1 /*-
2 * CAM IO Scheduler Interface
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 2015 Netflix, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include "opt_ddb.h"
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/bio.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/sbuf.h>
40 #include <sys/sysctl.h>
41
42 #include <cam/cam.h>
43 #include <cam/cam_ccb.h>
44 #include <cam/cam_periph.h>
45 #include <cam/cam_xpt_periph.h>
46 #include <cam/cam_xpt_internal.h>
47 #include <cam/cam_iosched.h>
48
49 #include <ddb/ddb.h>
50
51 #include <geom/geom_disk.h>
52
53 static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
54 "CAM I/O Scheduler buffers");
55
56 static SYSCTL_NODE(_kern_cam, OID_AUTO, iosched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
57 "CAM I/O Scheduler parameters");
58
59 /*
60 * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
61 * over the bioq_* interface, with notions of separate calls for normal I/O and
62 * for trims.
63 *
64 * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
65 * steer the rate of one type of traffic to help other types of traffic (eg
66 * limit writes when read latency deteriorates on SSDs).
67 */
68
69 #ifdef CAM_IOSCHED_DYNAMIC
70
71 static bool do_dynamic_iosched = true;
72 SYSCTL_BOOL(_kern_cam_iosched, OID_AUTO, dynamic, CTLFLAG_RDTUN,
73 &do_dynamic_iosched, 1,
74 "Enable Dynamic I/O scheduler optimizations.");
75
76 /*
77 * For an EMA, with an alpha of alpha, we know
78 * alpha = 2 / (N + 1)
79 * or
80 * N = 1 + (2 / alpha)
81 * where N is the number of samples that 86% of the current
82 * EMA is derived from.
83 *
84 * So we invent[*] alpha_bits:
85 * alpha_bits = -log_2(alpha)
86 * alpha = 2^-alpha_bits
87 * So
88 * N = 1 + 2^(alpha_bits + 1)
89 *
90 * The default 9 gives a 1025 lookback for 86% of the data.
91 * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
92 *
93 * [*] Steal from the load average code and many other places.
94 * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
95 */
96 static int alpha_bits = 9;
97 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, alpha_bits, CTLFLAG_RWTUN,
98 &alpha_bits, 1,
99 "Bits in EMA's alpha.");
100
101 /*
102 * Different parameters for the buckets of latency we keep track of. These are all
103 * published read-only since at present they are compile time constants.
104 *
105 * Bucket base is the upper bounds of the first latency bucket. It's currently 20us.
106 * With 20 buckets (see below), that leads to a geometric progression with a max size
107 * of 5.2s which is safeily larger than 1s to help diagnose extreme outliers better.
108 */
109 #ifndef BUCKET_BASE
110 #define BUCKET_BASE ((SBT_1S / 50000) + 1) /* 20us */
111 #endif
112 static sbintime_t bucket_base = BUCKET_BASE;
113 SYSCTL_SBINTIME_USEC(_kern_cam_iosched, OID_AUTO, bucket_base_us, CTLFLAG_RD,
114 &bucket_base,
115 "Size of the smallest latency bucket");
116
117 /*
118 * Bucket ratio is the geometric progression for the bucket. For a bucket b_n
119 * the size of bucket b_n+1 is b_n * bucket_ratio / 100.
120 */
121 static int bucket_ratio = 200; /* Rather hard coded at the moment */
122 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, bucket_ratio, CTLFLAG_RD,
123 &bucket_ratio, 200,
124 "Latency Bucket Ratio for geometric progression.");
125
126 /*
127 * Number of total buckets. Starting at BUCKET_BASE, each one is a power of 2.
128 */
129 #ifndef LAT_BUCKETS
130 #define LAT_BUCKETS 20 /* < 20us < 40us ... < 2^(n-1)*20us >= 2^(n-1)*20us */
131 #endif
132 static int lat_buckets = LAT_BUCKETS;
133 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, buckets, CTLFLAG_RD,
134 &lat_buckets, LAT_BUCKETS,
135 "Total number of latency buckets published");
136
137 /*
138 * Read bias: how many reads do we favor before scheduling a write
139 * when we have a choice.
140 */
141 static int default_read_bias = 0;
142 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, read_bias, CTLFLAG_RWTUN,
143 &default_read_bias, 0,
144 "Default read bias for new devices.");
145
146 struct iop_stats;
147 struct cam_iosched_softc;
148
149 int iosched_debug = 0;
150
151 typedef enum {
152 none = 0, /* No limits */
153 queue_depth, /* Limit how many ops we queue to SIM */
154 iops, /* Limit # of IOPS to the drive */
155 bandwidth, /* Limit bandwidth to the drive */
156 limiter_max
157 } io_limiter;
158
159 static const char *cam_iosched_limiter_names[] =
160 { "none", "queue_depth", "iops", "bandwidth" };
161
162 /*
163 * Called to initialize the bits of the iop_stats structure relevant to the
164 * limiter. Called just after the limiter is set.
165 */
166 typedef int l_init_t(struct iop_stats *);
167
168 /*
169 * Called every tick.
170 */
171 typedef int l_tick_t(struct iop_stats *);
172
173 /*
174 * Called to see if the limiter thinks this IOP can be allowed to
175 * proceed. If so, the limiter assumes that the IOP proceeded
176 * and makes any accounting of it that's needed.
177 */
178 typedef int l_iop_t(struct iop_stats *, struct bio *);
179
180 /*
181 * Called when an I/O completes so the limiter can update its
182 * accounting. Pending I/Os may complete in any order (even when
183 * sent to the hardware at the same time), so the limiter may not
184 * make any assumptions other than this I/O has completed. If it
185 * returns 1, then xpt_schedule() needs to be called again.
186 */
187 typedef int l_iodone_t(struct iop_stats *, struct bio *);
188
189 static l_iop_t cam_iosched_qd_iop;
190 static l_iop_t cam_iosched_qd_caniop;
191 static l_iodone_t cam_iosched_qd_iodone;
192
193 static l_init_t cam_iosched_iops_init;
194 static l_tick_t cam_iosched_iops_tick;
195 static l_iop_t cam_iosched_iops_caniop;
196 static l_iop_t cam_iosched_iops_iop;
197
198 static l_init_t cam_iosched_bw_init;
199 static l_tick_t cam_iosched_bw_tick;
200 static l_iop_t cam_iosched_bw_caniop;
201 static l_iop_t cam_iosched_bw_iop;
202
203 struct limswitch {
204 l_init_t *l_init;
205 l_tick_t *l_tick;
206 l_iop_t *l_iop;
207 l_iop_t *l_caniop;
208 l_iodone_t *l_iodone;
209 } limsw[] =
210 {
211 { /* none */
212 .l_init = NULL,
213 .l_tick = NULL,
214 .l_iop = NULL,
215 .l_iodone= NULL,
216 },
217 { /* queue_depth */
218 .l_init = NULL,
219 .l_tick = NULL,
220 .l_caniop = cam_iosched_qd_caniop,
221 .l_iop = cam_iosched_qd_iop,
222 .l_iodone= cam_iosched_qd_iodone,
223 },
224 { /* iops */
225 .l_init = cam_iosched_iops_init,
226 .l_tick = cam_iosched_iops_tick,
227 .l_caniop = cam_iosched_iops_caniop,
228 .l_iop = cam_iosched_iops_iop,
229 .l_iodone= NULL,
230 },
231 { /* bandwidth */
232 .l_init = cam_iosched_bw_init,
233 .l_tick = cam_iosched_bw_tick,
234 .l_caniop = cam_iosched_bw_caniop,
235 .l_iop = cam_iosched_bw_iop,
236 .l_iodone= NULL,
237 },
238 };
239
240 struct iop_stats {
241 /*
242 * sysctl state for this subnode.
243 */
244 struct sysctl_ctx_list sysctl_ctx;
245 struct sysctl_oid *sysctl_tree;
246
247 /*
248 * Information about the current rate limiters, if any
249 */
250 io_limiter limiter; /* How are I/Os being limited */
251 int min; /* Low range of limit */
252 int max; /* High range of limit */
253 int current; /* Current rate limiter */
254 int l_value1; /* per-limiter scratch value 1. */
255 int l_value2; /* per-limiter scratch value 2. */
256
257 /*
258 * Debug information about counts of I/Os that have gone through the
259 * scheduler.
260 */
261 int pending; /* I/Os pending in the hardware */
262 int queued; /* number currently in the queue */
263 int total; /* Total for all time -- wraps */
264 int in; /* number queued all time -- wraps */
265 int out; /* number completed all time -- wraps */
266 int errs; /* Number of I/Os completed with error -- wraps */
267
268 /*
269 * Statistics on different bits of the process.
270 */
271 /* Exp Moving Average, see alpha_bits for more details */
272 sbintime_t ema;
273 sbintime_t emvar;
274 sbintime_t sd; /* Last computed sd */
275
276 uint64_t too_long; /* Number of I/Os greater than bad lat threshold */
277 sbintime_t bad_latency; /* Latency threshold */
278
279 uint32_t state_flags;
280 #define IOP_RATE_LIMITED 1u
281
282 uint64_t latencies[LAT_BUCKETS];
283
284 struct cam_iosched_softc *softc;
285 };
286
287 typedef enum {
288 set_max = 0, /* current = max */
289 read_latency, /* Steer read latency by throttling writes */
290 cl_max /* Keep last */
291 } control_type;
292
293 static const char *cam_iosched_control_type_names[] =
294 { "set_max", "read_latency" };
295
296 struct control_loop {
297 /*
298 * sysctl state for this subnode.
