xref: /linux/net/can/af_can.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/can/can-ml.h>
62 #include <linux/ratelimit.h>
63 #include <net/net_namespace.h>
64 #include <net/sock.h>
65 
66 #include "af_can.h"
67 
68 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69 MODULE_LICENSE("Dual BSD/GPL");
70 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72 
73 MODULE_ALIAS_NETPROTO(PF_CAN);
74 
75 static int stats_timer __read_mostly = 1;
76 module_param(stats_timer, int, 0444);
77 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78 
79 static struct kmem_cache *rcv_cache __read_mostly;
80 
81 /* table of registered CAN protocols */
82 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
83 static DEFINE_MUTEX(proto_tab_lock);
84 
85 static atomic_t skbcounter = ATOMIC_INIT(0);
86 
87 /* af_can socket functions */
88 
can_sock_destruct(struct sock * sk)89 void can_sock_destruct(struct sock *sk)
90 {
91 	skb_queue_purge(&sk->sk_receive_queue);
92 	skb_queue_purge(&sk->sk_error_queue);
93 }
94 EXPORT_SYMBOL(can_sock_destruct);
95 
can_get_proto(int protocol)96 static const struct can_proto *can_get_proto(int protocol)
97 {
98 	const struct can_proto *cp;
99 
100 	rcu_read_lock();
101 	cp = rcu_dereference(proto_tab[protocol]);
102 	if (cp && !try_module_get(cp->prot->owner))
103 		cp = NULL;
104 	rcu_read_unlock();
105 
106 	return cp;
107 }
108 
can_put_proto(const struct can_proto * cp)109 static inline void can_put_proto(const struct can_proto *cp)
110 {
111 	module_put(cp->prot->owner);
112 }
113 
can_create(struct net * net,struct socket * sock,int protocol,int kern)114 static int can_create(struct net *net, struct socket *sock, int protocol,
115 		      int kern)
116 {
117 	struct sock *sk;
118 	const struct can_proto *cp;
119 	int err = 0;
120 
121 	sock->state = SS_UNCONNECTED;
122 
123 	if (protocol < 0 || protocol >= CAN_NPROTO)
124 		return -EINVAL;
125 
126 	cp = can_get_proto(protocol);
127 
128 #ifdef CONFIG_MODULES
129 	if (!cp) {
130 		/* try to load protocol module if kernel is modular */
131 
132 		err = request_module("can-proto-%d", protocol);
133 
134 		/* In case of error we only print a message but don't
135 		 * return the error code immediately.  Below we will
136 		 * return -EPROTONOSUPPORT
137 		 */
138 		if (err)
139 			pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
140 					   protocol);
141 
142 		cp = can_get_proto(protocol);
143 	}
144 #endif
145 
146 	/* check for available protocol and correct usage */
147 
148 	if (!cp)
149 		return -EPROTONOSUPPORT;
150 
151 	if (cp->type != sock->type) {
152 		err = -EPROTOTYPE;
153 		goto errout;
154 	}
155 
156 	sock->ops = cp->ops;
157 
158 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
159 	if (!sk) {
160 		err = -ENOMEM;
161 		goto errout;
162 	}
163 
164 	sock_init_data(sock, sk);
165 	sk->sk_destruct = can_sock_destruct;
166 
167 	if (sk->sk_prot->init)
168 		err = sk->sk_prot->init(sk);
169 
170 	if (err) {
171 		/* release sk on errors */
172 		sock_orphan(sk);
173 		sock_put(sk);
174 		sock->sk = NULL;
175 	} else {
176 		sock_prot_inuse_add(net, sk->sk_prot, 1);
177 	}
178 
179  errout:
180 	can_put_proto(cp);
181 	return err;
182 }
183 
184 /* af_can tx path */
185 
186 /**
187  * can_send - transmit a CAN frame (optional with local loopback)
188  * @skb: pointer to socket buffer with CAN frame in data section
189  * @loop: loopback for listeners on local CAN sockets (recommended default!)
190  *
191  * Due to the loopback this routine must not be called from hardirq context.
