1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/pci.h> 13 #include <linux/iommu.h> 14 #include <linux/iopoll.h> 15 #include <linux/irq.h> 16 #include <linux/log2.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/slab.h> 20 #include <linux/string_choices.h> 21 #include <linux/dmi.h> 22 #include <linux/dma-mapping.h> 23 24 #include "xhci.h" 25 #include "xhci-trace.h" 26 #include "xhci-debugfs.h" 27 #include "xhci-dbgcap.h" 28 29 #define DRIVER_AUTHOR "Sarah Sharp" 30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 31 32 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 33 34 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 35 static int link_quirk; 36 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 37 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 38 39 static unsigned long long quirks; 40 module_param(quirks, ullong, S_IRUGO); 41 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 42 td_on_ring(struct xhci_td * td,struct xhci_ring * ring)43 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 44 { 45 struct xhci_segment *seg; 46 47 if (!td || !td->start_seg) 48 return false; 49 50 xhci_for_each_ring_seg(ring->first_seg, seg) { 51 if (seg == td->start_seg) 52 return true; 53 } 54 55 return false; 56 } 57 58 /* 59 * xhci_handshake - spin reading hc until handshake completes or fails 60 * @ptr: address of hc register to be read 61 * @mask: bits to look at in result of read 62 * @done: value of those bits when handshake succeeds 63 * @usec: timeout in microseconds 64 * 65 * Returns negative errno, or zero on success 66 * 67 * Success happens when the "mask" bits have the specified value (hardware 68 * handshake done). There are two failure modes: "usec" have passed (major 69 * hardware flakeout), or the register reads as all-ones (hardware removed). 70 */ xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)71 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 72 { 73 u32 result; 74 int ret; 75 76 ret = readl_poll_timeout_atomic(ptr, result, 77 (result & mask) == done || 78 result == U32_MAX, 79 1, timeout_us); 80 if (result == U32_MAX) /* card removed */ 81 return -ENODEV; 82 83 return ret; 84 } 85 86 /* 87 * xhci_handshake_check_state - same as xhci_handshake but takes an additional 88 * exit_state parameter, and bails out with an error immediately when xhc_state 89 * has exit_state flag set. 90 */ xhci_handshake_check_state(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec,unsigned int exit_state)91 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr, 92 u32 mask, u32 done, int usec, unsigned int exit_state) 93 { 94 u32 result; 95 int ret; 96 97 ret = readl_poll_timeout_atomic(ptr, result, 98 (result & mask) == done || 99 result == U32_MAX || 100 xhci->xhc_state & exit_state, 101 1, usec); 102 103 if (result == U32_MAX || xhci->xhc_state & exit_state) 104 return -ENODEV; 105 106 return ret; 107 } 108 109 /* 110 * Disable interrupts and begin the xHCI halting process. 111 */ xhci_quiesce(struct xhci_hcd * xhci)112 void xhci_quiesce(struct xhci_hcd *xhci) 113 { 114 u32 halted; 115 u32 cmd; 116 u32 mask; 117 118 mask = ~(XHCI_IRQS); 119 halted = readl(&xhci->op_regs->status) & STS_HALT; 120 if (!halted) 121 mask &= ~CMD_RUN; 122 123 cmd = readl(&xhci->op_regs->command); 124 cmd &= mask; 125 writel(cmd, &xhci->op_regs->command); 126 } 127 128 /* 129 * Force HC into halt state. 130 * 131 * Disable any IRQs and clear the run/stop bit. 132 * HC will complete any current and actively pipelined transactions, and 133 * should halt within 16 ms of the run/stop bit being cleared. 134 * Read HC Halted bit in the status register to see when the HC is finished. 135 */ xhci_halt(struct xhci_hcd * xhci)136 int xhci_halt(struct xhci_hcd *xhci) 137 { 138 int ret; 139 140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 141 xhci_quiesce(xhci); 142 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 145 if (ret) { 146 xhci_warn(xhci, "Host halt failed, %d\n", ret); 147 return ret; 148 } 149 150 xhci->xhc_state |= XHCI_STATE_HALTED; 151 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 152 153 return ret; 154 } 155 156 /* 157 * Set the run bit and wait for the host to be running. 158 */ xhci_start(struct xhci_hcd * xhci)159 int xhci_start(struct xhci_hcd *xhci) 160 { 161 u32 temp; 162 int ret; 163 164 temp = readl(&xhci->op_regs->command); 165 temp |= (CMD_RUN); 166 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 167 temp); 168 writel(temp, &xhci->op_regs->command); 169 170 /* 171 * Wait for the HCHalted Status bit to be 0 to indicate the host is 172 * running. 173 */ 174 ret = xhci_handshake(&xhci->op_regs->status, 175 STS_HALT, 0, XHCI_MAX_HALT_USEC); 176 if (ret == -ETIMEDOUT) 177 xhci_err(xhci, "Host took too long to start, " 178 "waited %u microseconds.\n", 179 XHCI_MAX_HALT_USEC); 180 if (!ret) { 181 /* clear state flags. Including dying, halted or removing */ 182 xhci->xhc_state = 0; 183 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 184 } 185 186 return ret; 187 } 188 189 /* 190 * Reset a halted HC. 191 * 192 * This resets pipelines, timers, counters, state machines, etc. 193 * Transactions will be terminated immediately, and operational registers 194 * will be set to their defaults. 195 */ xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)196 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 197 { 198 u32 command; 199 u32 state; 200 int ret; 201 202 state = readl(&xhci->op_regs->status); 203 204 if (state == ~(u32)0) { 205 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 206 return -ENODEV; 207 } 208 209 if ((state & STS_HALT) == 0) { 210 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 211 return 0; 212 } 213 214 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 215 command = readl(&xhci->op_regs->command); 216 command |= CMD_RESET; 217 writel(command, &xhci->op_regs->command); 218 219 /* Existing Intel xHCI controllers require a delay of 1 mS, 220 * after setting the CMD_RESET bit, and before accessing any 221 * HC registers. This allows the HC to complete the 222 * reset operation and be ready for HC register access. 223 * Without this delay, the subsequent HC register access, 224 * may result in a system hang very rarely. 225 */ 226 if (xhci->quirks & XHCI_INTEL_HOST) 227 udelay(1000); 228 229 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command, 230 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING); 231 if (ret) 232 return ret; 233 234 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 235 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 236 237 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 238 "Wait for controller to be ready for doorbell rings"); 239 /* 240 * xHCI cannot write to any doorbells or operational registers other 241 * than status until the "Controller Not Ready" flag is cleared. 242 */ 243 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 244 245 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 246 xhci->usb2_rhub.bus_state.suspended_ports = 0; 247 xhci->usb2_rhub.bus_state.resuming_ports = 0; 248 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 249 xhci->usb3_rhub.bus_state.suspended_ports = 0; 250 xhci->usb3_rhub.bus_state.resuming_ports = 0; 251 252 return ret; 253 } 254 xhci_zero_64b_regs(struct xhci_hcd * xhci)255 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 256 { 257 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 258 struct iommu_domain *domain; 259 int err, i; 260 u64 val; 261 u32 intrs; 262 263 /* 264 * Some Renesas controllers get into a weird state if they are 265 * reset while programmed with 64bit addresses (they will preserve 266 * the top half of the address in internal, non visible 267 * registers). You end up with half the address coming from the 268 * kernel, and the other half coming from the firmware. Also, 269 * changing the programming leads to extra accesses even if the 270 * controller is supposed to be halted. The controller ends up with 271 * a fatal fault, and is then ripe for being properly reset. 272 * 273 * Special care is taken to only apply this if the device is behind 274 * an iommu. Doing anything when there is no iommu is definitely 275 * unsafe... 276 */ 277 domain = iommu_get_domain_for_dev(dev); 278 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 279 domain->type == IOMMU_DOMAIN_IDENTITY) 280 return; 281 282 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 283 284 /* Clear HSEIE so that faults do not get signaled */ 285 val = readl(&xhci->op_regs->command); 286 val &= ~CMD_HSEIE; 287 writel(val, &xhci->op_regs->command); 288 289 /* Clear HSE (aka FATAL) */ 290 val = readl(&xhci->op_regs->status); 291 val |= STS_FATAL; 292 writel(val, &xhci->op_regs->status); 293 294 /* Now zero the registers, and brace for impact */ 295 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 296 if (upper_32_bits(val)) 297 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 298 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 299 if (upper_32_bits(val)) 300 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 301 302 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 303 ARRAY_SIZE(xhci->run_regs->ir_set)); 304 305 for (i = 0; i < intrs; i++) { 306 struct xhci_intr_reg __iomem *ir; 307 308 ir = &xhci->run_regs->ir_set[i]; 309 val = xhci_read_64(xhci, &ir->erst_base); 310 if (upper_32_bits(val)) 311 xhci_write_64(xhci, 0, &ir->erst_base); 312 val= xhci_read_64(xhci, &ir->erst_dequeue); 313 if (upper_32_bits(val)) 314 xhci_write_64(xhci, 0, &ir->erst_dequeue); 315 } 316 317 /* Wait for the fault to appear. It will be cleared on reset */ 318 err = xhci_handshake(&xhci->op_regs->status, 319 STS_FATAL, STS_FATAL, 320 XHCI_MAX_HALT_USEC); 321 if (!err) 322 xhci_info(xhci, "Fault detected\n"); 323 } 324 xhci_enable_interrupter(struct xhci_interrupter * ir)325 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 326 { 327 u32 iman; 328 329 if (!ir || !ir->ir_set) 330 return -EINVAL; 331 332 iman = readl(&ir->ir_set->irq_pending); 333 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 334 335 return 0; 336 } 337 xhci_disable_interrupter(struct xhci_interrupter * ir)338 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 339 { 340 u32 iman; 341 342 if (!ir || !ir->ir_set) 343 return -EINVAL; 344 345 iman = readl(&ir->ir_set->irq_pending); 346 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 347 348 return 0; 349 } 350 351 /* interrupt moderation interval imod_interval in nanoseconds */ xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)352 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir, 353 u32 imod_interval) 354 { 355 u32 imod; 356 357 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250) 358 return -EINVAL; 359 360 imod = readl(&ir->ir_set->irq_control); 361 imod &= ~ER_IRQ_INTERVAL_MASK; 362 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 363 writel(imod, &ir->ir_set->irq_control); 364 365 return 0; 366 } 367 compliance_mode_recovery(struct timer_list * t)368 static void compliance_mode_recovery(struct timer_list *t) 369 { 370 struct xhci_hcd *xhci; 371 struct usb_hcd *hcd; 372 struct xhci_hub *rhub; 373 u32 temp; 374 int i; 375 376 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 377 rhub = &xhci->usb3_rhub; 378 hcd = rhub->hcd; 379 380 if (!hcd) 381 return; 382 383 for (i = 0; i < rhub->num_ports; i++) { 384 temp = readl(rhub->ports[i]->addr); 385 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 386 /* 387 * Compliance Mode Detected. Letting USB Core 388 * handle the Warm Reset 389 */ 390 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 391 "Compliance mode detected->port %d", 392 i + 1); 393 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 394 "Attempting compliance mode recovery"); 395 396 if (hcd->state == HC_STATE_SUSPENDED) 397 usb_hcd_resume_root_hub(hcd); 398 399 usb_hcd_poll_rh_status(hcd); 400 } 401 } 402 403 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 404 mod_timer(&xhci->comp_mode_recovery_timer, 405 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 406 } 407 408 /* 409 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 410 * that causes ports behind that hardware to enter compliance mode sometimes. 411 * The quirk creates a timer that polls every 2 seconds the link state of 412 * each host controller's port and recovers it by issuing a Warm reset 413 * if Compliance mode is detected, otherwise the port will become "dead" (no 414 * device connections or disconnections will be detected anymore). Becasue no 415 * status event is generated when entering compliance mode (per xhci spec), 416 * this quirk is needed on systems that have the failing hardware installed. 417 */ compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)418 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 419 { 420 xhci->port_status_u0 = 0; 421 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 422 0); 423 xhci->comp_mode_recovery_timer.expires = jiffies + 424 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 425 426 add_timer(&xhci->comp_mode_recovery_timer); 427 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 428 "Compliance mode recovery timer initialized"); 429 } 430 431 /* 432 * This function identifies the systems that have installed the SN65LVPE502CP 433 * USB3.0 re-driver and that need the Compliance Mode Quirk. 434 * Systems: 435 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 436 */ xhci_compliance_mode_recovery_timer_quirk_check(void)437 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 438 { 439 const char *dmi_product_name, *dmi_sys_vendor; 440 441 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 442 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 443 if (!dmi_product_name || !dmi_sys_vendor) 444 return false; 445 446 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 447 return false; 448 449 if (strstr(dmi_product_name, "Z420") || 450 strstr(dmi_product_name, "Z620") || 451 strstr(dmi_product_name, "Z820") || 452 strstr(dmi_product_name, "Z1 Workstation")) 453 return true; 454 455 return false; 456 } 457 xhci_all_ports_seen_u0(struct xhci_hcd * xhci)458 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 459 { 460 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 461 } 462 463 464 /* 465 * Initialize memory for HCD and xHC (one-time init). 466 * 467 * Program the PAGESIZE register, initialize the device context array, create 468 * device contexts (?), set up a command ring segment (or two?), create event 469 * ring (one for now). 470 */ xhci_init(struct usb_hcd * hcd)471 static int xhci_init(struct usb_hcd *hcd) 472 { 473 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 474 int retval; 475 476 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 477 spin_lock_init(&xhci->lock); 478 479 retval = xhci_mem_init(xhci, GFP_KERNEL); 480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 481 482 /* Initializing Compliance Mode Recovery Data If Needed */ 483 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 484 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 485 compliance_mode_recovery_timer_init(xhci); 486 } 487 488 return retval; 489 } 490 491 /*-------------------------------------------------------------------------*/ 492 xhci_run_finished(struct xhci_hcd * xhci)493 static int xhci_run_finished(struct xhci_hcd *xhci) 494 { 495 struct xhci_interrupter *ir = xhci->interrupters[0]; 496 unsigned long flags; 497 u32 temp; 498 499 /* 500 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 501 * Protect the short window before host is running with a lock 502 */ 503 spin_lock_irqsave(&xhci->lock, flags); 504 505 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 506 temp = readl(&xhci->op_regs->command); 507 temp |= (CMD_EIE); 508 writel(temp, &xhci->op_regs->command); 509 510 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 511 xhci_enable_interrupter(ir); 512 513 if (xhci_start(xhci)) { 514 xhci_halt(xhci); 515 spin_unlock_irqrestore(&xhci->lock, flags); 516 return -ENODEV; 517 } 518 519 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 520 521 if (xhci->quirks & XHCI_NEC_HOST) 522 xhci_ring_cmd_db(xhci); 523 524 spin_unlock_irqrestore(&xhci->lock, flags); 525 526 return 0; 527 } 528 529 /* 530 * Start the HC after it was halted. 531 * 532 * This function is called by the USB core when the HC driver is added. 533 * Its opposite is xhci_stop(). 534 * 535 * xhci_init() must be called once before this function can be called. 536 * Reset the HC, enable device slot contexts, program DCBAAP, and 537 * set command ring pointer and event ring pointer. 538 * 539 * Setup MSI-X vectors and enable interrupts. 540 */ xhci_run(struct usb_hcd * hcd)541 int xhci_run(struct usb_hcd *hcd) 542 { 543 u64 temp_64; 544 int ret; 545 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 546 struct xhci_interrupter *ir = xhci->interrupters[0]; 547 /* Start the xHCI host controller running only after the USB 2.0 roothub 548 * is setup. 549 */ 550 551 hcd->uses_new_polling = 1; 552 if (hcd->msi_enabled) 553 ir->ip_autoclear = true; 554 555 if (!usb_hcd_is_primary_hcd(hcd)) 556 return xhci_run_finished(xhci); 557 558 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 559 560 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 561 temp_64 &= ERST_PTR_MASK; 562 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 563 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 564 565 xhci_set_interrupter_moderation(ir, xhci->imod_interval); 566 567 if (xhci->quirks & XHCI_NEC_HOST) { 568 struct xhci_command *command; 569 570 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 571 if (!command) 572 return -ENOMEM; 573 574 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 575 TRB_TYPE(TRB_NEC_GET_FW)); 576 if (ret) 577 xhci_free_command(xhci, command); 578 } 579 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 580 "Finished %s for main hcd", __func__); 581 582 xhci_create_dbc_dev(xhci); 583 584 xhci_debugfs_init(xhci); 585 586 if (xhci_has_one_roothub(xhci)) 587 return xhci_run_finished(xhci); 588 589 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 590 591 return 0; 592 } 593 EXPORT_SYMBOL_GPL(xhci_run); 594 595 /* 596 * Stop xHCI driver. 597 * 598 * This function is called by the USB core when the HC driver is removed. 599 * Its opposite is xhci_run(). 600 * 601 * Disable device contexts, disable IRQs, and quiesce the HC. 602 * Reset the HC, finish any completed transactions, and cleanup memory. 603 */ xhci_stop(struct usb_hcd * hcd)604 void xhci_stop(struct usb_hcd *hcd) 605 { 606 u32 temp; 607 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 608 struct xhci_interrupter *ir = xhci->interrupters[0]; 609 610 mutex_lock(&xhci->mutex); 611 612 /* Only halt host and free memory after both hcds are removed */ 613 if (!usb_hcd_is_primary_hcd(hcd)) { 614 mutex_unlock(&xhci->mutex); 615 return; 616 } 617 618 xhci_remove_dbc_dev(xhci); 619 620 spin_lock_irq(&xhci->lock); 621 xhci->xhc_state |= XHCI_STATE_HALTED; 622 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 623 xhci_halt(xhci); 624 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 625 spin_unlock_irq(&xhci->lock); 626 627 /* Deleting Compliance Mode Recovery Timer */ 628 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 629 (!(xhci_all_ports_seen_u0(xhci)))) { 630 del_timer_sync(&xhci->comp_mode_recovery_timer); 631 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 632 "%s: compliance mode recovery timer deleted", 633 __func__); 634 } 635 636 if (xhci->quirks & XHCI_AMD_PLL_FIX) 637 usb_amd_dev_put(); 638 639 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 640 "// Disabling event ring interrupts"); 641 temp = readl(&xhci->op_regs->status); 642 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 643 xhci_disable_interrupter(ir); 644 645 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 646 xhci_mem_cleanup(xhci); 647 xhci_debugfs_exit(xhci); 648 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 649 "xhci_stop completed - status = %x", 650 readl(&xhci->op_regs->status)); 651 mutex_unlock(&xhci->mutex); 652 } 653 EXPORT_SYMBOL_GPL(xhci_stop); 654 655 /* 656 * Shutdown HC (not bus-specific) 657 * 658 * This is called when the machine is rebooting or halting. We assume that the 659 * machine will be powered off, and the HC's internal state will be reset. 660 * Don't bother to free memory. 661 * 662 * This will only ever be called with the main usb_hcd (the USB3 roothub). 663 */ xhci_shutdown(struct usb_hcd * hcd)664 void xhci_shutdown(struct usb_hcd *hcd) 665 { 666 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 667 668 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 669 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 670 671 /* Don't poll the roothubs after shutdown. */ 672 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 673 __func__, hcd->self.busnum); 674 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 675 del_timer_sync(&hcd->rh_timer); 676 677 if (xhci->shared_hcd) { 678 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 679 del_timer_sync(&xhci->shared_hcd->rh_timer); 680 } 681 682 spin_lock_irq(&xhci->lock); 683 xhci_halt(xhci); 684 685 /* 686 * Workaround for spurious wakeps at shutdown with HSW, and for boot 687 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 688 */ 689 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 690 xhci->quirks & XHCI_RESET_TO_DEFAULT) 691 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 692 693 spin_unlock_irq(&xhci->lock); 694 695 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 696 "xhci_shutdown completed - status = %x", 697 readl(&xhci->op_regs->status)); 698 } 699 EXPORT_SYMBOL_GPL(xhci_shutdown); 700 701 #ifdef CONFIG_PM xhci_save_registers(struct xhci_hcd * xhci)702 static void xhci_save_registers(struct xhci_hcd *xhci) 703 { 704 struct xhci_interrupter *ir; 705 unsigned int i; 706 707 xhci->s3.command = readl(&xhci->op_regs->command); 708 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 709 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 710 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 711 712 /* save both primary and all secondary interrupters */ 713 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 714 for (i = 0; i < xhci->max_interrupters; i++) { 715 ir = xhci->interrupters[i]; 716 if (!ir) 717 continue; 718 719 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 720 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 721 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 722 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 723 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 724 } 725 } 726 xhci_restore_registers(struct xhci_hcd * xhci)727 static void xhci_restore_registers(struct xhci_hcd *xhci) 728 { 729 struct xhci_interrupter *ir; 730 unsigned int i; 731 732 writel(xhci->s3.command, &xhci->op_regs->command); 733 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 734 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 735 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 736 737 /* FIXME should we lock to protect against freeing of interrupters */ 738 for (i = 0; i < xhci->max_interrupters; i++) { 739 ir = xhci->interrupters[i]; 740 if (!ir) 741 continue; 742 743 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 744 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 745 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 746 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 747 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 748 } 749 } 750 xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)751 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 752 { 753 u64 val_64; 754 755 /* step 2: initialize command ring buffer */ 756 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 757 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 758 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 759 xhci->cmd_ring->dequeue) & 760 (u64) ~CMD_RING_RSVD_BITS) | 761 xhci->cmd_ring->cycle_state; 762 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 763 "// Setting command ring address to 0x%llx", 764 (long unsigned long) val_64); 765 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 766 } 767 768 /* 769 * The whole command ring must be cleared to zero when we suspend the host. 770 * 771 * The host doesn't save the command ring pointer in the suspend well, so we 772 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 773 * aligned, because of the reserved bits in the command ring dequeue pointer 774 * register. Therefore, we can't just set the dequeue pointer back in the 775 * middle of the ring (TRBs are 16-byte aligned). 