1 /*
2 * Atheros CARL9170 driver
3 *
4 * 802.11 xmit & status routines
5 *
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, see
21 * http://www.gnu.org/licenses/.
22 *
23 * This file incorporates work covered by the following copyright and
24 * permission notice:
25 * Copyright (c) 2007-2008 Atheros Communications, Inc.
26 *
27 * Permission to use, copy, modify, and/or distribute this software for any
28 * purpose with or without fee is hereby granted, provided that the above
29 * copyright notice and this permission notice appear in all copies.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38 */
39
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <linux/etherdevice.h>
43 #include <net/mac80211.h>
44 #include "carl9170.h"
45 #include "hw.h"
46 #include "cmd.h"
47
__carl9170_get_queue(struct ar9170 * ar,unsigned int queue)48 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
49 unsigned int queue)
50 {
51 if (unlikely(modparam_noht)) {
52 return queue;
53 } else {
54 /*
55 * This is just another workaround, until
56 * someone figures out how to get QoS and
57 * AMPDU to play nicely together.
58 */
59
60 return 2; /* AC_BE */
61 }
62 }
63
carl9170_get_queue(struct ar9170 * ar,struct sk_buff * skb)64 static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
65 struct sk_buff *skb)
66 {
67 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
68 }
69
is_mem_full(struct ar9170 * ar)70 static bool is_mem_full(struct ar9170 *ar)
71 {
72 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
73 atomic_read(&ar->mem_free_blocks));
74 }
75
carl9170_tx_accounting(struct ar9170 * ar,struct sk_buff * skb)76 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
77 {
78 int queue, i;
79 bool mem_full;
80
81 atomic_inc(&ar->tx_total_queued);
82
83 queue = skb_get_queue_mapping(skb);
84 spin_lock_bh(&ar->tx_stats_lock);
85
86 /*
87 * The driver has to accept the frame, regardless if the queue is
88 * full to the brim, or not. We have to do the queuing internally,
89 * since mac80211 assumes that a driver which can operate with
90 * aggregated frames does not reject frames for this reason.
91 */
92 ar->tx_stats[queue].len++;
93 ar->tx_stats[queue].count++;
94
95 mem_full = is_mem_full(ar);
96 for (i = 0; i < ar->hw->queues; i++) {
97 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
98 ieee80211_stop_queue(ar->hw, i);
99 ar->queue_stop_timeout[i] = jiffies;
100 }
101 }
102
103 spin_unlock_bh(&ar->tx_stats_lock);
104 }
105
106 /* needs rcu_read_lock */
__carl9170_get_tx_sta(struct ar9170 * ar,struct sk_buff * skb)107 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
108 struct sk_buff *skb)
109 {
110 struct _carl9170_tx_superframe *super = (void *) skb->data;
111 struct ieee80211_hdr *hdr = (void *) super->frame_data;
112 struct ieee80211_vif *vif;
113 unsigned int vif_id;
114
115 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
116 CARL9170_TX_SUPER_MISC_VIF_ID_S;
117
118 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
119 return NULL;
120
121 vif = rcu_dereference(ar->vif_priv[vif_id].vif);
122 if (unlikely(!vif))
123 return NULL;
124
125 /*
126 * Normally we should use wrappers like ieee80211_get_DA to get
127 * the correct peer ieee80211_sta.
128 *
129 * But there is a problem with indirect traffic (broadcasts, or
130 * data which is designated for other stations) in station mode.
131 * The frame will be directed to the AP for distribution and not
132 * to the actual destination.
133 */
134
135 return ieee80211_find_sta(vif, hdr->addr1);
136 }
137
carl9170_tx_ps_unblock(struct ar9170 * ar,struct sk_buff * skb)138 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
139 {
140 struct ieee80211_sta *sta;
141 struct carl9170_sta_info *sta_info;
142
143 rcu_read_lock();
144 sta = __carl9170_get_tx_sta(ar, skb);
145 if (unlikely(!sta))
146 goto out_rcu;
147
148 sta_info = (struct carl9170_sta_info *) sta->drv_priv;
149 if (atomic_dec_return(&sta_info->pending_frames) == 0)
150 ieee80211_sta_block_awake(ar->hw, sta, false);
151
152 out_rcu:
153 rcu_read_unlock();
154 }
155
carl9170_tx_accounting_free(struct ar9170 * ar,struct sk_buff * skb)156 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
157 {
158 int queue;
159
160 queue = skb_get_queue_mapping(skb);
161
162 spin_lock_bh(&ar->tx_stats_lock);
163
164 ar->tx_stats[queue].len--;
165
166 if (!is_mem_full(ar)) {
167 unsigned int i;
168 for (i = 0; i < ar->hw->queues; i++) {
169 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
170 continue;
171
172 if (ieee80211_queue_stopped(ar->hw, i)) {
173 unsigned long tmp;
174
175 tmp = jiffies - ar->queue_stop_timeout[i];
176 if (tmp > ar->max_queue_stop_timeout[i])
177 ar->max_queue_stop_timeout[i] = tmp;
178 }
179
180 ieee80211_wake_queue(ar->hw, i);
181 }
182 }
183
184 spin_unlock_bh(&ar->tx_stats_lock);
185
186 if (atomic_dec_and_test(&ar->tx_total_queued))
187 complete(&ar->tx_flush);
188 }
189
carl9170_alloc_dev_space(struct ar9170 * ar,struct sk_buff * skb)190 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
191 {
192 struct _carl9170_tx_superframe *super;
193 unsigned int chunks;
194 int cookie = -1;
195
196 atomic_inc(&ar->mem_allocs);
197
198 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
199 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
200 atomic_add(chunks, &ar->mem_free_blocks);
201 return -ENOSPC;
202 }
203
204 spin_lock_bh(&ar->mem_lock);
205 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
206 spin_unlock_bh(&ar->mem_lock);
207
208 if (unlikely(cookie < 0)) {
209 atomic_add(chunks, &ar->mem_free_blocks);
210 return -ENOSPC;
211 }
212
213 super = (void *) skb->data;
214
215 /*
216 * Cookie #0 serves two special purposes:
217 * 1. The firmware might use it generate BlockACK frames
218 * in responds of an incoming BlockAckReqs.
219 *
220 * 2. Prevent double-free bugs.
221 */
222 super->s.cookie = (u8) cookie + 1;
223 return 0;
224 }
225
carl9170_release_dev_space(struct ar9170 * ar,struct sk_buff * skb)226 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
227 {
228 struct _carl9170_tx_superframe *super = (void *) skb->data;
229 int cookie;
230
231 /* make a local copy of the cookie */
232 cookie = super->s.cookie;
233 /* invalidate cookie */
234 super->s.cookie = 0;
235
236 /*
237 * Do a out-of-bounds check on the cookie:
238 *
239 * * cookie "0" is reserved and won't be assigned to any
240 * out-going frame. Internally however, it is used to
241 * mark no longer/un-accounted frames and serves as a
242 * cheap way of preventing frames from being freed
243 * twice by _accident_. NB: There is a tiny race...