192  *
193  * Return:
194  *  0 on success
195  *  -ENETDOWN when the selected interface is down
196  *  -ENOBUFS on full driver queue (see net_xmit_errno())
197  *  -ENOMEM when local loopback failed at calling skb_clone()
198  *  -EPERM when trying to send on a non-CAN interface
199  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
200  *  -EINVAL when the skb->data does not contain a valid CAN frame
201  */
can_send(struct sk_buff * skb,int loop)202 int can_send(struct sk_buff *skb, int loop)
203 {
204 	struct sk_buff *newskb = NULL;
205 	struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats;
206 	int err = -EINVAL;
207 
208 	if (can_is_canxl_skb(skb)) {
209 		skb->protocol = htons(ETH_P_CANXL);
210 	} else if (can_is_can_skb(skb)) {
211 		skb->protocol = htons(ETH_P_CAN);
212 	} else if (can_is_canfd_skb(skb)) {
213 		struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
214 
215 		skb->protocol = htons(ETH_P_CANFD);
216 
217 		/* set CAN FD flag for CAN FD frames by default */
218 		cfd->flags |= CANFD_FDF;
219 	} else {
220 		goto inval_skb;
221 	}
222 
223 	/* Make sure the CAN frame can pass the selected CAN netdevice. */
224 	if (unlikely(skb->len > skb->dev->mtu)) {
225 		err = -EMSGSIZE;
226 		goto inval_skb;
227 	}
228 
229 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
230 		err = -EPERM;
231 		goto inval_skb;
232 	}
233 
234 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
235 		err = -ENETDOWN;
236 		goto inval_skb;
237 	}
238 
239 	skb->ip_summed = CHECKSUM_UNNECESSARY;
240 
241 	skb_reset_mac_header(skb);
242 	skb_reset_network_header(skb);
243 	skb_reset_transport_header(skb);
244 
245 	if (loop) {
246 		/* local loopback of sent CAN frames */
247 
248 		/* indication for the CAN driver: do loopback */
249 		skb->pkt_type = PACKET_LOOPBACK;
250 
251 		/* The reference to the originating sock may be required
252 		 * by the receiving socket to check whether the frame is
253 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
254 		 * Therefore we have to ensure that skb->sk remains the
255 		 * reference to the originating sock by restoring skb->sk
256 		 * after each skb_clone() or skb_orphan() usage.
257 		 */
258 
259 		if (!(skb->dev->flags & IFF_ECHO)) {
260 			/* If the interface is not capable to do loopback
261 			 * itself, we do it here.
262 			 */
263 			newskb = skb_clone(skb, GFP_ATOMIC);
264 			if (!newskb) {
265 				kfree_skb(skb);
266 				return -ENOMEM;
267 			}
268 
269 			can_skb_set_owner(newskb, skb->sk);
270 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
271 			newskb->pkt_type = PACKET_BROADCAST;
272 		}
273 	} else {
274 		/* indication for the CAN driver: no loopback required */
275 		skb->pkt_type = PACKET_HOST;
276 	}
277 
278 	/* send to netdevice */
279 	err = dev_queue_xmit(skb);
280 	if (err > 0)
281 		err = net_xmit_errno(err);
282 
283 	if (err) {
284 		kfree_skb(newskb);
285 		return err;
286 	}
287 
288 	if (newskb)
289 		netif_rx(newskb);
290 
291 	/* update statistics */
292 	atomic_long_inc(&pkg_stats->tx_frames);
293 	atomic_long_inc(&pkg_stats->tx_frames_delta);
294 
295 	return 0;
296 
297 inval_skb:
298 	kfree_skb(skb);
299 	return err;
300 }
301 EXPORT_SYMBOL(can_send);
302 
303 /* af_can rx path */
304 
can_dev_rcv_lists_find(struct net * net,struct net_device * dev)305 static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
306 							struct net_device *dev)
307 {
308 	if (dev) {
309 		struct can_ml_priv *can_ml = can_get_ml_priv(dev);
310 		return &can_ml->dev_rcv_lists;
311 	} else {
312 		return net->can.rx_alldev_list;
313 	}
314 }
315 
316 /**
317  * effhash - hash function for 29 bit CAN identifier reduction
318  * @can_id: 29 bit CAN identifier
319  *
320  * Description:
321  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
322  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
323  *  (see CAN_EFF_RCV_HASH_BITS definition)
324  *
325  * Return:
326  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
327  */
effhash(canid_t can_id)328 static unsigned int effhash(canid_t can_id)
329 {
330 	unsigned int hash;
331 
332 	hash = can_id;
333 	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
334 	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
335 
336 	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
337 }
338 
339 /**
340  * can_rcv_list_find - determine optimal filterlist inside device filter struct
341  * @can_id: pointer to CAN identifier of a given can_filter
342  * @mask: pointer to CAN mask of a given can_filter
343  * @dev_rcv_lists: pointer to the device filter struct
344  *
345  * Description:
346  *  Returns the optimal filterlist to reduce the filter handling in the
347  *  receive path. This function is called by service functions that need
348  *  to register or unregister a can_filter in the filter lists.