776 */ xhci_clear_command_ring(struct xhci_hcd * xhci)777 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 778 { 779 struct xhci_ring *ring; 780 struct xhci_segment *seg; 781 782 ring = xhci->cmd_ring; 783 xhci_for_each_ring_seg(ring->first_seg, seg) { 784 /* erase all TRBs before the link */ 785 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 786 /* clear link cycle bit */ 787 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE); 788 } 789 790 xhci_initialize_ring_info(ring); 791 /* 792 * Reset the hardware dequeue pointer. 793 * Yes, this will need to be re-written after resume, but we're paranoid 794 * and want to make sure the hardware doesn't access bogus memory 795 * because, say, the BIOS or an SMI started the host without changing 796 * the command ring pointers. 797 */ 798 xhci_set_cmd_ring_deq(xhci); 799 } 800 801 /* 802 * Disable port wake bits if do_wakeup is not set. 803 * 804 * Also clear a possible internal port wake state left hanging for ports that 805 * detected termination but never successfully enumerated (trained to 0U). 806 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 807 * at enumeration clears this wake, force one here as well for unconnected ports 808 */ 809 xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)810 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 811 struct xhci_hub *rhub, 812 bool do_wakeup) 813 { 814 unsigned long flags; 815 u32 t1, t2, portsc; 816 int i; 817 818 spin_lock_irqsave(&xhci->lock, flags); 819 820 for (i = 0; i < rhub->num_ports; i++) { 821 portsc = readl(rhub->ports[i]->addr); 822 t1 = xhci_port_state_to_neutral(portsc); 823 t2 = t1; 824 825 /* clear wake bits if do_wake is not set */ 826 if (!do_wakeup) 827 t2 &= ~PORT_WAKE_BITS; 828 829 /* Don't touch csc bit if connected or connect change is set */ 830 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 831 t2 |= PORT_CSC; 832 833 if (t1 != t2) { 834 writel(t2, rhub->ports[i]->addr); 835 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 836 rhub->hcd->self.busnum, i + 1, portsc, t2); 837 } 838 } 839 spin_unlock_irqrestore(&xhci->lock, flags); 840 } 841 xhci_pending_portevent(struct xhci_hcd * xhci)842 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 843 { 844 struct xhci_port **ports; 845 int port_index; 846 u32 status; 847 u32 portsc; 848 849 status = readl(&xhci->op_regs->status); 850 if (status & STS_EINT) 851 return true; 852 /* 853 * Checking STS_EINT is not enough as there is a lag between a change 854 * bit being set and the Port Status Change Event that it generated 855 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 856 */ 857 858 port_index = xhci->usb2_rhub.num_ports; 859 ports = xhci->usb2_rhub.ports; 860 while (port_index--) { 861 portsc = readl(ports[port_index]->addr); 862 if (portsc & PORT_CHANGE_MASK || 863 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 864 return true; 865 } 866 port_index = xhci->usb3_rhub.num_ports; 867 ports = xhci->usb3_rhub.ports; 868 while (port_index--) { 869 portsc = readl(ports[port_index]->addr); 870 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 871 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 872 return true; 873 } 874 return false; 875 } 876 877 /* 878 * Stop HC (not bus-specific) 879 * 880 * This is called when the machine transition into S3/S4 mode. 881 * 882 */ xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)883 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 884 { 885 int rc = 0; 886 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 887 struct usb_hcd *hcd = xhci_to_hcd(xhci); 888 u32 command; 889 u32 res; 890 891 if (!hcd->state) 892 return 0; 893 894 if (hcd->state != HC_STATE_SUSPENDED || 895 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 896 return -EINVAL; 897 898 /* Clear root port wake on bits if wakeup not allowed. */ 899 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 900 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 901 902 if (!HCD_HW_ACCESSIBLE(hcd)) 903 return 0; 904 905 xhci_dbc_suspend(xhci); 906 907 /* Don't poll the roothubs on bus suspend. */ 908 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 909 __func__, hcd->self.busnum); 910 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 911 del_timer_sync(&hcd->rh_timer); 912 if (xhci->shared_hcd) { 913 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 914 del_timer_sync(&xhci->shared_hcd->rh_timer); 915 } 916 917 if (xhci->quirks & XHCI_SUSPEND_DELAY) 918 usleep_range(1000, 1500); 919 920 spin_lock_irq(&xhci->lock); 921 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 922 if (xhci->shared_hcd) 923 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 924 /* step 1: stop endpoint */ 925 /* skipped assuming that port suspend has done */ 926 927 /* step 2: clear Run/Stop bit */ 928 command = readl(&xhci->op_regs->command); 929 command &= ~CMD_RUN; 930 writel(command, &xhci->op_regs->command); 931 932 /* Some chips from Fresco Logic need an extraordinary delay */ 933 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 934 935 if (xhci_handshake(&xhci->op_regs->status, 936 STS_HALT, STS_HALT, delay)) { 937 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 938 spin_unlock_irq(&xhci->lock); 939 return -ETIMEDOUT; 940 } 941 xhci_clear_command_ring(xhci); 942 943 /* step 3: save registers */ 944 xhci_save_registers(xhci); 945 946 /* step 4: set CSS flag */ 947 command = readl(&xhci->op_regs->command); 948 command |= CMD_CSS; 949 writel(command, &xhci->op_regs->command); 950 xhci->broken_suspend = 0; 951 if (xhci_handshake(&xhci->op_regs->status, 952 STS_SAVE, 0, 20 * 1000)) { 953 /* 954 * AMD SNPS xHC 3.0 occasionally does not clear the 955 * SSS bit of USBSTS and when driver tries to poll 956 * to see if the xHC clears BIT(8) which never happens 957 * and driver assumes that controller is not responding 958 * and times out. To workaround this, its good to check 959 * if SRE and HCE bits are not set (as per xhci 960 * Section 5.4.2) and bypass the timeout. 961 */ 962 res = readl(&xhci->op_regs->status); 963 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 964 (((res & STS_SRE) == 0) && 965 ((res & STS_HCE) == 0))) { 966 xhci->broken_suspend = 1; 967 } else { 968 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 969 spin_unlock_irq(&xhci->lock); 970 return -ETIMEDOUT; 971 } 972 } 973 spin_unlock_irq(&xhci->lock); 974 975 /* 976 * Deleting Compliance Mode Recovery Timer because the xHCI Host 977 * is about to be suspended. 978 */ 979 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 980 (!(xhci_all_ports_seen_u0(xhci)))) { 981 del_timer_sync(&xhci->comp_mode_recovery_timer); 982 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 983 "%s: compliance mode recovery timer deleted", 984 __func__); 985 } 986 987 return rc; 988 } 989 EXPORT_SYMBOL_GPL(xhci_suspend); 990 991 /* 992 * start xHC (not bus-specific) 993 * 994 * This is called when the machine transition from S3/S4 mode. 995 * 996 */ xhci_resume(struct xhci_hcd * xhci,bool power_lost,bool is_auto_resume)997 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume) 998 { 999 u32 command, temp = 0; 1000 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1001 int retval = 0; 1002 bool comp_timer_running = false; 1003 bool pending_portevent = false; 1004 bool suspended_usb3_devs = false; 1005 1006 if (!hcd->state) 1007 return 0; 1008 1009 /* Wait a bit if either of the roothubs need to settle from the 1010 * transition into bus suspend. 1011 */ 1012 1013 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1014 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1015 msleep(100); 1016 1017 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1018 if (xhci->shared_hcd) 1019 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1020 1021 spin_lock_irq(&xhci->lock); 1022 1023 if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1024 power_lost = true; 1025 1026 if (!power_lost) { 1027 /* 1028 * Some controllers might lose power during suspend, so wait 1029 * for controller not ready bit to clear, just as in xHC init. 1030 */ 1031 retval = xhci_handshake(&xhci->op_regs->status, 1032 STS_CNR, 0, 10 * 1000 * 1000); 1033 if (retval) { 1034 xhci_warn(xhci, "Controller not ready at resume %d\n", 1035 retval); 1036 spin_unlock_irq(&xhci->lock); 1037 return retval; 1038 } 1039 /* step 1: restore register */ 1040 xhci_restore_registers(xhci); 1041 /* step 2: initialize command ring buffer */ 1042 xhci_set_cmd_ring_deq(xhci); 1043 /* step 3: restore state and start state*/ 1044 /* step 3: set CRS flag */ 1045 command = readl(&xhci->op_regs->command); 1046 command |= CMD_CRS; 1047 writel(command, &xhci->op_regs->command); 1048 /* 1049 * Some controllers take up to 55+ ms to complete the controller 1050 * restore so setting the timeout to 100ms. Xhci specification 1051 * doesn't mention any timeout value. 1052 */ 1053 if (xhci_handshake(&xhci->op_regs->status, 1054 STS_RESTORE, 0, 100 * 1000)) { 1055 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1056 spin_unlock_irq(&xhci->lock); 1057 return -ETIMEDOUT; 1058 } 1059 } 1060 1061 temp = readl(&xhci->op_regs->status); 1062 1063 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1064 if ((temp & (STS_SRE | STS_HCE)) && 1065 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1066 if (!power_lost) 1067 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1068 power_lost = true; 1069 } 1070 1071 if (power_lost) { 1072 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1073 !(xhci_all_ports_seen_u0(xhci))) { 1074 del_timer_sync(&xhci->comp_mode_recovery_timer); 1075 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1076 "Compliance Mode Recovery Timer deleted!"); 1077 } 1078 1079 /* Let the USB core know _both_ roothubs lost power. */ 1080 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1081 if (xhci->shared_hcd) 1082 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1083 1084 xhci_dbg(xhci, "Stop HCD\n"); 1085 xhci_halt(xhci); 1086 xhci_zero_64b_regs(xhci); 1087 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1088 spin_unlock_irq(&xhci->lock); 1089 if (retval) 1090 return retval; 1091 1092 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1093 temp = readl(&xhci->op_regs->status); 1094 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1095 xhci_disable_interrupter(xhci->interrupters[0]); 1096 1097 xhci_dbg(xhci, "cleaning up memory\n"); 1098 xhci_mem_cleanup(xhci); 1099 xhci_debugfs_exit(xhci); 1100 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1101 readl(&xhci->op_regs->status)); 1102 1103 /* USB core calls the PCI reinit and start functions twice: 1104 * first with the primary HCD, and then with the secondary HCD. 1105 * If we don't do the same, the host will never be started. 1106 */ 1107 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1108 retval = xhci_init(hcd); 1109 if (retval) 1110 return retval; 1111 comp_timer_running = true; 1112 1113 xhci_dbg(xhci, "Start the primary HCD\n"); 1114 retval = xhci_run(hcd); 1115 if (!retval && xhci->shared_hcd) { 1116 xhci_dbg(xhci, "Start the secondary HCD\n"); 1117 retval = xhci_run(xhci->shared_hcd); 1118 } 1119 if (retval) 1120 return retval; 1121 /* 1122 * Resume roothubs unconditionally as PORTSC change bits are not 1123 * immediately visible after xHC reset 1124 */ 1125 hcd->state = HC_STATE_SUSPENDED; 1126 1127 if (xhci->shared_hcd) { 1128 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1129 usb_hcd_resume_root_hub(xhci->shared_hcd); 1130 } 1131 usb_hcd_resume_root_hub(hcd); 1132 1133 goto done; 1134 } 1135 1136 /* step 4: set Run/Stop bit */ 1137 command = readl(&xhci->op_regs->command); 1138 command |= CMD_RUN; 1139 writel(command, &xhci->op_regs->command); 1140 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1141 0, 250 * 1000); 1142 1143 /* step 5: walk topology and initialize portsc, 1144 * portpmsc and portli 1145 */ 1146 /* this is done in bus_resume */ 1147 1148 /* step 6: restart each of the previously 1149 * Running endpoints by ringing their doorbells 1150 */ 1151 1152 spin_unlock_irq(&xhci->lock); 1153 1154 xhci_dbc_resume(xhci); 1155 1156 if (retval == 0) { 1157 /* 1158 * Resume roothubs only if there are pending events. 1159 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1160 * the first wake signalling failed, give it that chance if 1161 * there are suspended USB 3 devices. 1162 */ 1163 if (xhci->usb3_rhub.bus_state.suspended_ports || 1164 xhci->usb3_rhub.bus_state.bus_suspended) 1165 suspended_usb3_devs = true; 1166 1167 pending_portevent = xhci_pending_portevent(xhci); 1168 1169 if (suspended_usb3_devs && !pending_portevent && is_auto_resume) { 1170 msleep(120); 1171 pending_portevent = xhci_pending_portevent(xhci); 1172 } 1173 1174 if (pending_portevent) { 1175 if (xhci->shared_hcd) 1176 usb_hcd_resume_root_hub(xhci->shared_hcd); 1177 usb_hcd_resume_root_hub(hcd); 1178 } 1179 } 1180 done: 1181 /* 1182 * If system is subject to the Quirk, Compliance Mode Timer needs to 1183 * be re-initialized Always after a system resume. Ports are subject 1184 * to suffer the Compliance Mode issue again. It doesn't matter if 1185 * ports have entered previously to U0 before system's suspension. 1186 */ 1187 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1188 compliance_mode_recovery_timer_init(xhci); 1189 1190 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1191 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1192 1193 /* Re-enable port polling. */ 1194 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1195 __func__, hcd->self.busnum); 1196 if (xhci->shared_hcd) { 1197 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1198 usb_hcd_poll_rh_status(xhci->shared_hcd); 1199 } 1200 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1201 usb_hcd_poll_rh_status(hcd); 1202 1203 return retval; 1204 } 1205 EXPORT_SYMBOL_GPL(xhci_resume); 1206 #endif /* CONFIG_PM */ 1207 1208 /*-------------------------------------------------------------------------*/ 1209 xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1210 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1211 { 1212 void *temp; 1213 int ret = 0; 1214 unsigned int buf_len; 1215 enum dma_data_direction dir; 1216 1217 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1218 buf_len = urb->transfer_buffer_length; 1219 1220 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1221 dev_to_node(hcd->self.sysdev)); 1222 if (!temp) 1223 return -ENOMEM; 1224 1225 if (usb_urb_dir_out(urb)) 1226 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1227 temp, buf_len, 0); 1228 1229 urb->transfer_buffer = temp; 1230 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1231 urb->transfer_buffer, 1232 urb->transfer_buffer_length, 1233 dir); 1234 1235 if (dma_mapping_error(hcd->self.sysdev, 1236 urb->transfer_dma)) { 1237 ret = -EAGAIN; 1238 kfree(temp); 1239 } else { 1240 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1241 } 1242 1243 return ret; 1244 } 1245 xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1246 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1247 struct urb *urb) 1248 { 1249 bool ret = false; 1250 unsigned int i; 1251 unsigned int len = 0; 1252 unsigned int trb_size; 1253 unsigned int max_pkt; 1254 struct scatterlist *sg; 1255 struct scatterlist *tail_sg; 1256 1257 tail_sg = urb->sg; 1258 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1259 1260 if (!urb->num_sgs) 1261 return ret; 1262 1263 if (urb->dev->speed >= USB_SPEED_SUPER) 1264 trb_size = TRB_CACHE_SIZE_SS; 1265 else 1266 trb_size = TRB_CACHE_SIZE_HS; 1267 1268 if (urb->transfer_buffer_length != 0 && 1269 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1270 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1271 len = len + sg->length; 1272 if (i > trb_size - 2) { 1273 len = len - tail_sg->length; 1274 if (len < max_pkt) { 1275 ret = true; 1276 break; 1277 } 1278 1279 tail_sg = sg_next(tail_sg); 1280 } 1281 } 1282 } 1283 return ret; 1284 } 1285 xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1286 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1287 { 1288 unsigned int len; 1289 unsigned int buf_len; 1290 enum dma_data_direction dir; 1291 1292 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1293 1294 buf_len = urb->transfer_buffer_length; 1295 1296 if (IS_ENABLED(CONFIG_HAS_DMA) && 1297 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1298 dma_unmap_single(hcd->self.sysdev, 1299 urb->transfer_dma, 1300 urb->transfer_buffer_length, 1301 dir); 1302 1303 if (usb_urb_dir_in(urb)) { 1304 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1305 urb->transfer_buffer, 1306 buf_len, 1307 0); 1308 if (len != buf_len) { 1309 xhci_dbg(hcd_to_xhci(hcd), 1310 "Copy from tmp buf to urb sg list failed\n"); 1311 urb->actual_length = len; 1312 } 1313 } 1314 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1315 kfree(urb->transfer_buffer); 1316 urb->transfer_buffer = NULL; 1317 } 1318 1319 /* 1320 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1321 * we'll copy the actual data into the TRB address register. This is limited to 1322 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1323 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1324 */ xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1325 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1326 gfp_t mem_flags) 1327 { 1328 struct xhci_hcd *xhci; 1329 1330 xhci = hcd_to_xhci(hcd); 1331 1332 if (xhci_urb_suitable_for_idt(urb)) 1333 return 0; 1334 1335 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1336 if (xhci_urb_temp_buffer_required(hcd, urb)) 1337 return xhci_map_temp_buffer(hcd, urb); 1338 } 1339 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1340 } 1341 xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1342 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1343 { 1344 struct xhci_hcd *xhci; 1345 bool unmap_temp_buf = false; 1346 1347 xhci = hcd_to_xhci(hcd); 1348 1349 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1350 unmap_temp_buf = true; 1351 1352 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1353 xhci_unmap_temp_buf(hcd, urb); 1354 else 1355 usb_hcd_unmap_urb_for_dma(hcd, urb); 1356 } 1357 1358 /** 1359 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1360 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1361 * value to right shift 1 for the bitmask. 1362 * 1363 * Index = (epnum * 2) + direction - 1, 1364 * where direction = 0 for OUT, 1 for IN. 1365 * For control endpoints, the IN index is used (OUT index is unused), so 1366 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1367 */ xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1368 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1369 { 1370 unsigned int index; 1371 if (usb_endpoint_xfer_control(desc)) 1372 index = (unsigned int) (usb_endpoint_num(desc)*2); 1373 else 1374 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1375 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1376 return index; 1377 } 1378 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1379 1380 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1381 * address from the XHCI endpoint index. 1382 */ xhci_get_endpoint_address(unsigned int ep_index)1383 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1384 { 1385 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1386 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1387 return direction | number; 1388 } 1389 1390 /* Find the flag for this endpoint (for use in the control context). Use the 1391 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1392 * bit 1, etc. 1393 */ xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1394 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1395 { 1396 return 1 << (xhci_get_endpoint_index(desc) + 1); 1397 } 1398 1399 /* Compute the last valid endpoint context index. Basically, this is the 1400 * endpoint index plus one. For slot contexts with more than valid endpoint, 1401 * we find the most significant bit set in the added contexts flags. 