xref: /linux/drivers/usb/host/xhci.c (revision 3c2bd251d2039ce2778c35ced5ef47b3a379f5df)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/string_choices.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/usb/xhci-sideband.h>
24 
25 #include "xhci.h"
26 #include "xhci-trace.h"
27 #include "xhci-debugfs.h"
28 #include "xhci-dbgcap.h"
29 
30 #define DRIVER_AUTHOR "Sarah Sharp"
31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
32 
33 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 static unsigned long long quirks;
41 module_param(quirks, ullong, S_IRUGO);
42 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
43 
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)44 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
45 {
46 	struct xhci_segment *seg;
47 
48 	if (!td || !td->start_seg)
49 		return false;
50 
51 	xhci_for_each_ring_seg(ring->first_seg, seg) {
52 		if (seg == td->start_seg)
53 			return true;
54 	}
55 
56 	return false;
57 }
58 
59 /*
60  * xhci_handshake - spin reading hc until handshake completes or fails
61  * @ptr: address of hc register to be read
62  * @mask: bits to look at in result of read
63  * @done: value of those bits when handshake succeeds
64  * @usec: timeout in microseconds
65  *
66  * Returns negative errno, or zero on success
67  *
68  * Success happens when the "mask" bits have the specified value (hardware
69  * handshake done).  There are two failure modes:  "usec" have passed (major
70  * hardware flakeout), or the register reads as all-ones (hardware removed).
71  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)72 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
73 {
74 	u32	result;
75 	int	ret;
76 
77 	ret = readl_poll_timeout_atomic(ptr, result,
78 					(result & mask) == done ||
79 					result == U32_MAX,
80 					1, timeout_us);
81 	if (result == U32_MAX)		/* card removed */
82 		return -ENODEV;
83 
84 	return ret;
85 }
86 
87 /*
88  * Disable interrupts and begin the xHCI halting process.
89  */
xhci_quiesce(struct xhci_hcd * xhci)90 void xhci_quiesce(struct xhci_hcd *xhci)
91 {
92 	u32 halted;
93 	u32 cmd;
94 	u32 mask;
95 
96 	mask = ~(XHCI_IRQS);
97 	halted = readl(&xhci->op_regs->status) & STS_HALT;
98 	if (!halted)
99 		mask &= ~CMD_RUN;
100 
101 	cmd = readl(&xhci->op_regs->command);
102 	cmd &= mask;
103 	writel(cmd, &xhci->op_regs->command);
104 }
105 
106 /*
107  * Force HC into halt state.
108  *
109  * Disable any IRQs and clear the run/stop bit.
110  * HC will complete any current and actively pipelined transactions, and
111  * should halt within 16 ms of the run/stop bit being cleared.
112  * Read HC Halted bit in the status register to see when the HC is finished.
113  */
xhci_halt(struct xhci_hcd * xhci)114 int xhci_halt(struct xhci_hcd *xhci)
115 {
116 	int ret;
117 
118 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
119 	xhci_quiesce(xhci);
120 
121 	ret = xhci_handshake(&xhci->op_regs->status,
122 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
123 	if (ret) {
124 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
125 		return ret;
126 	}
127 
128 	xhci->xhc_state |= XHCI_STATE_HALTED;
129 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
130 
131 	return ret;
132 }
133 
134 /*
135  * Set the run bit and wait for the host to be running.
136  */
xhci_start(struct xhci_hcd * xhci)137 int xhci_start(struct xhci_hcd *xhci)
138 {
139 	u32 temp;
140 	int ret;
141 
142 	temp = readl(&xhci->op_regs->command);
143 	temp |= (CMD_RUN);
144 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
145 			temp);
146 	writel(temp, &xhci->op_regs->command);
147 
148 	/*
149 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
150 	 * running.
151 	 */
152 	ret = xhci_handshake(&xhci->op_regs->status,
153 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
154 	if (ret == -ETIMEDOUT)
155 		xhci_err(xhci, "Host took too long to start, "
156 				"waited %u microseconds.\n",
157 				XHCI_MAX_HALT_USEC);
158 	if (!ret) {
159 		/* clear state flags. Including dying, halted or removing */
160 		xhci->xhc_state = 0;
161 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
162 	}
163 
164 	return ret;
165 }
166 
167 /*
168  * Reset a halted HC.
169  *
170  * This resets pipelines, timers, counters, state machines, etc.
171  * Transactions will be terminated immediately, and operational registers
172  * will be set to their defaults.
173  */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)174 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
175 {
176 	u32 command;
177 	u32 state;
178 	int ret;
179 
180 	state = readl(&xhci->op_regs->status);
181 
182 	if (state == ~(u32)0) {
183 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
184 		return -ENODEV;
185 	}
186 
187 	if ((state & STS_HALT) == 0) {
188 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
189 		return 0;
190 	}
191 
192 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
193 	command = readl(&xhci->op_regs->command);
194 	command |= CMD_RESET;
195 	writel(command, &xhci->op_regs->command);
196 
197 	/* Existing Intel xHCI controllers require a delay of 1 mS,
198 	 * after setting the CMD_RESET bit, and before accessing any
199 	 * HC registers. This allows the HC to complete the
200 	 * reset operation and be ready for HC register access.
201 	 * Without this delay, the subsequent HC register access,
202 	 * may result in a system hang very rarely.
203 	 */
204 	if (xhci->quirks & XHCI_INTEL_HOST)
205 		udelay(1000);
206 
207 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
208 	if (ret)
209 		return ret;
210 
211 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
212 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
213 
214 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
215 			 "Wait for controller to be ready for doorbell rings");
216 	/*
217 	 * xHCI cannot write to any doorbells or operational registers other
218 	 * than status until the "Controller Not Ready" flag is cleared.
219 	 */
220 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
221 
222 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
223 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
224 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
225 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
226 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
227 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
228 
229 	return ret;
230 }
231 
xhci_zero_64b_regs(struct xhci_hcd * xhci)232 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
233 {
234 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
235 	struct iommu_domain *domain;
236 	int err, i;
237 	u64 val;
238 	u32 intrs;
239 
240 	/*
241 	 * Some Renesas controllers get into a weird state if they are
242 	 * reset while programmed with 64bit addresses (they will preserve
243 	 * the top half of the address in internal, non visible
244 	 * registers). You end up with half the address coming from the
245 	 * kernel, and the other half coming from the firmware. Also,
246 	 * changing the programming leads to extra accesses even if the
247 	 * controller is supposed to be halted. The controller ends up with
248 	 * a fatal fault, and is then ripe for being properly reset.
249 	 *
250 	 * Special care is taken to only apply this if the device is behind
251 	 * an iommu. Doing anything when there is no iommu is definitely
252 	 * unsafe...
253 	 */
254 	domain = iommu_get_domain_for_dev(dev);
255 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
256 	    domain->type == IOMMU_DOMAIN_IDENTITY)
257 		return;
258 
259 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
260 
261 	/* Clear HSEIE so that faults do not get signaled */
262 	val = readl(&xhci->op_regs->command);
263 	val &= ~CMD_HSEIE;
264 	writel(val, &xhci->op_regs->command);
265 
266 	/* Clear HSE (aka FATAL) */
267 	val = readl(&xhci->op_regs->status);
268 	val |= STS_FATAL;
269 	writel(val, &xhci->op_regs->status);
270 
271 	/* Now zero the registers, and brace for impact */
272 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
273 	if (upper_32_bits(val))
274 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
275 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
276 	if (upper_32_bits(val))
277 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
278 
279 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
280 		      ARRAY_SIZE(xhci->run_regs->ir_set));
281 
282 	for (i = 0; i < intrs; i++) {
283 		struct xhci_intr_reg __iomem *ir;
284 
285 		ir = &xhci->run_regs->ir_set[i];
286 		val = xhci_read_64(xhci, &ir->erst_base);
287 		if (upper_32_bits(val))
288 			xhci_write_64(xhci, 0, &ir->erst_base);
289 		val= xhci_read_64(xhci, &ir->erst_dequeue);
290 		if (upper_32_bits(val))
291 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
292 	}
293 
294 	/* Wait for the fault to appear. It will be cleared on reset */
295 	err = xhci_handshake(&xhci->op_regs->status,
296 			     STS_FATAL, STS_FATAL,
297 			     XHCI_MAX_HALT_USEC);
298 	if (!err)
299 		xhci_info(xhci, "Fault detected\n");
300 }
301 
xhci_enable_interrupter(struct xhci_interrupter * ir)302 int xhci_enable_interrupter(struct xhci_interrupter *ir)
303 {
304 	u32 iman;
305 
306 	if (!ir || !ir->ir_set)
307 		return -EINVAL;
308 
309 	iman = readl(&ir->ir_set->iman);
310 	iman |= IMAN_IE;
311 	writel(iman, &ir->ir_set->iman);
312 
313 	/* Read operation to guarantee the write has been flushed from posted buffers */
314 	readl(&ir->ir_set->iman);
315 	return 0;
316 }
317 
xhci_disable_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)318 int xhci_disable_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
319 {
320 	u32 iman;
321 
322 	if (!ir || !ir->ir_set)
323 		return -EINVAL;
324 
325 	iman = readl(&ir->ir_set->iman);
326 	iman &= ~IMAN_IE;
327 	writel(iman, &ir->ir_set->iman);
328 
329 	iman = readl(&ir->ir_set->iman);
330 	if (iman & IMAN_IP)
331 		xhci_dbg(xhci, "%s: Interrupt pending\n", __func__);
332 
333 	return 0;
334 }
335 
336 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)337 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
338 				    u32 imod_interval)
339 {
340 	u32 imod;
341 
342 	if (!ir || !ir->ir_set)
343 		return -EINVAL;
344 
345 	/* IMODI value in IMOD register is in 250ns increments */
346 	imod_interval = umin(imod_interval / 250, IMODI_MASK);
347 
348 	imod = readl(&ir->ir_set->imod);
349 	imod &= ~IMODI_MASK;
350 	imod |= imod_interval;
351 	writel(imod, &ir->ir_set->imod);
352 
353 	return 0;
354 }
355 
compliance_mode_recovery(struct timer_list * t)356 static void compliance_mode_recovery(struct timer_list *t)
357 {
358 	struct xhci_hcd *xhci;
359 	struct usb_hcd *hcd;
360 	struct xhci_hub *rhub;
361 	u32 temp;
362 	int i;
363 
364 	xhci = timer_container_of(xhci, t, comp_mode_recovery_timer);
365 	rhub = &xhci->usb3_rhub;
366 	hcd = rhub->hcd;
367 
368 	if (!hcd)
369 		return;
370 
371 	for (i = 0; i < rhub->num_ports; i++) {
372 		temp = readl(rhub->ports[i]->addr);
373 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
374 			/*
375 			 * Compliance Mode Detected. Letting USB Core
376 			 * handle the Warm Reset
377 			 */
378 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
379 					"Compliance mode detected->port %d",
380 					i + 1);
381 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
382 					"Attempting compliance mode recovery");
383 
384 			if (hcd->state == HC_STATE_SUSPENDED)
385 				usb_hcd_resume_root_hub(hcd);
386 
387 			usb_hcd_poll_rh_status(hcd);
388 		}
389 	}
390 
391 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
392 		mod_timer(&xhci->comp_mode_recovery_timer,
393 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
394 }
395 
396 /*
397  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
398  * that causes ports behind that hardware to enter compliance mode sometimes.
399  * The quirk creates a timer that polls every 2 seconds the link state of
400  * each host controller's port and recovers it by issuing a Warm reset
401  * if Compliance mode is detected, otherwise the port will become "dead" (no
402  * device connections or disconnections will be detected anymore). Becasue no
403  * status event is generated when entering compliance mode (per xhci spec),
404  * this quirk is needed on systems that have the failing hardware installed.
405  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)406 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
407 {
408 	xhci->port_status_u0 = 0;
409 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
410 		    0);
411 	xhci->comp_mode_recovery_timer.expires = jiffies +
412 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
413 
414 	add_timer(&xhci->comp_mode_recovery_timer);
415 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416 			"Compliance mode recovery timer initialized");
417 }
418 
419 /*
420  * This function identifies the systems that have installed the SN65LVPE502CP
421  * USB3.0 re-driver and that need the Compliance Mode Quirk.
422  * Systems:
423  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
424  */
xhci_compliance_mode_recovery_timer_quirk_check(void)425 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
426 {
427 	const char *dmi_product_name, *dmi_sys_vendor;
428 
429 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
430 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
431 	if (!dmi_product_name || !dmi_sys_vendor)
432 		return false;
433 
434 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
435 		return false;
436 
437 	if (strstr(dmi_product_name, "Z420") ||
438 			strstr(dmi_product_name, "Z620") ||
439 			strstr(dmi_product_name, "Z820") ||
440 			strstr(dmi_product_name, "Z1 Workstation"))
441 		return true;
442 
443 	return false;
444 }
445 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)446 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
447 {
448 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
449 }
450 
xhci_hcd_page_size(struct xhci_hcd * xhci)451 static void xhci_hcd_page_size(struct xhci_hcd *xhci)
452 {
453 	u32 page_size;
454 
455 	page_size = readl(&xhci->op_regs->page_size) & XHCI_PAGE_SIZE_MASK;
456 	if (!is_power_of_2(page_size)) {
457 		xhci_warn(xhci, "Invalid page size register = 0x%x\n", page_size);
458 		/* Fallback to 4K page size, since that's common */
459 		page_size = 1;
460 	}
461 
462 	xhci->page_size = page_size << 12;
463 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK",
464 		       xhci->page_size >> 10);
465 }
466 
xhci_enable_max_dev_slots(struct xhci_hcd * xhci)467 static void xhci_enable_max_dev_slots(struct xhci_hcd *xhci)
468 {
469 	u32 config_reg;
470 	u32 max_slots;
471 
472 	max_slots = HCS_MAX_SLOTS(xhci->hcs_params1);
473 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHC can handle at most %d device slots",
474 		       max_slots);
475 
476 	config_reg = readl(&xhci->op_regs->config_reg);
477 	config_reg &= ~HCS_SLOTS_MASK;
478 	config_reg |= max_slots;
479 
480 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting Max device slots reg = 0x%x",
481 		       config_reg);
482 	writel(config_reg, &xhci->op_regs->config_reg);
483 }
484 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)485 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
486 {
487 	dma_addr_t deq_dma;
488 	u64 crcr;
489 
490 	deq_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue);
491 	deq_dma &= CMD_RING_PTR_MASK;
492 
493 	crcr = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
494 	crcr &= ~CMD_RING_PTR_MASK;
495 	crcr |= deq_dma;
496 
497 	crcr &= ~CMD_RING_CYCLE;
498 	crcr |= xhci->cmd_ring->cycle_state;
499 
500 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Setting command ring address to 0x%llx", crcr);
501 	xhci_write_64(xhci, crcr, &xhci->op_regs->cmd_ring);
502 }
503 
xhci_set_doorbell_ptr(struct xhci_hcd * xhci)504 static void xhci_set_doorbell_ptr(struct xhci_hcd *xhci)
505 {
506 	u32 offset;
507 
508 	offset = readl(&xhci->cap_regs->db_off) & DBOFF_MASK;
509 	xhci->dba = (void __iomem *)xhci->cap_regs + offset;
510 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
511 		       "Doorbell array is located at offset 0x%x from cap regs base addr", offset);
512 }
513 
514 /*
515  * Enable USB 3.0 device notifications for function remote wake, which is necessary
516  * for allowing USB 3.0 devices to do remote wakeup from U3 (device suspend).
517  */
xhci_set_dev_notifications(struct xhci_hcd * xhci)518 static void xhci_set_dev_notifications(struct xhci_hcd *xhci)
519 {
520 	u32 dev_notf;
521 
522 	dev_notf = readl(&xhci->op_regs->dev_notification);
523 	dev_notf &= ~DEV_NOTE_MASK;
524 	dev_notf |= DEV_NOTE_FWAKE;
525 	writel(dev_notf, &xhci->op_regs->dev_notification);
526 }
527 
528 /*
529  * Initialize memory for HCD and xHC (one-time init).
530  *
531  * Program the PAGESIZE register, initialize the device context array, create
532  * device contexts (?), set up a command ring segment (or two?), create event
533  * ring (one for now).
534  */
xhci_init(struct usb_hcd * hcd)535 static int xhci_init(struct usb_hcd *hcd)
536 {
537 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
538 	int retval;
539 
540 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Starting %s", __func__);
541 	spin_lock_init(&xhci->lock);
542 
543 	INIT_LIST_HEAD(&xhci->cmd_list);
544 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
545 	init_completion(&xhci->cmd_ring_stop_completion);
546 	xhci_hcd_page_size(xhci);
547 	memset(xhci->devs, 0, MAX_HC_SLOTS * sizeof(*xhci->devs));
548 
549 	retval = xhci_mem_init(xhci, GFP_KERNEL);
550 	if (retval)
551 		return retval;
552 
553 	/* Set the Number of Device Slots Enabled to the maximum supported value */
554 	xhci_enable_max_dev_slots(xhci);
555 
556 	/* Set the address in the Command Ring Control register */
557 	xhci_set_cmd_ring_deq(xhci);
558 
559 	/* Set Device Context Base Address Array pointer */
560 	xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr);
561 
562 	/* Set Doorbell array pointer */
563 	xhci_set_doorbell_ptr(xhci);
564 
565 	/* Set USB 3.0 device notifications for function remote wake */
566 	xhci_set_dev_notifications(xhci);
567 
568 	/* Initialize the Primary interrupter */
569 	xhci_add_interrupter(xhci, 0);
570 	xhci->interrupters[0]->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
571 
572 	/* Initializing Compliance Mode Recovery Data If Needed */
573 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
574 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
575 		compliance_mode_recovery_timer_init(xhci);
576 	}
577 
578 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished %s", __func__);
579 	return 0;
580 }
581 
582 /*-------------------------------------------------------------------------*/
583 
xhci_run_finished(struct xhci_hcd * xhci)584 static int xhci_run_finished(struct xhci_hcd *xhci)
585 {
586 	struct xhci_interrupter *ir = xhci->interrupters[0];
587 	unsigned long	flags;
588 	u32		temp;
589 
590 	/*
591 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
592 	 * Protect the short window before host is running with a lock
593 	 */
594 	spin_lock_irqsave(&xhci->lock, flags);
595 
596 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
597 	temp = readl(&xhci->op_regs->command);
598 	temp |= (CMD_EIE);
599 	writel(temp, &xhci->op_regs->command);
600 
601 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
602 	xhci_enable_interrupter(ir);
603 
604 	if (xhci_start(xhci)) {
605 		xhci_halt(xhci);
606 		spin_unlock_irqrestore(&xhci->lock, flags);
607 		return -ENODEV;
608 	}
609 
610 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
611 
612 	if (xhci->quirks & XHCI_NEC_HOST)
613 		xhci_ring_cmd_db(xhci);
614 
615 	spin_unlock_irqrestore(&xhci->lock, flags);
616 
617 	return 0;
618 }
619 
620 /*
621  * Start the HC after it was halted.
622  *
623  * This function is called by the USB core when the HC driver is added.
624  * Its opposite is xhci_stop().
625  *
626  * xhci_init() must be called once before this function can be called.
627  * Reset the HC, enable device slot contexts, program DCBAAP, and
628  * set command ring pointer and event ring pointer.
629  *
630  * Setup MSI-X vectors and enable interrupts.
631  */
xhci_run(struct usb_hcd * hcd)632 int xhci_run(struct usb_hcd *hcd)
633 {
634 	u64 temp_64;
635 	int ret;
636 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
637 	struct xhci_interrupter *ir = xhci->interrupters[0];
638 	/* Start the xHCI host controller running only after the USB 2.0 roothub
639 	 * is setup.
640 	 */
641 
642 	hcd->uses_new_polling = 1;
643 	if (hcd->msi_enabled)
644 		ir->ip_autoclear = true;
645 
646 	if (!usb_hcd_is_primary_hcd(hcd))
647 		return xhci_run_finished(xhci);
648 
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650 
651 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
652 	temp_64 &= ERST_PTR_MASK;
653 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
655 
656 	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
657 
658 	if (xhci->quirks & XHCI_NEC_HOST) {
659 		struct xhci_command *command;
660 
661 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
662 		if (!command)
663 			return -ENOMEM;
664 
665 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
666 				TRB_TYPE(TRB_NEC_GET_FW));
667 		if (ret)
668 			xhci_free_command(xhci, command);
669 	}
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"Finished %s for main hcd", __func__);
672 
673 	xhci_create_dbc_dev(xhci);
674 
675 	xhci_debugfs_init(xhci);
676 
677 	if (xhci_has_one_roothub(xhci))
678 		return xhci_run_finished(xhci);
679 
680 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
681 
682 	return 0;
683 }
684 EXPORT_SYMBOL_GPL(xhci_run);
685 
686 /*
687  * Stop xHCI driver.
688  *
689  * This function is called by the USB core when the HC driver is removed.
690  * Its opposite is xhci_run().
691  *
692  * Disable device contexts, disable IRQs, and quiesce the HC.
693  * Reset the HC, finish any completed transactions, and cleanup memory.
694  */
xhci_stop(struct usb_hcd * hcd)695 void xhci_stop(struct usb_hcd *hcd)
696 {
697 	u32 temp;
698 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
699 	struct xhci_interrupter *ir = xhci->interrupters[0];
700 
701 	mutex_lock(&xhci->mutex);
702 
703 	/* Only halt host and free memory after both hcds are removed */
704 	if (!usb_hcd_is_primary_hcd(hcd)) {
705 		mutex_unlock(&xhci->mutex);
706 		return;
707 	}
708 
709 	xhci_remove_dbc_dev(xhci);
710 
711 	spin_lock_irq(&xhci->lock);
712 	xhci->xhc_state |= XHCI_STATE_HALTED;
713 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
714 	xhci_halt(xhci);
715 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
716 	spin_unlock_irq(&xhci->lock);
717 
718 	/* Deleting Compliance Mode Recovery Timer */
719 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
720 			(!(xhci_all_ports_seen_u0(xhci)))) {
721 		timer_delete_sync(&xhci->comp_mode_recovery_timer);
722 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
723 				"%s: compliance mode recovery timer deleted",
724 				__func__);
725 	}
726 
727 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
728 		usb_amd_dev_put();
729 
730 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
731 			"// Disabling event ring interrupts");
732 	temp = readl(&xhci->op_regs->status);
733 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
734 	xhci_disable_interrupter(xhci, ir);
735 
736 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
737 	xhci_mem_cleanup(xhci);
738 	xhci_debugfs_exit(xhci);
739 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
740 			"xhci_stop completed - status = %x",
741 			readl(&xhci->op_regs->status));
742 	mutex_unlock(&xhci->mutex);
743 }
744 EXPORT_SYMBOL_GPL(xhci_stop);
745 
746 /*
747  * Shutdown HC (not bus-specific)
748  *
749  * This is called when the machine is rebooting or halting.  We assume that the
750  * machine will be powered off, and the HC's internal state will be reset.
