags = (offset << CAS_TD_CKSUM_START_SHFT) |
1208 ((offset + m->m_pkthdr.csum_data) <<
1209 CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN;
1210 *m_head = m;
1211 }
1212
1213 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap,
1214 *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1215 if (error == EFBIG) {
1216 m = m_collapse(*m_head, M_NOWAIT, CAS_NTXSEGS);
1217 if (m == NULL) {
1218 m_freem(*m_head);
1219 *m_head = NULL;
1220 return (ENOBUFS);
1221 }
1222 *m_head = m;
1223 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag,
1224 txs->txs_dmamap, *m_head, txsegs, &nsegs,
1225 BUS_DMA_NOWAIT);
1226 if (error != 0) {
1227 m_freem(*m_head);
1228 *m_head = NULL;
1229 return (error);
1230 }
1231 } else if (error != 0)
1232 return (error);
1233 /* If nsegs is wrong then the stack is corrupt. */
1234 KASSERT(nsegs <= CAS_NTXSEGS,
1235 ("%s: too many DMA segments (%d)", __func__, nsegs));
1236 if (nsegs == 0) {
1237 m_freem(*m_head);
1238 *m_head = NULL;
1239 return (EIO);
1240 }
1241
1242 /*
1243 * Ensure we have enough descriptors free to describe
1244 * the packet. Note, we always reserve one descriptor
1245 * at the end of the ring as a termination point, in
1246 * order to prevent wrap-around.
1247 */
1248 if (nsegs > sc->sc_txfree - 1) {
1249 txs->txs_ndescs = 0;
1250 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1251 return (ENOBUFS);
1252 }
1253
1254 txs->txs_ndescs = nsegs;
1255 txs->txs_firstdesc = sc->sc_txnext;
1256 nexttx = txs->txs_firstdesc;
1257 for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) {
1258 #ifdef CAS_DEBUG
1259 CTR6(KTR_CAS,
1260 "%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)",
1261 __func__, seg, nexttx, txsegs[seg].ds_len,
1262 txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr));
1263 #endif
1264 sc->sc_txdescs[nexttx].cd_buf_ptr =
1265 htole64(txsegs[seg].ds_addr);
1266 KASSERT(txsegs[seg].ds_len <
1267 CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT,
1268 ("%s: segment size too large!", __func__));
1269 sc->sc_txdescs[nexttx].cd_flags =
1270 htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT);
1271 txs->txs_lastdesc = nexttx;
1272 }
1273
1274 /* Set EOF on the last descriptor. */
1275 #ifdef CAS_DEBUG
1276 CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d",
1277 __func__, seg, nexttx);
1278 #endif
1279 sc->sc_txdescs[txs->txs_lastdesc].cd_flags |=
1280 htole64(CAS_TD_END_OF_FRAME);
1281
1282 /* Lastly set SOF on the first descriptor. */
1283 #ifdef CAS_DEBUG
1284 CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d",
1285 __func__, seg, nexttx);
1286 #endif
1287 if (sc->sc_txwin += nsegs > CAS_MAXTXFREE * 2 / 3) {
1288 sc->sc_txwin = 0;
1289 sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1290 htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME);
1291 } else
1292 sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1293 htole64(cflags | CAS_TD_START_OF_FRAME);
1294
1295 /* Sync the DMA map. */
1296 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1297 BUS_DMASYNC_PREWRITE);
1298
1299 #ifdef CAS_DEBUG
1300 CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d",
1301 __func__, txs->txs_firstdesc, txs->txs_lastdesc,
1302 txs->txs_ndescs);
1303 #endif
1304 STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1305 STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1306 txs->txs_mbuf = *m_head;
1307
1308 sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc);
1309 sc->sc_txfree -= txs->txs_ndescs;
1310
1311 return (0);
1312 }
1313
1314 static void
cas_init_regs(struct cas_softc * sc)1315 cas_init_regs(struct cas_softc *sc)
1316 {
1317 int i;
1318 const u_char *laddr = if_getlladdr(sc->sc_ifp);
1319
1320 CAS_LOCK_ASSERT(sc, MA_OWNED);
1321
1322 /* These registers are not cleared on reset. */
1323 if ((sc->sc_flags & CAS_INITED) == 0) {
1324 /* magic values */
1325 CAS_WRITE_4(sc, CAS_MAC_IPG0, 0);
1326 CAS_WRITE_4(sc, CAS_MAC_IPG1, 8);
1327 CAS_WRITE_4(sc, CAS_MAC_IPG2, 4);
1328
1329 /* min frame length */
1330 CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN);
1331 /* max frame length and max burst size */
1332 CAS_WRITE_4(sc, CAS_MAC_MAX_BF,
1333 ((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) <<
1334 CAS_MAC_MAX_BF_FRM_SHFT) |
1335 (0x2000 << CAS_MAC_MAX_BF_BST_SHFT));
1336
1337 /* more magic values */
1338 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
1339 CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4);
1340 CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1341 CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8808);
1342
1343 /* random number seed */
1344 CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED,
1345 ((laddr[5] << 8) | laddr[4]) & 0x3ff);
1346
1347 /* secondary MAC addresses: 0:0:0:0:0:0 */
1348 for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41;
1349 i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3)
1350 CAS_WRITE_4(sc, i, 0);
1351
1352 /* MAC control address: 01:80:c2:00:00:01 */
1353 CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001);
1354 CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200);
1355 CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180);
1356
1357 /* MAC filter address: 0:0:0:0:0:0 */
1358 CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0);
1359 CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0);
1360 CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0);
1361 CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0);
1362 CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0);
1363
1364 /* Zero the hash table. */
1365 for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15;
1366 i += CAS_MAC_HASH1 - CAS_MAC_HASH0)
1367 CAS_WRITE_4(sc, i, 0);
1368
1369 sc->sc_flags |= CAS_INITED;
1370 }
1371
1372 /* Counters need to be zeroed. */
1373 CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
1374 CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
1375 CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
1376 CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
1377 CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0);
1378 CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0);
1379 CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0);
1380 CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
1381 CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
1382 CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
1383 CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
1384
1385 /* Set XOFF PAUSE time. */
1386 CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT);
1387
1388 /* Set the station address. */
1389 CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]);
1390 CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]);
1391 CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]);
1392
1393 /* Enable MII outputs. */
1394 CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE);
1395 }
1396
1397 static void
cas_tx_task(void * arg,int pending __unused)1398 cas_tx_task(void *arg, int pending __unused)
1399 {
1400 if_t ifp;
1401
1402 ifp = (if_t)arg;
1403 cas_start(ifp);
1404 }
1405
1406 static inline void
cas_txkick(struct cas_softc * sc)1407 cas_txkick(struct cas_softc *sc)
1408 {
1409
1410 /*
1411 * Update the TX kick register. This register has to point to the
1412 * descriptor after the last valid one and for optimum performance
1413 * should be incremented in multiples of 4 (the DMA engine fetches/
1414 * updates descriptors in batches of 4).