1402 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1403 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1404 */ xhci_last_valid_endpoint(u32 added_ctxs)1405 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1406 { 1407 return fls(added_ctxs) - 1; 1408 } 1409 1410 /* Returns 1 if the arguments are OK; 1411 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1412 */ xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1413 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1414 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1415 const char *func) { 1416 struct xhci_hcd *xhci; 1417 struct xhci_virt_device *virt_dev; 1418 1419 if (!hcd || (check_ep && !ep) || !udev) { 1420 pr_debug("xHCI %s called with invalid args\n", func); 1421 return -EINVAL; 1422 } 1423 if (!udev->parent) { 1424 pr_debug("xHCI %s called for root hub\n", func); 1425 return 0; 1426 } 1427 1428 xhci = hcd_to_xhci(hcd); 1429 if (check_virt_dev) { 1430 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1431 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1432 func); 1433 return -EINVAL; 1434 } 1435 1436 virt_dev = xhci->devs[udev->slot_id]; 1437 if (virt_dev->udev != udev) { 1438 xhci_dbg(xhci, "xHCI %s called with udev and " 1439 "virt_dev does not match\n", func); 1440 return -EINVAL; 1441 } 1442 } 1443 1444 if (xhci->xhc_state & XHCI_STATE_HALTED) 1445 return -ENODEV; 1446 1447 return 1; 1448 } 1449 1450 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1451 struct usb_device *udev, struct xhci_command *command, 1452 bool ctx_change, bool must_succeed); 1453 1454 /* 1455 * Full speed devices may have a max packet size greater than 8 bytes, but the 1456 * USB core doesn't know that until it reads the first 8 bytes of the 1457 * descriptor. If the usb_device's max packet size changes after that point, 1458 * we need to issue an evaluate context command and wait on it. 1459 */ xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1460 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1461 { 1462 struct xhci_input_control_ctx *ctrl_ctx; 1463 struct xhci_ep_ctx *ep_ctx; 1464 struct xhci_command *command; 1465 int max_packet_size; 1466 int hw_max_packet_size; 1467 int ret = 0; 1468 1469 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1470 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1471 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1472 1473 if (hw_max_packet_size == max_packet_size) 1474 return 0; 1475 1476 switch (max_packet_size) { 1477 case 8: case 16: case 32: case 64: case 9: 1478 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1479 "Max Packet Size for ep 0 changed."); 1480 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1481 "Max packet size in usb_device = %d", 1482 max_packet_size); 1483 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1484 "Max packet size in xHCI HW = %d", 1485 hw_max_packet_size); 1486 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1487 "Issuing evaluate context command."); 1488 1489 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1490 if (!command) 1491 return -ENOMEM; 1492 1493 command->in_ctx = vdev->in_ctx; 1494 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1495 if (!ctrl_ctx) { 1496 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1497 __func__); 1498 ret = -ENOMEM; 1499 break; 1500 } 1501 /* Set up the modified control endpoint 0 */ 1502 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1503 1504 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1505 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1506 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1507 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1508 1509 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1510 ctrl_ctx->drop_flags = 0; 1511 1512 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1513 true, false); 1514 /* Clean up the input context for later use by bandwidth functions */ 1515 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1516 break; 1517 default: 1518 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1519 max_packet_size); 1520 return -EINVAL; 1521 } 1522 1523 kfree(command->completion); 1524 kfree(command); 1525 1526 return ret; 1527 } 1528 1529 /* 1530 * non-error returns are a promise to giveback() the urb later 1531 * we drop ownership so next owner (or urb unlink) can get it 1532 */ xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1533 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1534 { 1535 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1536 unsigned long flags; 1537 int ret = 0; 1538 unsigned int slot_id, ep_index; 1539 unsigned int *ep_state; 1540 struct urb_priv *urb_priv; 1541 int num_tds; 1542 1543 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1544 1545 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1546 num_tds = urb->number_of_packets; 1547 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1548 urb->transfer_buffer_length > 0 && 1549 urb->transfer_flags & URB_ZERO_PACKET && 1550 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1551 num_tds = 2; 1552 else 1553 num_tds = 1; 1554 1555 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1556 if (!urb_priv) 1557 return -ENOMEM; 1558 1559 urb_priv->num_tds = num_tds; 1560 urb_priv->num_tds_done = 0; 1561 urb->hcpriv = urb_priv; 1562 1563 trace_xhci_urb_enqueue(urb); 1564 1565 spin_lock_irqsave(&xhci->lock, flags); 1566 1567 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1568 true, true, __func__); 1569 if (ret <= 0) { 1570 ret = ret ? ret : -EINVAL; 1571 goto free_priv; 1572 } 1573 1574 slot_id = urb->dev->slot_id; 1575 1576 if (!HCD_HW_ACCESSIBLE(hcd)) { 1577 ret = -ESHUTDOWN; 1578 goto free_priv; 1579 } 1580 1581 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1582 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1583 ret = -ENODEV; 1584 goto free_priv; 1585 } 1586 1587 if (xhci->xhc_state & XHCI_STATE_DYING) { 1588 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1589 urb->ep->desc.bEndpointAddress, urb); 1590 ret = -ESHUTDOWN; 1591 goto free_priv; 1592 } 1593 1594 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1595 1596 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1597 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1598 *ep_state); 1599 ret = -EINVAL; 1600 goto free_priv; 1601 } 1602 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1603 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1604 ret = -EINVAL; 1605 goto free_priv; 1606 } 1607 1608 /* Class driver might not be aware ep halted due to async URB giveback */ 1609 if (*ep_state & EP_STALLED) 1610 dev_dbg(&urb->dev->dev, "URB %p queued before clearing halt\n", 1611 urb); 1612 1613 switch (usb_endpoint_type(&urb->ep->desc)) { 1614 1615 case USB_ENDPOINT_XFER_CONTROL: 1616 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1617 slot_id, ep_index); 1618 break; 1619 case USB_ENDPOINT_XFER_BULK: 1620 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1621 slot_id, ep_index); 1622 break; 1623 case USB_ENDPOINT_XFER_INT: 1624 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1625 slot_id, ep_index); 1626 break; 1627 case USB_ENDPOINT_XFER_ISOC: 1628 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1629 slot_id, ep_index); 1630 } 1631 1632 if (ret) { 1633 free_priv: 1634 xhci_urb_free_priv(urb_priv); 1635 urb->hcpriv = NULL; 1636 } 1637 spin_unlock_irqrestore(&xhci->lock, flags); 1638 return ret; 1639 } 1640 1641 /* 1642 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1643 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1644 * should pick up where it left off in the TD, unless a Set Transfer Ring 1645 * Dequeue Pointer is issued. 1646 * 1647 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1648 * the ring. Since the ring is a contiguous structure, they can't be physically 1649 * removed. Instead, there are two options: 1650 * 1651 * 1) If the HC is in the middle of processing the URB to be canceled, we 1652 * simply move the ring's dequeue pointer past those TRBs using the Set 1653 * Transfer Ring Dequeue Pointer command. This will be the common case, 1654 * when drivers timeout on the last submitted URB and attempt to cancel. 1655 * 1656 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1657 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1658 * HC will need to invalidate the any TRBs it has cached after the stop 1659 * endpoint command, as noted in the xHCI 0.95 errata. 1660 * 1661 * 3) The TD may have completed by the time the Stop Endpoint Command 1662 * completes, so software needs to handle that case too. 1663 * 1664 * This function should protect against the TD enqueueing code ringing the 1665 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1666 * It also needs to account for multiple cancellations on happening at the same 1667 * time for the same endpoint. 1668 * 1669 * Note that this function can be called in any context, or so says 1670 * usb_hcd_unlink_urb() 1671 */ xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1672 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1673 { 1674 unsigned long flags; 1675 int ret, i; 1676 u32 temp; 1677 struct xhci_hcd *xhci; 1678 struct urb_priv *urb_priv; 1679 struct xhci_td *td; 1680 unsigned int ep_index; 1681 struct xhci_ring *ep_ring; 1682 struct xhci_virt_ep *ep; 1683 struct xhci_command *command; 1684 struct xhci_virt_device *vdev; 1685 1686 xhci = hcd_to_xhci(hcd); 1687 spin_lock_irqsave(&xhci->lock, flags); 1688 1689 trace_xhci_urb_dequeue(urb); 1690 1691 /* Make sure the URB hasn't completed or been unlinked already */ 1692 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1693 if (ret) 1694 goto done; 1695 1696 /* give back URB now if we can't queue it for cancel */ 1697 vdev = xhci->devs[urb->dev->slot_id]; 1698 urb_priv = urb->hcpriv; 1699 if (!vdev || !urb_priv) 1700 goto err_giveback; 1701 1702 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1703 ep = &vdev->eps[ep_index]; 1704 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1705 if (!ep || !ep_ring) 1706 goto err_giveback; 1707 1708 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1709 temp = readl(&xhci->op_regs->status); 1710 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1711 xhci_hc_died(xhci); 1712 goto done; 1713 } 1714 1715 /* 1716 * check ring is not re-allocated since URB was enqueued. If it is, then 1717 * make sure none of the ring related pointers in this URB private data 1718 * are touched, such as td_list, otherwise we overwrite freed data 1719 */ 1720 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1721 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1722 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1723 td = &urb_priv->td[i]; 1724 if (!list_empty(&td->cancelled_td_list)) 1725 list_del_init(&td->cancelled_td_list); 1726 } 1727 goto err_giveback; 1728 } 1729 1730 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1731 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1732 "HC halted, freeing TD manually."); 1733 for (i = urb_priv->num_tds_done; 1734 i < urb_priv->num_tds; 1735 i++) { 1736 td = &urb_priv->td[i]; 1737 if (!list_empty(&td->td_list)) 1738 list_del_init(&td->td_list); 1739 if (!list_empty(&td->cancelled_td_list)) 1740 list_del_init(&td->cancelled_td_list); 1741 } 1742 goto err_giveback; 1743 } 1744 1745 i = urb_priv->num_tds_done; 1746 if (i < urb_priv->num_tds) 1747 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1748 "Cancel URB %p, dev %s, ep 0x%x, " 1749 "starting at offset 0x%llx", 1750 urb, urb->dev->devpath, 1751 urb->ep->desc.bEndpointAddress, 1752 (unsigned long long) xhci_trb_virt_to_dma( 1753 urb_priv->td[i].start_seg, 1754 urb_priv->td[i].start_trb)); 1755 1756 for (; i < urb_priv->num_tds; i++) { 1757 td = &urb_priv->td[i]; 1758 /* TD can already be on cancelled list if ep halted on it */ 1759 if (list_empty(&td->cancelled_td_list)) { 1760 td->cancel_status = TD_DIRTY; 1761 list_add_tail(&td->cancelled_td_list, 1762 &ep->cancelled_td_list); 1763 } 1764 } 1765 1766 /* These completion handlers will sort out cancelled TDs for us */ 1767 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) { 1768 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n", 1769 urb->dev->slot_id, ep_index, ep->ep_state); 1770 goto done; 1771 } 1772 1773 /* In these cases no commands are pending but the endpoint is stopped */ 1774 if (ep->ep_state & (EP_CLEARING_TT | EP_STALLED)) { 1775 /* and cancelled TDs can be given back right away */ 1776 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n", 1777 urb->dev->slot_id, ep_index, ep->ep_state); 1778 xhci_process_cancelled_tds(ep); 1779 } else { 1780 /* Otherwise, queue a new Stop Endpoint command */ 1781 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1782 if (!command) { 1783 ret = -ENOMEM; 1784 goto done; 1785 } 1786 ep->stop_time = jiffies; 1787 ep->ep_state |= EP_STOP_CMD_PENDING; 1788 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1789 ep_index, 0); 1790 xhci_ring_cmd_db(xhci); 1791 } 1792 done: 1793 spin_unlock_irqrestore(&xhci->lock, flags); 1794 return ret; 1795 1796 err_giveback: 1797 if (urb_priv) 1798 xhci_urb_free_priv(urb_priv); 1799 usb_hcd_unlink_urb_from_ep(hcd, urb); 1800 spin_unlock_irqrestore(&xhci->lock, flags); 1801 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1802 return ret; 1803 } 1804 1805 /* Drop an endpoint from a new bandwidth configuration for this device. 1806 * Only one call to this function is allowed per endpoint before 1807 * check_bandwidth() or reset_bandwidth() must be called. 1808 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1809 * add the endpoint to the schedule with possibly new parameters denoted by a 1810 * different endpoint descriptor in usb_host_endpoint. 1811 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1812 * not allowed. 1813 * 1814 * The USB core will not allow URBs to be queued to an endpoint that is being 1815 * disabled, so there's no need for mutual exclusion to protect 1816 * the xhci->devs[slot_id] structure. 1817 */ xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1818 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1819 struct usb_host_endpoint *ep) 1820 { 1821 struct xhci_hcd *xhci; 1822 struct xhci_container_ctx *in_ctx, *out_ctx; 1823 struct xhci_input_control_ctx *ctrl_ctx; 1824 unsigned int ep_index; 1825 struct xhci_ep_ctx *ep_ctx; 1826 u32 drop_flag; 1827 u32 new_add_flags, new_drop_flags; 1828 int ret; 1829 1830 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1831 if (ret <= 0) 1832 return ret; 1833 xhci = hcd_to_xhci(hcd); 1834 if (xhci->xhc_state & XHCI_STATE_DYING) 1835 return -ENODEV; 1836 1837 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1838 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1839 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1840 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1841 __func__, drop_flag); 1842 return 0; 1843 } 1844 1845 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1846 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1847 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1848 if (!ctrl_ctx) { 1849 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1850 __func__); 1851 return 0; 1852 } 1853 1854 ep_index = xhci_get_endpoint_index(&ep->desc); 1855 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1856 /* If the HC already knows the endpoint is disabled, 1857 * or the HCD has noted it is disabled, ignore this request 1858 */ 1859 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1860 le32_to_cpu(ctrl_ctx->drop_flags) & 1861 xhci_get_endpoint_flag(&ep->desc)) { 1862 /* Do not warn when called after a usb_device_reset */ 1863 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1864 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1865 __func__, ep); 1866 return 0; 1867 } 1868 1869 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1870 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1871 1872 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1873 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1874 1875 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1876 1877 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1878 1879 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1880 (unsigned int) ep->desc.bEndpointAddress, 1881 udev->slot_id, 1882 (unsigned int) new_drop_flags, 1883 (unsigned int) new_add_flags); 1884 return 0; 1885 } 1886 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1887 1888 /* Add an endpoint to a new possible bandwidth configuration for this device. 1889 * Only one call to this function is allowed per endpoint before 1890 * check_bandwidth() or reset_bandwidth() must be called. 1891 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1892 * add the endpoint to the schedule with possibly new parameters denoted by a 1893 * different endpoint descriptor in usb_host_endpoint. 1894 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1895 * not allowed. 1896 * 1897 * The USB core will not allow URBs to be queued to an endpoint until the 1898 * configuration or alt setting is installed in the device, so there's no need 1899 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1900 */ xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1901 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1902 struct usb_host_endpoint *ep) 1903 { 1904 struct xhci_hcd *xhci; 1905 struct xhci_container_ctx *in_ctx; 1906 unsigned int ep_index; 1907 struct xhci_input_control_ctx *ctrl_ctx; 1908 struct xhci_ep_ctx *ep_ctx; 1909 u32 added_ctxs; 1910 u32 new_add_flags, new_drop_flags; 1911 struct xhci_virt_device *virt_dev; 1912 int ret = 0; 1913 1914 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1915 if (ret <= 0) { 1916 /* So we won't queue a reset ep command for a root hub */ 1917 ep->hcpriv = NULL; 1918 return ret; 1919 } 1920 xhci = hcd_to_xhci(hcd); 1921 if (xhci->xhc_state & XHCI_STATE_DYING) 1922 return -ENODEV; 1923 1924 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1925 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1926 /* FIXME when we have to issue an evaluate endpoint command to 1927 * deal with ep0 max packet size changing once we get the 1928 * descriptors 1929 */ 1930 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1931 __func__, added_ctxs); 1932 return 0; 1933 } 1934 1935 virt_dev = xhci->devs[udev->slot_id]; 1936 in_ctx = virt_dev->in_ctx; 1937 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1938 if (!ctrl_ctx) { 1939 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1940 __func__); 1941 return 0; 1942 } 1943 1944 ep_index = xhci_get_endpoint_index(&ep->desc); 1945 /* If this endpoint is already in use, and the upper layers are trying 1946 * to add it again without dropping it, reject the addition. 1947 */ 1948 if (virt_dev->eps[ep_index].ring && 1949 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1950 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1951 "without dropping it.\n", 1952 (unsigned int) ep->desc.bEndpointAddress); 1953 return -EINVAL; 1954 } 1955 1956 /* If the HCD has already noted the endpoint is enabled, 1957 * ignore this request. 1958 */ 1959 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1960 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1961 __func__, ep); 1962 return 0; 1963 } 1964 1965 /* 1966 * Configuration and alternate setting changes must be done in 1967 * process context, not interrupt context (or so documenation 1968 * for usb_set_interface() and usb_set_configuration() claim). 1969 */ 1970 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1971 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1972 __func__, ep->desc.bEndpointAddress); 1973 return -ENOMEM; 1974 } 1975 1976 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1977 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1978 1979 /* If xhci_endpoint_disable() was called for this endpoint, but the 1980 * xHC hasn't been notified yet through the check_bandwidth() call, 1981 * this re-adds a new state for the endpoint from the new endpoint 1982 * descriptors. We must drop and re-add this endpoint, so we leave the 1983 * drop flags alone. 1984 */ 1985 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1986 1987 /* Store the usb_device pointer for later use */ 1988 ep->hcpriv = udev; 1989 1990 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1991 trace_xhci_add_endpoint(ep_ctx); 1992 1993 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1994 (unsigned int) ep->desc.bEndpointAddress, 1995 udev->slot_id, 1996 (unsigned int) new_drop_flags, 1997 (unsigned int) new_add_flags); 1998 return 0; 1999 } 2000 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2001 xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2002 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2003 { 2004 struct xhci_input_control_ctx *ctrl_ctx; 2005 struct xhci_ep_ctx *ep_ctx; 2006 struct xhci_slot_ctx *slot_ctx; 2007 int i; 2008 2009 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2010 if (!ctrl_ctx) { 2011 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2012 __func__); 2013 return; 2014 } 2015 2016 /* When a device's add flag and drop flag are zero, any subsequent 2017 * configure endpoint command will leave that endpoint's state 2018 * untouched. Make sure we don't leave any old state in the input 2019 * endpoint contexts. 2020 */ 2021 ctrl_ctx->drop_flags = 0; 2022 ctrl_ctx->add_flags = 0; 2023 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2024 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2025 /* Endpoint 0 is always valid */ 2026 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2027 for (i = 1; i < 31; i++) { 2028 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2029 ep_ctx->ep_info = 0; 2030 ep_ctx->ep_info2 = 0; 2031 ep_ctx->deq = 0; 2032 ep_ctx->tx_info = 0; 2033 } 2034 } 2035 xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2036 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2037 struct usb_device *udev, u32 *cmd_status) 2038 { 2039 int ret; 2040 2041 switch (*cmd_status) { 2042 case COMP_COMMAND_ABORTED: 2043 case COMP_COMMAND_RING_STOPPED: 2044 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2045 ret = -ETIME; 2046 break; 2047 case COMP_RESOURCE_ERROR: 2048 dev_warn(&udev->dev, 2049 "Not enough host controller resources for new device state.\n"); 2050 ret = -ENOMEM; 2051 /* FIXME: can we allocate more resources for the HC? */ 2052 break; 2053 case COMP_BANDWIDTH_ERROR: 2054 case COMP_SECONDARY_BANDWIDTH_ERROR: 2055 dev_warn(&udev->dev, 2056 "Not enough bandwidth for new device state.\n"); 2057 ret = -ENOSPC; 2058 /* FIXME: can we go back to the old state? */ 2059 break; 2060 case COMP_TRB_ERROR: 2061 /* the HCD set up something wrong */ 2062 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2063 "add flag = 1, " 2064 "and endpoint is not disabled.\n"); 2065 ret = -EINVAL; 2066 break; 2067 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2068 dev_warn(&udev->dev, 2069 "ERROR: Incompatible device for endpoint configure command.\n"); 2070 ret = -ENODEV; 2071 break; 2072 case COMP_SUCCESS: 2073 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2074 "Successful Endpoint Configure command"); 2075 ret = 0; 2076 break; 2077 default: 2078 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2079 *cmd_status); 2080 ret = -EINVAL; 2081 break; 2082 } 2083 return ret; 2084 } 2085 xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2086 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2087 struct usb_device *udev, u32 *cmd_status) 2088 { 2089 int ret; 2090 2091 switch (*cmd_status) { 2092 case COMP_COMMAND_ABORTED: 2093 case COMP_COMMAND_RING_STOPPED: 2094 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2095 ret = -ETIME; 2096 break; 2097 case COMP_PARAMETER_ERROR: 2098 dev_warn(&udev->dev, 2099 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2100 ret = -EINVAL; 2101 break; 2102 case COMP_SLOT_NOT_ENABLED_ERROR: 2103 dev_warn(&udev->dev, 2104 "WARN: slot not enabled for evaluate context command.\n"); 2105 ret = -EINVAL; 2106 break; 2107 case COMP_CONTEXT_STATE_ERROR: 2108 dev_warn(&udev->dev, 2109 "WARN: invalid context state for evaluate context command.\n"); 2110 ret = -EINVAL; 2111 break; 2112 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2113 dev_warn(&udev->dev, 2114 "ERROR: Incompatible device for evaluate context command.\n"); 2115 ret = -ENODEV; 2116 break; 2117 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2118 /* Max Exit Latency too large error */ 2119 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2120 ret = -EINVAL; 2121 break; 2122 case COMP_SUCCESS: 2123 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2124 "Successful evaluate context command"); 2125 ret = 0; 2126 break; 2127 default: 2128 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2129 *cmd_status); 2130 ret = -EINVAL; 2131 break; 2132 } 2133 return ret; 2134 } 2135 xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2136 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2137 struct xhci_input_control_ctx *ctrl_ctx) 2138 { 2139 u32 valid_add_flags; 2140 u32 valid_drop_flags; 2141 2142 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2143 * (bit 1). The default control endpoint is added during the Address 2144 * Device command and is never removed until the slot is disabled. 