751  * Don't bother to free memory.
752  *
753  * This will only ever be called with the main usb_hcd (the USB3 roothub).
754  */
xhci_shutdown(struct usb_hcd * hcd)755 void xhci_shutdown(struct usb_hcd *hcd)
756 {
757 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
758 
759 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
760 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
761 
762 	/* Don't poll the roothubs after shutdown. */
763 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
764 			__func__, hcd->self.busnum);
765 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
766 	timer_delete_sync(&hcd->rh_timer);
767 
768 	if (xhci->shared_hcd) {
769 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
770 		timer_delete_sync(&xhci->shared_hcd->rh_timer);
771 	}
772 
773 	spin_lock_irq(&xhci->lock);
774 	xhci_halt(xhci);
775 
776 	/*
777 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
778 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
779 	 */
780 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
781 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
782 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
783 
784 	spin_unlock_irq(&xhci->lock);
785 
786 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
787 			"xhci_shutdown completed - status = %x",
788 			readl(&xhci->op_regs->status));
789 }
790 EXPORT_SYMBOL_GPL(xhci_shutdown);
791 
792 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)793 static void xhci_save_registers(struct xhci_hcd *xhci)
794 {
795 	struct xhci_interrupter *ir;
796 	unsigned int i;
797 
798 	xhci->s3.command = readl(&xhci->op_regs->command);
799 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802 
803 	/* save both primary and all secondary interrupters */
804 	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
805 	for (i = 0; i < xhci->max_interrupters; i++) {
806 		ir = xhci->interrupters[i];
807 		if (!ir)
808 			continue;
809 
810 		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
811 		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
812 		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
813 		ir->s3_iman = readl(&ir->ir_set->iman);
814 		ir->s3_imod = readl(&ir->ir_set->imod);
815 	}
816 }
817 
xhci_restore_registers(struct xhci_hcd * xhci)818 static void xhci_restore_registers(struct xhci_hcd *xhci)
819 {
820 	struct xhci_interrupter *ir;
821 	unsigned int i;
822 
823 	writel(xhci->s3.command, &xhci->op_regs->command);
824 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
825 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
826 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
827 
828 	/* FIXME should we lock to protect against freeing of interrupters */
829 	for (i = 0; i < xhci->max_interrupters; i++) {
830 		ir = xhci->interrupters[i];
831 		if (!ir)
832 			continue;
833 
834 		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
835 		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
836 		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
837 		writel(ir->s3_iman, &ir->ir_set->iman);
838 		writel(ir->s3_imod, &ir->ir_set->imod);
839 	}
840 }
841 
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
xhci_clear_command_ring(struct xhci_hcd * xhci)851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853 	struct xhci_ring *ring;
854 	struct xhci_segment *seg;
855 
856 	ring = xhci->cmd_ring;
857 	xhci_for_each_ring_seg(ring->first_seg, seg) {
858 		/* erase all TRBs before the link */
859 		memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
860 		/* clear link cycle bit */
861 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
862 	}
863 
864 	xhci_initialize_ring_info(ring);
865 	/*
866 	 * Reset the hardware dequeue pointer.
867 	 * Yes, this will need to be re-written after resume, but we're paranoid
868 	 * and want to make sure the hardware doesn't access bogus memory
869 	 * because, say, the BIOS or an SMI started the host without changing
870 	 * the command ring pointers.
871 	 */
872 	xhci_set_cmd_ring_deq(xhci);
873 }
874 
875 /*
876  * Disable port wake bits if do_wakeup is not set.
877  *
878  * Also clear a possible internal port wake state left hanging for ports that
879  * detected termination but never successfully enumerated (trained to 0U).
880  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
881  * at enumeration clears this wake, force one here as well for unconnected ports
882  */
883 
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)884 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
885 				       struct xhci_hub *rhub,
886 				       bool do_wakeup)
887 {
888 	unsigned long flags;
889 	u32 t1, t2, portsc;
890 	int i;
891 
892 	spin_lock_irqsave(&xhci->lock, flags);
893 
894 	for (i = 0; i < rhub->num_ports; i++) {
895 		portsc = readl(rhub->ports[i]->addr);
896 		t1 = xhci_port_state_to_neutral(portsc);
897 		t2 = t1;
898 
899 		/* clear wake bits if do_wake is not set */
900 		if (!do_wakeup)
901 			t2 &= ~PORT_WAKE_BITS;
902 
903 		/* Don't touch csc bit if connected or connect change is set */
904 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
905 			t2 |= PORT_CSC;
906 
907 		if (t1 != t2) {
908 			writel(t2, rhub->ports[i]->addr);
909 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
910 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
911 		}
912 	}
913 	spin_unlock_irqrestore(&xhci->lock, flags);
914 }
915 
xhci_pending_portevent(struct xhci_hcd * xhci)916 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
917 {
918 	struct xhci_port	**ports;
919 	int			port_index;
920 	u32			status;
921 	u32			portsc;
922 
923 	status = readl(&xhci->op_regs->status);
924 	if (status & STS_EINT)
925 		return true;
926 	/*
927 	 * Checking STS_EINT is not enough as there is a lag between a change
928 	 * bit being set and the Port Status Change Event that it generated
929 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
930 	 */
931 
932 	port_index = xhci->usb2_rhub.num_ports;
933 	ports = xhci->usb2_rhub.ports;
934 	while (port_index--) {
935 		portsc = readl(ports[port_index]->addr);
936 		if (portsc & PORT_CHANGE_MASK ||
937 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
938 			return true;
939 	}
940 	port_index = xhci->usb3_rhub.num_ports;
941 	ports = xhci->usb3_rhub.ports;
942 	while (port_index--) {
943 		portsc = readl(ports[port_index]->addr);
944 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
945 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
946 			return true;
947 	}
948 	return false;
949 }
950 
951 /*
952  * Stop HC (not bus-specific)
953  *
954  * This is called when the machine transition into S3/S4 mode.
955  *
956  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)957 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
958 {
959 	int			rc = 0;
960 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
961 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
962 	u32			command;
963 	u32			res;
964 
965 	if (!hcd->state)
966 		return 0;
967 
968 	if (hcd->state != HC_STATE_SUSPENDED ||
969 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
970 		return -EINVAL;
971 
972 	/* Clear root port wake on bits if wakeup not allowed. */
973 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
974 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
975 
976 	if (!HCD_HW_ACCESSIBLE(hcd))
977 		return 0;
978 
979 	xhci_dbc_suspend(xhci);
980 
981 	/* Don't poll the roothubs on bus suspend. */
982 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
983 		 __func__, hcd->self.busnum);
984 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
985 	timer_delete_sync(&hcd->rh_timer);
986 	if (xhci->shared_hcd) {
987 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
988 		timer_delete_sync(&xhci->shared_hcd->rh_timer);
989 	}
990 
991 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
992 		usleep_range(1000, 1500);
993 
994 	spin_lock_irq(&xhci->lock);
995 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
996 	if (xhci->shared_hcd)
997 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
998 	/* step 1: stop endpoint */
999 	/* skipped assuming that port suspend has done */
1000 
1001 	/* step 2: clear Run/Stop bit */
1002 	command = readl(&xhci->op_regs->command);
1003 	command &= ~CMD_RUN;
1004 	writel(command, &xhci->op_regs->command);
1005 
1006 	/* Some chips from Fresco Logic need an extraordinary delay */
1007 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1008 
1009 	if (xhci_handshake(&xhci->op_regs->status,
1010 		      STS_HALT, STS_HALT, delay)) {
1011 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1012 		spin_unlock_irq(&xhci->lock);
1013 		return -ETIMEDOUT;
1014 	}
1015 	xhci_clear_command_ring(xhci);
1016 
1017 	/* step 3: save registers */
1018 	xhci_save_registers(xhci);
1019 
1020 	/* step 4: set CSS flag */
1021 	command = readl(&xhci->op_regs->command);
1022 	command |= CMD_CSS;
1023 	writel(command, &xhci->op_regs->command);
1024 	xhci->broken_suspend = 0;
1025 	if (xhci_handshake(&xhci->op_regs->status,
1026 				STS_SAVE, 0, 20 * 1000)) {
1027 	/*
1028 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1029 	 * SSS bit of USBSTS and when driver tries to poll
1030 	 * to see if the xHC clears BIT(8) which never happens
1031 	 * and driver assumes that controller is not responding
1032 	 * and times out. To workaround this, its good to check
1033 	 * if SRE and HCE bits are not set (as per xhci
1034 	 * Section 5.4.2) and bypass the timeout.
1035 	 */
1036 		res = readl(&xhci->op_regs->status);
1037 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1038 		    (((res & STS_SRE) == 0) &&
1039 				((res & STS_HCE) == 0))) {
1040 			xhci->broken_suspend = 1;
1041 		} else {
1042 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1043 			spin_unlock_irq(&xhci->lock);
1044 			return -ETIMEDOUT;
1045 		}
1046 	}
1047 	spin_unlock_irq(&xhci->lock);
1048 
1049 	/*
1050 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1051 	 * is about to be suspended.
1052 	 */
1053 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1054 			(!(xhci_all_ports_seen_u0(xhci)))) {
1055 		timer_delete_sync(&xhci->comp_mode_recovery_timer);
1056 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1057 				"%s: compliance mode recovery timer deleted",
1058 				__func__);
1059 	}
1060 
1061 	return rc;
1062 }
1063 EXPORT_SYMBOL_GPL(xhci_suspend);
1064 
1065 /*
1066  * start xHC (not bus-specific)
1067  *
1068  * This is called when the machine transition from S3/S4 mode.
1069  *
1070  */
xhci_resume(struct xhci_hcd * xhci,bool power_lost,bool is_auto_resume)1071 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume)
1072 {
1073 	u32			command, temp = 0;
1074 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1075 	int			retval = 0;
1076 	bool			comp_timer_running = false;
1077 	bool			pending_portevent = false;
1078 	bool			suspended_usb3_devs = false;
1079 
1080 	if (!hcd->state)
1081 		return 0;
1082 
1083 	/* Wait a bit if either of the roothubs need to settle from the
1084 	 * transition into bus suspend.
1085 	 */
1086 
1087 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1088 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1089 		msleep(100);
1090 
1091 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1092 	if (xhci->shared_hcd)
1093 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1094 
1095 	spin_lock_irq(&xhci->lock);
1096 
1097 	if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1098 		power_lost = true;
1099 
1100 	if (!power_lost) {
1101 		/*
1102 		 * Some controllers might lose power during suspend, so wait
1103 		 * for controller not ready bit to clear, just as in xHC init.
1104 		 */
1105 		retval = xhci_handshake(&xhci->op_regs->status,
1106 					STS_CNR, 0, 10 * 1000 * 1000);
1107 		if (retval) {
1108 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1109 				  retval);
1110 			spin_unlock_irq(&xhci->lock);
1111 			return retval;
1112 		}
1113 		/* step 1: restore register */
1114 		xhci_restore_registers(xhci);
1115 		/* step 2: initialize command ring buffer */
1116 		xhci_set_cmd_ring_deq(xhci);
1117 		/* step 3: restore state and start state*/
1118 		/* step 3: set CRS flag */
1119 		command = readl(&xhci->op_regs->command);
1120 		command |= CMD_CRS;
1121 		writel(command, &xhci->op_regs->command);
1122 		/*
1123 		 * Some controllers take up to 55+ ms to complete the controller
1124 		 * restore so setting the timeout to 100ms. Xhci specification
1125 		 * doesn't mention any timeout value.
1126 		 */
1127 		if (xhci_handshake(&xhci->op_regs->status,
1128 			      STS_RESTORE, 0, 100 * 1000)) {
1129 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1130 			spin_unlock_irq(&xhci->lock);
1131 			return -ETIMEDOUT;
1132 		}
1133 	}
1134 
1135 	temp = readl(&xhci->op_regs->status);
1136 
1137 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1138 	if ((temp & (STS_SRE | STS_HCE)) &&
1139 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1140 		if (!power_lost)
1141 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1142 		power_lost = true;
1143 	}
1144 
1145 	if (power_lost) {
1146 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1147 				!(xhci_all_ports_seen_u0(xhci))) {
1148 			timer_delete_sync(&xhci->comp_mode_recovery_timer);
1149 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1150 				"Compliance Mode Recovery Timer deleted!");
1151 		}
1152 
1153 		/* Let the USB core know _both_ roothubs lost power. */
1154 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1155 		if (xhci->shared_hcd)
1156 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1157 
1158 		xhci_dbg(xhci, "Stop HCD\n");
1159 		xhci_halt(xhci);
1160 		xhci_zero_64b_regs(xhci);
1161 		if (xhci->xhc_state & XHCI_STATE_REMOVING)
1162 			retval = -ENODEV;
1163 		else
1164 			retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1165 		spin_unlock_irq(&xhci->lock);
1166 		if (retval)
1167 			return retval;
1168 
1169 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1170 		temp = readl(&xhci->op_regs->status);
1171 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1172 		xhci_disable_interrupter(xhci, xhci->interrupters[0]);
1173 
1174 		xhci_dbg(xhci, "cleaning up memory\n");
1175 		xhci_mem_cleanup(xhci);
1176 		xhci_debugfs_exit(xhci);
1177 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1178 			    readl(&xhci->op_regs->status));
1179 
1180 		/* USB core calls the PCI reinit and start functions twice:
1181 		 * first with the primary HCD, and then with the secondary HCD.
1182 		 * If we don't do the same, the host will never be started.
1183 		 */
1184 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1185 		retval = xhci_init(hcd);
1186 		if (retval)
1187 			return retval;
1188 		comp_timer_running = true;
1189 
1190 		xhci_dbg(xhci, "Start the primary HCD\n");
1191 		retval = xhci_run(hcd);
1192 		if (!retval && xhci->shared_hcd) {
1193 			xhci_dbg(xhci, "Start the secondary HCD\n");
1194 			retval = xhci_run(xhci->shared_hcd);
1195 		}
1196 		if (retval)
1197 			return retval;
1198 		/*
1199 		 * Resume roothubs unconditionally as PORTSC change bits are not
1200 		 * immediately visible after xHC reset
1201 		 */
1202 		hcd->state = HC_STATE_SUSPENDED;
1203 
1204 		if (xhci->shared_hcd) {
1205 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1206 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1207 		}
1208 		usb_hcd_resume_root_hub(hcd);
1209 
1210 		goto done;
1211 	}
1212 
1213 	/* step 4: set Run/Stop bit */
1214 	command = readl(&xhci->op_regs->command);
1215 	command |= CMD_RUN;
1216 	writel(command, &xhci->op_regs->command);
1217 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1218 		  0, 250 * 1000);
1219 
1220 	/* step 5: walk topology and initialize portsc,
1221 	 * portpmsc and portli
1222 	 */
1223 	/* this is done in bus_resume */
1224 
1225 	/* step 6: restart each of the previously
1226 	 * Running endpoints by ringing their doorbells
1227 	 */
1228 
1229 	spin_unlock_irq(&xhci->lock);
1230 
1231 	xhci_dbc_resume(xhci);
1232 
1233 	if (retval == 0) {
1234 		/*
1235 		 * Resume roothubs only if there are pending events.
1236 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1237 		 * the first wake signalling failed, give it that chance if
1238 		 * there are suspended USB 3 devices.
1239 		 */
1240 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1241 		    xhci->usb3_rhub.bus_state.bus_suspended)
1242 			suspended_usb3_devs = true;
1243 
1244 		pending_portevent = xhci_pending_portevent(xhci);
1245 
1246 		if (suspended_usb3_devs && !pending_portevent && is_auto_resume) {
1247 			msleep(120);
1248 			pending_portevent = xhci_pending_portevent(xhci);
1249 		}
1250 
1251 		if (pending_portevent) {
1252 			if (xhci->shared_hcd)
1253 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1254 			usb_hcd_resume_root_hub(hcd);
1255 		}
1256 	}
1257 done:
1258 	/*
1259 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1260 	 * be re-initialized Always after a system resume. Ports are subject
1261 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1262 	 * ports have entered previously to U0 before system's suspension.
1263 	 */
1264 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1265 		compliance_mode_recovery_timer_init(xhci);
1266 
1267 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1268 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1269 
1270 	/* Re-enable port polling. */
1271 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1272 		 __func__, hcd->self.busnum);
1273 	if (xhci->shared_hcd) {
1274 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1275 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1276 	}
1277 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1278 	usb_hcd_poll_rh_status(hcd);
1279 
1280 	return retval;
1281 }
1282 EXPORT_SYMBOL_GPL(xhci_resume);
1283 #endif	/* CONFIG_PM */
1284 
1285 /*-------------------------------------------------------------------------*/
1286 
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1287 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1288 {
1289 	void *temp;
1290 	int ret = 0;
1291 	unsigned int buf_len;
1292 	enum dma_data_direction dir;
1293 
1294 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1295 	buf_len = urb->transfer_buffer_length;
1296 
1297 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1298 			    dev_to_node(hcd->self.sysdev));
1299 	if (!temp)
1300 		return -ENOMEM;
1301 
1302 	if (usb_urb_dir_out(urb))
1303 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1304 				   temp, buf_len, 0);
1305 
1306 	urb->transfer_buffer = temp;
1307 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1308 					   urb->transfer_buffer,
1309 					   urb->transfer_buffer_length,
1310 					   dir);
1311 
1312 	if (dma_mapping_error(hcd->self.sysdev,
1313 			      urb->transfer_dma)) {
1314 		ret = -EAGAIN;
1315 		kfree(temp);
1316 	} else {
1317 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1318 	}
1319 
1320 	return ret;
1321 }
1322 
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1323 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1324 					  struct urb *urb)
1325 {
1326 	bool ret = false;
1327 	unsigned int i;
1328 	unsigned int len = 0;
1329 	unsigned int trb_size;
1330 	unsigned int max_pkt;
1331 	struct scatterlist *sg;
1332 	struct scatterlist *tail_sg;
1333 
1334 	tail_sg = urb->sg;
1335 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1336 
1337 	if (!urb->num_sgs)
1338 		return ret;
1339 
1340 	if (urb->dev->speed >= USB_SPEED_SUPER)
1341 		trb_size = TRB_CACHE_SIZE_SS;
1342 	else
1343 		trb_size = TRB_CACHE_SIZE_HS;
1344 
1345 	if (urb->transfer_buffer_length != 0 &&
1346 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1347 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1348 			len = len + sg->length;
1349 			if (i > trb_size - 2) {
1350 				len = len - tail_sg->length;
1351 				if (len < max_pkt) {
1352 					ret = true;
1353 					break;
1354 				}
1355 
1356 				tail_sg = sg_next(tail_sg);
1357 			}
1358 		}
1359 	}
1360 	return ret;
1361 }
1362 
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1363 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1364 {
1365 	unsigned int len;
1366 	unsigned int buf_len;
1367 	enum dma_data_direction dir;
1368 
1369 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1370 
1371 	buf_len = urb->transfer_buffer_length;
1372 
1373 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1374 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1375 		dma_unmap_single(hcd->self.sysdev,
1376 				 urb->transfer_dma,
1377 				 urb->transfer_buffer_length,
1378 				 dir);
1379 
1380 	if (usb_urb_dir_in(urb)) {
1381 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1382 					   urb->transfer_buffer,
1383 					   buf_len,
1384 					   0);
1385 		if (len != buf_len) {
1386 			xhci_dbg(hcd_to_xhci(hcd),
1387 				 "Copy from tmp buf to urb sg list failed\n");
1388 			urb->actual_length = len;
1389 		}
1390 	}
1391 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1392 	kfree(urb->transfer_buffer);
1393 	urb->transfer_buffer = NULL;
1394 }
1395 
1396 /*
1397  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1398  * we'll copy the actual data into the TRB address register. This is limited to
1399  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1400  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1401  */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1402 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1403 				gfp_t mem_flags)
1404 {
1405 	struct xhci_hcd *xhci;
1406 
1407 	xhci = hcd_to_xhci(hcd);
1408 
1409 	if (xhci_urb_suitable_for_idt(urb))
1410 		return 0;
1411 
1412 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1413 		if (xhci_urb_temp_buffer_required(hcd, urb))
1414 			return xhci_map_temp_buffer(hcd, urb);
1415 	}
1416 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1417 }
1418 
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1419 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1420 {
1421 	struct xhci_hcd *xhci;
1422 	bool unmap_temp_buf = false;
1423 
1424 	xhci = hcd_to_xhci(hcd);
1425 
1426 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1427 		unmap_temp_buf = true;
1428 
1429 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1430 		xhci_unmap_temp_buf(hcd, urb);
1431 	else
1432 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1433 }
1434 
1435 /**
1436  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1437  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1438  * value to right shift 1 for the bitmask.
1439  * @desc: USB endpoint descriptor to determine index for
1440  *
1441  * Index  = (epnum * 2) + direction - 1,
1442  * where direction = 0 for OUT, 1 for IN.
1443  * For control endpoints, the IN index is used (OUT index is unused), so
1444  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1445  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1446 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1447 {
1448 	unsigned int index;
1449 	if (usb_endpoint_xfer_control(desc))
1450 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1451 	else
1452 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1453 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1454 	return index;
1455 }
1456 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1457 
1458 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1459  * address from the XHCI endpoint index.
1460  */
xhci_get_endpoint_address(unsigned int ep_index)1461 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1462 {
1463 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1464 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1465 	return direction | number;
1466 }
1467 
1468 /* Find the flag for this endpoint (for use in the control context).  Use the
1469  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1470  * bit 1, etc.
