xref: /linux/kernel/capability.c (revision c159dfbdd4fc62fa08f6715d9d6c34d39cf40446)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/kernel/capability.c
4  *
5  * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
6  *
7  * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
8  * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/audit.h>
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/export.h>
17 #include <linux/security.h>
18 #include <linux/syscalls.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/user_namespace.h>
21 #include <linux/uaccess.h>
22 
23 int file_caps_enabled = 1;
24 
25 static int __init file_caps_disable(char *str)
26 {
27 	file_caps_enabled = 0;
28 	return 1;
29 }
30 __setup("no_file_caps", file_caps_disable);
31 
32 #ifdef CONFIG_MULTIUSER
33 /*
34  * More recent versions of libcap are available from:
35  *
36  *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
37  */
38 
39 static void warn_legacy_capability_use(void)
40 {
41 	pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n",
42 		     current->comm);
43 }
44 
45 /*
46  * Version 2 capabilities worked fine, but the linux/capability.h file
47  * that accompanied their introduction encouraged their use without
48  * the necessary user-space source code changes. As such, we have
49  * created a version 3 with equivalent functionality to version 2, but
50  * with a header change to protect legacy source code from using
51  * version 2 when it wanted to use version 1. If your system has code
52  * that trips the following warning, it is using version 2 specific
53  * capabilities and may be doing so insecurely.
54  *
55  * The remedy is to either upgrade your version of libcap (to 2.10+,
56  * if the application is linked against it), or recompile your
57  * application with modern kernel headers and this warning will go
58  * away.
59  */
60 
61 static void warn_deprecated_v2(void)
62 {
63 	pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n",
64 		     current->comm);
65 }
66 
67 /*
68  * Version check. Return the number of u32s in each capability flag
69  * array, or a negative value on error.
70  */
71 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
72 {
73 	__u32 version;
74 
75 	if (get_user(version, &header->version))
76 		return -EFAULT;
77 
78 	switch (version) {
79 	case _LINUX_CAPABILITY_VERSION_1:
80 		warn_legacy_capability_use();
81 		*tocopy = _LINUX_CAPABILITY_U32S_1;
82 		break;
83 	case _LINUX_CAPABILITY_VERSION_2:
84 		warn_deprecated_v2();
85 		fallthrough;	/* v3 is otherwise equivalent to v2 */
86 	case _LINUX_CAPABILITY_VERSION_3:
87 		*tocopy = _LINUX_CAPABILITY_U32S_3;
88 		break;
89 	default:
90 		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
91 			return -EFAULT;
92 		return -EINVAL;
93 	}
94 
95 	return 0;
96 }
97 
98 /*
99  * The only thing that can change the capabilities of the current
100  * process is the current process. As such, we can't be in this code
101  * at the same time as we are in the process of setting capabilities
102  * in this process. The net result is that we can limit our use of
103  * locks to when we are reading the caps of another process.
104  */
105 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
106 				     kernel_cap_t *pIp, kernel_cap_t *pPp)
107 {
108 	int ret;
109 
110 	if (pid && (pid != task_pid_vnr(current))) {
111 		const struct task_struct *target;
112 
113 		rcu_read_lock();
114 
115 		target = find_task_by_vpid(pid);
116 		if (!target)
117 			ret = -ESRCH;
118 		else
119 			ret = security_capget(target, pEp, pIp, pPp);
120 
121 		rcu_read_unlock();
122 	} else
123 		ret = security_capget(current, pEp, pIp, pPp);
124 
125 	return ret;
126 }
127 
128 /**
129  * sys_capget - get the capabilities of a given process.
130  * @header: pointer to struct that contains capability version and
131  *	target pid data
132  * @dataptr: pointer to struct that contains the effective, permitted,
133  *	and inheritable capabilities that are returned
134  *
135  * Returns 0 on success and < 0 on error.
136  */
137 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
138 {
139 	int ret = 0;
140 	pid_t pid;
141 	unsigned tocopy;
142 	kernel_cap_t pE, pI, pP;
143 	struct __user_cap_data_struct kdata[2];
144 
145 	ret = cap_validate_magic(header, &tocopy);
146 	if ((dataptr == NULL) || (ret != 0))
147 		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
148 
149 	if (get_user(pid, &header->pid))
150 		return -EFAULT;
151 
152 	if (pid < 0)
153 		return -EINVAL;
154 
155 	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
156 	if (ret)
157 		return ret;
158 
159 	/*
160 	 * Annoying legacy format with 64-bit capabilities exposed
161 	 * as two sets of 32-bit fields, so we need to split the
162 	 * capability values up.