1415 */
1416 #ifdef CAS_DEBUG
1417 CTR3(KTR_CAS, "%s: %s: kicking TX %d",
1418 device_get_name(sc->sc_dev), __func__, sc->sc_txnext);
1419 #endif
1420 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1421 CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext);
1422 }
1423
1424 static void
cas_start(if_t ifp)1425 cas_start(if_t ifp)
1426 {
1427 struct cas_softc *sc = if_getsoftc(ifp);
1428 struct mbuf *m;
1429 int kicked, ntx;
1430
1431 CAS_LOCK(sc);
1432
1433 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1434 IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0) {
1435 CAS_UNLOCK(sc);
1436 return;
1437 }
1438
1439 if (sc->sc_txfree < CAS_MAXTXFREE / 4)
1440 cas_tint(sc);
1441
1442 #ifdef CAS_DEBUG
1443 CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d",
1444 device_get_name(sc->sc_dev), __func__, sc->sc_txfree,
1445 sc->sc_txnext);
1446 #endif
1447 ntx = 0;
1448 kicked = 0;
1449 for (; !if_sendq_empty(ifp) && sc->sc_txfree > 1;) {
1450 m = if_dequeue(ifp);
1451 if (m == NULL)
1452 break;
1453 if (cas_load_txmbuf(sc, &m) != 0) {
1454 if (m == NULL)
1455 break;
1456 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1457 if_sendq_prepend(ifp, m);
1458 break;
1459 }
1460 if ((sc->sc_txnext % 4) == 0) {
1461 cas_txkick(sc);
1462 kicked = 1;
1463 } else
1464 kicked = 0;
1465 ntx++;
1466 BPF_MTAP(ifp, m);
1467 }
1468
1469 if (ntx > 0) {
1470 if (kicked == 0)
1471 cas_txkick(sc);
1472 #ifdef CAS_DEBUG
1473 CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d",
1474 device_get_name(sc->sc_dev), sc->sc_txnext);
1475 #endif
1476
1477 /* Set a watchdog timer in case the chip flakes out. */
1478 sc->sc_wdog_timer = 5;
1479 #ifdef CAS_DEBUG
1480 CTR3(KTR_CAS, "%s: %s: watchdog %d",
1481 device_get_name(sc->sc_dev), __func__,
1482 sc->sc_wdog_timer);
1483 #endif
1484 }
1485
1486 CAS_UNLOCK(sc);
1487 }
1488
1489 static void
cas_tint(struct cas_softc * sc)1490 cas_tint(struct cas_softc *sc)
1491 {
1492 if_t ifp = sc->sc_ifp;
1493 struct cas_txsoft *txs;
1494 int progress;
1495 uint32_t txlast;
1496 #ifdef CAS_DEBUG
1497 int i;
1498
1499 CAS_LOCK_ASSERT(sc, MA_OWNED);
1500
1501 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1502 #endif
1503
1504 /*
1505 * Go through our TX list and free mbufs for those
1506 * frames that have been transmitted.
1507 */
1508 progress = 0;
1509 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1510 while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1511 #ifdef CAS_DEBUG
1512 if ((if_getflags(ifp) & IFF_DEBUG) != 0) {
1513 printf(" txsoft %p transmit chain:\n", txs);
1514 for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) {
1515 printf("descriptor %d: ", i);
1516 printf("cd_flags: 0x%016llx\t",
1517 (long long)le64toh(
1518 sc->sc_txdescs[i].cd_flags));
1519 printf("cd_buf_ptr: 0x%016llx\n",
1520 (long long)le64toh(
1521 sc->sc_txdescs[i].cd_buf_ptr));
1522 if (i == txs->txs_lastdesc)
1523 break;
1524 }
1525 }
1526 #endif
1527
1528 /*
1529 * In theory, we could harvest some descriptors before
1530 * the ring is empty, but that's a bit complicated.
1531 *
1532 * CAS_TX_COMPn points to the last descriptor
1533 * processed + 1.
1534 */
1535 txlast = CAS_READ_4(sc, CAS_TX_COMP3);
1536 #ifdef CAS_DEBUG
1537 CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, "
1538 "txs->txs_lastdesc = %d, txlast = %d",
1539 __func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1540 #endif
1541 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1542 if ((txlast >= txs->txs_firstdesc) &&
1543 (txlast <= txs->txs_lastdesc))
1544 break;
1545 } else {
1546 /* Ick -- this command wraps. */
1547 if ((txlast >= txs->txs_firstdesc) ||
1548 (txlast <= txs->txs_lastdesc))
1549 break;
1550 }
1551
1552 #ifdef CAS_DEBUG
1553 CTR1(KTR_CAS, "%s: releasing a descriptor", __func__);
1554 #endif
1555 STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1556
1557 sc->sc_txfree += txs->txs_ndescs;
1558
1559 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1560 BUS_DMASYNC_POSTWRITE);
1561 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1562 if (txs->txs_mbuf != NULL) {
1563 m_freem(txs->txs_mbuf);
1564 txs->txs_mbuf = NULL;
1565 }
1566
1567 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1568
1569 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1570 progress = 1;
1571 }
1572
1573 #ifdef CAS_DEBUG
1574 CTR5(KTR_CAS, "%s: CAS_TX_SM1 %x CAS_TX_SM2 %x CAS_TX_DESC_BASE %llx "
1575 "CAS_TX_COMP3 %x",
1576 __func__, CAS_READ_4(sc, CAS_TX_SM1), CAS_READ_4(sc, CAS_TX_SM2),
1577 ((long long)CAS_READ_4(sc, CAS_TX_DESC3_BASE_HI) << 32) |
1578 CAS_READ_4(sc, CAS_TX_DESC3_BASE_LO),
1579 CAS_READ_4(sc, CAS_TX_COMP3));
1580 #endif
1581
1582 if (progress) {
1583 /* We freed some descriptors, so reset IFF_DRV_OACTIVE. */
1584 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1585 if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1586 sc->sc_wdog_timer = 0;
1587 }
1588
1589 #ifdef CAS_DEBUG
1590 CTR3(KTR_CAS, "%s: %s: watchdog %d",
1591 device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer);
1592 #endif
1593 }
1594
1595 static void
cas_rint_timeout(void * arg)1596 cas_rint_timeout(void *arg)
1597 {
1598 struct epoch_tracker et;
1599 struct cas_softc *sc = arg;
1600
1601 CAS_LOCK_ASSERT(sc, MA_OWNED);
1602
1603 NET_EPOCH_ENTER(et);
1604 cas_rint(sc);
1605 NET_EPOCH_EXIT(et);
1606 }
1607
1608 static void
cas_rint(struct cas_softc * sc)1609 cas_rint(struct cas_softc *sc)
1610 {
1611 struct cas_rxdsoft *rxds, *rxds2;
1612 if_t ifp = sc->sc_ifp;
1613 struct mbuf *m, *m2;
1614 uint64_t word1, word2, word3 __unused, word4;
1615 uint32_t rxhead;
1616 u_int idx, idx2, len, off, skip;
1617
1618 CAS_LOCK_ASSERT(sc, MA_OWNED);
1619
1620 callout_stop(&sc->sc_rx_ch);
1621
1622 #ifdef CAS_DEBUG
1623 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1624 #endif
1625
1626 #define PRINTWORD(n, delimiter) \
1627 printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter)
1628
1629 #define SKIPASSERT(n) \
1630 KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0, \
1631 ("%s: word ## n not 0", __func__))
1632
1633 #define WORDTOH(n) \
1634 word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n)
1635
1636 /*
1637 * Read the completion head register once. This limits
1638 * how long the following loop can execute.