1471  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1472 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1473 {
1474 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1475 }
1476 
1477 /* Compute the last valid endpoint context index.  Basically, this is the
1478  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1479  * we find the most significant bit set in the added contexts flags.
1480  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1481  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1482  */
xhci_last_valid_endpoint(u32 added_ctxs)1483 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1484 {
1485 	return fls(added_ctxs) - 1;
1486 }
1487 
1488 /* Returns 1 if the arguments are OK;
1489  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1490  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1491 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1492 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1493 		const char *func) {
1494 	struct xhci_hcd	*xhci;
1495 	struct xhci_virt_device	*virt_dev;
1496 
1497 	if (!hcd || (check_ep && !ep) || !udev) {
1498 		pr_debug("xHCI %s called with invalid args\n", func);
1499 		return -EINVAL;
1500 	}
1501 	if (!udev->parent) {
1502 		pr_debug("xHCI %s called for root hub\n", func);
1503 		return 0;
1504 	}
1505 
1506 	xhci = hcd_to_xhci(hcd);
1507 	if (check_virt_dev) {
1508 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1509 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1510 					func);
1511 			return -EINVAL;
1512 		}
1513 
1514 		virt_dev = xhci->devs[udev->slot_id];
1515 		if (virt_dev->udev != udev) {
1516 			xhci_dbg(xhci, "xHCI %s called with udev and "
1517 					  "virt_dev does not match\n", func);
1518 			return -EINVAL;
1519 		}
1520 	}
1521 
1522 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1523 		return -ENODEV;
1524 
1525 	return 1;
1526 }
1527 
1528 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1529 		struct usb_device *udev, struct xhci_command *command,
1530 		bool ctx_change, bool must_succeed);
1531 
1532 /*
1533  * Full speed devices may have a max packet size greater than 8 bytes, but the
1534  * USB core doesn't know that until it reads the first 8 bytes of the
1535  * descriptor.  If the usb_device's max packet size changes after that point,
1536  * we need to issue an evaluate context command and wait on it.
1537  */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1538 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1539 {
1540 	struct xhci_input_control_ctx *ctrl_ctx;
1541 	struct xhci_ep_ctx *ep_ctx;
1542 	struct xhci_command *command;
1543 	int max_packet_size;
1544 	int hw_max_packet_size;
1545 	int ret = 0;
1546 
1547 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1548 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1549 	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1550 
1551 	if (hw_max_packet_size == max_packet_size)
1552 		return 0;
1553 
1554 	switch (max_packet_size) {
1555 	case 8: case 16: case 32: case 64: case 9:
1556 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1557 				"Max Packet Size for ep 0 changed.");
1558 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1559 				"Max packet size in usb_device = %d",
1560 				max_packet_size);
1561 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1562 				"Max packet size in xHCI HW = %d",
1563 				hw_max_packet_size);
1564 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1565 				"Issuing evaluate context command.");
1566 
1567 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1568 		if (!command)
1569 			return -ENOMEM;
1570 
1571 		command->in_ctx = vdev->in_ctx;
1572 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1573 		if (!ctrl_ctx) {
1574 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1575 					__func__);
1576 			ret = -ENOMEM;
1577 			break;
1578 		}
1579 		/* Set up the modified control endpoint 0 */
1580 		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1581 
1582 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1583 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1584 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1585 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1586 
1587 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1588 		ctrl_ctx->drop_flags = 0;
1589 
1590 		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1591 					      true, false);
1592 		/* Clean up the input context for later use by bandwidth functions */
1593 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1594 		break;
1595 	default:
1596 		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1597 			max_packet_size);
1598 		return -EINVAL;
1599 	}
1600 
1601 	kfree(command->completion);
1602 	kfree(command);
1603 
1604 	return ret;
1605 }
1606 
1607 /*
1608  * non-error returns are a promise to giveback() the urb later
1609  * we drop ownership so next owner (or urb unlink) can get it
1610  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1611 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1612 {
1613 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1614 	unsigned long flags;
1615 	int ret = 0;
1616 	unsigned int slot_id, ep_index;
1617 	unsigned int *ep_state;
1618 	struct urb_priv	*urb_priv;
1619 	int num_tds;
1620 
1621 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1622 
1623 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1624 		num_tds = urb->number_of_packets;
1625 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1626 	    urb->transfer_buffer_length > 0 &&
1627 	    urb->transfer_flags & URB_ZERO_PACKET &&
1628 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1629 		num_tds = 2;
1630 	else
1631 		num_tds = 1;
1632 
1633 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1634 	if (!urb_priv)
1635 		return -ENOMEM;
1636 
1637 	urb_priv->num_tds = num_tds;
1638 	urb_priv->num_tds_done = 0;
1639 	urb->hcpriv = urb_priv;
1640 
1641 	trace_xhci_urb_enqueue(urb);
1642 
1643 	spin_lock_irqsave(&xhci->lock, flags);
1644 
1645 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1646 			      true, true, __func__);
1647 	if (ret <= 0) {
1648 		ret = ret ? ret : -EINVAL;
1649 		goto free_priv;
1650 	}
1651 
1652 	slot_id = urb->dev->slot_id;
1653 
1654 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1655 		ret = -ESHUTDOWN;
1656 		goto free_priv;
1657 	}
1658 
1659 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1660 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1661 		ret = -ENODEV;
1662 		goto free_priv;
1663 	}
1664 
1665 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1666 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1667 			 urb->ep->desc.bEndpointAddress, urb);
1668 		ret = -ESHUTDOWN;
1669 		goto free_priv;
1670 	}
1671 
1672 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1673 
1674 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1675 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1676 			  *ep_state);
1677 		ret = -EINVAL;
1678 		goto free_priv;
1679 	}
1680 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1681 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1682 		ret = -EINVAL;
1683 		goto free_priv;
1684 	}
1685 
1686 	switch (usb_endpoint_type(&urb->ep->desc)) {
1687 
1688 	case USB_ENDPOINT_XFER_CONTROL:
1689 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1690 					 slot_id, ep_index);
1691 		break;
1692 	case USB_ENDPOINT_XFER_BULK:
1693 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1694 					 slot_id, ep_index);
1695 		break;
1696 	case USB_ENDPOINT_XFER_INT:
1697 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1698 				slot_id, ep_index);
1699 		break;
1700 	case USB_ENDPOINT_XFER_ISOC:
1701 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1702 				slot_id, ep_index);
1703 	}
1704 
1705 	if (ret) {
1706 free_priv:
1707 		xhci_urb_free_priv(urb_priv);
1708 		urb->hcpriv = NULL;
1709 	}
1710 	spin_unlock_irqrestore(&xhci->lock, flags);
1711 	return ret;
1712 }
1713 
1714 /*
1715  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1716  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1717  * should pick up where it left off in the TD, unless a Set Transfer Ring
1718  * Dequeue Pointer is issued.
1719  *
1720  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1721  * the ring.  Since the ring is a contiguous structure, they can't be physically
1722  * removed.  Instead, there are two options:
1723  *
1724  *  1) If the HC is in the middle of processing the URB to be canceled, we
1725  *     simply move the ring's dequeue pointer past those TRBs using the Set
1726  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1727  *     when drivers timeout on the last submitted URB and attempt to cancel.
1728  *
1729  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1730  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1731  *     HC will need to invalidate the any TRBs it has cached after the stop
1732  *     endpoint command, as noted in the xHCI 0.95 errata.
1733  *
1734  *  3) The TD may have completed by the time the Stop Endpoint Command
1735  *     completes, so software needs to handle that case too.
1736  *
1737  * This function should protect against the TD enqueueing code ringing the
1738  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1739  * It also needs to account for multiple cancellations on happening at the same
1740  * time for the same endpoint.
1741  *
1742  * Note that this function can be called in any context, or so says
1743  * usb_hcd_unlink_urb()
1744  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1745 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1746 {
1747 	unsigned long flags;
1748 	int ret, i;
1749 	u32 temp;
1750 	struct xhci_hcd *xhci;
1751 	struct urb_priv	*urb_priv;
1752 	struct xhci_td *td;
1753 	unsigned int ep_index;
1754 	struct xhci_ring *ep_ring;
1755 	struct xhci_virt_ep *ep;
1756 	struct xhci_command *command;
1757 	struct xhci_virt_device *vdev;
1758 
1759 	xhci = hcd_to_xhci(hcd);
1760 	spin_lock_irqsave(&xhci->lock, flags);
1761 
1762 	trace_xhci_urb_dequeue(urb);
1763 
1764 	/* Make sure the URB hasn't completed or been unlinked already */
1765 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1766 	if (ret)
1767 		goto done;
1768 
1769 	/* give back URB now if we can't queue it for cancel */
1770 	vdev = xhci->devs[urb->dev->slot_id];
1771 	urb_priv = urb->hcpriv;
1772 	if (!vdev || !urb_priv)
1773 		goto err_giveback;
1774 
1775 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1776 	ep = &vdev->eps[ep_index];
1777 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1778 	if (!ep || !ep_ring)
1779 		goto err_giveback;
1780 
1781 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1782 	temp = readl(&xhci->op_regs->status);
1783 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1784 		xhci_hc_died(xhci);
1785 		goto done;
1786 	}
1787 
1788 	/*
1789 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1790 	 * make sure none of the ring related pointers in this URB private data
1791 	 * are touched, such as td_list, otherwise we overwrite freed data
1792 	 */
1793 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1794 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1795 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1796 			td = &urb_priv->td[i];
1797 			if (!list_empty(&td->cancelled_td_list))
1798 				list_del_init(&td->cancelled_td_list);
1799 		}
1800 		goto err_giveback;
1801 	}
1802 
1803 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1804 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1805 				"HC halted, freeing TD manually.");
1806 		for (i = urb_priv->num_tds_done;
1807 		     i < urb_priv->num_tds;
1808 		     i++) {
1809 			td = &urb_priv->td[i];
1810 			if (!list_empty(&td->td_list))
1811 				list_del_init(&td->td_list);
1812 			if (!list_empty(&td->cancelled_td_list))
1813 				list_del_init(&td->cancelled_td_list);
1814 		}
1815 		goto err_giveback;
1816 	}
1817 
1818 	i = urb_priv->num_tds_done;
1819 	if (i < urb_priv->num_tds)
1820 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1821 				"Cancel URB %p, dev %s, ep 0x%x, "
1822 				"starting at offset 0x%llx",
1823 				urb, urb->dev->devpath,
1824 				urb->ep->desc.bEndpointAddress,
1825 				(unsigned long long) xhci_trb_virt_to_dma(
1826 					urb_priv->td[i].start_seg,
1827 					urb_priv->td[i].start_trb));
1828 
1829 	for (; i < urb_priv->num_tds; i++) {
1830 		td = &urb_priv->td[i];
1831 		/* TD can already be on cancelled list if ep halted on it */
1832 		if (list_empty(&td->cancelled_td_list)) {
1833 			td->cancel_status = TD_DIRTY;
1834 			list_add_tail(&td->cancelled_td_list,
1835 				      &ep->cancelled_td_list);
1836 		}
1837 	}
1838 
1839 	/* These completion handlers will sort out cancelled TDs for us */
1840 	if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1841 		xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1842 				urb->dev->slot_id, ep_index, ep->ep_state);
1843 		goto done;
1844 	}
1845 
1846 	/* In this case no commands are pending but the endpoint is stopped */
1847 	if (ep->ep_state & EP_CLEARING_TT) {
1848 		/* and cancelled TDs can be given back right away */
1849 		xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1850 				urb->dev->slot_id, ep_index, ep->ep_state);
1851 		xhci_process_cancelled_tds(ep);
1852 	} else {
1853 		/* Otherwise, queue a new Stop Endpoint command */
1854 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1855 		if (!command) {
1856 			ret = -ENOMEM;
1857 			goto done;
1858 		}
1859 		ep->stop_time = jiffies;
1860 		ep->ep_state |= EP_STOP_CMD_PENDING;
1861 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1862 					 ep_index, 0);
1863 		xhci_ring_cmd_db(xhci);
1864 	}
1865 done:
1866 	spin_unlock_irqrestore(&xhci->lock, flags);
1867 	return ret;
1868 
1869 err_giveback:
1870 	if (urb_priv)
1871 		xhci_urb_free_priv(urb_priv);
1872 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1873 	spin_unlock_irqrestore(&xhci->lock, flags);
1874 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1875 	return ret;
1876 }
1877 
1878 /* Drop an endpoint from a new bandwidth configuration for this device.
1879  * Only one call to this function is allowed per endpoint before
1880  * check_bandwidth() or reset_bandwidth() must be called.
1881  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1882  * add the endpoint to the schedule with possibly new parameters denoted by a
1883  * different endpoint descriptor in usb_host_endpoint.
1884  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1885  * not allowed.
1886  *
1887  * The USB core will not allow URBs to be queued to an endpoint that is being
1888  * disabled, so there's no need for mutual exclusion to protect
1889  * the xhci->devs[slot_id] structure.
1890  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1891 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1892 		       struct usb_host_endpoint *ep)
1893 {
1894 	struct xhci_hcd *xhci;
1895 	struct xhci_container_ctx *in_ctx, *out_ctx;
1896 	struct xhci_input_control_ctx *ctrl_ctx;
1897 	unsigned int ep_index;
1898 	struct xhci_ep_ctx *ep_ctx;
1899 	u32 drop_flag;
1900 	u32 new_add_flags, new_drop_flags;
1901 	int ret;
1902 
1903 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1904 	if (ret <= 0)
1905 		return ret;
1906 	xhci = hcd_to_xhci(hcd);
1907 	if (xhci->xhc_state & XHCI_STATE_DYING)
1908 		return -ENODEV;
1909 
1910 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1911 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1912 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1913 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1914 				__func__, drop_flag);
1915 		return 0;
1916 	}
1917 
1918 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1919 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1920 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1921 	if (!ctrl_ctx) {
1922 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1923 				__func__);
1924 		return 0;
1925 	}
1926 
1927 	ep_index = xhci_get_endpoint_index(&ep->desc);
1928 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1929 	/* If the HC already knows the endpoint is disabled,
1930 	 * or the HCD has noted it is disabled, ignore this request
1931 	 */
1932 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1933 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1934 	    xhci_get_endpoint_flag(&ep->desc)) {
1935 		/* Do not warn when called after a usb_device_reset */
1936 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1937 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1938 				  __func__, ep);
1939 		return 0;
1940 	}
1941 
1942 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1943 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1944 
1945 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1946 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1947 
1948 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1949 
1950 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1951 
1952 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1953 			(unsigned int) ep->desc.bEndpointAddress,
1954 			udev->slot_id,
1955 			(unsigned int) new_drop_flags,
1956 			(unsigned int) new_add_flags);
1957 	return 0;
1958 }
1959 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1960 
1961 /* Add an endpoint to a new possible bandwidth configuration for this device.
1962  * Only one call to this function is allowed per endpoint before
1963  * check_bandwidth() or reset_bandwidth() must be called.
1964  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1965  * add the endpoint to the schedule with possibly new parameters denoted by a
1966  * different endpoint descriptor in usb_host_endpoint.
1967  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1968  * not allowed.
1969  *
1970  * The USB core will not allow URBs to be queued to an endpoint until the
1971  * configuration or alt setting is installed in the device, so there's no need
1972  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1973  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1974 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1975 		      struct usb_host_endpoint *ep)
1976 {
1977 	struct xhci_hcd *xhci;
1978 	struct xhci_container_ctx *in_ctx;
1979 	unsigned int ep_index;
1980 	struct xhci_input_control_ctx *ctrl_ctx;
1981 	struct xhci_ep_ctx *ep_ctx;
1982 	u32 added_ctxs;
1983 	u32 new_add_flags, new_drop_flags;
1984 	struct xhci_virt_device *virt_dev;
1985 	int ret = 0;
1986 
1987 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1988 	if (ret <= 0) {
1989 		/* So we won't queue a reset ep command for a root hub */
1990 		ep->hcpriv = NULL;
1991 		return ret;
1992 	}
1993 	xhci = hcd_to_xhci(hcd);
1994 	if (xhci->xhc_state & XHCI_STATE_DYING)
1995 		return -ENODEV;
1996 
1997 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1998 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1999 		/* FIXME when we have to issue an evaluate endpoint command to
2000 		 * deal with ep0 max packet size changing once we get the
2001 		 * descriptors
2002 		 */
2003 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2004 				__func__, added_ctxs);
2005 		return 0;
2006 	}
2007 
2008 	virt_dev = xhci->devs[udev->slot_id];
2009 	in_ctx = virt_dev->in_ctx;
2010 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2011 	if (!ctrl_ctx) {
2012 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2013 				__func__);
2014 		return 0;
2015 	}
2016 
2017 	ep_index = xhci_get_endpoint_index(&ep->desc);
2018 	/* If this endpoint is already in use, and the upper layers are trying
2019 	 * to add it again without dropping it, reject the addition.
2020 	 */
2021 	if (virt_dev->eps[ep_index].ring &&
2022 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2023 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2024 				"without dropping it.\n",
2025 				(unsigned int) ep->desc.bEndpointAddress);
2026 		return -EINVAL;
2027 	}
2028 
2029 	/* If the HCD has already noted the endpoint is enabled,
2030 	 * ignore this request.
2031 	 */
2032 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2033 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2034 				__func__, ep);
2035 		return 0;
2036 	}
2037 
2038 	/*
2039 	 * Configuration and alternate setting changes must be done in
2040 	 * process context, not interrupt context (or so documenation
2041 	 * for usb_set_interface() and usb_set_configuration() claim).
2042 	 */
2043 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2044 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2045 				__func__, ep->desc.bEndpointAddress);
2046 		return -ENOMEM;
2047 	}
2048 
2049 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2050 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2051 
2052 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2053 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2054 	 * this re-adds a new state for the endpoint from the new endpoint
2055 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2056 	 * drop flags alone.
2057 	 */
2058 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2059 
2060 	/* Store the usb_device pointer for later use */
2061 	ep->hcpriv = udev;
2062 
2063 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2064 	trace_xhci_add_endpoint(ep_ctx);
2065 
2066 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2067 			(unsigned int) ep->desc.bEndpointAddress,
2068 			udev->slot_id,
2069 			(unsigned int) new_drop_flags,
2070 			(unsigned int) new_add_flags);
2071 	return 0;
2072 }
2073 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2074 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2075 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2076 {
2077 	struct xhci_input_control_ctx *ctrl_ctx;
2078 	struct xhci_ep_ctx *ep_ctx;
2079 	struct xhci_slot_ctx *slot_ctx;
2080 	int i;
2081 
2082 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2083 	if (!ctrl_ctx) {
2084 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2085 				__func__);
2086 		return;
2087 	}
2088 
2089 	/* When a device's add flag and drop flag are zero, any subsequent
2090 	 * configure endpoint command will leave that endpoint's state
2091 	 * untouched.  Make sure we don't leave any old state in the input
2092 	 * endpoint contexts.
2093 	 */
2094 	ctrl_ctx->drop_flags = 0;
2095 	ctrl_ctx->add_flags = 0;
2096 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2097 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2098 	/* Endpoint 0 is always valid */
2099 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2100 	for (i = 1; i < 31; i++) {
2101 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2102 		ep_ctx->ep_info = 0;
2103 		ep_ctx->ep_info2 = 0;
2104 		ep_ctx->deq = 0;
2105 		ep_ctx->tx_info = 0;
2106 	}
2107 }
2108 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2109 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2110 		struct usb_device *udev, u32 *cmd_status)
2111 {
2112 	int ret;
2113 
2114 	switch (*cmd_status) {
2115 	case COMP_COMMAND_ABORTED:
2116 	case COMP_COMMAND_RING_STOPPED:
2117 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2118 		ret = -ETIME;
2119 		break;
2120 	case COMP_RESOURCE_ERROR:
2121 		dev_warn(&udev->dev,
2122 			 "Not enough host controller resources for new device state.\n");
2123 		ret = -ENOMEM;
2124 		/* FIXME: can we allocate more resources for the HC? */
2125 		break;
2126 	case COMP_BANDWIDTH_ERROR:
2127 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2128 		dev_warn(&udev->dev,
2129 			 "Not enough bandwidth for new device state.\n");
2130 		ret = -ENOSPC;
2131 		/* FIXME: can we go back to the old state? */
2132 		break;
2133 	case COMP_TRB_ERROR:
2134 		/* the HCD set up something wrong */
2135 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2136 				"add flag = 1, "
2137 				"and endpoint is not disabled.\n");
2138 		ret = -EINVAL;
2139 		break;
2140 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2141 		dev_warn(&udev->dev,
2142 			 "ERROR: Incompatible device for endpoint configure command.\n");
2143 		ret = -ENODEV;
2144 		break;
2145 	case COMP_SUCCESS:
2146 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2147 				"Successful Endpoint Configure command");
2148 		ret = 0;
2149 		break;
2150 	default:
2151 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2152 				*cmd_status);
2153 		ret = -EINVAL;
2154 		break;
2155 	}
2156 	return ret;
2157 }
2158 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2159 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2160 		struct usb_device *udev, u32 *cmd_status)
2161 {
2162 	int ret;
2163 
2164 	switch (*cmd_status) {
2165 	case COMP_COMMAND_ABORTED:
2166 	case COMP_COMMAND_RING_STOPPED:
2167 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2168 		ret = -ETIME;
2169 		break;
2170 	case COMP_PARAMETER_ERROR:
2171 		dev_warn(&udev->dev,
2172 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2173 		ret = -EINVAL;
2174 		break;
2175 	case COMP_SLOT_NOT_ENABLED_ERROR:
2176 		dev_warn(&udev->dev,
2177 			"WARN: slot not enabled for evaluate context command.\n");
2178 		ret = -EINVAL;
2179 		break;
2180 	case COMP_CONTEXT_STATE_ERROR:
2181 		dev_warn(&udev->dev,
2182 			"WARN: invalid context state for evaluate context command.\n");
2183 		ret = -EINVAL;
2184 		break;
2185 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2186 		dev_warn(&udev->dev,
2187 			"ERROR: Incompatible device for evaluate context command.\n");
2188 		ret = -ENODEV;
2189 		break;
2190 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2191 		/* Max Exit Latency too large error */
2192 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2193 		ret = -EINVAL;
2194 		break;
2195 	case COMP_SUCCESS:
2196 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2197 				"Successful evaluate context command");
2198 		ret = 0;
2199 		break;
2200 	default:
2201 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2202 			*cmd_status);
2203 		ret = -EINVAL;
2204 		break;
2205 	}
2206 	return ret;
2207 }
2208 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2209 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2210 		struct xhci_input_control_ctx *ctrl_ctx)
2211 {
2212 	u32 valid_add_flags;
2213 	u32 valid_drop_flags;
2214 
2215 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2216 	 * (bit 1).  The default control endpoint is added during the Address
2217 	 * Device command and is never removed until the slot is disabled.
