1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #ifndef _KERNEL
26 #include <strings.h>
27 #include <limits.h>
28 #include <assert.h>
29 #include <security/cryptoki.h>
30 #endif
31
32 #include <sys/types.h>
33 #include <sys/kmem.h>
34 #include <modes/modes.h>
35 #include <sys/crypto/common.h>
36 #include <sys/crypto/impl.h>
37 #include <sys/byteorder.h>
38
39 #if defined(__i386) || defined(__amd64)
40 #define UNALIGNED_POINTERS_PERMITTED
41 #endif
42
43 /*
44 * Encrypt multiple blocks of data in CCM mode. Decrypt for CCM mode
45 * is done in another function.
46 */
47 int
ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t * ctx,char * data,size_t length,crypto_data_t * out,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* copy_block)(uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))48 ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
49 crypto_data_t *out, size_t block_size,
50 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
51 void (*copy_block)(uint8_t *, uint8_t *),
52 void (*xor_block)(uint8_t *, uint8_t *))
53 {
54 size_t remainder = length;
55 size_t need;
56 uint8_t *datap = (uint8_t *)data;
57 uint8_t *blockp;
58 uint8_t *lastp;
59 void *iov_or_mp;
60 offset_t offset;
61 uint8_t *out_data_1;
62 uint8_t *out_data_2;
63 size_t out_data_1_len;
64 uint64_t counter;
65 uint8_t *mac_buf;
66
67 if (length + ctx->ccm_remainder_len < block_size) {
68 /* accumulate bytes here and return */
69 bcopy(datap,
70 (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
71 length);
72 ctx->ccm_remainder_len += length;
73 ctx->ccm_copy_to = datap;
74 return (CRYPTO_SUCCESS);
75 }
76
77 lastp = (uint8_t *)ctx->ccm_cb;
78 if (out != NULL)
79 crypto_init_ptrs(out, &iov_or_mp, &offset);
80
81 mac_buf = (uint8_t *)ctx->ccm_mac_buf;
82
83 do {
84 /* Unprocessed data from last call. */
85 if (ctx->ccm_remainder_len > 0) {
86 need = block_size - ctx->ccm_remainder_len;
87
88 if (need > remainder)
89 return (CRYPTO_DATA_LEN_RANGE);
90
91 bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
92 [ctx->ccm_remainder_len], need);
93
94 blockp = (uint8_t *)ctx->ccm_remainder;
95 } else {
96 blockp = datap;
97 }
98
99 /*
100 * do CBC MAC
101 *
102 * XOR the previous cipher block current clear block.
103 * mac_buf always contain previous cipher block.
104 */
105 xor_block(blockp, mac_buf);
106 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
107
108 /* ccm_cb is the counter block */
109 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
110 (uint8_t *)ctx->ccm_tmp);
111
112 lastp = (uint8_t *)ctx->ccm_tmp;
113
114 /*
115 * Increment counter. Counter bits are confined
116 * to the bottom 64 bits of the counter block.
117 */
118 counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
119 counter = htonll(counter + 1);
120 counter &= ctx->ccm_counter_mask;
121 ctx->ccm_cb[1] =
122 (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
123
124 /*
125 * XOR encrypted counter block with the current clear block.