1639 */
1640 rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD);
1641 #ifdef CAS_DEBUG
1642 CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1643 __func__, sc->sc_rxcptr, sc->sc_rxdptr, rxhead);
1644 #endif
1645 skip = 0;
1646 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1647 for (; sc->sc_rxcptr != rxhead;
1648 sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) {
1649 if (skip != 0) {
1650 SKIPASSERT(1);
1651 SKIPASSERT(2);
1652 SKIPASSERT(3);
1653
1654 --skip;
1655 goto skip;
1656 }
1657
1658 WORDTOH(1);
1659 WORDTOH(2);
1660 WORDTOH(3);
1661 WORDTOH(4);
1662
1663 #ifdef CAS_DEBUG
1664 if ((if_getflags(ifp) & IFF_DEBUG) != 0) {
1665 printf(" completion %d: ", sc->sc_rxcptr);
1666 PRINTWORD(1, '\t');
1667 PRINTWORD(2, '\t');
1668 PRINTWORD(3, '\t');
1669 PRINTWORD(4, '\n');
1670 }
1671 #endif
1672
1673 if (__predict_false(
1674 (word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW ||
1675 (word4 & CAS_RC4_ZERO) != 0)) {
1676 /*
1677 * The descriptor is still marked as owned, although
1678 * it is supposed to have completed. This has been
1679 * observed on some machines. Just exiting here
1680 * might leave the packet sitting around until another
1681 * one arrives to trigger a new interrupt, which is
1682 * generally undesirable, so set up a timeout.
1683 */
1684 callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS,
1685 cas_rint_timeout, sc);
1686 break;
1687 }
1688
1689 if (__predict_false(
1690 (word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) {
1691 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1692 device_printf(sc->sc_dev,
1693 "receive error: CRC error\n");
1694 continue;
1695 }
1696
1697 KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1698 CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1699 ("%s: data and header present", __func__));
1700 KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 ||
1701 CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1702 ("%s: split and header present", __func__));
1703 KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1704 (word1 & CAS_RC1_RELEASE_HDR) == 0,
1705 ("%s: data present but header release", __func__));
1706 KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 ||
1707 (word1 & CAS_RC1_RELEASE_DATA) == 0,
1708 ("%s: header present but data release", __func__));
1709
1710 if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) {
1711 idx = CAS_GET(word2, CAS_RC2_HDR_INDEX);
1712 off = CAS_GET(word2, CAS_RC2_HDR_OFF);
1713 #ifdef CAS_DEBUG
1714 CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d",
1715 __func__, idx, off, len);
1716 #endif
1717 rxds = &sc->sc_rxdsoft[idx];
1718 MGETHDR(m, M_NOWAIT, MT_DATA);
1719 if (m != NULL) {
1720 refcount_acquire(&rxds->rxds_refcount);
1721 bus_dmamap_sync(sc->sc_rdmatag,
1722 rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1723 m_extadd(m, (char *)rxds->rxds_buf +
1724 off * 256 + ETHER_ALIGN, len, cas_free,
1725 sc, (void *)(uintptr_t)idx,
1726 M_RDONLY, EXT_NET_DRV);
1727 if ((m->m_flags & M_EXT) == 0) {
1728 m_freem(m);
1729 m = NULL;
1730 }
1731 }
1732 if (m != NULL) {
1733 m->m_pkthdr.rcvif = ifp;
1734 m->m_pkthdr.len = m->m_len = len;
1735 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1736 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1737 cas_rxcksum(m, CAS_GET(word4,
1738 CAS_RC4_TCP_CSUM));
1739 /* Pass it on. */
1740 CAS_UNLOCK(sc);
1741 if_input(ifp, m);
1742 CAS_LOCK(sc);
1743 } else
1744 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1745
1746 if ((word1 & CAS_RC1_RELEASE_HDR) != 0 &&
1747 refcount_release(&rxds->rxds_refcount) != 0)
1748 cas_add_rxdesc(sc, idx);
1749 } else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) {
1750 idx = CAS_GET(word1, CAS_RC1_DATA_INDEX);
1751 off = CAS_GET(word1, CAS_RC1_DATA_OFF);
1752 #ifdef CAS_DEBUG
1753 CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d",
1754 __func__, idx, off, len);
1755 #endif
1756 rxds = &sc->sc_rxdsoft[idx];
1757 MGETHDR(m, M_NOWAIT, MT_DATA);
1758 if (m != NULL) {
1759 refcount_acquire(&rxds->rxds_refcount);
1760 off += ETHER_ALIGN;
1761 m->m_len = min(CAS_PAGE_SIZE - off, len);
1762 bus_dmamap_sync(sc->sc_rdmatag,
1763 rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1764 m_extadd(m, (char *)rxds->rxds_buf + off,
1765 m->m_len, cas_free, sc,
1766 (void *)(uintptr_t)idx, M_RDONLY,
1767 EXT_NET_DRV);
1768 if ((m->m_flags & M_EXT) == 0) {
1769 m_freem(m);
1770 m = NULL;
1771 }
1772 }
1773 idx2 = 0;
1774 m2 = NULL;
1775 rxds2 = NULL;
1776 if ((word1 & CAS_RC1_SPLIT_PKT) != 0) {
1777 KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0,
1778 ("%s: split but no release next",
1779 __func__));
1780
1781 idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX);
1782 #ifdef CAS_DEBUG
1783 CTR2(KTR_CAS, "%s: split at idx %d",
1784 __func__, idx2);
1785 #endif
1786 rxds2 = &sc->sc_rxdsoft[idx2];
1787 if (m != NULL) {
1788 MGET(m2, M_NOWAIT, MT_DATA);
1789 if (m2 != NULL) {
1790 refcount_acquire(
1791 &rxds2->rxds_refcount);
1792 m2->m_len = len - m->m_len;
1793 bus_dmamap_sync(
1794 sc->sc_rdmatag,
1795 rxds2->rxds_dmamap,
1796 BUS_DMASYNC_POSTREAD);
1797 m_extadd(m2,
1798 (char *)rxds2->rxds_buf,
1799 m2->m_len, cas_free, sc,
1800 (void *)(uintptr_t)idx2,
1801 M_RDONLY, EXT_NET_DRV);
1802 if ((m2->m_flags & M_EXT) ==
1803 0) {
1804 m_freem(m2);
1805 m2 = NULL;
1806 }
1807 }
1808 }
1809 if (m2 != NULL)
1810 m->m_next = m2;
1811 else if (m != NULL) {
1812 m_freem(m);
1813 m = NULL;
1814 }
1815 }
1816 if (m != NULL) {
1817 m->m_pkthdr.rcvif = ifp;
1818 m->m_pkthdr.len = len;
1819 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1820 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1821 cas_rxcksum(m, CAS_GET(word4,
1822 CAS_RC4_TCP_CSUM));
1823 /* Pass it on. */
1824 CAS_UNLOCK(sc);
1825 if_input(ifp, m);
1826 CAS_LOCK(sc);
1827 } else
1828 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1829
1830 if ((word1 & CAS_RC1_RELEASE_DATA) != 0 &&
1831 refcount_release(&rxds->rxds_refcount) != 0)
1832 cas_add_rxdesc(sc, idx);
1833 if ((word1 & CAS_RC1_SPLIT_PKT) != 0 &&
1834 refcount_release(&rxds2->rxds_refcount) != 0)
1835 cas_add_rxdesc(sc, idx2);
1836 }
1837
1838 skip = CAS_GET(word1, CAS_RC1_SKIP);
1839
1840 skip:
1841 cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]);
1842 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1843 break;
1844 }
1845 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1846 CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr);
1847
1848 #undef PRINTWORD
1849 #undef SKIPASSERT
1850 #undef WORDTOH
1851
1852 #ifdef CAS_DEBUG
1853 CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1854 __func__, sc->sc_rxcptr, sc->sc_rxdptr,
1855 CAS_READ_4(sc, CAS_RX_COMP_HEAD));
1856 #endif
1857 }
1858
1859 static void
cas_free(struct mbuf * m)1860 cas_free(struct mbuf *m)
1861 {
1862 struct cas_rxdsoft *rxds;
1863 struct cas_softc *sc;
1864 u_int idx, locked;
1865
1866 sc = m->m_ext.ext_arg1;
1867 idx = (uintptr_t)m->m_ext.ext_arg2;
1868 rxds = &sc->sc_rxdsoft[idx];
1869 if (refcount_release(&rxds->rxds_refcount) == 0)
1870 return;
1871
1872 /*
1873 * NB: this function can be called via m_freem(9) within
1874 * this driver!
