xref: /freebsd/sys/net/if.c (revision 393356f25fb8b76e38b10347f0ad40d4a23372ba)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org>
5  * Copyright (c) 1980, 1986, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_bpf.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ddb.h"
37 
38 #include <sys/param.h>
39 #include <sys/capsicum.h>
40 #include <sys/conf.h>
41 #include <sys/eventhandler.h>
42 #include <sys/malloc.h>
43 #include <sys/domainset.h>
44 #include <sys/sbuf.h>
45 #include <sys/bus.h>
46 #include <sys/epoch.h>
47 #include <sys/mbuf.h>
48 #include <sys/systm.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/protosw.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/refcount.h>
57 #include <sys/module.h>
58 #include <sys/nv.h>
59 #include <sys/rwlock.h>
60 #include <sys/sockio.h>
61 #include <sys/stdarg.h>
62 #include <sys/syslog.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysent.h>
65 #include <sys/taskqueue.h>
66 #include <sys/domain.h>
67 #include <sys/jail.h>
68 #include <sys/priv.h>
69 
70 #ifdef DDB
71 #include <ddb/ddb.h>
72 #endif
73 
74 #include <vm/uma.h>
75 
76 #include <net/bpf.h>
77 #include <net/if.h>
78 #include <net/if_arp.h>
79 #include <net/if_clone.h>
80 #include <net/if_dl.h>
81 #include <net/if_strings.h>
82 #include <net/if_types.h>
83 #include <net/if_var.h>
84 #include <net/if_media.h>
85 #include <net/if_mib.h>
86 #include <net/if_private.h>
87 #include <net/if_vlan_var.h>
88 #include <net/radix.h>
89 #include <net/route.h>
90 #include <net/route/route_ctl.h>
91 #include <net/vnet.h>
92 
93 #if defined(INET) || defined(INET6)
94 #include <net/ethernet.h>
95 #include <netinet/in.h>
96 #include <netinet/in_var.h>
97 #include <netinet/ip.h>
98 #include <netinet/ip_carp.h>
99 #ifdef INET
100 #include <net/debugnet.h>
101 #include <netinet/if_ether.h>
102 #endif /* INET */
103 #ifdef INET6
104 #include <netinet6/in6_var.h>
105 #include <netinet6/in6_ifattach.h>
106 #endif /* INET6 */
107 #endif /* INET || INET6 */
108 
109 #include <security/mac/mac_framework.h>
110 
111 /*
112  * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name
113  * and ifr_ifru when it is used in SIOCGIFCONF.
114  */
115 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) ==
116     offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru");
117 
118 __read_mostly epoch_t net_epoch_preempt;
119 #ifdef COMPAT_FREEBSD32
120 #include <sys/mount.h>
121 #include <compat/freebsd32/freebsd32.h>
122 
123 struct ifreq_buffer32 {
124 	uint32_t	length;		/* (size_t) */
125 	uint32_t	buffer;		/* (void *) */
126 };
127 
128 /*
129  * Interface request structure used for socket
130  * ioctl's.  All interface ioctl's must have parameter
131  * definitions which begin with ifr_name.  The
132  * remainder may be interface specific.
133  */
134 struct ifreq32 {
135 	char	ifr_name[IFNAMSIZ];		/* if name, e.g. "en0" */
136 	union {
137 		struct sockaddr	ifru_addr;
138 		struct sockaddr	ifru_dstaddr;
139 		struct sockaddr	ifru_broadaddr;
140 		struct ifreq_buffer32 ifru_buffer;
141 		short		ifru_flags[2];
142 		short		ifru_index;
143 		int		ifru_jid;
144 		int		ifru_metric;
145 		int		ifru_mtu;
146 		int		ifru_phys;
147 		int		ifru_media;
148 		uint32_t	ifru_data;
149 		int		ifru_cap[2];
150 		u_int		ifru_fib;
151 		u_char		ifru_vlan_pcp;
152 	} ifr_ifru;
153 };
154 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32));
155 CTASSERT(__offsetof(struct ifreq, ifr_ifru) ==
156     __offsetof(struct ifreq32, ifr_ifru));
157 
158 struct ifconf32 {
159 	int32_t	ifc_len;
160 	union {
161 		uint32_t	ifcu_buf;
162 		uint32_t	ifcu_req;
163 	} ifc_ifcu;
164 };
165 #define	SIOCGIFCONF32	_IOWR('i', 36, struct ifconf32)
166 
167 struct ifdrv32 {
168 	char		ifd_name[IFNAMSIZ];
169 	uint32_t	ifd_cmd;
170 	uint32_t	ifd_len;
171 	uint32_t	ifd_data;
172 };
173 #define SIOCSDRVSPEC32	_IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32)
174 #define SIOCGDRVSPEC32	_IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32)
175 
176 struct ifgroupreq32 {
177 	char	ifgr_name[IFNAMSIZ];
178 	u_int	ifgr_len;
179 	union {
180 		char		ifgru_group[IFNAMSIZ];
181 		uint32_t	ifgru_groups;
182 	} ifgr_ifgru;
183 };
184 #define	SIOCAIFGROUP32	_IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32)
185 #define	SIOCGIFGROUP32	_IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32)
186 #define	SIOCDIFGROUP32	_IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32)
187 #define	SIOCGIFGMEMB32	_IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32)
188 
189 struct ifmediareq32 {
190 	char		ifm_name[IFNAMSIZ];
191 	int		ifm_current;
192 	int		ifm_mask;
193 	int		ifm_status;
194 	int		ifm_active;
195 	int		ifm_count;
196 	uint32_t	ifm_ulist;	/* (int *) */
197 };
198 #define	SIOCGIFMEDIA32	_IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32)
199 #define	SIOCGIFXMEDIA32	_IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32)
200 #endif /* COMPAT_FREEBSD32 */
201 
202 union ifreq_union {
203 	struct ifreq	ifr;
204 #ifdef COMPAT_FREEBSD32
205 	struct ifreq32	ifr32;
206 #endif
207 };
208 
209 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
210     "Link layers");
211 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
212     "Generic link-management");
213 
214 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN,
215     &ifqmaxlen, 0, "max send queue size");
216 
217 /* Log link state change events */
218 static int log_link_state_change = 1;
219 
220 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW,
221 	&log_link_state_change, 0,
222 	"log interface link state change events");
223 
224 /* Log promiscuous mode change events */
225 static int log_promisc_mode_change = 1;
226 
227 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN,
228 	&log_promisc_mode_change, 1,
229 	"log promiscuous mode change events");
230 
231 /* Interface description */
232 static unsigned int ifdescr_maxlen = 1024;
233 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW,
234 	&ifdescr_maxlen, 0,
235 	"administrative maximum length for interface description");
236 
237 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions");
238 
239 /* global sx for non-critical path ifdescr */
240 static struct sx ifdescr_sx;
241 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr");
242 
243 void	(*ng_ether_link_state_p)(struct ifnet *ifp, int state);
244 void	(*lagg_linkstate_p)(struct ifnet *ifp, int state);
245 /* These are external hooks for CARP. */
246 void	(*carp_linkstate_p)(struct ifnet *ifp);
247 void	(*carp_demote_adj_p)(int, char *);
248 int	(*carp_master_p)(struct ifaddr *);
249 #if defined(INET) || defined(INET6)
250 int	(*carp_forus_p)(struct ifnet *ifp, u_char *dhost);
251 int	(*carp_output_p)(struct ifnet *ifp, struct mbuf *m,
252     const struct sockaddr *sa);
253 int	(*carp_ioctl_p)(struct ifreq *, u_long, struct thread *);
254 int	(*carp_attach_p)(struct ifaddr *, int);
255 void	(*carp_detach_p)(struct ifaddr *, bool);
256 #endif
257 #ifdef INET
258 int	(*carp_iamatch_p)(struct ifaddr *, uint8_t **);
259 #endif
260 #ifdef INET6
261 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6);
262 caddr_t	(*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m,
263     const struct in6_addr *taddr);
264 #endif
265 
266 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL;
267 
268 /*
269  * XXX: Style; these should be sorted alphabetically, and unprototyped
270  * static functions should be prototyped. Currently they are sorted by
271  * declaration order.
272  */
273 static void	if_attachdomain(void *);
274 static void	if_attachdomain1(struct ifnet *);
275 static int	ifconf(u_long, caddr_t);
276 static void	if_input_default(struct ifnet *, struct mbuf *);
277 static int	if_requestencap_default(struct ifnet *, struct if_encap_req *);
278 static int	if_setflag(struct ifnet *, int, int, int *, int);
279 static int	if_transmit_default(struct ifnet *ifp, struct mbuf *m);
280 static int	if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int);
281 static void	do_link_state_change(void *, int);
282 static int	if_getgroup(struct ifgroupreq *, struct ifnet *);
283 static int	if_getgroupmembers(struct ifgroupreq *);
284 static void	if_delgroups(struct ifnet *);
285 static void	if_attach_internal(struct ifnet *, bool);
286 static void	if_detach_internal(struct ifnet *, bool);
287 static void	if_siocaddmulti(void *, int);
288 static void	if_link_ifnet(struct ifnet *);
289 static bool	if_unlink_ifnet(struct ifnet *, bool);
290 #ifdef VIMAGE
291 static void	if_vmove(struct ifnet *, struct vnet *);
292 #endif
293 
294 #ifdef INET6
295 /*
296  * XXX: declare here to avoid to include many inet6 related files..
297  * should be more generalized?
298  */
299 extern void	nd6_setmtu(struct ifnet *);
300 #endif
301 
302 /* ipsec helper hooks */
303 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]);
304 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]);
305 
306 int	ifqmaxlen = IFQ_MAXLEN;
307 VNET_DEFINE(struct ifnethead, ifnet);	/* depend on static init XXX */
308 VNET_DEFINE(struct ifgrouphead, ifg_head);
309 
310 /* Table of ifnet by index. */
311 static int if_index;
312 static int if_indexlim = 8;
313 static struct ifindex_entry {
314 	struct ifnet	*ife_ifnet;
315 	uint16_t	ife_gencnt;
316 } *ifindex_table;
317 
318 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system,
319     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
320     "Variables global to all interfaces");
321 static int
sysctl_ifcount(SYSCTL_HANDLER_ARGS)322 sysctl_ifcount(SYSCTL_HANDLER_ARGS)
323 {
324 	int rv = 0;
325 
326 	IFNET_RLOCK();
327 	for (int i = 1; i <= if_index; i++)
328 		if (ifindex_table[i].ife_ifnet != NULL &&
329 		    ifindex_table[i].ife_ifnet->if_vnet == curvnet)
330 			rv = i;
331 	IFNET_RUNLOCK();
332 
333 	return (sysctl_handle_int(oidp, &rv, 0, req));
334 }
335 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount,
336     CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I",
337     "Maximum known interface index");
338 
339 /*
340  * The global network interface list (V_ifnet) and related state (such as
341  * if_index, if_indexlim, and ifindex_table) are protected by an sxlock.
342  * This may be acquired to stabilise the list, or we may rely on NET_EPOCH.
343  */
344 struct sx ifnet_sxlock;
345 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE);
346 
347 struct sx ifnet_detach_sxlock;
348 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx",
349     SX_RECURSE);
350 
351 #ifdef VIMAGE
352 #define	VNET_IS_SHUTTING_DOWN(_vnet)					\
353     ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE)
354 #endif
355 
356 static	if_com_alloc_t *if_com_alloc[256];
357 static	if_com_free_t *if_com_free[256];
358 
359 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals");
360 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
361 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
362 
363 struct ifnet *
ifnet_byindex(u_int idx)364 ifnet_byindex(u_int idx)
365 {
366 	struct ifnet *ifp;
367 
368 	NET_EPOCH_ASSERT();
369 
370 	if (__predict_false(idx > if_index))
371 		return (NULL);
372 
373 	ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
374 
375 	if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet)
376 		ifp = NULL;
377 
378 	return (ifp);
379 }
380 
381 struct ifnet *
ifnet_byindex_ref(u_int idx)382 ifnet_byindex_ref(u_int idx)
383 {
384 	struct ifnet *ifp;
385 
386 	ifp = ifnet_byindex(idx);
387 	if (ifp == NULL || (ifp->if_flags & IFF_DYING))
388 		return (NULL);
389 	if (!if_try_ref(ifp))
390 		return (NULL);
391 	return (ifp);
392 }
393 
394 struct ifnet *
ifnet_byindexgen(uint16_t idx,uint16_t gen)395 ifnet_byindexgen(uint16_t idx, uint16_t gen)
396 {
397 	struct ifnet *ifp;
398 
399 	NET_EPOCH_ASSERT();
400 
401 	if (__predict_false(idx > if_index))
402 		return (NULL);
403 
404 	ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
405 
406 	if (ifindex_table[idx].ife_gencnt == gen)
407 		return (ifp);
408 	else
409 		return (NULL);
410 }
411 
412 /*
413  * Network interface utility routines.
414  *
415  * Routines with ifa_ifwith* names take sockaddr *'s as
416  * parameters.
417  */
418 
419 static void
if_init_idxtable(void * arg __unused)420 if_init_idxtable(void *arg __unused)
421 {
422 
423 	ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table),
424 	    M_IFNET, M_WAITOK | M_ZERO);
425 }
426 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init_idxtable, NULL);
427 
428 static void
vnet_if_init(const void * unused __unused)429 vnet_if_init(const void *unused __unused)
430 {
431 
432 	CK_STAILQ_INIT(&V_ifnet);
433 	CK_STAILQ_INIT(&V_ifg_head);
434 }
435 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init,
436     NULL);
437 
438 static void
if_link_ifnet(struct ifnet * ifp)439 if_link_ifnet(struct ifnet *ifp)
440 {
441 
442 	IFNET_WLOCK();
443 	CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link);
444 #ifdef VIMAGE
445 	curvnet->vnet_ifcnt++;
446 #endif
447 	IFNET_WUNLOCK();
448 }
449 
450 static bool
if_unlink_ifnet(struct ifnet * ifp,bool vmove)451 if_unlink_ifnet(struct ifnet *ifp, bool vmove)
452 {
453 	struct ifnet *iter;
454 	int found = 0;
455 
456 	IFNET_WLOCK();
457 	CK_STAILQ_FOREACH(iter, &V_ifnet, if_link)
458 		if (iter == ifp) {
459 			CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link);
460 			if (!vmove)
461 				ifp->if_flags |= IFF_DYING;
462 			found = 1;
463 			break;
464 		}
465 #ifdef VIMAGE
466 	curvnet->vnet_ifcnt--;
467 #endif
468 	IFNET_WUNLOCK();
469 
470 	return (found);
471 }
472 
473 #ifdef VIMAGE
474 static void
vnet_if_return(const void * unused __unused)475 vnet_if_return(const void *unused __unused)
476 {
477 	struct ifnet *ifp, *nifp;
478 	struct ifnet **pending;
479 	int found __diagused;
480 	int i;
481 
482 	i = 0;
483 
484 	/*
485 	 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd
486 	 * enter NET_EPOCH, but that's not possible, because if_vmove() calls
487 	 * if_detach_internal(), which waits for NET_EPOCH callbacks to
488 	 * complete. We can't do that from within NET_EPOCH.
489 	 *
490 	 * However, we can also use the IFNET_xLOCK, which is the V_ifnet
491 	 * read/write lock. We cannot hold the lock as we call if_vmove()
492 	 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib
493 	 * ctx lock.
494 	 */
495 	IFNET_WLOCK();
496 
497 	pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt,
498 	    M_IFNET, M_WAITOK | M_ZERO);
499 
500 	/* Return all inherited interfaces to their parent vnets. */
501 	CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) {
502 		if (ifp->if_home_vnet != ifp->if_vnet) {
503 			found = if_unlink_ifnet(ifp, true);
504 			MPASS(found);
505 
506 			pending[i++] = ifp;
507 		}
508 	}
509 	IFNET_WUNLOCK();
510 
511 	for (int j = 0; j < i; j++) {
512 		sx_xlock(&ifnet_detach_sxlock);
513 		if_vmove(pending[j], pending[j]->if_home_vnet);
514 		sx_xunlock(&ifnet_detach_sxlock);
515 	}
516 
517 	free(pending, M_IFNET);
518 }
519 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY,
520     vnet_if_return, NULL);
521 #endif
522 
523 /*
524  * Allocate a struct ifnet and an index for an interface.  A layer 2
525  * common structure will also be allocated if an allocation routine is
526  * registered for the passed type.
527  */
528 static struct ifnet *
if_alloc_domain(u_char type,int numa_domain)529 if_alloc_domain(u_char type, int numa_domain)
530 {
531 	struct ifnet *ifp;
532 	u_short idx;
533 
534 	KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large"));
535 	if (numa_domain == IF_NODOM)
536 		ifp = malloc(sizeof(struct ifnet), M_IFNET,
537 		    M_WAITOK | M_ZERO);
538 	else
539 		ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET,
540 		    DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO);
541 	ifp->if_type = type;
542 	ifp->if_alloctype = type;
543 	ifp->if_numa_domain = numa_domain;
544 #ifdef VIMAGE
545 	ifp->if_vnet = curvnet;
546 #endif
547 	if (if_com_alloc[type] != NULL) {
548 		ifp->if_l2com = if_com_alloc[type](type, ifp);
549 		KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__,
550 		    type));
551 	}
552 
553 	IF_ADDR_LOCK_INIT(ifp);
554 	TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp);
555 	TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp);
556 	ifp->if_afdata_initialized = 0;
557 	IF_AFDATA_LOCK_INIT(ifp);
558 	CK_STAILQ_INIT(&ifp->if_addrhead);
559 	CK_STAILQ_INIT(&ifp->if_multiaddrs);
560 	CK_STAILQ_INIT(&ifp->if_groups);
561 #ifdef MAC
562 	mac_ifnet_init(ifp);
563 #endif
564 	ifq_init(&ifp->if_snd, ifp);
565 
566 	refcount_init(&ifp->if_refcount, 1);	/* Index reference. */
567 	for (int i = 0; i < IFCOUNTERS; i++)
568 		ifp->if_counters[i] = counter_u64_alloc(M_WAITOK);
569 	ifp->if_get_counter = if_get_counter_default;
570 	ifp->if_pcp = IFNET_PCP_NONE;
571 
572 	/* Allocate an ifindex array entry. */
573 	IFNET_WLOCK();
574 	/*
575 	 * Try to find an empty slot below if_index.  If we fail, take the
576 	 * next slot.
577 	 */
578 	for (idx = 1; idx <= if_index; idx++) {
579 		if (ifindex_table[idx].ife_ifnet == NULL)
580 			break;
581 	}
582 
583 	/* Catch if_index overflow. */
584 	if (idx >= if_indexlim) {
585 		struct ifindex_entry *new, *old;
586 		int newlim;
587 
588 		newlim = if_indexlim * 2;
589 		new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO);
590 		memcpy(new, ifindex_table, if_indexlim * sizeof(*new));
591 		old = ifindex_table;
592 		ck_pr_store_ptr(&ifindex_table, new);
593 		if_indexlim = newlim;
594 		NET_EPOCH_WAIT();
595 		free(old, M_IFNET);
596 	}
597 	if (idx > if_index)
598 		if_index = idx;
599 
600 	ifp->if_index = idx;
601 	ifp->if_idxgen = ifindex_table[idx].ife_gencnt;
602 	ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp);
603 	IFNET_WUNLOCK();
604 
605 	return (ifp);
606 }
607 
608 struct ifnet *
if_alloc_dev(u_char type,device_t dev)609 if_alloc_dev(u_char type, device_t dev)
610 {
611 	int numa_domain;
612 
613 	if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0)
614 		return (if_alloc_domain(type, IF_NODOM));
615 	return (if_alloc_domain(type, numa_domain));
616 }
617 
618 struct ifnet *
if_alloc(u_char type)619 if_alloc(u_char type)
620 {
621 
622 	return (if_alloc_domain(type, IF_NODOM));
623 }
624 /*
625  * Do the actual work of freeing a struct ifnet, and layer 2 common
626  * structure.  This call is made when the network epoch guarantees
627  * us that nobody holds a pointer to the interface.
628  */
629 static void
if_free_deferred(epoch_context_t ctx)630 if_free_deferred(epoch_context_t ctx)
631 {
632 	struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx);
633 
634 	KASSERT((ifp->if_flags & IFF_DYING),
635 	    ("%s: interface not dying", __func__));
636 
637 	if (if_com_free[ifp->if_alloctype] != NULL)
638 		if_com_free[ifp->if_alloctype](ifp->if_l2com,
639 		    ifp->if_alloctype);
640 
641 #ifdef MAC
642 	mac_ifnet_destroy(ifp);
643 #endif /* MAC */
644 	IF_AFDATA_DESTROY(ifp);
645 	IF_ADDR_LOCK_DESTROY(ifp);
646 	ifq_delete(&ifp->if_snd);
647 
648 	for (int i = 0; i < IFCOUNTERS; i++)
649 		counter_u64_free(ifp->if_counters[i]);
650 
651 	if_freedescr(ifp->if_description);
652 	free(ifp->if_hw_addr, M_IFADDR);
653 	free(ifp, M_IFNET);
654 }
655 
656 /*
657  * Deregister an interface and free the associated storage.
658  */
659 void
if_free(struct ifnet * ifp)660 if_free(struct ifnet *ifp)
661 {
662 
663 	ifp->if_flags |= IFF_DYING;			/* XXX: Locking */
664 
665 	/*
666 	 * XXXGL: An interface index is really an alias to ifp pointer.
667 	 * Why would we clear the alias now, and not in the deferred
668 	 * context?  Indeed there is nothing wrong with some network
669 	 * thread obtaining ifp via ifnet_byindex() inside the network
670 	 * epoch and then dereferencing ifp while we perform if_free(),
671 	 * and after if_free() finished, too.
672 	 *
673 	 * This early index freeing was important back when ifindex was
674 	 * virtualized and interface would outlive the vnet.
675 	 */
676 	IFNET_WLOCK();
677 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
678 	ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL);
679 	ifindex_table[ifp->if_index].ife_gencnt++;
680 	while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL)
681 		if_index--;
682 	IFNET_WUNLOCK();
683 
684 	if (refcount_release(&ifp->if_refcount))
685 		NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
686 }
687 
688 /*
689  * Interfaces to keep an ifnet type-stable despite the possibility of the
690  * driver calling if_free().  If there are additional references, we defer
691  * freeing the underlying data structure.
