xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SplitKit.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetOpcodes.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/VirtRegMap.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/Support/Allocator.h"
34 #include "llvm/Support/BlockFrequency.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <iterator>
41 #include <limits>
42 #include <tuple>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "regalloc"
47 
48 static cl::opt<bool>
49     EnableLoopIVHeuristic("enable-split-loopiv-heuristic",
50                           cl::desc("Enable loop iv regalloc heuristic"),
51                           cl::init(true));
52 
53 STATISTIC(NumFinished, "Number of splits finished");
54 STATISTIC(NumSimple,   "Number of splits that were simple");
55 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
56 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
57 
58 //===----------------------------------------------------------------------===//
59 //                     Last Insert Point Analysis
60 //===----------------------------------------------------------------------===//
61 
InsertPointAnalysis(const LiveIntervals & lis,unsigned BBNum)62 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
63                                          unsigned BBNum)
64     : LIS(lis), LastInsertPoint(BBNum) {}
65 
66 SlotIndex
computeLastInsertPoint(const LiveInterval & CurLI,const MachineBasicBlock & MBB)67 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
68                                             const MachineBasicBlock &MBB) {
69   unsigned Num = MBB.getNumber();
70   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
71   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
72 
73   SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
74   bool EHPadSuccessor = false;
75   for (const MachineBasicBlock *SMBB : MBB.successors()) {
76     if (SMBB->isEHPad()) {
77       ExceptionalSuccessors.push_back(SMBB);
78       EHPadSuccessor = true;
79     } else if (SMBB->isInlineAsmBrIndirectTarget())
80       ExceptionalSuccessors.push_back(SMBB);
81   }
82 
83   // Compute insert points on the first call. The pair is independent of the
84   // current live interval.
85   if (!LIP.first.isValid()) {
86     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
87     if (FirstTerm == MBB.end())
88       LIP.first = MBBEnd;
89     else
90       LIP.first = LIS.getInstructionIndex(*FirstTerm);
91 
92     // If there is a landing pad or inlineasm_br successor, also find the
93     // instruction. If there is no such instruction, we don't need to do
94     // anything special.  We assume there cannot be multiple instructions that
95     // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
96     // assume that if there are any, they will be after any other call
97     // instructions in the block.
98     if (ExceptionalSuccessors.empty())
99       return LIP.first;
100     for (const MachineInstr &MI : llvm::reverse(MBB)) {
101       if ((EHPadSuccessor && MI.isCall()) ||
102           MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
103         LIP.second = LIS.getInstructionIndex(MI);
104         break;
105       }
106     }
107   }
108 
109   // If CurLI is live into a landing pad successor, move the last insert point
110   // back to the call that may throw.
111   if (!LIP.second)
112     return LIP.first;
113 
114   if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
115         return LIS.isLiveInToMBB(CurLI, EHPad);
116       }))
117     return LIP.first;
118 
119   // Find the value leaving MBB.
120   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
121   if (!VNI)
122     return LIP.first;
123 
124   // The def of statepoint instruction is a gc relocation and it should be alive
125   // in landing pad. So we cannot split interval after statepoint instruction.
126   if (SlotIndex::isSameInstr(VNI->def, LIP.second))
127     if (auto *I = LIS.getInstructionFromIndex(LIP.second))
128       if (I->getOpcode() == TargetOpcode::STATEPOINT)
129         return LIP.second;
130 
131   // If the value leaving MBB was defined after the call in MBB, it can't
132   // really be live-in to the landing pad.  This can happen if the landing pad
133   // has a PHI, and this register is undef on the exceptional edge.
134   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
135     return LIP.first;
136 
137   // Value is properly live-in to the landing pad.
138   // Only allow inserts before the call.
139   return LIP.second;
140 }
141 
142 MachineBasicBlock::iterator
getLastInsertPointIter(const LiveInterval & CurLI,MachineBasicBlock & MBB)143 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
144                                             MachineBasicBlock &MBB) {
145   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
146   if (LIP == LIS.getMBBEndIdx(&MBB))
147     return MBB.end();
148   return LIS.getInstructionFromIndex(LIP);
149 }
150 
151 //===----------------------------------------------------------------------===//
152 //                                 Split Analysis
153 //===----------------------------------------------------------------------===//
154 
SplitAnalysis(const VirtRegMap & vrm,const LiveIntervals & lis,const MachineLoopInfo & mli)155 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
156                              const MachineLoopInfo &mli)
157     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
158       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
159 
clear()160 void SplitAnalysis::clear() {
161   UseSlots.clear();
162   UseBlocks.clear();
163   ThroughBlocks.clear();
164   CurLI = nullptr;
165 }
166 
167 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
analyzeUses()168 void SplitAnalysis::analyzeUses() {
169   assert(UseSlots.empty() && "Call clear first");
170 
171   // First get all the defs from the interval values. This provides the correct
172   // slots for early clobbers.