2218 	 */
2219 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2220 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2221 
2222 	/* Use hweight32 to count the number of ones in the add flags, or
2223 	 * number of endpoints added.  Don't count endpoints that are changed
2224 	 * (both added and dropped).
2225 	 */
2226 	return hweight32(valid_add_flags) -
2227 		hweight32(valid_add_flags & valid_drop_flags);
2228 }
2229 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2230 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2231 		struct xhci_input_control_ctx *ctrl_ctx)
2232 {
2233 	u32 valid_add_flags;
2234 	u32 valid_drop_flags;
2235 
2236 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2237 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2238 
2239 	return hweight32(valid_drop_flags) -
2240 		hweight32(valid_add_flags & valid_drop_flags);
2241 }
2242 
2243 /*
2244  * We need to reserve the new number of endpoints before the configure endpoint
2245  * command completes.  We can't subtract the dropped endpoints from the number
2246  * of active endpoints until the command completes because we can oversubscribe
2247  * the host in this case:
2248  *
2249  *  - the first configure endpoint command drops more endpoints than it adds
2250  *  - a second configure endpoint command that adds more endpoints is queued
2251  *  - the first configure endpoint command fails, so the config is unchanged
2252  *  - the second command may succeed, even though there isn't enough resources
2253  *
2254  * Must be called with xhci->lock held.
2255  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2256 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2257 		struct xhci_input_control_ctx *ctrl_ctx)
2258 {
2259 	u32 added_eps;
2260 
2261 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2262 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2263 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2264 				"Not enough ep ctxs: "
2265 				"%u active, need to add %u, limit is %u.",
2266 				xhci->num_active_eps, added_eps,
2267 				xhci->limit_active_eps);
2268 		return -ENOMEM;
2269 	}
2270 	xhci->num_active_eps += added_eps;
2271 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2272 			"Adding %u ep ctxs, %u now active.", added_eps,
2273 			xhci->num_active_eps);
2274 	return 0;
2275 }
2276 
2277 /*
2278  * The configure endpoint was failed by the xHC for some other reason, so we
2279  * need to revert the resources that failed configuration would have used.
2280  *
2281  * Must be called with xhci->lock held.
2282  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2283 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2284 		struct xhci_input_control_ctx *ctrl_ctx)
2285 {
2286 	u32 num_failed_eps;
2287 
2288 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2289 	xhci->num_active_eps -= num_failed_eps;
2290 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2291 			"Removing %u failed ep ctxs, %u now active.",
2292 			num_failed_eps,
2293 			xhci->num_active_eps);
2294 }
2295 
2296 /*
2297  * Now that the command has completed, clean up the active endpoint count by
2298  * subtracting out the endpoints that were dropped (but not changed).
2299  *
2300  * Must be called with xhci->lock held.
2301  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2302 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2303 		struct xhci_input_control_ctx *ctrl_ctx)
2304 {
2305 	u32 num_dropped_eps;
2306 
2307 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2308 	xhci->num_active_eps -= num_dropped_eps;
2309 	if (num_dropped_eps)
2310 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2311 				"Removing %u dropped ep ctxs, %u now active.",
2312 				num_dropped_eps,
2313 				xhci->num_active_eps);
2314 }
2315 
xhci_get_block_size(struct usb_device * udev)2316 static unsigned int xhci_get_block_size(struct usb_device *udev)
2317 {
2318 	switch (udev->speed) {
2319 	case USB_SPEED_LOW:
2320 	case USB_SPEED_FULL:
2321 		return FS_BLOCK;
2322 	case USB_SPEED_HIGH:
2323 		return HS_BLOCK;
2324 	case USB_SPEED_SUPER:
2325 	case USB_SPEED_SUPER_PLUS:
2326 		return SS_BLOCK;
2327 	case USB_SPEED_UNKNOWN:
2328 	default:
2329 		/* Should never happen */
2330 		return 1;
2331 	}
2332 }
2333 
2334 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2335 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2336 {
2337 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2338 		return LS_OVERHEAD;
2339 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2340 		return FS_OVERHEAD;
2341 	return HS_OVERHEAD;
2342 }
2343 
2344 /* If we are changing a LS/FS device under a HS hub,
2345  * make sure (if we are activating a new TT) that the HS bus has enough
2346  * bandwidth for this new TT.
2347  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2348 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2349 		struct xhci_virt_device *virt_dev,
2350 		int old_active_eps)
2351 {
2352 	struct xhci_interval_bw_table *bw_table;
2353 	struct xhci_tt_bw_info *tt_info;
2354 
2355 	/* Find the bandwidth table for the root port this TT is attached to. */
2356 	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2357 	tt_info = virt_dev->tt_info;
2358 	/* If this TT already had active endpoints, the bandwidth for this TT
2359 	 * has already been added.  Removing all periodic endpoints (and thus
2360 	 * making the TT enactive) will only decrease the bandwidth used.
2361 	 */
2362 	if (old_active_eps)
2363 		return 0;
2364 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2365 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2366 			return -ENOMEM;
2367 		return 0;
2368 	}
2369 	/* Not sure why we would have no new active endpoints...
2370 	 *
2371 	 * Maybe because of an Evaluate Context change for a hub update or a
2372 	 * control endpoint 0 max packet size change?
2373 	 * FIXME: skip the bandwidth calculation in that case.
2374 	 */
2375 	return 0;
2376 }
2377 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2378 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2379 		struct xhci_virt_device *virt_dev)
2380 {
2381 	unsigned int bw_reserved;
2382 
2383 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2384 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2385 		return -ENOMEM;
2386 
2387 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2388 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2389 		return -ENOMEM;
2390 
2391 	return 0;
2392 }
2393 
2394 /*
2395  * This algorithm is a very conservative estimate of the worst-case scheduling
2396  * scenario for any one interval.  The hardware dynamically schedules the
2397  * packets, so we can't tell which microframe could be the limiting factor in
2398  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2399  *
2400  * Obviously, we can't solve an NP complete problem to find the minimum worst
2401  * case scenario.  Instead, we come up with an estimate that is no less than
2402  * the worst case bandwidth used for any one microframe, but may be an
2403  * over-estimate.
2404  *
2405  * We walk the requirements for each endpoint by interval, starting with the
2406  * smallest interval, and place packets in the schedule where there is only one
2407  * possible way to schedule packets for that interval.  In order to simplify
2408  * this algorithm, we record the largest max packet size for each interval, and
2409  * assume all packets will be that size.
2410  *
2411  * For interval 0, we obviously must schedule all packets for each interval.
2412  * The bandwidth for interval 0 is just the amount of data to be transmitted
2413  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2414  * the number of packets).
2415  *
2416  * For interval 1, we have two possible microframes to schedule those packets
2417  * in.  For this algorithm, if we can schedule the same number of packets for
2418  * each possible scheduling opportunity (each microframe), we will do so.  The
2419  * remaining number of packets will be saved to be transmitted in the gaps in
2420  * the next interval's scheduling sequence.
2421  *
2422  * As we move those remaining packets to be scheduled with interval 2 packets,
2423  * we have to double the number of remaining packets to transmit.  This is
2424  * because the intervals are actually powers of 2, and we would be transmitting
2425  * the previous interval's packets twice in this interval.  We also have to be
2426  * sure that when we look at the largest max packet size for this interval, we
2427  * also look at the largest max packet size for the remaining packets and take
2428  * the greater of the two.
2429  *
2430  * The algorithm continues to evenly distribute packets in each scheduling
2431  * opportunity, and push the remaining packets out, until we get to the last
2432  * interval.  Then those packets and their associated overhead are just added
2433  * to the bandwidth used.
2434  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2435 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2436 		struct xhci_virt_device *virt_dev,
2437 		int old_active_eps)
2438 {
2439 	unsigned int bw_reserved;
2440 	unsigned int max_bandwidth;
2441 	unsigned int bw_used;
2442 	unsigned int block_size;
2443 	struct xhci_interval_bw_table *bw_table;
2444 	unsigned int packet_size = 0;
2445 	unsigned int overhead = 0;
2446 	unsigned int packets_transmitted = 0;
2447 	unsigned int packets_remaining = 0;
2448 	unsigned int i;
2449 
2450 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2451 		return xhci_check_ss_bw(xhci, virt_dev);
2452 
2453 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2454 		max_bandwidth = HS_BW_LIMIT;
2455 		/* Convert percent of bus BW reserved to blocks reserved */
2456 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2457 	} else {
2458 		max_bandwidth = FS_BW_LIMIT;
2459 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2460 	}
2461 
2462 	bw_table = virt_dev->bw_table;
2463 	/* We need to translate the max packet size and max ESIT payloads into
2464 	 * the units the hardware uses.
2465 	 */
2466 	block_size = xhci_get_block_size(virt_dev->udev);
2467 
2468 	/* If we are manipulating a LS/FS device under a HS hub, double check
2469 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2470 	 */
2471 	if (virt_dev->tt_info) {
2472 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2473 				"Recalculating BW for rootport %u",
2474 				virt_dev->rhub_port->hw_portnum + 1);
2475 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2476 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2477 					"newly activated TT.\n");
2478 			return -ENOMEM;
2479 		}
2480 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2481 				"Recalculating BW for TT slot %u port %u",
2482 				virt_dev->tt_info->slot_id,
2483 				virt_dev->tt_info->ttport);
2484 	} else {
2485 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2486 				"Recalculating BW for rootport %u",
2487 				virt_dev->rhub_port->hw_portnum + 1);
2488 	}
2489 
2490 	/* Add in how much bandwidth will be used for interval zero, or the
2491 	 * rounded max ESIT payload + number of packets * largest overhead.
2492 	 */
2493 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2494 		bw_table->interval_bw[0].num_packets *
2495 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2496 
2497 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2498 		unsigned int bw_added;
2499 		unsigned int largest_mps;
2500 		unsigned int interval_overhead;
2501 
2502 		/*
2503 		 * How many packets could we transmit in this interval?
2504 		 * If packets didn't fit in the previous interval, we will need
2505 		 * to transmit that many packets twice within this interval.
2506 		 */
2507 		packets_remaining = 2 * packets_remaining +
2508 			bw_table->interval_bw[i].num_packets;
2509 
2510 		/* Find the largest max packet size of this or the previous
2511 		 * interval.
2512 		 */
2513 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2514 			largest_mps = 0;
2515 		else {
2516 			struct xhci_virt_ep *virt_ep;
2517 			struct list_head *ep_entry;
2518 
2519 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2520 			virt_ep = list_entry(ep_entry,
2521 					struct xhci_virt_ep, bw_endpoint_list);
2522 			/* Convert to blocks, rounding up */
2523 			largest_mps = DIV_ROUND_UP(
2524 					virt_ep->bw_info.max_packet_size,
2525 					block_size);
2526 		}
2527 		if (largest_mps > packet_size)
2528 			packet_size = largest_mps;
2529 
2530 		/* Use the larger overhead of this or the previous interval. */
2531 		interval_overhead = xhci_get_largest_overhead(
2532 				&bw_table->interval_bw[i]);
2533 		if (interval_overhead > overhead)
2534 			overhead = interval_overhead;
2535 
2536 		/* How many packets can we evenly distribute across
2537 		 * (1 << (i + 1)) possible scheduling opportunities?
2538 		 */
2539 		packets_transmitted = packets_remaining >> (i + 1);
2540 
2541 		/* Add in the bandwidth used for those scheduled packets */
2542 		bw_added = packets_transmitted * (overhead + packet_size);
2543 
2544 		/* How many packets do we have remaining to transmit? */
2545 		packets_remaining = packets_remaining % (1 << (i + 1));
2546 
2547 		/* What largest max packet size should those packets have? */
2548 		/* If we've transmitted all packets, don't carry over the
2549 		 * largest packet size.
2550 		 */
2551 		if (packets_remaining == 0) {
2552 			packet_size = 0;
2553 			overhead = 0;
2554 		} else if (packets_transmitted > 0) {
2555 			/* Otherwise if we do have remaining packets, and we've
2556 			 * scheduled some packets in this interval, take the
2557 			 * largest max packet size from endpoints with this
2558 			 * interval.
2559 			 */
2560 			packet_size = largest_mps;
2561 			overhead = interval_overhead;
2562 		}
2563 		/* Otherwise carry over packet_size and overhead from the last
2564 		 * time we had a remainder.
2565 		 */
2566 		bw_used += bw_added;
2567 		if (bw_used > max_bandwidth) {
2568 			xhci_warn(xhci, "Not enough bandwidth. "
2569 					"Proposed: %u, Max: %u\n",
2570 				bw_used, max_bandwidth);
2571 			return -ENOMEM;
2572 		}
2573 	}
2574 	/*
2575 	 * Ok, we know we have some packets left over after even-handedly
2576 	 * scheduling interval 15.  We don't know which microframes they will
2577 	 * fit into, so we over-schedule and say they will be scheduled every
2578 	 * microframe.
2579 	 */
2580 	if (packets_remaining > 0)
2581 		bw_used += overhead + packet_size;
2582 
2583 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2584 		/* OK, we're manipulating a HS device attached to a
2585 		 * root port bandwidth domain.  Include the number of active TTs
2586 		 * in the bandwidth used.
2587 		 */
2588 		bw_used += TT_HS_OVERHEAD *
2589 			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2590 	}
2591 
2592 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2593 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2594 		"Available: %u " "percent",
2595 		bw_used, max_bandwidth, bw_reserved,
2596 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2597 		max_bandwidth);
2598 
2599 	bw_used += bw_reserved;
2600 	if (bw_used > max_bandwidth) {
2601 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2602 				bw_used, max_bandwidth);
2603 		return -ENOMEM;
2604 	}
2605 
2606 	bw_table->bw_used = bw_used;
2607 	return 0;
2608 }
2609 
xhci_is_async_ep(unsigned int ep_type)2610 static bool xhci_is_async_ep(unsigned int ep_type)
2611 {
2612 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2613 					ep_type != ISOC_IN_EP &&
2614 					ep_type != INT_IN_EP);
2615 }
2616 
xhci_is_sync_in_ep(unsigned int ep_type)2617 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2618 {
2619 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2620 }
2621 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2622 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2623 {
2624 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2625 
2626 	if (ep_bw->ep_interval == 0)
2627 		return SS_OVERHEAD_BURST +
2628 			(ep_bw->mult * ep_bw->num_packets *
2629 					(SS_OVERHEAD + mps));
2630 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2631 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2632 				1 << ep_bw->ep_interval);
2633 
2634 }
2635 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2636 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2637 		struct xhci_bw_info *ep_bw,
2638 		struct xhci_interval_bw_table *bw_table,
2639 		struct usb_device *udev,
2640 		struct xhci_virt_ep *virt_ep,
2641 		struct xhci_tt_bw_info *tt_info)
2642 {
2643 	struct xhci_interval_bw	*interval_bw;
2644 	int normalized_interval;
2645 
2646 	if (xhci_is_async_ep(ep_bw->type))
2647 		return;
2648 
2649 	if (udev->speed >= USB_SPEED_SUPER) {
2650 		if (xhci_is_sync_in_ep(ep_bw->type))
2651 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2652 				xhci_get_ss_bw_consumed(ep_bw);
2653 		else
2654 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2655 				xhci_get_ss_bw_consumed(ep_bw);
2656 		return;
2657 	}
2658 
2659 	/* SuperSpeed endpoints never get added to intervals in the table, so
2660 	 * this check is only valid for HS/FS/LS devices.
2661 	 */
2662 	if (list_empty(&virt_ep->bw_endpoint_list))
2663 		return;
2664 	/* For LS/FS devices, we need to translate the interval expressed in
2665 	 * microframes to frames.
2666 	 */
2667 	if (udev->speed == USB_SPEED_HIGH)
2668 		normalized_interval = ep_bw->ep_interval;
2669 	else
2670 		normalized_interval = ep_bw->ep_interval - 3;
2671 
2672 	if (normalized_interval == 0)
2673 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2674 	interval_bw = &bw_table->interval_bw[normalized_interval];
2675 	interval_bw->num_packets -= ep_bw->num_packets;
2676 	switch (udev->speed) {
2677 	case USB_SPEED_LOW:
2678 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2679 		break;
2680 	case USB_SPEED_FULL:
2681 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2682 		break;
2683 	case USB_SPEED_HIGH:
2684 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2685 		break;
2686 	default:
2687 		/* Should never happen because only LS/FS/HS endpoints will get
2688 		 * added to the endpoint list.
2689 		 */
2690 		return;
2691 	}
2692 	if (tt_info)
2693 		tt_info->active_eps -= 1;
2694 	list_del_init(&virt_ep->bw_endpoint_list);
2695 }
2696 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2697 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2698 		struct xhci_bw_info *ep_bw,
2699 		struct xhci_interval_bw_table *bw_table,
2700 		struct usb_device *udev,
2701 		struct xhci_virt_ep *virt_ep,
2702 		struct xhci_tt_bw_info *tt_info)
2703 {
2704 	struct xhci_interval_bw	*interval_bw;
2705 	struct xhci_virt_ep *smaller_ep;
2706 	int normalized_interval;
2707 
2708 	if (xhci_is_async_ep(ep_bw->type))
2709 		return;
2710 
2711 	if (udev->speed == USB_SPEED_SUPER) {
2712 		if (xhci_is_sync_in_ep(ep_bw->type))
2713 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2714 				xhci_get_ss_bw_consumed(ep_bw);
2715 		else
2716 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2717 				xhci_get_ss_bw_consumed(ep_bw);
2718 		return;
2719 	}
2720 
2721 	/* For LS/FS devices, we need to translate the interval expressed in
2722 	 * microframes to frames.
2723 	 */
2724 	if (udev->speed == USB_SPEED_HIGH)
2725 		normalized_interval = ep_bw->ep_interval;
2726 	else
2727 		normalized_interval = ep_bw->ep_interval - 3;
2728 
2729 	if (normalized_interval == 0)
2730 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2731 	interval_bw = &bw_table->interval_bw[normalized_interval];
2732 	interval_bw->num_packets += ep_bw->num_packets;
2733 	switch (udev->speed) {
2734 	case USB_SPEED_LOW:
2735 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2736 		break;
2737 	case USB_SPEED_FULL:
2738 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2739 		break;
2740 	case USB_SPEED_HIGH:
2741 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2742 		break;
2743 	default:
2744 		/* Should never happen because only LS/FS/HS endpoints will get
2745 		 * added to the endpoint list.
2746 		 */
2747 		return;
2748 	}
2749 
2750 	if (tt_info)
2751 		tt_info->active_eps += 1;
2752 	/* Insert the endpoint into the list, largest max packet size first. */
2753 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2754 			bw_endpoint_list) {
2755 		if (ep_bw->max_packet_size >=
2756 				smaller_ep->bw_info.max_packet_size) {
2757 			/* Add the new ep before the smaller endpoint */
2758 			list_add_tail(&virt_ep->bw_endpoint_list,
2759 					&smaller_ep->bw_endpoint_list);
2760 			return;
2761 		}
2762 	}
2763 	/* Add the new endpoint at the end of the list. */
2764 	list_add_tail(&virt_ep->bw_endpoint_list,
2765 			&interval_bw->endpoints);
2766 }
2767 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2768 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2769 		struct xhci_virt_device *virt_dev,
2770 		int old_active_eps)
2771 {
2772 	struct xhci_root_port_bw_info *rh_bw_info;
2773 	if (!virt_dev->tt_info)
2774 		return;
2775 
2776 	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2777 	if (old_active_eps == 0 &&
2778 				virt_dev->tt_info->active_eps != 0) {
2779 		rh_bw_info->num_active_tts += 1;
2780 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2781 	} else if (old_active_eps != 0 &&
2782 				virt_dev->tt_info->active_eps == 0) {
2783 		rh_bw_info->num_active_tts -= 1;
2784 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2785 	}
2786 }
2787 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2788 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2789 		struct xhci_virt_device *virt_dev,
2790 		struct xhci_container_ctx *in_ctx)
2791 {
2792 	struct xhci_bw_info ep_bw_info[31];
2793 	int i;
2794 	struct xhci_input_control_ctx *ctrl_ctx;
2795 	int old_active_eps = 0;
2796 
2797 	if (virt_dev->tt_info)
2798 		old_active_eps = virt_dev->tt_info->active_eps;
2799 
2800 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2801 	if (!ctrl_ctx) {
2802 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2803 				__func__);
2804 		return -ENOMEM;
2805 	}
2806 
2807 	for (i = 0; i < 31; i++) {
2808 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2809 			continue;
2810 
2811 		/* Make a copy of the BW info in case we need to revert this */
2812 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2813 				sizeof(ep_bw_info[i]));
2814 		/* Drop the endpoint from the interval table if the endpoint is
2815 		 * being dropped or changed.
2816 		 */
2817 		if (EP_IS_DROPPED(ctrl_ctx, i))
2818 			xhci_drop_ep_from_interval_table(xhci,
2819 					&virt_dev->eps[i].bw_info,
2820 					virt_dev->bw_table,
2821 					virt_dev->udev,
2822 					&virt_dev->eps[i],
2823 					virt_dev->tt_info);
2824 	}
2825 	/* Overwrite the information stored in the endpoints' bw_info */
2826 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2827 	for (i = 0; i < 31; i++) {
2828 		/* Add any changed or added endpoints to the interval table */
2829 		if (EP_IS_ADDED(ctrl_ctx, i))
2830 			xhci_add_ep_to_interval_table(xhci,
2831 					&virt_dev->eps[i].bw_info,
2832 					virt_dev->bw_table,
2833 					virt_dev->udev,
2834 					&virt_dev->eps[i],
2835 					virt_dev->tt_info);
2836 	}
2837 
2838 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2839 		/* Ok, this fits in the bandwidth we have.