692  */
693 void
if_ref(struct ifnet * ifp)694 if_ref(struct ifnet *ifp)
695 {
696 	u_int old __diagused;
697 
698 	/* We don't assert the ifnet list lock here, but arguably should. */
699 	old = refcount_acquire(&ifp->if_refcount);
700 	KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp));
701 }
702 
703 bool
if_try_ref(struct ifnet * ifp)704 if_try_ref(struct ifnet *ifp)
705 {
706 	NET_EPOCH_ASSERT();
707 	return (refcount_acquire_if_not_zero(&ifp->if_refcount));
708 }
709 
710 void
if_rele(struct ifnet * ifp)711 if_rele(struct ifnet *ifp)
712 {
713 
714 	if (!refcount_release(&ifp->if_refcount))
715 		return;
716 	NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
717 }
718 
719 void
ifq_init(struct ifaltq * ifq,struct ifnet * ifp)720 ifq_init(struct ifaltq *ifq, struct ifnet *ifp)
721 {
722 
723 	mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF);
724 
725 	if (ifq->ifq_maxlen == 0)
726 		ifq->ifq_maxlen = ifqmaxlen;
727 
728 	ifq->altq_type = 0;
729 	ifq->altq_disc = NULL;
730 	ifq->altq_flags &= ALTQF_CANTCHANGE;
731 	ifq->altq_tbr  = NULL;
732 	ifq->altq_ifp  = ifp;
733 }
734 
735 void
ifq_delete(struct ifaltq * ifq)736 ifq_delete(struct ifaltq *ifq)
737 {
738 	mtx_destroy(&ifq->ifq_mtx);
739 }
740 
741 /*
742  * Perform generic interface initialization tasks and attach the interface
743  * to the list of "active" interfaces.  If vmove flag is set on entry
744  * to if_attach_internal(), perform only a limited subset of initialization
745  * tasks, given that we are moving from one vnet to another an ifnet which
746  * has already been fully initialized.
747  *
748  * Note that if_detach_internal() removes group membership unconditionally
749  * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL.
750  * Thus, when if_vmove() is applied to a cloned interface, group membership
751  * is lost while a cloned one always joins a group whose name is
752  * ifc->ifc_name.  To recover this after if_detach_internal() and
753  * if_attach_internal(), the cloner should be specified to
754  * if_attach_internal() via ifc.  If it is non-NULL, if_attach_internal()
755  * attempts to join a group whose name is ifc->ifc_name.
756  *
757  * XXX:
758  *  - The decision to return void and thus require this function to
759  *    succeed is questionable.
760  *  - We should probably do more sanity checking.  For instance we don't
761  *    do anything to insure if_xname is unique or non-empty.
762  */
763 void
if_attach(struct ifnet * ifp)764 if_attach(struct ifnet *ifp)
765 {
766 
767 	if_attach_internal(ifp, false);
768 }
769 
770 /*
771  * Compute the least common TSO limit.
772  */
773 void
if_hw_tsomax_common(if_t ifp,struct ifnet_hw_tsomax * pmax)774 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax)
775 {
776 	/*
777 	 * 1) If there is no limit currently, take the limit from
778 	 * the network adapter.
779 	 *
780 	 * 2) If the network adapter has a limit below the current
781 	 * limit, apply it.
782 	 */
783 	if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 &&
784 	    ifp->if_hw_tsomax < pmax->tsomaxbytes)) {
785 		pmax->tsomaxbytes = ifp->if_hw_tsomax;
786 	}
787 	if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 &&
788 	    ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) {
789 		pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
790 	}
791 	if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 &&
792 	    ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) {
793 		pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
794 	}
795 }
796 
797 /*
798  * Update TSO limit of a network adapter.
799  *
800  * Returns zero if no change. Else non-zero.
801  */
802 int
if_hw_tsomax_update(if_t ifp,struct ifnet_hw_tsomax * pmax)803 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax)
804 {
805 	int retval = 0;
806 	if (ifp->if_hw_tsomax != pmax->tsomaxbytes) {
807 		ifp->if_hw_tsomax = pmax->tsomaxbytes;
808 		retval++;
809 	}
810 	if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) {
811 		ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize;
812 		retval++;
813 	}
814 	if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) {
815 		ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount;
816 		retval++;
817 	}
818 	return (retval);
819 }
820 
821 static void
if_attach_internal(struct ifnet * ifp,bool vmove)822 if_attach_internal(struct ifnet *ifp, bool vmove)
823 {
824 	unsigned socksize, ifasize;
825 	int namelen, masklen;
826 	struct sockaddr_dl *sdl;
827 	struct ifaddr *ifa;
828 
829 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
830 
831 #ifdef VIMAGE
832 	CURVNET_ASSERT_SET();
833 	ifp->if_vnet = curvnet;
834 	if (ifp->if_home_vnet == NULL)
835 		ifp->if_home_vnet = curvnet;
836 #endif
837 
838 	if_addgroup(ifp, IFG_ALL);
839 
840 #ifdef VIMAGE
841 	/* Restore group membership for cloned interface. */
842 	if (vmove)
843 		if_clone_restoregroup(ifp);
844 #endif
845 
846 	getmicrotime(&ifp->if_lastchange);
847 	ifp->if_epoch = time_uptime;
848 
849 	KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) ||
850 	    (ifp->if_transmit != NULL && ifp->if_qflush != NULL),
851 	    ("transmit and qflush must both either be set or both be NULL"));
852 	if (ifp->if_transmit == NULL) {
853 		ifp->if_transmit = if_transmit_default;
854 		ifp->if_qflush = if_qflush;
855 	}
856 	if (ifp->if_input == NULL)
857 		ifp->if_input = if_input_default;
858 
859 	if (ifp->if_requestencap == NULL)
860 		ifp->if_requestencap = if_requestencap_default;
861 
862 	if (!vmove) {
863 #ifdef MAC
864 		mac_ifnet_create(ifp);
865 #endif
866 
867 		/*
868 		 * Create a Link Level name for this device.
869 		 */
870 		namelen = strlen(ifp->if_xname);
871 		/*
872 		 * Always save enough space for any possible name so we
873 		 * can do a rename in place later.
874 		 */
875 		masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ;
876 		socksize = masklen + ifp->if_addrlen;
877 		if (socksize < sizeof(*sdl))
878 			socksize = sizeof(*sdl);
879 		socksize = roundup2(socksize, sizeof(long));
880 		ifasize = sizeof(*ifa) + 2 * socksize;
881 		ifa = ifa_alloc(ifasize, M_WAITOK);
882 		sdl = (struct sockaddr_dl *)(ifa + 1);
883 		sdl->sdl_len = socksize;
884 		sdl->sdl_family = AF_LINK;
885 		bcopy(ifp->if_xname, sdl->sdl_data, namelen);
886 		sdl->sdl_nlen = namelen;
887 		sdl->sdl_index = ifp->if_index;
888 		sdl->sdl_type = ifp->if_type;
889 		ifp->if_addr = ifa;
890 		ifa->ifa_ifp = ifp;
891 		ifa->ifa_addr = (struct sockaddr *)sdl;
892 		sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
893 		ifa->ifa_netmask = (struct sockaddr *)sdl;
894 		sdl->sdl_len = masklen;
895 		while (namelen != 0)
896 			sdl->sdl_data[--namelen] = 0xff;
897 		CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
898 		/* Reliably crash if used uninitialized. */
899 		ifp->if_broadcastaddr = NULL;
900 
901 		if (ifp->if_type == IFT_ETHER) {
902 			ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR,
903 			    M_WAITOK | M_ZERO);
904 		}
905 
906 #if defined(INET) || defined(INET6)
907 		/* Use defaults for TSO, if nothing is set */
908 		if (ifp->if_hw_tsomax == 0 &&
909 		    ifp->if_hw_tsomaxsegcount == 0 &&
910 		    ifp->if_hw_tsomaxsegsize == 0) {
911 			/*
912 			 * The TSO defaults needs to be such that an
913 			 * NFS mbuf list of 35 mbufs totalling just
914 			 * below 64K works and that a chain of mbufs
915 			 * can be defragged into at most 32 segments:
916 			 */
917 			ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) -
918 			    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN));
919 			ifp->if_hw_tsomaxsegcount = 35;
920 			ifp->if_hw_tsomaxsegsize = 2048;	/* 2K */
921 
922 			/* XXX some drivers set IFCAP_TSO after ethernet attach */
923 			if (ifp->if_capabilities & IFCAP_TSO) {
924 				if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n",
925 				    ifp->if_hw_tsomax,
926 				    ifp->if_hw_tsomaxsegcount,
927 				    ifp->if_hw_tsomaxsegsize);
928 			}
929 		}
930 #endif
931 	}
932 
933 	if (domain_init_status >= 2)
934 		if_attachdomain1(ifp);
935 
936 	if_link_ifnet(ifp);
937 
938 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
939 	if (IS_DEFAULT_VNET(curvnet))
940 		devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
941 }
942 
943 static void
if_epochalloc(void * dummy __unused)944 if_epochalloc(void *dummy __unused)
945 {
946 
947 	net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT);
948 }
949 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL);
950 
951 static void
if_attachdomain(void * dummy)952 if_attachdomain(void *dummy)
953 {
954 	struct ifnet *ifp;
955 
956 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link)
957 		if_attachdomain1(ifp);
958 }
959 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND,
960     if_attachdomain, NULL);
961 
962 static void
if_attachdomain1(struct ifnet * ifp)963 if_attachdomain1(struct ifnet *ifp)
964 {
965 	struct domain *dp;
966 
967 	/*
968 	 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we
969 	 * cannot lock ifp->if_afdata initialization, entirely.
970 	 */
971 	IF_AFDATA_LOCK(ifp);
972 	if (ifp->if_afdata_initialized >= domain_init_status) {
973 		IF_AFDATA_UNLOCK(ifp);
974 		log(LOG_WARNING, "%s called more than once on %s\n",
975 		    __func__, ifp->if_xname);
976 		return;
977 	}
978 	ifp->if_afdata_initialized = domain_init_status;
979 	IF_AFDATA_UNLOCK(ifp);
980 
981 	/* address family dependent data region */
982 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
983 	SLIST_FOREACH(dp, &domains, dom_next) {
984 		if (dp->dom_ifattach)
985 			ifp->if_afdata[dp->dom_family] =
986 			    (*dp->dom_ifattach)(ifp);
987 	}
988 }
989 
990 /*
991  * Remove any unicast or broadcast network addresses from an interface.
992  */
993 void
if_purgeaddrs(struct ifnet * ifp)994 if_purgeaddrs(struct ifnet *ifp)
995 {
996 	struct ifaddr *ifa;
997 
998 #ifdef INET6
999 	/*
1000 	 * Need to leave multicast addresses of proxy NDP llentries
1001 	 * before in6_purgeifaddr() because the llentries are keys
1002 	 * for in6_multi objects of proxy NDP entries.
1003 	 * in6_purgeifaddr()s clean up llentries including proxy NDPs
1004 	 * then we would lose the keys if they are called earlier.
1005 	 */
1006 	in6_purge_proxy_ndp(ifp);
1007 #endif
1008 	while (1) {
1009 		struct epoch_tracker et;
1010 
1011 		NET_EPOCH_ENTER(et);
1012 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1013 			if (ifa->ifa_addr->sa_family != AF_LINK)
1014 				break;
1015 		}
1016 		NET_EPOCH_EXIT(et);
1017 
1018 		if (ifa == NULL)
1019 			break;
1020 #ifdef INET
1021 		/* XXX: Ugly!! ad hoc just for INET */
1022 		if (ifa->ifa_addr->sa_family == AF_INET) {
1023 			struct ifreq ifr;
1024 
1025 			bzero(&ifr, sizeof(ifr));
1026 			ifr.ifr_addr = *ifa->ifa_addr;
1027 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
1028 			    NULL) == 0)
1029 				continue;
1030 		}
1031 #endif /* INET */
1032 #ifdef INET6
1033 		if (ifa->ifa_addr->sa_family == AF_INET6) {
1034 			in6_purgeifaddr((struct in6_ifaddr *)ifa);
1035 			/* ifp_addrhead is already updated */
1036 			continue;
1037 		}
1038 #endif /* INET6 */
1039 		IF_ADDR_WLOCK(ifp);
1040 		CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1041 		IF_ADDR_WUNLOCK(ifp);
1042 		ifa_free(ifa);
1043 	}
1044 }
1045 
1046 /*
1047  * Remove any multicast network addresses from an interface when an ifnet
1048  * is going away.
1049  */
1050 static void
if_purgemaddrs(struct ifnet * ifp)1051 if_purgemaddrs(struct ifnet *ifp)
1052 {
1053 	struct ifmultiaddr *ifma;
1054 
1055 	IF_ADDR_WLOCK(ifp);
1056 	while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) {
1057 		ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs);
1058 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
1059 		if_delmulti_locked(ifp, ifma, 1);
1060 	}
1061 	IF_ADDR_WUNLOCK(ifp);
1062 }
1063 
1064 /*
1065  * Detach an interface, removing it from the list of "active" interfaces.
1066  * If vmove flag is set on entry to if_detach_internal(), perform only a
1067  * limited subset of cleanup tasks, given that we are moving an ifnet from
1068  * one vnet to another, where it must be fully operational.
1069  *
1070  * XXXRW: There are some significant questions about event ordering, and
1071  * how to prevent things from starting to use the interface during detach.
1072  */
1073 void
if_detach(struct ifnet * ifp)1074 if_detach(struct ifnet *ifp)
1075 {
1076 	bool found;
1077 
1078 	CURVNET_SET_QUIET(ifp->if_vnet);
1079 	found = if_unlink_ifnet(ifp, false);
1080 	if (found) {
1081 		sx_xlock(&ifnet_detach_sxlock);
1082 		if_detach_internal(ifp, false);
1083 		sx_xunlock(&ifnet_detach_sxlock);
1084 	}
1085 	CURVNET_RESTORE();
1086 }
1087 
1088 /*
1089  * The vmove flag, if set, indicates that we are called from a callpath
1090  * that is moving an interface to a different vnet instance.
1091  *
1092  * The shutdown flag, if set, indicates that we are called in the
1093  * process of shutting down a vnet instance.  Currently only the
1094  * vnet_if_return SYSUNINIT function sets it.  Note: we can be called
1095  * on a vnet instance shutdown without this flag being set, e.g., when
1096  * the cloned interfaces are destoyed as first thing of teardown.
1097  */
1098 static void
if_detach_internal(struct ifnet * ifp,bool vmove)1099 if_detach_internal(struct ifnet *ifp, bool vmove)
1100 {
1101 	struct ifaddr *ifa;
1102 	int i;
1103 	struct domain *dp;
1104 #ifdef VIMAGE
1105 	bool shutdown;
1106 
1107 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1108 #endif
1109 
1110 	sx_assert(&ifnet_detach_sxlock, SX_XLOCKED);
1111 
1112 	/*
1113 	 * At this point we know the interface still was on the ifnet list
1114 	 * and we removed it so we are in a stable state.
1115 	 */
1116 	NET_EPOCH_WAIT();
1117 
1118 	/*
1119 	 * Ensure all pending EPOCH(9) callbacks have been executed. This
1120 	 * fixes issues about late destruction of multicast options
1121 	 * which lead to leave group calls, which in turn access the
1122 	 * belonging ifnet structure:
1123 	 */
1124 	NET_EPOCH_DRAIN_CALLBACKS();
1125 
1126 	/*
1127 	 * In any case (destroy or vmove) detach us from the groups
1128 	 * and remove/wait for pending events on the taskq.
1129 	 * XXX-BZ in theory an interface could still enqueue a taskq change?
1130 	 */
1131 	if_delgroups(ifp);
1132 
1133 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
1134 	taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask);
1135 
1136 	if_down(ifp);
1137 
1138 #ifdef VIMAGE
1139 	/*
1140 	 * On VNET shutdown abort here as the stack teardown will do all
1141 	 * the work top-down for us.
1142 	 */
1143 	if (shutdown) {
1144 		/* Give interface users the chance to clean up. */
1145 		EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1146 
1147 		/*
1148 		 * In case of a vmove we are done here without error.
1149 		 * If we would signal an error it would lead to the same
1150 		 * abort as if we did not find the ifnet anymore.
1151 		 * if_detach() calls us in void context and does not care
1152 		 * about an early abort notification, so life is splendid :)
1153 		 */
1154 		goto finish_vnet_shutdown;
1155 	}
1156 #endif
1157 
1158 	/*
1159 	 * At this point we are not tearing down a VNET and are either
1160 	 * going to destroy or vmove the interface and have to cleanup
1161 	 * accordingly.
1162 	 */
1163 
1164 	/*
1165 	 * Remove routes and flush queues.
1166 	 */
1167 #ifdef ALTQ
1168 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
1169 		altq_disable(&ifp->if_snd);
1170 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1171 		altq_detach(&ifp->if_snd);
1172 #endif
1173 
1174 	if_purgeaddrs(ifp);
1175 
1176 #ifdef INET
1177 	in_ifdetach(ifp);
1178 #endif
1179 
1180 #ifdef INET6
1181 	/*
1182 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
1183 	 * before removing routing entries below, since IPv6 interface direct
1184 	 * routes are expected to be removed by the IPv6-specific kernel API.
1185 	 * Otherwise, the kernel will detect some inconsistency and bark it.
1186 	 */
1187 	in6_ifdetach(ifp);
1188 #endif
1189 	if_purgemaddrs(ifp);
1190 
1191 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1192 	if (IS_DEFAULT_VNET(curvnet))
1193 		devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
1194 
1195 	if (!vmove) {
1196 		/*
1197 		 * Prevent further calls into the device driver via ifnet.
1198 		 */
1199 		if_dead(ifp);
1200 
1201 		/*
1202 		 * Clean up all addresses.
1203 		 */
1204 		IF_ADDR_WLOCK(ifp);
1205 		if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) {
1206 			ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
1207 			CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1208 			IF_ADDR_WUNLOCK(ifp);
1209 			ifa_free(ifa);
1210 		} else
1211 			IF_ADDR_WUNLOCK(ifp);
1212 	}
1213 
1214 	rt_flushifroutes(ifp);
1215 
1216 #ifdef VIMAGE
1217 finish_vnet_shutdown:
1218 #endif
1219 	/*
1220 	 * We cannot hold the lock over dom_ifdetach calls as they might
1221 	 * sleep, for example trying to drain a callout, thus open up the
1222 	 * theoretical race with re-attaching.
1223 	 */
1224 	IF_AFDATA_LOCK(ifp);
1225 	i = ifp->if_afdata_initialized;
1226 	ifp->if_afdata_initialized = 0;
1227 	IF_AFDATA_UNLOCK(ifp);
1228 	if (i == 0)
1229 		return;
1230 	SLIST_FOREACH(dp, &domains, dom_next) {
1231 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) {
1232 			(*dp->dom_ifdetach)(ifp,
1233 			    ifp->if_afdata[dp->dom_family]);
1234 			ifp->if_afdata[dp->dom_family] = NULL;
1235 		}
1236 	}
1237 }
1238 
1239 #ifdef VIMAGE
1240 /*
1241  * if_vmove() performs a limited version of if_detach() in current
1242  * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg.
1243  */
1244 static void
if_vmove(struct ifnet * ifp,struct vnet * new_vnet)1245 if_vmove(struct ifnet *ifp, struct vnet *new_vnet)
1246 {
1247 #ifdef DEV_BPF
1248 	/*
1249 	 * Detach BPF file descriptors from its interface.
1250 	 */
1251 	bpf_ifdetach(ifp);
1252 #endif
1253 
1254 	/*
1255 	 * Detach from current vnet, but preserve LLADDR info, do not
1256 	 * mark as dead etc. so that the ifnet can be reattached later.
1257 	 */
1258 	if_detach_internal(ifp, true);
1259 
1260 	/*
1261 	 * Perform interface-specific reassignment tasks, if provided by
1262 	 * the driver.
1263 	 */
1264 	if (ifp->if_reassign != NULL)
1265 		ifp->if_reassign(ifp, new_vnet, NULL);
1266 
1267 	/*
1268 	 * Switch to the context of the target vnet.
1269 	 */
1270 	CURVNET_SET_QUIET(new_vnet);
1271 	if_attach_internal(ifp, true);
1272 	CURVNET_RESTORE();
1273 }
1274 
1275 /*
1276  * Move an ifnet to or from another child prison/vnet, specified by the jail id.
1277  */
1278 static int
if_vmove_loan(struct thread * td,struct ifnet * ifp,char * ifname,int jid)1279 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid)
1280 {
1281 	struct prison *pr;
1282 	struct ifnet *difp;
1283 	bool found;
1284 	bool shutdown;
1285 
1286 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
1287 
1288 	/* Try to find the prison within our visibility. */
1289 	sx_slock(&allprison_lock);
1290 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1291 	sx_sunlock(&allprison_lock);
1292 	if (pr == NULL)
1293 		return (ENXIO);
1294 	prison_hold_locked(pr);
1295 	mtx_unlock(&pr->pr_mtx);
1296 
1297 	/* Do not try to move the iface from and to the same prison. */
1298 	if (pr->pr_vnet == ifp->if_vnet) {
1299 		prison_free(pr);
1300 		return (EEXIST);
1301 	}
1302 
1303 	/* Make sure the named iface does not exists in the dst. prison/vnet. */
1304 	/* XXX Lock interfaces to avoid races. */
1305 	CURVNET_SET_QUIET(pr->pr_vnet);
1306 	difp = ifunit(ifname);
1307 	CURVNET_RESTORE();
1308 	if (difp != NULL) {
1309 		prison_free(pr);
1310 		return (EEXIST);
1311 	}
1312 	sx_xlock(&ifnet_detach_sxlock);
1313 
1314 	/* Make sure the VNET is stable. */
1315 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1316 	if (shutdown) {
1317 		sx_xunlock(&ifnet_detach_sxlock);
1318 		prison_free(pr);
1319 		return (EBUSY);
1320 	}
1321 
1322 	found = if_unlink_ifnet(ifp, true);
1323 	if (! found) {
1324 		sx_xunlock(&ifnet_detach_sxlock);
1325 		prison_free(pr);
1326 		return (ENODEV);
1327 	}
1328 
1329 	/* Move the interface into the child jail/vnet. */
1330 	if_vmove(ifp, pr->pr_vnet);
1331 
1332 	/* Report the new if_xname back to the userland. */
1333 	sprintf(ifname, "%s", ifp->if_xname);
1334 
1335 	sx_xunlock(&ifnet_detach_sxlock);
1336 
1337 	prison_free(pr);
1338 	return (0);
1339 }
1340 
1341 static int
if_vmove_reclaim(struct thread * td,char * ifname,int jid)1342 if_vmove_reclaim(struct thread *td, char *ifname, int jid)
1343 {
1344 	struct prison *pr;
1345 	struct vnet *vnet_dst;
1346 	struct ifnet *ifp;
1347 	int found __diagused;
1348  	bool shutdown;
1349 
1350 	/* Try to find the prison within our visibility. */
1351 	sx_slock(&allprison_lock);
1352 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1353 	sx_sunlock(&allprison_lock);
1354 	if (pr == NULL)
1355 		return (ENXIO);
1356 	prison_hold_locked(pr);
1357 	mtx_unlock(&pr->pr_mtx);
1358 
1359 	/* Make sure the named iface exists in the source prison/vnet. */
1360 	CURVNET_SET(pr->pr_vnet);
1361 	ifp = ifunit(ifname);		/* XXX Lock to avoid races. */
1362 	if (ifp == NULL) {
1363 		CURVNET_RESTORE();
1364 		prison_free(pr);
1365 		return (ENXIO);
1366 	}
1367 
1368 	/* Do not try to move the iface from and to the same prison. */
1369 	vnet_dst = TD_TO_VNET(td);
1370 	if (vnet_dst == ifp->if_vnet) {
1371 		CURVNET_RESTORE();
1372 		prison_free(pr);
1373 		return (EEXIST);
1374 	}
1375 
1376 	/* Make sure the VNET is stable. */
1377 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1378 	if (shutdown) {
1379 		CURVNET_RESTORE();
1380 		prison_free(pr);
1381 		return (EBUSY);
1382 	}
1383 
1384 	/* Get interface back from child jail/vnet. */
1385 	found = if_unlink_ifnet(ifp, true);
1386 	MPASS(found);
1387 	sx_xlock(&ifnet_detach_sxlock);
1388 	if_vmove(ifp, vnet_dst);
1389 	sx_xunlock(&ifnet_detach_sxlock);
1390 	CURVNET_RESTORE();
1391 
1392 	/* Report the new if_xname back to the userland. */
1393 	sprintf(ifname, "%s", ifp->if_xname);
1394 
1395 	prison_free(pr);
1396 	return (0);
1397 }
1398 #endif /* VIMAGE */
1399 
1400 /*
1401  * Add a group to an interface
1402  */
1403 int
if_addgroup(struct ifnet * ifp,const char * groupname)1404 if_addgroup(struct ifnet *ifp, const char *groupname)
1405 {
1406 	struct ifg_list		*ifgl;
1407 	struct ifg_group	*ifg = NULL;
1408 	struct ifg_member	*ifgm;
1409 	int 			 new = 0;
1410 
1411 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1412 	    groupname[strlen(groupname) - 1] <= '9')
1413 		return (EINVAL);
1414 
1415 	IFNET_WLOCK();
1416 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1417 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) {
1418 			IFNET_WUNLOCK();
1419 			return (EEXIST);
1420 		}
1421 
1422 	if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) {
1423 	    	IFNET_WUNLOCK();
1424 		return (ENOMEM);
1425 	}
1426 
1427 	if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1428 		free(ifgl, M_TEMP);
1429 		IFNET_WUNLOCK();
1430 		return (ENOMEM);
1431 	}
1432 
1433 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1434 		if (!strcmp(ifg->ifg_group, groupname))
1435 			break;
1436 
1437 	if (ifg == NULL) {
1438 		if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) {
1439 			free(ifgl, M_TEMP);
1440 			free(ifgm, M_TEMP);
1441 			IFNET_WUNLOCK();
1442 			return (ENOMEM);
1443 		}
1444 		strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1445 		ifg->ifg_refcnt = 0;
1446 		CK_STAILQ_INIT(&ifg->ifg_members);
1447 		CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next);
1448 		new = 1;
1449 	}
1450 
1451 	ifg->ifg_refcnt++;
1452 	ifgl->ifgl_group = ifg;
1453 	ifgm->ifgm_ifp = ifp;
1454 
1455 	IF_ADDR_WLOCK(ifp);
1456 	CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1457 	CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1458 	IF_ADDR_WUNLOCK(ifp);
1459 
1460 	IFNET_WUNLOCK();
1461 
1462 	if (new)
1463 		EVENTHANDLER_INVOKE(group_attach_event, ifg);
1464 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1465 
1466 	return (0);
1467 }
1468 
1469 /*
1470  * Helper function to remove a group out of an interface.  Expects the global
1471  * ifnet lock to be write-locked, and drops it before returning.