349  *
350  *  A filter matches in general, when
351  *
352  *          <received_can_id> & mask == can_id & mask
353  *
354  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
355  *  relevant bits for the filter.
356  *
357  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
358  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
359  *  frames there is a special filterlist and a special rx path filter handling.
360  *
361  * Return:
362  *  Pointer to optimal filterlist for the given can_id/mask pair.
363  *  Consistency checked mask.
364  *  Reduced can_id to have a preprocessed filter compare value.
365  */
can_rcv_list_find(canid_t * can_id,canid_t * mask,struct can_dev_rcv_lists * dev_rcv_lists)366 static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
367 					    struct can_dev_rcv_lists *dev_rcv_lists)
368 {
369 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
370 
371 	/* filter for error message frames in extra filterlist */
372 	if (*mask & CAN_ERR_FLAG) {
373 		/* clear CAN_ERR_FLAG in filter entry */
374 		*mask &= CAN_ERR_MASK;
375 		return &dev_rcv_lists->rx[RX_ERR];
376 	}
377 
378 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
379 
380 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
381 
382 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
383 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
384 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
385 
386 	/* reduce condition testing at receive time */
387 	*can_id &= *mask;
388 
389 	/* inverse can_id/can_mask filter */
390 	if (inv)
391 		return &dev_rcv_lists->rx[RX_INV];
392 
393 	/* mask == 0 => no condition testing at receive time */
394 	if (!(*mask))
395 		return &dev_rcv_lists->rx[RX_ALL];
396 
397 	/* extra filterlists for the subscription of a single non-RTR can_id */
398 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
399 	    !(*can_id & CAN_RTR_FLAG)) {
400 		if (*can_id & CAN_EFF_FLAG) {
401 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
402 				return &dev_rcv_lists->rx_eff[effhash(*can_id)];
403 		} else {
404 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
405 				return &dev_rcv_lists->rx_sff[*can_id];
406 		}
407 	}
408 
409 	/* default: filter via can_id/can_mask */
410 	return &dev_rcv_lists->rx[RX_FIL];
411 }
412 
413 /**
414  * can_rx_register - subscribe CAN frames from a specific interface
415  * @net: the applicable net namespace
416  * @dev: pointer to netdevice (NULL => subscribe from 'all' CAN devices list)
417  * @can_id: CAN identifier (see description)
418  * @mask: CAN mask (see description)
419  * @func: callback function on filter match
420  * @data: returned parameter for callback function
421  * @ident: string for calling module identification
422  * @sk: socket pointer (might be NULL)
423  *
424  * Description:
425  *  Invokes the callback function with the received sk_buff and the given
426  *  parameter 'data' on a matching receive filter. A filter matches, when
427  *
428  *          <received_can_id> & mask == can_id & mask
429  *
430  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
431  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
432  *
433  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
434  *  the callback function is running. The callback function must *not* free
435  *  the given sk_buff while processing it's task. When the given sk_buff is
436  *  needed after the end of the callback function it must be cloned inside
437  *  the callback function with skb_clone().