2840 		 * Update the number of active TTs.
2841 		 */
2842 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2843 		return 0;
2844 	}
2845 
2846 	/* We don't have enough bandwidth for this, revert the stored info. */
2847 	for (i = 0; i < 31; i++) {
2848 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2849 			continue;
2850 
2851 		/* Drop the new copies of any added or changed endpoints from
2852 		 * the interval table.
2853 		 */
2854 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2855 			xhci_drop_ep_from_interval_table(xhci,
2856 					&virt_dev->eps[i].bw_info,
2857 					virt_dev->bw_table,
2858 					virt_dev->udev,
2859 					&virt_dev->eps[i],
2860 					virt_dev->tt_info);
2861 		}
2862 		/* Revert the endpoint back to its old information */
2863 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2864 				sizeof(ep_bw_info[i]));
2865 		/* Add any changed or dropped endpoints back into the table */
2866 		if (EP_IS_DROPPED(ctrl_ctx, i))
2867 			xhci_add_ep_to_interval_table(xhci,
2868 					&virt_dev->eps[i].bw_info,
2869 					virt_dev->bw_table,
2870 					virt_dev->udev,
2871 					&virt_dev->eps[i],
2872 					virt_dev->tt_info);
2873 	}
2874 	return -ENOMEM;
2875 }
2876 
2877 /*
2878  * Synchronous XHCI stop endpoint helper.  Issues the stop endpoint command and
2879  * waits for the command completion before returning.  This does not call
2880  * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2881  * cases, along with transfer ring cleanup.
2882  *
2883  * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2884  * their own transfer ring, such as offload situations.
2885  */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2886 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2887 			    gfp_t gfp_flags)
2888 {
2889 	struct xhci_command *command;
2890 	unsigned long flags;
2891 	int ret;
2892 
2893 	command = xhci_alloc_command(xhci, true, gfp_flags);
2894 	if (!command)
2895 		return -ENOMEM;
2896 
2897 	spin_lock_irqsave(&xhci->lock, flags);
2898 	ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2899 				       ep->ep_index, suspend);
2900 	if (ret < 0) {
2901 		spin_unlock_irqrestore(&xhci->lock, flags);
2902 		goto out;
2903 	}
2904 
2905 	xhci_ring_cmd_db(xhci);
2906 	spin_unlock_irqrestore(&xhci->lock, flags);
2907 
2908 	wait_for_completion(command->completion);
2909 
2910 	/* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2911 	if (command->status == COMP_COMMAND_ABORTED ||
2912 	    command->status == COMP_COMMAND_RING_STOPPED) {
2913 		xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2914 		ret = -ETIME;
2915 	}
2916 out:
2917 	xhci_free_command(xhci, command);
2918 
2919 	return ret;
2920 }
2921 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2922 
2923 /* Issue a configure endpoint command or evaluate context command
2924  * and wait for it to finish.
2925  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2926 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2927 		struct usb_device *udev,
2928 		struct xhci_command *command,
2929 		bool ctx_change, bool must_succeed)
2930 {
2931 	int ret;
2932 	unsigned long flags;
2933 	struct xhci_input_control_ctx *ctrl_ctx;
2934 	struct xhci_virt_device *virt_dev;
2935 	struct xhci_slot_ctx *slot_ctx;
2936 
2937 	if (!command)
2938 		return -EINVAL;
2939 
2940 	spin_lock_irqsave(&xhci->lock, flags);
2941 
2942 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2943 		spin_unlock_irqrestore(&xhci->lock, flags);
2944 		return -ESHUTDOWN;
2945 	}
2946 
2947 	virt_dev = xhci->devs[udev->slot_id];
2948 
2949 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2950 	if (!ctrl_ctx) {
2951 		spin_unlock_irqrestore(&xhci->lock, flags);
2952 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2953 				__func__);
2954 		return -ENOMEM;
2955 	}
2956 
2957 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2958 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2959 		spin_unlock_irqrestore(&xhci->lock, flags);
2960 		xhci_warn(xhci, "Not enough host resources, "
2961 				"active endpoint contexts = %u\n",
2962 				xhci->num_active_eps);
2963 		return -ENOMEM;
2964 	}
2965 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2966 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2967 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2968 			xhci_free_host_resources(xhci, ctrl_ctx);
2969 		spin_unlock_irqrestore(&xhci->lock, flags);
2970 		xhci_warn(xhci, "Not enough bandwidth\n");
2971 		return -ENOMEM;
2972 	}
2973 
2974 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2975 
2976 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2977 	trace_xhci_configure_endpoint(slot_ctx);
2978 
2979 	if (!ctx_change)
2980 		ret = xhci_queue_configure_endpoint(xhci, command,
2981 				command->in_ctx->dma,
2982 				udev->slot_id, must_succeed);
2983 	else
2984 		ret = xhci_queue_evaluate_context(xhci, command,
2985 				command->in_ctx->dma,
2986 				udev->slot_id, must_succeed);
2987 	if (ret < 0) {
2988 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2989 			xhci_free_host_resources(xhci, ctrl_ctx);
2990 		spin_unlock_irqrestore(&xhci->lock, flags);
2991 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2992 				"FIXME allocate a new ring segment");
2993 		return -ENOMEM;
2994 	}
2995 	xhci_ring_cmd_db(xhci);
2996 	spin_unlock_irqrestore(&xhci->lock, flags);
2997 
2998 	/* Wait for the configure endpoint command to complete */
2999 	wait_for_completion(command->completion);
3000 
3001 	if (!ctx_change)
3002 		ret = xhci_configure_endpoint_result(xhci, udev,
3003 						     &command->status);
3004 	else
3005 		ret = xhci_evaluate_context_result(xhci, udev,
3006 						   &command->status);
3007 
3008 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3009 		spin_lock_irqsave(&xhci->lock, flags);
3010 		/* If the command failed, remove the reserved resources.
3011 		 * Otherwise, clean up the estimate to include dropped eps.
3012 		 */
3013 		if (ret)
3014 			xhci_free_host_resources(xhci, ctrl_ctx);
3015 		else
3016 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
3017 		spin_unlock_irqrestore(&xhci->lock, flags);
3018 	}
3019 	return ret;
3020 }
3021 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)3022 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3023 	struct xhci_virt_device *vdev, int i)
3024 {
3025 	struct xhci_virt_ep *ep = &vdev->eps[i];
3026 
3027 	if (ep->ep_state & EP_HAS_STREAMS) {
3028 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3029 				xhci_get_endpoint_address(i));
3030 		xhci_free_stream_info(xhci, ep->stream_info);
3031 		ep->stream_info = NULL;
3032 		ep->ep_state &= ~EP_HAS_STREAMS;
3033 	}
3034 }
3035 
3036 /* Called after one or more calls to xhci_add_endpoint() or
3037  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3038  * to call xhci_reset_bandwidth().
3039  *
3040  * Since we are in the middle of changing either configuration or
3041  * installing a new alt setting, the USB core won't allow URBs to be
3042  * enqueued for any endpoint on the old config or interface.  Nothing
3043  * else should be touching the xhci->devs[slot_id] structure, so we
3044  * don't need to take the xhci->lock for manipulating that.
3045  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3046 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3047 {
3048 	int i;
3049 	int ret = 0;
3050 	struct xhci_hcd *xhci;
3051 	struct xhci_virt_device	*virt_dev;
3052 	struct xhci_input_control_ctx *ctrl_ctx;
3053 	struct xhci_slot_ctx *slot_ctx;
3054 	struct xhci_command *command;
3055 
3056 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3057 	if (ret <= 0)
3058 		return ret;
3059 	xhci = hcd_to_xhci(hcd);
3060 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3061 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3062 		return -ENODEV;
3063 
3064 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3065 	virt_dev = xhci->devs[udev->slot_id];
3066 
3067 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3068 	if (!command)
3069 		return -ENOMEM;
3070 
3071 	command->in_ctx = virt_dev->in_ctx;
3072 
3073 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3074 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3075 	if (!ctrl_ctx) {
3076 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3077 				__func__);
3078 		ret = -ENOMEM;
3079 		goto command_cleanup;
3080 	}
3081 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3082 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3083 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3084 
3085 	/* Don't issue the command if there's no endpoints to update. */
3086 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3087 	    ctrl_ctx->drop_flags == 0) {
3088 		ret = 0;
3089 		goto command_cleanup;
3090 	}
3091 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3092 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3093 	for (i = 31; i >= 1; i--) {
3094 		__le32 le32 = cpu_to_le32(BIT(i));
3095 
3096 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3097 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3098 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3099 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3100 			break;
3101 		}
3102 	}
3103 
3104 	ret = xhci_configure_endpoint(xhci, udev, command,
3105 			false, false);
3106 	if (ret)
3107 		/* Callee should call reset_bandwidth() */
3108 		goto command_cleanup;
3109 
3110 	/* Free any rings that were dropped, but not changed. */
3111 	for (i = 1; i < 31; i++) {
3112 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3113 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3114 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3115 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3116 		}
3117 	}
3118 	xhci_zero_in_ctx(xhci, virt_dev);
3119 	/*
3120 	 * Install any rings for completely new endpoints or changed endpoints,
3121 	 * and free any old rings from changed endpoints.
3122 	 */
3123 	for (i = 1; i < 31; i++) {
3124 		if (!virt_dev->eps[i].new_ring)
3125 			continue;
3126 		/* Only free the old ring if it exists.
3127 		 * It may not if this is the first add of an endpoint.
3128 		 */
3129 		if (virt_dev->eps[i].ring) {
3130 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3131 		}
3132 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3133 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3134 		virt_dev->eps[i].new_ring = NULL;
3135 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3136 	}
3137 command_cleanup:
3138 	kfree(command->completion);
3139 	kfree(command);
3140 
3141 	return ret;
3142 }
3143 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3144 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3145 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3146 {
3147 	struct xhci_hcd *xhci;
3148 	struct xhci_virt_device	*virt_dev;
3149 	int i, ret;
3150 
3151 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3152 	if (ret <= 0)
3153 		return;
3154 	xhci = hcd_to_xhci(hcd);
3155 
3156 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3157 	virt_dev = xhci->devs[udev->slot_id];
3158 	/* Free any rings allocated for added endpoints */
3159 	for (i = 0; i < 31; i++) {
3160 		if (virt_dev->eps[i].new_ring) {
3161 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3162 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3163 			virt_dev->eps[i].new_ring = NULL;
3164 		}
3165 	}
3166 	xhci_zero_in_ctx(xhci, virt_dev);
3167 }
3168 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3169 
3170 /* Get the available bandwidth of the ports under the xhci roothub */
xhci_get_port_bandwidth(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,u8 dev_speed)3171 int xhci_get_port_bandwidth(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx,
3172 			    u8 dev_speed)
3173 {
3174 	struct xhci_command *cmd;
3175 	unsigned long flags;
3176 	int ret;
3177 
3178 	if (!ctx || !xhci)
3179 		return -EINVAL;
3180 
3181 	cmd = xhci_alloc_command(xhci, true, GFP_KERNEL);
3182 	if (!cmd)
3183 		return -ENOMEM;
3184 
3185 	cmd->in_ctx = ctx;
3186 
3187 	/* get xhci port bandwidth, refer to xhci rev1_2 protocol 4.6.15 */
3188 	spin_lock_irqsave(&xhci->lock, flags);
3189 
3190 	ret = xhci_queue_get_port_bw(xhci, cmd, ctx->dma, dev_speed, 0);
3191 	if (ret) {
3192 		spin_unlock_irqrestore(&xhci->lock, flags);
3193 		goto err_out;
3194 	}
3195 	xhci_ring_cmd_db(xhci);
3196 	spin_unlock_irqrestore(&xhci->lock, flags);
3197 
3198 	wait_for_completion(cmd->completion);
3199 err_out:
3200 	kfree(cmd->completion);
3201 	kfree(cmd);
3202 
3203 	return ret;
3204 }
3205 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3206 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3207 		struct xhci_container_ctx *in_ctx,
3208 		struct xhci_container_ctx *out_ctx,
3209 		struct xhci_input_control_ctx *ctrl_ctx,
3210 		u32 add_flags, u32 drop_flags)
3211 {
3212 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3213 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3214 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3215 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3216 }
3217 
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3218 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3219 				  struct usb_host_endpoint *host_ep)
3220 {
3221 	struct xhci_hcd		*xhci;
3222 	struct xhci_virt_device	*vdev;
3223 	struct xhci_virt_ep	*ep;
3224 	struct usb_device	*udev;
3225 	unsigned long		flags;
3226 	unsigned int		ep_index;
3227 
3228 	xhci = hcd_to_xhci(hcd);
3229 rescan:
3230 	spin_lock_irqsave(&xhci->lock, flags);
3231 
3232 	udev = (struct usb_device *)host_ep->hcpriv;
3233 	if (!udev || !udev->slot_id)
3234 		goto done;
3235 
3236 	vdev = xhci->devs[udev->slot_id];
3237 	if (!vdev)
3238 		goto done;
3239 
3240 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3241 	ep = &vdev->eps[ep_index];
3242 
3243 	/* wait for hub_tt_work to finish clearing hub TT */
3244 	if (ep->ep_state & EP_CLEARING_TT) {
3245 		spin_unlock_irqrestore(&xhci->lock, flags);
3246 		schedule_timeout_uninterruptible(1);
3247 		goto rescan;
3248 	}
3249 
3250 	if (ep->ep_state)
3251 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3252 			 ep->ep_state);
3253 done:
3254 	host_ep->hcpriv = NULL;
3255 	spin_unlock_irqrestore(&xhci->lock, flags);
3256 }
3257 
3258 /*
3259  * Called after usb core issues a clear halt control message.
3260  * The host side of the halt should already be cleared by a reset endpoint
3261  * command issued when the STALL event was received.
3262  *
3263  * The reset endpoint command may only be issued to endpoints in the halted
3264  * state. For software that wishes to reset the data toggle or sequence number
3265  * of an endpoint that isn't in the halted state this function will issue a
3266  * configure endpoint command with the Drop and Add bits set for the target
3267  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3268  *
3269  * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3270  * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3271  */
3272 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3273 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3274 		struct usb_host_endpoint *host_ep)
3275 {
3276 	struct xhci_hcd *xhci;
3277 	struct usb_device *udev;
3278 	struct xhci_virt_device *vdev;
3279 	struct xhci_virt_ep *ep;
3280 	struct xhci_input_control_ctx *ctrl_ctx;
3281 	struct xhci_command *stop_cmd, *cfg_cmd;
3282 	unsigned int ep_index;
3283 	unsigned long flags;
3284 	u32 ep_flag;
3285 	int err;
3286 
3287 	xhci = hcd_to_xhci(hcd);
3288 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3289 
3290 	/*
3291 	 * Usb core assumes a max packet value for ep0 on FS devices until the
3292 	 * real value is read from the descriptor. Core resets Ep0 if values
3293 	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3294 	 */
3295 	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3296 
3297 		udev = container_of(host_ep, struct usb_device, ep0);
3298 		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3299 			return;
3300 
3301 		vdev = xhci->devs[udev->slot_id];
3302 		if (!vdev || vdev->udev != udev)
3303 			return;
3304 
3305 		xhci_check_ep0_maxpacket(xhci, vdev);
3306 
3307 		/* Nothing else should be done here for ep0 during ep reset */
3308 		return;
3309 	}
3310 
3311 	if (!host_ep->hcpriv)
3312 		return;
3313 	udev = (struct usb_device *) host_ep->hcpriv;
3314 	vdev = xhci->devs[udev->slot_id];
3315 
3316 	if (!udev->slot_id || !vdev)
3317 		return;
3318 
3319 	ep = &vdev->eps[ep_index];
3320 
3321 	/* Bail out if toggle is already being cleared by a endpoint reset */
3322 	spin_lock_irqsave(&xhci->lock, flags);
3323 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3324 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3325 		spin_unlock_irqrestore(&xhci->lock, flags);
3326 		return;
3327 	}
3328 	spin_unlock_irqrestore(&xhci->lock, flags);
3329 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3330 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3331 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3332 		return;
3333 
3334 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3335 
3336 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3337 		return;
3338 
3339 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3340 	if (!stop_cmd)
3341 		return;
3342 
3343 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3344 	if (!cfg_cmd)
3345 		goto cleanup;
3346 
3347 	spin_lock_irqsave(&xhci->lock, flags);
3348 
3349 	/* block queuing new trbs and ringing ep doorbell */
3350 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3351 
3352 	/*
3353 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3354 	 * Driver is required to synchronously cancel all transfer request.
3355 	 * Stop the endpoint to force xHC to update the output context
3356 	 */
3357 
3358 	if (!list_empty(&ep->ring->td_list)) {
3359 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3360 		spin_unlock_irqrestore(&xhci->lock, flags);
3361 		xhci_free_command(xhci, cfg_cmd);
3362 		goto cleanup;
3363 	}
3364 
3365 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3366 					ep_index, 0);
3367 	if (err < 0) {
3368 		spin_unlock_irqrestore(&xhci->lock, flags);
3369 		xhci_free_command(xhci, cfg_cmd);
3370 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3371 				__func__, err);
3372 		goto cleanup;
3373 	}
3374 
3375 	xhci_ring_cmd_db(xhci);
3376 	spin_unlock_irqrestore(&xhci->lock, flags);
3377 
3378 	wait_for_completion(stop_cmd->completion);
3379 
3380 	spin_lock_irqsave(&xhci->lock, flags);
3381 
3382 	/* config ep command clears toggle if add and drop ep flags are set */
3383 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3384 	if (!ctrl_ctx) {
3385 		spin_unlock_irqrestore(&xhci->lock, flags);
3386 		xhci_free_command(xhci, cfg_cmd);
3387 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3388 				__func__);
3389 		goto cleanup;
3390 	}
3391 
3392 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3393 					   ctrl_ctx, ep_flag, ep_flag);
3394 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3395 
3396 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3397 				      udev->slot_id, false);
3398 	if (err < 0) {
3399 		spin_unlock_irqrestore(&xhci->lock, flags);
3400 		xhci_free_command(xhci, cfg_cmd);
3401 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3402 				__func__, err);
3403 		goto cleanup;
3404 	}
3405 
3406 	xhci_ring_cmd_db(xhci);
3407 	spin_unlock_irqrestore(&xhci->lock, flags);
3408 
3409 	wait_for_completion(cfg_cmd->completion);
3410 
3411 	xhci_free_command(xhci, cfg_cmd);
3412 cleanup:
3413 	xhci_free_command(xhci, stop_cmd);
3414 	spin_lock_irqsave(&xhci->lock, flags);
3415 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3416 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3417 	spin_unlock_irqrestore(&xhci->lock, flags);
3418 }
3419 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3420 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3421 		struct usb_device *udev, struct usb_host_endpoint *ep,
3422 		unsigned int slot_id)
3423 {
3424 	int ret;
3425 	unsigned int ep_index;
3426 	unsigned int ep_state;
3427 
3428 	if (!ep)
3429 		return -EINVAL;
3430 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3431 	if (ret <= 0)
3432 		return ret ? ret : -EINVAL;
3433 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3434 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3435 				" descriptor for ep 0x%x does not support streams\n",
3436 				ep->desc.bEndpointAddress);
3437 		return -EINVAL;
3438 	}
3439 
3440 	ep_index = xhci_get_endpoint_index(&ep->desc);
3441 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3442 	if (ep_state & EP_HAS_STREAMS ||
3443 			ep_state & EP_GETTING_STREAMS) {
3444 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3445 				"already has streams set up.\n",
3446 				ep->desc.bEndpointAddress);
3447 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3448 				"dynamic stream context array reallocation.\n");
3449 		return -EINVAL;
3450 	}
3451 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3452 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3453 				"endpoint 0x%x; URBs are pending.\n",
3454 				ep->desc.bEndpointAddress);
3455 		return -EINVAL;
3456 	}
3457 	return 0;
3458 }
3459 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3460 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3461 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3462 {
3463 	unsigned int max_streams;
3464 
3465 	/* The stream context array size must be a power of two */
3466 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3467 	/*
3468 	 * Find out how many primary stream array entries the host controller
3469 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3470 	 * level page entries), but that's an optional feature for xHCI host
3471 	 * controllers. xHCs must support at least 4 stream IDs.
3472 	 */
3473 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3474 	if (*num_stream_ctxs > max_streams) {
3475 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3476 				max_streams);
3477 		*num_stream_ctxs = max_streams;
3478 		*num_streams = max_streams;
3479 	}
3480 }
3481 
3482 /* Returns an error code if one of the endpoint already has streams.
3483  * This does not change any data structures, it only checks and gathers
3484  * information.
3485  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3486 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3487 		struct usb_device *udev,
3488 		struct usb_host_endpoint **eps, unsigned int num_eps,
3489 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3490 {
3491 	unsigned int max_streams;
3492 	unsigned int endpoint_flag;
3493 	int i;
3494 	int ret;
3495 
3496 	for (i = 0; i < num_eps; i++) {
3497 		ret = xhci_check_streams_endpoint(xhci, udev,
3498 				eps[i], udev->slot_id);
3499 		if (ret < 0)
3500 			return ret;
3501 
3502 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3503 		if (max_streams < (*num_streams - 1)) {
3504 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3505 					eps[i]->desc.bEndpointAddress,
3506 					max_streams);
3507 			*num_streams = max_streams+1;
3508 		}
3509 
3510 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3511 		if (*changed_ep_bitmask & endpoint_flag)
3512 			return -EINVAL;
3513 		*changed_ep_bitmask |= endpoint_flag;
3514 	}
3515 	return 0;
3516 }
3517 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3518 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3519 		struct usb_device *udev,
3520 		struct usb_host_endpoint **eps, unsigned int num_eps)
3521 {
3522 	u32 changed_ep_bitmask = 0;
3523 	unsigned int slot_id;
3524 	unsigned int ep_index;
3525 	unsigned int ep_state;
3526 	int i;
3527 
3528 	slot_id = udev->slot_id;
3529 	if (!xhci->devs[slot_id])
3530 		return 0;
3531 
3532 	for (i = 0; i < num_eps; i++) {
3533 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3534 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3535 		/* Are streams already being freed for the endpoint? */
3536 		if (ep_state & EP_GETTING_NO_STREAMS) {
3537 			xhci_warn(xhci, "WARN Can't disable streams for "
3538 					"endpoint 0x%x, "
3539 					"streams are being disabled already\n",
3540 					eps[i]->desc.bEndpointAddress);
3541 			return 0;
3542 		}
3543 		/* Are there actually any streams to free? */
3544 		if (!(ep_state & EP_HAS_STREAMS) &&
3545 				!(ep_state & EP_GETTING_STREAMS)) {
3546 			xhci_warn(xhci, "WARN Can't disable streams for "
3547 					"endpoint 0x%x, "
3548 					"streams are already disabled!\n",
3549 					eps[i]->desc.bEndpointAddress);
3550 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3551 					"with non-streams endpoint\n");
3552 			return 0;
3553 		}
3554 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3555 	}
3556 	return changed_ep_bitmask;
3557 }
3558 
3559 /*
3560  * The USB device drivers use this function (through the HCD interface in USB
3561  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3562  * coordinate mass storage command queueing across multiple endpoints (basically
3563  * a stream ID == a task ID).