299 */
300 struct sysctl_ctx_list sysctl_ctx;
301 struct sysctl_oid *sysctl_tree;
302
303 sbintime_t next_steer; /* Time of next steer */
304 sbintime_t steer_interval; /* How often do we steer? */
305 sbintime_t lolat;
306 sbintime_t hilat;
307 int alpha;
308 control_type type; /* What type of control? */
309 int last_count; /* Last I/O count */
310
311 struct cam_iosched_softc *softc;
312 };
313
314 #endif
315
316 struct cam_iosched_softc {
317 struct bio_queue_head bio_queue;
318 struct bio_queue_head trim_queue;
319 const struct disk *disk;
320 cam_iosched_schedule_t schedfnc;
321 /* scheduler flags < 16, user flags >= 16 */
322 uint32_t flags;
323 int sort_io_queue;
324 int trim_goal; /* # of trims to queue before sending */
325 int trim_ticks; /* Max ticks to hold trims */
326 int last_trim_tick; /* Last 'tick' time ld a trim */
327 int queued_trims; /* Number of trims in the queue */
328 #ifdef CAM_IOSCHED_DYNAMIC
329 int read_bias; /* Read bias setting */
330 int current_read_bias; /* Current read bias state */
331 int total_ticks;
332 int load; /* EMA of 'load average' of disk / 2^16 */
333
334 struct bio_queue_head write_queue;
335 struct iop_stats read_stats, write_stats, trim_stats;
336 struct sysctl_ctx_list sysctl_ctx;
337 struct sysctl_oid *sysctl_tree;
338
339 int quanta; /* Number of quanta per second */
340 struct callout ticker; /* Callout for our quota system */
341 struct cam_periph *periph; /* cam periph associated with this device */
342 uint32_t this_frac; /* Fraction of a second (1024ths) for this tick */
343 sbintime_t last_time; /* Last time we ticked */
344 struct control_loop cl;
345 sbintime_t max_lat; /* when != 0, if iop latency > max_lat, call max_lat_fcn */
346 cam_iosched_latfcn_t latfcn;
347 void *latarg;
348 #endif
349 };
350
351 #ifdef CAM_IOSCHED_DYNAMIC
352 /*
353 * helper functions to call the limsw functions.
354 */
355 static int
cam_iosched_limiter_init(struct iop_stats * ios)356 cam_iosched_limiter_init(struct iop_stats *ios)
357 {
358 int lim = ios->limiter;
359
360 /* maybe this should be a kassert */
361 if (lim < none || lim >= limiter_max)
362 return EINVAL;
363
364 if (limsw[lim].l_init)
365 return limsw[lim].l_init(ios);
366
367 return 0;
368 }
369
370 static int
cam_iosched_limiter_tick(struct iop_stats * ios)371 cam_iosched_limiter_tick(struct iop_stats *ios)
372 {
373 int lim = ios->limiter;
374
375 /* maybe this should be a kassert */
376 if (lim < none || lim >= limiter_max)
377 return EINVAL;
378
379 if (limsw[lim].l_tick)
380 return limsw[lim].l_tick(ios);
381
382 return 0;
383 }
384
385 static int
cam_iosched_limiter_iop(struct iop_stats * ios,struct bio * bp)386 cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
387 {
388 int lim = ios->limiter;
389
390 /* maybe this should be a kassert */
391 if (lim < none || lim >= limiter_max)
392 return EINVAL;
393
394 if (limsw[lim].l_iop)
395 return limsw[lim].l_iop(ios, bp);
396
397 return 0;
398 }
399
400 static int
cam_iosched_limiter_caniop(struct iop_stats * ios,struct bio * bp)401 cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
402 {
403 int lim = ios->limiter;
404
405 /* maybe this should be a kassert */
406 if (lim < none || lim >= limiter_max)
407 return EINVAL;
408
409 if (limsw[lim].l_caniop)
410 return limsw[lim].l_caniop(ios, bp);
411
412 return 0;
413 }
414
415 static int
cam_iosched_limiter_iodone(struct iop_stats * ios,struct bio * bp)416 cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
417 {
418 int lim = ios->limiter;
419
420 /* maybe this should be a kassert */
421 if (lim < none || lim >= limiter_max)
422 return 0;
423
424 if (limsw[lim].l_iodone)
425 return limsw[lim].l_iodone(ios, bp);
426
427 return 0;
428 }
429
430 /*
431 * Functions to implement the different kinds of limiters
432 */
433
434 static int
cam_iosched_qd_iop(struct iop_stats * ios,struct bio * bp)435 cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
436 {
437
438 if (ios->current <= 0 || ios->pending < ios->current)
439 return 0;
440
441 return EAGAIN;
442 }
443
444 static int
cam_iosched_qd_caniop(struct iop_stats * ios,struct bio * bp)445 cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
446 {
447
448 if (ios->current <= 0 || ios->pending < ios->current)
449 return 0;
450
451 return EAGAIN;
452 }
453
454 static int
cam_iosched_qd_iodone(struct iop_stats * ios,struct bio * bp)455 cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
456 {
457
458 if (ios->current <= 0 || ios->pending != ios->current)
459 return 0;
460
461 return 1;
462 }
463
464 static int
cam_iosched_iops_init(struct iop_stats * ios)465 cam_iosched_iops_init(struct iop_stats *ios)
466 {
467
468 ios->l_value1 = ios->current / ios->softc->quanta;
469 if (ios->l_value1 <= 0)
470 ios->l_value1 = 1;
471 ios->l_value2 = 0;
472
473 return 0;
474 }
475
476 static int
cam_iosched_iops_tick(struct iop_stats * ios)477 cam_iosched_iops_tick(struct iop_stats *ios)
478 {
479 int new_ios;
480
481 /*
482 * Allow at least one IO per tick until all
483 * the IOs for this interval have been spent.
484 */
485 new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
486 if (new_ios < 1 && ios->l_value2 < ios->current) {
487 new_ios = 1;
488 ios->l_value2++;
489 }
490
491 /*
492 * If this a new accounting interval, discard any "unspent" ios
493 * granted in the previous interval. Otherwise add the new ios to
494 * the previously granted ones that haven't been spent yet.
495 */
496 if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
497 ios->l_value1 = new_ios;
498 ios->l_value2 = 1;
499 } else {
500 ios->l_value1 += new_ios;
501 }
502
503 return 0;
504 }
505
506 static int
cam_iosched_iops_caniop(struct iop_stats * ios,struct bio * bp)507 cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
508 {
509
510 /*
511 * So if we have any more IOPs left, allow it,
512 * otherwise wait. If current iops is 0, treat that
513 * as unlimited as a failsafe.
514 */
515 if (ios->current > 0 && ios->l_value1 <= 0)
516 return EAGAIN;
517 return 0;
518 }
519
520 static int
cam_iosched_iops_iop(struct iop_stats * ios,struct bio * bp)521 cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
522 {
523 int rv;
524
525 rv = cam_iosched_limiter_caniop(ios, bp);
526 if (rv == 0)
527 ios->l_value1--;
528
529 return rv;
530 }
531
532 static int
cam_iosched_bw_init(struct iop_stats * ios)533 cam_iosched_bw_init(struct iop_stats *ios)
534 {
535
536 /* ios->current is in kB/s, so scale to bytes */
537 ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
538
539 return 0;
540 }
541
542 static int
cam_iosched_bw_tick(struct iop_stats * ios)543 cam_iosched_bw_tick(struct iop_stats *ios)
544 {
545 int bw;
546
547 /*
548 * If we're in the hole for available quota from
549 * the last time, then add the quantum for this.
550 * If we have any left over from last quantum,
551 * then too bad, that's lost. Also, ios->current
552 * is in kB/s, so scale.
553 *
554 * We also allow up to 4 quanta of credits to
555 * accumulate to deal with burstiness. 4 is extremely
556 * arbitrary.
557 */
558 bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
559 if (ios->l_value1 < bw * 4)
560 ios->l_value1 += bw;
561
562 return 0;
563 }
564
565 static int
cam_iosched_bw_caniop(struct iop_stats * ios,struct bio * bp)566 cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
567 {
568 /*
569 * So if we have any more bw quota left, allow it,
570 * otherwise wait. Note, we'll go negative and that's
571 * OK. We'll just get a little less next quota.
572 *
573 * Note on going negative: that allows us to process
574 * requests in order better, since we won't allow
575 * shorter reads to get around the long one that we
576 * don't have the quota to do just yet. It also prevents
577 * starvation by being a little more permissive about
578 * what we let through this quantum (to prevent the
579 * starvation), at the cost of getting a little less
580 * next quantum.
581 *
582 * Also note that if the current limit is <= 0,
583 * we treat it as unlimited as a failsafe.
584 */
585 if (ios->current > 0 && ios->l_value1 <= 0)
586 return EAGAIN;
587
588 return 0;
589 }
590
591 static int
cam_iosched_bw_iop(struct iop_stats * ios,struct bio * bp)592 cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
593 {
594 int rv;
595
596 rv = cam_iosched_limiter_caniop(ios, bp);
597 if (rv == 0)
598 ios->l_value1 -= bp->bio_length;
599
600 return rv;
601 }
602
603 static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
604
605 static void
cam_iosched_ticker(void * arg)606 cam_iosched_ticker(void *arg)
607 {
608 struct cam_iosched_softc *isc = arg;
609 sbintime_t now, delta;
610 int pending;
611
612 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
613
614 now = sbinuptime();
615 delta = now - isc->last_time;
616 isc->this_frac = (uint32_t)delta >> 16; /* Note: discards seconds -- should be 0 harmless if not */
617 isc->last_time = now;
618
619 cam_iosched_cl_maybe_steer(&isc->cl);
620
621 cam_iosched_limiter_tick(&isc->read_stats);
622 cam_iosched_limiter_tick(&isc->write_stats);
623 cam_iosched_limiter_tick(&isc->trim_stats);
624
625 isc->schedfnc(isc->periph);
626
627 /*
628 * isc->load is an EMA of the pending I/Os at each tick. The number of
629 * pending I/Os is the sum of the I/Os queued to the hardware, and those
630 * in the software queue that could be queued to the hardware if there
631 * were slots.