1875 */
1876 if ((locked = CAS_LOCK_OWNED(sc)) == 0)
1877 CAS_LOCK(sc);
1878 cas_add_rxdesc(sc, idx);
1879 if (locked == 0)
1880 CAS_UNLOCK(sc);
1881 }
1882
1883 static inline void
cas_add_rxdesc(struct cas_softc * sc,u_int idx)1884 cas_add_rxdesc(struct cas_softc *sc, u_int idx)
1885 {
1886
1887 CAS_LOCK_ASSERT(sc, MA_OWNED);
1888
1889 bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap,
1890 BUS_DMASYNC_PREREAD);
1891 CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx);
1892 sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr);
1893
1894 /*
1895 * Update the RX kick register. This register has to point to the
1896 * descriptor after the last valid one (before the current batch)
1897 * and for optimum performance should be incremented in multiples
1898 * of 4 (the DMA engine fetches/updates descriptors in batches of 4).
1899 */
1900 if ((sc->sc_rxdptr % 4) == 0) {
1901 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1902 CAS_WRITE_4(sc, CAS_RX_KICK,
1903 (sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK);
1904 }
1905 }
1906
1907 static void
cas_eint(struct cas_softc * sc,u_int status)1908 cas_eint(struct cas_softc *sc, u_int status)
1909 {
1910 if_t ifp = sc->sc_ifp;
1911
1912 CAS_LOCK_ASSERT(sc, MA_OWNED);
1913
1914 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1915
1916 device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status);
1917 if ((status & CAS_INTR_PCI_ERROR_INT) != 0) {
1918 status = CAS_READ_4(sc, CAS_ERROR_STATUS);
1919 printf(", PCI bus error 0x%x", status);
1920 if ((status & CAS_ERROR_OTHER) != 0) {
1921 status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
1922 printf(", PCI status 0x%x", status);
1923 pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
1924 }
1925 }
1926 printf("\n");
1927
1928 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1929 cas_init_locked(sc);
1930 if (!if_sendq_empty(ifp))
1931 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
1932 }
1933
1934 static int
cas_intr(void * v)1935 cas_intr(void *v)
1936 {
1937 struct cas_softc *sc = v;
1938
1939 if (__predict_false((CAS_READ_4(sc, CAS_STATUS_ALIAS) &
1940 CAS_INTR_SUMMARY) == 0))
1941 return (FILTER_STRAY);
1942
1943 /* Disable interrupts. */
1944 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
1945 taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
1946
1947 return (FILTER_HANDLED);
1948 }
1949
1950 static void
cas_intr_task(void * arg,int pending __unused)1951 cas_intr_task(void *arg, int pending __unused)
1952 {
1953 struct cas_softc *sc = arg;
1954 if_t ifp = sc->sc_ifp;
1955 uint32_t status, status2;
1956
1957 CAS_LOCK_ASSERT(sc, MA_NOTOWNED);
1958
1959 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1960 return;
1961
1962 status = CAS_READ_4(sc, CAS_STATUS);
1963 if (__predict_false((status & CAS_INTR_SUMMARY) == 0))
1964 goto done;
1965
1966 CAS_LOCK(sc);
1967 #ifdef CAS_DEBUG
1968 CTR4(KTR_CAS, "%s: %s: cplt %x, status %x",
1969 device_get_name(sc->sc_dev), __func__,
1970 (status >> CAS_STATUS_TX_COMP3_SHFT), (u_int)status);
1971
1972 /*
1973 * PCS interrupts must be cleared, otherwise no traffic is passed!
1974 */
1975 if ((status & CAS_INTR_PCS_INT) != 0) {
1976 status2 =
1977 CAS_READ_4(sc, CAS_PCS_INTR_STATUS) |
1978 CAS_READ_4(sc, CAS_PCS_INTR_STATUS);
1979 if ((status2 & CAS_PCS_INTR_LINK) != 0)
1980 device_printf(sc->sc_dev,
1981 "%s: PCS link status changed\n", __func__);
1982 }
1983 if ((status & CAS_MAC_CTRL_STATUS) != 0) {
1984 status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS);
1985 if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
1986 device_printf(sc->sc_dev,
1987 "%s: PAUSE received (PAUSE time %d slots)\n",
1988 __func__,
1989 (status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >>
1990 CAS_MAC_CTRL_STATUS_PT_SHFT);
1991 if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
1992 device_printf(sc->sc_dev,
1993 "%s: transited to PAUSE state\n", __func__);
1994 if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0)
1995 device_printf(sc->sc_dev,
1996 "%s: transited to non-PAUSE state\n", __func__);
1997 }
1998 if ((status & CAS_INTR_MIF) != 0)
1999 device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__);
2000 #endif
2001
2002 if (__predict_false((status &
2003 (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
2004 CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) {
2005 cas_eint(sc, status);
2006 CAS_UNLOCK(sc);
2007 return;
2008 }
2009
2010 if (__predict_false(status & CAS_INTR_TX_MAC_INT)) {
2011 status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS);
2012 if ((status2 &
2013 (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0)
2014 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2015 else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0)
2016 device_printf(sc->sc_dev,
2017 "MAC TX fault, status %x\n", status2);
2018 }
2019
2020 if (__predict_false(status & CAS_INTR_RX_MAC_INT)) {
2021 status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS);
2022 if ((status2 & CAS_MAC_RX_OVERFLOW) != 0)
2023 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2024 else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0)
2025 device_printf(sc->sc_dev,
2026 "MAC RX fault, status %x\n", status2);
2027 }
2028
2029 if ((status &
2030 (CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2031 CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) {
2032 cas_rint(sc);
2033 #ifdef CAS_DEBUG
2034 if (__predict_false((status &
2035 (CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2036 CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0))
2037 device_printf(sc->sc_dev,
2038 "RX fault, status %x\n", status);
2039 #endif
2040 }
2041
2042 if ((status &
2043 (CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0)
2044 cas_tint(sc);
2045
2046 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2047 CAS_UNLOCK(sc);
2048 return;
2049 } else if (!if_sendq_empty(ifp))
2050 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2051 CAS_UNLOCK(sc);
2052
2053 status = CAS_READ_4(sc, CAS_STATUS_ALIAS);
2054 if (__predict_false((status & CAS_INTR_SUMMARY) != 0)) {
2055 taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
2056 return;
2057 }
2058
2059 done:
2060 /* Re-enable interrupts. */
2061 CAS_WRITE_4(sc, CAS_INTMASK,
2062 ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
2063 CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
2064 CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
2065 CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
2066 CAS_INTR_PCI_ERROR_INT
2067 #ifdef CAS_DEBUG
2068 | CAS_INTR_PCS_INT | CAS_INTR_MIF
2069 #endif
2070 ));
2071 }
2072
2073 static void
cas_watchdog(struct cas_softc * sc)2074 cas_watchdog(struct cas_softc *sc)
2075 {
2076 if_t ifp = sc->sc_ifp;
2077
2078 CAS_LOCK_ASSERT(sc, MA_OWNED);
2079
2080 #ifdef CAS_DEBUG
2081 CTR4(KTR_CAS,
2082 "%s: CAS_RX_CONF %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONF %x",
2083 __func__, CAS_READ_4(sc, CAS_RX_CONF),
2084 CAS_READ_4(sc, CAS_MAC_RX_STATUS),
2085 CAS_READ_4(sc, CAS_MAC_RX_CONF));
2086 CTR4(KTR_CAS,
2087 "%s: CAS_TX_CONF %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONF %x",
2088 __func__, CAS_READ_4(sc, CAS_TX_CONF),
2089 CAS_READ_4(sc, CAS_MAC_TX_STATUS),
2090 CAS_READ_4(sc, CAS_MAC_TX_CONF));
2091 #endif
2092
2093 if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
2094 return;
2095
2096 if ((sc->sc_flags & CAS_LINK) != 0)
2097 device_printf(sc->sc_dev, "device timeout\n");
2098 else if (bootverbose)
2099 device_printf(sc->sc_dev, "device timeout (no link)\n");
2100 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2101
2102 /* Try to get more packets going. */
2103 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2104 cas_init_locked(sc);
2105 if (!if_sendq_empty(ifp))
2106 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2107 }
2108
2109 static void
cas_mifinit(struct cas_softc * sc)2110 cas_mifinit(struct cas_softc *sc)
2111 {
2112
2113 /* Configure the MIF in frame mode. */
2114 CAS_WRITE_4(sc, CAS_MIF_CONF,
2115 CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE);
2116 CAS_BARRIER(sc, CAS_MIF_CONF, 4,
2117 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2118 }
2119
2120 /*
2121 * MII interface
2122 *
2123 * The MII interface supports at least three different operating modes:
2124 *
2125 * Bitbang mode is implemented using data, clock and output enable registers.