2145 */ 2146 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2147 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2148 2149 /* Use hweight32 to count the number of ones in the add flags, or 2150 * number of endpoints added. Don't count endpoints that are changed 2151 * (both added and dropped). 2152 */ 2153 return hweight32(valid_add_flags) - 2154 hweight32(valid_add_flags & valid_drop_flags); 2155 } 2156 xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2157 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2158 struct xhci_input_control_ctx *ctrl_ctx) 2159 { 2160 u32 valid_add_flags; 2161 u32 valid_drop_flags; 2162 2163 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2164 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2165 2166 return hweight32(valid_drop_flags) - 2167 hweight32(valid_add_flags & valid_drop_flags); 2168 } 2169 2170 /* 2171 * We need to reserve the new number of endpoints before the configure endpoint 2172 * command completes. We can't subtract the dropped endpoints from the number 2173 * of active endpoints until the command completes because we can oversubscribe 2174 * the host in this case: 2175 * 2176 * - the first configure endpoint command drops more endpoints than it adds 2177 * - a second configure endpoint command that adds more endpoints is queued 2178 * - the first configure endpoint command fails, so the config is unchanged 2179 * - the second command may succeed, even though there isn't enough resources 2180 * 2181 * Must be called with xhci->lock held. 2182 */ xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2183 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2184 struct xhci_input_control_ctx *ctrl_ctx) 2185 { 2186 u32 added_eps; 2187 2188 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2189 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2190 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2191 "Not enough ep ctxs: " 2192 "%u active, need to add %u, limit is %u.", 2193 xhci->num_active_eps, added_eps, 2194 xhci->limit_active_eps); 2195 return -ENOMEM; 2196 } 2197 xhci->num_active_eps += added_eps; 2198 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2199 "Adding %u ep ctxs, %u now active.", added_eps, 2200 xhci->num_active_eps); 2201 return 0; 2202 } 2203 2204 /* 2205 * The configure endpoint was failed by the xHC for some other reason, so we 2206 * need to revert the resources that failed configuration would have used. 2207 * 2208 * Must be called with xhci->lock held. 2209 */ xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2210 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2211 struct xhci_input_control_ctx *ctrl_ctx) 2212 { 2213 u32 num_failed_eps; 2214 2215 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2216 xhci->num_active_eps -= num_failed_eps; 2217 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2218 "Removing %u failed ep ctxs, %u now active.", 2219 num_failed_eps, 2220 xhci->num_active_eps); 2221 } 2222 2223 /* 2224 * Now that the command has completed, clean up the active endpoint count by 2225 * subtracting out the endpoints that were dropped (but not changed). 2226 * 2227 * Must be called with xhci->lock held. 2228 */ xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2229 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2230 struct xhci_input_control_ctx *ctrl_ctx) 2231 { 2232 u32 num_dropped_eps; 2233 2234 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2235 xhci->num_active_eps -= num_dropped_eps; 2236 if (num_dropped_eps) 2237 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2238 "Removing %u dropped ep ctxs, %u now active.", 2239 num_dropped_eps, 2240 xhci->num_active_eps); 2241 } 2242 xhci_get_block_size(struct usb_device * udev)2243 static unsigned int xhci_get_block_size(struct usb_device *udev) 2244 { 2245 switch (udev->speed) { 2246 case USB_SPEED_LOW: 2247 case USB_SPEED_FULL: 2248 return FS_BLOCK; 2249 case USB_SPEED_HIGH: 2250 return HS_BLOCK; 2251 case USB_SPEED_SUPER: 2252 case USB_SPEED_SUPER_PLUS: 2253 return SS_BLOCK; 2254 case USB_SPEED_UNKNOWN: 2255 default: 2256 /* Should never happen */ 2257 return 1; 2258 } 2259 } 2260 2261 static unsigned int xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2262 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2263 { 2264 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2265 return LS_OVERHEAD; 2266 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2267 return FS_OVERHEAD; 2268 return HS_OVERHEAD; 2269 } 2270 2271 /* If we are changing a LS/FS device under a HS hub, 2272 * make sure (if we are activating a new TT) that the HS bus has enough 2273 * bandwidth for this new TT. 2274 */ xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2275 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2276 struct xhci_virt_device *virt_dev, 2277 int old_active_eps) 2278 { 2279 struct xhci_interval_bw_table *bw_table; 2280 struct xhci_tt_bw_info *tt_info; 2281 2282 /* Find the bandwidth table for the root port this TT is attached to. */ 2283 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table; 2284 tt_info = virt_dev->tt_info; 2285 /* If this TT already had active endpoints, the bandwidth for this TT 2286 * has already been added. Removing all periodic endpoints (and thus 2287 * making the TT enactive) will only decrease the bandwidth used. 2288 */ 2289 if (old_active_eps) 2290 return 0; 2291 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2292 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2293 return -ENOMEM; 2294 return 0; 2295 } 2296 /* Not sure why we would have no new active endpoints... 2297 * 2298 * Maybe because of an Evaluate Context change for a hub update or a 2299 * control endpoint 0 max packet size change? 2300 * FIXME: skip the bandwidth calculation in that case. 2301 */ 2302 return 0; 2303 } 2304 xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2305 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2306 struct xhci_virt_device *virt_dev) 2307 { 2308 unsigned int bw_reserved; 2309 2310 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2311 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2312 return -ENOMEM; 2313 2314 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2315 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2316 return -ENOMEM; 2317 2318 return 0; 2319 } 2320 2321 /* 2322 * This algorithm is a very conservative estimate of the worst-case scheduling 2323 * scenario for any one interval. The hardware dynamically schedules the 2324 * packets, so we can't tell which microframe could be the limiting factor in 2325 * the bandwidth scheduling. This only takes into account periodic endpoints. 2326 * 2327 * Obviously, we can't solve an NP complete problem to find the minimum worst 2328 * case scenario. Instead, we come up with an estimate that is no less than 2329 * the worst case bandwidth used for any one microframe, but may be an 2330 * over-estimate. 2331 * 2332 * We walk the requirements for each endpoint by interval, starting with the 2333 * smallest interval, and place packets in the schedule where there is only one 2334 * possible way to schedule packets for that interval. In order to simplify 2335 * this algorithm, we record the largest max packet size for each interval, and 2336 * assume all packets will be that size. 2337 * 2338 * For interval 0, we obviously must schedule all packets for each interval. 2339 * The bandwidth for interval 0 is just the amount of data to be transmitted 2340 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2341 * the number of packets). 2342 * 2343 * For interval 1, we have two possible microframes to schedule those packets 2344 * in. For this algorithm, if we can schedule the same number of packets for 2345 * each possible scheduling opportunity (each microframe), we will do so. The 2346 * remaining number of packets will be saved to be transmitted in the gaps in 2347 * the next interval's scheduling sequence. 2348 * 2349 * As we move those remaining packets to be scheduled with interval 2 packets, 2350 * we have to double the number of remaining packets to transmit. This is 2351 * because the intervals are actually powers of 2, and we would be transmitting 2352 * the previous interval's packets twice in this interval. We also have to be 2353 * sure that when we look at the largest max packet size for this interval, we 2354 * also look at the largest max packet size for the remaining packets and take 2355 * the greater of the two. 2356 * 2357 * The algorithm continues to evenly distribute packets in each scheduling 2358 * opportunity, and push the remaining packets out, until we get to the last 2359 * interval. Then those packets and their associated overhead are just added 2360 * to the bandwidth used. 2361 */ xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2362 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2363 struct xhci_virt_device *virt_dev, 2364 int old_active_eps) 2365 { 2366 unsigned int bw_reserved; 2367 unsigned int max_bandwidth; 2368 unsigned int bw_used; 2369 unsigned int block_size; 2370 struct xhci_interval_bw_table *bw_table; 2371 unsigned int packet_size = 0; 2372 unsigned int overhead = 0; 2373 unsigned int packets_transmitted = 0; 2374 unsigned int packets_remaining = 0; 2375 unsigned int i; 2376 2377 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2378 return xhci_check_ss_bw(xhci, virt_dev); 2379 2380 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2381 max_bandwidth = HS_BW_LIMIT; 2382 /* Convert percent of bus BW reserved to blocks reserved */ 2383 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2384 } else { 2385 max_bandwidth = FS_BW_LIMIT; 2386 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2387 } 2388 2389 bw_table = virt_dev->bw_table; 2390 /* We need to translate the max packet size and max ESIT payloads into 2391 * the units the hardware uses. 2392 */ 2393 block_size = xhci_get_block_size(virt_dev->udev); 2394 2395 /* If we are manipulating a LS/FS device under a HS hub, double check 2396 * that the HS bus has enough bandwidth if we are activing a new TT. 2397 */ 2398 if (virt_dev->tt_info) { 2399 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2400 "Recalculating BW for rootport %u", 2401 virt_dev->rhub_port->hw_portnum + 1); 2402 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2403 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2404 "newly activated TT.\n"); 2405 return -ENOMEM; 2406 } 2407 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2408 "Recalculating BW for TT slot %u port %u", 2409 virt_dev->tt_info->slot_id, 2410 virt_dev->tt_info->ttport); 2411 } else { 2412 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2413 "Recalculating BW for rootport %u", 2414 virt_dev->rhub_port->hw_portnum + 1); 2415 } 2416 2417 /* Add in how much bandwidth will be used for interval zero, or the 2418 * rounded max ESIT payload + number of packets * largest overhead. 2419 */ 2420 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2421 bw_table->interval_bw[0].num_packets * 2422 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2423 2424 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2425 unsigned int bw_added; 2426 unsigned int largest_mps; 2427 unsigned int interval_overhead; 2428 2429 /* 2430 * How many packets could we transmit in this interval? 2431 * If packets didn't fit in the previous interval, we will need 2432 * to transmit that many packets twice within this interval. 2433 */ 2434 packets_remaining = 2 * packets_remaining + 2435 bw_table->interval_bw[i].num_packets; 2436 2437 /* Find the largest max packet size of this or the previous 2438 * interval. 2439 */ 2440 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2441 largest_mps = 0; 2442 else { 2443 struct xhci_virt_ep *virt_ep; 2444 struct list_head *ep_entry; 2445 2446 ep_entry = bw_table->interval_bw[i].endpoints.next; 2447 virt_ep = list_entry(ep_entry, 2448 struct xhci_virt_ep, bw_endpoint_list); 2449 /* Convert to blocks, rounding up */ 2450 largest_mps = DIV_ROUND_UP( 2451 virt_ep->bw_info.max_packet_size, 2452 block_size); 2453 } 2454 if (largest_mps > packet_size) 2455 packet_size = largest_mps; 2456 2457 /* Use the larger overhead of this or the previous interval. */ 2458 interval_overhead = xhci_get_largest_overhead( 2459 &bw_table->interval_bw[i]); 2460 if (interval_overhead > overhead) 2461 overhead = interval_overhead; 2462 2463 /* How many packets can we evenly distribute across 2464 * (1 << (i + 1)) possible scheduling opportunities? 2465 */ 2466 packets_transmitted = packets_remaining >> (i + 1); 2467 2468 /* Add in the bandwidth used for those scheduled packets */ 2469 bw_added = packets_transmitted * (overhead + packet_size); 2470 2471 /* How many packets do we have remaining to transmit? */ 2472 packets_remaining = packets_remaining % (1 << (i + 1)); 2473 2474 /* What largest max packet size should those packets have? */ 2475 /* If we've transmitted all packets, don't carry over the 2476 * largest packet size. 2477 */ 2478 if (packets_remaining == 0) { 2479 packet_size = 0; 2480 overhead = 0; 2481 } else if (packets_transmitted > 0) { 2482 /* Otherwise if we do have remaining packets, and we've 2483 * scheduled some packets in this interval, take the 2484 * largest max packet size from endpoints with this 2485 * interval. 2486 */ 2487 packet_size = largest_mps; 2488 overhead = interval_overhead; 2489 } 2490 /* Otherwise carry over packet_size and overhead from the last 2491 * time we had a remainder. 2492 */ 2493 bw_used += bw_added; 2494 if (bw_used > max_bandwidth) { 2495 xhci_warn(xhci, "Not enough bandwidth. " 2496 "Proposed: %u, Max: %u\n", 2497 bw_used, max_bandwidth); 2498 return -ENOMEM; 2499 } 2500 } 2501 /* 2502 * Ok, we know we have some packets left over after even-handedly 2503 * scheduling interval 15. We don't know which microframes they will 2504 * fit into, so we over-schedule and say they will be scheduled every 2505 * microframe. 2506 */ 2507 if (packets_remaining > 0) 2508 bw_used += overhead + packet_size; 2509 2510 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2511 /* OK, we're manipulating a HS device attached to a 2512 * root port bandwidth domain. Include the number of active TTs 2513 * in the bandwidth used. 2514 */ 2515 bw_used += TT_HS_OVERHEAD * 2516 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts; 2517 } 2518 2519 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2520 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2521 "Available: %u " "percent", 2522 bw_used, max_bandwidth, bw_reserved, 2523 (max_bandwidth - bw_used - bw_reserved) * 100 / 2524 max_bandwidth); 2525 2526 bw_used += bw_reserved; 2527 if (bw_used > max_bandwidth) { 2528 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2529 bw_used, max_bandwidth); 2530 return -ENOMEM; 2531 } 2532 2533 bw_table->bw_used = bw_used; 2534 return 0; 2535 } 2536 xhci_is_async_ep(unsigned int ep_type)2537 static bool xhci_is_async_ep(unsigned int ep_type) 2538 { 2539 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2540 ep_type != ISOC_IN_EP && 2541 ep_type != INT_IN_EP); 2542 } 2543 xhci_is_sync_in_ep(unsigned int ep_type)2544 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2545 { 2546 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2547 } 2548 xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2549 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2550 { 2551 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2552 2553 if (ep_bw->ep_interval == 0) 2554 return SS_OVERHEAD_BURST + 2555 (ep_bw->mult * ep_bw->num_packets * 2556 (SS_OVERHEAD + mps)); 2557 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2558 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2559 1 << ep_bw->ep_interval); 2560 2561 } 2562 xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2563 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2564 struct xhci_bw_info *ep_bw, 2565 struct xhci_interval_bw_table *bw_table, 2566 struct usb_device *udev, 2567 struct xhci_virt_ep *virt_ep, 2568 struct xhci_tt_bw_info *tt_info) 2569 { 2570 struct xhci_interval_bw *interval_bw; 2571 int normalized_interval; 2572 2573 if (xhci_is_async_ep(ep_bw->type)) 2574 return; 2575 2576 if (udev->speed >= USB_SPEED_SUPER) { 2577 if (xhci_is_sync_in_ep(ep_bw->type)) 2578 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2579 xhci_get_ss_bw_consumed(ep_bw); 2580 else 2581 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2582 xhci_get_ss_bw_consumed(ep_bw); 2583 return; 2584 } 2585 2586 /* SuperSpeed endpoints never get added to intervals in the table, so 2587 * this check is only valid for HS/FS/LS devices. 2588 */ 2589 if (list_empty(&virt_ep->bw_endpoint_list)) 2590 return; 2591 /* For LS/FS devices, we need to translate the interval expressed in 2592 * microframes to frames. 2593 */ 2594 if (udev->speed == USB_SPEED_HIGH) 2595 normalized_interval = ep_bw->ep_interval; 2596 else 2597 normalized_interval = ep_bw->ep_interval - 3; 2598 2599 if (normalized_interval == 0) 2600 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2601 interval_bw = &bw_table->interval_bw[normalized_interval]; 2602 interval_bw->num_packets -= ep_bw->num_packets; 2603 switch (udev->speed) { 2604 case USB_SPEED_LOW: 2605 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2606 break; 2607 case USB_SPEED_FULL: 2608 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2609 break; 2610 case USB_SPEED_HIGH: 2611 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2612 break; 2613 default: 2614 /* Should never happen because only LS/FS/HS endpoints will get 2615 * added to the endpoint list. 2616 */ 2617 return; 2618 } 2619 if (tt_info) 2620 tt_info->active_eps -= 1; 2621 list_del_init(&virt_ep->bw_endpoint_list); 2622 } 2623 xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2624 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2625 struct xhci_bw_info *ep_bw, 2626 struct xhci_interval_bw_table *bw_table, 2627 struct usb_device *udev, 2628 struct xhci_virt_ep *virt_ep, 2629 struct xhci_tt_bw_info *tt_info) 2630 { 2631 struct xhci_interval_bw *interval_bw; 2632 struct xhci_virt_ep *smaller_ep; 2633 int normalized_interval; 2634 2635 if (xhci_is_async_ep(ep_bw->type)) 2636 return; 2637 2638 if (udev->speed == USB_SPEED_SUPER) { 2639 if (xhci_is_sync_in_ep(ep_bw->type)) 2640 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2641 xhci_get_ss_bw_consumed(ep_bw); 2642 else 2643 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2644 xhci_get_ss_bw_consumed(ep_bw); 2645 return; 2646 } 2647 2648 /* For LS/FS devices, we need to translate the interval expressed in 2649 * microframes to frames. 2650 */ 2651 if (udev->speed == USB_SPEED_HIGH) 2652 normalized_interval = ep_bw->ep_interval; 2653 else 2654 normalized_interval = ep_bw->ep_interval - 3; 2655 2656 if (normalized_interval == 0) 2657 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2658 interval_bw = &bw_table->interval_bw[normalized_interval]; 2659 interval_bw->num_packets += ep_bw->num_packets; 2660 switch (udev->speed) { 2661 case USB_SPEED_LOW: 2662 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2663 break; 2664 case USB_SPEED_FULL: 2665 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2666 break; 2667 case USB_SPEED_HIGH: 2668 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2669 break; 2670 default: 2671 /* Should never happen because only LS/FS/HS endpoints will get 2672 * added to the endpoint list. 2673 */ 2674 return; 2675 } 2676 2677 if (tt_info) 2678 tt_info->active_eps += 1; 2679 /* Insert the endpoint into the list, largest max packet size first. */ 2680 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2681 bw_endpoint_list) { 2682 if (ep_bw->max_packet_size >= 2683 smaller_ep->bw_info.max_packet_size) { 2684 /* Add the new ep before the smaller endpoint */ 2685 list_add_tail(&virt_ep->bw_endpoint_list, 2686 &smaller_ep->bw_endpoint_list); 2687 return; 2688 } 2689 } 2690 /* Add the new endpoint at the end of the list. */ 2691 list_add_tail(&virt_ep->bw_endpoint_list, 2692 &interval_bw->endpoints); 2693 } 2694 xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2695 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2696 struct xhci_virt_device *virt_dev, 2697 int old_active_eps) 2698 { 2699 struct xhci_root_port_bw_info *rh_bw_info; 2700 if (!virt_dev->tt_info) 2701 return; 2702 2703 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum]; 2704 if (old_active_eps == 0 && 2705 virt_dev->tt_info->active_eps != 0) { 2706 rh_bw_info->num_active_tts += 1; 2707 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2708 } else if (old_active_eps != 0 && 2709 virt_dev->tt_info->active_eps == 0) { 2710 rh_bw_info->num_active_tts -= 1; 2711 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2712 } 2713 } 2714 xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2715 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2716 struct xhci_virt_device *virt_dev, 2717 struct xhci_container_ctx *in_ctx) 2718 { 2719 struct xhci_bw_info ep_bw_info[31]; 2720 int i; 2721 struct xhci_input_control_ctx *ctrl_ctx; 2722 int old_active_eps = 0; 2723 2724 if (virt_dev->tt_info) 2725 old_active_eps = virt_dev->tt_info->active_eps; 2726 2727 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2728 if (!ctrl_ctx) { 2729 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2730 __func__); 2731 return -ENOMEM; 2732 } 2733 2734 for (i = 0; i < 31; i++) { 2735 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2736 continue; 2737 2738 /* Make a copy of the BW info in case we need to revert this */ 2739 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2740 sizeof(ep_bw_info[i])); 2741 /* Drop the endpoint from the interval table if the endpoint is 2742 * being dropped or changed. 2743 */ 2744 if (EP_IS_DROPPED(ctrl_ctx, i)) 2745 xhci_drop_ep_from_interval_table(xhci, 2746 &virt_dev->eps[i].bw_info, 2747 virt_dev->bw_table, 2748 virt_dev->udev, 2749 &virt_dev->eps[i], 2750 virt_dev->tt_info); 2751 } 2752 /* Overwrite the information stored in the endpoints' bw_info */ 2753 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2754 for (i = 0; i < 31; i++) { 2755 /* Add any changed or added endpoints to the interval table */ 2756 if (EP_IS_ADDED(ctrl_ctx, i)) 2757 xhci_add_ep_to_interval_table(xhci, 2758 &virt_dev->eps[i].bw_info, 2759 virt_dev->bw_table, 2760 virt_dev->udev, 2761 &virt_dev->eps[i], 2762 virt_dev->tt_info); 2763 } 2764 2765 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2766 /* Ok, this fits in the bandwidth we have. 2767 * Update the number of active TTs. 2768 */ 2769 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2770 return 0; 2771 } 2772 2773 /* We don't have enough bandwidth for this, revert the stored info. */ 2774 for (i = 0; i < 31; i++) { 2775 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2776 continue; 2777 2778 /* Drop the new copies of any added or changed endpoints from 2779 * the interval table. 