1472  */
1473 static void
_if_delgroup_locked(struct ifnet * ifp,struct ifg_list * ifgl,const char * groupname)1474 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl,
1475     const char *groupname)
1476 {
1477 	struct ifg_member *ifgm;
1478 	bool freeifgl;
1479 
1480 	IFNET_WLOCK_ASSERT();
1481 
1482 	IF_ADDR_WLOCK(ifp);
1483 	CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next);
1484 	IF_ADDR_WUNLOCK(ifp);
1485 
1486 	CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) {
1487 		if (ifgm->ifgm_ifp == ifp) {
1488 			CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm,
1489 			    ifg_member, ifgm_next);
1490 			break;
1491 		}
1492 	}
1493 
1494 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1495 		CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group,
1496 		    ifg_next);
1497 		freeifgl = true;
1498 	} else {
1499 		freeifgl = false;
1500 	}
1501 	IFNET_WUNLOCK();
1502 
1503 	NET_EPOCH_WAIT();
1504 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1505 	if (freeifgl) {
1506 		EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group);
1507 		free(ifgl->ifgl_group, M_TEMP);
1508 	}
1509 	free(ifgm, M_TEMP);
1510 	free(ifgl, M_TEMP);
1511 }
1512 
1513 /*
1514  * Remove a group from an interface
1515  */
1516 int
if_delgroup(struct ifnet * ifp,const char * groupname)1517 if_delgroup(struct ifnet *ifp, const char *groupname)
1518 {
1519 	struct ifg_list *ifgl;
1520 
1521 	IFNET_WLOCK();
1522 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1523 		if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0)
1524 			break;
1525 	if (ifgl == NULL) {
1526 		IFNET_WUNLOCK();
1527 		return (ENOENT);
1528 	}
1529 
1530 	_if_delgroup_locked(ifp, ifgl, groupname);
1531 
1532 	return (0);
1533 }
1534 
1535 /*
1536  * Remove an interface from all groups
1537  */
1538 static void
if_delgroups(struct ifnet * ifp)1539 if_delgroups(struct ifnet *ifp)
1540 {
1541 	struct ifg_list *ifgl;
1542 	char groupname[IFNAMSIZ];
1543 
1544 	IFNET_WLOCK();
1545 	while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) {
1546 		strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ);
1547 		_if_delgroup_locked(ifp, ifgl, groupname);
1548 		IFNET_WLOCK();
1549 	}
1550 	IFNET_WUNLOCK();
1551 }
1552 
1553 /*
1554  * Stores all groups from an interface in memory pointed to by ifgr.
1555  */
1556 static int
if_getgroup(struct ifgroupreq * ifgr,struct ifnet * ifp)1557 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp)
1558 {
1559 	int			 len, error;
1560 	struct ifg_list		*ifgl;
1561 	struct ifg_req		 ifgrq, *ifgp;
1562 
1563 	NET_EPOCH_ASSERT();
1564 
1565 	if (ifgr->ifgr_len == 0) {
1566 		CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1567 			ifgr->ifgr_len += sizeof(struct ifg_req);
1568 		return (0);
1569 	}
1570 
1571 	len = ifgr->ifgr_len;
1572 	ifgp = ifgr->ifgr_groups;
1573 	/* XXX: wire */
1574 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1575 		if (len < sizeof(ifgrq))
1576 			return (EINVAL);
1577 		bzero(&ifgrq, sizeof ifgrq);
1578 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1579 		    sizeof(ifgrq.ifgrq_group));
1580 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req))))
1581 			return (error);
1582 		len -= sizeof(ifgrq);
1583 		ifgp++;
1584 	}
1585 
1586 	return (0);
1587 }
1588 
1589 /*
1590  * Stores all members of a group in memory pointed to by igfr
1591  */
1592 static int
if_getgroupmembers(struct ifgroupreq * ifgr)1593 if_getgroupmembers(struct ifgroupreq *ifgr)
1594 {
1595 	struct ifg_group	*ifg;
1596 	struct ifg_member	*ifgm;
1597 	struct ifg_req		 ifgrq, *ifgp;
1598 	int			 len, error;
1599 
1600 	IFNET_RLOCK();
1601 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1602 		if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0)
1603 			break;
1604 	if (ifg == NULL) {
1605 		IFNET_RUNLOCK();
1606 		return (ENOENT);
1607 	}
1608 
1609 	if (ifgr->ifgr_len == 0) {
1610 		CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1611 			ifgr->ifgr_len += sizeof(ifgrq);
1612 		IFNET_RUNLOCK();
1613 		return (0);
1614 	}
1615 
1616 	len = ifgr->ifgr_len;
1617 	ifgp = ifgr->ifgr_groups;
1618 	CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1619 		if (len < sizeof(ifgrq)) {
1620 			IFNET_RUNLOCK();
1621 			return (EINVAL);
1622 		}
1623 		bzero(&ifgrq, sizeof ifgrq);
1624 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1625 		    sizeof(ifgrq.ifgrq_member));
1626 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
1627 			IFNET_RUNLOCK();
1628 			return (error);
1629 		}
1630 		len -= sizeof(ifgrq);
1631 		ifgp++;
1632 	}
1633 	IFNET_RUNLOCK();
1634 
1635 	return (0);
1636 }
1637 
1638 /*
1639  * Return counter values from counter(9)s stored in ifnet.
1640  */
1641 uint64_t
if_get_counter_default(struct ifnet * ifp,ift_counter cnt)1642 if_get_counter_default(struct ifnet *ifp, ift_counter cnt)
1643 {
1644 
1645 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1646 
1647 	return (counter_u64_fetch(ifp->if_counters[cnt]));
1648 }
1649 
1650 /*
1651  * Increase an ifnet counter. Usually used for counters shared
1652  * between the stack and a driver, but function supports them all.
1653  */
1654 void
if_inc_counter(struct ifnet * ifp,ift_counter cnt,int64_t inc)1655 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc)
1656 {
1657 
1658 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1659 
1660 	counter_u64_add(ifp->if_counters[cnt], inc);
1661 }
1662 
1663 /*
1664  * Copy data from ifnet to userland API structure if_data.
1665  */
1666 void
if_data_copy(struct ifnet * ifp,struct if_data * ifd)1667 if_data_copy(struct ifnet *ifp, struct if_data *ifd)
1668 {
1669 
1670 	ifd->ifi_type = ifp->if_type;
1671 	ifd->ifi_physical = 0;
1672 	ifd->ifi_addrlen = ifp->if_addrlen;
1673 	ifd->ifi_hdrlen = ifp->if_hdrlen;
1674 	ifd->ifi_link_state = ifp->if_link_state;
1675 	ifd->ifi_vhid = 0;
1676 	ifd->ifi_datalen = sizeof(struct if_data);
1677 	ifd->ifi_mtu = ifp->if_mtu;
1678 	ifd->ifi_metric = ifp->if_metric;
1679 	ifd->ifi_baudrate = ifp->if_baudrate;
1680 	ifd->ifi_hwassist = ifp->if_hwassist;
1681 	ifd->ifi_epoch = ifp->if_epoch;
1682 	ifd->ifi_lastchange = ifp->if_lastchange;
1683 
1684 	ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
1685 	ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS);
1686 	ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
1687 	ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS);
1688 	ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS);
1689 	ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES);
1690 	ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES);
1691 	ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS);
1692 	ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS);
1693 	ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS);
1694 	ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS);
1695 	ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO);
1696 }
1697 
1698 /*
1699  * Initialization, destruction and refcounting functions for ifaddrs.
1700  */
1701 struct ifaddr *
ifa_alloc(size_t size,int flags)1702 ifa_alloc(size_t size, int flags)
1703 {
1704 	struct ifaddr *ifa;
1705 
1706 	KASSERT(size >= sizeof(struct ifaddr),
1707 	    ("%s: invalid size %zu", __func__, size));
1708 
1709 	ifa = malloc(size, M_IFADDR, M_ZERO | flags);
1710 	if (ifa == NULL)
1711 		return (NULL);
1712 
1713 	if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL)
1714 		goto fail;
1715 	if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL)
1716 		goto fail;
1717 	if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL)
1718 		goto fail;
1719 	if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL)
1720 		goto fail;
1721 
1722 	refcount_init(&ifa->ifa_refcnt, 1);
1723 
1724 	return (ifa);
1725 
1726 fail:
1727 	/* free(NULL) is okay */
1728 	counter_u64_free(ifa->ifa_opackets);
1729 	counter_u64_free(ifa->ifa_ipackets);
1730 	counter_u64_free(ifa->ifa_obytes);
1731 	counter_u64_free(ifa->ifa_ibytes);
1732 	free(ifa, M_IFADDR);
1733 
1734 	return (NULL);
1735 }
1736 
1737 void
ifa_ref(struct ifaddr * ifa)1738 ifa_ref(struct ifaddr *ifa)
1739 {
1740 	u_int old __diagused;
1741 
1742 	old = refcount_acquire(&ifa->ifa_refcnt);
1743 	KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa));
1744 }
1745 
1746 int
ifa_try_ref(struct ifaddr * ifa)1747 ifa_try_ref(struct ifaddr *ifa)
1748 {
1749 
1750 	NET_EPOCH_ASSERT();
1751 	return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt));
1752 }
1753 
1754 static void
ifa_destroy(epoch_context_t ctx)1755 ifa_destroy(epoch_context_t ctx)
1756 {
1757 	struct ifaddr *ifa;
1758 
1759 	ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx);
1760 	counter_u64_free(ifa->ifa_opackets);
1761 	counter_u64_free(ifa->ifa_ipackets);
1762 	counter_u64_free(ifa->ifa_obytes);
1763 	counter_u64_free(ifa->ifa_ibytes);
1764 	free(ifa, M_IFADDR);
1765 }
1766 
1767 void
ifa_free(struct ifaddr * ifa)1768 ifa_free(struct ifaddr *ifa)
1769 {
1770 
1771 	if (refcount_release(&ifa->ifa_refcnt))
1772 		NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx);
1773 }
1774 
1775 /*
1776  * XXX: Because sockaddr_dl has deeper structure than the sockaddr
1777  * structs used to represent other address families, it is necessary
1778  * to perform a different comparison.
1779  */
1780 static bool
sa_dl_equal(const struct sockaddr * a,const struct sockaddr * b)1781 sa_dl_equal(const struct sockaddr *a, const struct sockaddr *b)
1782 {
1783 	const struct sockaddr_dl *sdl1 = (const struct sockaddr_dl *)a;
1784 	const struct sockaddr_dl *sdl2 = (const struct sockaddr_dl *)b;
1785 
1786 	return (sdl1->sdl_len == sdl2->sdl_len &&
1787 	    bcmp(sdl1->sdl_data + sdl1->sdl_nlen,
1788 	    sdl2->sdl_data + sdl2->sdl_nlen, sdl1->sdl_alen) == 0);
1789 }
1790 
1791 /*
1792  * Locate an interface based on a complete address.
1793  */
1794 /*ARGSUSED*/
1795 struct ifaddr *
ifa_ifwithaddr(const struct sockaddr * addr)1796 ifa_ifwithaddr(const struct sockaddr *addr)
1797 {
1798 	struct ifnet *ifp;
1799 	struct ifaddr *ifa;
1800 
1801 	NET_EPOCH_ASSERT();
1802 
1803 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1804 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1805 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1806 				continue;
1807 			if (sa_equal(addr, ifa->ifa_addr)) {
1808 				goto done;
1809 			}
1810 			/* IP6 doesn't have broadcast */
1811 			if ((ifp->if_flags & IFF_BROADCAST) &&
1812 			    ifa->ifa_broadaddr &&
1813 			    ifa->ifa_broadaddr->sa_len != 0 &&
1814 			    sa_equal(ifa->ifa_broadaddr, addr)) {
1815 				goto done;
1816 			}
1817 		}
1818 	}
1819 	ifa = NULL;
1820 done:
1821 	return (ifa);
1822 }
1823 
1824 int
ifa_ifwithaddr_check(const struct sockaddr * addr)1825 ifa_ifwithaddr_check(const struct sockaddr *addr)
1826 {
1827 	struct epoch_tracker et;
1828 	int rc;
1829 
1830 	NET_EPOCH_ENTER(et);
1831 	rc = (ifa_ifwithaddr(addr) != NULL);
1832 	NET_EPOCH_EXIT(et);
1833 	return (rc);
1834 }
1835 
1836 /*
1837  * Locate an interface based on the broadcast address.
1838  */
1839 /* ARGSUSED */
1840 struct ifaddr *
ifa_ifwithbroadaddr(const struct sockaddr * addr,int fibnum)1841 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum)
1842 {
1843 	struct ifnet *ifp;
1844 	struct ifaddr *ifa;
1845 
1846 	NET_EPOCH_ASSERT();
1847 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1848 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1849 			continue;
1850 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1851 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1852 				continue;
1853 			if ((ifp->if_flags & IFF_BROADCAST) &&
1854 			    ifa->ifa_broadaddr &&
1855 			    ifa->ifa_broadaddr->sa_len != 0 &&
1856 			    sa_equal(ifa->ifa_broadaddr, addr)) {
1857 				goto done;
1858 			}
1859 		}
1860 	}
1861 	ifa = NULL;
1862 done:
1863 	return (ifa);
1864 }
1865 
1866 /*
1867  * Locate the point to point interface with a given destination address.
1868  */
1869 /*ARGSUSED*/
1870 struct ifaddr *
ifa_ifwithdstaddr(const struct sockaddr * addr,int fibnum)1871 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum)
1872 {
1873 	struct ifnet *ifp;
1874 	struct ifaddr *ifa;
1875 
1876 	NET_EPOCH_ASSERT();
1877 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1878 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1879 			continue;
1880 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1881 			continue;
1882 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1883 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1884 				continue;
1885 			if (ifa->ifa_dstaddr != NULL &&
1886 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1887 				goto done;
1888 			}
1889 		}
1890 	}
1891 	ifa = NULL;
1892 done:
1893 	return (ifa);
1894 }
1895 
1896 /*
1897  * Find an interface on a specific network.  If many, choice
1898  * is most specific found.
1899  */
1900 struct ifaddr *
ifa_ifwithnet(const struct sockaddr * addr,int ignore_ptp,int fibnum)1901 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum)
1902 {
1903 	struct ifnet *ifp;
1904 	struct ifaddr *ifa;
1905 	struct ifaddr *ifa_maybe = NULL;
1906 	u_int af = addr->sa_family;
1907 	const char *addr_data = addr->sa_data, *cplim;
1908 
1909 	NET_EPOCH_ASSERT();
1910 	/*
1911 	 * AF_LINK addresses can be looked up directly by their index number,
1912 	 * so do that if we can.
1913 	 */
1914 	if (af == AF_LINK) {
1915 		ifp = ifnet_byindex(
1916 		    ((const struct sockaddr_dl *)addr)->sdl_index);
1917 		return (ifp ? ifp->if_addr : NULL);
1918 	}
1919 
1920 	/*
1921 	 * Scan though each interface, looking for ones that have addresses
1922 	 * in this address family and the requested fib.
1923 	 */
1924 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1925 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1926 			continue;
1927 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1928 			const char *cp, *cp2, *cp3;
1929 
1930 			if (ifa->ifa_addr->sa_family != af)
1931 next:				continue;
1932 			if (af == AF_INET &&
1933 			    ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) {
1934 				/*
1935 				 * This is a bit broken as it doesn't
1936 				 * take into account that the remote end may
1937 				 * be a single node in the network we are
1938 				 * looking for.
1939 				 * The trouble is that we don't know the
1940 				 * netmask for the remote end.
1941 				 */
1942 				if (ifa->ifa_dstaddr != NULL &&
1943 				    sa_equal(addr, ifa->ifa_dstaddr)) {
1944 					goto done;
1945 				}
1946 			} else {
1947 				/*
1948 				 * Scan all the bits in the ifa's address.
1949 				 * If a bit dissagrees with what we are
1950 				 * looking for, mask it with the netmask
1951 				 * to see if it really matters.
1952 				 * (A byte at a time)
1953 				 */
1954 				if (ifa->ifa_netmask == 0)
1955 					continue;
1956 				cp = addr_data;
1957 				cp2 = ifa->ifa_addr->sa_data;
1958 				cp3 = ifa->ifa_netmask->sa_data;
1959 				cplim = ifa->ifa_netmask->sa_len
1960 					+ (char *)ifa->ifa_netmask;
1961 				while (cp3 < cplim)
1962 					if ((*cp++ ^ *cp2++) & *cp3++)
1963 						goto next; /* next address! */
1964 				/*
1965 				 * If the netmask of what we just found
1966 				 * is more specific than what we had before
1967 				 * (if we had one), or if the virtual status
1968 				 * of new prefix is better than of the old one,
1969 				 * then remember the new one before continuing
1970 				 * to search for an even better one.
1971 				 */
1972 				if (ifa_maybe == NULL ||
1973 				    ifa_preferred(ifa_maybe, ifa) ||
1974 				    rn_refines((caddr_t)ifa->ifa_netmask,
1975 				    (caddr_t)ifa_maybe->ifa_netmask)) {
1976 					ifa_maybe = ifa;
1977 				}
1978 			}
1979 		}
1980 	}
1981 	ifa = ifa_maybe;
1982 	ifa_maybe = NULL;
1983 done:
1984 	return (ifa);
1985 }
1986 
1987 /*
1988  * Find an interface address specific to an interface best matching
1989  * a given address.
1990  */
1991 struct ifaddr *
ifaof_ifpforaddr(const struct sockaddr * addr,struct ifnet * ifp)1992 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1993 {
1994 	struct ifaddr *ifa;
1995 	const char *cp, *cp2, *cp3;
1996 	char *cplim;
1997 	struct ifaddr *ifa_maybe = NULL;
1998 	u_int af = addr->sa_family;
1999 
2000 	if (af >= AF_MAX)
2001 		return (NULL);
2002 
2003 	NET_EPOCH_ASSERT();
2004 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2005 		if (ifa->ifa_addr->sa_family != af)
2006 			continue;
2007 		if (ifa_maybe == NULL)
2008 			ifa_maybe = ifa;
2009 		if (ifa->ifa_netmask == 0) {
2010 			if (sa_equal(addr, ifa->ifa_addr) ||
2011 			    (ifa->ifa_dstaddr &&
2012 			    sa_equal(addr, ifa->ifa_dstaddr)))
2013 				goto done;
2014 			continue;
2015 		}
2016 		if (ifp->if_flags & IFF_POINTOPOINT) {
2017 			if (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))
2018 				goto done;
2019 		} else {
2020 			cp = addr->sa_data;
2021 			cp2 = ifa->ifa_addr->sa_data;
2022 			cp3 = ifa->ifa_netmask->sa_data;
2023 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2024 			for (; cp3 < cplim; cp3++)
2025 				if ((*cp++ ^ *cp2++) & *cp3)
2026 					break;
2027 			if (cp3 == cplim)
2028 				goto done;
2029 		}
2030 	}
2031 	ifa = ifa_maybe;
2032 done:
2033 	return (ifa);
2034 }
2035 
2036 /*
2037  * See whether new ifa is better than current one:
2038  * 1) A non-virtual one is preferred over virtual.
2039  * 2) A virtual in master state preferred over any other state.
2040  *
2041  * Used in several address selecting functions.
2042  */
2043 int
ifa_preferred(struct ifaddr * cur,struct ifaddr * next)2044 ifa_preferred(struct ifaddr *cur, struct ifaddr *next)
2045 {
2046 
2047 	return (cur->ifa_carp && (!next->ifa_carp ||
2048 	    ((*carp_master_p)(next) && !(*carp_master_p)(cur))));
2049 }
2050 
2051 struct sockaddr_dl *
link_alloc_sdl(size_t size,int flags)2052 link_alloc_sdl(size_t size, int flags)
2053 {
2054 
2055 	return (malloc(size, M_TEMP, flags));
2056 }
2057 
2058 void
link_free_sdl(struct sockaddr * sa)2059 link_free_sdl(struct sockaddr *sa)
2060 {
2061 	free(sa, M_TEMP);
2062 }
2063 
2064 /*
2065  * Fills in given sdl with interface basic info.