3564  *
3565  * Setting up streams involves allocating the same size stream context array
3566  * for each endpoint and issuing a configure endpoint command for all endpoints.
3567  *
3568  * Don't allow the call to succeed if one endpoint only supports one stream
3569  * (which means it doesn't support streams at all).
3570  *
3571  * Drivers may get less stream IDs than they asked for, if the host controller
3572  * hardware or endpoints claim they can't support the number of requested
3573  * stream IDs.
3574  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3575 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3576 		struct usb_host_endpoint **eps, unsigned int num_eps,
3577 		unsigned int num_streams, gfp_t mem_flags)
3578 {
3579 	int i, ret;
3580 	struct xhci_hcd *xhci;
3581 	struct xhci_virt_device *vdev;
3582 	struct xhci_command *config_cmd;
3583 	struct xhci_input_control_ctx *ctrl_ctx;
3584 	unsigned int ep_index;
3585 	unsigned int num_stream_ctxs;
3586 	unsigned int max_packet;
3587 	unsigned long flags;
3588 	u32 changed_ep_bitmask = 0;
3589 
3590 	if (!eps)
3591 		return -EINVAL;
3592 
3593 	/* Add one to the number of streams requested to account for
3594 	 * stream 0 that is reserved for xHCI usage.
3595 	 */
3596 	num_streams += 1;
3597 	xhci = hcd_to_xhci(hcd);
3598 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3599 			num_streams);
3600 
3601 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3602 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3603 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3604 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3605 		return -ENOSYS;
3606 	}
3607 
3608 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3609 	if (!config_cmd)
3610 		return -ENOMEM;
3611 
3612 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3613 	if (!ctrl_ctx) {
3614 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3615 				__func__);
3616 		xhci_free_command(xhci, config_cmd);
3617 		return -ENOMEM;
3618 	}
3619 
3620 	/* Check to make sure all endpoints are not already configured for
3621 	 * streams.  While we're at it, find the maximum number of streams that
3622 	 * all the endpoints will support and check for duplicate endpoints.
3623 	 */
3624 	spin_lock_irqsave(&xhci->lock, flags);
3625 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3626 			num_eps, &num_streams, &changed_ep_bitmask);
3627 	if (ret < 0) {
3628 		xhci_free_command(xhci, config_cmd);
3629 		spin_unlock_irqrestore(&xhci->lock, flags);
3630 		return ret;
3631 	}
3632 	if (num_streams <= 1) {
3633 		xhci_warn(xhci, "WARN: endpoints can't handle "
3634 				"more than one stream.\n");
3635 		xhci_free_command(xhci, config_cmd);
3636 		spin_unlock_irqrestore(&xhci->lock, flags);
3637 		return -EINVAL;
3638 	}
3639 	vdev = xhci->devs[udev->slot_id];
3640 	/* Mark each endpoint as being in transition, so
3641 	 * xhci_urb_enqueue() will reject all URBs.
3642 	 */
3643 	for (i = 0; i < num_eps; i++) {
3644 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3645 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3646 	}
3647 	spin_unlock_irqrestore(&xhci->lock, flags);
3648 
3649 	/* Setup internal data structures and allocate HW data structures for
3650 	 * streams (but don't install the HW structures in the input context
3651 	 * until we're sure all memory allocation succeeded).
3652 	 */
3653 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3654 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3655 			num_stream_ctxs, num_streams);
3656 
3657 	for (i = 0; i < num_eps; i++) {
3658 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3659 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3660 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3661 				num_stream_ctxs,
3662 				num_streams,
3663 				max_packet, mem_flags);
3664 		if (!vdev->eps[ep_index].stream_info)
3665 			goto cleanup;
3666 		/* Set maxPstreams in endpoint context and update deq ptr to
3667 		 * point to stream context array. FIXME
3668 		 */
3669 	}
3670 
3671 	/* Set up the input context for a configure endpoint command. */
3672 	for (i = 0; i < num_eps; i++) {
3673 		struct xhci_ep_ctx *ep_ctx;
3674 
3675 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3676 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3677 
3678 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3679 				vdev->out_ctx, ep_index);
3680 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3681 				vdev->eps[ep_index].stream_info);
3682 	}
3683 	/* Tell the HW to drop its old copy of the endpoint context info
3684 	 * and add the updated copy from the input context.
3685 	 */
3686 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3687 			vdev->out_ctx, ctrl_ctx,
3688 			changed_ep_bitmask, changed_ep_bitmask);
3689 
3690 	/* Issue and wait for the configure endpoint command */
3691 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3692 			false, false);
3693 
3694 	/* xHC rejected the configure endpoint command for some reason, so we
3695 	 * leave the old ring intact and free our internal streams data
3696 	 * structure.
3697 	 */
3698 	if (ret < 0)
3699 		goto cleanup;
3700 
3701 	spin_lock_irqsave(&xhci->lock, flags);
3702 	for (i = 0; i < num_eps; i++) {
3703 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3704 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3705 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3706 			 udev->slot_id, ep_index);
3707 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3708 	}
3709 	xhci_free_command(xhci, config_cmd);
3710 	spin_unlock_irqrestore(&xhci->lock, flags);
3711 
3712 	for (i = 0; i < num_eps; i++) {
3713 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3714 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3715 	}
3716 	/* Subtract 1 for stream 0, which drivers can't use */
3717 	return num_streams - 1;
3718 
3719 cleanup:
3720 	/* If it didn't work, free the streams! */
3721 	for (i = 0; i < num_eps; i++) {
3722 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3723 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3724 		vdev->eps[ep_index].stream_info = NULL;
3725 		/* FIXME Unset maxPstreams in endpoint context and
3726 		 * update deq ptr to point to normal string ring.
3727 		 */
3728 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3729 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3730 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3731 	}
3732 	xhci_free_command(xhci, config_cmd);
3733 	return -ENOMEM;
3734 }
3735 
3736 /* Transition the endpoint from using streams to being a "normal" endpoint
3737  * without streams.
3738  *
3739  * Modify the endpoint context state, submit a configure endpoint command,
3740  * and free all endpoint rings for streams if that completes successfully.
3741  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3742 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3743 		struct usb_host_endpoint **eps, unsigned int num_eps,
3744 		gfp_t mem_flags)
3745 {
3746 	int i, ret;
3747 	struct xhci_hcd *xhci;
3748 	struct xhci_virt_device *vdev;
3749 	struct xhci_command *command;
3750 	struct xhci_input_control_ctx *ctrl_ctx;
3751 	unsigned int ep_index;
3752 	unsigned long flags;
3753 	u32 changed_ep_bitmask;
3754 
3755 	xhci = hcd_to_xhci(hcd);
3756 	vdev = xhci->devs[udev->slot_id];
3757 
3758 	/* Set up a configure endpoint command to remove the streams rings */
3759 	spin_lock_irqsave(&xhci->lock, flags);
3760 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3761 			udev, eps, num_eps);
3762 	if (changed_ep_bitmask == 0) {
3763 		spin_unlock_irqrestore(&xhci->lock, flags);
3764 		return -EINVAL;
3765 	}
3766 
3767 	/* Use the xhci_command structure from the first endpoint.  We may have
3768 	 * allocated too many, but the driver may call xhci_free_streams() for
3769 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3770 	 */
3771 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3772 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3773 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3774 	if (!ctrl_ctx) {
3775 		spin_unlock_irqrestore(&xhci->lock, flags);
3776 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3777 				__func__);
3778 		return -EINVAL;
3779 	}
3780 
3781 	for (i = 0; i < num_eps; i++) {
3782 		struct xhci_ep_ctx *ep_ctx;
3783 
3784 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3785 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3786 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3787 			EP_GETTING_NO_STREAMS;
3788 
3789 		xhci_endpoint_copy(xhci, command->in_ctx,
3790 				vdev->out_ctx, ep_index);
3791 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3792 				&vdev->eps[ep_index]);
3793 	}
3794 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3795 			vdev->out_ctx, ctrl_ctx,
3796 			changed_ep_bitmask, changed_ep_bitmask);
3797 	spin_unlock_irqrestore(&xhci->lock, flags);
3798 
3799 	/* Issue and wait for the configure endpoint command,
3800 	 * which must succeed.
3801 	 */
3802 	ret = xhci_configure_endpoint(xhci, udev, command,
3803 			false, true);
3804 
3805 	/* xHC rejected the configure endpoint command for some reason, so we
3806 	 * leave the streams rings intact.
3807 	 */
3808 	if (ret < 0)
3809 		return ret;
3810 
3811 	spin_lock_irqsave(&xhci->lock, flags);
3812 	for (i = 0; i < num_eps; i++) {
3813 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3814 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3815 		vdev->eps[ep_index].stream_info = NULL;
3816 		/* FIXME Unset maxPstreams in endpoint context and
3817 		 * update deq ptr to point to normal string ring.
3818 		 */
3819 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3820 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3821 	}
3822 	spin_unlock_irqrestore(&xhci->lock, flags);
3823 
3824 	return 0;
3825 }
3826 
3827 /*
3828  * Deletes endpoint resources for endpoints that were active before a Reset
3829  * Device command, or a Disable Slot command.  The Reset Device command leaves
3830  * the control endpoint intact, whereas the Disable Slot command deletes it.
3831  *
3832  * Must be called with xhci->lock held.
3833  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3834 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3835 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3836 {
3837 	int i;
3838 	unsigned int num_dropped_eps = 0;
3839 	unsigned int drop_flags = 0;
3840 
3841 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3842 		if (virt_dev->eps[i].ring) {
3843 			drop_flags |= 1 << i;
3844 			num_dropped_eps++;
3845 		}
3846 	}
3847 	xhci->num_active_eps -= num_dropped_eps;
3848 	if (num_dropped_eps)
3849 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3850 				"Dropped %u ep ctxs, flags = 0x%x, "
3851 				"%u now active.",
3852 				num_dropped_eps, drop_flags,
3853 				xhci->num_active_eps);
3854 }
3855 
3856 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3857 
3858 /*
3859  * This submits a Reset Device Command, which will set the device state to 0,
3860  * set the device address to 0, and disable all the endpoints except the default
3861  * control endpoint.  The USB core should come back and call
3862  * xhci_address_device(), and then re-set up the configuration.  If this is
3863  * called because of a usb_reset_and_verify_device(), then the old alternate
3864  * settings will be re-installed through the normal bandwidth allocation
3865  * functions.
3866  *
3867  * Wait for the Reset Device command to finish.  Remove all structures
3868  * associated with the endpoints that were disabled.  Clear the input device
3869  * structure? Reset the control endpoint 0 max packet size?
3870  *
3871  * If the virt_dev to be reset does not exist or does not match the udev,
3872  * it means the device is lost, possibly due to the xHC restore error and
3873  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3874  * re-allocate the device.
3875  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3876 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3877 		struct usb_device *udev)
3878 {
3879 	int ret, i;
3880 	unsigned long flags;
3881 	struct xhci_hcd *xhci;
3882 	unsigned int slot_id;
3883 	struct xhci_virt_device *virt_dev;
3884 	struct xhci_command *reset_device_cmd;
3885 	struct xhci_slot_ctx *slot_ctx;
3886 	int old_active_eps = 0;
3887 
3888 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3889 	if (ret <= 0)
3890 		return ret;
3891 	xhci = hcd_to_xhci(hcd);
3892 	slot_id = udev->slot_id;
3893 	virt_dev = xhci->devs[slot_id];
3894 	if (!virt_dev) {
3895 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3896 				"not exist. Re-allocate the device\n", slot_id);
3897 		ret = xhci_alloc_dev(hcd, udev);
3898 		if (ret == 1)
3899 			return 0;
3900 		else
3901 			return -EINVAL;
3902 	}
3903 
3904 	if (virt_dev->tt_info)
3905 		old_active_eps = virt_dev->tt_info->active_eps;
3906 
3907 	if (virt_dev->udev != udev) {
3908 		/* If the virt_dev and the udev does not match, this virt_dev
3909 		 * may belong to another udev.
3910 		 * Re-allocate the device.
3911 		 */
3912 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3913 				"not match the udev. Re-allocate the device\n",
3914 				slot_id);
3915 		ret = xhci_alloc_dev(hcd, udev);
3916 		if (ret == 1)
3917 			return 0;
3918 		else
3919 			return -EINVAL;
3920 	}
3921 
3922 	/* If device is not setup, there is no point in resetting it */
3923 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3924 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3925 						SLOT_STATE_DISABLED)
3926 		return 0;
3927 
3928 	if (xhci->quirks & XHCI_ETRON_HOST) {
3929 		/*
3930 		 * Obtaining a new device slot to inform the xHCI host that
3931 		 * the USB device has been reset.
3932 		 */
3933 		ret = xhci_disable_slot(xhci, udev->slot_id);
3934 		xhci_free_virt_device(xhci, udev->slot_id);
3935 		if (!ret) {
3936 			ret = xhci_alloc_dev(hcd, udev);
3937 			if (ret == 1)
3938 				ret = 0;
3939 			else
3940 				ret = -EINVAL;
3941 		}
3942 		return ret;
3943 	}
3944 
3945 	trace_xhci_discover_or_reset_device(slot_ctx);
3946 
3947 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3948 	/* Allocate the command structure that holds the struct completion.
3949 	 * Assume we're in process context, since the normal device reset
3950 	 * process has to wait for the device anyway.  Storage devices are
3951 	 * reset as part of error handling, so use GFP_NOIO instead of
3952 	 * GFP_KERNEL.
3953 	 */
3954 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3955 	if (!reset_device_cmd) {
3956 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3957 		return -ENOMEM;
3958 	}
3959 
3960 	/* Attempt to submit the Reset Device command to the command ring */
3961 	spin_lock_irqsave(&xhci->lock, flags);
3962 
3963 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3964 	if (ret) {
3965 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3966 		spin_unlock_irqrestore(&xhci->lock, flags);
3967 		goto command_cleanup;
3968 	}
3969 	xhci_ring_cmd_db(xhci);
3970 	spin_unlock_irqrestore(&xhci->lock, flags);
3971 
3972 	/* Wait for the Reset Device command to finish */
3973 	wait_for_completion(reset_device_cmd->completion);
3974 
3975 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3976 	 * unless we tried to reset a slot ID that wasn't enabled,
3977 	 * or the device wasn't in the addressed or configured state.
3978 	 */
3979 	ret = reset_device_cmd->status;
3980 	switch (ret) {
3981 	case COMP_COMMAND_ABORTED:
3982 	case COMP_COMMAND_RING_STOPPED:
3983 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3984 		ret = -ETIME;
3985 		goto command_cleanup;
3986 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3987 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3988 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3989 				slot_id,
3990 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3991 		xhci_dbg(xhci, "Not freeing device rings.\n");
3992 		/* Don't treat this as an error.  May change my mind later. */
3993 		ret = 0;
3994 		goto command_cleanup;
3995 	case COMP_SUCCESS:
3996 		xhci_dbg(xhci, "Successful reset device command.\n");
3997 		break;
3998 	default:
3999 		if (xhci_is_vendor_info_code(xhci, ret))
4000 			break;
4001 		xhci_warn(xhci, "Unknown completion code %u for "
4002 				"reset device command.\n", ret);
4003 		ret = -EINVAL;
4004 		goto command_cleanup;
4005 	}
4006 
4007 	/* Free up host controller endpoint resources */
4008 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4009 		spin_lock_irqsave(&xhci->lock, flags);
4010 		/* Don't delete the default control endpoint resources */
4011 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
4012 		spin_unlock_irqrestore(&xhci->lock, flags);
4013 	}
4014 
4015 	/* Everything but endpoint 0 is disabled, so free the rings. */
4016 	for (i = 1; i < 31; i++) {
4017 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
4018 
4019 		if (ep->ep_state & EP_HAS_STREAMS) {
4020 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
4021 					xhci_get_endpoint_address(i));
4022 			xhci_free_stream_info(xhci, ep->stream_info);
4023 			ep->stream_info = NULL;
4024 			ep->ep_state &= ~EP_HAS_STREAMS;
4025 		}
4026 
4027 		if (ep->ring) {
4028 			if (ep->sideband)
4029 				xhci_sideband_notify_ep_ring_free(ep->sideband, i);
4030 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
4031 			xhci_free_endpoint_ring(xhci, virt_dev, i);
4032 		}
4033 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
4034 			xhci_drop_ep_from_interval_table(xhci,
4035 					&virt_dev->eps[i].bw_info,
4036 					virt_dev->bw_table,
4037 					udev,
4038 					&virt_dev->eps[i],
4039 					virt_dev->tt_info);
4040 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
4041 	}
4042 	/* If necessary, update the number of active TTs on this root port */
4043 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
4044 	virt_dev->flags = 0;
4045 	ret = 0;
4046 
4047 command_cleanup:
4048 	xhci_free_command(xhci, reset_device_cmd);
4049 	return ret;
4050 }
4051 
4052 /*
4053  * At this point, the struct usb_device is about to go away, the device has
4054  * disconnected, and all traffic has been stopped and the endpoints have been
4055  * disabled.  Free any HC data structures associated with that device.
4056  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)4057 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4058 {
4059 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4060 	struct xhci_virt_device *virt_dev;
4061 	struct xhci_slot_ctx *slot_ctx;
4062 	unsigned long flags;
4063 	int i, ret;
4064 
4065 	/*
4066 	 * We called pm_runtime_get_noresume when the device was attached.
4067 	 * Decrement the counter here to allow controller to runtime suspend
4068 	 * if no devices remain.
4069 	 */
4070 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4071 		pm_runtime_put_noidle(hcd->self.controller);
4072 
4073 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
4074 	/* If the host is halted due to driver unload, we still need to free the
4075 	 * device.
4076 	 */
4077 	if (ret <= 0 && ret != -ENODEV)
4078 		return;
4079 
4080 	virt_dev = xhci->devs[udev->slot_id];
4081 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4082 	trace_xhci_free_dev(slot_ctx);
4083 
4084 	/* Stop any wayward timer functions (which may grab the lock) */
4085 	for (i = 0; i < 31; i++)
4086 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4087 	virt_dev->udev = NULL;
4088 	xhci_disable_slot(xhci, udev->slot_id);
4089 
4090 	spin_lock_irqsave(&xhci->lock, flags);
4091 	xhci_free_virt_device(xhci, udev->slot_id);
4092 	spin_unlock_irqrestore(&xhci->lock, flags);
4093 
4094 }
4095 
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)4096 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4097 {
4098 	struct xhci_command *command;
4099 	unsigned long flags;
4100 	u32 state;
4101 	int ret;
4102 
4103 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4104 	if (!command)
4105 		return -ENOMEM;
4106 
4107 	xhci_debugfs_remove_slot(xhci, slot_id);
4108 
4109 	spin_lock_irqsave(&xhci->lock, flags);
4110 	/* Don't disable the slot if the host controller is dead. */
4111 	state = readl(&xhci->op_regs->status);
4112 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4113 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4114 		spin_unlock_irqrestore(&xhci->lock, flags);
4115 		kfree(command);
4116 		return -ENODEV;
4117 	}
4118 
4119 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4120 				slot_id);
4121 	if (ret) {
4122 		spin_unlock_irqrestore(&xhci->lock, flags);
4123 		kfree(command);
4124 		return ret;
4125 	}
4126 	xhci_ring_cmd_db(xhci);
4127 	spin_unlock_irqrestore(&xhci->lock, flags);
4128 
4129 	wait_for_completion(command->completion);
4130 
4131 	if (command->status != COMP_SUCCESS)
4132 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4133 			  slot_id, command->status);
4134 
4135 	xhci_free_command(xhci, command);
4136 
4137 	return 0;
4138 }
4139 
4140 /*
4141  * Checks if we have enough host controller resources for the default control
4142  * endpoint.
4143  *
4144  * Must be called with xhci->lock held.
4145  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4146 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4147 {
4148 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4149 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4150 				"Not enough ep ctxs: "
4151 				"%u active, need to add 1, limit is %u.",
4152 				xhci->num_active_eps, xhci->limit_active_eps);
4153 		return -ENOMEM;
4154 	}
4155 	xhci->num_active_eps += 1;
4156 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4157 			"Adding 1 ep ctx, %u now active.",
4158 			xhci->num_active_eps);
4159 	return 0;
4160 }
4161 
4162 
4163 /*
4164  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4165  * timed out, or allocating memory failed.  Returns 1 on success.