632 *
633 * ios_stats.pending is a count of requests in the SIM right now for
634 * each of these types of I/O. So the total pending count is the sum of
635 * these I/Os and the sum of the queued I/Os still in the software queue
636 * for those operations that aren't being rate limited at the moment.
637 *
638 * The reason for the rate limiting bit is because those I/Os
639 * aren't part of the software queued load (since we could
640 * give them to hardware, but choose not to).
641 *
642 * Note: due to a bug in counting pending TRIM in the device, we
643 * don't include them in this count. We count each BIO_DELETE in
644 * the pending count, but the periph drivers collapse them down
645 * into one TRIM command. That one trim command gets the completion
646 * so the counts get off.
647 */
648 pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
649 pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
650 !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
651 !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
652 pending <<= 16;
653 pending /= isc->periph->path->device->ccbq.total_openings;
654
655 isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
656
657 isc->total_ticks++;
658 }
659
660 static void
cam_iosched_cl_init(struct control_loop * clp,struct cam_iosched_softc * isc)661 cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
662 {
663
664 clp->next_steer = sbinuptime();
665 clp->softc = isc;
666 clp->steer_interval = SBT_1S * 5; /* Let's start out steering every 5s */
667 clp->lolat = 5 * SBT_1MS;
668 clp->hilat = 15 * SBT_1MS;
669 clp->alpha = 20; /* Alpha == gain. 20 = .2 */
670 clp->type = set_max;
671 }
672
673 static void
cam_iosched_cl_maybe_steer(struct control_loop * clp)674 cam_iosched_cl_maybe_steer(struct control_loop *clp)
675 {
676 struct cam_iosched_softc *isc;
677 sbintime_t now, lat;
678 int old;
679
680 isc = clp->softc;
681 now = isc->last_time;
682 if (now < clp->next_steer)
683 return;
684
685 clp->next_steer = now + clp->steer_interval;
686 switch (clp->type) {
687 case set_max:
688 if (isc->write_stats.current != isc->write_stats.max)
689 printf("Steering write from %d kBps to %d kBps\n",
690 isc->write_stats.current, isc->write_stats.max);
691 isc->read_stats.current = isc->read_stats.max;
692 isc->write_stats.current = isc->write_stats.max;
693 isc->trim_stats.current = isc->trim_stats.max;
694 break;
695 case read_latency:
696 old = isc->write_stats.current;
697 lat = isc->read_stats.ema;
698 /*
699 * Simple PLL-like engine. Since we're steering to a range for
700 * the SP (set point) that makes things a little more
701 * complicated. In addition, we're not directly controlling our
702 * PV (process variable), the read latency, but instead are
703 * manipulating the write bandwidth limit for our MV
704 * (manipulation variable), analysis of this code gets a bit
705 * messy. Also, the MV is a very noisy control surface for read
706 * latency since it is affected by many hidden processes inside
707 * the device which change how responsive read latency will be
708 * in reaction to changes in write bandwidth. Unlike the classic
709 * boiler control PLL. this may result in over-steering while
710 * the SSD takes its time to react to the new, lower load. This
711 * is why we use a relatively low alpha of between .1 and .25 to
712 * compensate for this effect. At .1, it takes ~22 steering
713 * intervals to back off by a factor of 10. At .2 it only takes
714 * ~10. At .25 it only takes ~8. However some preliminary data
715 * from the SSD drives suggests a reasponse time in 10's of
716 * seconds before latency drops regardless of the new write
717 * rate. Careful observation will be required to tune this
718 * effectively.
719 *
720 * Also, when there's no read traffic, we jack up the write
721 * limit too regardless of the last read latency. 10 is
722 * somewhat arbitrary.
723 */
724 if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
725 isc->write_stats.current = isc->write_stats.current *
726 (100 + clp->alpha) / 100; /* Scale up */
727 else if (lat > clp->hilat)
728 isc->write_stats.current = isc->write_stats.current *
729 (100 - clp->alpha) / 100; /* Scale down */
730 clp->last_count = isc->read_stats.total;
731
732 /*
733 * Even if we don't steer, per se, enforce the min/max limits as
734 * those may have changed.
735 */
736 if (isc->write_stats.current < isc->write_stats.min)
737 isc->write_stats.current = isc->write_stats.min;
738 if (isc->write_stats.current > isc->write_stats.max)
739 isc->write_stats.current = isc->write_stats.max;
740 if (old != isc->write_stats.current && iosched_debug)
741 printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
742 old, isc->write_stats.current,
743 (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
744 break;
745 case cl_max:
746 break;
747 }
748 }
749 #endif
750
751 /*
752 * Trim or similar currently pending completion. Should only be set for
753 * those drivers wishing only one Trim active at a time.
754 */
755 #define CAM_IOSCHED_FLAG_TRIM_ACTIVE (1ul << 0)
756 /* Callout active, and needs to be torn down */
757 #define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
758
759 /* Periph drivers set these flags to indicate work */
760 #define CAM_IOSCHED_FLAG_WORK_FLAGS ((0xffffu) << 16)
761
762 #ifdef CAM_IOSCHED_DYNAMIC
763 static void
764 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
765 sbintime_t sim_latency, const struct bio *bp);
766 #endif
767
768 static inline bool
cam_iosched_has_flagged_work(struct cam_iosched_softc * isc)769 cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
770 {
771 return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
772 }
773
774 static inline bool
cam_iosched_has_io(struct cam_iosched_softc * isc)775 cam_iosched_has_io(struct cam_iosched_softc *isc)
776 {
777 #ifdef CAM_IOSCHED_DYNAMIC
778 if (do_dynamic_iosched) {
779 struct bio *rbp = bioq_first(&isc->bio_queue);
780 struct bio *wbp = bioq_first(&isc->write_queue);
781 bool can_write = wbp != NULL &&
782 cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
783 bool can_read = rbp != NULL &&
784 cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
785 if (iosched_debug > 2) {
786 printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
787 printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
788 printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
789 }
790 return can_read || can_write;
791 }
792 #endif
793 return bioq_first(&isc->bio_queue) != NULL;
794 }
795
796 static inline bool
cam_iosched_has_more_trim(struct cam_iosched_softc * isc)797 cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
798 {
799 struct bio *bp;
800
801 bp = bioq_first(&isc->trim_queue);
802 #ifdef CAM_IOSCHED_DYNAMIC
803 if (do_dynamic_iosched) {
804 /*
805 * If we're limiting trims, then defer action on trims
806 * for a bit.
807 */
808 if (bp == NULL || cam_iosched_limiter_caniop(&isc->trim_stats, bp) != 0)
809 return false;
810 }
811 #endif
812
813 /*
814 * If we've set a trim_goal, then if we exceed that allow trims
815 * to be passed back to the driver. If we've also set a tick timeout
816 * allow trims back to the driver. Otherwise, don't allow trims yet.