2780 */ 2781 if (EP_IS_ADDED(ctrl_ctx, i)) { 2782 xhci_drop_ep_from_interval_table(xhci, 2783 &virt_dev->eps[i].bw_info, 2784 virt_dev->bw_table, 2785 virt_dev->udev, 2786 &virt_dev->eps[i], 2787 virt_dev->tt_info); 2788 } 2789 /* Revert the endpoint back to its old information */ 2790 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2791 sizeof(ep_bw_info[i])); 2792 /* Add any changed or dropped endpoints back into the table */ 2793 if (EP_IS_DROPPED(ctrl_ctx, i)) 2794 xhci_add_ep_to_interval_table(xhci, 2795 &virt_dev->eps[i].bw_info, 2796 virt_dev->bw_table, 2797 virt_dev->udev, 2798 &virt_dev->eps[i], 2799 virt_dev->tt_info); 2800 } 2801 return -ENOMEM; 2802 } 2803 2804 /* 2805 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and 2806 * waits for the command completion before returning. This does not call 2807 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error' 2808 * cases, along with transfer ring cleanup. 2809 * 2810 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage 2811 * their own transfer ring, such as offload situations. 2812 */ xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2813 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend, 2814 gfp_t gfp_flags) 2815 { 2816 struct xhci_command *command; 2817 unsigned long flags; 2818 int ret; 2819 2820 command = xhci_alloc_command(xhci, true, gfp_flags); 2821 if (!command) 2822 return -ENOMEM; 2823 2824 spin_lock_irqsave(&xhci->lock, flags); 2825 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id, 2826 ep->ep_index, suspend); 2827 if (ret < 0) { 2828 spin_unlock_irqrestore(&xhci->lock, flags); 2829 goto out; 2830 } 2831 2832 xhci_ring_cmd_db(xhci); 2833 spin_unlock_irqrestore(&xhci->lock, flags); 2834 2835 wait_for_completion(command->completion); 2836 2837 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/ 2838 if (command->status == COMP_COMMAND_ABORTED || 2839 command->status == COMP_COMMAND_RING_STOPPED) { 2840 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n"); 2841 ret = -ETIME; 2842 } 2843 out: 2844 xhci_free_command(xhci, command); 2845 2846 return ret; 2847 } 2848 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync); 2849 2850 /* Issue a configure endpoint command or evaluate context command 2851 * and wait for it to finish. 2852 */ xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2853 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2854 struct usb_device *udev, 2855 struct xhci_command *command, 2856 bool ctx_change, bool must_succeed) 2857 { 2858 int ret; 2859 unsigned long flags; 2860 struct xhci_input_control_ctx *ctrl_ctx; 2861 struct xhci_virt_device *virt_dev; 2862 struct xhci_slot_ctx *slot_ctx; 2863 2864 if (!command) 2865 return -EINVAL; 2866 2867 spin_lock_irqsave(&xhci->lock, flags); 2868 2869 if (xhci->xhc_state & XHCI_STATE_DYING) { 2870 spin_unlock_irqrestore(&xhci->lock, flags); 2871 return -ESHUTDOWN; 2872 } 2873 2874 virt_dev = xhci->devs[udev->slot_id]; 2875 2876 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2877 if (!ctrl_ctx) { 2878 spin_unlock_irqrestore(&xhci->lock, flags); 2879 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2880 __func__); 2881 return -ENOMEM; 2882 } 2883 2884 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2885 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2886 spin_unlock_irqrestore(&xhci->lock, flags); 2887 xhci_warn(xhci, "Not enough host resources, " 2888 "active endpoint contexts = %u\n", 2889 xhci->num_active_eps); 2890 return -ENOMEM; 2891 } 2892 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change && 2893 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2894 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2895 xhci_free_host_resources(xhci, ctrl_ctx); 2896 spin_unlock_irqrestore(&xhci->lock, flags); 2897 xhci_warn(xhci, "Not enough bandwidth\n"); 2898 return -ENOMEM; 2899 } 2900 2901 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2902 2903 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2904 trace_xhci_configure_endpoint(slot_ctx); 2905 2906 if (!ctx_change) 2907 ret = xhci_queue_configure_endpoint(xhci, command, 2908 command->in_ctx->dma, 2909 udev->slot_id, must_succeed); 2910 else 2911 ret = xhci_queue_evaluate_context(xhci, command, 2912 command->in_ctx->dma, 2913 udev->slot_id, must_succeed); 2914 if (ret < 0) { 2915 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2916 xhci_free_host_resources(xhci, ctrl_ctx); 2917 spin_unlock_irqrestore(&xhci->lock, flags); 2918 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2919 "FIXME allocate a new ring segment"); 2920 return -ENOMEM; 2921 } 2922 xhci_ring_cmd_db(xhci); 2923 spin_unlock_irqrestore(&xhci->lock, flags); 2924 2925 /* Wait for the configure endpoint command to complete */ 2926 wait_for_completion(command->completion); 2927 2928 if (!ctx_change) 2929 ret = xhci_configure_endpoint_result(xhci, udev, 2930 &command->status); 2931 else 2932 ret = xhci_evaluate_context_result(xhci, udev, 2933 &command->status); 2934 2935 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2936 spin_lock_irqsave(&xhci->lock, flags); 2937 /* If the command failed, remove the reserved resources. 2938 * Otherwise, clean up the estimate to include dropped eps. 2939 */ 2940 if (ret) 2941 xhci_free_host_resources(xhci, ctrl_ctx); 2942 else 2943 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2944 spin_unlock_irqrestore(&xhci->lock, flags); 2945 } 2946 return ret; 2947 } 2948 xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2949 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2950 struct xhci_virt_device *vdev, int i) 2951 { 2952 struct xhci_virt_ep *ep = &vdev->eps[i]; 2953 2954 if (ep->ep_state & EP_HAS_STREAMS) { 2955 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2956 xhci_get_endpoint_address(i)); 2957 xhci_free_stream_info(xhci, ep->stream_info); 2958 ep->stream_info = NULL; 2959 ep->ep_state &= ~EP_HAS_STREAMS; 2960 } 2961 } 2962 2963 /* Called after one or more calls to xhci_add_endpoint() or 2964 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2965 * to call xhci_reset_bandwidth(). 2966 * 2967 * Since we are in the middle of changing either configuration or 2968 * installing a new alt setting, the USB core won't allow URBs to be 2969 * enqueued for any endpoint on the old config or interface. Nothing 2970 * else should be touching the xhci->devs[slot_id] structure, so we 2971 * don't need to take the xhci->lock for manipulating that. 2972 */ xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2973 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2974 { 2975 int i; 2976 int ret = 0; 2977 struct xhci_hcd *xhci; 2978 struct xhci_virt_device *virt_dev; 2979 struct xhci_input_control_ctx *ctrl_ctx; 2980 struct xhci_slot_ctx *slot_ctx; 2981 struct xhci_command *command; 2982 2983 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2984 if (ret <= 0) 2985 return ret; 2986 xhci = hcd_to_xhci(hcd); 2987 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2988 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2989 return -ENODEV; 2990 2991 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2992 virt_dev = xhci->devs[udev->slot_id]; 2993 2994 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2995 if (!command) 2996 return -ENOMEM; 2997 2998 command->in_ctx = virt_dev->in_ctx; 2999 3000 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3001 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3002 if (!ctrl_ctx) { 3003 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3004 __func__); 3005 ret = -ENOMEM; 3006 goto command_cleanup; 3007 } 3008 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3009 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3010 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3011 3012 /* Don't issue the command if there's no endpoints to update. */ 3013 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3014 ctrl_ctx->drop_flags == 0) { 3015 ret = 0; 3016 goto command_cleanup; 3017 } 3018 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3019 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3020 for (i = 31; i >= 1; i--) { 3021 __le32 le32 = cpu_to_le32(BIT(i)); 3022 3023 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3024 || (ctrl_ctx->add_flags & le32) || i == 1) { 3025 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3026 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3027 break; 3028 } 3029 } 3030 3031 ret = xhci_configure_endpoint(xhci, udev, command, 3032 false, false); 3033 if (ret) 3034 /* Callee should call reset_bandwidth() */ 3035 goto command_cleanup; 3036 3037 /* Free any rings that were dropped, but not changed. */ 3038 for (i = 1; i < 31; i++) { 3039 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3040 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3041 xhci_free_endpoint_ring(xhci, virt_dev, i); 3042 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3043 } 3044 } 3045 xhci_zero_in_ctx(xhci, virt_dev); 3046 /* 3047 * Install any rings for completely new endpoints or changed endpoints, 3048 * and free any old rings from changed endpoints. 3049 */ 3050 for (i = 1; i < 31; i++) { 3051 if (!virt_dev->eps[i].new_ring) 3052 continue; 3053 /* Only free the old ring if it exists. 3054 * It may not if this is the first add of an endpoint. 3055 */ 3056 if (virt_dev->eps[i].ring) { 3057 xhci_free_endpoint_ring(xhci, virt_dev, i); 3058 } 3059 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3060 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3061 virt_dev->eps[i].new_ring = NULL; 3062 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3063 } 3064 command_cleanup: 3065 kfree(command->completion); 3066 kfree(command); 3067 3068 return ret; 3069 } 3070 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3071 xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3072 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3073 { 3074 struct xhci_hcd *xhci; 3075 struct xhci_virt_device *virt_dev; 3076 int i, ret; 3077 3078 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3079 if (ret <= 0) 3080 return; 3081 xhci = hcd_to_xhci(hcd); 3082 3083 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3084 virt_dev = xhci->devs[udev->slot_id]; 3085 /* Free any rings allocated for added endpoints */ 3086 for (i = 0; i < 31; i++) { 3087 if (virt_dev->eps[i].new_ring) { 3088 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3089 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3090 virt_dev->eps[i].new_ring = NULL; 3091 } 3092 } 3093 xhci_zero_in_ctx(xhci, virt_dev); 3094 } 3095 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3096 xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3097 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3098 struct xhci_container_ctx *in_ctx, 3099 struct xhci_container_ctx *out_ctx, 3100 struct xhci_input_control_ctx *ctrl_ctx, 3101 u32 add_flags, u32 drop_flags) 3102 { 3103 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3104 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3105 xhci_slot_copy(xhci, in_ctx, out_ctx); 3106 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3107 } 3108 xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3109 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3110 struct usb_host_endpoint *host_ep) 3111 { 3112 struct xhci_hcd *xhci; 3113 struct xhci_virt_device *vdev; 3114 struct xhci_virt_ep *ep; 3115 struct usb_device *udev; 3116 unsigned long flags; 3117 unsigned int ep_index; 3118 3119 xhci = hcd_to_xhci(hcd); 3120 rescan: 3121 spin_lock_irqsave(&xhci->lock, flags); 3122 3123 udev = (struct usb_device *)host_ep->hcpriv; 3124 if (!udev || !udev->slot_id) 3125 goto done; 3126 3127 vdev = xhci->devs[udev->slot_id]; 3128 if (!vdev) 3129 goto done; 3130 3131 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3132 ep = &vdev->eps[ep_index]; 3133 3134 /* wait for hub_tt_work to finish clearing hub TT */ 3135 if (ep->ep_state & EP_CLEARING_TT) { 3136 spin_unlock_irqrestore(&xhci->lock, flags); 3137 schedule_timeout_uninterruptible(1); 3138 goto rescan; 3139 } 3140 3141 if (ep->ep_state) 3142 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3143 ep->ep_state); 3144 done: 3145 host_ep->hcpriv = NULL; 3146 spin_unlock_irqrestore(&xhci->lock, flags); 3147 } 3148 3149 /* 3150 * Called after usb core issues a clear halt control message. 3151 * The host side of the halt should already be cleared by a reset endpoint 3152 * command issued when the STALL event was received. 3153 * 3154 * The reset endpoint command may only be issued to endpoints in the halted 3155 * state. For software that wishes to reset the data toggle or sequence number 3156 * of an endpoint that isn't in the halted state this function will issue a 3157 * configure endpoint command with the Drop and Add bits set for the target 3158 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3159 * 3160 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3161 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3162 */ 3163 xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3164 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3165 struct usb_host_endpoint *host_ep) 3166 { 3167 struct xhci_hcd *xhci; 3168 struct usb_device *udev; 3169 struct xhci_virt_device *vdev; 3170 struct xhci_virt_ep *ep; 3171 struct xhci_input_control_ctx *ctrl_ctx; 3172 struct xhci_command *stop_cmd, *cfg_cmd; 3173 unsigned int ep_index; 3174 unsigned long flags; 3175 u32 ep_flag; 3176 int err; 3177 3178 xhci = hcd_to_xhci(hcd); 3179 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3180 3181 /* 3182 * Usb core assumes a max packet value for ep0 on FS devices until the 3183 * real value is read from the descriptor. Core resets Ep0 if values 3184 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3185 */ 3186 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3187 3188 udev = container_of(host_ep, struct usb_device, ep0); 3189 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3190 return; 3191 3192 vdev = xhci->devs[udev->slot_id]; 3193 if (!vdev || vdev->udev != udev) 3194 return; 3195 3196 xhci_check_ep0_maxpacket(xhci, vdev); 3197 3198 /* Nothing else should be done here for ep0 during ep reset */ 3199 return; 3200 } 3201 3202 if (!host_ep->hcpriv) 3203 return; 3204 udev = (struct usb_device *) host_ep->hcpriv; 3205 vdev = xhci->devs[udev->slot_id]; 3206 3207 if (!udev->slot_id || !vdev) 3208 return; 3209 3210 ep = &vdev->eps[ep_index]; 3211 3212 spin_lock_irqsave(&xhci->lock, flags); 3213 3214 ep->ep_state &= ~EP_STALLED; 3215 3216 /* Bail out if toggle is already being cleared by a endpoint reset */ 3217 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3218 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3219 spin_unlock_irqrestore(&xhci->lock, flags); 3220 return; 3221 } 3222 spin_unlock_irqrestore(&xhci->lock, flags); 3223 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3224 if (usb_endpoint_xfer_control(&host_ep->desc) || 3225 usb_endpoint_xfer_isoc(&host_ep->desc)) 3226 return; 3227 3228 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3229 3230 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3231 return; 3232 3233 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3234 if (!stop_cmd) 3235 return; 3236 3237 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3238 if (!cfg_cmd) 3239 goto cleanup; 3240 3241 spin_lock_irqsave(&xhci->lock, flags); 3242 3243 /* block queuing new trbs and ringing ep doorbell */ 3244 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3245 3246 /* 3247 * Make sure endpoint ring is empty before resetting the toggle/seq. 3248 * Driver is required to synchronously cancel all transfer request. 3249 * Stop the endpoint to force xHC to update the output context 3250 */ 3251 3252 if (!list_empty(&ep->ring->td_list)) { 3253 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3254 spin_unlock_irqrestore(&xhci->lock, flags); 3255 xhci_free_command(xhci, cfg_cmd); 3256 goto cleanup; 3257 } 3258 3259 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3260 ep_index, 0); 3261 if (err < 0) { 3262 spin_unlock_irqrestore(&xhci->lock, flags); 3263 xhci_free_command(xhci, cfg_cmd); 3264 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3265 __func__, err); 3266 goto cleanup; 3267 } 3268 3269 xhci_ring_cmd_db(xhci); 3270 spin_unlock_irqrestore(&xhci->lock, flags); 3271 3272 wait_for_completion(stop_cmd->completion); 3273 3274 spin_lock_irqsave(&xhci->lock, flags); 3275 3276 /* config ep command clears toggle if add and drop ep flags are set */ 3277 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3278 if (!ctrl_ctx) { 3279 spin_unlock_irqrestore(&xhci->lock, flags); 3280 xhci_free_command(xhci, cfg_cmd); 3281 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3282 __func__); 3283 goto cleanup; 3284 } 3285 3286 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3287 ctrl_ctx, ep_flag, ep_flag); 3288 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3289 3290 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3291 udev->slot_id, false); 3292 if (err < 0) { 3293 spin_unlock_irqrestore(&xhci->lock, flags); 3294 xhci_free_command(xhci, cfg_cmd); 3295 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3296 __func__, err); 3297 goto cleanup; 3298 } 3299 3300 xhci_ring_cmd_db(xhci); 3301 spin_unlock_irqrestore(&xhci->lock, flags); 3302 3303 wait_for_completion(cfg_cmd->completion); 3304 3305 xhci_free_command(xhci, cfg_cmd); 3306 cleanup: 3307 xhci_free_command(xhci, stop_cmd); 3308 spin_lock_irqsave(&xhci->lock, flags); 3309 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3310 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3311 spin_unlock_irqrestore(&xhci->lock, flags); 3312 } 3313 xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3314 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3315 struct usb_device *udev, struct usb_host_endpoint *ep, 3316 unsigned int slot_id) 3317 { 3318 int ret; 3319 unsigned int ep_index; 3320 unsigned int ep_state; 3321 3322 if (!ep) 3323 return -EINVAL; 3324 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3325 if (ret <= 0) 3326 return ret ? ret : -EINVAL; 3327 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3328 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3329 " descriptor for ep 0x%x does not support streams\n", 3330 ep->desc.bEndpointAddress); 3331 return -EINVAL; 3332 } 3333 3334 ep_index = xhci_get_endpoint_index(&ep->desc); 3335 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3336 if (ep_state & EP_HAS_STREAMS || 3337 ep_state & EP_GETTING_STREAMS) { 3338 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3339 "already has streams set up.\n", 3340 ep->desc.bEndpointAddress); 3341 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3342 "dynamic stream context array reallocation.\n"); 3343 return -EINVAL; 3344 } 3345 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3346 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3347 "endpoint 0x%x; URBs are pending.\n", 3348 ep->desc.bEndpointAddress); 3349 return -EINVAL; 3350 } 3351 return 0; 3352 } 3353 xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3354 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3355 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3356 { 3357 unsigned int max_streams; 3358 3359 /* The stream context array size must be a power of two */ 3360 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3361 /* 3362 * Find out how many primary stream array entries the host controller 3363 * supports. Later we may use secondary stream arrays (similar to 2nd 3364 * level page entries), but that's an optional feature for xHCI host 3365 * controllers. xHCs must support at least 4 stream IDs. 3366 */ 3367 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3368 if (*num_stream_ctxs > max_streams) { 3369 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3370 max_streams); 3371 *num_stream_ctxs = max_streams; 3372 *num_streams = max_streams; 3373 } 3374 } 3375 3376 /* Returns an error code if one of the endpoint already has streams. 3377 * This does not change any data structures, it only checks and gathers 3378 * information. 3379 */ xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3380 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3381 struct usb_device *udev, 3382 struct usb_host_endpoint **eps, unsigned int num_eps, 3383 unsigned int *num_streams, u32 *changed_ep_bitmask) 3384 { 3385 unsigned int max_streams; 3386 unsigned int endpoint_flag; 3387 int i; 3388 int ret; 3389 3390 for (i = 0; i < num_eps; i++) { 3391 ret = xhci_check_streams_endpoint(xhci, udev, 3392 eps[i], udev->slot_id); 3393 if (ret < 0) 3394 return ret; 3395 3396 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3397 if (max_streams < (*num_streams - 1)) { 3398 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3399 eps[i]->desc.bEndpointAddress, 3400 max_streams); 3401 *num_streams = max_streams+1; 3402 } 3403 3404 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3405 if (*changed_ep_bitmask & endpoint_flag) 3406 return -EINVAL; 3407 *changed_ep_bitmask |= endpoint_flag; 3408 } 3409 return 0; 3410 } 3411 xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3412 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3413 struct usb_device *udev, 3414 struct usb_host_endpoint **eps, unsigned int num_eps) 3415 { 3416 u32 changed_ep_bitmask = 0; 3417 unsigned int slot_id; 3418 unsigned int ep_index; 3419 unsigned int ep_state; 3420 int i; 3421 3422 slot_id = udev->slot_id; 3423 if (!xhci->devs[slot_id]) 3424 return 0; 3425 3426 for (i = 0; i < num_eps; i++) { 3427 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3428 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3429 /* Are streams already being freed for the endpoint? */ 3430 if (ep_state & EP_GETTING_NO_STREAMS) { 3431 xhci_warn(xhci, "WARN Can't disable streams for " 3432 "endpoint 0x%x, " 3433 "streams are being disabled already\n", 3434 eps[i]->desc.bEndpointAddress); 3435 return 0; 3436 } 3437 /* Are there actually any streams to free? */ 3438 if (!(ep_state & EP_HAS_STREAMS) && 3439 !(ep_state & EP_GETTING_STREAMS)) { 3440 xhci_warn(xhci, "WARN Can't disable streams for " 3441 "endpoint 0x%x, " 3442 "streams are already disabled!\n", 3443 eps[i]->desc.bEndpointAddress); 3444 xhci_warn(xhci, "WARN xhci_free_streams() called " 3445 "with non-streams endpoint\n"); 3446 return 0; 3447 } 3448 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3449 } 3450 return changed_ep_bitmask; 3451 } 3452 3453 /* 3454 * The USB device drivers use this function (through the HCD interface in USB 3455 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3456 * coordinate mass storage command queueing across multiple endpoints (basically 3457 * a stream ID == a task ID). 3458 * 3459 * Setting up streams involves allocating the same size stream context array 3460 * for each endpoint and issuing a configure endpoint command for all endpoints. 3461 * 3462 * Don't allow the call to succeed if one endpoint only supports one stream 3463 * (which means it doesn't support streams at all). 