4166  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4167 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4168 {
4169 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4170 	struct xhci_virt_device *vdev;
4171 	struct xhci_slot_ctx *slot_ctx;
4172 	unsigned long flags;
4173 	int ret, slot_id;
4174 	struct xhci_command *command;
4175 
4176 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4177 	if (!command)
4178 		return 0;
4179 
4180 	spin_lock_irqsave(&xhci->lock, flags);
4181 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4182 	if (ret) {
4183 		spin_unlock_irqrestore(&xhci->lock, flags);
4184 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4185 		xhci_free_command(xhci, command);
4186 		return 0;
4187 	}
4188 	xhci_ring_cmd_db(xhci);
4189 	spin_unlock_irqrestore(&xhci->lock, flags);
4190 
4191 	wait_for_completion(command->completion);
4192 	slot_id = command->slot_id;
4193 
4194 	if (!slot_id || command->status != COMP_SUCCESS) {
4195 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4196 			 xhci_trb_comp_code_string(command->status));
4197 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4198 				HCS_MAX_SLOTS(
4199 					readl(&xhci->cap_regs->hcs_params1)));
4200 		xhci_free_command(xhci, command);
4201 		return 0;
4202 	}
4203 
4204 	xhci_free_command(xhci, command);
4205 
4206 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4207 		spin_lock_irqsave(&xhci->lock, flags);
4208 		ret = xhci_reserve_host_control_ep_resources(xhci);
4209 		if (ret) {
4210 			spin_unlock_irqrestore(&xhci->lock, flags);
4211 			xhci_warn(xhci, "Not enough host resources, "
4212 					"active endpoint contexts = %u\n",
4213 					xhci->num_active_eps);
4214 			goto disable_slot;
4215 		}
4216 		spin_unlock_irqrestore(&xhci->lock, flags);
4217 	}
4218 	/* Use GFP_NOIO, since this function can be called from
4219 	 * xhci_discover_or_reset_device(), which may be called as part of
4220 	 * mass storage driver error handling.
4221 	 */
4222 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4223 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4224 		goto disable_slot;
4225 	}
4226 	vdev = xhci->devs[slot_id];
4227 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4228 	trace_xhci_alloc_dev(slot_ctx);
4229 
4230 	udev->slot_id = slot_id;
4231 
4232 	xhci_debugfs_create_slot(xhci, slot_id);
4233 
4234 	/*
4235 	 * If resetting upon resume, we can't put the controller into runtime
4236 	 * suspend if there is a device attached.
4237 	 */
4238 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4239 		pm_runtime_get_noresume(hcd->self.controller);
4240 
4241 	/* Is this a LS or FS device under a HS hub? */
4242 	/* Hub or peripherial? */
4243 	return 1;
4244 
4245 disable_slot:
4246 	xhci_disable_slot(xhci, udev->slot_id);
4247 	xhci_free_virt_device(xhci, udev->slot_id);
4248 
4249 	return 0;
4250 }
4251 
4252 /**
4253  * xhci_setup_device - issues an Address Device command to assign a unique
4254  *			USB bus address.
4255  * @hcd: USB host controller data structure.
4256  * @udev: USB dev structure representing the connected device.
4257  * @setup: Enum specifying setup mode: address only or with context.
4258  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4259  *
4260  * Return: 0 if successful; otherwise, negative error code.
4261  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4262 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4263 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4264 {
4265 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4266 	unsigned long flags;
4267 	struct xhci_virt_device *virt_dev;
4268 	int ret = 0;
4269 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4270 	struct xhci_slot_ctx *slot_ctx;
4271 	struct xhci_input_control_ctx *ctrl_ctx;
4272 	u64 temp_64;
4273 	struct xhci_command *command = NULL;
4274 
4275 	mutex_lock(&xhci->mutex);
4276 
4277 	if (xhci->xhc_state) {	/* dying, removing or halted */
4278 		ret = -ESHUTDOWN;
4279 		goto out;
4280 	}
4281 
4282 	if (!udev->slot_id) {
4283 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4284 				"Bad Slot ID %d", udev->slot_id);
4285 		ret = -EINVAL;
4286 		goto out;
4287 	}
4288 
4289 	virt_dev = xhci->devs[udev->slot_id];
4290 
4291 	if (WARN_ON(!virt_dev)) {
4292 		/*
4293 		 * In plug/unplug torture test with an NEC controller,
4294 		 * a zero-dereference was observed once due to virt_dev = 0.
4295 		 * Print useful debug rather than crash if it is observed again!
4296 		 */
4297 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4298 			udev->slot_id);
4299 		ret = -EINVAL;
4300 		goto out;
4301 	}
4302 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4303 	trace_xhci_setup_device_slot(slot_ctx);
4304 
4305 	if (setup == SETUP_CONTEXT_ONLY) {
4306 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4307 		    SLOT_STATE_DEFAULT) {
4308 			xhci_dbg(xhci, "Slot already in default state\n");
4309 			goto out;
4310 		}
4311 	}
4312 
4313 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4314 	if (!command) {
4315 		ret = -ENOMEM;
4316 		goto out;
4317 	}
4318 
4319 	command->in_ctx = virt_dev->in_ctx;
4320 	command->timeout_ms = timeout_ms;
4321 
4322 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4323 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4324 	if (!ctrl_ctx) {
4325 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4326 				__func__);
4327 		ret = -EINVAL;
4328 		goto out;
4329 	}
4330 	/*
4331 	 * If this is the first Set Address since device plug-in or
4332 	 * virt_device realloaction after a resume with an xHCI power loss,
4333 	 * then set up the slot context.
4334 	 */
4335 	if (!slot_ctx->dev_info)
4336 		xhci_setup_addressable_virt_dev(xhci, udev);
4337 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4338 	else
4339 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4340 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4341 	ctrl_ctx->drop_flags = 0;
4342 
4343 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4344 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4345 
4346 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4347 	spin_lock_irqsave(&xhci->lock, flags);
4348 	trace_xhci_setup_device(virt_dev);
4349 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4350 					udev->slot_id, setup);
4351 	if (ret) {
4352 		spin_unlock_irqrestore(&xhci->lock, flags);
4353 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4354 				"FIXME: allocate a command ring segment");
4355 		goto out;
4356 	}
4357 	xhci_ring_cmd_db(xhci);
4358 	spin_unlock_irqrestore(&xhci->lock, flags);
4359 
4360 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4361 	wait_for_completion(command->completion);
4362 
4363 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4364 	 * the SetAddress() "recovery interval" required by USB and aborting the
4365 	 * command on a timeout.
4366 	 */
4367 	switch (command->status) {
4368 	case COMP_COMMAND_ABORTED:
4369 	case COMP_COMMAND_RING_STOPPED:
4370 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4371 		ret = -ETIME;
4372 		break;
4373 	case COMP_CONTEXT_STATE_ERROR:
4374 	case COMP_SLOT_NOT_ENABLED_ERROR:
4375 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4376 			 act, udev->slot_id);
4377 		ret = -EINVAL;
4378 		break;
4379 	case COMP_USB_TRANSACTION_ERROR:
4380 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4381 
4382 		mutex_unlock(&xhci->mutex);
4383 		ret = xhci_disable_slot(xhci, udev->slot_id);
4384 		xhci_free_virt_device(xhci, udev->slot_id);
4385 		if (!ret) {
4386 			if (xhci_alloc_dev(hcd, udev) == 1)
4387 				xhci_setup_addressable_virt_dev(xhci, udev);
4388 		}
4389 		kfree(command->completion);
4390 		kfree(command);
4391 		return -EPROTO;
4392 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4393 		dev_warn(&udev->dev,
4394 			 "ERROR: Incompatible device for setup %s command\n", act);
4395 		ret = -ENODEV;
4396 		break;
4397 	case COMP_SUCCESS:
4398 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4399 			       "Successful setup %s command", act);
4400 		break;
4401 	default:
4402 		xhci_err(xhci,
4403 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4404 			 act, command->status);
4405 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4406 		ret = -EINVAL;
4407 		break;
4408 	}
4409 	if (ret)
4410 		goto out;
4411 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4412 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4413 			"Op regs DCBAA ptr = %#016llx", temp_64);
4414 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4415 		"Slot ID %d dcbaa entry @%p = %#016llx",
4416 		udev->slot_id,
4417 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4418 		(unsigned long long)
4419 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4420 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4421 			"Output Context DMA address = %#08llx",
4422 			(unsigned long long)virt_dev->out_ctx->dma);
4423 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4424 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4425 	/*
4426 	 * USB core uses address 1 for the roothubs, so we add one to the
4427 	 * address given back to us by the HC.
4428 	 */
4429 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4430 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4431 	/* Zero the input context control for later use */
4432 	ctrl_ctx->add_flags = 0;
4433 	ctrl_ctx->drop_flags = 0;
4434 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4435 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4436 
4437 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4438 		       "Internal device address = %d",
4439 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4440 out:
4441 	mutex_unlock(&xhci->mutex);
4442 	if (command) {
4443 		kfree(command->completion);
4444 		kfree(command);
4445 	}
4446 	return ret;
4447 }
4448 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4449 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4450 			       unsigned int timeout_ms)
4451 {
4452 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4453 }
4454 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4455 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4456 {
4457 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4458 				 XHCI_CMD_DEFAULT_TIMEOUT);
4459 }
4460 
4461 /*
4462  * Transfer the port index into real index in the HW port status
4463  * registers. Caculate offset between the port's PORTSC register
4464  * and port status base. Divide the number of per port register
4465  * to get the real index. The raw port number bases 1.
4466  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4467 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4468 {
4469 	struct xhci_hub *rhub;
4470 
4471 	rhub = xhci_get_rhub(hcd);
4472 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4473 }
4474 
4475 /*
4476  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4477  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4478  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4479 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4480 			struct usb_device *udev, u16 max_exit_latency)
4481 {
4482 	struct xhci_virt_device *virt_dev;
4483 	struct xhci_command *command;
4484 	struct xhci_input_control_ctx *ctrl_ctx;
4485 	struct xhci_slot_ctx *slot_ctx;
4486 	unsigned long flags;
4487 	int ret;
4488 
4489 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4490 	if (!command)
4491 		return -ENOMEM;
4492 
4493 	spin_lock_irqsave(&xhci->lock, flags);
4494 
4495 	virt_dev = xhci->devs[udev->slot_id];
4496 
4497 	/*
4498 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4499 	 * xHC was re-initialized. Exit latency will be set later after
4500 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4501 	 */
4502 
4503 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4504 		spin_unlock_irqrestore(&xhci->lock, flags);
4505 		xhci_free_command(xhci, command);
4506 		return 0;
4507 	}
4508 
4509 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4510 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4511 	if (!ctrl_ctx) {
4512 		spin_unlock_irqrestore(&xhci->lock, flags);
4513 		xhci_free_command(xhci, command);
4514 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4515 				__func__);
4516 		return -ENOMEM;
4517 	}
4518 
4519 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4520 	spin_unlock_irqrestore(&xhci->lock, flags);
4521 
4522 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4523 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4524 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4525 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4526 	slot_ctx->dev_state = 0;
4527 
4528 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4529 			"Set up evaluate context for LPM MEL change.");
4530 
4531 	/* Issue and wait for the evaluate context command. */
4532 	ret = xhci_configure_endpoint(xhci, udev, command,
4533 			true, true);
4534 
4535 	if (!ret) {
4536 		spin_lock_irqsave(&xhci->lock, flags);
4537 		virt_dev->current_mel = max_exit_latency;
4538 		spin_unlock_irqrestore(&xhci->lock, flags);
4539 	}
4540 
4541 	xhci_free_command(xhci, command);
4542 
4543 	return ret;
4544 }
4545 
4546 #ifdef CONFIG_PM
4547 
4548 /* BESL to HIRD Encoding array for USB2 LPM */
4549 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4550 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4551 
4552 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4553 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4554 					struct usb_device *udev)
4555 {
4556 	int u2del, besl, besl_host;
4557 	int besl_device = 0;
4558 	u32 field;
4559 
4560 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4561 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4562 
4563 	if (field & USB_BESL_SUPPORT) {
4564 		for (besl_host = 0; besl_host < 16; besl_host++) {
4565 			if (xhci_besl_encoding[besl_host] >= u2del)
4566 				break;
4567 		}
4568 		/* Use baseline BESL value as default */
4569 		if (field & USB_BESL_BASELINE_VALID)
4570 			besl_device = USB_GET_BESL_BASELINE(field);
4571 		else if (field & USB_BESL_DEEP_VALID)
4572 			besl_device = USB_GET_BESL_DEEP(field);
4573 	} else {
4574 		if (u2del <= 50)
4575 			besl_host = 0;
4576 		else
4577 			besl_host = (u2del - 51) / 75 + 1;
4578 	}
4579 
4580 	besl = besl_host + besl_device;
4581 	if (besl > 15)
4582 		besl = 15;
4583 
4584 	return besl;
4585 }
4586 
4587 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4588 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4589 {
4590 	u32 field;
4591 	int l1;
4592 	int besld = 0;
4593 	int hirdm = 0;
4594 
4595 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4596 
4597 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4598 	l1 = udev->l1_params.timeout / 256;
4599 
4600 	/* device has preferred BESLD */
4601 	if (field & USB_BESL_DEEP_VALID) {
4602 		besld = USB_GET_BESL_DEEP(field);
4603 		hirdm = 1;
4604 	}
4605 
4606 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4607 }
4608 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4609 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4610 			struct usb_device *udev, int enable)
4611 {
4612 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4613 	struct xhci_port **ports;
4614 	__le32 __iomem	*pm_addr, *hlpm_addr;
4615 	u32		pm_val, hlpm_val, field;
4616 	unsigned int	port_num;
4617 	unsigned long	flags;
4618 	int		hird, exit_latency;
4619 	int		ret;
4620 
4621 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4622 		return -EPERM;
4623 
4624 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4625 			!udev->lpm_capable)
4626 		return -EPERM;
4627 
4628 	if (!udev->parent || udev->parent->parent ||
4629 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4630 		return -EPERM;
4631 
4632 	if (udev->usb2_hw_lpm_capable != 1)
4633 		return -EPERM;
4634 
4635 	spin_lock_irqsave(&xhci->lock, flags);
4636 
4637 	ports = xhci->usb2_rhub.ports;
4638 	port_num = udev->portnum - 1;
4639 	pm_addr = ports[port_num]->addr + PORTPMSC;
4640 	pm_val = readl(pm_addr);
4641 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4642 
4643 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4644 		 str_enable_disable(enable), port_num + 1);
4645 
4646 	if (enable) {
4647 		/* Host supports BESL timeout instead of HIRD */
4648 		if (udev->usb2_hw_lpm_besl_capable) {
4649 			/* if device doesn't have a preferred BESL value use a
4650 			 * default one which works with mixed HIRD and BESL
4651 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4652 			 */
4653 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4654 			if ((field & USB_BESL_SUPPORT) &&
4655 			    (field & USB_BESL_BASELINE_VALID))
4656 				hird = USB_GET_BESL_BASELINE(field);
4657 			else
4658 				hird = udev->l1_params.besl;
4659 
4660 			exit_latency = xhci_besl_encoding[hird];
4661 			spin_unlock_irqrestore(&xhci->lock, flags);
4662 
4663 			ret = xhci_change_max_exit_latency(xhci, udev,
4664 							   exit_latency);
4665 			if (ret < 0)
4666 				return ret;
4667 			spin_lock_irqsave(&xhci->lock, flags);
4668 
4669 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4670 			writel(hlpm_val, hlpm_addr);
4671 			/* flush write */
4672 			readl(hlpm_addr);
4673 		} else {
4674 			hird = xhci_calculate_hird_besl(xhci, udev);
4675 		}
4676 
4677 		pm_val &= ~PORT_HIRD_MASK;
4678 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4679 		writel(pm_val, pm_addr);
4680 		pm_val = readl(pm_addr);
4681 		pm_val |= PORT_HLE;
4682 		writel(pm_val, pm_addr);
4683 		/* flush write */
4684 		readl(pm_addr);
4685 	} else {
4686 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4687 		writel(pm_val, pm_addr);
4688 		/* flush write */
4689 		readl(pm_addr);
4690 		if (udev->usb2_hw_lpm_besl_capable) {
4691 			spin_unlock_irqrestore(&xhci->lock, flags);
4692 			xhci_change_max_exit_latency(xhci, udev, 0);
4693 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4694 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4695 					   100, 10000);
4696 			return 0;
4697 		}
4698 	}
4699 
4700 	spin_unlock_irqrestore(&xhci->lock, flags);
4701 	return 0;
4702 }
4703 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4704 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4705 {
4706 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4707 	struct xhci_port *port;
4708 	u32 capability;
4709 
4710 	/* Check if USB3 device at root port is tunneled over USB4 */
4711 	if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4712 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4713 
4714 		udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4715 		if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4716 			dev_dbg(&udev->dev, "link tunnel state unknown\n");
4717 		else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4718 			dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4719 		else if (udev->tunnel_mode == USB_LINK_NATIVE)
4720 			dev_dbg(&udev->dev, "native USB 3.x link\n");
4721 		return 0;
4722 	}
4723 
4724 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4725 		return 0;
4726 
4727 	/* we only support lpm for non-hub device connected to root hub yet */
4728 	if (!udev->parent || udev->parent->parent ||
4729 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4730 		return 0;
4731 
4732 	port = xhci->usb2_rhub.ports[udev->portnum - 1];
4733 	capability = port->port_cap->protocol_caps;
4734 
4735 	if (capability & XHCI_HLC) {
4736 		udev->usb2_hw_lpm_capable = 1;
4737 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4738 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4739 		if (capability & XHCI_BLC)
4740 			udev->usb2_hw_lpm_besl_capable = 1;
4741 	}
4742 
4743 	return 0;
4744 }
4745 
4746 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4747 
4748 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4749 static unsigned long long xhci_service_interval_to_ns(
4750 		struct usb_endpoint_descriptor *desc)
4751 {
4752 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4753 }
4754 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4755 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4756 		enum usb3_link_state state)
4757 {
4758 	unsigned long long sel;
4759 	unsigned long long pel;
4760 	unsigned int max_sel_pel;
4761 	char *state_name;
4762 
4763 	switch (state) {
4764 	case USB3_LPM_U1:
4765 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4766 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4767 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4768 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4769 		state_name = "U1";
4770 		break;
4771 	case USB3_LPM_U2:
4772 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4773 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4774 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4775 		state_name = "U2";
4776 		break;
4777 	default:
4778 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4779 				__func__);
4780 		return USB3_LPM_DISABLED;
4781 	}
4782 
4783 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4784 		return USB3_LPM_DEVICE_INITIATED;
4785 
4786 	if (sel > max_sel_pel)
4787 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4788 				"due to long SEL %llu ms\n",
4789 				state_name, sel);
4790 	else
4791 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4792 				"due to long PEL %llu ms\n",
4793 				state_name, pel);
4794 	return USB3_LPM_DISABLED;
4795 }
4796 
4797 /* The U1 timeout should be the maximum of the following values:
4798  *  - For control endpoints, U1 system exit latency (SEL) * 3
4799  *  - For bulk endpoints, U1 SEL * 5
4800  *  - For interrupt endpoints:
4801  *    - Notification EPs, U1 SEL * 3
4802  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4803  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4804  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4805 static unsigned long long xhci_calculate_intel_u1_timeout(
4806 		struct usb_device *udev,
4807 		struct usb_endpoint_descriptor *desc)
4808 {
4809 	unsigned long long timeout_ns;
4810 	int ep_type;
4811 	int intr_type;
4812 
4813 	ep_type = usb_endpoint_type(desc);
4814 	switch (ep_type) {
4815 	case USB_ENDPOINT_XFER_CONTROL:
4816 		timeout_ns = udev->u1_params.sel * 3;
4817 		break;
4818 	case USB_ENDPOINT_XFER_BULK:
4819 		timeout_ns = udev->u1_params.sel * 5;
4820 		break;
4821 	case USB_ENDPOINT_XFER_INT:
4822 		intr_type = usb_endpoint_interrupt_type(desc);
4823 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4824 			timeout_ns = udev->u1_params.sel * 3;
4825 			break;
4826 		}
4827 		/* Otherwise the calculation is the same as isoc eps */
4828 		fallthrough;
4829 	case USB_ENDPOINT_XFER_ISOC:
4830 		timeout_ns = xhci_service_interval_to_ns(desc);
4831 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4832 		if (timeout_ns < udev->u1_params.sel * 2)
4833 			timeout_ns = udev->u1_params.sel * 2;
4834 		break;
4835 	default:
4836 		return 0;
4837 	}
4838 
4839 	return timeout_ns;
4840 }
4841 
4842 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4843 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4844 		struct usb_device *udev,
4845 		struct usb_endpoint_descriptor *desc)
4846 {
4847 	unsigned long long timeout_ns;
4848 
4849 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4850 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4851 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4852 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4853 			return USB3_LPM_DISABLED;
4854 		}
4855 	}
4856 
4857 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4858 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4859 	else
4860 		timeout_ns = udev->u1_params.sel;
4861 
4862 	/* The U1 timeout is encoded in 1us intervals.
4863 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4864 	 */
4865 	if (timeout_ns == USB3_LPM_DISABLED)
4866 		timeout_ns = 1;
4867 	else
4868 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4869 
4870 	/* If the necessary timeout value is bigger than what we can set in the
4871 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4872 	 */
4873 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4874 		return timeout_ns;
4875 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n",
4876 		timeout_ns);
4877 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4878 }
4879 
4880 /* The U2 timeout should be the maximum of:
4881  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4882  *  - largest bInterval of any active periodic endpoint (to avoid going
4883  *    into lower power link states between intervals).
4884  *  - the U2 Exit Latency of the device
4885  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4886 static unsigned long long xhci_calculate_intel_u2_timeout(
4887 		struct usb_device *udev,
4888 		struct usb_endpoint_descriptor *desc)
4889 {
4890 	unsigned long long timeout_ns;
4891 	unsigned long long u2_del_ns;
4892 
4893 	timeout_ns = 10 * 1000 * 1000;
4894 
4895 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4896 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4897 		timeout_ns = xhci_service_interval_to_ns(desc);
4898 
4899 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4900 	if (u2_del_ns > timeout_ns)
4901 		timeout_ns = u2_del_ns;
4902 
4903 	return timeout_ns;
4904 }
4905 
4906 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4907 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4908 		struct usb_device *udev,
4909 		struct usb_endpoint_descriptor *desc)
4910 {
4911 	unsigned long long timeout_ns;
4912 
4913 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4914 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4915 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4916 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4917 			return USB3_LPM_DISABLED;
4918 		}
4919 	}
4920 
4921 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4922 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4923 	else
4924 		timeout_ns = udev->u2_params.sel;
4925 
4926 	/* The U2 timeout is encoded in 256us intervals */
4927 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4928 	/* If the necessary timeout value is bigger than what we can set in the
4929 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4930 	 */
4931 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4932 		return timeout_ns;
4933 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n",
4934 		timeout_ns * 256);
4935 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4936 }
4937 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4938 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4939 		struct usb_device *udev,
4940 		struct usb_endpoint_descriptor *desc,
4941 		enum usb3_link_state state,
4942 		u16 *timeout)
4943 {
4944 	if (state == USB3_LPM_U1)
4945 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4946 	else if (state == USB3_LPM_U2)
4947 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4948 
4949 	return USB3_LPM_DISABLED;
4950 }
4951 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4952 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4953 		struct usb_device *udev,
4954 		struct usb_endpoint_descriptor *desc,
4955 		enum usb3_link_state state,
4956 		u16 *timeout)
4957 {
4958 	u16 alt_timeout;
4959 
4960 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4961 		desc, state, timeout);
4962 
4963 	/* If we found we can't enable hub-initiated LPM, and
4964 	 * the U1 or U2 exit latency was too high to allow
4965 	 * device-initiated LPM as well, then we will disable LPM
4966 	 * for this device, so stop searching any further.