438  *
439  * Return:
440  *  0 on success
441  *  -ENOMEM on missing cache mem to create subscription entry
442  *  -ENODEV unknown device
443  */
can_rx_register(struct net * net,struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data,char * ident,struct sock * sk)444 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
445 		    canid_t mask, void (*func)(struct sk_buff *, void *),
446 		    void *data, char *ident, struct sock *sk)
447 {
448 	struct receiver *rcv;
449 	struct hlist_head *rcv_list;
450 	struct can_dev_rcv_lists *dev_rcv_lists;
451 	struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
452 
453 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
454 
455 	if (dev && (dev->type != ARPHRD_CAN || !can_get_ml_priv(dev)))
456 		return -ENODEV;
457 
458 	if (dev && !net_eq(net, dev_net(dev)))
459 		return -ENODEV;
460 
461 	rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
462 	if (!rcv)
463 		return -ENOMEM;
464 
465 	spin_lock_bh(&net->can.rcvlists_lock);
466 
467 	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
468 	rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
469 
470 	rcv->can_id = can_id;
471 	rcv->mask = mask;
472 	rcv->matches = 0;
473 	rcv->func = func;
474 	rcv->data = data;
475 	rcv->ident = ident;
476 	rcv->sk = sk;
477 
478 	hlist_add_head_rcu(&rcv->list, rcv_list);
479 	dev_rcv_lists->entries++;
480 
481 	rcv_lists_stats->rcv_entries++;
482 	rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
483 					       rcv_lists_stats->rcv_entries);
484 	spin_unlock_bh(&net->can.rcvlists_lock);
485 
486 	return 0;
487 }
488 EXPORT_SYMBOL(can_rx_register);
489 
490 /* can_rx_delete_receiver - rcu callback for single receiver entry removal */
can_rx_delete_receiver(struct rcu_head * rp)491 static void can_rx_delete_receiver(struct rcu_head *rp)
492 {
493 	struct receiver *rcv = container_of(rp, struct receiver, rcu);
494 	struct sock *sk = rcv->sk;
495 
496 	kmem_cache_free(rcv_cache, rcv);
497 	if (sk)
498 		sock_put(sk);
499 }
500 
501 /**
502  * can_rx_unregister - unsubscribe CAN frames from a specific interface
503  * @net: the applicable net namespace
504  * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
505  * @can_id: CAN identifier
506  * @mask: CAN mask
507  * @func: callback function on filter match
508  * @data: returned parameter for callback function
509  *
510  * Description:
511  *  Removes subscription entry depending on given (subscription) values.
512  */
can_rx_unregister(struct net * net,struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data)513 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
514 		       canid_t mask, void (*func)(struct sk_buff *, void *),
515 		       void *data)
516 {
517 	struct receiver *rcv = NULL;
518 	struct hlist_head *rcv_list;
519 	struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
520 	struct can_dev_rcv_lists *dev_rcv_lists;
521 
522 	if (dev && dev->type != ARPHRD_CAN)
523 		return;
524 
525 	if (dev && !net_eq(net, dev_net(dev)))
526 		return;
527 
528 	spin_lock_bh(&net->can.rcvlists_lock);
529 
530 	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
531 	rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
532 
533 	/* Search the receiver list for the item to delete.  This should
534 	 * exist, since no receiver may be unregistered that hasn't
535 	 * been registered before.
536 	 */
537 	hlist_for_each_entry_rcu(rcv, rcv_list, list) {
538 		if (rcv->can_id == can_id && rcv->mask == mask &&
539 		    rcv->func == func && rcv->data == data)
540 			break;
541 	}
542 
543 	/* Check for bugs in CAN protocol implementations using af_can.c:
544 	 * 'rcv' will be NULL if no matching list item was found for removal.
545 	 * As this case may potentially happen when closing a socket while
546 	 * the notifier for removing the CAN netdev is running we just print
547 	 * a warning here.