817 */
818 if (isc->trim_goal > 0) {
819 if (isc->queued_trims >= isc->trim_goal)
820 return true;
821 if (isc->queued_trims > 0 &&
822 isc->trim_ticks > 0 &&
823 ticks - isc->last_trim_tick > isc->trim_ticks)
824 return true;
825 return false;
826 }
827
828 /* NB: Should perhaps have a max trim active independent of I/O limiters */
829 return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) && bp != NULL;
830 }
831
832 #define cam_iosched_sort_queue(isc) ((isc)->sort_io_queue >= 0 ? \
833 (isc)->sort_io_queue : cam_sort_io_queues)
834
835 static inline bool
cam_iosched_has_work(struct cam_iosched_softc * isc)836 cam_iosched_has_work(struct cam_iosched_softc *isc)
837 {
838 #ifdef CAM_IOSCHED_DYNAMIC
839 if (iosched_debug > 2)
840 printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
841 cam_iosched_has_more_trim(isc),
842 cam_iosched_has_flagged_work(isc));
843 #endif
844
845 return cam_iosched_has_io(isc) ||
846 cam_iosched_has_more_trim(isc) ||
847 cam_iosched_has_flagged_work(isc);
848 }
849
850 #ifdef CAM_IOSCHED_DYNAMIC
851 static void
cam_iosched_iop_stats_init(struct cam_iosched_softc * isc,struct iop_stats * ios)852 cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
853 {
854
855 ios->limiter = none;
856 ios->in = 0;
857 ios->max = ios->current = 300000;
858 ios->min = 1;
859 ios->out = 0;
860 ios->errs = 0;
861 ios->pending = 0;
862 ios->queued = 0;
863 ios->total = 0;
864 ios->ema = 0;
865 ios->emvar = 0;
866 ios->bad_latency = SBT_1S / 2; /* Default to 500ms */
867 ios->softc = isc;
868 cam_iosched_limiter_init(ios);
869 }
870
871 static int
cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)872 cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
873 {
874 char buf[16];
875 struct iop_stats *ios;
876 struct cam_iosched_softc *isc;
877 int value, i, error;
878 const char *p;
879
880 ios = arg1;
881 isc = ios->softc;
882 value = ios->limiter;
883 if (value < none || value >= limiter_max)
884 p = "UNKNOWN";
885 else
886 p = cam_iosched_limiter_names[value];
887
888 strlcpy(buf, p, sizeof(buf));
889 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
890 if (error != 0 || req->newptr == NULL)
891 return error;
892
893 cam_periph_lock(isc->periph);
894
895 for (i = none; i < limiter_max; i++) {
896 if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
897 continue;
898 ios->limiter = i;
899 error = cam_iosched_limiter_init(ios);
900 if (error != 0) {
901 ios->limiter = value;
902 cam_periph_unlock(isc->periph);
903 return error;
904 }
905 /* Note: disk load averate requires ticker to be always running */
906 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
907 isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
908
909 cam_periph_unlock(isc->periph);
910 return 0;
911 }
912
913 cam_periph_unlock(isc->periph);
914 return EINVAL;
915 }
916
917 static int
cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)918 cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
919 {
920 char buf[16];
921 struct control_loop *clp;
922 struct cam_iosched_softc *isc;
923 int value, i, error;
924 const char *p;
925
926 clp = arg1;
927 isc = clp->softc;
928 value = clp->type;
929 if (value < none || value >= cl_max)
930 p = "UNKNOWN";
931 else
932 p = cam_iosched_control_type_names[value];
933
934 strlcpy(buf, p, sizeof(buf));
935 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
936 if (error != 0 || req->newptr == NULL)
937 return error;
938
939 for (i = set_max; i < cl_max; i++) {
940 if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
941 continue;
942 cam_periph_lock(isc->periph);
943 clp->type = i;
944 cam_periph_unlock(isc->periph);
945 return 0;
946 }
947
948 return EINVAL;
949 }
950
951 static int
cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)952 cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
953 {
954 char buf[16];
955 sbintime_t value;
956 int error;
957 uint64_t us;
958
959 value = *(sbintime_t *)arg1;
960 us = (uint64_t)value / SBT_1US;
961 snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
962 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
963 if (error != 0 || req->newptr == NULL)
964 return error;
965 us = strtoul(buf, NULL, 10);
966 if (us == 0)
967 return EINVAL;
968 *(sbintime_t *)arg1 = us * SBT_1US;
969 return 0;
970 }
971
972 static int
cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)973 cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
974 {
975 int i, error;
976 struct sbuf sb;
977 uint64_t *latencies;
978
979 latencies = arg1;
980 sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
981
982 for (i = 0; i < LAT_BUCKETS - 1; i++)
983 sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
984 sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
985 error = sbuf_finish(&sb);
986 sbuf_delete(&sb);
987
988 return (error);
989 }
990
991 static int
cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)992 cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
993 {
994 int *quanta;
995 int error, value;
996
997 quanta = (unsigned *)arg1;
998 value = *quanta;
999
1000 error = sysctl_handle_int(oidp, (int *)&value, 0, req);
1001 if ((error != 0) || (req->newptr == NULL))
1002 return (error);
1003
1004 if (value < 1 || value > hz)
1005 return (EINVAL);
1006
1007 *quanta = value;
1008
1009 return (0);
1010 }
1011
1012 static void
cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc * isc,struct iop_stats * ios,char * name)1013 cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
1014 {
1015 struct sysctl_oid_list *n;
1016 struct sysctl_ctx_list *ctx;
1017
1018 ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1019 SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
1020 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, name);
1021 n = SYSCTL_CHILDREN(ios->sysctl_tree);
1022 ctx = &ios->sysctl_ctx;
1023
1024 SYSCTL_ADD_UQUAD(ctx, n,
1025 OID_AUTO, "ema", CTLFLAG_RD,
1026 &ios->ema,
1027 "Fast Exponentially Weighted Moving Average");
1028 SYSCTL_ADD_UQUAD(ctx, n,
1029 OID_AUTO, "emvar", CTLFLAG_RD,
1030 &ios->emvar,
1031 "Fast Exponentially Weighted Moving Variance");
1032
1033 SYSCTL_ADD_INT(ctx, n,
1034 OID_AUTO, "pending", CTLFLAG_RD,
1035 &ios->pending, 0,
1036 "Instantaneous # of pending transactions");
1037 SYSCTL_ADD_INT(ctx, n,
1038 OID_AUTO, "count", CTLFLAG_RD,
1039 &ios->total, 0,
1040 "# of transactions submitted to hardware");
1041 SYSCTL_ADD_INT(ctx, n,
1042 OID_AUTO, "queued", CTLFLAG_RD,
1043 &ios->queued, 0,
1044 "# of transactions in the queue");
1045 SYSCTL_ADD_INT(ctx, n,
1046 OID_AUTO, "in", CTLFLAG_RD,
1047 &ios->in, 0,
1048 "# of transactions queued to driver");
1049 SYSCTL_ADD_INT(ctx, n,
1050 OID_AUTO, "out", CTLFLAG_RD,
1051 &ios->out, 0,
1052 "# of transactions completed (including with error)");
1053 SYSCTL_ADD_INT(ctx, n,
1054 OID_AUTO, "errs", CTLFLAG_RD,
1055 &ios->errs, 0,
1056 "# of transactions completed with an error");
1057 SYSCTL_ADD_U64(ctx, n,
1058 OID_AUTO, "too_long", CTLFLAG_RD,
1059 &ios->too_long, 0,
1060 "# of transactions completed took too long");
1061 SYSCTL_ADD_PROC(ctx, n,
1062 OID_AUTO, "bad_latency",
1063 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1064 &ios->bad_latency, 0, cam_iosched_sbintime_sysctl, "A",
1065 "Threshold for counting transactions that took too long (in us)");
1066
1067 SYSCTL_ADD_PROC(ctx, n,
1068 OID_AUTO, "limiter",
1069 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1070 ios, 0, cam_iosched_limiter_sysctl, "A",
1071 "Current limiting type.");
1072 SYSCTL_ADD_INT(ctx, n,
1073 OID_AUTO, "min", CTLFLAG_RW,
1074 &ios->min, 0,
1075 "min resource");
1076 SYSCTL_ADD_INT(ctx, n,
1077 OID_AUTO, "max", CTLFLAG_RW,
1078 &ios->max, 0,
1079 "max resource");
1080 SYSCTL_ADD_INT(ctx, n,
1081 OID_AUTO, "current", CTLFLAG_RW,
1082 &ios->current, 0,
1083 "current resource");
1084
1085 SYSCTL_ADD_PROC(ctx, n,
1086 OID_AUTO, "latencies",
1087 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1088 &ios->latencies, 0,
1089 cam_iosched_sysctl_latencies, "A",
1090 "Array of latencies, a geometric progresson from\n"
1091 "kern.cam.iosched.bucket_base_us with a ratio of\n"
1092 "kern.cam.iosched.bucket_ration / 100 from one to\n"
1093 "the next. By default 20 steps from 20us to 10.485s\n"
1094 "by doubling.");
1095
1096 }
1097
1098 static void
cam_iosched_iop_stats_fini(struct iop_stats * ios)1099 cam_iosched_iop_stats_fini(struct iop_stats *ios)
1100 {
1101 if (ios->sysctl_tree)
1102 if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
1103 printf("can't remove iosched sysctl stats context\n");
1104 }
1105
1106 static void
cam_iosched_cl_sysctl_init(struct cam_iosched_softc * isc)1107 cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
1108 {
1109 struct sysctl_oid_list *n;
1110 struct sysctl_ctx_list *ctx;
1111 struct control_loop *clp;
1112
1113 clp = &isc->cl;
1114 clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1115 SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
1116 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Control loop info");
1117 n = SYSCTL_CHILDREN(clp->sysctl_tree);
1118 ctx = &clp->sysctl_ctx;
1119
1120 SYSCTL_ADD_PROC(ctx, n,
1121 OID_AUTO, "type",
1122 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1123 clp, 0, cam_iosched_control_type_sysctl, "A",
1124 "Control loop algorithm");
1125 SYSCTL_ADD_PROC(ctx, n,
1126 OID_AUTO, "steer_interval",
1127 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1128 &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
1129 "How often to steer (in us)");
1130 SYSCTL_ADD_PROC(ctx, n,
1131 OID_AUTO, "lolat",
1132 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1133 &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
1134 "Low water mark for Latency (in us)");
1135 SYSCTL_ADD_PROC(ctx, n,
1136 OID_AUTO, "hilat",
1137 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1138 &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
1139 "Hi water mark for Latency (in us)");
1140 SYSCTL_ADD_INT(ctx, n,
1141 OID_AUTO, "alpha", CTLFLAG_RW,
1142 &clp->alpha, 0,
1143 "Alpha for PLL (x100) aka gain");
1144 }
1145
1146 static void
cam_iosched_cl_sysctl_fini(struct control_loop * clp)1147 cam_iosched_cl_sysctl_fini(struct control_loop *clp)
1148 {
1149 if (clp->sysctl_tree)
1150 if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
1151 printf("can't remove iosched sysctl control loop context\n");
1152 }
1153 #endif
1154
1155 /*
1156 * Allocate the iosched structure. This also insulates callers from knowing
1157 * sizeof struct cam_iosched_softc.