4967 	 */
4968 	if (alt_timeout == USB3_LPM_DISABLED) {
4969 		*timeout = alt_timeout;
4970 		return -E2BIG;
4971 	}
4972 	if (alt_timeout > *timeout)
4973 		*timeout = alt_timeout;
4974 	return 0;
4975 }
4976 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4977 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4978 		struct usb_device *udev,
4979 		struct usb_host_interface *alt,
4980 		enum usb3_link_state state,
4981 		u16 *timeout)
4982 {
4983 	int j;
4984 
4985 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4986 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4987 					&alt->endpoint[j].desc, state, timeout))
4988 			return -E2BIG;
4989 	}
4990 	return 0;
4991 }
4992 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4993 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4994 		struct usb_device *udev,
4995 		enum usb3_link_state state)
4996 {
4997 	struct usb_device *parent = udev->parent;
4998 	int tier = 1; /* roothub is tier1 */
4999 
5000 	while (parent) {
5001 		parent = parent->parent;
5002 		tier++;
5003 	}
5004 
5005 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
5006 		goto fail;
5007 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
5008 		goto fail;
5009 
5010 	return 0;
5011 fail:
5012 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
5013 			tier);
5014 	return -E2BIG;
5015 }
5016 
5017 /* Returns the U1 or U2 timeout that should be enabled.
5018  * If the tier check or timeout setting functions return with a non-zero exit
5019  * code, that means the timeout value has been finalized and we shouldn't look
5020  * at any more endpoints.
5021  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5022 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
5023 			struct usb_device *udev, enum usb3_link_state state)
5024 {
5025 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5026 	struct usb_host_config *config;
5027 	char *state_name;
5028 	int i;
5029 	u16 timeout = USB3_LPM_DISABLED;
5030 
5031 	if (state == USB3_LPM_U1)
5032 		state_name = "U1";
5033 	else if (state == USB3_LPM_U2)
5034 		state_name = "U2";
5035 	else {
5036 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
5037 				state);
5038 		return timeout;
5039 	}
5040 
5041 	/* Gather some information about the currently installed configuration
5042 	 * and alternate interface settings.
5043 	 */
5044 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
5045 			state, &timeout))
5046 		return timeout;
5047 
5048 	config = udev->actconfig;
5049 	if (!config)
5050 		return timeout;
5051 
5052 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
5053 		struct usb_driver *driver;
5054 		struct usb_interface *intf = config->interface[i];
5055 
5056 		if (!intf)
5057 			continue;
5058 
5059 		/* Check if any currently bound drivers want hub-initiated LPM
5060 		 * disabled.
5061 		 */
5062 		if (intf->dev.driver) {
5063 			driver = to_usb_driver(intf->dev.driver);
5064 			if (driver && driver->disable_hub_initiated_lpm) {
5065 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
5066 					state_name, driver->name);
5067 				timeout = xhci_get_timeout_no_hub_lpm(udev,
5068 								      state);
5069 				if (timeout == USB3_LPM_DISABLED)
5070 					return timeout;
5071 			}
5072 		}
5073 
5074 		/* Not sure how this could happen... */
5075 		if (!intf->cur_altsetting)
5076 			continue;
5077 
5078 		if (xhci_update_timeout_for_interface(xhci, udev,
5079 					intf->cur_altsetting,
5080 					state, &timeout))
5081 			return timeout;
5082 	}
5083 	return timeout;
5084 }
5085 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)5086 static int calculate_max_exit_latency(struct usb_device *udev,
5087 		enum usb3_link_state state_changed,
5088 		u16 hub_encoded_timeout)
5089 {
5090 	unsigned long long u1_mel_us = 0;
5091 	unsigned long long u2_mel_us = 0;
5092 	unsigned long long mel_us = 0;
5093 	bool disabling_u1;
5094 	bool disabling_u2;
5095 	bool enabling_u1;
5096 	bool enabling_u2;
5097 
5098 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5099 			hub_encoded_timeout == USB3_LPM_DISABLED);
5100 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5101 			hub_encoded_timeout == USB3_LPM_DISABLED);
5102 
5103 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5104 			hub_encoded_timeout != USB3_LPM_DISABLED);
5105 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5106 			hub_encoded_timeout != USB3_LPM_DISABLED);
5107 
5108 	/* If U1 was already enabled and we're not disabling it,
5109 	 * or we're going to enable U1, account for the U1 max exit latency.
5110 	 */
5111 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5112 			enabling_u1)
5113 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5114 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5115 			enabling_u2)
5116 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5117 
5118 	mel_us = max(u1_mel_us, u2_mel_us);
5119 
5120 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5121 	if (mel_us > MAX_EXIT) {
5122 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5123 				"is too big.\n", mel_us);
5124 		return -E2BIG;
5125 	}
5126 	return mel_us;
5127 }
5128 
5129 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5130 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5131 			struct usb_device *udev, enum usb3_link_state state)
5132 {
5133 	struct xhci_hcd	*xhci;
5134 	struct xhci_port *port;
5135 	u16 hub_encoded_timeout;
5136 	int mel;
5137 	int ret;
5138 
5139 	xhci = hcd_to_xhci(hcd);
5140 	/* The LPM timeout values are pretty host-controller specific, so don't
5141 	 * enable hub-initiated timeouts unless the vendor has provided
5142 	 * information about their timeout algorithm.
5143 	 */
5144 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5145 			!xhci->devs[udev->slot_id])
5146 		return USB3_LPM_DISABLED;
5147 
5148 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5149 		return USB3_LPM_DISABLED;
5150 
5151 	/* If connected to root port then check port can handle lpm */
5152 	if (udev->parent && !udev->parent->parent) {
5153 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5154 		if (port->lpm_incapable)
5155 			return USB3_LPM_DISABLED;
5156 	}
5157 
5158 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5159 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5160 	if (mel < 0) {
5161 		/* Max Exit Latency is too big, disable LPM. */
5162 		hub_encoded_timeout = USB3_LPM_DISABLED;
5163 		mel = 0;
5164 	}
5165 
5166 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5167 	if (ret)
5168 		return ret;
5169 	return hub_encoded_timeout;
5170 }
5171 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5172 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5173 			struct usb_device *udev, enum usb3_link_state state)
5174 {
5175 	struct xhci_hcd	*xhci;
5176 	u16 mel;
5177 
5178 	xhci = hcd_to_xhci(hcd);
5179 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5180 			!xhci->devs[udev->slot_id])
5181 		return 0;
5182 
5183 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5184 	return xhci_change_max_exit_latency(xhci, udev, mel);
5185 }
5186 #else /* CONFIG_PM */
5187 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5188 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5189 				struct usb_device *udev, int enable)
5190 {
5191 	return 0;
5192 }
5193 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5194 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5195 {
5196 	return 0;
5197 }
5198 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5199 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5200 			struct usb_device *udev, enum usb3_link_state state)
5201 {
5202 	return USB3_LPM_DISABLED;
5203 }
5204 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5205 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5206 			struct usb_device *udev, enum usb3_link_state state)
5207 {
5208 	return 0;
5209 }
5210 #endif	/* CONFIG_PM */
5211 
5212 /*-------------------------------------------------------------------------*/
5213 
5214 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5215  * internal data structures for the device.
5216  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5217 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5218 			struct usb_tt *tt, gfp_t mem_flags)
5219 {
5220 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5221 	struct xhci_virt_device *vdev;
5222 	struct xhci_command *config_cmd;
5223 	struct xhci_input_control_ctx *ctrl_ctx;
5224 	struct xhci_slot_ctx *slot_ctx;
5225 	unsigned long flags;
5226 	unsigned think_time;
5227 	int ret;
5228 
5229 	/* Ignore root hubs */
5230 	if (!hdev->parent)
5231 		return 0;
5232 
5233 	vdev = xhci->devs[hdev->slot_id];
5234 	if (!vdev) {
5235 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5236 		return -EINVAL;
5237 	}
5238 
5239 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5240 	if (!config_cmd)
5241 		return -ENOMEM;
5242 
5243 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5244 	if (!ctrl_ctx) {
5245 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5246 				__func__);
5247 		xhci_free_command(xhci, config_cmd);
5248 		return -ENOMEM;
5249 	}
5250 
5251 	spin_lock_irqsave(&xhci->lock, flags);
5252 	if (hdev->speed == USB_SPEED_HIGH &&
5253 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5254 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5255 		xhci_free_command(xhci, config_cmd);
5256 		spin_unlock_irqrestore(&xhci->lock, flags);
5257 		return -ENOMEM;
5258 	}
5259 
5260 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5261 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5262 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5263 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5264 	/*
5265 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5266 	 * but it may be already set to 1 when setup an xHCI virtual
5267 	 * device, so clear it anyway.
5268 	 */
5269 	if (tt->multi)
5270 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5271 	else if (hdev->speed == USB_SPEED_FULL)
5272 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5273 
5274 	if (xhci->hci_version > 0x95) {
5275 		xhci_dbg(xhci, "xHCI version %x needs hub "
5276 				"TT think time and number of ports\n",
5277 				(unsigned int) xhci->hci_version);
5278 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5279 		/* Set TT think time - convert from ns to FS bit times.
5280 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5281 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5282 		 *
5283 		 * xHCI 1.0: this field shall be 0 if the device is not a
5284 		 * High-spped hub.
5285 		 */
5286 		think_time = tt->think_time;
5287 		if (think_time != 0)
5288 			think_time = (think_time / 666) - 1;
5289 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5290 			slot_ctx->tt_info |=
5291 				cpu_to_le32(TT_THINK_TIME(think_time));
5292 	} else {
5293 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5294 				"TT think time or number of ports\n",
5295 				(unsigned int) xhci->hci_version);
5296 	}
5297 	slot_ctx->dev_state = 0;
5298 	spin_unlock_irqrestore(&xhci->lock, flags);
5299 
5300 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5301 			(xhci->hci_version > 0x95) ?
5302 			"configure endpoint" : "evaluate context");
5303 
5304 	/* Issue and wait for the configure endpoint or
5305 	 * evaluate context command.
5306 	 */
5307 	if (xhci->hci_version > 0x95)
5308 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5309 				false, false);
5310 	else
5311 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5312 				true, false);
5313 
5314 	xhci_free_command(xhci, config_cmd);
5315 	return ret;
5316 }
5317 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5318 
xhci_get_frame(struct usb_hcd * hcd)5319 static int xhci_get_frame(struct usb_hcd *hcd)
5320 {
5321 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5322 	/* EHCI mods by the periodic size.  Why? */
5323 	return readl(&xhci->run_regs->microframe_index) >> 3;
5324 }
5325 
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5326 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5327 {
5328 	xhci->usb2_rhub.hcd = hcd;
5329 	hcd->speed = HCD_USB2;
5330 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5331 	/*
5332 	 * USB 2.0 roothub under xHCI has an integrated TT,
5333 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5334 	 * companion controller.
5335 	 */
5336 	hcd->has_tt = 1;
5337 }
5338 
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5339 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5340 {
5341 	unsigned int minor_rev;
5342 
5343 	/*
5344 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5345 	 * should return 0x31 for sbrn, or that the minor revision
5346 	 * is a two digit BCD containig minor and sub-minor numbers.
5347 	 * This was later clarified in xHCI 1.2.
5348 	 *
5349 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5350 	 * minor revision set to 0x1 instead of 0x10.
5351 	 */
5352 	if (xhci->usb3_rhub.min_rev == 0x1)
5353 		minor_rev = 1;
5354 	else
5355 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5356 
5357 	switch (minor_rev) {
5358 	case 2:
5359 		hcd->speed = HCD_USB32;
5360 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5361 		hcd->self.root_hub->rx_lanes = 2;
5362 		hcd->self.root_hub->tx_lanes = 2;
5363 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5364 		break;
5365 	case 1:
5366 		hcd->speed = HCD_USB31;
5367 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5368 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5369 		break;
5370 	}
5371 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5372 		  minor_rev, minor_rev ? "Enhanced " : "");
5373 
5374 	xhci->usb3_rhub.hcd = hcd;
5375 }
5376 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5377 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5378 {
5379 	struct xhci_hcd		*xhci;
5380 	/*
5381 	 * TODO: Check with DWC3 clients for sysdev according to
5382 	 * quirks
5383 	 */
5384 	struct device		*dev = hcd->self.sysdev;
5385 	int			retval;
5386 
5387 	/* Accept arbitrarily long scatter-gather lists */
5388 	hcd->self.sg_tablesize = ~0;
5389 
5390 	/* support to build packet from discontinuous buffers */
5391 	hcd->self.no_sg_constraint = 1;
5392 
5393 	/* XHCI controllers don't stop the ep queue on short packets :| */
5394 	hcd->self.no_stop_on_short = 1;
5395 
5396 	xhci = hcd_to_xhci(hcd);
5397 
5398 	if (!usb_hcd_is_primary_hcd(hcd)) {
5399 		xhci_hcd_init_usb3_data(xhci, hcd);
5400 		return 0;
5401 	}
5402 
5403 	mutex_init(&xhci->mutex);
5404 	xhci->main_hcd = hcd;
5405 	xhci->cap_regs = hcd->regs;
5406 	xhci->op_regs = hcd->regs +
5407 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5408 	xhci->run_regs = hcd->regs +
5409 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5410 	/* Cache read-only capability registers */
5411 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5412 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5413 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5414 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5415 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5416 	if (xhci->hci_version > 0x100)
5417 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5418 
5419 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5420 	if ((!xhci->max_interrupters) ||
5421 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5422 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5423 
5424 	xhci->quirks |= quirks;
5425 
5426 	if (get_quirks)
5427 		get_quirks(dev, xhci);
5428 
5429 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5430 	 * success event after a short transfer. This quirk will ignore such
5431 	 * spurious event.
5432 	 */
5433 	if (xhci->hci_version > 0x96)
5434 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5435 
5436 	if (xhci->hci_version == 0x95 && link_quirk) {
5437 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5438 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5439 	}
5440 
5441 	/* Make sure the HC is halted. */
5442 	retval = xhci_halt(xhci);
5443 	if (retval)
5444 		return retval;
5445 
5446 	xhci_zero_64b_regs(xhci);
5447 
5448 	xhci_dbg(xhci, "Resetting HCD\n");
5449 	/* Reset the internal HC memory state and registers. */
5450 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5451 	if (retval)
5452 		return retval;
5453 	xhci_dbg(xhci, "Reset complete\n");
5454 
5455 	/*
5456 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5457 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5458 	 * address memory pointers actually. So, this driver clears the AC64
5459 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5460 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5461 	 */
5462 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5463 		xhci->hcc_params &= ~BIT(0);
5464 
5465 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5466 	 * if xHC supports 64-bit addressing */
5467 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5468 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5469 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5470 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5471 	} else {
5472 		/*
5473 		 * This is to avoid error in cases where a 32-bit USB
5474 		 * controller is used on a 64-bit capable system.
5475 		 */
5476 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5477 		if (retval)
5478 			return retval;
5479 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5480 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5481 	}
5482 
5483 	xhci_dbg(xhci, "Calling HCD init\n");
5484 	/* Initialize HCD and host controller data structures. */
5485 	retval = xhci_init(hcd);
5486 	if (retval)
5487 		return retval;
5488 	xhci_dbg(xhci, "Called HCD init\n");
5489 
5490 	if (xhci_hcd_is_usb3(hcd))
5491 		xhci_hcd_init_usb3_data(xhci, hcd);
5492 	else
5493 		xhci_hcd_init_usb2_data(xhci, hcd);
5494 
5495 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5496 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5497 
5498 	return 0;
5499 }
5500 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5501 
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5502 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5503 		struct usb_host_endpoint *ep)
5504 {
5505 	struct xhci_hcd *xhci;
5506 	struct usb_device *udev;
5507 	unsigned int slot_id;
5508 	unsigned int ep_index;
5509 	unsigned long flags;
5510 
5511 	xhci = hcd_to_xhci(hcd);
5512 
5513 	spin_lock_irqsave(&xhci->lock, flags);
5514 	udev = (struct usb_device *)ep->hcpriv;
5515 	slot_id = udev->slot_id;
5516 	ep_index = xhci_get_endpoint_index(&ep->desc);
5517 
5518 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5519 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5520 	spin_unlock_irqrestore(&xhci->lock, flags);
5521 }
5522 
5523 static const struct hc_driver xhci_hc_driver = {
5524 	.description =		"xhci-hcd",
5525 	.product_desc =		"xHCI Host Controller",
5526 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5527 
5528 	/*
5529 	 * generic hardware linkage
5530 	 */
5531 	.irq =			xhci_irq,
5532 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5533 				HCD_BH,
5534 
5535 	/*
5536 	 * basic lifecycle operations
5537 	 */
5538 	.reset =		NULL, /* set in xhci_init_driver() */
5539 	.start =		xhci_run,
5540 	.stop =			xhci_stop,
5541 	.shutdown =		xhci_shutdown,
5542 
5543 	/*
5544 	 * managing i/o requests and associated device resources
5545 	 */
5546 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5547 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5548 	.urb_enqueue =		xhci_urb_enqueue,
5549 	.urb_dequeue =		xhci_urb_dequeue,
5550 	.alloc_dev =		xhci_alloc_dev,
5551 	.free_dev =		xhci_free_dev,
5552 	.alloc_streams =	xhci_alloc_streams,
5553 	.free_streams =		xhci_free_streams,
5554 	.add_endpoint =		xhci_add_endpoint,
5555 	.drop_endpoint =	xhci_drop_endpoint,
5556 	.endpoint_disable =	xhci_endpoint_disable,
5557 	.endpoint_reset =	xhci_endpoint_reset,
5558 	.check_bandwidth =	xhci_check_bandwidth,
5559 	.reset_bandwidth =	xhci_reset_bandwidth,
5560 	.address_device =	xhci_address_device,
5561 	.enable_device =	xhci_enable_device,
5562 	.update_hub_device =	xhci_update_hub_device,
5563 	.reset_device =		xhci_discover_or_reset_device,
5564 
5565 	/*
5566 	 * scheduling support
5567 	 */
5568 	.get_frame_number =	xhci_get_frame,
5569 
5570 	/*
5571 	 * root hub support
5572 	 */
5573 	.hub_control =		xhci_hub_control,
5574 	.hub_status_data =	xhci_hub_status_data,
5575 	.bus_suspend =		xhci_bus_suspend,
5576 	.bus_resume =		xhci_bus_resume,
5577 	.get_resuming_ports =	xhci_get_resuming_ports,
5578 
5579 	/*
5580 	 * call back when device connected and addressed
5581 	 */
5582 	.update_device =        xhci_update_device,
5583 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5584 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5585 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5586 	.find_raw_port_number =	xhci_find_raw_port_number,
5587 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5588 };
5589 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5590 void xhci_init_driver(struct hc_driver *drv,
5591 		      const struct xhci_driver_overrides *over)
5592 {
5593 	BUG_ON(!over);
5594 
5595 	/* Copy the generic table to drv then apply the overrides */
5596 	*drv = xhci_hc_driver;
5597 
5598 	if (over) {
5599 		drv->hcd_priv_size += over->extra_priv_size;
5600 		if (over->reset)
5601 			drv->reset = over->reset;
5602 		if (over->start)
5603 			drv->start = over->start;
5604 		if (over->add_endpoint)
5605 			drv->add_endpoint = over->add_endpoint;
5606 		if (over->drop_endpoint)
5607 			drv->drop_endpoint = over->drop_endpoint;
5608 		if (over->check_bandwidth)
5609 			drv->check_bandwidth = over->check_bandwidth;
5610 		if (over->reset_bandwidth)
5611 			drv->reset_bandwidth = over->reset_bandwidth;
5612 		if (over->update_hub_device)
5613 			drv->update_hub_device = over->update_hub_device;
5614 		if (over->hub_control)
5615 			drv->hub_control = over->hub_control;
5616 	}
5617 }
5618 EXPORT_SYMBOL_GPL(xhci_init_driver);
5619 
5620 MODULE_DESCRIPTION(DRIVER_DESC);
5621 MODULE_AUTHOR(DRIVER_AUTHOR);
5622 MODULE_LICENSE("GPL");
5623 
xhci_hcd_init(void)5624 static int __init xhci_hcd_init(void)
5625 {
5626 	/*
5627 	 * Check the compiler generated sizes of structures that must be laid
5628 	 * out in specific ways for hardware access.
5629 	 */
5630 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5631 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5632 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5633 	/* xhci_device_control has eight fields, and also
5634 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5635 	 */
5636 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5637 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5638 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5639 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5640 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5641 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5642 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5643 
5644 	if (usb_disabled())
5645 		return -ENODEV;
5646 
5647 	xhci_debugfs_create_root();
5648 	xhci_dbc_init();
5649 
5650 	return 0;
5651 }
5652 
5653 /*
5654  * If an init function is provided, an exit function must also be provided
5655  * to allow module unload.
5656  */
xhci_hcd_fini(void)5657 static void __exit xhci_hcd_fini(void)
5658 {
5659 	xhci_debugfs_remove_root();
5660 	xhci_dbc_exit();
5661 }
5662 
5663 module_init(xhci_hcd_init);
5664 module_exit(xhci_hcd_fini);
5665