2126 *
2127 * Frame mode is implemented by loading a complete frame into the frame
2128 * register and polling the valid bit for completion.
2129 *
2130 * Polling mode uses the frame register but completion is indicated by
2131 * an interrupt.
2132 *
2133 */
2134 static int
cas_mii_readreg(device_t dev,int phy,int reg)2135 cas_mii_readreg(device_t dev, int phy, int reg)
2136 {
2137 struct cas_softc *sc;
2138 int n;
2139 uint32_t v;
2140
2141 #ifdef CAS_DEBUG_PHY
2142 printf("%s: phy %d reg %d\n", __func__, phy, reg);
2143 #endif
2144
2145 sc = device_get_softc(dev);
2146 if ((sc->sc_flags & CAS_SERDES) != 0) {
2147 switch (reg) {
2148 case MII_BMCR:
2149 reg = CAS_PCS_CTRL;
2150 break;
2151 case MII_BMSR:
2152 reg = CAS_PCS_STATUS;
2153 break;
2154 case MII_PHYIDR1:
2155 case MII_PHYIDR2:
2156 return (0);
2157 case MII_ANAR:
2158 reg = CAS_PCS_ANAR;
2159 break;
2160 case MII_ANLPAR:
2161 reg = CAS_PCS_ANLPAR;
2162 break;
2163 case MII_EXTSR:
2164 return (EXTSR_1000XFDX | EXTSR_1000XHDX);
2165 default:
2166 device_printf(sc->sc_dev,
2167 "%s: unhandled register %d\n", __func__, reg);
2168 return (0);
2169 }
2170 return (CAS_READ_4(sc, reg));
2171 }
2172
2173 /* Construct the frame command. */
2174 v = CAS_MIF_FRAME_READ |
2175 (phy << CAS_MIF_FRAME_PHY_SHFT) |
2176 (reg << CAS_MIF_FRAME_REG_SHFT);
2177
2178 CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2179 CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2180 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2181 for (n = 0; n < 100; n++) {
2182 DELAY(1);
2183 v = CAS_READ_4(sc, CAS_MIF_FRAME);
2184 if (v & CAS_MIF_FRAME_TA_LSB)
2185 return (v & CAS_MIF_FRAME_DATA);
2186 }
2187
2188 device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2189 return (0);
2190 }
2191
2192 static int
cas_mii_writereg(device_t dev,int phy,int reg,int val)2193 cas_mii_writereg(device_t dev, int phy, int reg, int val)
2194 {
2195 struct cas_softc *sc;
2196 int n;
2197 uint32_t v;
2198
2199 #ifdef CAS_DEBUG_PHY
2200 printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__);
2201 #endif
2202
2203 sc = device_get_softc(dev);
2204 if ((sc->sc_flags & CAS_SERDES) != 0) {
2205 switch (reg) {
2206 case MII_BMSR:
2207 reg = CAS_PCS_STATUS;
2208 break;
2209 case MII_BMCR:
2210 reg = CAS_PCS_CTRL;
2211 if ((val & CAS_PCS_CTRL_RESET) == 0)
2212 break;
2213 CAS_WRITE_4(sc, CAS_PCS_CTRL, val);
2214 CAS_BARRIER(sc, CAS_PCS_CTRL, 4,
2215 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2216 if (!cas_bitwait(sc, CAS_PCS_CTRL,
2217 CAS_PCS_CTRL_RESET, 0))
2218 device_printf(sc->sc_dev,
2219 "cannot reset PCS\n");
2220 /* FALLTHROUGH */
2221 case MII_ANAR:
2222 CAS_WRITE_4(sc, CAS_PCS_CONF, 0);
2223 CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2224 BUS_SPACE_BARRIER_WRITE);
2225 CAS_WRITE_4(sc, CAS_PCS_ANAR, val);
2226 CAS_BARRIER(sc, CAS_PCS_ANAR, 4,
2227 BUS_SPACE_BARRIER_WRITE);
2228 CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL,
2229 CAS_PCS_SERDES_CTRL_ESD);
2230 CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2231 BUS_SPACE_BARRIER_WRITE);
2232 CAS_WRITE_4(sc, CAS_PCS_CONF,
2233 CAS_PCS_CONF_EN);
2234 CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2235 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2236 return (0);
2237 case MII_ANLPAR:
2238 reg = CAS_PCS_ANLPAR;
2239 break;
2240 default:
2241 device_printf(sc->sc_dev,
2242 "%s: unhandled register %d\n", __func__, reg);
2243 return (0);
2244 }
2245 CAS_WRITE_4(sc, reg, val);
2246 CAS_BARRIER(sc, reg, 4,
2247 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2248 return (0);
2249 }
2250
2251 /* Construct the frame command. */
2252 v = CAS_MIF_FRAME_WRITE |
2253 (phy << CAS_MIF_FRAME_PHY_SHFT) |
2254 (reg << CAS_MIF_FRAME_REG_SHFT) |
2255 (val & CAS_MIF_FRAME_DATA);
2256
2257 CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2258 CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2259 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2260 for (n = 0; n < 100; n++) {
2261 DELAY(1);
2262 v = CAS_READ_4(sc, CAS_MIF_FRAME);
2263 if (v & CAS_MIF_FRAME_TA_LSB)
2264 return (1);
2265 }
2266
2267 device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2268 return (0);
2269 }
2270
2271 static void
cas_mii_statchg(device_t dev)2272 cas_mii_statchg(device_t dev)
2273 {
2274 struct cas_softc *sc;
2275 if_t ifp;
2276 int gigabit;
2277 uint32_t rxcfg, txcfg, v;
2278
2279 sc = device_get_softc(dev);
2280 ifp = sc->sc_ifp;
2281
2282 CAS_LOCK_ASSERT(sc, MA_OWNED);
2283
2284 #ifdef CAS_DEBUG
2285 if ((if_getflags(ifp) & IFF_DEBUG) != 0)
2286 device_printf(sc->sc_dev, "%s: status changen", __func__);
2287 #endif
2288
2289 if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
2290 IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
2291 sc->sc_flags |= CAS_LINK;
2292 else
2293 sc->sc_flags &= ~CAS_LINK;
2294
2295 switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) {
2296 case IFM_1000_SX:
2297 case IFM_1000_LX:
2298 case IFM_1000_CX:
2299 case IFM_1000_T:
2300 gigabit = 1;
2301 break;
2302 default:
2303 gigabit = 0;
2304 }
2305
2306 /*
2307 * The configuration done here corresponds to the steps F) and
2308 * G) and as far as enabling of RX and TX MAC goes also step H)
2309 * of the initialization sequence outlined in section 11.2.1 of
2310 * the Cassini+ ASIC Specification.