244 *
245 * * obviously, cookie number is limited by the amount
246 * of available memory blocks, so the number can
247 * never execeed the mem_blocks count.
248 */
249 if (WARN_ON_ONCE(cookie == 0) ||
250 WARN_ON_ONCE(cookie > ar->fw.mem_blocks))
251 return;
252
253 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
254 &ar->mem_free_blocks);
255
256 spin_lock_bh(&ar->mem_lock);
257 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
258 spin_unlock_bh(&ar->mem_lock);
259 }
260
261 /* Called from any context */
carl9170_tx_release(struct kref * ref)262 static void carl9170_tx_release(struct kref *ref)
263 {
264 struct ar9170 *ar;
265 struct carl9170_tx_info *arinfo;
266 struct ieee80211_tx_info *txinfo;
267 struct sk_buff *skb;
268
269 arinfo = container_of(ref, struct carl9170_tx_info, ref);
270 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
271 rate_driver_data);
272 skb = container_of((void *) txinfo, struct sk_buff, cb);
273
274 ar = arinfo->ar;
275 if (WARN_ON_ONCE(!ar))
276 return;
277
278 /*
279 * This does not call ieee80211_tx_info_clear_status() because
280 * carl9170_tx_fill_rateinfo() has filled the rate information
281 * before we get to this point.
282 */
283 memset(&txinfo->pad, 0, sizeof(txinfo->pad));
284 memset(&txinfo->rate_driver_data, 0, sizeof(txinfo->rate_driver_data));
285
286 if (atomic_read(&ar->tx_total_queued))
287 ar->tx_schedule = true;
288
289 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
290 if (!atomic_read(&ar->tx_ampdu_upload))
291 ar->tx_ampdu_schedule = true;
292
293 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
294 struct _carl9170_tx_superframe *super;
295
296 super = (void *)skb->data;
297 txinfo->status.ampdu_len = super->s.rix;
298 txinfo->status.ampdu_ack_len = super->s.cnt;
299 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) &&
300 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) {
301 /*
302 * drop redundant tx_status reports:
303 *
304 * 1. ampdu_ack_len of the final tx_status does
305 * include the feedback of this particular frame.
306 *
307 * 2. tx_status_irqsafe only queues up to 128
308 * tx feedback reports and discards the rest.
309 *
310 * 3. minstrel_ht is picky, it only accepts
311 * reports of frames with the TX_STATUS_AMPDU flag.
312 *
313 * 4. mac80211 is not particularly interested in
314 * feedback either [CTL_REQ_TX_STATUS not set]
315 */
316
317 ieee80211_free_txskb(ar->hw, skb);
318 return;
319 } else {
320 /*
321 * Either the frame transmission has failed or
322 * mac80211 requested tx status.
323 */
324 }
325 }
326
327 skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
328 ieee80211_tx_status_irqsafe(ar->hw, skb);
329 }
330
carl9170_tx_get_skb(struct sk_buff * skb)331 void carl9170_tx_get_skb(struct sk_buff *skb)
332 {
333 struct carl9170_tx_info *arinfo = (void *)
334 (IEEE80211_SKB_CB(skb))->rate_driver_data;
335 kref_get(&arinfo->ref);
336 }
337
carl9170_tx_put_skb(struct sk_buff * skb)338 int carl9170_tx_put_skb(struct sk_buff *skb)
339 {
340 struct carl9170_tx_info *arinfo = (void *)
341 (IEEE80211_SKB_CB(skb))->rate_driver_data;
342
343 return kref_put(&arinfo->ref, carl9170_tx_release);
344 }
345
346 /* Caller must hold the tid_info->lock & rcu_read_lock */
carl9170_tx_shift_bm(struct ar9170 * ar,struct carl9170_sta_tid * tid_info,u16 seq)347 static void carl9170_tx_shift_bm(struct ar9170 *ar,
348 struct carl9170_sta_tid *tid_info, u16 seq)
349 {
350 u16 off;
351
352 off = SEQ_DIFF(seq, tid_info->bsn);
353
354 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
355 return;
356
357 /*
358 * Sanity check. For each MPDU we set the bit in bitmap and
359 * clear it once we received the tx_status.
360 * But if the bit is already cleared then we've been bitten
361 * by a bug.
362 */
363 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
364
365 off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
366 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
367 return;
368
369 if (!bitmap_empty(tid_info->bitmap, off))
370 off = find_first_bit(tid_info->bitmap, off);
371
372 tid_info->bsn += off;
373 tid_info->bsn &= 0x0fff;
374
375 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
376 off, CARL9170_BAW_BITS);
377 }
378
carl9170_tx_status_process_ampdu(struct ar9170 * ar,struct sk_buff * skb,struct ieee80211_tx_info * txinfo)379 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
380 struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
381 {
382 struct _carl9170_tx_superframe *super = (void *) skb->data;
383 struct ieee80211_hdr *hdr = (void *) super->frame_data;
384 struct ieee80211_sta *sta;
385 struct carl9170_sta_info *sta_info;
386 struct carl9170_sta_tid *tid_info;
387 u8 tid;
388
389 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
390 txinfo->flags & IEEE80211_TX_CTL_INJECTED)
391 return;
392
393 rcu_read_lock();
394 sta = __carl9170_get_tx_sta(ar, skb);
395 if (unlikely(!sta))
396 goto out_rcu;
397
398 tid = ieee80211_get_tid(hdr);
399
400 sta_info = (void *) sta->drv_priv;
401 tid_info = rcu_dereference(sta_info->agg[tid]);
402 if (!tid_info)
403 goto out_rcu;
404
405 spin_lock_bh(&tid_info->lock);
406 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
407 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
408
409 if (sta_info->stats[tid].clear) {
410 sta_info->stats[tid].clear = false;
411 sta_info->stats[tid].req = false;
412 sta_info->stats[tid].ampdu_len = 0;
413 sta_info->stats[tid].ampdu_ack_len = 0;
414 }
415
416 sta_info->stats[tid].ampdu_len++;
417 if (txinfo->status.rates[0].count == 1)
418 sta_info->stats[tid].ampdu_ack_len++;
419
420 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
421 sta_info->stats[tid].req = true;
422
423 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
424 super->s.rix = sta_info->stats[tid].ampdu_len;
425 super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
426 txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
427 if (sta_info->stats[tid].req)
428 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
429
430 sta_info->stats[tid].clear = true;
431 }
432 spin_unlock_bh(&tid_info->lock);
433
434 out_rcu:
435 rcu_read_unlock();
436 }
437
carl9170_tx_bar_status(struct ar9170 * ar,struct sk_buff * skb,struct ieee80211_tx_info * tx_info)438 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb,
439 struct ieee80211_tx_info *tx_info)
440 {
441 struct _carl9170_tx_superframe *super = (void *) skb->data;
442 struct ieee80211_bar *bar = (void *) super->frame_data;
443
444 /*
445 * Unlike all other frames, the status report for BARs does
446 * not directly come from the hardware as it is incapable of
447 * matching a BA to a previously send BAR.