1158 */
1159 int
cam_iosched_init(struct cam_iosched_softc ** iscp,struct cam_periph * periph,const struct disk * dp,cam_iosched_schedule_t schedfnc)1160 cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph,
1161 const struct disk *dp, cam_iosched_schedule_t schedfnc)
1162 {
1163 struct cam_iosched_softc *isc;
1164
1165 isc = malloc(sizeof(*isc), M_CAMSCHED, M_NOWAIT | M_ZERO);
1166 if (isc == NULL)
1167 return ENOMEM;
1168 isc->disk = dp;
1169 isc->schedfnc = schedfnc;
1170 #ifdef CAM_IOSCHED_DYNAMIC
1171 if (iosched_debug)
1172 printf("CAM IOSCHEDULER Allocating entry at %p\n", isc);
1173 #endif
1174 isc->sort_io_queue = -1;
1175 bioq_init(&isc->bio_queue);
1176 bioq_init(&isc->trim_queue);
1177 #ifdef CAM_IOSCHED_DYNAMIC
1178 if (do_dynamic_iosched) {
1179 bioq_init(&isc->write_queue);
1180 isc->read_bias = default_read_bias;
1181 isc->current_read_bias = 0;
1182 isc->quanta = min(hz, 200);
1183 cam_iosched_iop_stats_init(isc, &isc->read_stats);
1184 cam_iosched_iop_stats_init(isc, &isc->write_stats);
1185 cam_iosched_iop_stats_init(isc, &isc->trim_stats);
1186 isc->trim_stats.max = 1; /* Trims are special: one at a time for now */
1187 isc->last_time = sbinuptime();
1188 callout_init_mtx(&isc->ticker, cam_periph_mtx(periph), 0);
1189 isc->periph = periph;
1190 cam_iosched_cl_init(&isc->cl, isc);
1191 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
1192 isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1193 }
1194 #endif
1195 *iscp = isc;
1196
1197 return 0;
1198 }
1199
1200 /*
1201 * Reclaim all used resources. This assumes that other folks have
1202 * drained the requests in the hardware. Maybe an unwise assumption.
1203 */
1204 void
cam_iosched_fini(struct cam_iosched_softc * isc)1205 cam_iosched_fini(struct cam_iosched_softc *isc)
1206 {
1207 if (isc) {
1208 cam_iosched_flush(isc, NULL, ENXIO);
1209 #ifdef CAM_IOSCHED_DYNAMIC
1210 cam_iosched_iop_stats_fini(&isc->read_stats);
1211 cam_iosched_iop_stats_fini(&isc->write_stats);
1212 cam_iosched_iop_stats_fini(&isc->trim_stats);
1213 cam_iosched_cl_sysctl_fini(&isc->cl);
1214 if (isc->sysctl_tree)
1215 if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
1216 printf("can't remove iosched sysctl stats context\n");
1217 if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
1218 callout_drain(&isc->ticker);
1219 isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1220 }
1221 #endif
1222 free(isc, M_CAMSCHED);
1223 }
1224 }
1225
1226 /*
1227 * After we're sure we're attaching a device, go ahead and add
1228 * hooks for any sysctl we may wish to honor.
1229 */
cam_iosched_sysctl_init(struct cam_iosched_softc * isc,struct sysctl_ctx_list * ctx,struct sysctl_oid * node)1230 void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
1231 struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
1232 {
1233 struct sysctl_oid_list *n;
1234
1235 n = SYSCTL_CHILDREN(node);
1236 SYSCTL_ADD_INT(ctx, n,
1237 OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
1238 &isc->sort_io_queue, 0,
1239 "Sort IO queue to try and optimise disk access patterns");
1240 SYSCTL_ADD_INT(ctx, n,
1241 OID_AUTO, "trim_goal", CTLFLAG_RW,
1242 &isc->trim_goal, 0,
1243 "Number of trims to try to accumulate before sending to hardware");
1244 SYSCTL_ADD_INT(ctx, n,
1245 OID_AUTO, "trim_ticks", CTLFLAG_RW,
1246 &isc->trim_goal, 0,
1247 "IO Schedul qaunta to hold back trims for when accumulating");
1248
1249 #ifdef CAM_IOSCHED_DYNAMIC
1250 if (!do_dynamic_iosched)
1251 return;
1252
1253 isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1254 SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
1255 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "I/O scheduler statistics");
1256 n = SYSCTL_CHILDREN(isc->sysctl_tree);
1257 ctx = &isc->sysctl_ctx;
1258
1259 cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
1260 cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
1261 cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
1262 cam_iosched_cl_sysctl_init(isc);
1263
1264 SYSCTL_ADD_INT(ctx, n,
1265 OID_AUTO, "read_bias", CTLFLAG_RW,
1266 &isc->read_bias, default_read_bias,
1267 "How biased towards read should we be independent of limits");
1268
1269 SYSCTL_ADD_PROC(ctx, n,
1270 OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1271 &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
1272 "How many quanta per second do we slice the I/O up into");
1273
1274 SYSCTL_ADD_INT(ctx, n,
1275 OID_AUTO, "total_ticks", CTLFLAG_RD,
1276 &isc->total_ticks, 0,
1277 "Total number of ticks we've done");
1278
1279 SYSCTL_ADD_INT(ctx, n,
1280 OID_AUTO, "load", CTLFLAG_RD,
1281 &isc->load, 0,
1282 "scaled load average / 100");
1283
1284 SYSCTL_ADD_U64(ctx, n,
1285 OID_AUTO, "latency_trigger", CTLFLAG_RW,
1286 &isc->max_lat, 0,
1287 "Latency treshold to trigger callbacks");
1288 #endif
1289 }
1290
1291 void
cam_iosched_set_latfcn(struct cam_iosched_softc * isc,cam_iosched_latfcn_t fnp,void * argp)1292 cam_iosched_set_latfcn(struct cam_iosched_softc *isc,
1293 cam_iosched_latfcn_t fnp, void *argp)
1294 {
1295 #ifdef CAM_IOSCHED_DYNAMIC
1296 isc->latfcn = fnp;
1297 isc->latarg = argp;
1298 #endif
1299 }
1300
1301 /*
1302 * Client drivers can set two parameters. "goal" is the number of BIO_DELETEs
1303 * that will be queued up before iosched will "release" the trims to the client
1304 * driver to wo with what they will (usually combine as many as possible). If we
1305 * don't get this many, after trim_ticks we'll submit the I/O anyway with
1306 * whatever we have. We do need an I/O of some kind of to clock the deferred
1307 * trims out to disk. Since we will eventually get a write for the super block
1308 * or something before we shutdown, the trims will complete. To be safe, when a
1309 * BIO_FLUSH is presented to the iosched work queue, we set the ticks time far
1310 * enough in the past so we'll present the BIO_DELETEs to the client driver.
1311 * There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in
1312 * and then a BIO_DELETE is sent down. No know client does this, and there's
1313 * already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight,
1314 * but no client depends on the ordering being honored.
1315 *
1316 * XXX I'm not sure what the interaction between UFS direct BIOs and the BUF
1317 * flushing on shutdown. I think there's bufs that would be dependent on the BIO
1318 * finishing to write out at least metadata, so we'll be fine. To be safe, keep
1319 * the number of ticks low (less than maybe 10s) to avoid shutdown races.
1320 */
1321
1322 void
cam_iosched_set_trim_goal(struct cam_iosched_softc * isc,int goal)1323 cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal)
1324 {
1325
1326 isc->trim_goal = goal;
1327 }
1328
1329 void
cam_iosched_set_trim_ticks(struct cam_iosched_softc * isc,int trim_ticks)1330 cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks)
1331 {
1332
1333 isc->trim_ticks = trim_ticks;
1334 }
1335
1336 /*
1337 * Flush outstanding I/O. Consumers of this library don't know all the
1338 * queues we may keep, so this allows all I/O to be flushed in one
1339 * convenient call.
1340 */
1341 void
cam_iosched_flush(struct cam_iosched_softc * isc,struct devstat * stp,int err)1342 cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
1343 {
1344 bioq_flush(&isc->bio_queue, stp, err);
1345 bioq_flush(&isc->trim_queue, stp, err);
1346 #ifdef CAM_IOSCHED_DYNAMIC
1347 if (do_dynamic_iosched)
1348 bioq_flush(&isc->write_queue, stp, err);
1349 #endif
1350 }
1351
1352 #ifdef CAM_IOSCHED_DYNAMIC
1353 static struct bio *
cam_iosched_get_write(struct cam_iosched_softc * isc)1354 cam_iosched_get_write(struct cam_iosched_softc *isc)
1355 {
1356 struct bio *bp;
1357
1358 /*
1359 * We control the write rate by controlling how many requests we send
1360 * down to the drive at any one time. Fewer requests limits the
1361 * effects of both starvation when the requests take a while and write
1362 * amplification when each request is causing more than one write to
1363 * the NAND media. Limiting the queue depth like this will also limit
1364 * the write throughput and give and reads that want to compete to
1365 * compete unfairly.
1366 */
1367 bp = bioq_first(&isc->write_queue);
1368 if (bp == NULL) {
1369 if (iosched_debug > 3)
1370 printf("No writes present in write_queue\n");
1371 return NULL;
1372 }
1373
1374 /*
1375 * If pending read, prefer that based on current read bias
1376 * setting.
1377 */
1378 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1379 if (iosched_debug)
1380 printf(
1381 "Reads present and current_read_bias is %d queued "
1382 "writes %d queued reads %d\n",
1383 isc->current_read_bias, isc->write_stats.queued,
1384 isc->read_stats.queued);
1385 isc->current_read_bias--;
1386 /* We're not limiting writes, per se, just doing reads first */
1387 return NULL;
1388 }
1389
1390 /*
1391 * See if our current limiter allows this I/O.