126 */
127 xor_block(blockp, lastp);
128
129 ctx->ccm_processed_data_len += block_size;
130
131 if (out == NULL) {
132 if (ctx->ccm_remainder_len > 0) {
133 bcopy(blockp, ctx->ccm_copy_to,
134 ctx->ccm_remainder_len);
135 bcopy(blockp + ctx->ccm_remainder_len, datap,
136 need);
137 }
138 } else {
139 crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
140 &out_data_1_len, &out_data_2, block_size);
141
142 /* copy block to where it belongs */
143 if (out_data_1_len == block_size) {
144 copy_block(lastp, out_data_1);
145 } else {
146 bcopy(lastp, out_data_1, out_data_1_len);
147 if (out_data_2 != NULL) {
148 bcopy(lastp + out_data_1_len,
149 out_data_2,
150 block_size - out_data_1_len);
151 }
152 }
153 /* update offset */
154 out->cd_offset += block_size;
155 }
156
157 /* Update pointer to next block of data to be processed. */
158 if (ctx->ccm_remainder_len != 0) {
159 datap += need;
160 ctx->ccm_remainder_len = 0;
161 } else {
162 datap += block_size;
163 }
164
165 remainder = (size_t)&data[length] - (size_t)datap;
166
167 /* Incomplete last block. */
168 if (remainder > 0 && remainder < block_size) {
169 bcopy(datap, ctx->ccm_remainder, remainder);
170 ctx->ccm_remainder_len = remainder;
171 ctx->ccm_copy_to = datap;
172 goto out;
173 }
174 ctx->ccm_copy_to = NULL;
175
176 } while (remainder > 0);
177
178 out:
179 return (CRYPTO_SUCCESS);
180 }
181
182 void
calculate_ccm_mac(ccm_ctx_t * ctx,uint8_t * ccm_mac,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *))183 calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
184 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
185 {
186 uint64_t counter;
187 uint8_t *counterp, *mac_buf;
188 int i;
189
190 mac_buf = (uint8_t *)ctx->ccm_mac_buf;
191
192 /* first counter block start with index 0 */
193 counter = 0;
194 ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
195
196 counterp = (uint8_t *)ctx->ccm_tmp;
197 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
198
199 /* calculate XOR of MAC with first counter block */
200 for (i = 0; i < ctx->ccm_mac_len; i++) {
201 ccm_mac[i] = mac_buf[i] ^ counterp[i];
202 }
203 }
204
205 /* ARGSUSED */
206 int
ccm_encrypt_final(ccm_ctx_t * ctx,crypto_data_t * out,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))207 ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
208 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
209 void (*xor_block)(uint8_t *, uint8_t *))
210 {
211 uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp;
212 void *iov_or_mp;
213 offset_t offset;
214 uint8_t *out_data_1;
215 uint8_t *out_data_2;
216 size_t out_data_1_len;
217 int i;
218
219 if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
220 return (CRYPTO_DATA_LEN_RANGE);
221 }
222
223 /*
224 * When we get here, the number of bytes of payload processed
225 * plus whatever data remains, if any,
226 * should be the same as the number of bytes that's being
227 * passed in the argument during init time.
228 */
229 if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
230 != (ctx->ccm_data_len)) {
231 return (CRYPTO_DATA_LEN_RANGE);
232 }
233
234 mac_buf = (uint8_t *)ctx->ccm_mac_buf;
235
236 if (ctx->ccm_remainder_len > 0) {
237
238 /* ccm_mac_input_buf is not used for encryption */
239 macp = (uint8_t *)ctx->ccm_mac_input_buf;
240 bzero(macp, block_size);
241
242 /* copy remainder to temporary buffer */
243 bcopy(ctx->ccm_remainder, macp, ctx->ccm_remainder_len);
244
245 /* calculate the CBC MAC */
246 xor_block(macp, mac_buf);
247 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
248
249 /* calculate the counter mode */
250 lastp = (uint8_t *)ctx->ccm_tmp;
251 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);
252
253 /* XOR with counter block */
254 for (i = 0; i < ctx->ccm_remainder_len; i++) {
255 macp[i] ^= lastp[i];
256 }
257 ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
258 }
259
260 /* Calculate the CCM MAC */
261 ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
262 calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);
263
264 crypto_init_ptrs(out, &iov_or_mp, &offset);
265 crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
266 &out_data_1_len, &out_data_2,
267 ctx->ccm_remainder_len + ctx->ccm_mac_len);
268
269 if (ctx->ccm_remainder_len > 0) {
270
271 /* copy temporary block to where it belongs */
272 if (out_data_2 == NULL) {
273 /* everything will fit in out_data_1 */