3464 * 3465 * Drivers may get less stream IDs than they asked for, if the host controller 3466 * hardware or endpoints claim they can't support the number of requested 3467 * stream IDs. 3468 */ xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3469 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3470 struct usb_host_endpoint **eps, unsigned int num_eps, 3471 unsigned int num_streams, gfp_t mem_flags) 3472 { 3473 int i, ret; 3474 struct xhci_hcd *xhci; 3475 struct xhci_virt_device *vdev; 3476 struct xhci_command *config_cmd; 3477 struct xhci_input_control_ctx *ctrl_ctx; 3478 unsigned int ep_index; 3479 unsigned int num_stream_ctxs; 3480 unsigned int max_packet; 3481 unsigned long flags; 3482 u32 changed_ep_bitmask = 0; 3483 3484 if (!eps) 3485 return -EINVAL; 3486 3487 /* Add one to the number of streams requested to account for 3488 * stream 0 that is reserved for xHCI usage. 3489 */ 3490 num_streams += 1; 3491 xhci = hcd_to_xhci(hcd); 3492 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3493 num_streams); 3494 3495 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3496 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3497 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3498 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3499 return -ENOSYS; 3500 } 3501 3502 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3503 if (!config_cmd) 3504 return -ENOMEM; 3505 3506 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3507 if (!ctrl_ctx) { 3508 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3509 __func__); 3510 xhci_free_command(xhci, config_cmd); 3511 return -ENOMEM; 3512 } 3513 3514 /* Check to make sure all endpoints are not already configured for 3515 * streams. While we're at it, find the maximum number of streams that 3516 * all the endpoints will support and check for duplicate endpoints. 3517 */ 3518 spin_lock_irqsave(&xhci->lock, flags); 3519 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3520 num_eps, &num_streams, &changed_ep_bitmask); 3521 if (ret < 0) { 3522 xhci_free_command(xhci, config_cmd); 3523 spin_unlock_irqrestore(&xhci->lock, flags); 3524 return ret; 3525 } 3526 if (num_streams <= 1) { 3527 xhci_warn(xhci, "WARN: endpoints can't handle " 3528 "more than one stream.\n"); 3529 xhci_free_command(xhci, config_cmd); 3530 spin_unlock_irqrestore(&xhci->lock, flags); 3531 return -EINVAL; 3532 } 3533 vdev = xhci->devs[udev->slot_id]; 3534 /* Mark each endpoint as being in transition, so 3535 * xhci_urb_enqueue() will reject all URBs. 3536 */ 3537 for (i = 0; i < num_eps; i++) { 3538 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3539 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3540 } 3541 spin_unlock_irqrestore(&xhci->lock, flags); 3542 3543 /* Setup internal data structures and allocate HW data structures for 3544 * streams (but don't install the HW structures in the input context 3545 * until we're sure all memory allocation succeeded). 3546 */ 3547 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3548 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3549 num_stream_ctxs, num_streams); 3550 3551 for (i = 0; i < num_eps; i++) { 3552 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3553 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3554 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3555 num_stream_ctxs, 3556 num_streams, 3557 max_packet, mem_flags); 3558 if (!vdev->eps[ep_index].stream_info) 3559 goto cleanup; 3560 /* Set maxPstreams in endpoint context and update deq ptr to 3561 * point to stream context array. FIXME 3562 */ 3563 } 3564 3565 /* Set up the input context for a configure endpoint command. */ 3566 for (i = 0; i < num_eps; i++) { 3567 struct xhci_ep_ctx *ep_ctx; 3568 3569 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3570 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3571 3572 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3573 vdev->out_ctx, ep_index); 3574 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3575 vdev->eps[ep_index].stream_info); 3576 } 3577 /* Tell the HW to drop its old copy of the endpoint context info 3578 * and add the updated copy from the input context. 3579 */ 3580 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3581 vdev->out_ctx, ctrl_ctx, 3582 changed_ep_bitmask, changed_ep_bitmask); 3583 3584 /* Issue and wait for the configure endpoint command */ 3585 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3586 false, false); 3587 3588 /* xHC rejected the configure endpoint command for some reason, so we 3589 * leave the old ring intact and free our internal streams data 3590 * structure. 3591 */ 3592 if (ret < 0) 3593 goto cleanup; 3594 3595 spin_lock_irqsave(&xhci->lock, flags); 3596 for (i = 0; i < num_eps; i++) { 3597 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3598 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3599 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3600 udev->slot_id, ep_index); 3601 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3602 } 3603 xhci_free_command(xhci, config_cmd); 3604 spin_unlock_irqrestore(&xhci->lock, flags); 3605 3606 for (i = 0; i < num_eps; i++) { 3607 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3608 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3609 } 3610 /* Subtract 1 for stream 0, which drivers can't use */ 3611 return num_streams - 1; 3612 3613 cleanup: 3614 /* If it didn't work, free the streams! */ 3615 for (i = 0; i < num_eps; i++) { 3616 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3617 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3618 vdev->eps[ep_index].stream_info = NULL; 3619 /* FIXME Unset maxPstreams in endpoint context and 3620 * update deq ptr to point to normal string ring. 3621 */ 3622 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3623 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3624 xhci_endpoint_zero(xhci, vdev, eps[i]); 3625 } 3626 xhci_free_command(xhci, config_cmd); 3627 return -ENOMEM; 3628 } 3629 3630 /* Transition the endpoint from using streams to being a "normal" endpoint 3631 * without streams. 3632 * 3633 * Modify the endpoint context state, submit a configure endpoint command, 3634 * and free all endpoint rings for streams if that completes successfully. 3635 */ xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3636 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3637 struct usb_host_endpoint **eps, unsigned int num_eps, 3638 gfp_t mem_flags) 3639 { 3640 int i, ret; 3641 struct xhci_hcd *xhci; 3642 struct xhci_virt_device *vdev; 3643 struct xhci_command *command; 3644 struct xhci_input_control_ctx *ctrl_ctx; 3645 unsigned int ep_index; 3646 unsigned long flags; 3647 u32 changed_ep_bitmask; 3648 3649 xhci = hcd_to_xhci(hcd); 3650 vdev = xhci->devs[udev->slot_id]; 3651 3652 /* Set up a configure endpoint command to remove the streams rings */ 3653 spin_lock_irqsave(&xhci->lock, flags); 3654 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3655 udev, eps, num_eps); 3656 if (changed_ep_bitmask == 0) { 3657 spin_unlock_irqrestore(&xhci->lock, flags); 3658 return -EINVAL; 3659 } 3660 3661 /* Use the xhci_command structure from the first endpoint. We may have 3662 * allocated too many, but the driver may call xhci_free_streams() for 3663 * each endpoint it grouped into one call to xhci_alloc_streams(). 3664 */ 3665 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3666 command = vdev->eps[ep_index].stream_info->free_streams_command; 3667 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3668 if (!ctrl_ctx) { 3669 spin_unlock_irqrestore(&xhci->lock, flags); 3670 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3671 __func__); 3672 return -EINVAL; 3673 } 3674 3675 for (i = 0; i < num_eps; i++) { 3676 struct xhci_ep_ctx *ep_ctx; 3677 3678 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3679 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3680 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3681 EP_GETTING_NO_STREAMS; 3682 3683 xhci_endpoint_copy(xhci, command->in_ctx, 3684 vdev->out_ctx, ep_index); 3685 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3686 &vdev->eps[ep_index]); 3687 } 3688 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3689 vdev->out_ctx, ctrl_ctx, 3690 changed_ep_bitmask, changed_ep_bitmask); 3691 spin_unlock_irqrestore(&xhci->lock, flags); 3692 3693 /* Issue and wait for the configure endpoint command, 3694 * which must succeed. 3695 */ 3696 ret = xhci_configure_endpoint(xhci, udev, command, 3697 false, true); 3698 3699 /* xHC rejected the configure endpoint command for some reason, so we 3700 * leave the streams rings intact. 3701 */ 3702 if (ret < 0) 3703 return ret; 3704 3705 spin_lock_irqsave(&xhci->lock, flags); 3706 for (i = 0; i < num_eps; i++) { 3707 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3708 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3709 vdev->eps[ep_index].stream_info = NULL; 3710 /* FIXME Unset maxPstreams in endpoint context and 3711 * update deq ptr to point to normal string ring. 3712 */ 3713 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3714 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3715 } 3716 spin_unlock_irqrestore(&xhci->lock, flags); 3717 3718 return 0; 3719 } 3720 3721 /* 3722 * Deletes endpoint resources for endpoints that were active before a Reset 3723 * Device command, or a Disable Slot command. The Reset Device command leaves 3724 * the control endpoint intact, whereas the Disable Slot command deletes it. 3725 * 3726 * Must be called with xhci->lock held. 3727 */ xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3728 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3729 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3730 { 3731 int i; 3732 unsigned int num_dropped_eps = 0; 3733 unsigned int drop_flags = 0; 3734 3735 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3736 if (virt_dev->eps[i].ring) { 3737 drop_flags |= 1 << i; 3738 num_dropped_eps++; 3739 } 3740 } 3741 xhci->num_active_eps -= num_dropped_eps; 3742 if (num_dropped_eps) 3743 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3744 "Dropped %u ep ctxs, flags = 0x%x, " 3745 "%u now active.", 3746 num_dropped_eps, drop_flags, 3747 xhci->num_active_eps); 3748 } 3749 3750 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev); 3751 3752 /* 3753 * This submits a Reset Device Command, which will set the device state to 0, 3754 * set the device address to 0, and disable all the endpoints except the default 3755 * control endpoint. The USB core should come back and call 3756 * xhci_address_device(), and then re-set up the configuration. If this is 3757 * called because of a usb_reset_and_verify_device(), then the old alternate 3758 * settings will be re-installed through the normal bandwidth allocation 3759 * functions. 3760 * 3761 * Wait for the Reset Device command to finish. Remove all structures 3762 * associated with the endpoints that were disabled. Clear the input device 3763 * structure? Reset the control endpoint 0 max packet size? 3764 * 3765 * If the virt_dev to be reset does not exist or does not match the udev, 3766 * it means the device is lost, possibly due to the xHC restore error and 3767 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3768 * re-allocate the device. 3769 */ xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3770 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3771 struct usb_device *udev) 3772 { 3773 int ret, i; 3774 unsigned long flags; 3775 struct xhci_hcd *xhci; 3776 unsigned int slot_id; 3777 struct xhci_virt_device *virt_dev; 3778 struct xhci_command *reset_device_cmd; 3779 struct xhci_slot_ctx *slot_ctx; 3780 int old_active_eps = 0; 3781 3782 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3783 if (ret <= 0) 3784 return ret; 3785 xhci = hcd_to_xhci(hcd); 3786 slot_id = udev->slot_id; 3787 virt_dev = xhci->devs[slot_id]; 3788 if (!virt_dev) { 3789 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3790 "not exist. Re-allocate the device\n", slot_id); 3791 ret = xhci_alloc_dev(hcd, udev); 3792 if (ret == 1) 3793 return 0; 3794 else 3795 return -EINVAL; 3796 } 3797 3798 if (virt_dev->tt_info) 3799 old_active_eps = virt_dev->tt_info->active_eps; 3800 3801 if (virt_dev->udev != udev) { 3802 /* If the virt_dev and the udev does not match, this virt_dev 3803 * may belong to another udev. 3804 * Re-allocate the device. 3805 */ 3806 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3807 "not match the udev. Re-allocate the device\n", 3808 slot_id); 3809 ret = xhci_alloc_dev(hcd, udev); 3810 if (ret == 1) 3811 return 0; 3812 else 3813 return -EINVAL; 3814 } 3815 3816 /* If device is not setup, there is no point in resetting it */ 3817 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3818 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3819 SLOT_STATE_DISABLED) 3820 return 0; 3821 3822 if (xhci->quirks & XHCI_ETRON_HOST) { 3823 /* 3824 * Obtaining a new device slot to inform the xHCI host that 3825 * the USB device has been reset. 3826 */ 3827 ret = xhci_disable_slot(xhci, udev->slot_id); 3828 xhci_free_virt_device(xhci, udev->slot_id); 3829 if (!ret) { 3830 ret = xhci_alloc_dev(hcd, udev); 3831 if (ret == 1) 3832 ret = 0; 3833 else 3834 ret = -EINVAL; 3835 } 3836 return ret; 3837 } 3838 3839 trace_xhci_discover_or_reset_device(slot_ctx); 3840 3841 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3842 /* Allocate the command structure that holds the struct completion. 3843 * Assume we're in process context, since the normal device reset 3844 * process has to wait for the device anyway. Storage devices are 3845 * reset as part of error handling, so use GFP_NOIO instead of 3846 * GFP_KERNEL. 3847 */ 3848 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3849 if (!reset_device_cmd) { 3850 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3851 return -ENOMEM; 3852 } 3853 3854 /* Attempt to submit the Reset Device command to the command ring */ 3855 spin_lock_irqsave(&xhci->lock, flags); 3856 3857 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3858 if (ret) { 3859 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3860 spin_unlock_irqrestore(&xhci->lock, flags); 3861 goto command_cleanup; 3862 } 3863 xhci_ring_cmd_db(xhci); 3864 spin_unlock_irqrestore(&xhci->lock, flags); 3865 3866 /* Wait for the Reset Device command to finish */ 3867 wait_for_completion(reset_device_cmd->completion); 3868 3869 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3870 * unless we tried to reset a slot ID that wasn't enabled, 3871 * or the device wasn't in the addressed or configured state. 3872 */ 3873 ret = reset_device_cmd->status; 3874 switch (ret) { 3875 case COMP_COMMAND_ABORTED: 3876 case COMP_COMMAND_RING_STOPPED: 3877 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3878 ret = -ETIME; 3879 goto command_cleanup; 3880 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3881 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3882 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3883 slot_id, 3884 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3885 xhci_dbg(xhci, "Not freeing device rings.\n"); 3886 /* Don't treat this as an error. May change my mind later. */ 3887 ret = 0; 3888 goto command_cleanup; 3889 case COMP_SUCCESS: 3890 xhci_dbg(xhci, "Successful reset device command.\n"); 3891 break; 3892 default: 3893 if (xhci_is_vendor_info_code(xhci, ret)) 3894 break; 3895 xhci_warn(xhci, "Unknown completion code %u for " 3896 "reset device command.\n", ret); 3897 ret = -EINVAL; 3898 goto command_cleanup; 3899 } 3900 3901 /* Free up host controller endpoint resources */ 3902 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3903 spin_lock_irqsave(&xhci->lock, flags); 3904 /* Don't delete the default control endpoint resources */ 3905 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3906 spin_unlock_irqrestore(&xhci->lock, flags); 3907 } 3908 3909 /* Everything but endpoint 0 is disabled, so free the rings. */ 3910 for (i = 1; i < 31; i++) { 3911 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3912 3913 if (ep->ep_state & EP_HAS_STREAMS) { 3914 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3915 xhci_get_endpoint_address(i)); 3916 xhci_free_stream_info(xhci, ep->stream_info); 3917 ep->stream_info = NULL; 3918 ep->ep_state &= ~EP_HAS_STREAMS; 3919 } 3920 3921 if (ep->ring) { 3922 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3923 xhci_free_endpoint_ring(xhci, virt_dev, i); 3924 } 3925 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3926 xhci_drop_ep_from_interval_table(xhci, 3927 &virt_dev->eps[i].bw_info, 3928 virt_dev->bw_table, 3929 udev, 3930 &virt_dev->eps[i], 3931 virt_dev->tt_info); 3932 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3933 } 3934 /* If necessary, update the number of active TTs on this root port */ 3935 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3936 virt_dev->flags = 0; 3937 ret = 0; 3938 3939 command_cleanup: 3940 xhci_free_command(xhci, reset_device_cmd); 3941 return ret; 3942 } 3943 3944 /* 3945 * At this point, the struct usb_device is about to go away, the device has 3946 * disconnected, and all traffic has been stopped and the endpoints have been 3947 * disabled. Free any HC data structures associated with that device. 3948 */ xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3949 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3950 { 3951 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3952 struct xhci_virt_device *virt_dev; 3953 struct xhci_slot_ctx *slot_ctx; 3954 unsigned long flags; 3955 int i, ret; 3956 3957 /* 3958 * We called pm_runtime_get_noresume when the device was attached. 3959 * Decrement the counter here to allow controller to runtime suspend 3960 * if no devices remain. 3961 */ 3962 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3963 pm_runtime_put_noidle(hcd->self.controller); 3964 3965 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3966 /* If the host is halted due to driver unload, we still need to free the 3967 * device. 3968 */ 3969 if (ret <= 0 && ret != -ENODEV) 3970 return; 3971 3972 virt_dev = xhci->devs[udev->slot_id]; 3973 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3974 trace_xhci_free_dev(slot_ctx); 3975 3976 /* Stop any wayward timer functions (which may grab the lock) */ 3977 for (i = 0; i < 31; i++) 3978 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3979 virt_dev->udev = NULL; 3980 xhci_disable_slot(xhci, udev->slot_id); 3981 3982 spin_lock_irqsave(&xhci->lock, flags); 3983 xhci_free_virt_device(xhci, udev->slot_id); 3984 spin_unlock_irqrestore(&xhci->lock, flags); 3985 3986 } 3987 xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3988 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3989 { 3990 struct xhci_command *command; 3991 unsigned long flags; 3992 u32 state; 3993 int ret; 3994 3995 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3996 if (!command) 3997 return -ENOMEM; 3998 3999 xhci_debugfs_remove_slot(xhci, slot_id); 4000 4001 spin_lock_irqsave(&xhci->lock, flags); 4002 /* Don't disable the slot if the host controller is dead. */ 4003 state = readl(&xhci->op_regs->status); 4004 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 4005 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4006 spin_unlock_irqrestore(&xhci->lock, flags); 4007 kfree(command); 4008 return -ENODEV; 4009 } 4010 4011 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 4012 slot_id); 4013 if (ret) { 4014 spin_unlock_irqrestore(&xhci->lock, flags); 4015 kfree(command); 4016 return ret; 4017 } 4018 xhci_ring_cmd_db(xhci); 4019 spin_unlock_irqrestore(&xhci->lock, flags); 4020 4021 wait_for_completion(command->completion); 4022 4023 if (command->status != COMP_SUCCESS) 4024 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 4025 slot_id, command->status); 4026 4027 xhci_free_command(xhci, command); 4028 4029 return 0; 4030 } 4031 4032 /* 4033 * Checks if we have enough host controller resources for the default control 4034 * endpoint. 4035 * 4036 * Must be called with xhci->lock held. 4037 */ xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4038 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4039 { 4040 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4041 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4042 "Not enough ep ctxs: " 4043 "%u active, need to add 1, limit is %u.", 4044 xhci->num_active_eps, xhci->limit_active_eps); 4045 return -ENOMEM; 4046 } 4047 xhci->num_active_eps += 1; 4048 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4049 "Adding 1 ep ctx, %u now active.", 4050 xhci->num_active_eps); 4051 return 0; 4052 } 4053 4054 4055 /* 4056 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4057 * timed out, or allocating memory failed. Returns 1 on success. 4058 */ xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4059 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4060 { 4061 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4062 struct xhci_virt_device *vdev; 4063 struct xhci_slot_ctx *slot_ctx; 4064 unsigned long flags; 4065 int ret, slot_id; 4066 struct xhci_command *command; 4067 4068 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4069 if (!command) 4070 return 0; 4071 4072 spin_lock_irqsave(&xhci->lock, flags); 4073 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4074 if (ret) { 4075 spin_unlock_irqrestore(&xhci->lock, flags); 4076 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4077 xhci_free_command(xhci, command); 4078 return 0; 4079 } 4080 xhci_ring_cmd_db(xhci); 4081 spin_unlock_irqrestore(&xhci->lock, flags); 4082 4083 wait_for_completion(command->completion); 4084 slot_id = command->slot_id; 4085 4086 if (!slot_id || command->status != COMP_SUCCESS) { 4087 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4088 xhci_trb_comp_code_string(command->status)); 4089 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4090 HCS_MAX_SLOTS( 4091 readl(&xhci->cap_regs->hcs_params1))); 4092 xhci_free_command(xhci, command); 4093 return 0; 4094 } 4095 4096 xhci_free_command(xhci, command); 4097 4098 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4099 spin_lock_irqsave(&xhci->lock, flags); 4100 ret = xhci_reserve_host_control_ep_resources(xhci); 4101 if (ret) { 4102 spin_unlock_irqrestore(&xhci->lock, flags); 4103 xhci_warn(xhci, "Not enough host resources, " 4104 "active endpoint contexts = %u\n", 4105 xhci->num_active_eps); 4106 goto disable_slot; 4107 } 4108 spin_unlock_irqrestore(&xhci->lock, flags); 4109 } 4110 /* Use GFP_NOIO, since this function can be called from 4111 * xhci_discover_or_reset_device(), which may be called as part of 4112 * mass storage driver error handling. 4113 */ 4114 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4115 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4116 goto disable_slot; 4117 } 4118 vdev = xhci->devs[slot_id]; 4119 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4120 trace_xhci_alloc_dev(slot_ctx); 4121 4122 udev->slot_id = slot_id; 4123 4124 xhci_debugfs_create_slot(xhci, slot_id); 4125 4126 /* 4127 * If resetting upon resume, we can't put the controller into runtime 4128 * suspend if there is a device attached. 4129 */ 4130 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4131 pm_runtime_get_noresume(hcd->self.controller); 4132 4133 /* Is this a LS or FS device under a HS hub? */ 4134 /* Hub or peripherial? */ 4135 return 1; 4136 4137 disable_slot: 4138 xhci_disable_slot(xhci, udev->slot_id); 4139 xhci_free_virt_device(xhci, udev->slot_id); 4140 4141 return 0; 4142 } 4143 4144 /** 4145 * xhci_setup_device - issues an Address Device command to assign a unique 4146 * USB bus address. 