2066  * Returns pointer to filled sdl.
2067  */
2068 struct sockaddr_dl *
link_init_sdl(struct ifnet * ifp,struct sockaddr * paddr,u_char iftype)2069 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype)
2070 {
2071 	struct sockaddr_dl *sdl;
2072 
2073 	sdl = (struct sockaddr_dl *)paddr;
2074 	memset(sdl, 0, sizeof(struct sockaddr_dl));
2075 	sdl->sdl_len = sizeof(struct sockaddr_dl);
2076 	sdl->sdl_family = AF_LINK;
2077 	sdl->sdl_index = ifp->if_index;
2078 	sdl->sdl_type = iftype;
2079 
2080 	return (sdl);
2081 }
2082 
2083 void	(*vlan_link_state_p)(struct ifnet *);	/* XXX: private from if_vlan */
2084 void	(*vlan_trunk_cap_p)(struct ifnet *);		/* XXX: private from if_vlan */
2085 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *);
2086 struct	ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t);
2087 int	(*vlan_tag_p)(struct ifnet *, uint16_t *);
2088 int	(*vlan_pcp_p)(struct ifnet *, uint16_t *);
2089 int	(*vlan_setcookie_p)(struct ifnet *, void *);
2090 void	*(*vlan_cookie_p)(struct ifnet *);
2091 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
2092 
2093 /*
2094  * Handle a change in the interface link state. To avoid LORs
2095  * between driver lock and upper layer locks, as well as possible
2096  * recursions, we post event to taskqueue, and all job
2097  * is done in static do_link_state_change().
2098  */
2099 void
if_link_state_change(struct ifnet * ifp,int link_state)2100 if_link_state_change(struct ifnet *ifp, int link_state)
2101 {
2102 	/* Return if state hasn't changed. */
2103 	if (ifp->if_link_state == link_state)
2104 		return;
2105 
2106 	ifp->if_link_state = link_state;
2107 
2108 	/* XXXGL: reference ifp? */
2109 	taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask);
2110 }
2111 
2112 static void
do_link_state_change(void * arg,int pending)2113 do_link_state_change(void *arg, int pending)
2114 {
2115 	struct ifnet *ifp;
2116 	int link_state;
2117 
2118 	ifp = arg;
2119 	link_state = ifp->if_link_state;
2120 
2121 	CURVNET_SET(ifp->if_vnet);
2122 	rt_ifmsg(ifp, 0);
2123 	if (ifp->if_vlantrunk != NULL)
2124 		(*vlan_link_state_p)(ifp);
2125 
2126 	if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) &&
2127 	    ifp->if_l2com != NULL)
2128 		(*ng_ether_link_state_p)(ifp, link_state);
2129 	if (ifp->if_carp)
2130 		(*carp_linkstate_p)(ifp);
2131 	if (ifp->if_bridge)
2132 		ifp->if_bridge_linkstate(ifp);
2133 	if (ifp->if_lagg)
2134 		(*lagg_linkstate_p)(ifp, link_state);
2135 
2136 	if (IS_DEFAULT_VNET(curvnet))
2137 		devctl_notify("IFNET", ifp->if_xname,
2138 		    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN",
2139 		    NULL);
2140 	if (pending > 1)
2141 		if_printf(ifp, "%d link states coalesced\n", pending);
2142 	if (log_link_state_change)
2143 		if_printf(ifp, "link state changed to %s\n",
2144 		    (link_state == LINK_STATE_UP) ? "UP" : "DOWN" );
2145 	EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
2146 	CURVNET_RESTORE();
2147 }
2148 
2149 /*
2150  * Mark an interface down and notify protocols of
2151  * the transition.
2152  */
2153 void
if_down(struct ifnet * ifp)2154 if_down(struct ifnet *ifp)
2155 {
2156 
2157 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN);
2158 
2159 	ifp->if_flags &= ~IFF_UP;
2160 	getmicrotime(&ifp->if_lastchange);
2161 	ifp->if_qflush(ifp);
2162 
2163 	if (ifp->if_carp)
2164 		(*carp_linkstate_p)(ifp);
2165 	rt_ifmsg(ifp, IFF_UP);
2166 }
2167 
2168 /*
2169  * Mark an interface up and notify protocols of
2170  * the transition.
2171  */
2172 void
if_up(struct ifnet * ifp)2173 if_up(struct ifnet *ifp)
2174 {
2175 
2176 	ifp->if_flags |= IFF_UP;
2177 	getmicrotime(&ifp->if_lastchange);
2178 	if (ifp->if_carp)
2179 		(*carp_linkstate_p)(ifp);
2180 	rt_ifmsg(ifp, IFF_UP);
2181 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP);
2182 }
2183 
2184 /*
2185  * Flush an interface queue.
2186  */
2187 void
if_qflush(struct ifnet * ifp)2188 if_qflush(struct ifnet *ifp)
2189 {
2190 	struct mbuf *m, *n;
2191 	struct ifaltq *ifq;
2192 
2193 	ifq = &ifp->if_snd;
2194 	IFQ_LOCK(ifq);
2195 #ifdef ALTQ
2196 	if (ALTQ_IS_ENABLED(ifq))
2197 		ALTQ_PURGE(ifq);
2198 #endif
2199 	n = ifq->ifq_head;
2200 	while ((m = n) != NULL) {
2201 		n = m->m_nextpkt;
2202 		m_freem(m);
2203 	}
2204 	ifq->ifq_head = 0;
2205 	ifq->ifq_tail = 0;
2206 	ifq->ifq_len = 0;
2207 	IFQ_UNLOCK(ifq);
2208 }
2209 
2210 /*
2211  * Map interface name to interface structure pointer, with or without
2212  * returning a reference.
2213  */
2214 struct ifnet *
ifunit_ref(const char * name)2215 ifunit_ref(const char *name)
2216 {
2217 	struct epoch_tracker et;
2218 	struct ifnet *ifp;
2219 
2220 	NET_EPOCH_ENTER(et);
2221 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2222 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 &&
2223 		    !(ifp->if_flags & IFF_DYING))
2224 			break;
2225 	}
2226 	if (ifp != NULL) {
2227 		if_ref(ifp);
2228 		MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
2229 	}
2230 
2231 	NET_EPOCH_EXIT(et);
2232 	return (ifp);
2233 }
2234 
2235 struct ifnet *
ifunit(const char * name)2236 ifunit(const char *name)
2237 {
2238 	struct epoch_tracker et;
2239 	struct ifnet *ifp;
2240 
2241 	NET_EPOCH_ENTER(et);
2242 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2243 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0)
2244 			break;
2245 	}
2246 	NET_EPOCH_EXIT(et);
2247 	return (ifp);
2248 }
2249 
2250 void *
ifr_buffer_get_buffer(void * data)2251 ifr_buffer_get_buffer(void *data)
2252 {
2253 	union ifreq_union *ifrup;
2254 
2255 	ifrup = data;
2256 #ifdef COMPAT_FREEBSD32
2257 	if (SV_CURPROC_FLAG(SV_ILP32))
2258 		return ((void *)(uintptr_t)
2259 		    ifrup->ifr32.ifr_ifru.ifru_buffer.buffer);
2260 #endif
2261 	return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer);
2262 }
2263 
2264 static void
ifr_buffer_set_buffer_null(void * data)2265 ifr_buffer_set_buffer_null(void *data)
2266 {
2267 	union ifreq_union *ifrup;
2268 
2269 	ifrup = data;
2270 #ifdef COMPAT_FREEBSD32
2271 	if (SV_CURPROC_FLAG(SV_ILP32))
2272 		ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0;
2273 	else
2274 #endif
2275 		ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL;
2276 }
2277 
2278 size_t
ifr_buffer_get_length(void * data)2279 ifr_buffer_get_length(void *data)
2280 {
2281 	union ifreq_union *ifrup;
2282 
2283 	ifrup = data;
2284 #ifdef COMPAT_FREEBSD32
2285 	if (SV_CURPROC_FLAG(SV_ILP32))
2286 		return (ifrup->ifr32.ifr_ifru.ifru_buffer.length);
2287 #endif
2288 	return (ifrup->ifr.ifr_ifru.ifru_buffer.length);
2289 }
2290 
2291 static void
ifr_buffer_set_length(void * data,size_t len)2292 ifr_buffer_set_length(void *data, size_t len)
2293 {
2294 	union ifreq_union *ifrup;
2295 
2296 	ifrup = data;
2297 #ifdef COMPAT_FREEBSD32
2298 	if (SV_CURPROC_FLAG(SV_ILP32))
2299 		ifrup->ifr32.ifr_ifru.ifru_buffer.length = len;
2300 	else
2301 #endif
2302 		ifrup->ifr.ifr_ifru.ifru_buffer.length = len;
2303 }
2304 
2305 void *
ifr_data_get_ptr(void * ifrp)2306 ifr_data_get_ptr(void *ifrp)
2307 {
2308 	union ifreq_union *ifrup;
2309 
2310 	ifrup = ifrp;
2311 #ifdef COMPAT_FREEBSD32
2312 	if (SV_CURPROC_FLAG(SV_ILP32))
2313 		return ((void *)(uintptr_t)
2314 		    ifrup->ifr32.ifr_ifru.ifru_data);
2315 #endif
2316 		return (ifrup->ifr.ifr_ifru.ifru_data);
2317 }
2318 
2319 struct ifcap_nv_bit_name {
2320 	uint64_t cap_bit;
2321 	const char *cap_name;
2322 };
2323 #define CAPNV(x) {.cap_bit = IFCAP_##x, \
2324     .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) }
2325 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = {
2326 	CAPNV(RXCSUM),
2327 	CAPNV(TXCSUM),
2328 	CAPNV(NETCONS),
2329 	CAPNV(VLAN_MTU),
2330 	CAPNV(VLAN_HWTAGGING),
2331 	CAPNV(JUMBO_MTU),
2332 	CAPNV(POLLING),
2333 	CAPNV(VLAN_HWCSUM),
2334 	CAPNV(TSO4),
2335 	CAPNV(TSO6),
2336 	CAPNV(LRO),
2337 	CAPNV(WOL_UCAST),
2338 	CAPNV(WOL_MCAST),
2339 	CAPNV(WOL_MAGIC),
2340 	CAPNV(TOE4),
2341 	CAPNV(TOE6),
2342 	CAPNV(VLAN_HWFILTER),
2343 	CAPNV(VLAN_HWTSO),
2344 	CAPNV(LINKSTATE),
2345 	CAPNV(NETMAP),
2346 	CAPNV(RXCSUM_IPV6),
2347 	CAPNV(TXCSUM_IPV6),
2348 	CAPNV(HWSTATS),
2349 	CAPNV(TXRTLMT),
2350 	CAPNV(HWRXTSTMP),
2351 	CAPNV(MEXTPG),
2352 	CAPNV(TXTLS4),
2353 	CAPNV(TXTLS6),
2354 	CAPNV(VXLAN_HWCSUM),
2355 	CAPNV(VXLAN_HWTSO),
2356 	CAPNV(TXTLS_RTLMT),
2357 	{0, NULL}
2358 };
2359 #define CAP2NV(x) {.cap_bit = IFCAP2_BIT(IFCAP2_##x), \
2360     .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) }
2361 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = {
2362 	CAP2NV(RXTLS4),
2363 	CAP2NV(RXTLS6),
2364 	CAP2NV(IPSEC_OFFLOAD),
2365 	{0, NULL}
2366 };
2367 #undef CAPNV
2368 #undef CAP2NV
2369 
2370 int
if_capnv_to_capint(const nvlist_t * nv,int * old_cap,const struct ifcap_nv_bit_name * nn,bool all)2371 if_capnv_to_capint(const nvlist_t *nv, int *old_cap,
2372     const struct ifcap_nv_bit_name *nn, bool all)
2373 {
2374 	int i, res;
2375 
2376 	res = 0;
2377 	for (i = 0; nn[i].cap_name != NULL; i++) {
2378 		if (nvlist_exists_bool(nv, nn[i].cap_name)) {
2379 			if (all || nvlist_get_bool(nv, nn[i].cap_name))
2380 				res |= nn[i].cap_bit;
2381 		} else {
2382 			res |= *old_cap & nn[i].cap_bit;
2383 		}
2384 	}
2385 	return (res);
2386 }
2387 
2388 void
if_capint_to_capnv(nvlist_t * nv,const struct ifcap_nv_bit_name * nn,int ifr_cap,int ifr_req)2389 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn,
2390     int ifr_cap, int ifr_req)
2391 {
2392 	int i;
2393 
2394 	for (i = 0; nn[i].cap_name != NULL; i++) {
2395 		if ((nn[i].cap_bit & ifr_cap) != 0) {
2396 			nvlist_add_bool(nv, nn[i].cap_name,
2397 			    (nn[i].cap_bit & ifr_req) != 0);
2398 		}
2399 	}
2400 }
2401 
2402 /*
2403  * Hardware specific interface ioctls.
2404  */
2405 int
ifhwioctl(u_long cmd,struct ifnet * ifp,caddr_t data,struct thread * td)2406 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
2407 {
2408 	struct ifreq *ifr;
2409 	int error = 0, do_ifup = 0;
2410 	int new_flags, temp_flags;
2411 	size_t descrlen, nvbuflen;
2412 	char *descrbuf;
2413 	char new_name[IFNAMSIZ];
2414 	void *buf;
2415 	nvlist_t *nvcap;
2416 	struct siocsifcapnv_driver_data drv_ioctl_data;
2417 
2418 	ifr = (struct ifreq *)data;
2419 	switch (cmd) {
2420 	case SIOCGIFINDEX:
2421 		ifr->ifr_index = ifp->if_index;
2422 		break;
2423 
2424 	case SIOCGIFFLAGS:
2425 		temp_flags = ifp->if_flags | ifp->if_drv_flags;
2426 		ifr->ifr_flags = temp_flags & 0xffff;
2427 		ifr->ifr_flagshigh = temp_flags >> 16;
2428 		break;
2429 
2430 	case SIOCGIFCAP:
2431 		ifr->ifr_reqcap = ifp->if_capabilities;
2432 		ifr->ifr_curcap = ifp->if_capenable;
2433 		break;
2434 
2435 	case SIOCGIFCAPNV:
2436 		if ((ifp->if_capabilities & IFCAP_NV) == 0) {
2437 			error = EINVAL;
2438 			break;
2439 		}
2440 		buf = NULL;
2441 		nvcap = nvlist_create(0);
2442 		for (;;) {
2443 			if_capint_to_capnv(nvcap, ifcap_nv_bit_names,
2444 			    ifp->if_capabilities, ifp->if_capenable);
2445 			if_capint_to_capnv(nvcap, ifcap2_nv_bit_names,
2446 			    ifp->if_capabilities2, ifp->if_capenable2);
2447 			error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV,
2448 			    __DECONST(caddr_t, nvcap));
2449 			if (error != 0) {
2450 				if_printf(ifp,
2451 			    "SIOCGIFCAPNV driver mistake: nvlist error %d\n",
2452 				    error);
2453 				break;
2454 			}
2455 			buf = nvlist_pack(nvcap, &nvbuflen);
2456 			if (buf == NULL) {
2457 				error = nvlist_error(nvcap);
2458 				if (error == 0)
2459 					error = EDOOFUS;
2460 				break;
2461 			}
2462 			if (nvbuflen > ifr->ifr_cap_nv.buf_length) {
2463 				ifr->ifr_cap_nv.length = nvbuflen;
2464 				ifr->ifr_cap_nv.buffer = NULL;
2465 				error = EFBIG;
2466 				break;
2467 			}
2468 			ifr->ifr_cap_nv.length = nvbuflen;
2469 			error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen);
2470 			break;
2471 		}
2472 		free(buf, M_NVLIST);
2473 		nvlist_destroy(nvcap);
2474 		break;
2475 
2476 	case SIOCGIFDATA:
2477 	{
2478 		struct if_data ifd;
2479 
2480 		/* Ensure uninitialised padding is not leaked. */
2481 		memset(&ifd, 0, sizeof(ifd));
2482 
2483 		if_data_copy(ifp, &ifd);
2484 		error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd));
2485 		break;
2486 	}
2487 
2488 #ifdef MAC
2489 	case SIOCGIFMAC:
2490 		error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp);
2491 		break;
2492 #endif
2493 
2494 	case SIOCGIFMETRIC:
2495 		ifr->ifr_metric = ifp->if_metric;
2496 		break;
2497 
2498 	case SIOCGIFMTU:
2499 		ifr->ifr_mtu = ifp->if_mtu;
2500 		break;
2501 
2502 	case SIOCGIFPHYS:
2503 		/* XXXGL: did this ever worked? */
2504 		ifr->ifr_phys = 0;
2505 		break;
2506 
2507 	case SIOCGIFDESCR:
2508 		error = 0;
2509 		sx_slock(&ifdescr_sx);
2510 		if (ifp->if_description == NULL)
2511 			error = ENOMSG;
2512 		else {
2513 			/* space for terminating nul */
2514 			descrlen = strlen(ifp->if_description) + 1;
2515 			if (ifr_buffer_get_length(ifr) < descrlen)
2516 				ifr_buffer_set_buffer_null(ifr);
2517 			else
2518 				error = copyout(ifp->if_description,
2519 				    ifr_buffer_get_buffer(ifr), descrlen);
2520 			ifr_buffer_set_length(ifr, descrlen);
2521 		}
2522 		sx_sunlock(&ifdescr_sx);
2523 		break;
2524 
2525 	case SIOCSIFDESCR:
2526 		error = priv_check(td, PRIV_NET_SETIFDESCR);
2527 		if (error)
2528 			return (error);
2529 
2530 		/*
2531 		 * Copy only (length-1) bytes to make sure that
2532 		 * if_description is always nul terminated.  The
2533 		 * length parameter is supposed to count the
2534 		 * terminating nul in.
2535 		 */
2536 		if (ifr_buffer_get_length(ifr) > ifdescr_maxlen)
2537 			return (ENAMETOOLONG);
2538 		else if (ifr_buffer_get_length(ifr) == 0)
2539 			descrbuf = NULL;
2540 		else {
2541 			descrbuf = if_allocdescr(ifr_buffer_get_length(ifr), M_WAITOK);
2542 			error = copyin(ifr_buffer_get_buffer(ifr), descrbuf,
2543 			    ifr_buffer_get_length(ifr) - 1);
2544 			if (error) {
2545 				if_freedescr(descrbuf);
2546 				break;
2547 			}
2548 		}
2549 
2550 		if_setdescr(ifp, descrbuf);
2551 		getmicrotime(&ifp->if_lastchange);
2552 		break;
2553 
2554 	case SIOCGIFFIB:
2555 		ifr->ifr_fib = ifp->if_fib;
2556 		break;
2557 
2558 	case SIOCSIFFIB:
2559 		error = priv_check(td, PRIV_NET_SETIFFIB);
2560 		if (error)
2561 			return (error);
2562 		if (ifr->ifr_fib >= rt_numfibs)
2563 			return (EINVAL);
2564 
2565 		ifp->if_fib = ifr->ifr_fib;
2566 		break;
2567 
2568 	case SIOCSIFFLAGS:
2569 		error = priv_check(td, PRIV_NET_SETIFFLAGS);
2570 		if (error)
2571 			return (error);
2572 		/*
2573 		 * Currently, no driver owned flags pass the IFF_CANTCHANGE
2574 		 * check, so we don't need special handling here yet.
2575 		 */
2576 		new_flags = (ifr->ifr_flags & 0xffff) |
2577 		    (ifr->ifr_flagshigh << 16);
2578 		if (ifp->if_flags & IFF_UP &&
2579 		    (new_flags & IFF_UP) == 0) {
2580 			if_down(ifp);
2581 		} else if (new_flags & IFF_UP &&
2582 		    (ifp->if_flags & IFF_UP) == 0) {
2583 			do_ifup = 1;
2584 		}
2585 
2586 		/*
2587 		 * See if the promiscuous mode or allmulti bits are about to
2588 		 * flip.  They require special handling because in-kernel
2589 		 * consumers may indepdently toggle them.
2590 		 */
2591 		if_setppromisc(ifp, new_flags & IFF_PPROMISC);
2592 		if ((ifp->if_flags ^ new_flags) & IFF_PALLMULTI) {
2593 			if (new_flags & IFF_PALLMULTI)
2594 				ifp->if_flags |= IFF_ALLMULTI;
2595 			else if (ifp->if_amcount == 0)
2596 				ifp->if_flags &= ~IFF_ALLMULTI;
2597 		}
2598 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2599 			(new_flags &~ IFF_CANTCHANGE);
2600 		if (ifp->if_ioctl) {
2601 			(void) (*ifp->if_ioctl)(ifp, cmd, data);
2602 		}
2603 		if (do_ifup)
2604 			if_up(ifp);
2605 		getmicrotime(&ifp->if_lastchange);
2606 		break;
2607 
2608 	case SIOCSIFCAP:
2609 		error = priv_check(td, PRIV_NET_SETIFCAP);
2610 		if (error != 0)
2611 			return (error);
2612 		if (ifp->if_ioctl == NULL)
2613 			return (EOPNOTSUPP);
2614 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
2615 			return (EINVAL);
2616 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2617 		if (error == 0)
2618 			getmicrotime(&ifp->if_lastchange);
2619 		break;
2620 
2621 	case SIOCSIFCAPNV:
2622 		error = priv_check(td, PRIV_NET_SETIFCAP);
2623 		if (error != 0)
2624 			return (error);
2625 		if (ifp->if_ioctl == NULL)
2626 			return (EOPNOTSUPP);
2627 		if ((ifp->if_capabilities & IFCAP_NV) == 0)
2628 			return (EINVAL);
2629 		if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE)
2630 			return (EINVAL);
2631 		nvcap = NULL;
2632 		buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK);
2633 		for (;;) {
2634 			error = copyin(ifr->ifr_cap_nv.buffer, buf,
2635 			    ifr->ifr_cap_nv.length);
2636 			if (error != 0)
2637 				break;
2638 			nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0);
2639 			if (nvcap == NULL) {
2640 				error = EINVAL;
2641 				break;
2642 			}
2643 			drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap,
2644 			    &ifp->if_capenable, ifcap_nv_bit_names, false);
2645 			if ((drv_ioctl_data.reqcap &
2646 			    ~ifp->if_capabilities) != 0) {
2647 				error = EINVAL;
2648 				break;
2649 			}
2650 			drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap,
2651 			    &ifp->if_capenable2, ifcap2_nv_bit_names, false);
2652 			if ((drv_ioctl_data.reqcap2 &
2653 			    ~ifp->if_capabilities2) != 0) {
2654 				error = EINVAL;
2655 				break;
2656 			}
2657 			drv_ioctl_data.nvcap = nvcap;
2658 			error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV,
2659 			    (caddr_t)&drv_ioctl_data);
2660 			break;
2661 		}
2662 		nvlist_destroy(nvcap);
2663 		free(buf, M_TEMP);
2664 		if (error == 0)
2665 			getmicrotime(&ifp->if_lastchange);
2666 		break;
2667 
2668 #ifdef MAC
2669 	case SIOCSIFMAC:
2670 		error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp);
2671 		break;
2672 #endif
2673 
2674 	case SIOCSIFNAME:
2675 		error = priv_check(td, PRIV_NET_SETIFNAME);
2676 		if (error)
2677 			return (error);
2678 		error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ,
2679 		    NULL);
2680 		if (error != 0)
2681 			return (error);
2682 		error = if_rename(ifp, new_name);
2683 		break;
2684 
2685 #ifdef VIMAGE
2686 	case SIOCSIFVNET:
2687 		error = priv_check(td, PRIV_NET_SETIFVNET);
2688 		if (error)
2689 			return (error);
2690 		error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid);
2691 		break;
2692 #endif
2693 
2694 	case SIOCSIFMETRIC:
2695 		error = priv_check(td, PRIV_NET_SETIFMETRIC);
2696 		if (error)
2697 			return (error);
2698 		ifp->if_metric = ifr->ifr_metric;
2699 		getmicrotime(&ifp->if_lastchange);
2700 		break;
2701 
2702 	case SIOCSIFPHYS:
2703 		error = priv_check(td, PRIV_NET_SETIFPHYS);
2704 		if (error)
2705 			return (error);
2706 		if (ifp->if_ioctl == NULL)
2707 			return (EOPNOTSUPP);
2708 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2709 		if (error == 0)
2710 			getmicrotime(&ifp->if_lastchange);
2711 		break;
2712 
2713 	case SIOCSIFMTU:
2714 	{
2715 		u_long oldmtu = ifp->if_mtu;
2716 
2717 		error = priv_check(td, PRIV_NET_SETIFMTU);
2718 		if (error)
2719 			return (error);
2720 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
2721 			return (EINVAL);
2722 		if (ifp->if_ioctl == NULL)
2723 			return (EOPNOTSUPP);
2724 		/* Disallow MTU changes on bridge member interfaces. */
2725 		if (ifp->if_bridge)
2726 			return (EOPNOTSUPP);
2727 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2728 		if (error == 0) {
2729 			getmicrotime(&ifp->if_lastchange);
2730 			rt_ifmsg(ifp, 0);
2731 #ifdef INET
2732 			DEBUGNET_NOTIFY_MTU(ifp);
2733 #endif
2734 		}
2735 		/*
2736 		 * If the link MTU changed, do network layer specific procedure.