448 * Instead the RX-path will scan for incoming BAs and set the
449 * IEEE80211_TX_STAT_ACK if it sees one that was likely
450 * caused by a BAR from us.
451 */
452
453 if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
454 !(tx_info->flags & IEEE80211_TX_STAT_ACK)) {
455 struct carl9170_bar_list_entry *entry;
456 int queue = skb_get_queue_mapping(skb);
457
458 rcu_read_lock();
459 list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) {
460 if (entry->skb == skb) {
461 spin_lock_bh(&ar->bar_list_lock[queue]);
462 list_del_rcu(&entry->list);
463 spin_unlock_bh(&ar->bar_list_lock[queue]);
464 kfree_rcu(entry, head);
465 goto out;
466 }
467 }
468
469 WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n",
470 queue, bar->ra, bar->ta, bar->control,
471 bar->start_seq_num);
472 out:
473 rcu_read_unlock();
474 }
475 }
476
carl9170_tx_status(struct ar9170 * ar,struct sk_buff * skb,const bool success)477 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
478 const bool success)
479 {
480 struct ieee80211_tx_info *txinfo;
481
482 carl9170_tx_accounting_free(ar, skb);
483
484 txinfo = IEEE80211_SKB_CB(skb);
485
486 carl9170_tx_bar_status(ar, skb, txinfo);
487
488 if (success)
489 txinfo->flags |= IEEE80211_TX_STAT_ACK;
490 else
491 ar->tx_ack_failures++;
492
493 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
494 carl9170_tx_status_process_ampdu(ar, skb, txinfo);
495
496 carl9170_tx_ps_unblock(ar, skb);
497 carl9170_tx_put_skb(skb);
498 }
499
500 /* This function may be called form any context */
carl9170_tx_callback(struct ar9170 * ar,struct sk_buff * skb)501 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
502 {
503 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
504
505 atomic_dec(&ar->tx_total_pending);
506
507 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
508 atomic_dec(&ar->tx_ampdu_upload);
509
510 if (carl9170_tx_put_skb(skb))
511 tasklet_hi_schedule(&ar->usb_tasklet);
512 }
513
carl9170_get_queued_skb(struct ar9170 * ar,u8 cookie,struct sk_buff_head * queue)514 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
515 struct sk_buff_head *queue)
516 {
517 struct sk_buff *skb;
518
519 spin_lock_bh(&queue->lock);
520 skb_queue_walk(queue, skb) {
521 struct _carl9170_tx_superframe *txc = (void *) skb->data;
522
523 if (txc->s.cookie != cookie)
524 continue;
525
526 __skb_unlink(skb, queue);
527 spin_unlock_bh(&queue->lock);
528
529 carl9170_release_dev_space(ar, skb);
530 return skb;
531 }
532 spin_unlock_bh(&queue->lock);
533
534 return NULL;
535 }
536
carl9170_tx_fill_rateinfo(struct ar9170 * ar,unsigned int rix,unsigned int tries,struct ieee80211_tx_info * txinfo)537 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
538 unsigned int tries, struct ieee80211_tx_info *txinfo)
539 {
540 unsigned int i;
541
542 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
543 if (txinfo->status.rates[i].idx < 0)
544 break;
545
546 if (i == rix) {
547 txinfo->status.rates[i].count = tries;
548 i++;
549 break;
550 }
551 }
552
553 for (; i < IEEE80211_TX_MAX_RATES; i++) {
554 txinfo->status.rates[i].idx = -1;
555 txinfo->status.rates[i].count = 0;
556 }
557 }
558
carl9170_check_queue_stop_timeout(struct ar9170 * ar)559 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
560 {
561 int i;
562 struct sk_buff *skb;
563 struct ieee80211_tx_info *txinfo;
564 struct carl9170_tx_info *arinfo;
565 bool restart = false;
566
567 for (i = 0; i < ar->hw->queues; i++) {
568 spin_lock_bh(&ar->tx_status[i].lock);
569
570 skb = skb_peek(&ar->tx_status[i]);
571
572 if (!skb)
573 goto next;
574
575 txinfo = IEEE80211_SKB_CB(skb);
576 arinfo = (void *) txinfo->rate_driver_data;
577
578 if (time_is_before_jiffies(arinfo->timeout +
579 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
580 restart = true;
581
582 next:
583 spin_unlock_bh(&ar->tx_status[i].lock);
584 }
585
586 if (restart) {
587 /*
588 * At least one queue has been stuck for long enough.
589 * Give the device a kick and hope it gets back to
590 * work.
591 *
592 * possible reasons may include:
593 * - frames got lost/corrupted (bad connection to the device)
594 * - stalled rx processing/usb controller hiccups
595 * - firmware errors/bugs
596 * - every bug you can think of.
597 * - all bugs you can't...
598 * - ...
599 */
600 carl9170_restart(ar, CARL9170_RR_STUCK_TX);
601 }
602 }
603
carl9170_tx_ampdu_timeout(struct ar9170 * ar)604 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
605 {
606 struct carl9170_sta_tid *iter;
607 struct sk_buff *skb;
608 struct ieee80211_tx_info *txinfo;
609 struct carl9170_tx_info *arinfo;
610 struct ieee80211_sta *sta;
611
612 rcu_read_lock();
613 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
614 if (iter->state < CARL9170_TID_STATE_IDLE)
615 continue;
616
617 spin_lock_bh(&iter->lock);
618 skb = skb_peek(&iter->queue);
619 if (!skb)
620 goto unlock;
621
622 txinfo = IEEE80211_SKB_CB(skb);
623 arinfo = (void *)txinfo->rate_driver_data;
624 if (time_is_after_jiffies(arinfo->timeout +
625 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT)))
626 goto unlock;
627
628 sta = iter->sta;
629 if (WARN_ON(!sta))
630 goto unlock;
631
632 ieee80211_stop_tx_ba_session(sta, iter->tid);
633 unlock:
634 spin_unlock_bh(&iter->lock);
635
636 }
637 rcu_read_unlock();
638 }
639
carl9170_tx_janitor(struct work_struct * work)640 void carl9170_tx_janitor(struct work_struct *work)
641 {
642 struct ar9170 *ar = container_of(work, struct ar9170,
643 tx_janitor.work);
644 if (!IS_STARTED(ar))
645 return;
646
647 ar->tx_janitor_last_run = jiffies;
648
649 carl9170_check_queue_stop_timeout(ar);
650 carl9170_tx_ampdu_timeout(ar);
651
652 if (!atomic_read(&ar->tx_total_queued))
653 return;
654
655 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
656 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
657 }
658
__carl9170_tx_process_status(struct ar9170 * ar,const uint8_t cookie,const uint8_t info)659 static void __carl9170_tx_process_status(struct ar9170 *ar,
660 const uint8_t cookie, const uint8_t info)
661 {
662 struct sk_buff *skb;
663 struct ieee80211_tx_info *txinfo;
664 unsigned int r, t, q;
665 bool success = true;
666
667 q = ar9170_qmap(info & CARL9170_TX_STATUS_QUEUE);
668
669 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
670 if (!skb) {
671 /*
672 * We have lost the race to another thread.