1392 */
1393 if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1394 if (iosched_debug)
1395 printf("Can't write because limiter says no.\n");
1396 isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1397 return NULL;
1398 }
1399
1400 /*
1401 * Let's do this: We've passed all the gates and we're a go
1402 * to schedule the I/O in the SIM.
1403 */
1404 isc->current_read_bias = isc->read_bias;
1405 bioq_remove(&isc->write_queue, bp);
1406 if (bp->bio_cmd == BIO_WRITE) {
1407 isc->write_stats.queued--;
1408 isc->write_stats.total++;
1409 isc->write_stats.pending++;
1410 }
1411 if (iosched_debug > 9)
1412 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1413 isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1414 return bp;
1415 }
1416 #endif
1417
1418 /*
1419 * Put back a trim that you weren't able to actually schedule this time.
1420 */
1421 void
cam_iosched_put_back_trim(struct cam_iosched_softc * isc,struct bio * bp)1422 cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
1423 {
1424 bioq_insert_head(&isc->trim_queue, bp);
1425 if (isc->queued_trims == 0)
1426 isc->last_trim_tick = ticks;
1427 isc->queued_trims++;
1428 #ifdef CAM_IOSCHED_DYNAMIC
1429 isc->trim_stats.queued++;
1430 isc->trim_stats.total--; /* since we put it back, don't double count */
1431 isc->trim_stats.pending--;
1432 #endif
1433 }
1434
1435 /*
1436 * gets the next trim from the trim queue.
1437 *
1438 * Assumes we're called with the periph lock held. It removes this
1439 * trim from the queue and the device must explicitly reinsert it
1440 * should the need arise.
1441 */
1442 struct bio *
cam_iosched_next_trim(struct cam_iosched_softc * isc)1443 cam_iosched_next_trim(struct cam_iosched_softc *isc)
1444 {
1445 struct bio *bp;
1446
1447 bp = bioq_first(&isc->trim_queue);
1448 if (bp == NULL)
1449 return NULL;
1450 bioq_remove(&isc->trim_queue, bp);
1451 isc->queued_trims--;
1452 isc->last_trim_tick = ticks; /* Reset the tick timer when we take trims */
1453 #ifdef CAM_IOSCHED_DYNAMIC
1454 isc->trim_stats.queued--;
1455 isc->trim_stats.total++;
1456 isc->trim_stats.pending++;
1457 #endif
1458 return bp;
1459 }
1460
1461 /*
1462 * gets an available trim from the trim queue, if there's no trim
1463 * already pending. It removes this trim from the queue and the device
1464 * must explicitly reinsert it should the need arise.
1465 *
1466 * Assumes we're called with the periph lock held.
1467 */
1468 struct bio *
cam_iosched_get_trim(struct cam_iosched_softc * isc)1469 cam_iosched_get_trim(struct cam_iosched_softc *isc)
1470 {
1471 #ifdef CAM_IOSCHED_DYNAMIC
1472 struct bio *bp;
1473 #endif
1474
1475 if (!cam_iosched_has_more_trim(isc))
1476 return NULL;
1477 #ifdef CAM_IOSCHED_DYNAMIC
1478 bp = bioq_first(&isc->trim_queue);
1479 if (bp == NULL)
1480 return NULL;
1481
1482 /*
1483 * If pending read, prefer that based on current read bias setting. The
1484 * read bias is shared for both writes and TRIMs, but on TRIMs the bias
1485 * is for a combined TRIM not a single TRIM request that's come in.
1486 */
1487 if (do_dynamic_iosched) {
1488 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1489 if (iosched_debug)
1490 printf("Reads present and current_read_bias is %d"
1491 " queued trims %d queued reads %d\n",
1492 isc->current_read_bias, isc->trim_stats.queued,
1493 isc->read_stats.queued);
1494 isc->current_read_bias--;
1495 /* We're not limiting TRIMS, per se, just doing reads first */
1496 return NULL;
1497 }
1498 /*
1499 * We're going to do a trim, so reset the bias.
1500 */
1501 isc->current_read_bias = isc->read_bias;
1502 }
1503
1504 /*
1505 * See if our current limiter allows this I/O. Because we only call this
1506 * here, and not in next_trim, the 'bandwidth' limits for trims won't
1507 * work, while the iops or max queued limits will work. It's tricky
1508 * because we want the limits to be from the perspective of the
1509 * "commands sent to the device." To make iops work, we need to check
1510 * only here (since we want all the ops we combine to count as one). To
1511 * make bw limits work, we'd need to check in next_trim, but that would
1512 * have the effect of limiting the iops as seen from the upper layers.
1513 */
1514 if (cam_iosched_limiter_iop(&isc->trim_stats, bp) != 0) {
1515 if (iosched_debug)
1516 printf("Can't trim because limiter says no.\n");
1517 isc->trim_stats.state_flags |= IOP_RATE_LIMITED;
1518 return NULL;
1519 }
1520 isc->current_read_bias = isc->read_bias;
1521 isc->trim_stats.state_flags &= ~IOP_RATE_LIMITED;
1522 /* cam_iosched_next_trim below keeps proper book */
1523 #endif
1524 return cam_iosched_next_trim(isc);
1525 }
1526
1527
1528 #ifdef CAM_IOSCHED_DYNAMIC
1529 static struct bio *
bio_next(struct bio * bp)1530 bio_next(struct bio *bp)
1531 {
1532 bp = TAILQ_NEXT(bp, bio_queue);
1533 /*
1534 * After the first commands, the ordered bit terminates
1535 * our search because BIO_ORDERED acts like a barrier.
1536 */
1537 if (bp == NULL || bp->bio_flags & BIO_ORDERED)
1538 return NULL;
1539 return bp;
1540 }
1541
1542 static bool
cam_iosched_rate_limited(struct iop_stats * ios)1543 cam_iosched_rate_limited(struct iop_stats *ios)
1544 {
1545 return ios->state_flags & IOP_RATE_LIMITED;
1546 }
1547 #endif
1548
1549 /*
1550 * Determine what the next bit of work to do is for the periph. The
1551 * default implementation looks to see if we have trims to do, but no
1552 * trims outstanding. If so, we do that. Otherwise we see if we have
1553 * other work. If we do, then we do that. Otherwise why were we called?
1554 */
1555 struct bio *
cam_iosched_next_bio(struct cam_iosched_softc * isc)1556 cam_iosched_next_bio(struct cam_iosched_softc *isc)
1557 {
1558 struct bio *bp;
1559
1560 /*
1561 * See if we have a trim that can be scheduled. We can only send one
1562 * at a time down, so this takes that into account.
1563 *
1564 * XXX newer TRIM commands are queueable. Revisit this when we
1565 * implement them.
1566 */
1567 if ((bp = cam_iosched_get_trim(isc)) != NULL)
1568 return bp;
1569
1570 #ifdef CAM_IOSCHED_DYNAMIC
1571 /*
1572 * See if we have any pending writes, room in the queue for them,
1573 * and no pending reads (unless we've scheduled too many).
1574 * if so, those are next.
1575 */
1576 if (do_dynamic_iosched) {
1577 if ((bp = cam_iosched_get_write(isc)) != NULL)
1578 return bp;
1579 }
1580 #endif
1581 /*
1582 * next, see if there's other, normal I/O waiting. If so return that.
1583 */
1584 #ifdef CAM_IOSCHED_DYNAMIC
1585 if (do_dynamic_iosched) {
1586 for (bp = bioq_first(&isc->bio_queue); bp != NULL;
1587 bp = bio_next(bp)) {
1588 /*
1589 * For the dynamic scheduler with a read bias, bio_queue
1590 * is only for reads. However, without one, all
1591 * operations are queued. Enforce limits here for any
1592 * operation we find here.
1593 */
1594 if (bp->bio_cmd == BIO_READ) {
1595 if (cam_iosched_rate_limited(&isc->read_stats) ||
1596 cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
1597 isc->read_stats.state_flags |= IOP_RATE_LIMITED;
1598 continue;
1599 }
1600 isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
1601 }
1602 /*
1603 * There can only be write requests on the queue when
1604 * the read bias is 0, but we need to process them
1605 * here. We do not assert for read bias == 0, however,
1606 * since it is dynamic and we can have WRITE operations
1607 * in the queue after we transition from 0 to non-zero.
1608 */
1609 if (bp->bio_cmd == BIO_WRITE) {
1610 if (cam_iosched_rate_limited(&isc->write_stats) ||
1611 cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1612 isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1613 continue;
1614 }
1615 isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1616 }
1617 /*
1618 * here we know we have a bp that's != NULL, that's not rate limited
1619 * and can be the next I/O.
1620 */
1621 break;
1622 }
1623 } else
1624 #endif
1625 bp = bioq_first(&isc->bio_queue);
1626
1627 if (bp == NULL)
1628 return (NULL);
1629 bioq_remove(&isc->bio_queue, bp);
1630 #ifdef CAM_IOSCHED_DYNAMIC
1631 if (do_dynamic_iosched) {
1632 if (bp->bio_cmd == BIO_READ) {
1633 isc->read_stats.queued--;
1634 isc->read_stats.total++;
1635 isc->read_stats.pending++;
1636 } else if (bp->bio_cmd == BIO_WRITE) {
1637 isc->write_stats.queued--;
1638 isc->write_stats.total++;
1639 isc->write_stats.pending++;
1640 }
1641 }
1642 if (iosched_debug > 9)
1643 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1644 #endif
1645 return bp;
1646 }
1647
1648 /*
1649 * Driver has been given some work to do by the block layer. Tell the
1650 * scheduler about it and have it queue the work up. The scheduler module
1651 * will then return the currently most useful bit of work later, possibly
1652 * deferring work for various reasons.