548 	 */
549 	if (!rcv) {
550 		pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n",
551 			DNAME(dev), can_id, mask);
552 		goto out;
553 	}
554 
555 	hlist_del_rcu(&rcv->list);
556 	dev_rcv_lists->entries--;
557 
558 	if (rcv_lists_stats->rcv_entries > 0)
559 		rcv_lists_stats->rcv_entries--;
560 
561  out:
562 	spin_unlock_bh(&net->can.rcvlists_lock);
563 
564 	/* schedule the receiver item for deletion */
565 	if (rcv) {
566 		if (rcv->sk)
567 			sock_hold(rcv->sk);
568 		call_rcu(&rcv->rcu, can_rx_delete_receiver);
569 	}
570 }
571 EXPORT_SYMBOL(can_rx_unregister);
572 
deliver(struct sk_buff * skb,struct receiver * rcv)573 static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
574 {
575 	rcv->func(skb, rcv->data);
576 	rcv->matches++;
577 }
578 
can_rcv_filter(struct can_dev_rcv_lists * dev_rcv_lists,struct sk_buff * skb)579 static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
580 {
581 	struct receiver *rcv;
582 	int matches = 0;
583 	struct can_frame *cf = (struct can_frame *)skb->data;
584 	canid_t can_id = cf->can_id;
585 
586 	if (dev_rcv_lists->entries == 0)
587 		return 0;
588 
589 	if (can_id & CAN_ERR_FLAG) {
590 		/* check for error message frame entries only */
591 		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
592 			if (can_id & rcv->mask) {
593 				deliver(skb, rcv);
594 				matches++;
595 			}
596 		}
597 		return matches;
598 	}
599 
600 	/* check for unfiltered entries */
601 	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
602 		deliver(skb, rcv);
603 		matches++;
604 	}
605 
606 	/* check for can_id/mask entries */
607 	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
608 		if ((can_id & rcv->mask) == rcv->can_id) {
609 			deliver(skb, rcv);
610 			matches++;
611 		}
612 	}
613 
614 	/* check for inverted can_id/mask entries */
615 	hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
616 		if ((can_id & rcv->mask) != rcv->can_id) {
617 			deliver(skb, rcv);
618 			matches++;
619 		}
620 	}
621 
622 	/* check filterlists for single non-RTR can_ids */
623 	if (can_id & CAN_RTR_FLAG)
624 		return matches;
625 
626 	if (can_id & CAN_EFF_FLAG) {
627 		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
628 			if (rcv->can_id == can_id) {
629 				deliver(skb, rcv);
630 				matches++;
631 			}
632 		}
633 	} else {
634 		can_id &= CAN_SFF_MASK;
635 		hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
636 			deliver(skb, rcv);
637 			matches++;
638 		}
639 	}
640 
641 	return matches;
642 }
643 
can_receive(struct sk_buff * skb,struct net_device * dev)644 static void can_receive(struct sk_buff *skb, struct net_device *dev)
645 {
646 	struct can_dev_rcv_lists *dev_rcv_lists;
647 	struct net *net = dev_net(dev);
648 	struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
649 	int matches;
650 
651 	/* update statistics */
652 	atomic_long_inc(&pkg_stats->rx_frames);
653 	atomic_long_inc(&pkg_stats->rx_frames_delta);
654 
655 	/* create non-zero unique skb identifier together with *skb */
656 	while (!(can_skb_prv(skb)->skbcnt))
657 		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
658 
659 	rcu_read_lock();
660 
661 	/* deliver the packet to sockets listening on all devices */
662 	matches = can_rcv_filter(net->can.rx_alldev_list, skb);
663 
664 	/* find receive list for this device */
665 	dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
666 	matches += can_rcv_filter(dev_rcv_lists, skb);
667 
668 	rcu_read_unlock();
669 
670 	/* consume the skbuff allocated by the netdevice driver */
671 	consume_skb(skb);
672 