673 */
674
675 return ;
676 }
677
678 txinfo = IEEE80211_SKB_CB(skb);
679
680 if (!(info & CARL9170_TX_STATUS_SUCCESS))
681 success = false;
682
683 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
684 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;
685
686 carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
687 carl9170_tx_status(ar, skb, success);
688 }
689
carl9170_tx_process_status(struct ar9170 * ar,const struct carl9170_rsp * cmd)690 void carl9170_tx_process_status(struct ar9170 *ar,
691 const struct carl9170_rsp *cmd)
692 {
693 unsigned int i;
694
695 for (i = 0; i < cmd->hdr.ext; i++) {
696 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
697 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
698 (void *) cmd, cmd->hdr.len + 4);
699 break;
700 }
701
702 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
703 cmd->_tx_status[i].info);
704 }
705 }
706
carl9170_tx_rate_tpc_chains(struct ar9170 * ar,struct ieee80211_tx_info * info,struct ieee80211_tx_rate * txrate,unsigned int * phyrate,unsigned int * tpc,unsigned int * chains)707 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar,
708 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate,
709 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains)
710 {
711 struct ieee80211_rate *rate = NULL;
712 u8 *txpower;
713 unsigned int idx;
714
715 idx = txrate->idx;
716 *tpc = 0;
717 *phyrate = 0;
718
719 if (txrate->flags & IEEE80211_TX_RC_MCS) {
720 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
721 /* +1 dBm for HT40 */
722 *tpc += 2;
723
724 if (info->band == NL80211_BAND_2GHZ)
725 txpower = ar->power_2G_ht40;
726 else
727 txpower = ar->power_5G_ht40;
728 } else {
729 if (info->band == NL80211_BAND_2GHZ)
730 txpower = ar->power_2G_ht20;
731 else
732 txpower = ar->power_5G_ht20;
733 }
734
735 *phyrate = txrate->idx;
736 *tpc += txpower[idx & 7];
737 } else {
738 if (info->band == NL80211_BAND_2GHZ) {
739 if (idx < 4)
740 txpower = ar->power_2G_cck;
741 else
742 txpower = ar->power_2G_ofdm;
743 } else {
744 txpower = ar->power_5G_leg;
745 idx += 4;
746 }
747
748 rate = &__carl9170_ratetable[idx];
749 *tpc += txpower[(rate->hw_value & 0x30) >> 4];
750 *phyrate = rate->hw_value & 0xf;
751 }
752
753 if (ar->eeprom.tx_mask == 1) {
754 *chains = AR9170_TX_PHY_TXCHAIN_1;
755 } else {
756 if (!(txrate->flags & IEEE80211_TX_RC_MCS) &&
757 rate && rate->bitrate >= 360)
758 *chains = AR9170_TX_PHY_TXCHAIN_1;
759 else
760 *chains = AR9170_TX_PHY_TXCHAIN_2;
761 }
762
763 *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2);
764 }
765
carl9170_tx_physet(struct ar9170 * ar,struct ieee80211_tx_info * info,struct ieee80211_tx_rate * txrate)766 static __le32 carl9170_tx_physet(struct ar9170 *ar,
767 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
768 {
769 unsigned int power = 0, chains = 0, phyrate = 0;
770 __le32 tmp;
771
772 tmp = cpu_to_le32(0);
773
774 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
775 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
776 AR9170_TX_PHY_BW_S);
777 /* this works because 40 MHz is 2 and dup is 3 */
778 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
779 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
780 AR9170_TX_PHY_BW_S);
781
782 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
783 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
784
785 if (txrate->flags & IEEE80211_TX_RC_MCS) {
786 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx);
787
788 /* heavy clip control */
789 tmp |= cpu_to_le32((txrate->idx & 0x7) <<
790 AR9170_TX_PHY_TX_HEAVY_CLIP_S);
791
792 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
793
794 /*
795 * green field preamble does not work.
796 *
797 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
798 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
799 */
800 } else {
801 if (info->band == NL80211_BAND_2GHZ) {
802 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M)
803 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK);
804 else
805 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
806 } else {
807 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
808 }
809
810 /*
811 * short preamble seems to be broken too.
812 *
813 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
814 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
815 */
816 }
817 carl9170_tx_rate_tpc_chains(ar, info, txrate,
818 &phyrate, &power, &chains);
819
820 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate));
821 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power));
822 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains));
823 return tmp;
824 }
825
carl9170_tx_rts_check(struct ar9170 * ar,struct ieee80211_tx_rate * rate,bool ampdu,bool multi)826 static bool carl9170_tx_rts_check(struct ar9170 *ar,
827 struct ieee80211_tx_rate *rate,
828 bool ampdu, bool multi)
829 {
830 switch (ar->erp_mode) {
831 case CARL9170_ERP_AUTO:
832 if (ampdu)
833 break;
834 fallthrough;
835
836 case CARL9170_ERP_MAC80211:
837 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
838 break;
839 fallthrough;
840
841 case CARL9170_ERP_RTS:
842 if (likely(!multi))
843 return true;
844 break;
845
846 default:
847 break;
848 }
849
850 return false;
851 }
852
carl9170_tx_cts_check(struct ar9170 * ar,struct ieee80211_tx_rate * rate)853 static bool carl9170_tx_cts_check(struct ar9170 *ar,
854 struct ieee80211_tx_rate *rate)
855 {
856 switch (ar->erp_mode) {
857 case CARL9170_ERP_AUTO:
858 case CARL9170_ERP_MAC80211:
859 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
860 break;
861 fallthrough;
862
863 case CARL9170_ERP_CTS:
864 return true;
865
866 default:
867 break;
868 }
869
870 return false;
871 }
872
carl9170_tx_get_rates(struct ar9170 * ar,struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct sk_buff * skb)873 static void carl9170_tx_get_rates(struct ar9170 *ar,
874 struct ieee80211_vif *vif,
875 struct ieee80211_sta *sta,
876 struct sk_buff *skb)
877 {
878 struct ieee80211_tx_info *info;
879
880 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
881 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE);
882
883 info = IEEE80211_SKB_CB(skb);
884
885 ieee80211_get_tx_rates(vif, sta, skb,
886 info->control.rates,
887 IEEE80211_TX_MAX_RATES);
888 }
889
carl9170_tx_apply_rateset(struct ar9170 * ar,struct ieee80211_tx_info * sinfo,struct sk_buff * skb)890 static void carl9170_tx_apply_rateset(struct ar9170 *ar,
891 struct ieee80211_tx_info *sinfo,
892 struct sk_buff *skb)
893 {
894 struct ieee80211_tx_rate *txrate;
895 struct ieee80211_tx_info *info;
896 struct _carl9170_tx_superframe *txc = (void *) skb->data;
897 int i;
898 bool ampdu;
899 bool no_ack;
900
901 info = IEEE80211_SKB_CB(skb);
902 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
903 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
904
905 /* Set the rate control probe flag for all (sub-) frames.