1653 */
1654 void
cam_iosched_queue_work(struct cam_iosched_softc * isc,struct bio * bp)1655 cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
1656 {
1657
1658 /*
1659 * A BIO_SPEEDUP from the upper layers means that they have a block
1660 * shortage. At the present, this is only sent when we're trying to
1661 * allocate blocks, but have a shortage before giving up. bio_length is
1662 * the size of their shortage. We will complete just enough BIO_DELETEs
1663 * in the queue to satisfy the need. If bio_length is 0, we'll complete
1664 * them all. This allows the scheduler to delay BIO_DELETEs to improve
1665 * read/write performance without worrying about the upper layers. When
1666 * it's possibly a problem, we respond by pretending the BIO_DELETEs
1667 * just worked. We can't do anything about the BIO_DELETEs in the
1668 * hardware, though. We have to wait for them to complete.
1669 */
1670 if (bp->bio_cmd == BIO_SPEEDUP) {
1671 off_t len;
1672 struct bio *nbp;
1673
1674 len = 0;
1675 while (bioq_first(&isc->trim_queue) &&
1676 (bp->bio_length == 0 || len < bp->bio_length)) {
1677 nbp = bioq_takefirst(&isc->trim_queue);
1678 len += nbp->bio_length;
1679 nbp->bio_error = 0;
1680 biodone(nbp);
1681 }
1682 if (bp->bio_length > 0) {
1683 if (bp->bio_length > len)
1684 bp->bio_resid = bp->bio_length - len;
1685 else
1686 bp->bio_resid = 0;
1687 }
1688 bp->bio_error = 0;
1689 biodone(bp);
1690 return;
1691 }
1692
1693 /*
1694 * If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we
1695 * set the last tick time to one less than the current ticks minus the
1696 * delay to force the BIO_DELETEs to be presented to the client driver.
1697 */
1698 if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0)
1699 isc->last_trim_tick = ticks - isc->trim_ticks - 1;
1700
1701 /*
1702 * Put all trims on the trim queue. Otherwise put the work on the bio
1703 * queue.
1704 */
1705 if (bp->bio_cmd == BIO_DELETE) {
1706 bioq_insert_tail(&isc->trim_queue, bp);
1707 if (isc->queued_trims == 0)
1708 isc->last_trim_tick = ticks;
1709 isc->queued_trims++;
1710 #ifdef CAM_IOSCHED_DYNAMIC
1711 isc->trim_stats.in++;
1712 isc->trim_stats.queued++;
1713 #endif
1714 }
1715 #ifdef CAM_IOSCHED_DYNAMIC
1716 else if (do_dynamic_iosched && isc->read_bias != 0 &&
1717 (bp->bio_cmd != BIO_READ)) {
1718 if (cam_iosched_sort_queue(isc))
1719 bioq_disksort(&isc->write_queue, bp);
1720 else
1721 bioq_insert_tail(&isc->write_queue, bp);
1722 if (iosched_debug > 9)
1723 printf("Qw : %p %#x\n", bp, bp->bio_cmd);
1724 if (bp->bio_cmd == BIO_WRITE) {
1725 isc->write_stats.in++;
1726 isc->write_stats.queued++;
1727 }
1728 }
1729 #endif
1730 else {
1731 if (cam_iosched_sort_queue(isc))
1732 bioq_disksort(&isc->bio_queue, bp);
1733 else
1734 bioq_insert_tail(&isc->bio_queue, bp);
1735 #ifdef CAM_IOSCHED_DYNAMIC
1736 if (iosched_debug > 9)
1737 printf("Qr : %p %#x\n", bp, bp->bio_cmd);
1738 if (bp->bio_cmd == BIO_READ) {
1739 isc->read_stats.in++;
1740 isc->read_stats.queued++;
1741 } else if (bp->bio_cmd == BIO_WRITE) {
1742 isc->write_stats.in++;
1743 isc->write_stats.queued++;
1744 }
1745 #endif
1746 }
1747 }
1748
1749 /*
1750 * If we have work, get it scheduled. Called with the periph lock held.
1751 */
1752 void
cam_iosched_schedule(struct cam_iosched_softc * isc,struct cam_periph * periph)1753 cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
1754 {
1755
1756 if (cam_iosched_has_work(isc))
1757 xpt_schedule(periph, CAM_PRIORITY_NORMAL);
1758 }
1759
1760 /*
1761 * Complete a trim request. Mark that we no longer have one in flight.
1762 */
1763 void
cam_iosched_trim_done(struct cam_iosched_softc * isc)1764 cam_iosched_trim_done(struct cam_iosched_softc *isc)
1765 {
1766
1767 isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1768 }
1769
1770 /*
1771 * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
1772 * might use notes in the ccb for statistics.
1773 */
1774 int
cam_iosched_bio_complete(struct cam_iosched_softc * isc,struct bio * bp,union ccb * done_ccb)1775 cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
1776 union ccb *done_ccb)
1777 {
1778 int retval = 0;
1779 #ifdef CAM_IOSCHED_DYNAMIC
1780 if (!do_dynamic_iosched)
1781 return retval;
1782
1783 if (iosched_debug > 10)
1784 printf("done: %p %#x\n", bp, bp->bio_cmd);
1785 if (bp->bio_cmd == BIO_WRITE) {
1786 retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
1787 if ((bp->bio_flags & BIO_ERROR) != 0)
1788 isc->write_stats.errs++;
1789 isc->write_stats.out++;
1790 isc->write_stats.pending--;
1791 } else if (bp->bio_cmd == BIO_READ) {
1792 retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
1793 if ((bp->bio_flags & BIO_ERROR) != 0)
1794 isc->read_stats.errs++;
1795 isc->read_stats.out++;
1796 isc->read_stats.pending--;
1797 } else if (bp->bio_cmd == BIO_DELETE) {
1798 if ((bp->bio_flags & BIO_ERROR) != 0)
1799 isc->trim_stats.errs++;
1800 isc->trim_stats.out++;
1801 isc->trim_stats.pending--;
1802 } else if (bp->bio_cmd != BIO_FLUSH) {
1803 if (iosched_debug)
1804 printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
1805 }
1806
1807 if ((bp->bio_flags & BIO_ERROR) == 0 && done_ccb != NULL &&
1808 (done_ccb->ccb_h.status & CAM_QOS_VALID) != 0) {
1809 sbintime_t sim_latency;
1810
1811 sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data);
1812
1813 cam_iosched_io_metric_update(isc, sim_latency, bp);
1814
1815 /*
1816 * Debugging code: allow callbacks to the periph driver when latency max
1817 * is exceeded. This can be useful for triggering external debugging actions.
1818 */
1819 if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat)
1820 isc->latfcn(isc->latarg, sim_latency, bp);
1821 }
1822 #endif
1823 return retval;
1824 }
1825
1826 /*
1827 * Tell the io scheduler that you've pushed a trim down into the sim.
1828 * This also tells the I/O scheduler not to push any more trims down, so
1829 * some periphs do not call it if they can cope with multiple trims in flight.
1830 */
1831 void
cam_iosched_submit_trim(struct cam_iosched_softc * isc)1832 cam_iosched_submit_trim(struct cam_iosched_softc *isc)
1833 {
1834
1835 isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1836 }
1837
1838 /*
1839 * Change the sorting policy hint for I/O transactions for this device.
1840 */
1841 void
cam_iosched_set_sort_queue(struct cam_iosched_softc * isc,int val)1842 cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
1843 {
1844
1845 isc->sort_io_queue = val;
1846 }
1847
1848 int
cam_iosched_has_work_flags(struct cam_iosched_softc * isc,uint32_t flags)1849 cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1850 {
1851 return isc->flags & flags;
1852 }
1853
1854 void
cam_iosched_set_work_flags(struct cam_iosched_softc * isc,uint32_t flags)1855 cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1856 {
1857 isc->flags |= flags;
1858 }
1859
1860 void
cam_iosched_clr_work_flags(struct cam_iosched_softc * isc,uint32_t flags)1861 cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1862 {
1863 isc->flags &= ~flags;
1864 }
1865
1866 #ifdef CAM_IOSCHED_DYNAMIC
1867 /*
1868 * After the method presented in Jack Crenshaw's 1998 article "Integer
1869 * Square Roots," reprinted at
1870 * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
1871 * and well worth the read. Briefly, we find the power of 4 that's the
1872 * largest smaller than val. We then check each smaller power of 4 to
1873 * see if val is still bigger. The right shifts at each step divide
1874 * the result by 2 which after successive application winds up
1875 * accumulating the right answer. It could also have been accumulated
1876 * using a separate root counter, but this code is smaller and faster
1877 * than that method. This method is also integer size invariant.
1878 * It returns floor(sqrt((float)val)), or the largest integer less than
1879 * or equal to the square root.
1880 */
1881 static uint64_t
isqrt64(uint64_t val)1882 isqrt64(uint64_t val)
1883 {
1884 uint64_t res = 0;
1885 uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
1886
1887 /*
1888 * Find the largest power of 4 smaller than val.
1889 */
1890 while (bit > val)
1891 bit >>= 2;
1892
1893 /*
1894 * Accumulate the answer, one bit at a time (we keep moving
1895 * them over since 2 is the square root of 4 and we test
1896 * powers of 4). We accumulate where we find the bit, but
1897 * the successive shifts land the bit in the right place
1898 * by the end.