673 	if (matches > 0) {
674 		atomic_long_inc(&pkg_stats->matches);
675 		atomic_long_inc(&pkg_stats->matches_delta);
676 	}
677 }
678 
can_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)679 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
680 		   struct packet_type *pt, struct net_device *orig_dev)
681 {
682 	if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_can_skb(skb))) {
683 		pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n",
684 			     dev->type, skb->len);
685 
686 		kfree_skb(skb);
687 		return NET_RX_DROP;
688 	}
689 
690 	can_receive(skb, dev);
691 	return NET_RX_SUCCESS;
692 }
693 
canfd_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)694 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
695 		     struct packet_type *pt, struct net_device *orig_dev)
696 {
697 	if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canfd_skb(skb))) {
698 		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n",
699 			     dev->type, skb->len);
700 
701 		kfree_skb(skb);
702 		return NET_RX_DROP;
703 	}
704 
705 	can_receive(skb, dev);
706 	return NET_RX_SUCCESS;
707 }
708 
canxl_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)709 static int canxl_rcv(struct sk_buff *skb, struct net_device *dev,
710 		     struct packet_type *pt, struct net_device *orig_dev)
711 {
712 	if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canxl_skb(skb))) {
713 		pr_warn_once("PF_CAN: dropped non conform CAN XL skbuff: dev type %d, len %d\n",
714 			     dev->type, skb->len);
715 
716 		kfree_skb(skb);
717 		return NET_RX_DROP;
718 	}
719 
720 	can_receive(skb, dev);
721 	return NET_RX_SUCCESS;
722 }
723 
724 /* af_can protocol functions */
725 
726 /**
727  * can_proto_register - register CAN transport protocol
728  * @cp: pointer to CAN protocol structure
729  *
730  * Return:
731  *  0 on success
732  *  -EINVAL invalid (out of range) protocol number
733  *  -EBUSY  protocol already in use
734  *  -ENOBUF if proto_register() fails
735  */
can_proto_register(const struct can_proto * cp)736 int can_proto_register(const struct can_proto *cp)
737 {
738 	int proto = cp->protocol;
739 	int err = 0;
740 
741 	if (proto < 0 || proto >= CAN_NPROTO) {
742 		pr_err("can: protocol number %d out of range\n", proto);
743 		return -EINVAL;
744 	}
745 
746 	err = proto_register(cp->prot, 0);
747 	if (err < 0)
748 		return err;
749 
750 	mutex_lock(&proto_tab_lock);
751 
752 	if (rcu_access_pointer(proto_tab[proto])) {
753 		pr_err("can: protocol %d already registered\n", proto);
754 		err = -EBUSY;
755 	} else {
756 		RCU_INIT_POINTER(proto_tab[proto], cp);
757 	}
758 
759 	mutex_unlock(&proto_tab_lock);
760 
761 	if (err < 0)
762 		proto_unregister(cp->prot);
763 
764 	return err;
765 }
766 EXPORT_SYMBOL(can_proto_register);
767 
768 /**
769  * can_proto_unregister - unregister CAN transport protocol
770  * @cp: pointer to CAN protocol structure
771  */
can_proto_unregister(const struct can_proto * cp)772 void can_proto_unregister(const struct can_proto *cp)
773 {
774 	int proto = cp->protocol;
775 
776 	mutex_lock(&proto_tab_lock);
777 	BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
778 	RCU_INIT_POINTER(proto_tab[proto], NULL);
779 	mutex_unlock(&proto_tab_lock);
780 
781 	synchronize_rcu();
782 
783 	proto_unregister(cp->prot);
784 }
785 EXPORT_SYMBOL(can_proto_unregister);
786 
can_pernet_init(struct net * net)787 static int can_pernet_init(struct net *net)
788 {
789 	spin_lock_init(&net->can.rcvlists_lock);
790 	net->can.rx_alldev_list =
791 		kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