906 * This is because the TX_STATS_AMPDU flag is only set on
907 * the last frame, so it has to be inherited.
908 */
909 info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
910
911 /* NOTE: For the first rate, the ERP & AMPDU flags are directly
912 * taken from mac_control. For all fallback rate, the firmware
913 * updates the mac_control flags from the rate info field.
914 */
915 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
916 __le32 phy_set;
917
918 txrate = &sinfo->control.rates[i];
919 if (txrate->idx < 0)
920 break;
921
922 phy_set = carl9170_tx_physet(ar, info, txrate);
923 if (i == 0) {
924 __le16 mac_tmp = cpu_to_le16(0);
925
926 /* first rate - part of the hw's frame header */
927 txc->f.phy_control = phy_set;
928
929 if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS)
930 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
931
932 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
933 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
934 else if (carl9170_tx_cts_check(ar, txrate))
935 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
936
937 txc->f.mac_control |= mac_tmp;
938 } else {
939 /* fallback rates are stored in the firmware's
940 * retry rate set array.
941 */
942 txc->s.rr[i - 1] = phy_set;
943 }
944
945 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
946 txrate->count);
947
948 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
949 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
950 CARL9170_TX_SUPER_RI_ERP_PROT_S);
951 else if (carl9170_tx_cts_check(ar, txrate))
952 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
953 CARL9170_TX_SUPER_RI_ERP_PROT_S);
954
955 if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS))
956 txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU;
957 }
958 }
959
carl9170_tx_prepare(struct ar9170 * ar,struct ieee80211_sta * sta,struct sk_buff * skb)960 static int carl9170_tx_prepare(struct ar9170 *ar,
961 struct ieee80211_sta *sta,
962 struct sk_buff *skb)
963 {
964 struct ieee80211_hdr *hdr;
965 struct _carl9170_tx_superframe *txc;
966 struct carl9170_vif_info *cvif;
967 struct ieee80211_tx_info *info;
968 struct carl9170_tx_info *arinfo;
969 unsigned int hw_queue;
970 __le16 mac_tmp;
971 u16 len;
972
973 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
974 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
975 CARL9170_TX_SUPERDESC_LEN);
976
977 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
978 AR9170_TX_HWDESC_LEN);
979
980 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
981 ((CARL9170_TX_SUPER_MISC_VIF_ID >>
982 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));
983
984 hw_queue = ar9170_qmap(carl9170_get_queue(ar, skb));
985
986 hdr = (void *)skb->data;
987 info = IEEE80211_SKB_CB(skb);
988 len = skb->len;
989
990 /*
991 * Note: If the frame was sent through a monitor interface,
992 * the ieee80211_vif pointer can be NULL.
993 */
994 if (likely(info->control.vif))
995 cvif = (void *) info->control.vif->drv_priv;
996 else
997 cvif = NULL;
998
999 txc = skb_push(skb, sizeof(*txc));
1000 memset(txc, 0, sizeof(*txc));
1001
1002 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
1003
1004 if (likely(cvif))
1005 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);
1006
1007 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM))
1008 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
1009
1010 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
1011 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ;
1012
1013 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
1014 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;
1015
1016 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
1017 AR9170_TX_MAC_BACKOFF);
1018 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
1019 AR9170_TX_MAC_QOS);
1020
1021 if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK))
1022 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
1023
1024 if (info->control.hw_key) {
1025 len += info->control.hw_key->icv_len;
1026
1027 switch (info->control.hw_key->cipher) {
1028 case WLAN_CIPHER_SUITE_WEP40:
1029 case WLAN_CIPHER_SUITE_WEP104:
1030 case WLAN_CIPHER_SUITE_TKIP:
1031 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4);
1032 break;
1033 case WLAN_CIPHER_SUITE_CCMP:
1034 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES);
1035 break;
1036 default:
1037 WARN_ON(1);
1038 goto err_out;
1039 }
1040 }
1041
1042 if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1043 unsigned int density, factor;
1044
1045 if (unlikely(!sta || !cvif))
1046 goto err_out;
1047
1048 factor = min_t(unsigned int, 1u,
1049 sta->deflink.ht_cap.ampdu_factor);
1050 density = sta->deflink.ht_cap.ampdu_density;
1051
1052 if (density) {
1053 /*
1054 * Watch out!
1055 *
1056 * Otus uses slightly different density values than
1057 * those from the 802.11n spec.
1058 */
1059
1060 density = max_t(unsigned int, density + 1, 7u);
1061 }
1062
1063 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
1064 txc->s.ampdu_settings, density);
1065
1066 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
1067 txc->s.ampdu_settings, factor);
1068 }
1069
1070 txc->s.len = cpu_to_le16(skb->len);
1071 txc->f.length = cpu_to_le16(len + FCS_LEN);
1072 txc->f.mac_control = mac_tmp;
1073
1074 arinfo = (void *)info->rate_driver_data;
1075 arinfo->timeout = jiffies;
1076 arinfo->ar = ar;
1077 kref_init(&arinfo->ref);
1078 return 0;
1079
1080 err_out:
1081 skb_pull(skb, sizeof(*txc));
1082 return -EINVAL;
1083 }
1084
carl9170_set_immba(struct ar9170 * ar,struct sk_buff * skb)1085 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
1086 {
1087 struct _carl9170_tx_superframe *super;
1088
1089 super = (void *) skb->data;
1090 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
1091 }
1092
carl9170_set_ampdu_params(struct ar9170 * ar,struct sk_buff * skb)1093 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
1094 {
1095 struct _carl9170_tx_superframe *super;
1096 int tmp;
1097
1098 super = (void *) skb->data;
1099
1100 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
1101 CARL9170_TX_SUPER_AMPDU_DENSITY_S;
1102
1103 /*
1104 * If you haven't noticed carl9170_tx_prepare has already filled
1105 * in all ampdu spacing & factor parameters.
1106 * Now it's the time to check whenever the settings have to be
1107 * updated by the firmware, or if everything is still the same.