2311 */
2312
2313 rxcfg = sc->sc_mac_rxcfg;
2314 rxcfg &= ~CAS_MAC_RX_CONF_CARR;
2315 txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU |
2316 CAS_MAC_TX_CONF_NGUL;
2317 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2318 txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS;
2319 else if (gigabit != 0) {
2320 rxcfg |= CAS_MAC_RX_CONF_CARR;
2321 txcfg |= CAS_MAC_TX_CONF_CARR;
2322 }
2323 (void)cas_disable_tx(sc);
2324 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg);
2325 (void)cas_disable_rx(sc);
2326 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg);
2327
2328 v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) &
2329 ~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP);
2330 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2331 IFM_ETH_RXPAUSE) != 0)
2332 v |= CAS_MAC_CTRL_CONF_RXP;
2333 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2334 IFM_ETH_TXPAUSE) != 0)
2335 v |= CAS_MAC_CTRL_CONF_TXP;
2336 CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v);
2337
2338 /*
2339 * All supported chips have a bug causing incorrect checksum
2340 * to be calculated when letting them strip the FCS in half-
2341 * duplex mode. In theory we could disable FCS stripping and
2342 * manually adjust the checksum accordingly. It seems to make
2343 * more sense to optimze for the common case and just disable
2344 * hardware checksumming in half-duplex mode though.
2345 */
2346 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) {
2347 if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
2348 if_sethwassist(ifp, 0);
2349 } else if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
2350 if_setcapenable(ifp, if_getcapabilities(ifp));
2351 if_sethwassist(ifp, CAS_CSUM_FEATURES);
2352 }
2353
2354 if (sc->sc_variant == CAS_SATURN) {
2355 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2356 /* silicon bug workaround */
2357 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41);
2358 else
2359 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
2360 }
2361
2362 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 &&
2363 gigabit != 0)
2364 CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2365 CAS_MAC_SLOT_TIME_CARR);
2366 else
2367 CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2368 CAS_MAC_SLOT_TIME_NORM);
2369
2370 /* XIF Configuration */
2371 v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED;
2372 if ((sc->sc_flags & CAS_SERDES) == 0) {
2373 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2374 v |= CAS_MAC_XIF_CONF_NOECHO;
2375 v |= CAS_MAC_XIF_CONF_BUF_OE;
2376 }
2377 if (gigabit != 0)
2378 v |= CAS_MAC_XIF_CONF_GMII;
2379 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2380 v |= CAS_MAC_XIF_CONF_FDXLED;
2381 CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v);
2382
2383 sc->sc_mac_rxcfg = rxcfg;
2384 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
2385 (sc->sc_flags & CAS_LINK) != 0) {
2386 CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
2387 txcfg | CAS_MAC_TX_CONF_EN);
2388 CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
2389 rxcfg | CAS_MAC_RX_CONF_EN);
2390 }
2391 }
2392
2393 static int
cas_mediachange(if_t ifp)2394 cas_mediachange(if_t ifp)
2395 {
2396 struct cas_softc *sc = if_getsoftc(ifp);
2397 int error;
2398
2399 /* XXX add support for serial media. */
2400
2401 CAS_LOCK(sc);
2402 error = mii_mediachg(sc->sc_mii);
2403 CAS_UNLOCK(sc);
2404 return (error);
2405 }
2406
2407 static void
cas_mediastatus(if_t ifp,struct ifmediareq * ifmr)2408 cas_mediastatus(if_t ifp, struct ifmediareq *ifmr)
2409 {
2410 struct cas_softc *sc = if_getsoftc(ifp);
2411
2412 CAS_LOCK(sc);
2413 if ((if_getflags(ifp) & IFF_UP) == 0) {
2414 CAS_UNLOCK(sc);
2415 return;
2416 }
2417
2418 mii_pollstat(sc->sc_mii);
2419 ifmr->ifm_active = sc->sc_mii->mii_media_active;
2420 ifmr->ifm_status = sc->sc_mii->mii_media_status;
2421 CAS_UNLOCK(sc);
2422 }
2423
2424 static int
cas_ioctl(if_t ifp,u_long cmd,caddr_t data)2425 cas_ioctl(if_t ifp, u_long cmd, caddr_t data)
2426 {
2427 struct cas_softc *sc = if_getsoftc(ifp);
2428 struct ifreq *ifr = (struct ifreq *)data;
2429 int error;
2430
2431 error = 0;
2432 switch (cmd) {
2433 case SIOCSIFFLAGS:
2434 CAS_LOCK(sc);
2435 if ((if_getflags(ifp) & IFF_UP) != 0) {
2436 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
2437 ((if_getflags(ifp) ^ sc->sc_ifflags) &
2438 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2439 cas_setladrf(sc);
2440 else
2441 cas_init_locked(sc);
2442 } else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2443 cas_stop(ifp);
2444 sc->sc_ifflags = if_getflags(ifp);
2445 CAS_UNLOCK(sc);
2446 break;
2447 case SIOCSIFCAP:
2448 CAS_LOCK(sc);
2449 if ((sc->sc_flags & CAS_NO_CSUM) != 0) {
2450 error = EINVAL;
2451 CAS_UNLOCK(sc);
2452 break;
2453 }
2454 if_setcapenable(ifp, ifr->ifr_reqcap);
2455 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2456 if_sethwassist(ifp, CAS_CSUM_FEATURES);
2457 else
2458 if_sethwassist(ifp, 0);
2459 CAS_UNLOCK(sc);
2460 break;
2461 case SIOCADDMULTI:
2462 case SIOCDELMULTI:
2463 CAS_LOCK(sc);
2464 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2465 cas_setladrf(sc);
2466 CAS_UNLOCK(sc);
2467 break;
2468 case SIOCSIFMTU:
2469 if ((ifr->ifr_mtu < ETHERMIN) ||
2470 (ifr->ifr_mtu > ETHERMTU_JUMBO))
2471 error = EINVAL;
2472 else
2473 if_setmtu(ifp, ifr->ifr_mtu);
2474 break;
2475 case SIOCGIFMEDIA:
2476 case SIOCSIFMEDIA:
2477 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
2478 break;
2479 default:
2480 error = ether_ioctl(ifp, cmd, data);
2481 break;
2482 }
2483
2484 return (error);
2485 }
2486
2487 static u_int
cas_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)2488 cas_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2489 {
2490 uint32_t crc, *hash = arg;
2491
2492 crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN);
2493 /* We just want the 8 most significant bits. */
2494 crc >>= 24;
2495 /* Set the corresponding bit in the filter. */
2496 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2497
2498 return (1);
2499 }
2500
2501 static void
cas_setladrf(struct cas_softc * sc)2502 cas_setladrf(struct cas_softc *sc)
2503 {
2504 if_t ifp = sc->sc_ifp;
2505 int i;
2506 uint32_t hash[16];
2507 uint32_t v;
2508
2509 CAS_LOCK_ASSERT(sc, MA_OWNED);
2510
2511 /*
2512 * Turn off the RX MAC and the hash filter as required by the Sun
2513 * Cassini programming restrictions.