2737 		 */
2738 		if (ifp->if_mtu != oldmtu)
2739 			if_notifymtu(ifp);
2740 		break;
2741 	}
2742 
2743 	case SIOCADDMULTI:
2744 	case SIOCDELMULTI:
2745 		if (cmd == SIOCADDMULTI)
2746 			error = priv_check(td, PRIV_NET_ADDMULTI);
2747 		else
2748 			error = priv_check(td, PRIV_NET_DELMULTI);
2749 		if (error)
2750 			return (error);
2751 
2752 		/* Don't allow group membership on non-multicast interfaces. */
2753 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
2754 			return (EOPNOTSUPP);
2755 
2756 		/* Don't let users screw up protocols' entries. */
2757 		if (ifr->ifr_addr.sa_family != AF_LINK)
2758 			return (EINVAL);
2759 
2760 		if (cmd == SIOCADDMULTI) {
2761 			struct epoch_tracker et;
2762 			struct ifmultiaddr *ifma;
2763 
2764 			/*
2765 			 * Userland is only permitted to join groups once
2766 			 * via the if_addmulti() KPI, because it cannot hold
2767 			 * struct ifmultiaddr * between calls. It may also
2768 			 * lose a race while we check if the membership
2769 			 * already exists.
2770 			 */
2771 			NET_EPOCH_ENTER(et);
2772 			ifma = if_findmulti(ifp, &ifr->ifr_addr);
2773 			NET_EPOCH_EXIT(et);
2774 			if (ifma != NULL)
2775 				error = EADDRINUSE;
2776 			else
2777 				error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2778 		} else {
2779 			error = if_delmulti(ifp, &ifr->ifr_addr);
2780 		}
2781 		if (error == 0)
2782 			getmicrotime(&ifp->if_lastchange);
2783 		break;
2784 
2785 	case SIOCSIFPHYADDR:
2786 	case SIOCDIFPHYADDR:
2787 #ifdef INET6
2788 	case SIOCSIFPHYADDR_IN6:
2789 #endif
2790 	case SIOCSIFMEDIA:
2791 	case SIOCSIFGENERIC:
2792 		error = priv_check(td, PRIV_NET_HWIOCTL);
2793 		if (error)
2794 			return (error);
2795 		if (ifp->if_ioctl == NULL)
2796 			return (EOPNOTSUPP);
2797 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2798 		if (error == 0)
2799 			getmicrotime(&ifp->if_lastchange);
2800 		break;
2801 
2802 	case SIOCGIFSTATUS:
2803 	case SIOCGIFPSRCADDR:
2804 	case SIOCGIFPDSTADDR:
2805 	case SIOCGIFMEDIA:
2806 	case SIOCGIFXMEDIA:
2807 	case SIOCGIFGENERIC:
2808 	case SIOCGIFRSSKEY:
2809 	case SIOCGIFRSSHASH:
2810 	case SIOCGIFDOWNREASON:
2811 		if (ifp->if_ioctl == NULL)
2812 			return (EOPNOTSUPP);
2813 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2814 		break;
2815 
2816 	case SIOCSIFLLADDR:
2817 		error = priv_check(td, PRIV_NET_SETLLADDR);
2818 		if (error)
2819 			return (error);
2820 		error = if_setlladdr(ifp,
2821 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
2822 		break;
2823 
2824 	case SIOCGHWADDR:
2825 		error = if_gethwaddr(ifp, ifr);
2826 		break;
2827 
2828 	case SIOCAIFGROUP:
2829 		error = priv_check(td, PRIV_NET_ADDIFGROUP);
2830 		if (error)
2831 			return (error);
2832 		error = if_addgroup(ifp,
2833 		    ((struct ifgroupreq *)data)->ifgr_group);
2834 		if (error != 0)
2835 			return (error);
2836 		break;
2837 
2838 	case SIOCGIFGROUP:
2839 	{
2840 		struct epoch_tracker et;
2841 
2842 		NET_EPOCH_ENTER(et);
2843 		error = if_getgroup((struct ifgroupreq *)data, ifp);
2844 		NET_EPOCH_EXIT(et);
2845 		break;
2846 	}
2847 
2848 	case SIOCDIFGROUP:
2849 		error = priv_check(td, PRIV_NET_DELIFGROUP);
2850 		if (error)
2851 			return (error);
2852 		error = if_delgroup(ifp,
2853 		    ((struct ifgroupreq *)data)->ifgr_group);
2854 		if (error != 0)
2855 			return (error);
2856 		break;
2857 
2858 	default:
2859 		error = ENOIOCTL;
2860 		break;
2861 	}
2862 	return (error);
2863 }
2864 
2865 /*
2866  * Interface ioctls.
2867  */
2868 int
ifioctl(struct socket * so,u_long cmd,caddr_t data,struct thread * td)2869 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td)
2870 {
2871 #ifdef COMPAT_FREEBSD32
2872 	union {
2873 		struct ifconf ifc;
2874 		struct ifdrv ifd;
2875 		struct ifgroupreq ifgr;
2876 		struct ifmediareq ifmr;
2877 	} thunk;
2878 	u_long saved_cmd;
2879 	struct ifconf32 *ifc32;
2880 	struct ifdrv32 *ifd32;
2881 	struct ifgroupreq32 *ifgr32;
2882 	struct ifmediareq32 *ifmr32;
2883 #endif
2884 	struct ifnet *ifp;
2885 	struct ifreq *ifr;
2886 	int error;
2887 	int oif_flags;
2888 #ifdef VIMAGE
2889 	bool shutdown;
2890 #endif
2891 
2892 	CURVNET_SET(so->so_vnet);
2893 #ifdef VIMAGE
2894 	/* Make sure the VNET is stable. */
2895 	shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet);
2896 	if (shutdown) {
2897 		CURVNET_RESTORE();
2898 		return (EBUSY);
2899 	}
2900 #endif
2901 
2902 #ifdef COMPAT_FREEBSD32
2903 	saved_cmd = cmd;
2904 	switch (cmd) {
2905 	case SIOCGIFCONF32:
2906 		ifc32 = (struct ifconf32 *)data;
2907 		thunk.ifc.ifc_len = ifc32->ifc_len;
2908 		thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf);
2909 		data = (caddr_t)&thunk.ifc;
2910 		cmd = SIOCGIFCONF;
2911 		break;
2912 	case SIOCGDRVSPEC32:
2913 	case SIOCSDRVSPEC32:
2914 		ifd32 = (struct ifdrv32 *)data;
2915 		memcpy(thunk.ifd.ifd_name, ifd32->ifd_name,
2916 		    sizeof(thunk.ifd.ifd_name));
2917 		thunk.ifd.ifd_cmd = ifd32->ifd_cmd;
2918 		thunk.ifd.ifd_len = ifd32->ifd_len;
2919 		thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data);
2920 		data = (caddr_t)&thunk.ifd;
2921 		cmd = _IOC_NEWTYPE(cmd, struct ifdrv);
2922 		break;
2923 	case SIOCAIFGROUP32:
2924 	case SIOCGIFGROUP32:
2925 	case SIOCDIFGROUP32:
2926 	case SIOCGIFGMEMB32:
2927 		ifgr32 = (struct ifgroupreq32 *)data;
2928 		memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name,
2929 		    sizeof(thunk.ifgr.ifgr_name));
2930 		thunk.ifgr.ifgr_len = ifgr32->ifgr_len;
2931 		switch (cmd) {
2932 		case SIOCAIFGROUP32:
2933 		case SIOCDIFGROUP32:
2934 			memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group,
2935 			    sizeof(thunk.ifgr.ifgr_group));
2936 			break;
2937 		case SIOCGIFGROUP32:
2938 		case SIOCGIFGMEMB32:
2939 			thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups);
2940 			break;
2941 		}
2942 		data = (caddr_t)&thunk.ifgr;
2943 		cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq);
2944 		break;
2945 	case SIOCGIFMEDIA32:
2946 	case SIOCGIFXMEDIA32:
2947 		ifmr32 = (struct ifmediareq32 *)data;
2948 		memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name,
2949 		    sizeof(thunk.ifmr.ifm_name));
2950 		thunk.ifmr.ifm_current = ifmr32->ifm_current;
2951 		thunk.ifmr.ifm_mask = ifmr32->ifm_mask;
2952 		thunk.ifmr.ifm_status = ifmr32->ifm_status;
2953 		thunk.ifmr.ifm_active = ifmr32->ifm_active;
2954 		thunk.ifmr.ifm_count = ifmr32->ifm_count;
2955 		thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist);
2956 		data = (caddr_t)&thunk.ifmr;
2957 		cmd = _IOC_NEWTYPE(cmd, struct ifmediareq);
2958 		break;
2959 	}
2960 #endif
2961 
2962 	switch (cmd) {
2963 	case SIOCGIFCONF:
2964 		error = ifconf(cmd, data);
2965 		goto out_noref;
2966 	}
2967 
2968 	ifr = (struct ifreq *)data;
2969 	switch (cmd) {
2970 #ifdef VIMAGE
2971 	case SIOCSIFRVNET:
2972 		error = priv_check(td, PRIV_NET_SETIFVNET);
2973 		if (error == 0)
2974 			error = if_vmove_reclaim(td, ifr->ifr_name,
2975 			    ifr->ifr_jid);
2976 		goto out_noref;
2977 #endif
2978 	case SIOCIFCREATE:
2979 	case SIOCIFCREATE2:
2980 		error = priv_check(td, PRIV_NET_IFCREATE);
2981 		if (error == 0)
2982 			error = if_clone_create(ifr->ifr_name,
2983 			    sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ?
2984 			    ifr_data_get_ptr(ifr) : NULL);
2985 		goto out_noref;
2986 	case SIOCIFDESTROY:
2987 		error = priv_check(td, PRIV_NET_IFDESTROY);
2988 
2989 		if (error == 0) {
2990 			sx_xlock(&ifnet_detach_sxlock);
2991 			error = if_clone_destroy(ifr->ifr_name);
2992 			sx_xunlock(&ifnet_detach_sxlock);
2993 		}
2994 		goto out_noref;
2995 
2996 	case SIOCIFGCLONERS:
2997 		error = if_clone_list((struct if_clonereq *)data);
2998 		goto out_noref;
2999 
3000 	case SIOCGIFGMEMB:
3001 		error = if_getgroupmembers((struct ifgroupreq *)data);
3002 		goto out_noref;
3003 
3004 #if defined(INET) || defined(INET6)
3005 	case SIOCSVH:
3006 	case SIOCGVH:
3007 		if (carp_ioctl_p == NULL)
3008 			error = EPROTONOSUPPORT;
3009 		else
3010 			error = (*carp_ioctl_p)(ifr, cmd, td);
3011 		goto out_noref;
3012 #endif
3013 	}
3014 
3015 	ifp = ifunit_ref(ifr->ifr_name);
3016 	if (ifp == NULL) {
3017 		error = ENXIO;
3018 		goto out_noref;
3019 	}
3020 
3021 	error = ifhwioctl(cmd, ifp, data, td);
3022 	if (error != ENOIOCTL)
3023 		goto out_ref;
3024 
3025 	oif_flags = ifp->if_flags;
3026 	if (so->so_proto == NULL) {
3027 		error = EOPNOTSUPP;
3028 		goto out_ref;
3029 	}
3030 
3031 	/*
3032 	 * Pass the request on to the socket control method, and if the
3033 	 * latter returns EOPNOTSUPP, directly to the interface.
3034 	 *
3035 	 * Make an exception for the legacy SIOCSIF* requests.  Drivers
3036 	 * trust SIOCSIFADDR et al to come from an already privileged
3037 	 * layer, and do not perform any credentials checks or input
3038 	 * validation.
3039 	 */
3040 	error = so->so_proto->pr_control(so, cmd, data, ifp, td);
3041 	if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL &&
3042 	    cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR &&
3043 	    cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK)
3044 		error = (*ifp->if_ioctl)(ifp, cmd, data);
3045 
3046 	if (!(oif_flags & IFF_UP) && (ifp->if_flags & IFF_UP))
3047 		if_up(ifp);
3048 out_ref:
3049 	if_rele(ifp);
3050 out_noref:
3051 	CURVNET_RESTORE();
3052 #ifdef COMPAT_FREEBSD32
3053 	if (error != 0)
3054 		return (error);
3055 	switch (saved_cmd) {
3056 	case SIOCGIFCONF32:
3057 		ifc32->ifc_len = thunk.ifc.ifc_len;
3058 		break;
3059 	case SIOCGDRVSPEC32:
3060 		/*
3061 		 * SIOCGDRVSPEC is IOWR, but nothing actually touches
3062 		 * the struct so just assert that ifd_len (the only
3063 		 * field it might make sense to update) hasn't
3064 		 * changed.
3065 		 */
3066 		KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len,
3067 		    ("ifd_len was updated %u -> %zu", ifd32->ifd_len,
3068 			thunk.ifd.ifd_len));
3069 		break;
3070 	case SIOCGIFGROUP32:
3071 	case SIOCGIFGMEMB32:
3072 		ifgr32->ifgr_len = thunk.ifgr.ifgr_len;
3073 		break;
3074 	case SIOCGIFMEDIA32:
3075 	case SIOCGIFXMEDIA32:
3076 		ifmr32->ifm_current = thunk.ifmr.ifm_current;
3077 		ifmr32->ifm_mask = thunk.ifmr.ifm_mask;
3078 		ifmr32->ifm_status = thunk.ifmr.ifm_status;
3079 		ifmr32->ifm_active = thunk.ifmr.ifm_active;
3080 		ifmr32->ifm_count = thunk.ifmr.ifm_count;
3081 		break;
3082 	}
3083 #endif
3084 	return (error);
3085 }
3086 
3087 int
if_rename(struct ifnet * ifp,char * new_name)3088 if_rename(struct ifnet *ifp, char *new_name)
3089 {
3090 	struct ifaddr *ifa;
3091 	struct sockaddr_dl *sdl;
3092 	size_t namelen, onamelen;
3093 	char old_name[IFNAMSIZ];
3094 	char strbuf[IFNAMSIZ + 8];
3095 
3096 	if (new_name[0] == '\0')
3097 		return (EINVAL);
3098 	if (strcmp(new_name, ifp->if_xname) == 0)
3099 		return (0);
3100 	if (ifunit(new_name) != NULL)
3101 		return (EEXIST);
3102 
3103 	/*
3104 	 * XXX: Locking.  Nothing else seems to lock if_flags,
3105 	 * and there are numerous other races with the
3106 	 * ifunit() checks not being atomic with namespace
3107 	 * changes (renames, vmoves, if_attach, etc).
3108 	 */
3109 	ifp->if_flags |= IFF_RENAMING;
3110 
3111 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
3112 
3113 	if_printf(ifp, "changing name to '%s'\n", new_name);
3114 
3115 	IF_ADDR_WLOCK(ifp);
3116 	strlcpy(old_name, ifp->if_xname, sizeof(old_name));
3117 	strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
3118 	ifa = ifp->if_addr;
3119 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
3120 	namelen = strlen(new_name);
3121 	onamelen = sdl->sdl_nlen;
3122 	/*
3123 	 * Move the address if needed.  This is safe because we
3124 	 * allocate space for a name of length IFNAMSIZ when we
3125 	 * create this in if_attach().
3126 	 */
3127 	if (namelen != onamelen) {
3128 		bcopy(sdl->sdl_data + onamelen,
3129 		    sdl->sdl_data + namelen, sdl->sdl_alen);
3130 	}
3131 	bcopy(new_name, sdl->sdl_data, namelen);
3132 	sdl->sdl_nlen = namelen;
3133 	sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
3134 	bzero(sdl->sdl_data, onamelen);
3135 	while (namelen != 0)
3136 		sdl->sdl_data[--namelen] = 0xff;
3137 	IF_ADDR_WUNLOCK(ifp);
3138 
3139 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
3140 
3141 	ifp->if_flags &= ~IFF_RENAMING;
3142 
3143 	snprintf(strbuf, sizeof(strbuf), "name=%s", new_name);
3144 	devctl_notify("IFNET", old_name, "RENAME", strbuf);
3145 
3146 	return (0);
3147 }
3148 
3149 /*
3150  * The code common to handling reference counted flags,
3151  * e.g., in ifpromisc() and if_allmulti().
3152  * The "pflag" argument can specify a permanent mode flag to check,
3153  * such as IFF_PPROMISC for promiscuous mode; should be 0 if none.
3154  *
3155  * Only to be used on stack-owned flags, not driver-owned flags.
3156  */
3157 static int
if_setflag(struct ifnet * ifp,int flag,int pflag,int * refcount,int onswitch)3158 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch)
3159 {
3160 	struct ifreq ifr;
3161 	int error;
3162 	int oldflags, oldcount;
3163 
3164 	/* Sanity checks to catch programming errors */
3165 	KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0,
3166 	    ("%s: setting driver-owned flag %d", __func__, flag));
3167 
3168 	if (onswitch)
3169 		KASSERT(*refcount >= 0,
3170 		    ("%s: increment negative refcount %d for flag %d",
3171 		    __func__, *refcount, flag));
3172 	else
3173 		KASSERT(*refcount > 0,
3174 		    ("%s: decrement non-positive refcount %d for flag %d",
3175 		    __func__, *refcount, flag));
3176 
3177 	/* In case this mode is permanent, just touch refcount */
3178 	if (ifp->if_flags & pflag) {
3179 		*refcount += onswitch ? 1 : -1;
3180 		return (0);
3181 	}
3182 
3183 	/* Save ifnet parameters for if_ioctl() may fail */
3184 	oldcount = *refcount;
3185 	oldflags = ifp->if_flags;
3186 
3187 	/*
3188 	 * See if we aren't the only and touching refcount is enough.
3189 	 * Actually toggle interface flag if we are the first or last.
3190 	 */
3191 	if (onswitch) {
3192 		if ((*refcount)++)
3193 			return (0);
3194 		ifp->if_flags |= flag;
3195 	} else {
3196 		if (--(*refcount))
3197 			return (0);
3198 		ifp->if_flags &= ~flag;
3199 	}
3200 
3201 	/* Call down the driver since we've changed interface flags */
3202 	if (ifp->if_ioctl == NULL) {
3203 		error = EOPNOTSUPP;
3204 		goto recover;
3205 	}
3206 	ifr.ifr_flags = ifp->if_flags & 0xffff;
3207 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
3208 	error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3209 	if (error)
3210 		goto recover;
3211 	/* Notify userland that interface flags have changed */
3212 	rt_ifmsg(ifp, flag);
3213 	return (0);
3214 
3215 recover:
3216 	/* Recover after driver error */
3217 	*refcount = oldcount;
3218 	ifp->if_flags = oldflags;
3219 	return (error);
3220 }
3221 
3222 /*
3223  * Set/clear promiscuous mode on interface ifp based on the truth value
3224  * of pswitch.  The calls are reference counted so that only the first
3225  * "on" request actually has an effect, as does the final "off" request.
3226  * Results are undefined if the "off" and "on" requests are not matched.
3227  */
3228 int
ifpromisc(struct ifnet * ifp,int pswitch)3229 ifpromisc(struct ifnet *ifp, int pswitch)
3230 {
3231 	int error;
3232 	int oldflags = ifp->if_flags;
3233 
3234 	error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC,
3235 			   &ifp->if_pcount, pswitch);
3236 	/* If promiscuous mode status has changed, log a message */
3237 	if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) &&
3238             log_promisc_mode_change)
3239 		if_printf(ifp, "promiscuous mode %s\n",
3240 		    (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
3241 	return (error);
3242 }
3243 
3244 /*
3245  * Return interface configuration
3246  * of system.  List may be used
3247  * in later ioctl's (above) to get
3248  * other information.
3249  */
3250 /*ARGSUSED*/
3251 static int
ifconf(u_long cmd,caddr_t data)3252 ifconf(u_long cmd, caddr_t data)
3253 {
3254 	struct ifconf *ifc = (struct ifconf *)data;
3255 	struct ifnet *ifp;
3256 	struct ifaddr *ifa;
3257 	struct ifreq ifr;
3258 	struct sbuf *sb;
3259 	int error, full = 0, valid_len, max_len;
3260 
3261 	/* Limit initial buffer size to maxphys to avoid DoS from userspace. */
3262 	max_len = maxphys - 1;
3263 
3264 	/* Prevent hostile input from being able to crash the system */
3265 	if (ifc->ifc_len <= 0)
3266 		return (EINVAL);
3267 
3268 again:
3269 	if (ifc->ifc_len <= max_len) {
3270 		max_len = ifc->ifc_len;
3271 		full = 1;
3272 	}
3273 	sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN);
3274 	max_len = 0;
3275 	valid_len = 0;
3276 
3277 	IFNET_RLOCK();
3278 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
3279 		struct epoch_tracker et;
3280 		int addrs;
3281 
3282 		/*
3283 		 * Zero the ifr to make sure we don't disclose the contents
3284 		 * of the stack.