1108 *
1109 * There's no sane way to handle different density values with
1110 * this hardware, so we may as well just do the compare in the
1111 * driver.
1112 */
1113
1114 if (tmp != ar->current_density) {
1115 ar->current_density = tmp;
1116 super->s.ampdu_settings |=
1117 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
1118 }
1119
1120 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
1121 CARL9170_TX_SUPER_AMPDU_FACTOR_S;
1122
1123 if (tmp != ar->current_factor) {
1124 ar->current_factor = tmp;
1125 super->s.ampdu_settings |=
1126 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
1127 }
1128 }
1129
carl9170_tx_ampdu(struct ar9170 * ar)1130 static void carl9170_tx_ampdu(struct ar9170 *ar)
1131 {
1132 struct sk_buff_head agg;
1133 struct carl9170_sta_tid *tid_info;
1134 struct sk_buff *skb, *first;
1135 struct ieee80211_tx_info *tx_info_first;
1136 unsigned int i = 0, done_ampdus = 0;
1137 u16 seq, queue, tmpssn;
1138
1139 atomic_inc(&ar->tx_ampdu_scheduler);
1140 ar->tx_ampdu_schedule = false;
1141
1142 if (atomic_read(&ar->tx_ampdu_upload))
1143 return;
1144
1145 if (!ar->tx_ampdu_list_len)
1146 return;
1147
1148 __skb_queue_head_init(&agg);
1149
1150 rcu_read_lock();
1151 tid_info = rcu_dereference(ar->tx_ampdu_iter);
1152 if (WARN_ON_ONCE(!tid_info)) {
1153 rcu_read_unlock();
1154 return;
1155 }
1156
1157 retry:
1158 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
1159 i++;
1160
1161 if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
1162 continue;
1163
1164 queue = TID_TO_WME_AC(tid_info->tid);
1165
1166 spin_lock_bh(&tid_info->lock);
1167 if (tid_info->state != CARL9170_TID_STATE_XMIT)
1168 goto processed;
1169
1170 tid_info->counter++;
1171 first = skb_peek(&tid_info->queue);
1172 tmpssn = carl9170_get_seq(first);
1173 seq = tid_info->snx;
1174
1175 if (unlikely(tmpssn != seq)) {
1176 tid_info->state = CARL9170_TID_STATE_IDLE;
1177
1178 goto processed;
1179 }
1180
1181 tx_info_first = NULL;
1182 while ((skb = skb_peek(&tid_info->queue))) {
1183 /* strict 0, 1, ..., n - 1, n frame sequence order */
1184 if (unlikely(carl9170_get_seq(skb) != seq))
1185 break;
1186
1187 /* don't upload more than AMPDU FACTOR allows. */
1188 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
1189 (tid_info->max - 1)))
1190 break;
1191
1192 if (!tx_info_first) {
1193 carl9170_tx_get_rates(ar, tid_info->vif,
1194 tid_info->sta, first);
1195 tx_info_first = IEEE80211_SKB_CB(first);
1196 }
1197
1198 carl9170_tx_apply_rateset(ar, tx_info_first, skb);
1199
1200 atomic_inc(&ar->tx_ampdu_upload);
1201 tid_info->snx = seq = SEQ_NEXT(seq);
1202 __skb_unlink(skb, &tid_info->queue);
1203
1204 __skb_queue_tail(&agg, skb);
1205
1206 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
1207 break;
1208 }
1209
1210 if (skb_queue_empty(&tid_info->queue) ||
1211 carl9170_get_seq(skb_peek(&tid_info->queue)) !=
1212 tid_info->snx) {
1213 /* stop TID, if A-MPDU frames are still missing,
1214 * or whenever the queue is empty.
1215 */
1216
1217 tid_info->state = CARL9170_TID_STATE_IDLE;
1218 }
1219 done_ampdus++;
1220
1221 processed:
1222 spin_unlock_bh(&tid_info->lock);
1223
1224 if (skb_queue_empty(&agg))
1225 continue;
1226
1227 /* apply ampdu spacing & factor settings */
1228 carl9170_set_ampdu_params(ar, skb_peek(&agg));
1229
1230 /* set aggregation push bit */
1231 carl9170_set_immba(ar, skb_peek_tail(&agg));
1232
1233 spin_lock_bh(&ar->tx_pending[queue].lock);
1234 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
1235 spin_unlock_bh(&ar->tx_pending[queue].lock);
1236 ar->tx_schedule = true;
1237 }
1238 if ((done_ampdus++ == 0) && (i++ == 0))
1239 goto retry;
1240
1241 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
1242 rcu_read_unlock();
1243 }
1244
carl9170_tx_pick_skb(struct ar9170 * ar,struct sk_buff_head * queue)1245 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
1246 struct sk_buff_head *queue)
1247 {
1248 struct sk_buff *skb;
1249 struct ieee80211_tx_info *info;
1250 struct carl9170_tx_info *arinfo;
1251
1252 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
1253
1254 spin_lock_bh(&queue->lock);
1255 skb = skb_peek(queue);
1256 if (unlikely(!skb))
1257 goto err_unlock;
1258
1259 if (carl9170_alloc_dev_space(ar, skb))
1260 goto err_unlock;
1261
1262 __skb_unlink(skb, queue);
1263 spin_unlock_bh(&queue->lock);
1264
1265 info = IEEE80211_SKB_CB(skb);
1266 arinfo = (void *) info->rate_driver_data;
1267
1268 arinfo->timeout = jiffies;
1269 return skb;
1270
1271 err_unlock:
1272 spin_unlock_bh(&queue->lock);
1273 return NULL;
1274 }
1275
carl9170_tx_drop(struct ar9170 * ar,struct sk_buff * skb)1276 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
1277 {
1278 struct _carl9170_tx_superframe *super;
1279 uint8_t q = 0;
1280
1281 ar->tx_dropped++;
1282
1283 super = (void *)skb->data;
1284 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
1285 ar9170_qmap(carl9170_get_queue(ar, skb)));
1286 __carl9170_tx_process_status(ar, super->s.cookie, q);
1287 }
1288
carl9170_tx_ps_drop(struct ar9170 * ar,struct sk_buff * skb)1289 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
1290 {
1291 struct ieee80211_sta *sta;
1292 struct carl9170_sta_info *sta_info;
1293 struct ieee80211_tx_info *tx_info;
1294
1295 rcu_read_lock();
1296 sta = __carl9170_get_tx_sta(ar, skb);
1297 if (!sta)
1298 goto out_rcu;
1299
1300 sta_info = (void *) sta->drv_priv;
1301 tx_info = IEEE80211_SKB_CB(skb);
1302
1303 if (unlikely(sta_info->sleeping) &&
1304 !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
1305 IEEE80211_TX_CTL_CLEAR_PS_FILT))) {
1306 rcu_read_unlock();
1307
1308 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1309 atomic_dec(&ar->tx_ampdu_upload);
1310
1311 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1312 carl9170_release_dev_space(ar, skb);