274 bcopy(macp, out_data_1, ctx->ccm_remainder_len);
275 bcopy(ccm_mac_p, out_data_1 + ctx->ccm_remainder_len,
276 ctx->ccm_mac_len);
277 } else {
278
279 if (out_data_1_len < ctx->ccm_remainder_len) {
280
281 size_t data_2_len_used;
282
283 bcopy(macp, out_data_1, out_data_1_len);
284
285 data_2_len_used = ctx->ccm_remainder_len
286 - out_data_1_len;
287
288 bcopy((uint8_t *)macp + out_data_1_len,
289 out_data_2, data_2_len_used);
290 bcopy(ccm_mac_p, out_data_2 + data_2_len_used,
291 ctx->ccm_mac_len);
292 } else {
293 bcopy(macp, out_data_1, out_data_1_len);
294 if (out_data_1_len == ctx->ccm_remainder_len) {
295 /* mac will be in out_data_2 */
296 bcopy(ccm_mac_p, out_data_2,
297 ctx->ccm_mac_len);
298 } else {
299 size_t len_not_used = out_data_1_len -
300 ctx->ccm_remainder_len;
301 /*
302 * part of mac in will be in
303 * out_data_1, part of the mac will be
304 * in out_data_2
305 */
306 bcopy(ccm_mac_p,
307 out_data_1 + ctx->ccm_remainder_len,
308 len_not_used);
309 bcopy(ccm_mac_p + len_not_used,
310 out_data_2,
311 ctx->ccm_mac_len - len_not_used);
312
313 }
314 }
315 }
316 } else {
317 /* copy block to where it belongs */
318 bcopy(ccm_mac_p, out_data_1, out_data_1_len);
319 if (out_data_2 != NULL) {
320 bcopy(ccm_mac_p + out_data_1_len, out_data_2,
321 block_size - out_data_1_len);
322 }
323 }
324 out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
325 ctx->ccm_remainder_len = 0;
326 return (CRYPTO_SUCCESS);
327 }
328
329 /*
330 * This will only deal with decrypting the last block of the input that
331 * might not be a multiple of block length.
332 */
333 void
ccm_decrypt_incomplete_block(ccm_ctx_t * ctx,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *))334 ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
335 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
336 {
337 uint8_t *datap, *outp, *counterp;
338 int i;
339
340 datap = (uint8_t *)ctx->ccm_remainder;
341 outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);
342
343 counterp = (uint8_t *)ctx->ccm_tmp;
344 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
345
346 /* XOR with counter block */
347 for (i = 0; i < ctx->ccm_remainder_len; i++) {
348 outp[i] = datap[i] ^ counterp[i];
349 }
350 }
351
352 /*
353 * This will decrypt the cipher text. However, the plaintext won't be
354 * returned to the caller. It will be returned when decrypt_final() is
355 * called if the MAC matches
356 */
357 /* ARGSUSED */
358 int
ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t * ctx,char * data,size_t length,crypto_data_t * out,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* copy_block)(uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))359 ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
360 crypto_data_t *out, size_t block_size,
361 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
362 void (*copy_block)(uint8_t *, uint8_t *),
363 void (*xor_block)(uint8_t *, uint8_t *))
364 {
365 size_t remainder = length;
366 size_t need;
367 uint8_t *datap = (uint8_t *)data;
368 uint8_t *blockp;
369 uint8_t *cbp;
370 uint64_t counter;
371 size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
372 uint8_t *resultp;
373
374
375 pm_len = ctx->ccm_processed_mac_len;
376
377 if (pm_len > 0) {
378 uint8_t *tmp;
379 /*
380 * all ciphertext has been processed, just waiting for
381 * part of the value of the mac
382 */
383 if ((pm_len + length) > ctx->ccm_mac_len) {
384 return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
385 }
386 tmp = (uint8_t *)ctx->ccm_mac_input_buf;
387
388 bcopy(datap, tmp + pm_len, length);
389
390 ctx->ccm_processed_mac_len += length;
391 return (CRYPTO_SUCCESS);
392 }
393
394 /*
395 * If we decrypt the given data, what total amount of data would
396 * have been decrypted?
397 */
398 pd_len = ctx->ccm_processed_data_len;
399 total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;
400
401 if (total_decrypted_len >
402 (ctx->ccm_data_len + ctx->ccm_mac_len)) {
403 return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
404 }
405
406 pt_len = ctx->ccm_data_len;
407
408 if (total_decrypted_len > pt_len) {
409 /*
410 * part of the input will be the MAC, need to isolate that
411 * to be dealt with later. The left-over data in
412 * ccm_remainder_len from last time will not be part of the
413 * MAC. Otherwise, it would have already been taken out
414 * when this call is made last time.