2514 */
2515 v = sc->sc_mac_rxcfg & ~(CAS_MAC_RX_CONF_HFILTER |
2516 CAS_MAC_RX_CONF_EN);
2517 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
2518 CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
2519 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2520 if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER |
2521 CAS_MAC_RX_CONF_EN, 0))
2522 device_printf(sc->sc_dev,
2523 "cannot disable RX MAC or hash filter\n");
2524
2525 v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_PGRP);
2526 if ((if_getflags(ifp) & IFF_PROMISC) != 0) {
2527 v |= CAS_MAC_RX_CONF_PROMISC;
2528 goto chipit;
2529 }
2530 if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
2531 v |= CAS_MAC_RX_CONF_PGRP;
2532 goto chipit;
2533 }
2534
2535 /*
2536 * Set up multicast address filter by passing all multicast
2537 * addresses through a crc generator, and then using the high
2538 * order 8 bits as an index into the 256 bit logical address
2539 * filter. The high order 4 bits selects the word, while the
2540 * other 4 bits select the bit within the word (where bit 0
2541 * is the MSB).
2542 */
2543
2544 memset(hash, 0, sizeof(hash));
2545 if_foreach_llmaddr(ifp, cas_hash_maddr, &hash);
2546
2547 v |= CAS_MAC_RX_CONF_HFILTER;
2548
2549 /* Now load the hash table into the chip (if we are using it). */
2550 for (i = 0; i < 16; i++)
2551 CAS_WRITE_4(sc,
2552 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2553 hash[i]);
2554
2555 chipit:
2556 sc->sc_mac_rxcfg = v;
2557 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v | CAS_MAC_RX_CONF_EN);
2558 }
2559
2560 static int cas_pci_attach(device_t dev);
2561 static int cas_pci_detach(device_t dev);
2562 static int cas_pci_probe(device_t dev);
2563 static int cas_pci_resume(device_t dev);
2564 static int cas_pci_suspend(device_t dev);
2565
2566 static device_method_t cas_pci_methods[] = {
2567 /* Device interface */
2568 DEVMETHOD(device_probe, cas_pci_probe),
2569 DEVMETHOD(device_attach, cas_pci_attach),
2570 DEVMETHOD(device_detach, cas_pci_detach),
2571 DEVMETHOD(device_suspend, cas_pci_suspend),
2572 DEVMETHOD(device_resume, cas_pci_resume),
2573 /* Use the suspend handler here, it is all that is required. */
2574 DEVMETHOD(device_shutdown, cas_pci_suspend),
2575
2576 /* MII interface */
2577 DEVMETHOD(miibus_readreg, cas_mii_readreg),
2578 DEVMETHOD(miibus_writereg, cas_mii_writereg),
2579 DEVMETHOD(miibus_statchg, cas_mii_statchg),
2580
2581 DEVMETHOD_END
2582 };
2583
2584 static driver_t cas_pci_driver = {
2585 "cas",
2586 cas_pci_methods,
2587 sizeof(struct cas_softc)
2588 };
2589
2590 static const struct cas_pci_dev {
2591 uint32_t cpd_devid;
2592 uint8_t cpd_revid;
2593 int cpd_variant;
2594 const char *cpd_desc;
2595 } cas_pci_devlist[] = {
2596 { 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" },
2597 { 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" },
2598 { 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" },
2599 { 0, 0, 0, NULL }
2600 };
2601
2602 DRIVER_MODULE(cas, pci, cas_pci_driver, 0, 0);
2603 MODULE_PNP_INFO("W32:vendor/device", pci, cas, cas_pci_devlist,
2604 nitems(cas_pci_devlist) - 1);
2605 DRIVER_MODULE(miibus, cas, miibus_driver, 0, 0);
2606 MODULE_DEPEND(cas, pci, 1, 1, 1);
2607
2608 static int
cas_pci_probe(device_t dev)2609 cas_pci_probe(device_t dev)
2610 {
2611 int i;
2612
2613 for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2614 if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2615 pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2616 device_set_desc(dev, cas_pci_devlist[i].cpd_desc);
2617 return (BUS_PROBE_DEFAULT);
2618 }
2619 }
2620
2621 return (ENXIO);
2622 }
2623
2624 static struct resource_spec cas_pci_res_spec[] = {
2625 { SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE }, /* CAS_RES_INTR */
2626 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, /* CAS_RES_MEM */
2627 { -1, 0 }
2628 };
2629
2630 #define CAS_LOCAL_MAC_ADDRESS "local-mac-address"
2631 #define CAS_PHY_INTERFACE "phy-interface"
2632 #define CAS_PHY_TYPE "phy-type"
2633 #define CAS_PHY_TYPE_PCS "pcs"
2634
2635 static int
cas_pci_attach(device_t dev)2636 cas_pci_attach(device_t dev)
2637 {
2638 char buf[sizeof(CAS_LOCAL_MAC_ADDRESS)];
2639 struct cas_softc *sc;
2640 int i;
2641 #if !defined(__powerpc__)
2642 u_char enaddr[4][ETHER_ADDR_LEN];
2643 u_int j, k, lma, pcs[4], phy;
2644 #endif
2645
2646 sc = device_get_softc(dev);
2647 sc->sc_variant = CAS_UNKNOWN;
2648 for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2649 if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2650 pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2651 sc->sc_variant = cas_pci_devlist[i].cpd_variant;
2652 break;
2653 }
2654 }
2655 if (sc->sc_variant == CAS_UNKNOWN) {
2656 device_printf(dev, "unknown adaptor\n");
2657 return (ENXIO);
2658 }
2659
2660 /* PCI configuration */
2661 pci_write_config(dev, PCIR_COMMAND,
2662 pci_read_config(dev, PCIR_COMMAND, 2) | PCIM_CMD_BUSMASTEREN |
2663 PCIM_CMD_MWRICEN | PCIM_CMD_PERRESPEN | PCIM_CMD_SERRESPEN, 2);
2664
2665 sc->sc_dev = dev;
2666 if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02)
2667 /* Hardware checksumming may hang TX. */
2668 sc->sc_flags |= CAS_NO_CSUM;
2669 if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN)
2670 sc->sc_flags |= CAS_REG_PLUS;
2671 if (sc->sc_variant == CAS_CAS ||
2672 (sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11))
2673 sc->sc_flags |= CAS_TABORT;
2674 if (bootverbose)
2675 device_printf(dev, "flags=0x%x\n", sc->sc_flags);
2676
2677 if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) {
2678 device_printf(dev, "failed to allocate resources\n");
2679 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2680 return (ENXIO);
2681 }
2682
2683 CAS_LOCK_INIT(sc, device_get_nameunit(dev));
2684
2685 #if defined(__powerpc__)
2686 OF_getetheraddr(dev, sc->sc_enaddr);
2687 if (OF_getprop(ofw_bus_get_node(dev), CAS_PHY_INTERFACE, buf,
2688 sizeof(buf)) > 0 || OF_getprop(ofw_bus_get_node(dev),
2689 CAS_PHY_TYPE, buf, sizeof(buf)) > 0) {
2690 buf[sizeof(buf) - 1] = '\0';
2691 if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2692 sc->sc_flags |= CAS_SERDES;
2693 }
2694 #else
2695 /*
2696 * Dig out VPD (vital product data) and read the MAC address as well
2697 * as the PHY type. The VPD resides in the PCI Expansion ROM (PCI
2698 * FCode) and can't be accessed via the PCI capability pointer.