3285 		 */
3286 		memset(&ifr, 0, sizeof(ifr));
3287 
3288 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
3289 		    >= sizeof(ifr.ifr_name)) {
3290 			sbuf_delete(sb);
3291 			IFNET_RUNLOCK();
3292 			return (ENAMETOOLONG);
3293 		}
3294 
3295 		addrs = 0;
3296 		NET_EPOCH_ENTER(et);
3297 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
3298 			struct sockaddr *sa = ifa->ifa_addr;
3299 
3300 			if (prison_if(curthread->td_ucred, sa) != 0)
3301 				continue;
3302 			addrs++;
3303 			if (sa->sa_len <= sizeof(*sa)) {
3304 				if (sa->sa_len < sizeof(*sa)) {
3305 					memset(&ifr.ifr_ifru.ifru_addr, 0,
3306 					    sizeof(ifr.ifr_ifru.ifru_addr));
3307 					memcpy(&ifr.ifr_ifru.ifru_addr, sa,
3308 					    sa->sa_len);
3309 				} else
3310 					ifr.ifr_ifru.ifru_addr = *sa;
3311 				sbuf_bcat(sb, &ifr, sizeof(ifr));
3312 				max_len += sizeof(ifr);
3313 			} else {
3314 				sbuf_bcat(sb, &ifr,
3315 				    offsetof(struct ifreq, ifr_addr));
3316 				max_len += offsetof(struct ifreq, ifr_addr);
3317 				sbuf_bcat(sb, sa, sa->sa_len);
3318 				max_len += sa->sa_len;
3319 			}
3320 
3321 			if (sbuf_error(sb) == 0)
3322 				valid_len = sbuf_len(sb);
3323 		}
3324 		NET_EPOCH_EXIT(et);
3325 		if (addrs == 0) {
3326 			sbuf_bcat(sb, &ifr, sizeof(ifr));
3327 			max_len += sizeof(ifr);
3328 
3329 			if (sbuf_error(sb) == 0)
3330 				valid_len = sbuf_len(sb);
3331 		}
3332 	}
3333 	IFNET_RUNLOCK();
3334 
3335 	/*
3336 	 * If we didn't allocate enough space (uncommon), try again.  If
3337 	 * we have already allocated as much space as we are allowed,
3338 	 * return what we've got.
3339 	 */
3340 	if (valid_len != max_len && !full) {
3341 		sbuf_delete(sb);
3342 		goto again;
3343 	}
3344 
3345 	ifc->ifc_len = valid_len;
3346 	sbuf_finish(sb);
3347 	error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len);
3348 	sbuf_delete(sb);
3349 	return (error);
3350 }
3351 
3352 /*
3353  * Just like ifpromisc(), but for all-multicast-reception mode.
3354  */
3355 int
if_allmulti(struct ifnet * ifp,int onswitch)3356 if_allmulti(struct ifnet *ifp, int onswitch)
3357 {
3358 
3359 	return (if_setflag(ifp, IFF_ALLMULTI, IFF_PALLMULTI, &ifp->if_amcount,
3360 	    onswitch));
3361 }
3362 
3363 struct ifmultiaddr *
if_findmulti(struct ifnet * ifp,const struct sockaddr * sa)3364 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa)
3365 {
3366 	struct ifmultiaddr *ifma;
3367 
3368 	IF_ADDR_LOCK_ASSERT(ifp);
3369 
3370 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3371 		if (sa->sa_family == AF_LINK) {
3372 			if (sa_dl_equal(ifma->ifma_addr, sa))
3373 				break;
3374 		} else {
3375 			if (sa_equal(ifma->ifma_addr, sa))
3376 				break;
3377 		}
3378 	}
3379 
3380 	return ifma;
3381 }
3382 
3383 /*
3384  * Allocate a new ifmultiaddr and initialize based on passed arguments.  We
3385  * make copies of passed sockaddrs.  The ifmultiaddr will not be added to
3386  * the ifnet multicast address list here, so the caller must do that and
3387  * other setup work (such as notifying the device driver).  The reference
3388  * count is initialized to 1.
3389  */
3390 static struct ifmultiaddr *
if_allocmulti(struct ifnet * ifp,struct sockaddr * sa,struct sockaddr * llsa,int mflags)3391 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa,
3392     int mflags)
3393 {
3394 	struct ifmultiaddr *ifma;
3395 	struct sockaddr *dupsa;
3396 
3397 	ifma = malloc(sizeof *ifma, M_IFMADDR, mflags |
3398 	    M_ZERO);
3399 	if (ifma == NULL)
3400 		return (NULL);
3401 
3402 	dupsa = malloc(sa->sa_len, M_IFMADDR, mflags);
3403 	if (dupsa == NULL) {
3404 		free(ifma, M_IFMADDR);
3405 		return (NULL);
3406 	}
3407 	bcopy(sa, dupsa, sa->sa_len);
3408 	ifma->ifma_addr = dupsa;
3409 
3410 	ifma->ifma_ifp = ifp;
3411 	ifma->ifma_refcount = 1;
3412 	ifma->ifma_protospec = NULL;
3413 
3414 	if (llsa == NULL) {
3415 		ifma->ifma_lladdr = NULL;
3416 		return (ifma);
3417 	}
3418 
3419 	dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags);
3420 	if (dupsa == NULL) {
3421 		free(ifma->ifma_addr, M_IFMADDR);
3422 		free(ifma, M_IFMADDR);
3423 		return (NULL);
3424 	}
3425 	bcopy(llsa, dupsa, llsa->sa_len);
3426 	ifma->ifma_lladdr = dupsa;
3427 
3428 	return (ifma);
3429 }
3430 
3431 /*
3432  * if_freemulti: free ifmultiaddr structure and possibly attached related
3433  * addresses.  The caller is responsible for implementing reference
3434  * counting, notifying the driver, handling routing messages, and releasing
3435  * any dependent link layer state.
3436  */
3437 #ifdef MCAST_VERBOSE
3438 extern void kdb_backtrace(void);
3439 #endif
3440 static void
if_freemulti_internal(struct ifmultiaddr * ifma)3441 if_freemulti_internal(struct ifmultiaddr *ifma)
3442 {
3443 
3444 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d",
3445 	    ifma->ifma_refcount));
3446 
3447 	if (ifma->ifma_lladdr != NULL)
3448 		free(ifma->ifma_lladdr, M_IFMADDR);
3449 #ifdef MCAST_VERBOSE
3450 	kdb_backtrace();
3451 	printf("%s freeing ifma: %p\n", __func__, ifma);
3452 #endif
3453 	free(ifma->ifma_addr, M_IFMADDR);
3454 	free(ifma, M_IFMADDR);
3455 }
3456 
3457 static void
if_destroymulti(epoch_context_t ctx)3458 if_destroymulti(epoch_context_t ctx)
3459 {
3460 	struct ifmultiaddr *ifma;
3461 
3462 	ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx);
3463 	if_freemulti_internal(ifma);
3464 }
3465 
3466 void
if_freemulti(struct ifmultiaddr * ifma)3467 if_freemulti(struct ifmultiaddr *ifma)
3468 {
3469 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d",
3470 	    ifma->ifma_refcount));
3471 
3472 	NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx);
3473 }
3474 
3475 /*
3476  * Register an additional multicast address with a network interface.
3477  *
3478  * - If the address is already present, bump the reference count on the
3479  *   address and return.
3480  * - If the address is not link-layer, look up a link layer address.
3481  * - Allocate address structures for one or both addresses, and attach to the
3482  *   multicast address list on the interface.  If automatically adding a link
3483  *   layer address, the protocol address will own a reference to the link
3484  *   layer address, to be freed when it is freed.
3485  * - Notify the network device driver of an addition to the multicast address
3486  *   list.
3487  *
3488  * 'sa' points to caller-owned memory with the desired multicast address.
3489  *
3490  * 'retifma' will be used to return a pointer to the resulting multicast
3491  * address reference, if desired.
3492  */
3493 int
if_addmulti(struct ifnet * ifp,struct sockaddr * sa,struct ifmultiaddr ** retifma)3494 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
3495     struct ifmultiaddr **retifma)
3496 {
3497 	struct ifmultiaddr *ifma, *ll_ifma;
3498 	struct sockaddr *llsa;
3499 	struct sockaddr_dl sdl;
3500 	int error;
3501 
3502 #ifdef INET
3503 	IN_MULTI_LIST_UNLOCK_ASSERT();
3504 #endif
3505 #ifdef INET6
3506 	IN6_MULTI_LIST_UNLOCK_ASSERT();
3507 #endif
3508 	/*
3509 	 * If the address is already present, return a new reference to it;
3510 	 * otherwise, allocate storage and set up a new address.
3511 	 */
3512 	IF_ADDR_WLOCK(ifp);
3513 	ifma = if_findmulti(ifp, sa);
3514 	if (ifma != NULL) {
3515 		ifma->ifma_refcount++;
3516 		if (retifma != NULL)
3517 			*retifma = ifma;
3518 		IF_ADDR_WUNLOCK(ifp);
3519 		return (0);
3520 	}
3521 
3522 	/*
3523 	 * The address isn't already present; resolve the protocol address
3524 	 * into a link layer address, and then look that up, bump its
3525 	 * refcount or allocate an ifma for that also.
3526 	 * Most link layer resolving functions returns address data which
3527 	 * fits inside default sockaddr_dl structure. However callback
3528 	 * can allocate another sockaddr structure, in that case we need to
3529 	 * free it later.
3530 	 */
3531 	llsa = NULL;
3532 	ll_ifma = NULL;
3533 	if (ifp->if_resolvemulti != NULL) {
3534 		/* Provide called function with buffer size information */
3535 		sdl.sdl_len = sizeof(sdl);
3536 		llsa = (struct sockaddr *)&sdl;
3537 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
3538 		if (error)
3539 			goto unlock_out;
3540 	}
3541 
3542 	/*
3543 	 * Allocate the new address.  Don't hook it up yet, as we may also
3544 	 * need to allocate a link layer multicast address.
3545 	 */
3546 	ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT);
3547 	if (ifma == NULL) {
3548 		error = ENOMEM;
3549 		goto free_llsa_out;
3550 	}
3551 
3552 	/*
3553 	 * If a link layer address is found, we'll need to see if it's
3554 	 * already present in the address list, or allocate is as well.
3555 	 * When this block finishes, the link layer address will be on the
3556 	 * list.
3557 	 */
3558 	if (llsa != NULL) {
3559 		ll_ifma = if_findmulti(ifp, llsa);
3560 		if (ll_ifma == NULL) {
3561 			ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT);
3562 			if (ll_ifma == NULL) {
3563 				--ifma->ifma_refcount;
3564 				if_freemulti(ifma);
3565 				error = ENOMEM;
3566 				goto free_llsa_out;
3567 			}
3568 			ll_ifma->ifma_flags |= IFMA_F_ENQUEUED;
3569 			CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma,
3570 			    ifma_link);
3571 		} else
3572 			ll_ifma->ifma_refcount++;
3573 		ifma->ifma_llifma = ll_ifma;
3574 	}
3575 
3576 	/*
3577 	 * We now have a new multicast address, ifma, and possibly a new or
3578 	 * referenced link layer address.  Add the primary address to the
3579 	 * ifnet address list.
3580 	 */
3581 	ifma->ifma_flags |= IFMA_F_ENQUEUED;
3582 	CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
3583 
3584 	if (retifma != NULL)
3585 		*retifma = ifma;
3586 
3587 	/*
3588 	 * Must generate the message while holding the lock so that 'ifma'
3589 	 * pointer is still valid.
3590 	 */
3591 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
3592 	IF_ADDR_WUNLOCK(ifp);
3593 
3594 	/*
3595 	 * We are certain we have added something, so call down to the
3596 	 * interface to let them know about it.
3597 	 */
3598 	if (ifp->if_ioctl != NULL) {
3599 		if (THREAD_CAN_SLEEP())
3600 			(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
3601 		else
3602 			taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask);
3603 	}
3604 
3605 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3606 		link_free_sdl(llsa);
3607 
3608 	return (0);
3609 
3610 free_llsa_out:
3611 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3612 		link_free_sdl(llsa);
3613 
3614 unlock_out:
3615 	IF_ADDR_WUNLOCK(ifp);
3616 	return (error);
3617 }
3618 
3619 static void
if_siocaddmulti(void * arg,int pending)3620 if_siocaddmulti(void *arg, int pending)
3621 {
3622 	struct ifnet *ifp;
3623 
3624 	ifp = arg;
3625 #ifdef DIAGNOSTIC
3626 	if (pending > 1)
3627 		if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending);
3628 #endif
3629 	CURVNET_SET(ifp->if_vnet);
3630 	(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
3631 	CURVNET_RESTORE();
3632 }
3633 
3634 /*
3635  * Delete a multicast group membership by network-layer group address.
3636  *
3637  * Returns ENOENT if the entry could not be found. If ifp no longer
3638  * exists, results are undefined. This entry point should only be used
3639  * from subsystems which do appropriate locking to hold ifp for the
3640  * duration of the call.
3641  * Network-layer protocol domains must use if_delmulti_ifma().
3642  */
3643 int
if_delmulti(struct ifnet * ifp,struct sockaddr * sa)3644 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
3645 {
3646 	struct ifmultiaddr *ifma;
3647 	int lastref;
3648 
3649 	KASSERT(ifp, ("%s: NULL ifp", __func__));
3650 
3651 	IF_ADDR_WLOCK(ifp);
3652 	lastref = 0;
3653 	ifma = if_findmulti(ifp, sa);
3654 	if (ifma != NULL)
3655 		lastref = if_delmulti_locked(ifp, ifma, 0);
3656 	IF_ADDR_WUNLOCK(ifp);
3657 
3658 	if (ifma == NULL)
3659 		return (ENOENT);
3660 
3661 	if (lastref && ifp->if_ioctl != NULL) {
3662 		(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3663 	}
3664 
3665 	return (0);
3666 }
3667 
3668 /*
3669  * Delete all multicast group membership for an interface.
3670  * Should be used to quickly flush all multicast filters.
3671  */
3672 void
if_delallmulti(struct ifnet * ifp)3673 if_delallmulti(struct ifnet *ifp)
3674 {
3675 	struct ifmultiaddr *ifma;
3676 	struct ifmultiaddr *next;
3677 
3678 	IF_ADDR_WLOCK(ifp);
3679 	CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
3680 		if_delmulti_locked(ifp, ifma, 0);
3681 	IF_ADDR_WUNLOCK(ifp);
3682 }
3683 
3684 void
if_delmulti_ifma(struct ifmultiaddr * ifma)3685 if_delmulti_ifma(struct ifmultiaddr *ifma)
3686 {
3687 	if_delmulti_ifma_flags(ifma, 0);
3688 }
3689 
3690 /*
3691  * Delete a multicast group membership by group membership pointer.
3692  * Network-layer protocol domains must use this routine.
3693  *
3694  * It is safe to call this routine if the ifp disappeared.
3695  */
3696 void
if_delmulti_ifma_flags(struct ifmultiaddr * ifma,int flags)3697 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags)
3698 {
3699 	struct ifnet *ifp;
3700 	int lastref;
3701 	MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma);
3702 #ifdef INET
3703 	IN_MULTI_LIST_UNLOCK_ASSERT();
3704 #endif
3705 	ifp = ifma->ifma_ifp;
3706 #ifdef DIAGNOSTIC
3707 	if (ifp == NULL) {
3708 		printf("%s: ifma_ifp seems to be detached\n", __func__);
3709 	} else {
3710 		struct epoch_tracker et;
3711 		struct ifnet *oifp;
3712 
3713 		NET_EPOCH_ENTER(et);
3714 		CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link)
3715 			if (ifp == oifp)
3716 				break;
3717 		NET_EPOCH_EXIT(et);
3718 		if (ifp != oifp)
3719 			ifp = NULL;
3720 	}
3721 #endif
3722 	/*
3723 	 * If and only if the ifnet instance exists: Acquire the address lock.
3724 	 */
3725 	if (ifp != NULL)
3726 		IF_ADDR_WLOCK(ifp);
3727 
3728 	lastref = if_delmulti_locked(ifp, ifma, flags);
3729 
3730 	if (ifp != NULL) {
3731 		/*
3732 		 * If and only if the ifnet instance exists:
3733 		 *  Release the address lock.
3734 		 *  If the group was left: update the hardware hash filter.
3735 		 */
3736 		IF_ADDR_WUNLOCK(ifp);
3737 		if (lastref && ifp->if_ioctl != NULL) {
3738 			(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3739 		}
3740 	}
3741 }
3742 
3743 /*
3744  * Perform deletion of network-layer and/or link-layer multicast address.
3745  *
3746  * Return 0 if the reference count was decremented.
3747  * Return 1 if the final reference was released, indicating that the
3748  * hardware hash filter should be reprogrammed.
3749  */
3750 static int
if_delmulti_locked(struct ifnet * ifp,struct ifmultiaddr * ifma,int detaching)3751 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching)
3752 {
3753 	struct ifmultiaddr *ll_ifma;
3754 
3755 	if (ifp != NULL && ifma->ifma_ifp != NULL) {
3756 		KASSERT(ifma->ifma_ifp == ifp,
3757 		    ("%s: inconsistent ifp %p", __func__, ifp));
3758 		IF_ADDR_WLOCK_ASSERT(ifp);
3759 	}
3760 
3761 	ifp = ifma->ifma_ifp;
3762 	MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : "");
3763 
3764 	/*
3765 	 * If the ifnet is detaching, null out references to ifnet,
3766 	 * so that upper protocol layers will notice, and not attempt
3767 	 * to obtain locks for an ifnet which no longer exists. The
3768 	 * routing socket announcement must happen before the ifnet
3769 	 * instance is detached from the system.
3770 	 */
3771 	if (detaching) {
3772 #ifdef DIAGNOSTIC
3773 		printf("%s: detaching ifnet instance %p\n", __func__, ifp);
3774 #endif
3775 		/*
3776 		 * ifp may already be nulled out if we are being reentered
3777 		 * to delete the ll_ifma.
3778 		 */
3779 		if (ifp != NULL) {
3780 			rt_newmaddrmsg(RTM_DELMADDR, ifma);
3781 			ifma->ifma_ifp = NULL;
3782 		}
3783 	}
3784 
3785 	if (--ifma->ifma_refcount > 0)
3786 		return 0;
3787 
3788 	if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) {
3789 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
3790 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3791 	}
3792 	/*
3793 	 * If this ifma is a network-layer ifma, a link-layer ifma may
3794 	 * have been associated with it. Release it first if so.
3795 	 */
3796 	ll_ifma = ifma->ifma_llifma;
3797 	if (ll_ifma != NULL) {
3798 		KASSERT(ifma->ifma_lladdr != NULL,
3799 		    ("%s: llifma w/o lladdr", __func__));
3800 		if (detaching)
3801 			ll_ifma->ifma_ifp = NULL;	/* XXX */
3802 		if (--ll_ifma->ifma_refcount == 0) {
3803 			if (ifp != NULL) {
3804 				if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
3805 					CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr,
3806 						ifma_link);
3807 					ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3808 				}
3809 			}
3810 			if_freemulti(ll_ifma);
3811 		}
3812 	}
3813 #ifdef INVARIANTS
3814 	if (ifp) {
3815 		struct ifmultiaddr *ifmatmp;
3816 
3817 		CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link)
3818 			MPASS(ifma != ifmatmp);
3819 	}
3820 #endif
3821 	if_freemulti(ifma);
3822 	/*
3823 	 * The last reference to this instance of struct ifmultiaddr
3824 	 * was released; the hardware should be notified of this change.
3825 	 */
3826 	return 1;
3827 }
3828 
3829 /*
3830  * Set the link layer address on an interface.
3831  *
3832  * At this time we only support certain types of interfaces,
3833  * and we don't allow the length of the address to change.
3834  *
3835  * Set noinline to be dtrace-friendly
3836  */
3837 __noinline int
if_setlladdr(struct ifnet * ifp,const u_char * lladdr,int len)3838 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
3839 {
3840 	struct sockaddr_dl *sdl;
3841 	struct ifaddr *ifa;
3842 	struct ifreq ifr;
3843 
3844 	ifa = ifp->if_addr;
3845 	if (ifa == NULL)
3846 		return (EINVAL);
3847 
3848 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
3849 	if (sdl == NULL)
3850 		return (EINVAL);
3851 
3852 	if (len != sdl->sdl_alen)	/* don't allow length to change */
3853 		return (EINVAL);
3854 
3855 	switch (ifp->if_type) {
3856 	case IFT_ETHER:
3857 	case IFT_XETHER:
3858 	case IFT_L2VLAN:
3859 	case IFT_BRIDGE:
3860 	case IFT_IEEE8023ADLAG:
3861 		bcopy(lladdr, LLADDR(sdl), len);
3862 		break;
3863 	default:
3864 		return (ENODEV);
3865 	}
3866 
3867 	/*
3868 	 * If the interface is already up, we need
3869 	 * to re-init it in order to reprogram its
3870 	 * address filter.
3871 	 */
3872 	if ((ifp->if_flags & IFF_UP) != 0) {
3873 		if (ifp->if_ioctl) {
3874 			ifp->if_flags &= ~IFF_UP;
3875 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3876 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3877 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3878 			ifp->if_flags |= IFF_UP;
3879 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3880 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3881 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3882 		}
3883 	}
3884 	EVENTHANDLER_INVOKE(iflladdr_event, ifp);
3885 
3886 	return (0);
3887 }
3888 
3889 /*
3890  * Compat function for handling basic encapsulation requests.
3891  * Not converted stacks (FDDI, IB, ..) supports traditional
3892  * output model: ARP (and other similar L2 protocols) are handled
3893  * inside output routine, arpresolve/nd6_resolve() returns MAC
3894  * address instead of full prepend.
3895  *
3896  * This function creates calculated header==MAC for IPv4/IPv6 and
3897  * returns EAFNOSUPPORT (which is then handled in ARP code) for other
3898  * address families.
3899  */
3900 static int
if_requestencap_default(struct ifnet * ifp,struct if_encap_req * req)3901 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req)
3902 {
3903 	if (req->rtype != IFENCAP_LL)
3904 		return (EOPNOTSUPP);
3905 
3906 	if (req->bufsize < req->lladdr_len)
3907 		return (ENOMEM);
3908 
3909 	switch (req->family) {
3910 	case AF_INET:
3911 	case AF_INET6:
3912 		break;
3913 	default:
3914 		return (EAFNOSUPPORT);
3915 	}
3916 
3917 	/* Copy lladdr to storage as is */
3918 	memmove(req->buf, req->lladdr, req->lladdr_len);
3919 	req->bufsize = req->lladdr_len;
3920 	req->lladdr_off = 0;
3921 
3922 	return (0);
3923 }
3924 
3925 /*
3926  * Tunnel interfaces can nest, also they may cause infinite recursion
3927  * calls when misconfigured. We'll prevent this by detecting loops.