415 */
416 size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;
417
418 mac_len = length - pt_part;
419
420 ctx->ccm_processed_mac_len = mac_len;
421 bcopy(data + pt_part, ctx->ccm_mac_input_buf, mac_len);
422
423 if (pt_part + ctx->ccm_remainder_len < block_size) {
424 /*
425 * since this is last of the ciphertext, will
426 * just decrypt with it here
427 */
428 bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
429 [ctx->ccm_remainder_len], pt_part);
430 ctx->ccm_remainder_len += pt_part;
431 ccm_decrypt_incomplete_block(ctx, encrypt_block);
432 ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
433 ctx->ccm_remainder_len = 0;
434 return (CRYPTO_SUCCESS);
435 } else {
436 /* let rest of the code handle this */
437 length = pt_part;
438 }
439 } else if (length + ctx->ccm_remainder_len < block_size) {
440 /* accumulate bytes here and return */
441 bcopy(datap,
442 (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
443 length);
444 ctx->ccm_remainder_len += length;
445 ctx->ccm_copy_to = datap;
446 return (CRYPTO_SUCCESS);
447 }
448
449 do {
450 /* Unprocessed data from last call. */
451 if (ctx->ccm_remainder_len > 0) {
452 need = block_size - ctx->ccm_remainder_len;
453
454 if (need > remainder)
455 return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
456
457 bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
458 [ctx->ccm_remainder_len], need);
459
460 blockp = (uint8_t *)ctx->ccm_remainder;
461 } else {
462 blockp = datap;
463 }
464
465 /* Calculate the counter mode, ccm_cb is the counter block */
466 cbp = (uint8_t *)ctx->ccm_tmp;
467 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);
468
469 /*
470 * Increment counter.
471 * Counter bits are confined to the bottom 64 bits
472 */
473 counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
474 counter = htonll(counter + 1);
475 counter &= ctx->ccm_counter_mask;
476 ctx->ccm_cb[1] =
477 (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
478
479 /* XOR with the ciphertext */
480 xor_block(blockp, cbp);
481
482 /* Copy the plaintext to the "holding buffer" */
483 resultp = (uint8_t *)ctx->ccm_pt_buf +
484 ctx->ccm_processed_data_len;
485 copy_block(cbp, resultp);
486
487 ctx->ccm_processed_data_len += block_size;
488
489 ctx->ccm_lastp = blockp;
490
491 /* Update pointer to next block of data to be processed. */
492 if (ctx->ccm_remainder_len != 0) {
493 datap += need;
494 ctx->ccm_remainder_len = 0;
495 } else {
496 datap += block_size;
497 }
498
499 remainder = (size_t)&data[length] - (size_t)datap;
500
501 /* Incomplete last block */
502 if (remainder > 0 && remainder < block_size) {
503 bcopy(datap, ctx->ccm_remainder, remainder);
504 ctx->ccm_remainder_len = remainder;
505 ctx->ccm_copy_to = datap;
506 if (ctx->ccm_processed_mac_len > 0) {
507 /*
508 * not expecting anymore ciphertext, just
509 * compute plaintext for the remaining input
510 */
511 ccm_decrypt_incomplete_block(ctx,
512 encrypt_block);
513 ctx->ccm_processed_data_len += remainder;
514 ctx->ccm_remainder_len = 0;
515 }
516 goto out;
517 }
518 ctx->ccm_copy_to = NULL;
519
520 } while (remainder > 0);
521
522 out:
523 return (CRYPTO_SUCCESS);
524 }
525
526 int
ccm_decrypt_final(ccm_ctx_t * ctx,crypto_data_t * out,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* copy_block)(uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))527 ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
528 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
529 void (*copy_block)(uint8_t *, uint8_t *),
530 void (*xor_block)(uint8_t *, uint8_t *))
531 {
532 size_t mac_remain, pt_len;
533 uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
534 int rv;
535
536 pt_len = ctx->ccm_data_len;
537
538 /* Make sure output buffer can fit all of the plaintext */
539 if (out->cd_length < pt_len) {
540 return (CRYPTO_DATA_LEN_RANGE);
541 }
542
543 pt = ctx->ccm_pt_buf;
544 mac_remain = ctx->ccm_processed_data_len;
545 mac_buf = (uint8_t *)ctx->ccm_mac_buf;
546
547 macp = (uint8_t *)ctx->ccm_tmp;
548
549 while (mac_remain > 0) {
550
551 if (mac_remain < block_size) {
552 bzero(macp, block_size);
553 bcopy(pt, macp, mac_remain);
554 mac_remain = 0;
555 } else {