1313 carl9170_tx_status(ar, skb, false);
1314 return true;
1315 }
1316
1317 out_rcu:
1318 rcu_read_unlock();
1319 return false;
1320 }
1321
carl9170_bar_check(struct ar9170 * ar,struct sk_buff * skb)1322 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb)
1323 {
1324 struct _carl9170_tx_superframe *super = (void *) skb->data;
1325 struct ieee80211_bar *bar = (void *) super->frame_data;
1326
1327 if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
1328 skb->len >= sizeof(struct ieee80211_bar)) {
1329 struct carl9170_bar_list_entry *entry;
1330 unsigned int queue = skb_get_queue_mapping(skb);
1331
1332 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
1333 if (!WARN_ON_ONCE(!entry)) {
1334 entry->skb = skb;
1335 spin_lock_bh(&ar->bar_list_lock[queue]);
1336 list_add_tail_rcu(&entry->list, &ar->bar_list[queue]);
1337 spin_unlock_bh(&ar->bar_list_lock[queue]);
1338 }
1339 }
1340 }
1341
carl9170_tx(struct ar9170 * ar)1342 static void carl9170_tx(struct ar9170 *ar)
1343 {
1344 struct sk_buff *skb;
1345 unsigned int i, q;
1346 bool schedule_garbagecollector = false;
1347
1348 ar->tx_schedule = false;
1349
1350 if (unlikely(!IS_STARTED(ar)))
1351 return;
1352
1353 carl9170_usb_handle_tx_err(ar);
1354
1355 for (i = 0; i < ar->hw->queues; i++) {
1356 while (!skb_queue_empty(&ar->tx_pending[i])) {
1357 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
1358 if (unlikely(!skb))
1359 break;
1360
1361 if (unlikely(carl9170_tx_ps_drop(ar, skb)))
1362 continue;
1363
1364 carl9170_bar_check(ar, skb);
1365
1366 atomic_inc(&ar->tx_total_pending);
1367
1368 q = __carl9170_get_queue(ar, i);
1369 /*
1370 * NB: tx_status[i] vs. tx_status[q],
1371 * TODO: Move into pick_skb or alloc_dev_space.
1372 */
1373 skb_queue_tail(&ar->tx_status[q], skb);
1374
1375 /*
1376 * increase ref count to "2".
1377 * Ref counting is the easiest way to solve the
1378 * race between the urb's completion routine:
1379 * carl9170_tx_callback
1380 * and wlan tx status functions:
1381 * carl9170_tx_status/janitor.
1382 */
1383 carl9170_tx_get_skb(skb);
1384
1385 carl9170_usb_tx(ar, skb);
1386 schedule_garbagecollector = true;
1387 }
1388 }
1389
1390 if (!schedule_garbagecollector)
1391 return;
1392
1393 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
1394 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
1395 }
1396
carl9170_tx_ampdu_queue(struct ar9170 * ar,struct ieee80211_sta * sta,struct sk_buff * skb,struct ieee80211_tx_info * txinfo)1397 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
1398 struct ieee80211_sta *sta, struct sk_buff *skb,
1399 struct ieee80211_tx_info *txinfo)
1400 {
1401 struct carl9170_sta_info *sta_info;
1402 struct carl9170_sta_tid *agg;
1403 struct sk_buff *iter;
1404 u16 tid, seq, qseq, off;
1405 bool run = false;
1406
1407 tid = carl9170_get_tid(skb);
1408 seq = carl9170_get_seq(skb);
1409 sta_info = (void *) sta->drv_priv;
1410
1411 rcu_read_lock();
1412 agg = rcu_dereference(sta_info->agg[tid]);
1413
1414 if (!agg)
1415 goto err_unlock_rcu;
1416
1417 spin_lock_bh(&agg->lock);
1418 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
1419 goto err_unlock;
1420
1421 /* check if sequence is within the BA window */
1422 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
1423 goto err_unlock;
1424
1425 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
1426 goto err_unlock;
1427
1428 off = SEQ_DIFF(seq, agg->bsn);
1429 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
1430 goto err_unlock;
1431
1432 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
1433 __skb_queue_tail(&agg->queue, skb);
1434 agg->hsn = seq;
1435 goto queued;
1436 }
1437
1438 skb_queue_reverse_walk(&agg->queue, iter) {
1439 qseq = carl9170_get_seq(iter);
1440
1441 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
1442 __skb_queue_after(&agg->queue, iter, skb);
1443 goto queued;
1444 }
1445 }
1446
1447 __skb_queue_head(&agg->queue, skb);
1448 queued:
1449
1450 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
1451 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
1452 agg->state = CARL9170_TID_STATE_XMIT;
1453 run = true;
1454 }
1455 }
1456
1457 spin_unlock_bh(&agg->lock);
1458 rcu_read_unlock();
1459
1460 return run;
1461
1462 err_unlock:
1463 spin_unlock_bh(&agg->lock);
1464
1465 err_unlock_rcu:
1466 rcu_read_unlock();
1467 txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU;
1468 carl9170_tx_status(ar, skb, false);
1469 ar->tx_dropped++;
1470 return false;
1471 }
1472
carl9170_op_tx(struct ieee80211_hw * hw,struct ieee80211_tx_control * control,struct sk_buff * skb)1473 void carl9170_op_tx(struct ieee80211_hw *hw,
1474 struct ieee80211_tx_control *control,
1475 struct sk_buff *skb)
1476 {
1477 struct ar9170 *ar = hw->priv;
1478 struct ieee80211_tx_info *info;
1479 struct ieee80211_sta *sta = control->sta;
1480 struct ieee80211_vif *vif;
1481 bool run;
1482
1483 if (unlikely(!IS_STARTED(ar)))
1484 goto err_free;
1485
1486 info = IEEE80211_SKB_CB(skb);
1487 vif = info->control.vif;
1488
1489 if (unlikely(carl9170_tx_prepare(ar, sta, skb)))
1490 goto err_free;
1491
1492 carl9170_tx_accounting(ar, skb);
1493 /*
1494 * from now on, one has to use carl9170_tx_status to free
1495 * all ressouces which are associated with the frame.
1496 */
1497
1498 if (sta) {
1499 struct carl9170_sta_info *stai = (void *) sta->drv_priv;
1500 atomic_inc(&stai->pending_frames);
1501 }
1502
1503 if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1504 /* to static code analyzers and reviewers:
1505 * mac80211 guarantees that a valid "sta"
1506 * reference is present, if a frame is to
1507 * be part of an ampdu. Hence any extra
1508 * sta == NULL checks are redundant in this
1509 * special case.