3928  * High nesting level may cause stack exhaustion. We'll prevent this
3929  * by introducing upper limit.
3930  *
3931  * Return 0, if tunnel nesting count is equal or less than limit.
3932  */
3933 int
if_tunnel_check_nesting(struct ifnet * ifp,struct mbuf * m,uint32_t cookie,int limit)3934 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie,
3935     int limit)
3936 {
3937 	struct m_tag *mtag;
3938 	int count;
3939 
3940 	count = 1;
3941 	mtag = NULL;
3942 	while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) {
3943 		if (*(struct ifnet **)(mtag + 1) == ifp) {
3944 			log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp));
3945 			return (EIO);
3946 		}
3947 		count++;
3948 	}
3949 	if (count > limit) {
3950 		log(LOG_NOTICE,
3951 		    "%s: if_output recursively called too many times(%d)\n",
3952 		    if_name(ifp), count);
3953 		return (EIO);
3954 	}
3955 	mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT);
3956 	if (mtag == NULL)
3957 		return (ENOMEM);
3958 	*(struct ifnet **)(mtag + 1) = ifp;
3959 	m_tag_prepend(m, mtag);
3960 	return (0);
3961 }
3962 
3963 /*
3964  * Get the link layer address that was read from the hardware at attach.
3965  *
3966  * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type
3967  * their component interfaces as IFT_IEEE8023ADLAG.
3968  */
3969 int
if_gethwaddr(struct ifnet * ifp,struct ifreq * ifr)3970 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr)
3971 {
3972 	if (ifp->if_hw_addr == NULL)
3973 		return (ENODEV);
3974 
3975 	switch (ifp->if_type) {
3976 	case IFT_ETHER:
3977 	case IFT_IEEE8023ADLAG:
3978 		bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen);
3979 		return (0);
3980 	default:
3981 		return (ENODEV);
3982 	}
3983 }
3984 
3985 /*
3986  * The name argument must be a pointer to storage which will last as
3987  * long as the interface does.  For physical devices, the result of
3988  * device_get_name(dev) is a good choice and for pseudo-devices a
3989  * static string works well.
3990  */
3991 void
if_initname(struct ifnet * ifp,const char * name,int unit)3992 if_initname(struct ifnet *ifp, const char *name, int unit)
3993 {
3994 	ifp->if_dname = name;
3995 	ifp->if_dunit = unit;
3996 	if (unit != IF_DUNIT_NONE)
3997 		snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
3998 	else
3999 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
4000 }
4001 
4002 static int
if_vlog(struct ifnet * ifp,int pri,const char * fmt,va_list ap)4003 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap)
4004 {
4005 	char if_fmt[256];
4006 
4007 	snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt);
4008 	vlog(pri, if_fmt, ap);
4009 	return (0);
4010 }
4011 
4012 
4013 int
if_printf(struct ifnet * ifp,const char * fmt,...)4014 if_printf(struct ifnet *ifp, const char *fmt, ...)
4015 {
4016 	va_list ap;
4017 
4018 	va_start(ap, fmt);
4019 	if_vlog(ifp, LOG_INFO, fmt, ap);
4020 	va_end(ap);
4021 	return (0);
4022 }
4023 
4024 int
if_log(struct ifnet * ifp,int pri,const char * fmt,...)4025 if_log(struct ifnet *ifp, int pri, const char *fmt, ...)
4026 {
4027 	va_list ap;
4028 
4029 	va_start(ap, fmt);
4030 	if_vlog(ifp, pri, fmt, ap);
4031 	va_end(ap);
4032 	return (0);
4033 }
4034 
4035 void
if_start(struct ifnet * ifp)4036 if_start(struct ifnet *ifp)
4037 {
4038 
4039 	(*(ifp)->if_start)(ifp);
4040 }
4041 
4042 /*
4043  * Backwards compatibility interface for drivers
4044  * that have not implemented it
4045  */
4046 static int
if_transmit_default(struct ifnet * ifp,struct mbuf * m)4047 if_transmit_default(struct ifnet *ifp, struct mbuf *m)
4048 {
4049 	int error;
4050 
4051 	IFQ_HANDOFF(ifp, m, error);
4052 	return (error);
4053 }
4054 
4055 static void
if_input_default(struct ifnet * ifp __unused,struct mbuf * m)4056 if_input_default(struct ifnet *ifp __unused, struct mbuf *m)
4057 {
4058 	m_freem(m);
4059 }
4060 
4061 int
if_handoff(struct ifqueue * ifq,struct mbuf * m,struct ifnet * ifp,int adjust)4062 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
4063 {
4064 	int active = 0;
4065 
4066 	IF_LOCK(ifq);
4067 	if (_IF_QFULL(ifq)) {
4068 		IF_UNLOCK(ifq);
4069 		if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4070 		m_freem(m);
4071 		return (0);
4072 	}
4073 	if (ifp != NULL) {
4074 		if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust);
4075 		if (m->m_flags & (M_BCAST|M_MCAST))
4076 			if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4077 		active = ifp->if_drv_flags & IFF_DRV_OACTIVE;
4078 	}
4079 	_IF_ENQUEUE(ifq, m);
4080 	IF_UNLOCK(ifq);
4081 	if (ifp != NULL && !active)
4082 		(*(ifp)->if_start)(ifp);
4083 	return (1);
4084 }
4085 
4086 void
if_register_com_alloc(u_char type,if_com_alloc_t * a,if_com_free_t * f)4087 if_register_com_alloc(u_char type,
4088     if_com_alloc_t *a, if_com_free_t *f)
4089 {
4090 
4091 	KASSERT(if_com_alloc[type] == NULL,
4092 	    ("if_register_com_alloc: %d already registered", type));
4093 	KASSERT(if_com_free[type] == NULL,
4094 	    ("if_register_com_alloc: %d free already registered", type));
4095 
4096 	if_com_alloc[type] = a;
4097 	if_com_free[type] = f;
4098 }
4099 
4100 void
if_deregister_com_alloc(u_char type)4101 if_deregister_com_alloc(u_char type)
4102 {
4103 
4104 	KASSERT(if_com_alloc[type] != NULL,
4105 	    ("if_deregister_com_alloc: %d not registered", type));
4106 	KASSERT(if_com_free[type] != NULL,
4107 	    ("if_deregister_com_alloc: %d free not registered", type));
4108 
4109 	/*
4110 	 * Ensure all pending EPOCH(9) callbacks have been executed. This
4111 	 * fixes issues about late invocation of if_destroy(), which leads
4112 	 * to memory leak from if_com_alloc[type] allocated if_l2com.
4113 	 */
4114 	NET_EPOCH_DRAIN_CALLBACKS();
4115 
4116 	if_com_alloc[type] = NULL;
4117 	if_com_free[type] = NULL;
4118 }
4119 
4120 /* API for driver access to network stack owned ifnet.*/
4121 uint64_t
if_setbaudrate(struct ifnet * ifp,uint64_t baudrate)4122 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate)
4123 {
4124 	uint64_t oldbrate;
4125 
4126 	oldbrate = ifp->if_baudrate;
4127 	ifp->if_baudrate = baudrate;
4128 	return (oldbrate);
4129 }
4130 
4131 uint64_t
if_getbaudrate(const if_t ifp)4132 if_getbaudrate(const if_t ifp)
4133 {
4134 	return (ifp->if_baudrate);
4135 }
4136 
4137 int
if_setcapabilities(if_t ifp,int capabilities)4138 if_setcapabilities(if_t ifp, int capabilities)
4139 {
4140 	ifp->if_capabilities = capabilities;
4141 	return (0);
4142 }
4143 
4144 int
if_setcapabilitiesbit(if_t ifp,int setbit,int clearbit)4145 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit)
4146 {
4147 	ifp->if_capabilities &= ~clearbit;
4148 	ifp->if_capabilities |= setbit;
4149 	return (0);
4150 }
4151 
4152 int
if_getcapabilities(const if_t ifp)4153 if_getcapabilities(const if_t ifp)
4154 {
4155 	return (ifp->if_capabilities);
4156 }
4157 
4158 int
if_setcapenable(if_t ifp,int capabilities)4159 if_setcapenable(if_t ifp, int capabilities)
4160 {
4161 	ifp->if_capenable = capabilities;
4162 	return (0);
4163 }
4164 
4165 int
if_setcapenablebit(if_t ifp,int setcap,int clearcap)4166 if_setcapenablebit(if_t ifp, int setcap, int clearcap)
4167 {
4168 	ifp->if_capenable &= ~clearcap;
4169 	ifp->if_capenable |= setcap;
4170 	return (0);
4171 }
4172 
4173 int
if_setcapabilities2(if_t ifp,int capabilities)4174 if_setcapabilities2(if_t ifp, int capabilities)
4175 {
4176 	ifp->if_capabilities2 = capabilities;
4177 	return (0);
4178 }
4179 
4180 int
if_setcapabilities2bit(if_t ifp,int setbit,int clearbit)4181 if_setcapabilities2bit(if_t ifp, int setbit, int clearbit)
4182 {
4183 	ifp->if_capabilities2 &= ~clearbit;
4184 	ifp->if_capabilities2 |= setbit;
4185 	return (0);
4186 }
4187 
4188 int
if_getcapabilities2(const if_t ifp)4189 if_getcapabilities2(const if_t ifp)
4190 {
4191 	return (ifp->if_capabilities2);
4192 }
4193 
4194 int
if_setcapenable2(if_t ifp,int capabilities2)4195 if_setcapenable2(if_t ifp, int capabilities2)
4196 {
4197 	ifp->if_capenable2 = capabilities2;
4198 	return (0);
4199 }
4200 
4201 int
if_setcapenable2bit(if_t ifp,int setcap,int clearcap)4202 if_setcapenable2bit(if_t ifp, int setcap, int clearcap)
4203 {
4204 	ifp->if_capenable2 &= ~clearcap;
4205 	ifp->if_capenable2 |= setcap;
4206 	return (0);
4207 }
4208 
4209 const char *
if_getdname(const if_t ifp)4210 if_getdname(const if_t ifp)
4211 {
4212 	return (ifp->if_dname);
4213 }
4214 
4215 void
if_setdname(if_t ifp,const char * dname)4216 if_setdname(if_t ifp, const char *dname)
4217 {
4218 	ifp->if_dname = dname;
4219 }
4220 
4221 const char *
if_name(if_t ifp)4222 if_name(if_t ifp)
4223 {
4224 	return (ifp->if_xname);
4225 }
4226 
4227 int
if_setname(if_t ifp,const char * name)4228 if_setname(if_t ifp, const char *name)
4229 {
4230 	if (strlen(name) > sizeof(ifp->if_xname) - 1)
4231 		return (ENAMETOOLONG);
4232 	strcpy(ifp->if_xname, name);
4233 
4234 	return (0);
4235 }
4236 
4237 int
if_togglecapenable(if_t ifp,int togglecap)4238 if_togglecapenable(if_t ifp, int togglecap)
4239 {
4240 	ifp->if_capenable ^= togglecap;
4241 	return (0);
4242 }
4243 
4244 int
if_getcapenable(const if_t ifp)4245 if_getcapenable(const if_t ifp)
4246 {
4247 	return (ifp->if_capenable);
4248 }
4249 
4250 int
if_togglecapenable2(if_t ifp,int togglecap)4251 if_togglecapenable2(if_t ifp, int togglecap)
4252 {
4253 	ifp->if_capenable2 ^= togglecap;
4254 	return (0);
4255 }
4256 
4257 int
if_getcapenable2(const if_t ifp)4258 if_getcapenable2(const if_t ifp)
4259 {
4260 	return (ifp->if_capenable2);
4261 }
4262 
4263 int
if_getdunit(const if_t ifp)4264 if_getdunit(const if_t ifp)
4265 {
4266 	return (ifp->if_dunit);
4267 }
4268 
4269 int
if_getindex(const if_t ifp)4270 if_getindex(const if_t ifp)
4271 {
4272 	return (ifp->if_index);
4273 }
4274 
4275 int
if_getidxgen(const if_t ifp)4276 if_getidxgen(const if_t ifp)
4277 {
4278 	return (ifp->if_idxgen);
4279 }
4280 
4281 const char *
if_getdescr(if_t ifp)4282 if_getdescr(if_t ifp)
4283 {
4284 	return (ifp->if_description);
4285 }
4286 
4287 void
if_setdescr(if_t ifp,char * descrbuf)4288 if_setdescr(if_t ifp, char *descrbuf)
4289 {
4290 	sx_xlock(&ifdescr_sx);
4291 	char *odescrbuf = ifp->if_description;
4292 	ifp->if_description = descrbuf;
4293 	sx_xunlock(&ifdescr_sx);
4294 
4295 	if_freedescr(odescrbuf);
4296 }
4297 
4298 char *
if_allocdescr(size_t sz,int malloc_flag)4299 if_allocdescr(size_t sz, int malloc_flag)
4300 {
4301 	malloc_flag &= (M_WAITOK | M_NOWAIT);
4302 	return (malloc(sz, M_IFDESCR, M_ZERO | malloc_flag));
4303 }
4304 
4305 void
if_freedescr(char * descrbuf)4306 if_freedescr(char *descrbuf)
4307 {
4308 	free(descrbuf, M_IFDESCR);
4309 }
4310 
4311 int
if_getalloctype(const if_t ifp)4312 if_getalloctype(const if_t ifp)
4313 {
4314 	return (ifp->if_alloctype);
4315 }
4316 
4317 void
if_setlastchange(if_t ifp)4318 if_setlastchange(if_t ifp)
4319 {
4320 	getmicrotime(&ifp->if_lastchange);
4321 }
4322 
4323 /*
4324  * This is largely undesirable because it ties ifnet to a device, but does
4325  * provide flexiblity for an embedded product vendor. Should be used with
4326  * the understanding that it violates the interface boundaries, and should be
4327  * a last resort only.
4328  */
4329 int
if_setdev(if_t ifp,void * dev)4330 if_setdev(if_t ifp, void *dev)
4331 {
4332 	return (0);
4333 }
4334 
4335 int
if_setdrvflagbits(if_t ifp,int set_flags,int clear_flags)4336 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags)
4337 {
4338 	ifp->if_drv_flags &= ~clear_flags;
4339 	ifp->if_drv_flags |= set_flags;
4340 
4341 	return (0);
4342 }
4343 
4344 int
if_getdrvflags(const if_t ifp)4345 if_getdrvflags(const if_t ifp)
4346 {
4347 	return (ifp->if_drv_flags);
4348 }
4349 
4350 int
if_setdrvflags(if_t ifp,int flags)4351 if_setdrvflags(if_t ifp, int flags)
4352 {
4353 	ifp->if_drv_flags = flags;
4354 	return (0);
4355 }
4356 
4357 int
if_setflags(if_t ifp,int flags)4358 if_setflags(if_t ifp, int flags)
4359 {
4360 	ifp->if_flags = flags;
4361 	return (0);
4362 }
4363 
4364 int
if_setflagbits(if_t ifp,int set,int clear)4365 if_setflagbits(if_t ifp, int set, int clear)
4366 {
4367 	ifp->if_flags &= ~clear;
4368 	ifp->if_flags |= set;
4369 	return (0);
4370 }
4371 
4372 int
if_getflags(const if_t ifp)4373 if_getflags(const if_t ifp)
4374 {
4375 	return (ifp->if_flags);
4376 }
4377 
4378 int
if_clearhwassist(if_t ifp)4379 if_clearhwassist(if_t ifp)
4380 {
4381 	ifp->if_hwassist = 0;
4382 	return (0);
4383 }
4384 
4385 int
if_sethwassistbits(if_t ifp,int toset,int toclear)4386 if_sethwassistbits(if_t ifp, int toset, int toclear)
4387 {
4388 	ifp->if_hwassist &= ~toclear;
4389 	ifp->if_hwassist |= toset;
4390 
4391 	return (0);
4392 }
4393 
4394 int
if_sethwassist(if_t ifp,int hwassist_bit)4395 if_sethwassist(if_t ifp, int hwassist_bit)
4396 {
4397 	ifp->if_hwassist = hwassist_bit;
4398 	return (0);
4399 }
4400 
4401 int
if_gethwassist(const if_t ifp)4402 if_gethwassist(const if_t ifp)
4403 {
4404 	return (ifp->if_hwassist);
4405 }
4406 
4407 int
if_togglehwassist(if_t ifp,int toggle_bits)4408 if_togglehwassist(if_t ifp, int toggle_bits)
4409 {
4410 	ifp->if_hwassist ^= toggle_bits;
4411 	return (0);
4412 }
4413 
4414 int
if_setmtu(if_t ifp,int mtu)4415 if_setmtu(if_t ifp, int mtu)
4416 {
4417 	ifp->if_mtu = mtu;
4418 	return (0);
4419 }
4420 
4421 void
if_notifymtu(if_t ifp)4422 if_notifymtu(if_t ifp)
4423 {
4424 #ifdef INET6
4425 	nd6_setmtu(ifp);
4426 #endif
4427 	rt_updatemtu(ifp);
4428 }
4429 
4430 int
if_getmtu(const if_t ifp)4431 if_getmtu(const if_t ifp)
4432 {
4433 	return (ifp->if_mtu);
4434 }
4435 
4436 int
if_getmtu_family(const if_t ifp,int family)4437 if_getmtu_family(const if_t ifp, int family)
4438 {
4439 	struct domain *dp;
4440 
4441 	SLIST_FOREACH(dp, &domains, dom_next) {
4442 		if (dp->dom_family == family && dp->dom_ifmtu != NULL)
4443 			return (dp->dom_ifmtu(ifp));
4444 	}
4445 
4446 	return (ifp->if_mtu);
4447 }
4448 
4449 void
if_setppromisc(if_t ifp,bool ppromisc)4450 if_setppromisc(if_t ifp, bool ppromisc)
4451 {
4452 	int new_flags;
4453 
4454 	if (ppromisc)
4455 		new_flags = ifp->if_flags | IFF_PPROMISC;
4456 	else
4457 		new_flags = ifp->if_flags & ~IFF_PPROMISC;
4458 	if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) {
4459 		if (new_flags & IFF_PPROMISC)
4460 			new_flags |= IFF_PROMISC;
4461 		/*
4462 		 * Only unset IFF_PROMISC if there are no more consumers of
4463 		 * promiscuity, i.e. the ifp->if_pcount refcount is 0.
4464 		 */
4465 		else if (ifp->if_pcount == 0)
4466 			new_flags &= ~IFF_PROMISC;
4467 		if (log_promisc_mode_change)
4468                         if_printf(ifp, "permanently promiscuous mode %s\n",
4469                             ((new_flags & IFF_PPROMISC) ?
4470                              "enabled" : "disabled"));
4471 	}
4472 	ifp->if_flags = new_flags;
4473 }
4474 
4475 /*
4476  * Methods for drivers to access interface unicast and multicast
4477  * link level addresses.  Driver shall not know 'struct ifaddr' neither
4478  * 'struct ifmultiaddr'.
4479  */
4480 u_int
if_lladdr_count(if_t ifp)4481 if_lladdr_count(if_t ifp)
4482 {
4483 	struct epoch_tracker et;
4484 	struct ifaddr *ifa;
4485 	u_int count;
4486 
4487 	count = 0;
4488 	NET_EPOCH_ENTER(et);
4489 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
4490 		if (ifa->ifa_addr->sa_family == AF_LINK)
4491 			count++;
4492 	NET_EPOCH_EXIT(et);
4493 
4494 	return (count);
4495 }
4496 
4497 int
if_foreach(if_foreach_cb_t cb,void * cb_arg)4498 if_foreach(if_foreach_cb_t cb, void *cb_arg)
4499 {
4500 	if_t ifp;
4501 	int error;
4502 
4503 	NET_EPOCH_ASSERT();
4504 	MPASS(cb);
4505 
4506 	error = 0;
4507 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
4508 		error = cb(ifp, cb_arg);
4509 		if (error != 0)
4510 			break;
4511 	}
4512 
4513 	return (error);
4514 }
4515 
4516 /*
4517  * Iterates over the list of interfaces, permitting callback function @cb to sleep.
4518  * Stops iteration if @cb returns non-zero error code.
4519  * Returns the last error code from @cb.
4520  * @match_cb: optional match callback limiting the iteration to only matched interfaces
4521  * @match_arg: argument to pass to @match_cb
4522  * @cb: iteration callback
4523  * @cb_arg: argument to pass to @cb
4524  */
4525 int
if_foreach_sleep(if_foreach_match_t match_cb,void * match_arg,if_foreach_cb_t cb,void * cb_arg)4526 if_foreach_sleep(if_foreach_match_t match_cb, void *match_arg, if_foreach_cb_t cb,
4527     void *cb_arg)
4528 {
4529 	int match_count = 0, array_size = 16; /* 128 bytes for malloc */
4530 	struct ifnet **match_array = NULL;
4531 	int error = 0;
4532 
4533 	MPASS(cb);
4534 
4535 	while (true) {
4536 		struct ifnet **new_array;
4537 		int new_size = array_size;
4538 		struct epoch_tracker et;
4539 		struct ifnet *ifp;
4540 
4541 		while (new_size < match_count)
4542 			new_size *= 2;
4543 		new_array = malloc(new_size * sizeof(void *), M_TEMP, M_WAITOK);
4544 		if (match_array != NULL)
4545 			memcpy(new_array, match_array, array_size * sizeof(void *));
4546 		free(match_array, M_TEMP);
4547 		match_array = new_array;
4548 		array_size = new_size;
4549 
4550 		match_count = 0;
4551 		NET_EPOCH_ENTER(et);
4552 		CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
4553 			if (match_cb != NULL && !match_cb(ifp, match_arg))
4554 				continue;
4555 			if (match_count < array_size) {
4556 				if (if_try_ref(ifp))
4557 					match_array[match_count++] = ifp;
4558 			} else
4559 				match_count++;
4560 		}
4561 		NET_EPOCH_EXIT(et);
4562 
4563 		if (match_count > array_size) {
4564 			for (int i = 0; i < array_size; i++)
4565 				if_rele(match_array[i]);
4566 			continue;
4567 		} else {
4568 			for (int i = 0; i < match_count; i++) {
4569 				if (error == 0)
4570 					error = cb(match_array[i], cb_arg);
4571 				if_rele(match_array[i]);
4572 			}
4573 			free(match_array, M_TEMP);
4574 			break;
4575 		}
4576 	}
4577 
4578 	return (error);
4579 }
4580 
4581 
4582 /*
4583  * Uses just 1 pointer of the 4 available in the public struct.