556 copy_block(pt, macp);
557 mac_remain -= block_size;
558 pt += block_size;
559 }
560
561 /* calculate the CBC MAC */
562 xor_block(macp, mac_buf);
563 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
564 }
565
566 /* Calculate the CCM MAC */
567 ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
568 calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);
569
570 /* compare the input CCM MAC value with what we calculated */
571 if (bcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
572 /* They don't match */
573 return (CRYPTO_INVALID_MAC);
574 } else {
575 rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len);
576 if (rv != CRYPTO_SUCCESS)
577 return (rv);
578 out->cd_offset += pt_len;
579 }
580 return (CRYPTO_SUCCESS);
581 }
582
583 int
ccm_validate_args(CK_AES_CCM_PARAMS * ccm_param,boolean_t is_encrypt_init)584 ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
585 {
586 size_t macSize, nonceSize;
587 uint8_t q;
588 uint64_t maxValue;
589
590 /*
591 * Check the length of the MAC. The only valid
592 * lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
593 */
594 macSize = ccm_param->ulMACSize;
595 if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
596 return (CRYPTO_MECHANISM_PARAM_INVALID);
597 }
598
599 /* Check the nonce length. Valid values are 7, 8, 9, 10, 11, 12, 13 */
600 nonceSize = ccm_param->ulNonceSize;
601 if ((nonceSize < 7) || (nonceSize > 13)) {
602 return (CRYPTO_MECHANISM_PARAM_INVALID);
603 }
604
605 /* q is the length of the field storing the length, in bytes */
606 q = (uint8_t)((15 - nonceSize) & 0xFF);
607
608
609 /*
610 * If it is decrypt, need to make sure size of ciphertext is at least
611 * bigger than MAC len
612 */
613 if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
614 return (CRYPTO_MECHANISM_PARAM_INVALID);
615 }
616
617 /*
618 * Check to make sure the length of the payload is within the
619 * range of values allowed by q
620 */
621 if (q < 8) {
622 maxValue = (1ULL << (q * 8)) - 1;
623 } else {
624 maxValue = ULONG_MAX;
625 }
626
627 if (ccm_param->ulDataSize > maxValue) {
628 return (CRYPTO_MECHANISM_PARAM_INVALID);
629 }
630 return (CRYPTO_SUCCESS);
631 }
632
633 /*
634 * Format the first block used in CBC-MAC (B0) and the initial counter
635 * block based on formatting functions and counter generation functions
636 * specified in RFC 3610 and NIST publication 800-38C, appendix A
637 *
638 * b0 is the first block used in CBC-MAC
639 * cb0 is the first counter block
640 *
641 * It's assumed that the arguments b0 and cb0 are preallocated AES blocks
642 *
643 */
644 static void
ccm_format_initial_blocks(uchar_t * nonce,ulong_t nonceSize,ulong_t authDataSize,uint8_t * b0,ccm_ctx_t * aes_ctx)645 ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
646 ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
647 {
648 uint64_t payloadSize;
649 uint8_t t, q, have_adata = 0;
650 size_t limit;
651 int i, j, k;
652 uint64_t mask = 0;
653 uint8_t *cb;
654
655 q = (uint8_t)((15 - nonceSize) & 0xFF);
656 t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);
657
658 /* Construct the first octet of b0 */
659 if (authDataSize > 0) {
660 have_adata = 1;
661 }
662 b0[0] = (have_adata << 6) | (((t - 2) / 2) << 3) | (q - 1);
663
664 /* copy the nonce value into b0 */
665 bcopy(nonce, &(b0[1]), nonceSize);
666
667 /* store the length of the payload into b0 */
668 bzero(&(b0[1+nonceSize]), q);
669
670 payloadSize = aes_ctx->ccm_data_len;
671 limit = 8 < q ? 8 : q;
672
673 for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
674 b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
675 }
676
677 /* format the counter block */
678
679 cb = (uint8_t *)aes_ctx->ccm_cb;
680
681 cb[0] = 0x07 & (q-1); /* first byte */
682
683 /* copy the nonce value into the counter block */
684 bcopy(nonce, &(cb[1]), nonceSize);
685
686 bzero(&(cb[1+nonceSize]), q);
687
688 /* Create the mask for the counter field based on the size of nonce */
689 q <<= 3;
690 while (q-- > 0) {
691 mask |= (1ULL << q);
692 }
693
694 aes_ctx->ccm_counter_mask = htonll(mask);
695
696 /*
697 * During calculation, we start using counter block 1, we will
698 * set it up right here.