4147 * @hcd: USB host controller data structure. 4148 * @udev: USB dev structure representing the connected device. 4149 * @setup: Enum specifying setup mode: address only or with context. 4150 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4151 * 4152 * Return: 0 if successful; otherwise, negative error code. 4153 */ xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4154 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4155 enum xhci_setup_dev setup, unsigned int timeout_ms) 4156 { 4157 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4158 unsigned long flags; 4159 struct xhci_virt_device *virt_dev; 4160 int ret = 0; 4161 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4162 struct xhci_slot_ctx *slot_ctx; 4163 struct xhci_input_control_ctx *ctrl_ctx; 4164 u64 temp_64; 4165 struct xhci_command *command = NULL; 4166 4167 mutex_lock(&xhci->mutex); 4168 4169 if (xhci->xhc_state) { /* dying, removing or halted */ 4170 ret = -ESHUTDOWN; 4171 goto out; 4172 } 4173 4174 if (!udev->slot_id) { 4175 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4176 "Bad Slot ID %d", udev->slot_id); 4177 ret = -EINVAL; 4178 goto out; 4179 } 4180 4181 virt_dev = xhci->devs[udev->slot_id]; 4182 4183 if (WARN_ON(!virt_dev)) { 4184 /* 4185 * In plug/unplug torture test with an NEC controller, 4186 * a zero-dereference was observed once due to virt_dev = 0. 4187 * Print useful debug rather than crash if it is observed again! 4188 */ 4189 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4190 udev->slot_id); 4191 ret = -EINVAL; 4192 goto out; 4193 } 4194 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4195 trace_xhci_setup_device_slot(slot_ctx); 4196 4197 if (setup == SETUP_CONTEXT_ONLY) { 4198 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4199 SLOT_STATE_DEFAULT) { 4200 xhci_dbg(xhci, "Slot already in default state\n"); 4201 goto out; 4202 } 4203 } 4204 4205 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4206 if (!command) { 4207 ret = -ENOMEM; 4208 goto out; 4209 } 4210 4211 command->in_ctx = virt_dev->in_ctx; 4212 command->timeout_ms = timeout_ms; 4213 4214 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4215 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4216 if (!ctrl_ctx) { 4217 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4218 __func__); 4219 ret = -EINVAL; 4220 goto out; 4221 } 4222 /* 4223 * If this is the first Set Address since device plug-in or 4224 * virt_device realloaction after a resume with an xHCI power loss, 4225 * then set up the slot context. 4226 */ 4227 if (!slot_ctx->dev_info) 4228 xhci_setup_addressable_virt_dev(xhci, udev); 4229 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4230 else 4231 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4232 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4233 ctrl_ctx->drop_flags = 0; 4234 4235 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4236 le32_to_cpu(slot_ctx->dev_info) >> 27); 4237 4238 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4239 spin_lock_irqsave(&xhci->lock, flags); 4240 trace_xhci_setup_device(virt_dev); 4241 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4242 udev->slot_id, setup); 4243 if (ret) { 4244 spin_unlock_irqrestore(&xhci->lock, flags); 4245 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4246 "FIXME: allocate a command ring segment"); 4247 goto out; 4248 } 4249 xhci_ring_cmd_db(xhci); 4250 spin_unlock_irqrestore(&xhci->lock, flags); 4251 4252 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4253 wait_for_completion(command->completion); 4254 4255 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4256 * the SetAddress() "recovery interval" required by USB and aborting the 4257 * command on a timeout. 4258 */ 4259 switch (command->status) { 4260 case COMP_COMMAND_ABORTED: 4261 case COMP_COMMAND_RING_STOPPED: 4262 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4263 ret = -ETIME; 4264 break; 4265 case COMP_CONTEXT_STATE_ERROR: 4266 case COMP_SLOT_NOT_ENABLED_ERROR: 4267 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4268 act, udev->slot_id); 4269 ret = -EINVAL; 4270 break; 4271 case COMP_USB_TRANSACTION_ERROR: 4272 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4273 4274 mutex_unlock(&xhci->mutex); 4275 ret = xhci_disable_slot(xhci, udev->slot_id); 4276 xhci_free_virt_device(xhci, udev->slot_id); 4277 if (!ret) { 4278 if (xhci_alloc_dev(hcd, udev) == 1) 4279 xhci_setup_addressable_virt_dev(xhci, udev); 4280 } 4281 kfree(command->completion); 4282 kfree(command); 4283 return -EPROTO; 4284 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4285 dev_warn(&udev->dev, 4286 "ERROR: Incompatible device for setup %s command\n", act); 4287 ret = -ENODEV; 4288 break; 4289 case COMP_SUCCESS: 4290 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4291 "Successful setup %s command", act); 4292 break; 4293 default: 4294 xhci_err(xhci, 4295 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4296 act, command->status); 4297 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4298 ret = -EINVAL; 4299 break; 4300 } 4301 if (ret) 4302 goto out; 4303 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4304 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4305 "Op regs DCBAA ptr = %#016llx", temp_64); 4306 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4307 "Slot ID %d dcbaa entry @%p = %#016llx", 4308 udev->slot_id, 4309 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4310 (unsigned long long) 4311 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4312 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4313 "Output Context DMA address = %#08llx", 4314 (unsigned long long)virt_dev->out_ctx->dma); 4315 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4316 le32_to_cpu(slot_ctx->dev_info) >> 27); 4317 /* 4318 * USB core uses address 1 for the roothubs, so we add one to the 4319 * address given back to us by the HC. 4320 */ 4321 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4322 le32_to_cpu(slot_ctx->dev_info) >> 27); 4323 /* Zero the input context control for later use */ 4324 ctrl_ctx->add_flags = 0; 4325 ctrl_ctx->drop_flags = 0; 4326 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4327 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4328 4329 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4330 "Internal device address = %d", 4331 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4332 out: 4333 mutex_unlock(&xhci->mutex); 4334 if (command) { 4335 kfree(command->completion); 4336 kfree(command); 4337 } 4338 return ret; 4339 } 4340 xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4341 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4342 unsigned int timeout_ms) 4343 { 4344 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4345 } 4346 xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4347 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4348 { 4349 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4350 XHCI_CMD_DEFAULT_TIMEOUT); 4351 } 4352 4353 /* 4354 * Transfer the port index into real index in the HW port status 4355 * registers. Caculate offset between the port's PORTSC register 4356 * and port status base. Divide the number of per port register 4357 * to get the real index. The raw port number bases 1. 4358 */ xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4359 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4360 { 4361 struct xhci_hub *rhub; 4362 4363 rhub = xhci_get_rhub(hcd); 4364 return rhub->ports[port1 - 1]->hw_portnum + 1; 4365 } 4366 4367 /* 4368 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4369 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4370 */ xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4371 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4372 struct usb_device *udev, u16 max_exit_latency) 4373 { 4374 struct xhci_virt_device *virt_dev; 4375 struct xhci_command *command; 4376 struct xhci_input_control_ctx *ctrl_ctx; 4377 struct xhci_slot_ctx *slot_ctx; 4378 unsigned long flags; 4379 int ret; 4380 4381 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4382 if (!command) 4383 return -ENOMEM; 4384 4385 spin_lock_irqsave(&xhci->lock, flags); 4386 4387 virt_dev = xhci->devs[udev->slot_id]; 4388 4389 /* 4390 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4391 * xHC was re-initialized. Exit latency will be set later after 4392 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4393 */ 4394 4395 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4396 spin_unlock_irqrestore(&xhci->lock, flags); 4397 xhci_free_command(xhci, command); 4398 return 0; 4399 } 4400 4401 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4402 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4403 if (!ctrl_ctx) { 4404 spin_unlock_irqrestore(&xhci->lock, flags); 4405 xhci_free_command(xhci, command); 4406 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4407 __func__); 4408 return -ENOMEM; 4409 } 4410 4411 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4412 spin_unlock_irqrestore(&xhci->lock, flags); 4413 4414 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4415 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4416 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4417 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4418 slot_ctx->dev_state = 0; 4419 4420 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4421 "Set up evaluate context for LPM MEL change."); 4422 4423 /* Issue and wait for the evaluate context command. */ 4424 ret = xhci_configure_endpoint(xhci, udev, command, 4425 true, true); 4426 4427 if (!ret) { 4428 spin_lock_irqsave(&xhci->lock, flags); 4429 virt_dev->current_mel = max_exit_latency; 4430 spin_unlock_irqrestore(&xhci->lock, flags); 4431 } 4432 4433 xhci_free_command(xhci, command); 4434 4435 return ret; 4436 } 4437 4438 #ifdef CONFIG_PM 4439 4440 /* BESL to HIRD Encoding array for USB2 LPM */ 4441 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4442 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4443 4444 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4445 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4446 struct usb_device *udev) 4447 { 4448 int u2del, besl, besl_host; 4449 int besl_device = 0; 4450 u32 field; 4451 4452 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4453 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4454 4455 if (field & USB_BESL_SUPPORT) { 4456 for (besl_host = 0; besl_host < 16; besl_host++) { 4457 if (xhci_besl_encoding[besl_host] >= u2del) 4458 break; 4459 } 4460 /* Use baseline BESL value as default */ 4461 if (field & USB_BESL_BASELINE_VALID) 4462 besl_device = USB_GET_BESL_BASELINE(field); 4463 else if (field & USB_BESL_DEEP_VALID) 4464 besl_device = USB_GET_BESL_DEEP(field); 4465 } else { 4466 if (u2del <= 50) 4467 besl_host = 0; 4468 else 4469 besl_host = (u2del - 51) / 75 + 1; 4470 } 4471 4472 besl = besl_host + besl_device; 4473 if (besl > 15) 4474 besl = 15; 4475 4476 return besl; 4477 } 4478 4479 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4480 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4481 { 4482 u32 field; 4483 int l1; 4484 int besld = 0; 4485 int hirdm = 0; 4486 4487 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4488 4489 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4490 l1 = udev->l1_params.timeout / 256; 4491 4492 /* device has preferred BESLD */ 4493 if (field & USB_BESL_DEEP_VALID) { 4494 besld = USB_GET_BESL_DEEP(field); 4495 hirdm = 1; 4496 } 4497 4498 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4499 } 4500 xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4501 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4502 struct usb_device *udev, int enable) 4503 { 4504 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4505 struct xhci_port **ports; 4506 __le32 __iomem *pm_addr, *hlpm_addr; 4507 u32 pm_val, hlpm_val, field; 4508 unsigned int port_num; 4509 unsigned long flags; 4510 int hird, exit_latency; 4511 int ret; 4512 4513 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4514 return -EPERM; 4515 4516 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4517 !udev->lpm_capable) 4518 return -EPERM; 4519 4520 if (!udev->parent || udev->parent->parent || 4521 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4522 return -EPERM; 4523 4524 if (udev->usb2_hw_lpm_capable != 1) 4525 return -EPERM; 4526 4527 spin_lock_irqsave(&xhci->lock, flags); 4528 4529 ports = xhci->usb2_rhub.ports; 4530 port_num = udev->portnum - 1; 4531 pm_addr = ports[port_num]->addr + PORTPMSC; 4532 pm_val = readl(pm_addr); 4533 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4534 4535 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4536 str_enable_disable(enable), port_num + 1); 4537 4538 if (enable) { 4539 /* Host supports BESL timeout instead of HIRD */ 4540 if (udev->usb2_hw_lpm_besl_capable) { 4541 /* if device doesn't have a preferred BESL value use a 4542 * default one which works with mixed HIRD and BESL 4543 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4544 */ 4545 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4546 if ((field & USB_BESL_SUPPORT) && 4547 (field & USB_BESL_BASELINE_VALID)) 4548 hird = USB_GET_BESL_BASELINE(field); 4549 else 4550 hird = udev->l1_params.besl; 4551 4552 exit_latency = xhci_besl_encoding[hird]; 4553 spin_unlock_irqrestore(&xhci->lock, flags); 4554 4555 ret = xhci_change_max_exit_latency(xhci, udev, 4556 exit_latency); 4557 if (ret < 0) 4558 return ret; 4559 spin_lock_irqsave(&xhci->lock, flags); 4560 4561 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4562 writel(hlpm_val, hlpm_addr); 4563 /* flush write */ 4564 readl(hlpm_addr); 4565 } else { 4566 hird = xhci_calculate_hird_besl(xhci, udev); 4567 } 4568 4569 pm_val &= ~PORT_HIRD_MASK; 4570 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4571 writel(pm_val, pm_addr); 4572 pm_val = readl(pm_addr); 4573 pm_val |= PORT_HLE; 4574 writel(pm_val, pm_addr); 4575 /* flush write */ 4576 readl(pm_addr); 4577 } else { 4578 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4579 writel(pm_val, pm_addr); 4580 /* flush write */ 4581 readl(pm_addr); 4582 if (udev->usb2_hw_lpm_besl_capable) { 4583 spin_unlock_irqrestore(&xhci->lock, flags); 4584 xhci_change_max_exit_latency(xhci, udev, 0); 4585 readl_poll_timeout(ports[port_num]->addr, pm_val, 4586 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4587 100, 10000); 4588 return 0; 4589 } 4590 } 4591 4592 spin_unlock_irqrestore(&xhci->lock, flags); 4593 return 0; 4594 } 4595 xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4596 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4597 { 4598 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4599 struct xhci_port *port; 4600 u32 capability; 4601 4602 /* Check if USB3 device at root port is tunneled over USB4 */ 4603 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) { 4604 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4605 4606 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port); 4607 if (udev->tunnel_mode == USB_LINK_UNKNOWN) 4608 dev_dbg(&udev->dev, "link tunnel state unknown\n"); 4609 else if (udev->tunnel_mode == USB_LINK_TUNNELED) 4610 dev_dbg(&udev->dev, "tunneled over USB4 link\n"); 4611 else if (udev->tunnel_mode == USB_LINK_NATIVE) 4612 dev_dbg(&udev->dev, "native USB 3.x link\n"); 4613 return 0; 4614 } 4615 4616 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support) 4617 return 0; 4618 4619 /* we only support lpm for non-hub device connected to root hub yet */ 4620 if (!udev->parent || udev->parent->parent || 4621 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4622 return 0; 4623 4624 port = xhci->usb2_rhub.ports[udev->portnum - 1]; 4625 capability = port->port_cap->protocol_caps; 4626 4627 if (capability & XHCI_HLC) { 4628 udev->usb2_hw_lpm_capable = 1; 4629 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4630 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4631 if (capability & XHCI_BLC) 4632 udev->usb2_hw_lpm_besl_capable = 1; 4633 } 4634 4635 return 0; 4636 } 4637 4638 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4639 4640 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4641 static unsigned long long xhci_service_interval_to_ns( 4642 struct usb_endpoint_descriptor *desc) 4643 { 4644 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4645 } 4646 xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4647 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4648 enum usb3_link_state state) 4649 { 4650 unsigned long long sel; 4651 unsigned long long pel; 4652 unsigned int max_sel_pel; 4653 char *state_name; 4654 4655 switch (state) { 4656 case USB3_LPM_U1: 4657 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4658 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4659 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4660 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4661 state_name = "U1"; 4662 break; 4663 case USB3_LPM_U2: 4664 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4665 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4666 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4667 state_name = "U2"; 4668 break; 4669 default: 4670 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4671 __func__); 4672 return USB3_LPM_DISABLED; 4673 } 4674 4675 if (sel <= max_sel_pel && pel <= max_sel_pel) 4676 return USB3_LPM_DEVICE_INITIATED; 4677 4678 if (sel > max_sel_pel) 4679 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4680 "due to long SEL %llu ms\n", 4681 state_name, sel); 4682 else 4683 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4684 "due to long PEL %llu ms\n", 4685 state_name, pel); 4686 return USB3_LPM_DISABLED; 4687 } 4688 4689 /* The U1 timeout should be the maximum of the following values: 4690 * - For control endpoints, U1 system exit latency (SEL) * 3 4691 * - For bulk endpoints, U1 SEL * 5 4692 * - For interrupt endpoints: 4693 * - Notification EPs, U1 SEL * 3 4694 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4695 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4696 */ xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4697 static unsigned long long xhci_calculate_intel_u1_timeout( 4698 struct usb_device *udev, 4699 struct usb_endpoint_descriptor *desc) 4700 { 4701 unsigned long long timeout_ns; 4702 int ep_type; 4703 int intr_type; 4704 4705 ep_type = usb_endpoint_type(desc); 4706 switch (ep_type) { 4707 case USB_ENDPOINT_XFER_CONTROL: 4708 timeout_ns = udev->u1_params.sel * 3; 4709 break; 4710 case USB_ENDPOINT_XFER_BULK: 4711 timeout_ns = udev->u1_params.sel * 5; 4712 break; 4713 case USB_ENDPOINT_XFER_INT: 4714 intr_type = usb_endpoint_interrupt_type(desc); 4715 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4716 timeout_ns = udev->u1_params.sel * 3; 4717 break; 4718 } 4719 /* Otherwise the calculation is the same as isoc eps */ 4720 fallthrough; 4721 case USB_ENDPOINT_XFER_ISOC: 4722 timeout_ns = xhci_service_interval_to_ns(desc); 4723 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4724 if (timeout_ns < udev->u1_params.sel * 2) 4725 timeout_ns = udev->u1_params.sel * 2; 4726 break; 4727 default: 4728 return 0; 4729 } 4730 4731 return timeout_ns; 4732 } 4733 4734 /* Returns the hub-encoded U1 timeout value. */ xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4735 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4736 struct usb_device *udev, 4737 struct usb_endpoint_descriptor *desc) 4738 { 4739 unsigned long long timeout_ns; 4740 4741 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4742 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4743 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4744 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4745 return USB3_LPM_DISABLED; 4746 } 4747 } 4748 4749 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4750 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4751 else 4752 timeout_ns = udev->u1_params.sel; 4753 4754 /* The U1 timeout is encoded in 1us intervals. 4755 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4756 */ 4757 if (timeout_ns == USB3_LPM_DISABLED) 4758 timeout_ns = 1; 4759 else 4760 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4761 4762 /* If the necessary timeout value is bigger than what we can set in the 4763 * USB 3.0 hub, we have to disable hub-initiated U1. 4764 */ 4765 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4766 return timeout_ns; 4767 dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n", 4768 timeout_ns); 4769 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4770 } 4771 4772 /* The U2 timeout should be the maximum of: 4773 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4774 * - largest bInterval of any active periodic endpoint (to avoid going 4775 * into lower power link states between intervals). 4776 * - the U2 Exit Latency of the device 4777 */ xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4778 static unsigned long long xhci_calculate_intel_u2_timeout( 4779 struct usb_device *udev, 4780 struct usb_endpoint_descriptor *desc) 4781 { 4782 unsigned long long timeout_ns; 4783 unsigned long long u2_del_ns; 4784 4785 timeout_ns = 10 * 1000 * 1000; 4786 4787 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4788 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4789 timeout_ns = xhci_service_interval_to_ns(desc); 4790 4791 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4792 if (u2_del_ns > timeout_ns) 4793 timeout_ns = u2_del_ns; 4794 4795 return timeout_ns; 4796 } 4797 4798 /* Returns the hub-encoded U2 timeout value. */ xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4799 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4800 struct usb_device *udev, 4801 struct usb_endpoint_descriptor *desc) 4802 { 4803 unsigned long long timeout_ns; 4804 4805 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4806 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4807 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4808 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4809 return USB3_LPM_DISABLED; 4810 } 4811 } 4812 4813 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4814 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4815 else 4816 timeout_ns = udev->u2_params.sel; 4817 4818 /* The U2 timeout is encoded in 256us intervals */ 4819 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4820 /* If the necessary timeout value is bigger than what we can set in the 4821 * USB 3.0 hub, we have to disable hub-initiated U2. 4822 */ 4823 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4824 return timeout_ns; 4825 dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n", 4826 timeout_ns * 256); 4827 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4828 } 4829 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4830 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4831 struct usb_device *udev, 4832 struct usb_endpoint_descriptor *desc, 4833 enum usb3_link_state state, 4834 u16 *timeout) 4835 { 4836 if (state == USB3_LPM_U1) 4837 return xhci_calculate_u1_timeout(xhci, udev, desc); 4838 else if (state == USB3_LPM_U2) 4839 return xhci_calculate_u2_timeout(xhci, udev, desc); 4840 4841 return USB3_LPM_DISABLED; 4842 } 4843 xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4844 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4845 struct usb_device *udev, 4846 struct usb_endpoint_descriptor *desc, 4847 enum usb3_link_state state, 4848 u16 *timeout) 4849 { 4850 u16 alt_timeout; 4851 4852 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4853 desc, state, timeout); 4854 4855 /* If we found we can't enable hub-initiated LPM, and 4856 * the U1 or U2 exit latency was too high to allow 4857 * device-initiated LPM as well, then we will disable LPM 4858 * for this device, so stop searching any further. 