1899 */
1900 while (bit != 0) {
1901 if (val >= res + bit) {
1902 val -= res + bit;
1903 res = (res >> 1) + bit;
1904 } else
1905 res >>= 1;
1906 bit >>= 2;
1907 }
1908
1909 return res;
1910 }
1911
1912 static sbintime_t latencies[LAT_BUCKETS - 1] = {
1913 BUCKET_BASE << 0, /* 20us */
1914 BUCKET_BASE << 1,
1915 BUCKET_BASE << 2,
1916 BUCKET_BASE << 3,
1917 BUCKET_BASE << 4,
1918 BUCKET_BASE << 5,
1919 BUCKET_BASE << 6,
1920 BUCKET_BASE << 7,
1921 BUCKET_BASE << 8,
1922 BUCKET_BASE << 9,
1923 BUCKET_BASE << 10,
1924 BUCKET_BASE << 11,
1925 BUCKET_BASE << 12,
1926 BUCKET_BASE << 13,
1927 BUCKET_BASE << 14,
1928 BUCKET_BASE << 15,
1929 BUCKET_BASE << 16,
1930 BUCKET_BASE << 17,
1931 BUCKET_BASE << 18 /* 5,242,880us */
1932 };
1933
1934 #define CAM_IOSCHED_DEVD_MSG_SIZE 256
1935
1936 static void
cam_iosched_devctl_outlier(struct iop_stats * iop,sbintime_t sim_latency,const struct bio * bp)1937 cam_iosched_devctl_outlier(struct iop_stats *iop, sbintime_t sim_latency,
1938 const struct bio *bp)
1939 {
1940 daddr_t lba = bp->bio_pblkno;
1941 daddr_t cnt = bp->bio_bcount / iop->softc->disk->d_sectorsize;
1942 char *sbmsg;
1943 struct sbuf sb;
1944
1945 sbmsg = malloc(CAM_IOSCHED_DEVD_MSG_SIZE, M_CAMSCHED, M_NOWAIT);
1946 if (sbmsg == NULL)
1947 return;
1948 sbuf_new(&sb, sbmsg, CAM_IOSCHED_DEVD_MSG_SIZE, SBUF_FIXEDLEN);
1949
1950 sbuf_printf(&sb, "device=%s%d lba=%jd blocks=%jd latency=%jd",
1951 iop->softc->periph->periph_name,
1952 iop->softc->periph->unit_number,
1953 lba, cnt, sbttons(sim_latency));
1954 if (sbuf_finish(&sb) == 0)
1955 devctl_notify("CAM", "iosched", "latency", sbuf_data(&sb));
1956 sbuf_delete(&sb);
1957 free(sbmsg, M_CAMSCHED);
1958 }
1959
1960 static void
cam_iosched_update(struct iop_stats * iop,sbintime_t sim_latency,const struct bio * bp)1961 cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency,
1962 const struct bio *bp)
1963 {
1964 sbintime_t y, deltasq, delta;
1965 int i;
1966
1967 /*
1968 * Simple threshold: count the number of events that excede the
1969 * configured threshold.
1970 */
1971 if (sim_latency > iop->bad_latency) {
1972 cam_iosched_devctl_outlier(iop, sim_latency, bp);
1973 iop->too_long++;
1974 }
1975
1976 /*
1977 * Keep counts for latency. We do it by power of two buckets.
1978 * This helps us spot outlier behavior obscured by averages.
1979 */
1980 for (i = 0; i < LAT_BUCKETS - 1; i++) {
1981 if (sim_latency < latencies[i]) {
1982 iop->latencies[i]++;
1983 break;
1984 }
1985 }
1986 if (i == LAT_BUCKETS - 1)
1987 iop->latencies[i]++; /* Put all > 8192ms values into the last bucket. */
1988
1989 /*
1990 * Classic exponentially decaying average with a tiny alpha
1991 * (2 ^ -alpha_bits). For more info see the NIST statistical
1992 * handbook.
1993 *
1994 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha) [nist]
1995 * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
1996 * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
1997 * alpha = 1 / (1 << alpha_bits)
1998 * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
1999 * = y_t/b - e/b + be/b
2000 * = (y_t - e + be) / b
2001 * = (e + d) / b
2002 *
2003 * Since alpha is a power of two, we can compute this w/o any mult or
2004 * division.
2005 *
2006 * Variance can also be computed. Usually, it would be expressed as follows:
2007 * diff_t = y_t - ema_t-1
2008 * emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
2009 * = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
2010 * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
2011 * = e - e/b + dd/b + dd/bb
2012 * = (bbe - be + bdd + dd) / bb
2013 * = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
2014 */
2015 /*
2016 * XXX possible numeric issues
2017 * o We assume right shifted integers do the right thing, since that's
2018 * implementation defined. You can change the right shifts to / (1LL << alpha).
2019 * o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
2020 * for emvar. This puts a ceiling of 13 bits on alpha since we need a
2021 * few tens of seconds of representation.
2022 * o We mitigate alpha issues by never setting it too high.
2023 */
2024 y = sim_latency;
2025 delta = (y - iop->ema); /* d */
2026 iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
2027
2028 /*
2029 * Were we to naively plow ahead at this point, we wind up with many numerical
2030 * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
2031 * us with microsecond level precision in the input, so the same in the
2032 * output. It means we can't overflow deltasq unless delta > 4k seconds. It
2033 * also means that emvar can be up 46 bits 40 of which are fraction, which
2034 * gives us a way to measure up to ~8s in the SD before the computation goes
2035 * unstable. Even the worst hard disk rarely has > 1s service time in the
2036 * drive. It does mean we have to shift left 12 bits after taking the
2037 * square root to compute the actual standard deviation estimate. This loss of
2038 * precision is preferable to needing int128 types to work. The above numbers
2039 * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
2040 * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
2041 */
2042 delta >>= 12;
2043 deltasq = delta * delta; /* dd */
2044 iop->emvar = ((iop->emvar << (2 * alpha_bits)) + /* bbe */
2045 ((deltasq - iop->emvar) << alpha_bits) + /* b(dd-e) */
2046 deltasq) /* dd */
2047 >> (2 * alpha_bits); /* div bb */
2048 iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
2049 }
2050
2051 static void
cam_iosched_io_metric_update(struct cam_iosched_softc * isc,sbintime_t sim_latency,const struct bio * bp)2052 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
2053 sbintime_t sim_latency, const struct bio *bp)
2054 {
2055 switch (bp->bio_cmd) {
2056 case BIO_READ:
2057 cam_iosched_update(&isc->read_stats, sim_latency, bp);
2058 break;
2059 case BIO_WRITE:
2060 cam_iosched_update(&isc->write_stats, sim_latency, bp);
2061 break;
2062 case BIO_DELETE:
2063 cam_iosched_update(&isc->trim_stats, sim_latency, bp);
2064 break;
2065 default:
2066 break;
2067 }
2068 }
2069
2070 #ifdef DDB
biolen(struct bio_queue_head * bq)2071 static int biolen(struct bio_queue_head *bq)
2072 {
2073 int i = 0;
2074 struct bio *bp;
2075
2076 TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
2077 i++;
2078 }
2079 return i;
2080 }
2081
2082 /*
2083 * Show the internal state of the I/O scheduler.
2084 */
DB_SHOW_COMMAND(iosched,cam_iosched_db_show)2085 DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
2086 {
2087 struct cam_iosched_softc *isc;
2088
2089 if (!have_addr) {
2090 db_printf("Need addr\n");
2091 return;
2092 }
2093 isc = (struct cam_iosched_softc *)addr;
2094 db_printf("pending_reads: %d\n", isc->read_stats.pending);
2095 db_printf("min_reads: %d\n", isc->read_stats.min);
2096 db_printf("max_reads: %d\n", isc->read_stats.max);
2097 db_printf("reads: %d\n", isc->read_stats.total);
2098 db_printf("in_reads: %d\n", isc->read_stats.in);
2099 db_printf("out_reads: %d\n", isc->read_stats.out);
2100 db_printf("queued_reads: %d\n", isc->read_stats.queued);
2101 db_printf("Read Q len %d\n", biolen(&isc->bio_queue));
2102 db_printf("pending_writes: %d\n", isc->write_stats.pending);
2103 db_printf("min_writes: %d\n", isc->write_stats.min);
2104 db_printf("max_writes: %d\n", isc->write_stats.max);
2105 db_printf("writes: %d\n", isc->write_stats.total);
2106 db_printf("in_writes: %d\n", isc->write_stats.in);
2107 db_printf("out_writes: %d\n", isc->write_stats.out);
2108 db_printf("queued_writes: %d\n", isc->write_stats.queued);
2109 db_printf("Write Q len %d\n", biolen(&isc->write_queue));
2110 db_printf("pending_trims: %d\n", isc->trim_stats.pending);
2111 db_printf("min_trims: %d\n", isc->trim_stats.min);
2112 db_printf("max_trims: %d\n", isc->trim_stats.max);
2113 db_printf("trims: %d\n", isc->trim_stats.total);
2114 db_printf("in_trims: %d\n", isc->trim_stats.in);
2115 db_printf("out_trims: %d\n", isc->trim_stats.out);
2116 db_printf("queued_trims: %d\n", isc->trim_stats.queued);
2117 db_printf("Trim Q len %d\n", biolen(&isc->trim_queue));
2118 db_printf("read_bias: %d\n", isc->read_bias);
2119 db_printf("current_read_bias: %d\n", isc->current_read_bias);
2120 db_printf("Trim active? %s\n",
2121 (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
2122 }
2123 #endif
2124 #endif
2125