699 * We can just set the last byte to have the value 1, because
700 * even with the biggest nonce of 13, the last byte of the
701 * counter block will be used for the counter value.
702 */
703 cb[15] = 0x01;
704 }
705
706 /*
707 * Encode the length of the associated data as
708 * specified in RFC 3610 and NIST publication 800-38C, appendix A
709 */
710 static void
encode_adata_len(ulong_t auth_data_len,uint8_t * encoded,size_t * encoded_len)711 encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
712 {
713 #ifdef UNALIGNED_POINTERS_PERMITTED
714 uint32_t *lencoded_ptr;
715 #ifdef _LP64
716 uint64_t *llencoded_ptr;
717 #endif
718 #endif /* UNALIGNED_POINTERS_PERMITTED */
719
720 if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
721 /* 0 < a < (2^16-2^8) */
722 *encoded_len = 2;
723 encoded[0] = (auth_data_len & 0xff00) >> 8;
724 encoded[1] = auth_data_len & 0xff;
725
726 } else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
727 (auth_data_len < (1ULL << 31))) {
728 /* (2^16-2^8) <= a < 2^32 */
729 *encoded_len = 6;
730 encoded[0] = 0xff;
731 encoded[1] = 0xfe;
732 #ifdef UNALIGNED_POINTERS_PERMITTED
733 lencoded_ptr = (uint32_t *)(void *)&encoded[2];
734 *lencoded_ptr = htonl(auth_data_len);
735 #else
736 encoded[2] = (auth_data_len & 0xff000000) >> 24;
737 encoded[3] = (auth_data_len & 0xff0000) >> 16;
738 encoded[4] = (auth_data_len & 0xff00) >> 8;
739 encoded[5] = auth_data_len & 0xff;
740 #endif /* UNALIGNED_POINTERS_PERMITTED */
741
742 #ifdef _LP64
743 } else {
744 /* 2^32 <= a < 2^64 */
745 *encoded_len = 10;
746 encoded[0] = 0xff;
747 encoded[1] = 0xff;
748 #ifdef UNALIGNED_POINTERS_PERMITTED
749 llencoded_ptr = (uint64_t *)(void *)&encoded[2];
750 *llencoded_ptr = htonl(auth_data_len);
751 #else
752 encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
753 encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
754 encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
755 encoded[5] = (auth_data_len & 0xff00000000) >> 32;
756 encoded[6] = (auth_data_len & 0xff000000) >> 24;
757 encoded[7] = (auth_data_len & 0xff0000) >> 16;
758 encoded[8] = (auth_data_len & 0xff00) >> 8;
759 encoded[9] = auth_data_len & 0xff;
760 #endif /* UNALIGNED_POINTERS_PERMITTED */
761 #endif /* _LP64 */
762 }
763 }
764
765 /*
766 * The following function should be call at encrypt or decrypt init time
767 * for AES CCM mode.
768 */
769 int
ccm_init(ccm_ctx_t * ctx,unsigned char * nonce,size_t nonce_len,unsigned char * auth_data,size_t auth_data_len,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))770 ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
771 unsigned char *auth_data, size_t auth_data_len, size_t block_size,
772 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
773 void (*xor_block)(uint8_t *, uint8_t *))
774 {
775 uint8_t *mac_buf, *datap, *ivp, *authp;
776 size_t remainder, processed;
777 uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
778 size_t encoded_a_len = 0;
779
780 mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);
781
782 /*
783 * Format the 1st block for CBC-MAC and construct the
784 * 1st counter block.
785 *
786 * aes_ctx->ccm_iv is used for storing the counter block
787 * mac_buf will store b0 at this time.