2699 * SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format described
2700 * in the free US Patent 7149820.
2701 */
2702
2703 #define PCI_ROMHDR_SIZE 0x1c
2704 #define PCI_ROMHDR_SIG 0x00
2705 #define PCI_ROMHDR_SIG_MAGIC 0xaa55 /* little endian */
2706 #define PCI_ROMHDR_PTR_DATA 0x18
2707 #define PCI_ROM_SIZE 0x18
2708 #define PCI_ROM_SIG 0x00
2709 #define PCI_ROM_SIG_MAGIC 0x52494350 /* "PCIR", endian */
2710 /* reversed */
2711 #define PCI_ROM_VENDOR 0x04
2712 #define PCI_ROM_DEVICE 0x06
2713 #define PCI_ROM_PTR_VPD 0x08
2714 #define PCI_VPDRES_BYTE0 0x00
2715 #define PCI_VPDRES_ISLARGE(x) ((x) & 0x80)
2716 #define PCI_VPDRES_LARGE_NAME(x) ((x) & 0x7f)
2717 #define PCI_VPDRES_LARGE_LEN_LSB 0x01
2718 #define PCI_VPDRES_LARGE_LEN_MSB 0x02
2719 #define PCI_VPDRES_LARGE_SIZE 0x03
2720 #define PCI_VPDRES_TYPE_ID_STRING 0x02 /* large */
2721 #define PCI_VPDRES_TYPE_VPD 0x10 /* large */
2722 #define PCI_VPD_KEY0 0x00
2723 #define PCI_VPD_KEY1 0x01
2724 #define PCI_VPD_LEN 0x02
2725 #define PCI_VPD_SIZE 0x03
2726
2727 #define CAS_ROM_READ_1(sc, offs) \
2728 CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs))
2729 #define CAS_ROM_READ_2(sc, offs) \
2730 CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs))
2731 #define CAS_ROM_READ_4(sc, offs) \
2732 CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs))
2733
2734 lma = phy = 0;
2735 memset(enaddr, 0, sizeof(enaddr));
2736 memset(pcs, 0, sizeof(pcs));
2737
2738 /* Enable PCI Expansion ROM access. */
2739 CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN,
2740 CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM);
2741
2742 /* Read PCI Expansion ROM header. */
2743 if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC ||
2744 (i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) <
2745 PCI_ROMHDR_SIZE) {
2746 device_printf(dev, "unexpected PCI Expansion ROM header\n");
2747 goto fail_prom;
2748 }
2749
2750 /* Read PCI Expansion ROM data. */
2751 if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC ||
2752 CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) ||
2753 CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) ||
2754 (j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) <
2755 i + PCI_ROM_SIZE) {
2756 device_printf(dev, "unexpected PCI Expansion ROM data\n");
2757 goto fail_prom;
2758 }
2759
2760 /* Read PCI VPD. */
2761 next:
2762 if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc,
2763 j + PCI_VPDRES_BYTE0)) == 0) {
2764 device_printf(dev, "no large PCI VPD\n");
2765 goto fail_prom;
2766 }
2767
2768 i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) |
2769 CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB);
2770 switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc,
2771 j + PCI_VPDRES_BYTE0))) {
2772 case PCI_VPDRES_TYPE_ID_STRING:
2773 /* Skip identifier string. */
2774 j += PCI_VPDRES_LARGE_SIZE + i;
2775 goto next;
2776 case PCI_VPDRES_TYPE_VPD:
2777 for (j += PCI_VPDRES_LARGE_SIZE; i > 0;
2778 i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN),
2779 j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) {
2780 if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z')
2781 /* no Enhanced VPD */
2782 continue;
2783 if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I')
2784 /* no instance property */
2785 continue;
2786 if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 'B') {
2787 /* byte array */
2788 if (CAS_ROM_READ_1(sc,
2789 j + PCI_VPD_SIZE + 4) != ETHER_ADDR_LEN)
2790 continue;
2791 bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2792 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2793 buf, sizeof(buf));
2794 buf[sizeof(buf) - 1] = '\0';
2795 if (strcmp(buf, CAS_LOCAL_MAC_ADDRESS) != 0)
2796 continue;
2797 bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2798 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2799 5 + sizeof(CAS_LOCAL_MAC_ADDRESS),
2800 enaddr[lma], sizeof(enaddr[lma]));
2801 lma++;
2802 if (lma == 4 && phy == 4)
2803 break;
2804 } else if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) ==
2805 'S') {
2806 /* string */
2807 if (CAS_ROM_READ_1(sc,
2808 j + PCI_VPD_SIZE + 4) !=
2809 sizeof(CAS_PHY_TYPE_PCS))
2810 continue;
2811 bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2812 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2813 buf, sizeof(buf));
2814 buf[sizeof(buf) - 1] = '\0';
2815 if (strcmp(buf, CAS_PHY_INTERFACE) == 0)
2816 k = sizeof(CAS_PHY_INTERFACE);
2817 else if (strcmp(buf, CAS_PHY_TYPE) == 0)
2818 k = sizeof(CAS_PHY_TYPE);
2819 else
2820 continue;
2821 bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2822 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2823 5 + k, buf, sizeof(buf));
2824 buf[sizeof(buf) - 1] = '\0';
2825 if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2826 pcs[phy] = 1;
2827 phy++;
2828 if (lma == 4 && phy == 4)
2829 break;
2830 }
2831 }
2832 break;
2833 default:
2834 device_printf(dev, "unexpected PCI VPD\n");
2835 goto fail_prom;
2836 }
2837
2838 fail_prom:
2839 CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0);
2840
2841 if (lma == 0) {
2842 device_printf(dev, "could not determine Ethernet address\n");
2843 goto fail;
2844 }
2845 i = 0;
2846 if (lma > 1 && pci_get_slot(dev) < nitems(enaddr))
2847 i = pci_get_slot(dev);
2848 memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN);
2849
2850 if (phy == 0) {
2851 device_printf(dev, "could not determine PHY type\n");
2852 goto fail;
2853 }
2854 i = 0;
2855 if (phy > 1 && pci_get_slot(dev) < nitems(pcs))
2856 i = pci_get_slot(dev);
2857 if (pcs[i] != 0)
2858 sc->sc_flags |= CAS_SERDES;
2859 #endif
2860
2861 if (cas_attach(sc) != 0) {
2862 device_printf(dev, "could not be attached\n");
2863 goto fail;
2864 }
2865
2866 if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET |
2867 INTR_MPSAFE, cas_intr, NULL, sc, &sc->sc_ih) != 0) {
2868 device_printf(dev, "failed to set up interrupt\n");
2869 cas_detach(sc);
2870 goto fail;
2871 }
2872 return (0);
2873
2874 fail:
2875 CAS_LOCK_DESTROY(sc);
2876 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2877 return (ENXIO);
2878 }
2879
2880 static int
cas_pci_detach(device_t dev)2881 cas_pci_detach(device_t dev)
2882 {
2883 struct cas_softc *sc;
2884
2885 sc = device_get_softc(dev);
2886 bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih);
2887 cas_detach(sc);
2888 CAS_LOCK_DESTROY(sc);
2889 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2890 return (0);
2891 }
2892
2893 static int
cas_pci_suspend(device_t dev)2894 cas_pci_suspend(device_t dev)
2895 {
2896
2897 cas_suspend(device_get_softc(dev));
2898 return (0);
2899 }
2900
2901 static int
cas_pci_resume(device_t dev)2902 cas_pci_resume(device_t dev)
2903 {
2904
2905 cas_resume(device_get_softc(dev));
2906 return (0);
2907 }
2908