1510 */
1511 run = carl9170_tx_ampdu_queue(ar, sta, skb, info);
1512 if (run)
1513 carl9170_tx_ampdu(ar);
1514
1515 } else {
1516 unsigned int queue = skb_get_queue_mapping(skb);
1517
1518 carl9170_tx_get_rates(ar, vif, sta, skb);
1519 carl9170_tx_apply_rateset(ar, info, skb);
1520 skb_queue_tail(&ar->tx_pending[queue], skb);
1521 }
1522
1523 carl9170_tx(ar);
1524 return;
1525
1526 err_free:
1527 ar->tx_dropped++;
1528 ieee80211_free_txskb(ar->hw, skb);
1529 }
1530
carl9170_tx_scheduler(struct ar9170 * ar)1531 void carl9170_tx_scheduler(struct ar9170 *ar)
1532 {
1533
1534 if (ar->tx_ampdu_schedule)
1535 carl9170_tx_ampdu(ar);
1536
1537 if (ar->tx_schedule)
1538 carl9170_tx(ar);
1539 }
1540
1541 /* caller has to take rcu_read_lock */
carl9170_pick_beaconing_vif(struct ar9170 * ar)1542 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar)
1543 {
1544 struct carl9170_vif_info *cvif;
1545 int i = 1;
1546
1547 /* The AR9170 hardware has no fancy beacon queue or some
1548 * other scheduling mechanism. So, the driver has to make
1549 * due by setting the two beacon timers (pretbtt and tbtt)
1550 * once and then swapping the beacon address in the HW's
1551 * register file each time the pretbtt fires.
1552 */
1553
1554 cvif = rcu_dereference(ar->beacon_iter);
1555 if (ar->vifs > 0 && cvif) {
1556 do {
1557 list_for_each_entry_continue_rcu(cvif, &ar->vif_list,
1558 list) {
1559 if (cvif->active && cvif->enable_beacon)
1560 goto out;
1561 }
1562 } while (ar->beacon_enabled && i--);
1563
1564 /* no entry found in list */
1565 return NULL;
1566 }
1567
1568 out:
1569 RCU_INIT_POINTER(ar->beacon_iter, cvif);
1570 return cvif;
1571 }
1572
carl9170_tx_beacon_physet(struct ar9170 * ar,struct sk_buff * skb,u32 * ht1,u32 * plcp)1573 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb,
1574 u32 *ht1, u32 *plcp)
1575 {
1576 struct ieee80211_tx_info *txinfo;
1577 struct ieee80211_tx_rate *rate;
1578 unsigned int power, chains;
1579 bool ht_rate;
1580
1581 txinfo = IEEE80211_SKB_CB(skb);
1582 rate = &txinfo->control.rates[0];
1583 ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS);
1584 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains);
1585
1586 *ht1 = AR9170_MAC_BCN_HT1_TX_ANT0;
1587 if (chains == AR9170_TX_PHY_TXCHAIN_2)
1588 *ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1;
1589 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7);
1590 SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power);
1591 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains);
1592
1593 if (ht_rate) {
1594 *ht1 |= AR9170_MAC_BCN_HT1_HT_EN;
1595 if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1596 *plcp |= AR9170_MAC_BCN_HT2_SGI;
1597
1598 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1599 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED;
1600 *plcp |= AR9170_MAC_BCN_HT2_BW40;
1601 } else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) {
1602 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP;
1603 *plcp |= AR9170_MAC_BCN_HT2_BW40;
1604 }
1605
1606 SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN);
1607 } else {
1608 if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M)
1609 *plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400;
1610 else
1611 *plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010;
1612 }
1613
1614 return ht_rate;
1615 }
1616
carl9170_update_beacon(struct ar9170 * ar,const bool submit)1617 int carl9170_update_beacon(struct ar9170 *ar, const bool submit)
1618 {
1619 struct sk_buff *skb = NULL;
1620 struct carl9170_vif_info *cvif;
1621 __le32 *data, *old = NULL;
1622 u32 word, ht1, plcp, off, addr, len;
1623 int i = 0, err = 0;
1624 bool ht_rate;
1625
1626 rcu_read_lock();
1627 cvif = carl9170_pick_beaconing_vif(ar);
1628 if (!cvif)
1629 goto out_unlock;
1630
1631 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif),
1632 NULL, NULL, 0);
1633
1634 if (!skb) {
1635 err = -ENOMEM;
1636 goto err_free;
1637 }
1638
1639 spin_lock_bh(&ar->beacon_lock);
1640 data = (__le32 *)skb->data;
1641 if (cvif->beacon)
1642 old = (__le32 *)cvif->beacon->data;
1643
1644 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX;
1645 addr = ar->fw.beacon_addr + off;
1646 len = roundup(skb->len + FCS_LEN, 4);
1647
1648 if ((off + len) > ar->fw.beacon_max_len) {
1649 if (net_ratelimit()) {
1650 wiphy_err(ar->hw->wiphy, "beacon does not "
1651 "fit into device memory!\n");
1652 }
1653 err = -EINVAL;
1654 goto err_unlock;
1655 }
1656
1657 if (len > AR9170_MAC_BCN_LENGTH_MAX) {
1658 if (net_ratelimit()) {
1659 wiphy_err(ar->hw->wiphy, "no support for beacons "
1660 "bigger than %d (yours:%d).\n",
1661 AR9170_MAC_BCN_LENGTH_MAX, len);
1662 }
1663
1664 err = -EMSGSIZE;
1665 goto err_unlock;
1666 }
1667
1668 ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp);
1669
1670 carl9170_async_regwrite_begin(ar);
1671 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1);
1672 if (ht_rate)
1673 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp);
1674 else
1675 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp);
1676
1677 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
1678 /*
1679 * XXX: This accesses beyond skb data for up
1680 * to the last 3 bytes!!
1681 */
1682
1683 if (old && (data[i] == old[i]))
1684 continue;
1685
1686 word = le32_to_cpu(data[i]);
1687 carl9170_async_regwrite(addr + 4 * i, word);
1688 }
1689 carl9170_async_regwrite_finish();
1690
1691 dev_kfree_skb_any(cvif->beacon);
1692 cvif->beacon = NULL;
1693
1694 err = carl9170_async_regwrite_result();
1695 if (!err)
1696 cvif->beacon = skb;
1697 spin_unlock_bh(&ar->beacon_lock);
1698 if (err)
1699 goto err_free;
1700
1701 if (submit) {
1702 err = carl9170_bcn_ctrl(ar, cvif->id,
1703 CARL9170_BCN_CTRL_CAB_TRIGGER,
1704 addr, skb->len + FCS_LEN);
1705
1706 if (err)
1707 goto err_free;
1708 }
1709 out_unlock:
1710 rcu_read_unlock();
1711 return 0;
1712
1713 err_unlock:
1714 spin_unlock_bh(&ar->beacon_lock);
1715
1716 err_free:
1717 rcu_read_unlock();
1718 dev_kfree_skb_any(skb);
1719 return err;
1720 }
1721