163 	 */
164 	kdata[0].effective   = pE.val; kdata[1].effective   = pE.val >> 32;
165 	kdata[0].permitted   = pP.val; kdata[1].permitted   = pP.val >> 32;
166 	kdata[0].inheritable = pI.val; kdata[1].inheritable = pI.val >> 32;
167 
168 	/*
169 	 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
170 	 * we silently drop the upper capabilities here. This
171 	 * has the effect of making older libcap
172 	 * implementations implicitly drop upper capability
173 	 * bits when they perform a: capget/modify/capset
174 	 * sequence.
175 	 *
176 	 * This behavior is considered fail-safe
177 	 * behavior. Upgrading the application to a newer
178 	 * version of libcap will enable access to the newer
179 	 * capabilities.
180 	 *
181 	 * An alternative would be to return an error here
182 	 * (-ERANGE), but that causes legacy applications to
183 	 * unexpectedly fail; the capget/modify/capset aborts
184 	 * before modification is attempted and the application
185 	 * fails.
186 	 */
187 	if (copy_to_user(dataptr, kdata, tocopy * sizeof(kdata[0])))
188 		return -EFAULT;
189 
190 	return 0;
191 }
192 
193 static kernel_cap_t mk_kernel_cap(u32 low, u32 high)
194 {
195 	return (kernel_cap_t) { (low | ((u64)high << 32)) & CAP_VALID_MASK };
196 }
197 
198 /**
199  * sys_capset - set capabilities for a process or (*) a group of processes
200  * @header: pointer to struct that contains capability version and
201  *	target pid data
202  * @data: pointer to struct that contains the effective, permitted,
203  *	and inheritable capabilities
204  *
205  * Set capabilities for the current process only.  The ability to any other
206  * process(es) has been deprecated and removed.
207  *
208  * The restrictions on setting capabilities are specified as:
209  *
210  * I: any raised capabilities must be a subset of the old permitted
211  * P: any raised capabilities must be a subset of the old permitted
212  * E: must be set to a subset of new permitted
213  *
214  * Returns 0 on success and < 0 on error.
215  */
216 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
217 {
218 	struct __user_cap_data_struct kdata[2] = { { 0, }, };
219 	unsigned tocopy, copybytes;
220 	kernel_cap_t inheritable, permitted, effective;
221 	struct cred *new;
222 	int ret;
223 	pid_t pid;
224 
225 	ret = cap_validate_magic(header, &tocopy);
226 	if (ret != 0)
227 		return ret;
228 
229 	if (get_user(pid, &header->pid))
230 		return -EFAULT;
231 
232 	/* may only affect current now */
233 	if (pid != 0 && pid != task_pid_vnr(current))
234 		return -EPERM;
235 
236 	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
237 	if (copybytes > sizeof(kdata))
238 		return -EFAULT;
239 
240 	if (copy_from_user(&kdata, data, copybytes))
241 		return -EFAULT;
242 
243 	effective   = mk_kernel_cap(kdata[0].effective,   kdata[1].effective);
244 	permitted   = mk_kernel_cap(kdata[0].permitted,   kdata[1].permitted);
245 	inheritable = mk_kernel_cap(kdata[0].inheritable, kdata[1].inheritable);
246 
247 	new = prepare_creds();
248 	if (!new)
249 		return -ENOMEM;
250 
251 	ret = security_capset(new, current_cred(),
252 			      &effective, &inheritable, &permitted);
253 	if (ret < 0)
254 		goto error;
255 
256 	audit_log_capset(new, current_cred());
257 
258 	return commit_creds(new);
259 
260 error:
261 	abort_creds(new);
262 	return ret;
263 }
264 
265 /**
266  * has_ns_capability - Does a task have a capability in a specific user ns
267  * @t: The task in question
268  * @ns: target user namespace
269  * @cap: The capability to be tested for
270  *
271  * Return true if the specified task has the given superior capability
272  * currently in effect to the specified user namespace, false if not.
273  *
274  * Note that this does not set PF_SUPERPRIV on the task.