4859 */ 4860 if (alt_timeout == USB3_LPM_DISABLED) { 4861 *timeout = alt_timeout; 4862 return -E2BIG; 4863 } 4864 if (alt_timeout > *timeout) 4865 *timeout = alt_timeout; 4866 return 0; 4867 } 4868 xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4869 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4870 struct usb_device *udev, 4871 struct usb_host_interface *alt, 4872 enum usb3_link_state state, 4873 u16 *timeout) 4874 { 4875 int j; 4876 4877 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4878 if (xhci_update_timeout_for_endpoint(xhci, udev, 4879 &alt->endpoint[j].desc, state, timeout)) 4880 return -E2BIG; 4881 } 4882 return 0; 4883 } 4884 xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4885 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4886 struct usb_device *udev, 4887 enum usb3_link_state state) 4888 { 4889 struct usb_device *parent = udev->parent; 4890 int tier = 1; /* roothub is tier1 */ 4891 4892 while (parent) { 4893 parent = parent->parent; 4894 tier++; 4895 } 4896 4897 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4898 goto fail; 4899 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4900 goto fail; 4901 4902 return 0; 4903 fail: 4904 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4905 tier); 4906 return -E2BIG; 4907 } 4908 4909 /* Returns the U1 or U2 timeout that should be enabled. 4910 * If the tier check or timeout setting functions return with a non-zero exit 4911 * code, that means the timeout value has been finalized and we shouldn't look 4912 * at any more endpoints. 4913 */ xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4914 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4915 struct usb_device *udev, enum usb3_link_state state) 4916 { 4917 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4918 struct usb_host_config *config; 4919 char *state_name; 4920 int i; 4921 u16 timeout = USB3_LPM_DISABLED; 4922 4923 if (state == USB3_LPM_U1) 4924 state_name = "U1"; 4925 else if (state == USB3_LPM_U2) 4926 state_name = "U2"; 4927 else { 4928 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4929 state); 4930 return timeout; 4931 } 4932 4933 /* Gather some information about the currently installed configuration 4934 * and alternate interface settings. 4935 */ 4936 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4937 state, &timeout)) 4938 return timeout; 4939 4940 config = udev->actconfig; 4941 if (!config) 4942 return timeout; 4943 4944 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4945 struct usb_driver *driver; 4946 struct usb_interface *intf = config->interface[i]; 4947 4948 if (!intf) 4949 continue; 4950 4951 /* Check if any currently bound drivers want hub-initiated LPM 4952 * disabled. 4953 */ 4954 if (intf->dev.driver) { 4955 driver = to_usb_driver(intf->dev.driver); 4956 if (driver && driver->disable_hub_initiated_lpm) { 4957 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4958 state_name, driver->name); 4959 timeout = xhci_get_timeout_no_hub_lpm(udev, 4960 state); 4961 if (timeout == USB3_LPM_DISABLED) 4962 return timeout; 4963 } 4964 } 4965 4966 /* Not sure how this could happen... */ 4967 if (!intf->cur_altsetting) 4968 continue; 4969 4970 if (xhci_update_timeout_for_interface(xhci, udev, 4971 intf->cur_altsetting, 4972 state, &timeout)) 4973 return timeout; 4974 } 4975 return timeout; 4976 } 4977 calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4978 static int calculate_max_exit_latency(struct usb_device *udev, 4979 enum usb3_link_state state_changed, 4980 u16 hub_encoded_timeout) 4981 { 4982 unsigned long long u1_mel_us = 0; 4983 unsigned long long u2_mel_us = 0; 4984 unsigned long long mel_us = 0; 4985 bool disabling_u1; 4986 bool disabling_u2; 4987 bool enabling_u1; 4988 bool enabling_u2; 4989 4990 disabling_u1 = (state_changed == USB3_LPM_U1 && 4991 hub_encoded_timeout == USB3_LPM_DISABLED); 4992 disabling_u2 = (state_changed == USB3_LPM_U2 && 4993 hub_encoded_timeout == USB3_LPM_DISABLED); 4994 4995 enabling_u1 = (state_changed == USB3_LPM_U1 && 4996 hub_encoded_timeout != USB3_LPM_DISABLED); 4997 enabling_u2 = (state_changed == USB3_LPM_U2 && 4998 hub_encoded_timeout != USB3_LPM_DISABLED); 4999 5000 /* If U1 was already enabled and we're not disabling it, 5001 * or we're going to enable U1, account for the U1 max exit latency. 5002 */ 5003 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 5004 enabling_u1) 5005 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 5006 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 5007 enabling_u2) 5008 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 5009 5010 mel_us = max(u1_mel_us, u2_mel_us); 5011 5012 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5013 if (mel_us > MAX_EXIT) { 5014 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5015 "is too big.\n", mel_us); 5016 return -E2BIG; 5017 } 5018 return mel_us; 5019 } 5020 5021 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5022 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5023 struct usb_device *udev, enum usb3_link_state state) 5024 { 5025 struct xhci_hcd *xhci; 5026 struct xhci_port *port; 5027 u16 hub_encoded_timeout; 5028 int mel; 5029 int ret; 5030 5031 xhci = hcd_to_xhci(hcd); 5032 /* The LPM timeout values are pretty host-controller specific, so don't 5033 * enable hub-initiated timeouts unless the vendor has provided 5034 * information about their timeout algorithm. 5035 */ 5036 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5037 !xhci->devs[udev->slot_id]) 5038 return USB3_LPM_DISABLED; 5039 5040 if (xhci_check_tier_policy(xhci, udev, state) < 0) 5041 return USB3_LPM_DISABLED; 5042 5043 /* If connected to root port then check port can handle lpm */ 5044 if (udev->parent && !udev->parent->parent) { 5045 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 5046 if (port->lpm_incapable) 5047 return USB3_LPM_DISABLED; 5048 } 5049 5050 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5051 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5052 if (mel < 0) { 5053 /* Max Exit Latency is too big, disable LPM. */ 5054 hub_encoded_timeout = USB3_LPM_DISABLED; 5055 mel = 0; 5056 } 5057 5058 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5059 if (ret) 5060 return ret; 5061 return hub_encoded_timeout; 5062 } 5063 xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5064 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5065 struct usb_device *udev, enum usb3_link_state state) 5066 { 5067 struct xhci_hcd *xhci; 5068 u16 mel; 5069 5070 xhci = hcd_to_xhci(hcd); 5071 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5072 !xhci->devs[udev->slot_id]) 5073 return 0; 5074 5075 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5076 return xhci_change_max_exit_latency(xhci, udev, mel); 5077 } 5078 #else /* CONFIG_PM */ 5079 xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5080 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5081 struct usb_device *udev, int enable) 5082 { 5083 return 0; 5084 } 5085 xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5086 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5087 { 5088 return 0; 5089 } 5090 xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5091 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5092 struct usb_device *udev, enum usb3_link_state state) 5093 { 5094 return USB3_LPM_DISABLED; 5095 } 5096 xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5097 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5098 struct usb_device *udev, enum usb3_link_state state) 5099 { 5100 return 0; 5101 } 5102 #endif /* CONFIG_PM */ 5103 5104 /*-------------------------------------------------------------------------*/ 5105 5106 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5107 * internal data structures for the device. 5108 */ xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5109 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5110 struct usb_tt *tt, gfp_t mem_flags) 5111 { 5112 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5113 struct xhci_virt_device *vdev; 5114 struct xhci_command *config_cmd; 5115 struct xhci_input_control_ctx *ctrl_ctx; 5116 struct xhci_slot_ctx *slot_ctx; 5117 unsigned long flags; 5118 unsigned think_time; 5119 int ret; 5120 5121 /* Ignore root hubs */ 5122 if (!hdev->parent) 5123 return 0; 5124 5125 vdev = xhci->devs[hdev->slot_id]; 5126 if (!vdev) { 5127 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5128 return -EINVAL; 5129 } 5130 5131 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5132 if (!config_cmd) 5133 return -ENOMEM; 5134 5135 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5136 if (!ctrl_ctx) { 5137 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5138 __func__); 5139 xhci_free_command(xhci, config_cmd); 5140 return -ENOMEM; 5141 } 5142 5143 spin_lock_irqsave(&xhci->lock, flags); 5144 if (hdev->speed == USB_SPEED_HIGH && 5145 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5146 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5147 xhci_free_command(xhci, config_cmd); 5148 spin_unlock_irqrestore(&xhci->lock, flags); 5149 return -ENOMEM; 5150 } 5151 5152 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5153 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5154 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5155 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5156 /* 5157 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5158 * but it may be already set to 1 when setup an xHCI virtual 5159 * device, so clear it anyway. 5160 */ 5161 if (tt->multi) 5162 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5163 else if (hdev->speed == USB_SPEED_FULL) 5164 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5165 5166 if (xhci->hci_version > 0x95) { 5167 xhci_dbg(xhci, "xHCI version %x needs hub " 5168 "TT think time and number of ports\n", 5169 (unsigned int) xhci->hci_version); 5170 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5171 /* Set TT think time - convert from ns to FS bit times. 5172 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5173 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5174 * 5175 * xHCI 1.0: this field shall be 0 if the device is not a 5176 * High-spped hub. 5177 */ 5178 think_time = tt->think_time; 5179 if (think_time != 0) 5180 think_time = (think_time / 666) - 1; 5181 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5182 slot_ctx->tt_info |= 5183 cpu_to_le32(TT_THINK_TIME(think_time)); 5184 } else { 5185 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5186 "TT think time or number of ports\n", 5187 (unsigned int) xhci->hci_version); 5188 } 5189 slot_ctx->dev_state = 0; 5190 spin_unlock_irqrestore(&xhci->lock, flags); 5191 5192 xhci_dbg(xhci, "Set up %s for hub device.\n", 5193 (xhci->hci_version > 0x95) ? 5194 "configure endpoint" : "evaluate context"); 5195 5196 /* Issue and wait for the configure endpoint or 5197 * evaluate context command. 5198 */ 5199 if (xhci->hci_version > 0x95) 5200 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5201 false, false); 5202 else 5203 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5204 true, false); 5205 5206 xhci_free_command(xhci, config_cmd); 5207 return ret; 5208 } 5209 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5210 xhci_get_frame(struct usb_hcd * hcd)5211 static int xhci_get_frame(struct usb_hcd *hcd) 5212 { 5213 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5214 /* EHCI mods by the periodic size. Why? */ 5215 return readl(&xhci->run_regs->microframe_index) >> 3; 5216 } 5217 xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5218 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5219 { 5220 xhci->usb2_rhub.hcd = hcd; 5221 hcd->speed = HCD_USB2; 5222 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5223 /* 5224 * USB 2.0 roothub under xHCI has an integrated TT, 5225 * (rate matching hub) as opposed to having an OHCI/UHCI 5226 * companion controller. 5227 */ 5228 hcd->has_tt = 1; 5229 } 5230 xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5231 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5232 { 5233 unsigned int minor_rev; 5234 5235 /* 5236 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5237 * should return 0x31 for sbrn, or that the minor revision 5238 * is a two digit BCD containig minor and sub-minor numbers. 5239 * This was later clarified in xHCI 1.2. 5240 * 5241 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5242 * minor revision set to 0x1 instead of 0x10. 5243 */ 5244 if (xhci->usb3_rhub.min_rev == 0x1) 5245 minor_rev = 1; 5246 else 5247 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5248 5249 switch (minor_rev) { 5250 case 2: 5251 hcd->speed = HCD_USB32; 5252 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5253 hcd->self.root_hub->rx_lanes = 2; 5254 hcd->self.root_hub->tx_lanes = 2; 5255 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5256 break; 5257 case 1: 5258 hcd->speed = HCD_USB31; 5259 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5260 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5261 break; 5262 } 5263 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5264 minor_rev, minor_rev ? "Enhanced " : ""); 5265 5266 xhci->usb3_rhub.hcd = hcd; 5267 } 5268 xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5269 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5270 { 5271 struct xhci_hcd *xhci; 5272 /* 5273 * TODO: Check with DWC3 clients for sysdev according to 5274 * quirks 5275 */ 5276 struct device *dev = hcd->self.sysdev; 5277 int retval; 5278 5279 /* Accept arbitrarily long scatter-gather lists */ 5280 hcd->self.sg_tablesize = ~0; 5281 5282 /* support to build packet from discontinuous buffers */ 5283 hcd->self.no_sg_constraint = 1; 5284 5285 /* XHCI controllers don't stop the ep queue on short packets :| */ 5286 hcd->self.no_stop_on_short = 1; 5287 5288 xhci = hcd_to_xhci(hcd); 5289 5290 if (!usb_hcd_is_primary_hcd(hcd)) { 5291 xhci_hcd_init_usb3_data(xhci, hcd); 5292 return 0; 5293 } 5294 5295 mutex_init(&xhci->mutex); 5296 xhci->main_hcd = hcd; 5297 xhci->cap_regs = hcd->regs; 5298 xhci->op_regs = hcd->regs + 5299 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5300 xhci->run_regs = hcd->regs + 5301 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5302 /* Cache read-only capability registers */ 5303 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5304 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5305 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5306 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5307 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5308 if (xhci->hci_version > 0x100) 5309 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5310 5311 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5312 if ((!xhci->max_interrupters) || 5313 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5314 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5315 5316 xhci->quirks |= quirks; 5317 5318 if (get_quirks) 5319 get_quirks(dev, xhci); 5320 5321 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5322 * success event after a short transfer. This quirk will ignore such 5323 * spurious event. 5324 */ 5325 if (xhci->hci_version > 0x96) 5326 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5327 5328 if (xhci->hci_version == 0x95 && link_quirk) { 5329 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits"); 5330 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 5331 } 5332 5333 /* Make sure the HC is halted. */ 5334 retval = xhci_halt(xhci); 5335 if (retval) 5336 return retval; 5337 5338 xhci_zero_64b_regs(xhci); 5339 5340 xhci_dbg(xhci, "Resetting HCD\n"); 5341 /* Reset the internal HC memory state and registers. */ 5342 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5343 if (retval) 5344 return retval; 5345 xhci_dbg(xhci, "Reset complete\n"); 5346 5347 /* 5348 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5349 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5350 * address memory pointers actually. So, this driver clears the AC64 5351 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5352 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5353 */ 5354 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5355 xhci->hcc_params &= ~BIT(0); 5356 5357 /* Set dma_mask and coherent_dma_mask to 64-bits, 5358 * if xHC supports 64-bit addressing */ 5359 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5360 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5361 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5362 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5363 } else { 5364 /* 5365 * This is to avoid error in cases where a 32-bit USB 5366 * controller is used on a 64-bit capable system. 5367 */ 5368 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5369 if (retval) 5370 return retval; 5371 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5372 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5373 } 5374 5375 xhci_dbg(xhci, "Calling HCD init\n"); 5376 /* Initialize HCD and host controller data structures. */ 5377 retval = xhci_init(hcd); 5378 if (retval) 5379 return retval; 5380 xhci_dbg(xhci, "Called HCD init\n"); 5381 5382 if (xhci_hcd_is_usb3(hcd)) 5383 xhci_hcd_init_usb3_data(xhci, hcd); 5384 else 5385 xhci_hcd_init_usb2_data(xhci, hcd); 5386 5387 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5388 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5389 5390 return 0; 5391 } 5392 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5393 xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5394 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5395 struct usb_host_endpoint *ep) 5396 { 5397 struct xhci_hcd *xhci; 5398 struct usb_device *udev; 5399 unsigned int slot_id; 5400 unsigned int ep_index; 5401 unsigned long flags; 5402 5403 xhci = hcd_to_xhci(hcd); 5404 5405 spin_lock_irqsave(&xhci->lock, flags); 5406 udev = (struct usb_device *)ep->hcpriv; 5407 slot_id = udev->slot_id; 5408 ep_index = xhci_get_endpoint_index(&ep->desc); 5409 5410 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5411 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5412 spin_unlock_irqrestore(&xhci->lock, flags); 5413 } 5414 5415 static const struct hc_driver xhci_hc_driver = { 5416 .description = "xhci-hcd", 5417 .product_desc = "xHCI Host Controller", 5418 .hcd_priv_size = sizeof(struct xhci_hcd), 5419 5420 /* 5421 * generic hardware linkage 5422 */ 5423 .irq = xhci_irq, 5424 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5425 HCD_BH, 5426 5427 /* 5428 * basic lifecycle operations 5429 */ 5430 .reset = NULL, /* set in xhci_init_driver() */ 5431 .start = xhci_run, 5432 .stop = xhci_stop, 5433 .shutdown = xhci_shutdown, 5434 5435 /* 5436 * managing i/o requests and associated device resources 5437 */ 5438 .map_urb_for_dma = xhci_map_urb_for_dma, 5439 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5440 .urb_enqueue = xhci_urb_enqueue, 5441 .urb_dequeue = xhci_urb_dequeue, 5442 .alloc_dev = xhci_alloc_dev, 5443 .free_dev = xhci_free_dev, 5444 .alloc_streams = xhci_alloc_streams, 5445 .free_streams = xhci_free_streams, 5446 .add_endpoint = xhci_add_endpoint, 5447 .drop_endpoint = xhci_drop_endpoint, 5448 .endpoint_disable = xhci_endpoint_disable, 5449 .endpoint_reset = xhci_endpoint_reset, 5450 .check_bandwidth = xhci_check_bandwidth, 5451 .reset_bandwidth = xhci_reset_bandwidth, 5452 .address_device = xhci_address_device, 5453 .enable_device = xhci_enable_device, 5454 .update_hub_device = xhci_update_hub_device, 5455 .reset_device = xhci_discover_or_reset_device, 5456 5457 /* 5458 * scheduling support 5459 */ 5460 .get_frame_number = xhci_get_frame, 5461 5462 /* 5463 * root hub support 5464 */ 5465 .hub_control = xhci_hub_control, 5466 .hub_status_data = xhci_hub_status_data, 5467 .bus_suspend = xhci_bus_suspend, 5468 .bus_resume = xhci_bus_resume, 5469 .get_resuming_ports = xhci_get_resuming_ports, 5470 5471 /* 5472 * call back when device connected and addressed 5473 */ 5474 .update_device = xhci_update_device, 5475 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5476 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5477 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5478 .find_raw_port_number = xhci_find_raw_port_number, 5479 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5480 }; 5481 xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5482 void xhci_init_driver(struct hc_driver *drv, 5483 const struct xhci_driver_overrides *over) 5484 { 5485 BUG_ON(!over); 5486 5487 /* Copy the generic table to drv then apply the overrides */ 5488 *drv = xhci_hc_driver; 5489 5490 if (over) { 5491 drv->hcd_priv_size += over->extra_priv_size; 5492 if (over->reset) 5493 drv->reset = over->reset; 5494 if (over->start) 5495 drv->start = over->start; 5496 if (over->add_endpoint) 5497 drv->add_endpoint = over->add_endpoint; 5498 if (over->drop_endpoint) 5499 drv->drop_endpoint = over->drop_endpoint; 5500 if (over->check_bandwidth) 5501 drv->check_bandwidth = over->check_bandwidth; 5502 if (over->reset_bandwidth) 5503 drv->reset_bandwidth = over->reset_bandwidth; 5504 if (over->update_hub_device) 5505 drv->update_hub_device = over->update_hub_device; 5506 if (over->hub_control) 5507 drv->hub_control = over->hub_control; 5508 } 5509 } 5510 EXPORT_SYMBOL_GPL(xhci_init_driver); 5511 5512 MODULE_DESCRIPTION(DRIVER_DESC); 5513 MODULE_AUTHOR(DRIVER_AUTHOR); 5514 MODULE_LICENSE("GPL"); 5515 xhci_hcd_init(void)5516 static int __init xhci_hcd_init(void) 5517 { 5518 /* 5519 * Check the compiler generated sizes of structures that must be laid 5520 * out in specific ways for hardware access. 5521 */ 5522 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5523 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5524 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5525 /* xhci_device_control has eight fields, and also 5526 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5527 */ 5528 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5529 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5530 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5531 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5532 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5533 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5534 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5535 5536 if (usb_disabled()) 5537 return -ENODEV; 5538 5539 xhci_debugfs_create_root(); 5540 xhci_dbc_init(); 5541 5542 return 0; 5543 } 5544 5545 /* 5546 * If an init function is provided, an exit function must also be provided 5547 * to allow module unload. 5548 */ xhci_hcd_fini(void)5549 static void __exit xhci_hcd_fini(void) 5550 { 5551 xhci_debugfs_remove_root(); 5552 xhci_dbc_exit(); 5553 } 5554 5555 module_init(xhci_hcd_init); 5556 module_exit(xhci_hcd_fini); 5557