792 	if (!net->can.rx_alldev_list)
793 		goto out;
794 	net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL);
795 	if (!net->can.pkg_stats)
796 		goto out_free_rx_alldev_list;
797 	net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
798 	if (!net->can.rcv_lists_stats)
799 		goto out_free_pkg_stats;
800 
801 	if (IS_ENABLED(CONFIG_PROC_FS)) {
802 		/* the statistics are updated every second (timer triggered) */
803 		if (stats_timer) {
804 			timer_setup(&net->can.stattimer, can_stat_update,
805 				    0);
806 			mod_timer(&net->can.stattimer,
807 				  round_jiffies(jiffies + HZ));
808 		}
809 		net->can.pkg_stats->jiffies_init = jiffies;
810 		can_init_proc(net);
811 	}
812 
813 	return 0;
814 
815  out_free_pkg_stats:
816 	kfree(net->can.pkg_stats);
817  out_free_rx_alldev_list:
818 	kfree(net->can.rx_alldev_list);
819  out:
820 	return -ENOMEM;
821 }
822 
can_pernet_exit(struct net * net)823 static void can_pernet_exit(struct net *net)
824 {
825 	if (IS_ENABLED(CONFIG_PROC_FS)) {
826 		can_remove_proc(net);
827 		if (stats_timer)
828 			del_timer_sync(&net->can.stattimer);
829 	}
830 
831 	kfree(net->can.rx_alldev_list);
832 	kfree(net->can.pkg_stats);
833 	kfree(net->can.rcv_lists_stats);
834 }
835 
836 /* af_can module init/exit functions */
837 
838 static struct packet_type can_packet __read_mostly = {
839 	.type = cpu_to_be16(ETH_P_CAN),
840 	.func = can_rcv,
841 };
842 
843 static struct packet_type canfd_packet __read_mostly = {
844 	.type = cpu_to_be16(ETH_P_CANFD),
845 	.func = canfd_rcv,
846 };
847 
848 static struct packet_type canxl_packet __read_mostly = {
849 	.type = cpu_to_be16(ETH_P_CANXL),
850 	.func = canxl_rcv,
851 };
852 
853 static const struct net_proto_family can_family_ops = {
854 	.family = PF_CAN,
855 	.create = can_create,
856 	.owner  = THIS_MODULE,
857 };
858 
859 static struct pernet_operations can_pernet_ops __read_mostly = {
860 	.init = can_pernet_init,
861 	.exit = can_pernet_exit,
862 };
863 
can_init(void)864 static __init int can_init(void)
865 {
866 	int err;
867 
868 	/* check for correct padding to be able to use the structs similarly */
869 	BUILD_BUG_ON(offsetof(struct can_frame, len) !=
870 		     offsetof(struct canfd_frame, len) ||
871 		     offsetof(struct can_frame, len) !=
872 		     offsetof(struct canxl_frame, flags) ||
873 		     offsetof(struct can_frame, data) !=
874 		     offsetof(struct canfd_frame, data));
875 
876 	pr_info("can: controller area network core\n");
877 
878 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
879 				      0, 0, NULL);
880 	if (!rcv_cache)
881 		return -ENOMEM;
882 
883 	err = register_pernet_subsys(&can_pernet_ops);
884 	if (err)
885 		goto out_pernet;
886 
887 	/* protocol register */
888 	err = sock_register(&can_family_ops);
889 	if (err)
890 		goto out_sock;
891 
892 	dev_add_pack(&can_packet);
893 	dev_add_pack(&canfd_packet);
894 	dev_add_pack(&canxl_packet);
895 
896 	return 0;
897 
898 out_sock:
899 	unregister_pernet_subsys(&can_pernet_ops);
900 out_pernet:
901 	kmem_cache_destroy(rcv_cache);
902 
903 	return err;
904 }
905 
can_exit(void)906 static __exit void can_exit(void)
907 {
908 	/* protocol unregister */
909 	dev_remove_pack(&canxl_packet);
910 	dev_remove_pack(&canfd_packet);
911 	dev_remove_pack(&can_packet);
912 	sock_unregister(PF_CAN);
913 
914 	unregister_pernet_subsys(&can_pernet_ops);
915 
916 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
917 
918 	kmem_cache_destroy(rcv_cache);
919 }
920 
921 module_init(can_init);
922 module_exit(can_exit);
923