788 */
789 ccm_format_initial_blocks(nonce, nonce_len,
790 auth_data_len, mac_buf, ctx);
791
792 /* The IV for CBC MAC for AES CCM mode is always zero */
793 ivp = (uint8_t *)ctx->ccm_tmp;
794 bzero(ivp, block_size);
795
796 xor_block(ivp, mac_buf);
797
798 /* encrypt the nonce */
799 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
800
801 /* take care of the associated data, if any */
802 if (auth_data_len == 0) {
803 return (CRYPTO_SUCCESS);
804 }
805
806 encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);
807
808 remainder = auth_data_len;
809
810 /* 1st block: it contains encoded associated data, and some data */
811 authp = (uint8_t *)ctx->ccm_tmp;
812 bzero(authp, block_size);
813 bcopy(encoded_a, authp, encoded_a_len);
814 processed = block_size - encoded_a_len;
815 if (processed > auth_data_len) {
816 /* in case auth_data is very small */
817 processed = auth_data_len;
818 }
819 bcopy(auth_data, authp+encoded_a_len, processed);
820 /* xor with previous buffer */
821 xor_block(authp, mac_buf);
822 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
823 remainder -= processed;
824 if (remainder == 0) {
825 /* a small amount of associated data, it's all done now */
826 return (CRYPTO_SUCCESS);
827 }
828
829 do {
830 if (remainder < block_size) {
831 /*
832 * There's not a block full of data, pad rest of
833 * buffer with zero
834 */
835 bzero(authp, block_size);
836 bcopy(&(auth_data[processed]), authp, remainder);
837 datap = (uint8_t *)authp;
838 remainder = 0;
839 } else {
840 datap = (uint8_t *)(&(auth_data[processed]));
841 processed += block_size;
842 remainder -= block_size;
843 }
844
845 xor_block(datap, mac_buf);
846 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
847
848 } while (remainder > 0);
849
850 return (CRYPTO_SUCCESS);
851 }
852
853 int
ccm_init_ctx(ccm_ctx_t * ccm_ctx,char * param,int kmflag,boolean_t is_encrypt_init,size_t block_size,int (* encrypt_block)(const void *,const uint8_t *,uint8_t *),void (* xor_block)(uint8_t *,uint8_t *))854 ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
855 boolean_t is_encrypt_init, size_t block_size,
856 int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
857 void (*xor_block)(uint8_t *, uint8_t *))
858 {
859 int rv;
860 CK_AES_CCM_PARAMS *ccm_param;
861
862 if (param != NULL) {
863 ccm_param = (CK_AES_CCM_PARAMS *)(void *)param;
864
865 if ((rv = ccm_validate_args(ccm_param,
866 is_encrypt_init)) != 0) {
867 return (rv);
868 }
869
870 ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
871 if (is_encrypt_init) {
872 ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
873 } else {
874 ccm_ctx->ccm_data_len =
875 ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
876 ccm_ctx->ccm_processed_mac_len = 0;
877 }
878 ccm_ctx->ccm_processed_data_len = 0;
879
880 ccm_ctx->ccm_flags |= CCM_MODE;
881 } else {
882 rv = CRYPTO_MECHANISM_PARAM_INVALID;
883 goto out;
884 }
885
886 if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
887 ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
888 encrypt_block, xor_block) != 0) {
889 rv = CRYPTO_MECHANISM_PARAM_INVALID;
890 goto out;
891 }
892 if (!is_encrypt_init) {
893 /* allocate buffer for storing decrypted plaintext */
894 #ifdef _KERNEL
895 ccm_ctx->ccm_pt_buf = kmem_alloc(ccm_ctx->ccm_data_len,
896 kmflag);
897 #else
898 ccm_ctx->ccm_pt_buf = malloc(ccm_ctx->ccm_data_len);
899 #endif
900 if (ccm_ctx->ccm_pt_buf == NULL) {
901 rv = CRYPTO_HOST_MEMORY;
902 }
903 }
904 out:
905 return (rv);
906 }
907
908 void *
ccm_alloc_ctx(int kmflag)909 ccm_alloc_ctx(int kmflag)
910 {
911 ccm_ctx_t *ccm_ctx;
912
913 #ifdef _KERNEL
914 if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
915 #else
916 if ((ccm_ctx = calloc(1, sizeof (ccm_ctx_t))) == NULL)
917 #endif
918 return (NULL);
919
920 ccm_ctx->ccm_flags = CCM_MODE;
921 return (ccm_ctx);
922 }
923