275  */
276 bool has_ns_capability(struct task_struct *t,
277 		       struct user_namespace *ns, int cap)
278 {
279 	int ret;
280 
281 	rcu_read_lock();
282 	ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NONE);
283 	rcu_read_unlock();
284 
285 	return (ret == 0);
286 }
287 
288 /**
289  * has_capability - Does a task have a capability in init_user_ns
290  * @t: The task in question
291  * @cap: The capability to be tested for
292  *
293  * Return true if the specified task has the given superior capability
294  * currently in effect to the initial user namespace, false if not.
295  *
296  * Note that this does not set PF_SUPERPRIV on the task.
297  */
298 bool has_capability(struct task_struct *t, int cap)
299 {
300 	return has_ns_capability(t, &init_user_ns, cap);
301 }
302 EXPORT_SYMBOL(has_capability);
303 
304 /**
305  * has_ns_capability_noaudit - Does a task have a capability (unaudited)
306  * in a specific user ns.
307  * @t: The task in question
308  * @ns: target user namespace
309  * @cap: The capability to be tested for
310  *
311  * Return true if the specified task has the given superior capability
312  * currently in effect to the specified user namespace, false if not.
313  * Do not write an audit message for the check.
314  *
315  * Note that this does not set PF_SUPERPRIV on the task.
316  */
317 bool has_ns_capability_noaudit(struct task_struct *t,
318 			       struct user_namespace *ns, int cap)
319 {
320 	int ret;
321 
322 	rcu_read_lock();
323 	ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NOAUDIT);
324 	rcu_read_unlock();
325 
326 	return (ret == 0);
327 }
328 
329 /**
330  * has_capability_noaudit - Does a task have a capability (unaudited) in the
331  * initial user ns
332  * @t: The task in question
333  * @cap: The capability to be tested for
334  *
335  * Return true if the specified task has the given superior capability
336  * currently in effect to init_user_ns, false if not.  Don't write an
337  * audit message for the check.
338  *
339  * Note that this does not set PF_SUPERPRIV on the task.
340  */
341 bool has_capability_noaudit(struct task_struct *t, int cap)
342 {
343 	return has_ns_capability_noaudit(t, &init_user_ns, cap);
344 }
345 EXPORT_SYMBOL(has_capability_noaudit);
346 
347 static bool ns_capable_common(struct user_namespace *ns,
348 			      int cap,
349 			      unsigned int opts)
350 {
351 	int capable;
352 
353 	if (unlikely(!cap_valid(cap))) {
354 		pr_crit("capable() called with invalid cap=%u\n", cap);
355 		BUG();
356 	}
357 
358 	capable = security_capable(current_cred(), ns, cap, opts);
359 	if (capable == 0) {
360 		current->flags |= PF_SUPERPRIV;
361 		return true;
362 	}
363 	return false;
364 }
365 
366 /**
367  * ns_capable - Determine if the current task has a superior capability in effect
368  * @ns:  The usernamespace we want the capability in
369  * @cap: The capability to be tested for
370  *
371  * Return true if the current task has the given superior capability currently
372  * available for use, false if not.
373  *
374  * This sets PF_SUPERPRIV on the task if the capability is available on the
375  * assumption that it's about to be used.
376  */
377 bool ns_capable(struct user_namespace *ns, int cap)
378 {
379 	return ns_capable_common(ns, cap, CAP_OPT_NONE);
380 }
381 EXPORT_SYMBOL(ns_capable);
382 
383 /**
384  * ns_capable_noaudit - Determine if the current task has a superior capability
385  * (unaudited) in effect
386  * @ns:  The usernamespace we want the capability in
387  * @cap: The capability to be tested for
388  *
389  * Return true if the current task has the given superior capability currently
390  * available for use, false if not.
391  *
392  * This sets PF_SUPERPRIV on the task if the capability is available on the
393  * assumption that it's about to be used.
394  */
395 bool ns_capable_noaudit(struct user_namespace *ns, int cap)
396 {
397 	return ns_capable_common(ns, cap, CAP_OPT_NOAUDIT);
398 }
399 EXPORT_SYMBOL(ns_capable_noaudit);
400 
401 /**
402  * ns_capable_setid - Determine if the current task has a superior capability
403  * in effect, while signalling that this check is being done from within a
404  * setid or setgroups syscall.