4584  */
4585 if_t
if_iter_start(struct if_iter * iter)4586 if_iter_start(struct if_iter *iter)
4587 {
4588 	if_t ifp;
4589 
4590 	NET_EPOCH_ASSERT();
4591 
4592 	bzero(iter, sizeof(*iter));
4593 	ifp = CK_STAILQ_FIRST(&V_ifnet);
4594 	if (ifp != NULL)
4595 		iter->context[0] = CK_STAILQ_NEXT(ifp, if_link);
4596 	else
4597 		iter->context[0] = NULL;
4598 	return (ifp);
4599 }
4600 
4601 if_t
if_iter_next(struct if_iter * iter)4602 if_iter_next(struct if_iter *iter)
4603 {
4604 	if_t cur_ifp = iter->context[0];
4605 
4606 	if (cur_ifp != NULL)
4607 		iter->context[0] = CK_STAILQ_NEXT(cur_ifp, if_link);
4608 	return (cur_ifp);
4609 }
4610 
4611 void
if_iter_finish(struct if_iter * iter)4612 if_iter_finish(struct if_iter *iter)
4613 {
4614 	/* Nothing to do here for now. */
4615 }
4616 
4617 u_int
if_foreach_lladdr(if_t ifp,iflladdr_cb_t cb,void * cb_arg)4618 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
4619 {
4620 	struct epoch_tracker et;
4621 	struct ifaddr *ifa;
4622 	u_int count;
4623 
4624 	MPASS(cb);
4625 
4626 	count = 0;
4627 	NET_EPOCH_ENTER(et);
4628 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
4629 		if (ifa->ifa_addr->sa_family != AF_LINK)
4630 			continue;
4631 		count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr,
4632 		    count);
4633 	}
4634 	NET_EPOCH_EXIT(et);
4635 
4636 	return (count);
4637 }
4638 
4639 u_int
if_llmaddr_count(if_t ifp)4640 if_llmaddr_count(if_t ifp)
4641 {
4642 	struct epoch_tracker et;
4643 	struct ifmultiaddr *ifma;
4644 	int count;
4645 
4646 	count = 0;
4647 	NET_EPOCH_ENTER(et);
4648 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
4649 		if (ifma->ifma_addr->sa_family == AF_LINK)
4650 			count++;
4651 	NET_EPOCH_EXIT(et);
4652 
4653 	return (count);
4654 }
4655 
4656 bool
if_maddr_empty(if_t ifp)4657 if_maddr_empty(if_t ifp)
4658 {
4659 
4660 	return (CK_STAILQ_EMPTY(&ifp->if_multiaddrs));
4661 }
4662 
4663 u_int
if_foreach_llmaddr(if_t ifp,iflladdr_cb_t cb,void * cb_arg)4664 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
4665 {
4666 	struct epoch_tracker et;
4667 	struct ifmultiaddr *ifma;
4668 	u_int count;
4669 
4670 	MPASS(cb);
4671 
4672 	count = 0;
4673 	NET_EPOCH_ENTER(et);
4674 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4675 		if (ifma->ifma_addr->sa_family != AF_LINK)
4676 			continue;
4677 		count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr,
4678 		    count);
4679 	}
4680 	NET_EPOCH_EXIT(et);
4681 
4682 	return (count);
4683 }
4684 
4685 u_int
if_foreach_addr_type(if_t ifp,int type,if_addr_cb_t cb,void * cb_arg)4686 if_foreach_addr_type(if_t ifp, int type, if_addr_cb_t cb, void *cb_arg)
4687 {
4688 	struct epoch_tracker et;
4689 	struct ifaddr *ifa;
4690 	u_int count;
4691 
4692 	MPASS(cb);
4693 
4694 	count = 0;
4695 	NET_EPOCH_ENTER(et);
4696 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
4697 		if (ifa->ifa_addr->sa_family != type)
4698 			continue;
4699 		count += (*cb)(cb_arg, ifa, count);
4700 	}
4701 	NET_EPOCH_EXIT(et);
4702 
4703 	return (count);
4704 }
4705 
4706 struct ifaddr *
ifa_iter_start(if_t ifp,struct ifa_iter * iter)4707 ifa_iter_start(if_t ifp, struct ifa_iter *iter)
4708 {
4709 	struct ifaddr *ifa;
4710 
4711 	NET_EPOCH_ASSERT();
4712 
4713 	bzero(iter, sizeof(*iter));
4714 	ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
4715 	if (ifa != NULL)
4716 		iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
4717 	else
4718 		iter->context[0] = NULL;
4719 	return (ifa);
4720 }
4721 
4722 struct ifaddr *
ifa_iter_next(struct ifa_iter * iter)4723 ifa_iter_next(struct ifa_iter *iter)
4724 {
4725 	struct ifaddr *ifa = iter->context[0];
4726 
4727 	if (ifa != NULL)
4728 		iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
4729 	return (ifa);
4730 }
4731 
4732 void
ifa_iter_finish(struct ifa_iter * iter)4733 ifa_iter_finish(struct ifa_iter *iter)
4734 {
4735 	/* Nothing to do here for now. */
4736 }
4737 
4738 int
if_setsoftc(if_t ifp,void * softc)4739 if_setsoftc(if_t ifp, void *softc)
4740 {
4741 	ifp->if_softc = softc;
4742 	return (0);
4743 }
4744 
4745 void *
if_getsoftc(const if_t ifp)4746 if_getsoftc(const if_t ifp)
4747 {
4748 	return (ifp->if_softc);
4749 }
4750 
4751 void
if_setrcvif(struct mbuf * m,if_t ifp)4752 if_setrcvif(struct mbuf *m, if_t ifp)
4753 {
4754 
4755 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
4756 	m->m_pkthdr.rcvif = (struct ifnet *)ifp;
4757 }
4758 
4759 void
if_setvtag(struct mbuf * m,uint16_t tag)4760 if_setvtag(struct mbuf *m, uint16_t tag)
4761 {
4762 	m->m_pkthdr.ether_vtag = tag;
4763 }
4764 
4765 uint16_t
if_getvtag(struct mbuf * m)4766 if_getvtag(struct mbuf *m)
4767 {
4768 	return (m->m_pkthdr.ether_vtag);
4769 }
4770 
4771 int
if_sendq_empty(if_t ifp)4772 if_sendq_empty(if_t ifp)
4773 {
4774 	return (IFQ_DRV_IS_EMPTY(&ifp->if_snd));
4775 }
4776 
4777 struct ifaddr *
if_getifaddr(const if_t ifp)4778 if_getifaddr(const if_t ifp)
4779 {
4780 	return (ifp->if_addr);
4781 }
4782 
4783 int
if_setsendqready(if_t ifp)4784 if_setsendqready(if_t ifp)
4785 {
4786 	IFQ_SET_READY(&ifp->if_snd);
4787 	return (0);
4788 }
4789 
4790 int
if_setsendqlen(if_t ifp,int tx_desc_count)4791 if_setsendqlen(if_t ifp, int tx_desc_count)
4792 {
4793 	IFQ_SET_MAXLEN(&ifp->if_snd, tx_desc_count);
4794 	ifp->if_snd.ifq_drv_maxlen = tx_desc_count;
4795 	return (0);
4796 }
4797 
4798 void
if_setnetmapadapter(if_t ifp,struct netmap_adapter * na)4799 if_setnetmapadapter(if_t ifp, struct netmap_adapter *na)
4800 {
4801 	ifp->if_netmap = na;
4802 }
4803 
4804 struct netmap_adapter *
if_getnetmapadapter(if_t ifp)4805 if_getnetmapadapter(if_t ifp)
4806 {
4807 	return (ifp->if_netmap);
4808 }
4809 
4810 int
if_vlantrunkinuse(if_t ifp)4811 if_vlantrunkinuse(if_t ifp)
4812 {
4813 	return (ifp->if_vlantrunk != NULL);
4814 }
4815 
4816 void
if_init(if_t ifp,void * ctx)4817 if_init(if_t ifp, void *ctx)
4818 {
4819 	(*ifp->if_init)(ctx);
4820 }
4821 
4822 void
if_input(if_t ifp,struct mbuf * sendmp)4823 if_input(if_t ifp, struct mbuf* sendmp)
4824 {
4825 	(*ifp->if_input)(ifp, sendmp);
4826 }
4827 
4828 int
if_transmit(if_t ifp,struct mbuf * m)4829 if_transmit(if_t ifp, struct mbuf *m)
4830 {
4831 	return ((*ifp->if_transmit)(ifp, m));
4832 }
4833 
4834 int
if_resolvemulti(if_t ifp,struct sockaddr ** srcs,struct sockaddr * dst)4835 if_resolvemulti(if_t ifp, struct sockaddr **srcs, struct sockaddr *dst)
4836 {
4837 	if (ifp->if_resolvemulti == NULL)
4838 		return (EOPNOTSUPP);
4839 
4840 	return (ifp->if_resolvemulti(ifp, srcs, dst));
4841 }
4842 
4843 int
if_ioctl(if_t ifp,u_long cmd,void * data)4844 if_ioctl(if_t ifp, u_long cmd, void *data)
4845 {
4846 	if (ifp->if_ioctl == NULL)
4847 		return (EOPNOTSUPP);
4848 
4849 	return (ifp->if_ioctl(ifp, cmd, data));
4850 }
4851 
4852 struct mbuf *
if_dequeue(if_t ifp)4853 if_dequeue(if_t ifp)
4854 {
4855 	struct mbuf *m;
4856 
4857 	IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
4858 	return (m);
4859 }
4860 
4861 int
if_sendq_prepend(if_t ifp,struct mbuf * m)4862 if_sendq_prepend(if_t ifp, struct mbuf *m)
4863 {
4864 	IFQ_DRV_PREPEND(&ifp->if_snd, m);
4865 	return (0);
4866 }
4867 
4868 int
if_setifheaderlen(if_t ifp,int len)4869 if_setifheaderlen(if_t ifp, int len)
4870 {
4871 	ifp->if_hdrlen = len;
4872 	return (0);
4873 }
4874 
4875 char *
if_getlladdr(const if_t ifp)4876 if_getlladdr(const if_t ifp)
4877 {
4878 	return (IF_LLADDR(ifp));
4879 }
4880 
4881 void *
if_gethandle(u_char type)4882 if_gethandle(u_char type)
4883 {
4884 	return (if_alloc(type));
4885 }
4886 
4887 void
if_vlancap(if_t ifp)4888 if_vlancap(if_t ifp)
4889 {
4890 	VLAN_CAPABILITIES(ifp);
4891 }
4892 
4893 int
if_sethwtsomax(if_t ifp,u_int if_hw_tsomax)4894 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax)
4895 {
4896 	ifp->if_hw_tsomax = if_hw_tsomax;
4897         return (0);
4898 }
4899 
4900 int
if_sethwtsomaxsegcount(if_t ifp,u_int if_hw_tsomaxsegcount)4901 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount)
4902 {
4903 	ifp->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount;
4904         return (0);
4905 }
4906 
4907 int
if_sethwtsomaxsegsize(if_t ifp,u_int if_hw_tsomaxsegsize)4908 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize)
4909 {
4910 	ifp->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize;
4911         return (0);
4912 }
4913 
4914 u_int
if_gethwtsomax(const if_t ifp)4915 if_gethwtsomax(const if_t ifp)
4916 {
4917 	return (ifp->if_hw_tsomax);
4918 }
4919 
4920 u_int
if_gethwtsomaxsegcount(const if_t ifp)4921 if_gethwtsomaxsegcount(const if_t ifp)
4922 {
4923 	return (ifp->if_hw_tsomaxsegcount);
4924 }
4925 
4926 u_int
if_gethwtsomaxsegsize(const if_t ifp)4927 if_gethwtsomaxsegsize(const if_t ifp)
4928 {
4929 	return (ifp->if_hw_tsomaxsegsize);
4930 }
4931 
4932 void
if_setinitfn(if_t ifp,if_init_fn_t init_fn)4933 if_setinitfn(if_t ifp, if_init_fn_t init_fn)
4934 {
4935 	ifp->if_init = init_fn;
4936 }
4937 
4938 void
if_setinputfn(if_t ifp,if_input_fn_t input_fn)4939 if_setinputfn(if_t ifp, if_input_fn_t input_fn)
4940 {
4941 	ifp->if_input = input_fn;
4942 }
4943 
4944 if_input_fn_t
if_getinputfn(if_t ifp)4945 if_getinputfn(if_t ifp)
4946 {
4947 	return (ifp->if_input);
4948 }
4949 
4950 void
if_setioctlfn(if_t ifp,if_ioctl_fn_t ioctl_fn)4951 if_setioctlfn(if_t ifp, if_ioctl_fn_t ioctl_fn)
4952 {
4953 	ifp->if_ioctl = ioctl_fn;
4954 }
4955 
4956 void
if_setoutputfn(if_t ifp,if_output_fn_t output_fn)4957 if_setoutputfn(if_t ifp, if_output_fn_t output_fn)
4958 {
4959 	ifp->if_output = output_fn;
4960 }
4961 
4962 void
if_setstartfn(if_t ifp,if_start_fn_t start_fn)4963 if_setstartfn(if_t ifp, if_start_fn_t start_fn)
4964 {
4965 	ifp->if_start = start_fn;
4966 }
4967 
4968 if_start_fn_t
if_getstartfn(if_t ifp)4969 if_getstartfn(if_t ifp)
4970 {
4971 	return (ifp->if_start);
4972 }
4973 
4974 void
if_settransmitfn(if_t ifp,if_transmit_fn_t start_fn)4975 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn)
4976 {
4977 	ifp->if_transmit = start_fn;
4978 }
4979 
4980 if_transmit_fn_t
if_gettransmitfn(if_t ifp)4981 if_gettransmitfn(if_t ifp)
4982 {
4983 	return (ifp->if_transmit);
4984 }
4985 
4986 void
if_setqflushfn(if_t ifp,if_qflush_fn_t flush_fn)4987 if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn)
4988 {
4989 	ifp->if_qflush = flush_fn;
4990 }
4991 
4992 void
if_setsndtagallocfn(if_t ifp,if_snd_tag_alloc_t alloc_fn)4993 if_setsndtagallocfn(if_t ifp, if_snd_tag_alloc_t alloc_fn)
4994 {
4995 	ifp->if_snd_tag_alloc = alloc_fn;
4996 }
4997 
4998 int
if_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** mstp)4999 if_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
5000     struct m_snd_tag **mstp)
5001 {
5002 	if (ifp->if_snd_tag_alloc == NULL)
5003 		return (EOPNOTSUPP);
5004 	return (ifp->if_snd_tag_alloc(ifp, params, mstp));
5005 }
5006 
5007 void
if_setgetcounterfn(if_t ifp,if_get_counter_t fn)5008 if_setgetcounterfn(if_t ifp, if_get_counter_t fn)
5009 {
5010 	ifp->if_get_counter = fn;
5011 }
5012 
5013 void
if_setreassignfn(if_t ifp,if_reassign_fn_t fn)5014 if_setreassignfn(if_t ifp, if_reassign_fn_t fn)
5015 {
5016 	ifp->if_reassign = fn;
5017 }
5018 
5019 void
if_setratelimitqueryfn(if_t ifp,if_ratelimit_query_t fn)5020 if_setratelimitqueryfn(if_t ifp, if_ratelimit_query_t fn)
5021 {
5022 	ifp->if_ratelimit_query = fn;
5023 }
5024 
5025 void
if_setdebugnet_methods(if_t ifp,struct debugnet_methods * m)5026 if_setdebugnet_methods(if_t ifp, struct debugnet_methods *m)
5027 {
5028 	ifp->if_debugnet_methods = m;
5029 }
5030 
5031 struct label *
if_getmaclabel(if_t ifp)5032 if_getmaclabel(if_t ifp)
5033 {
5034 	return (ifp->if_label);
5035 }
5036 
5037 void
if_setmaclabel(if_t ifp,struct label * label)5038 if_setmaclabel(if_t ifp, struct label *label)
5039 {
5040 	ifp->if_label = label;
5041 }
5042 
5043 int
if_gettype(if_t ifp)5044 if_gettype(if_t ifp)
5045 {
5046 	return (ifp->if_type);
5047 }
5048 
5049 void *
if_getllsoftc(if_t ifp)5050 if_getllsoftc(if_t ifp)
5051 {
5052 	return (ifp->if_llsoftc);
5053 }
5054 
5055 void
if_setllsoftc(if_t ifp,void * llsoftc)5056 if_setllsoftc(if_t ifp, void *llsoftc)
5057 {
5058 	ifp->if_llsoftc = llsoftc;
5059 };
5060 
5061 int
if_getlinkstate(if_t ifp)5062 if_getlinkstate(if_t ifp)
5063 {
5064 	return (ifp->if_link_state);
5065 }
5066 
5067 const uint8_t *
if_getbroadcastaddr(if_t ifp)5068 if_getbroadcastaddr(if_t ifp)
5069 {
5070 	return (ifp->if_broadcastaddr);
5071 }
5072 
5073 void
if_setbroadcastaddr(if_t ifp,const uint8_t * addr)5074 if_setbroadcastaddr(if_t ifp, const uint8_t *addr)
5075 {
5076 	ifp->if_broadcastaddr = addr;
5077 }
5078 
5079 int
if_getnumadomain(if_t ifp)5080 if_getnumadomain(if_t ifp)
5081 {
5082 	return (ifp->if_numa_domain);
5083 }
5084 
5085 uint64_t
if_getcounter(if_t ifp,ift_counter counter)5086 if_getcounter(if_t ifp, ift_counter counter)
5087 {
5088 	return (ifp->if_get_counter(ifp, counter));
5089 }
5090 
5091 bool
if_altq_is_enabled(if_t ifp)5092 if_altq_is_enabled(if_t ifp)
5093 {
5094 	return (ALTQ_IS_ENABLED(&ifp->if_snd));
5095 }
5096 
5097 struct vnet *
if_getvnet(if_t ifp)5098 if_getvnet(if_t ifp)
5099 {
5100 	return (ifp->if_vnet);
5101 }
5102 
5103 void *
if_getafdata(if_t ifp,int af)5104 if_getafdata(if_t ifp, int af)
5105 {
5106 	return (ifp->if_afdata[af]);
5107 }
5108 
5109 u_int
if_getfib(if_t ifp)5110 if_getfib(if_t ifp)
5111 {
5112 	return (ifp->if_fib);
5113 }
5114 
5115 uint8_t
if_getaddrlen(if_t ifp)5116 if_getaddrlen(if_t ifp)
5117 {
5118 	return (ifp->if_addrlen);
5119 }
5120 
5121 struct bpf_if *
if_getbpf(if_t ifp)5122 if_getbpf(if_t ifp)
5123 {
5124 	return (ifp->if_bpf);
5125 }
5126 
5127 struct ifvlantrunk *
if_getvlantrunk(if_t ifp)5128 if_getvlantrunk(if_t ifp)
5129 {
5130 	return (ifp->if_vlantrunk);
5131 }
5132 
5133 uint8_t
if_getpcp(if_t ifp)5134 if_getpcp(if_t ifp)
5135 {
5136 	return (ifp->if_pcp);
5137 }
5138 
5139 void *
if_getl2com(if_t ifp)5140 if_getl2com(if_t ifp)
5141 {
5142 	return (ifp->if_l2com);
5143 }
5144 
5145 void
if_setipsec_accel_methods(if_t ifp,const struct if_ipsec_accel_methods * m)5146 if_setipsec_accel_methods(if_t ifp, const struct if_ipsec_accel_methods *m)
5147 {
5148 	ifp->if_ipsec_accel_m = m;
5149 }
5150 
5151 #ifdef DDB
5152 static void
if_show_ifnet(struct ifnet * ifp)5153 if_show_ifnet(struct ifnet *ifp)
5154 {
5155 	if (ifp == NULL)
5156 		return;
5157 	db_printf("%s:\n", ifp->if_xname);
5158 #define	IF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, ifp->e);
5159 	IF_DB_PRINTF("%s", if_dname);
5160 	IF_DB_PRINTF("%d", if_dunit);
5161 	IF_DB_PRINTF("%s", if_description);
5162 	IF_DB_PRINTF("%u", if_index);
5163 	IF_DB_PRINTF("%d", if_idxgen);
5164 	IF_DB_PRINTF("%u", if_refcount);
5165 	IF_DB_PRINTF("%p", if_softc);
5166 	IF_DB_PRINTF("%p", if_l2com);
5167 	IF_DB_PRINTF("%p", if_llsoftc);
5168 	IF_DB_PRINTF("%d", if_amcount);
5169 	IF_DB_PRINTF("%p", if_addr);
5170 	IF_DB_PRINTF("%p", if_broadcastaddr);
5171 	IF_DB_PRINTF("%p", if_afdata);
5172 	IF_DB_PRINTF("%d", if_afdata_initialized);
5173 	IF_DB_PRINTF("%u", if_fib);
5174 	IF_DB_PRINTF("%p", if_vnet);
5175 	IF_DB_PRINTF("%p", if_home_vnet);
5176 	IF_DB_PRINTF("%p", if_vlantrunk);
5177 	IF_DB_PRINTF("%p", if_bpf);
5178 	IF_DB_PRINTF("%u", if_pcount);
5179 	IF_DB_PRINTF("%p", if_bridge);
5180 	IF_DB_PRINTF("%p", if_lagg);
5181 	IF_DB_PRINTF("%p", if_pf_kif);
5182 	IF_DB_PRINTF("%p", if_carp);
5183 	IF_DB_PRINTF("%p", if_label);
5184 	IF_DB_PRINTF("%p", if_netmap);
5185 	IF_DB_PRINTF("0x%08x", if_flags);
5186 	IF_DB_PRINTF("0x%08x", if_drv_flags);
5187 	IF_DB_PRINTF("0x%08x", if_capabilities);
5188 	IF_DB_PRINTF("0x%08x", if_capenable);
5189 	IF_DB_PRINTF("%p", if_snd.ifq_head);
5190 	IF_DB_PRINTF("%p", if_snd.ifq_tail);
5191 	IF_DB_PRINTF("%d", if_snd.ifq_len);
5192 	IF_DB_PRINTF("%d", if_snd.ifq_maxlen);
5193 	IF_DB_PRINTF("%p", if_snd.ifq_drv_head);
5194 	IF_DB_PRINTF("%p", if_snd.ifq_drv_tail);
5195 	IF_DB_PRINTF("%d", if_snd.ifq_drv_len);
5196 	IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen);
5197 	IF_DB_PRINTF("%d", if_snd.altq_type);
5198 	IF_DB_PRINTF("%x", if_snd.altq_flags);
5199 #undef IF_DB_PRINTF
5200 }
5201 
DB_SHOW_COMMAND(ifnet,db_show_ifnet)5202 DB_SHOW_COMMAND(ifnet, db_show_ifnet)
5203 {
5204 	if (!have_addr) {
5205 		db_printf("usage: show ifnet <struct ifnet *>\n");
5206 		return;
5207 	}
5208 
5209 	if_show_ifnet((struct ifnet *)addr);
5210 }
5211 
DB_SHOW_ALL_COMMAND(ifnets,db_show_all_ifnets)5212 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets)
5213 {
5214 	struct ifnet *ifp;
5215 	u_short idx;
5216 
5217 	for (idx = 1; idx <= if_index; idx++) {
5218 		ifp = ifindex_table[idx].ife_ifnet;
5219 		if (ifp == NULL)
5220 			continue;
5221 		db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp);
5222 		if (db_pager_quit)
5223 			break;
5224 	}
5225 }
5226 #endif	/* DDB */
5227