405  * @ns:  The usernamespace we want the capability in
406  * @cap: The capability to be tested for
407  *
408  * Return true if the current task has the given superior capability currently
409  * available for use, false if not.
410  *
411  * This sets PF_SUPERPRIV on the task if the capability is available on the
412  * assumption that it's about to be used.
413  */
414 bool ns_capable_setid(struct user_namespace *ns, int cap)
415 {
416 	return ns_capable_common(ns, cap, CAP_OPT_INSETID);
417 }
418 EXPORT_SYMBOL(ns_capable_setid);
419 
420 /**
421  * capable - Determine if the current task has a superior capability in effect
422  * @cap: The capability to be tested for
423  *
424  * Return true if the current task has the given superior capability currently
425  * available for use, false if not.
426  *
427  * This sets PF_SUPERPRIV on the task if the capability is available on the
428  * assumption that it's about to be used.
429  */
430 bool capable(int cap)
431 {
432 	return ns_capable(&init_user_ns, cap);
433 }
434 EXPORT_SYMBOL(capable);
435 #endif /* CONFIG_MULTIUSER */
436 
437 /**
438  * file_ns_capable - Determine if the file's opener had a capability in effect
439  * @file:  The file we want to check
440  * @ns:  The usernamespace we want the capability in
441  * @cap: The capability to be tested for
442  *
443  * Return true if task that opened the file had a capability in effect
444  * when the file was opened.
445  *
446  * This does not set PF_SUPERPRIV because the caller may not
447  * actually be privileged.
448  */
449 bool file_ns_capable(const struct file *file, struct user_namespace *ns,
450 		     int cap)
451 {
452 
453 	if (WARN_ON_ONCE(!cap_valid(cap)))
454 		return false;
455 
456 	if (security_capable(file->f_cred, ns, cap, CAP_OPT_NONE) == 0)
457 		return true;
458 
459 	return false;
460 }
461 EXPORT_SYMBOL(file_ns_capable);
462 
463 /**
464  * privileged_wrt_inode_uidgid - Do capabilities in the namespace work over the inode?
465  * @ns: The user namespace in question
466  * @idmap: idmap of the mount @inode was found from
467  * @inode: The inode in question
468  *
469  * Return true if the inode uid and gid are within the namespace.
470  */
471 bool privileged_wrt_inode_uidgid(struct user_namespace *ns,
472 				 struct mnt_idmap *idmap,
473 				 const struct inode *inode)
474 {
475 	return vfsuid_has_mapping(ns, i_uid_into_vfsuid(idmap, inode)) &&
476 	       vfsgid_has_mapping(ns, i_gid_into_vfsgid(idmap, inode));
477 }
478 
479 /**
480  * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped
481  * @idmap: idmap of the mount @inode was found from
482  * @inode: The inode in question
483  * @cap: The capability in question
484  *
485  * Return true if the current task has the given capability targeted at
486  * its own user namespace and that the given inode's uid and gid are
487  * mapped into the current user namespace.
488  */
489 bool capable_wrt_inode_uidgid(struct mnt_idmap *idmap,
490 			      const struct inode *inode, int cap)
491 {
492 	struct user_namespace *ns = current_user_ns();
493 
494 	return ns_capable(ns, cap) &&
495 	       privileged_wrt_inode_uidgid(ns, idmap, inode);
496 }
497 EXPORT_SYMBOL(capable_wrt_inode_uidgid);
498 
499 /**
500  * ptracer_capable - Determine if the ptracer holds CAP_SYS_PTRACE in the namespace
501  * @tsk: The task that may be ptraced
502  * @ns: The user namespace to search for CAP_SYS_PTRACE in
503  *
504  * Return true if the task that is ptracing the current task had CAP_SYS_PTRACE
505  * in the specified user namespace.
506  */
507 bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns)
508 {
509 	int ret = 0;  /* An absent tracer adds no restrictions */
510 	const struct cred *cred;
511 
512 	rcu_read_lock();
513 	cred = rcu_dereference(tsk->ptracer_cred);
514 	if (cred)
515 		ret = security_capable(cred, ns, CAP_SYS_PTRACE,
516 				       CAP_OPT_NOAUDIT);
517 	rcu_read_unlock();
518 	return (ret == 0);
519 }
520