173   for (const VNInfo *VNI : CurLI->valnos)
174     if (!VNI->isPHIDef() && !VNI->isUnused())
175       UseSlots.push_back(VNI->def);
176 
177   // Get use slots form the use-def chain.
178   const MachineRegisterInfo &MRI = MF.getRegInfo();
179   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
180     if (!MO.isUndef())
181       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
182 
183   array_pod_sort(UseSlots.begin(), UseSlots.end());
184 
185   // Remove duplicates, keeping the smaller slot for each instruction.
186   // That is what we want for early clobbers.
187   UseSlots.erase(llvm::unique(UseSlots, SlotIndex::isSameInstr),
188                  UseSlots.end());
189 
190   // Compute per-live block info.
191   calcLiveBlockInfo();
192 
193   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
194                     << UseBlocks.size() << " blocks, through "
195                     << NumThroughBlocks << " blocks.\n");
196 }
197 
198 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
199 /// where CurLI is live.
calcLiveBlockInfo()200 void SplitAnalysis::calcLiveBlockInfo() {
201   ThroughBlocks.resize(MF.getNumBlockIDs());
202   NumThroughBlocks = NumGapBlocks = 0;
203   if (CurLI->empty())
204     return;
205 
206   LiveInterval::const_iterator LVI = CurLI->begin();
207   LiveInterval::const_iterator LVE = CurLI->end();
208 
209   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
210   UseI = UseSlots.begin();
211   UseE = UseSlots.end();
212 
213   // Loop over basic blocks where CurLI is live.
214   MachineFunction::iterator MFI =
215       LIS.getMBBFromIndex(LVI->start)->getIterator();
216   while (true) {
217     BlockInfo BI;
218     BI.MBB = &*MFI;
219     SlotIndex Start, Stop;
220     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
221 
222     // If the block contains no uses, the range must be live through. At one
223     // point, RegisterCoalescer could create dangling ranges that ended
224     // mid-block.
225     if (UseI == UseE || *UseI >= Stop) {
226       ++NumThroughBlocks;
227       ThroughBlocks.set(BI.MBB->getNumber());
228       // The range shouldn't end mid-block if there are no uses. This shouldn't
229       // happen.
230       assert(LVI->end >= Stop && "range ends mid block with no uses");
231     } else {
232       // This block has uses. Find the first and last uses in the block.
233       BI.FirstInstr = *UseI;
234       assert(BI.FirstInstr >= Start);
235       do ++UseI;
236       while (UseI != UseE && *UseI < Stop);
237       BI.LastInstr = UseI[-1];
238       assert(BI.LastInstr < Stop);
239 
240       // LVI is the first live segment overlapping MBB.
241       BI.LiveIn = LVI->start <= Start;
242 
243       // When not live in, the first use should be a def.
244       if (!BI.LiveIn) {
245         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
246         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
247         BI.FirstDef = BI.FirstInstr;
248       }
249 
250       // Look for gaps in the live range.
251       BI.LiveOut = true;
252       while (LVI->end < Stop) {
253         SlotIndex LastStop = LVI->end;
254         if (++LVI == LVE || LVI->start >= Stop) {
255           BI.LiveOut = false;
256           BI.LastInstr = LastStop;
257           break;
258         }
259 
260         if (LastStop < LVI->start) {
261           // There is a gap in the live range. Create duplicate entries for the
262           // live-in snippet and the live-out snippet.
263           ++NumGapBlocks;
264 
265           // Push the Live-in part.
266           BI.LiveOut = false;
267           UseBlocks.push_back(BI);
268           UseBlocks.back().LastInstr = LastStop;
269 
270           // Set up BI for the live-out part.
271           BI.LiveIn = false;
272           BI.LiveOut = true;
273           BI.FirstInstr = BI.FirstDef = LVI->start;
274         }
275 
276         // A Segment that starts in the middle of the block must be a def.
277         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
278         if (!BI.FirstDef)
279           BI.FirstDef = LVI->start;
280       }
281 
282       UseBlocks.push_back(BI);
283 
284       // LVI is now at LVE or LVI->end >= Stop.
285       if (LVI == LVE)
286         break;
287     }
288 
289     // Live segment ends exactly at Stop. Move to the next segment.
290     if (LVI->end == Stop && ++LVI == LVE)
291       break;
292 
293     // Pick the next basic block.
294     if (LVI->start < Stop)
295       ++MFI;
296     else
297       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
298   }
299 
300   LooksLikeLoopIV = EnableLoopIVHeuristic && UseBlocks.size() == 2 &&
301                     any_of(UseBlocks, [this](BlockInfo &BI) {
302                       MachineLoop *L = Loops.getLoopFor(BI.MBB);
303                       return BI.LiveIn && BI.LiveOut && BI.FirstDef && L &&
304                              L->isLoopLatch(BI.MBB);
305                     });
306 
307   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
308 }
309 
countLiveBlocks(const LiveInterval * cli) const310 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
311   if (cli->empty())
312     return 0;
313   LiveInterval *li = const_cast<LiveInterval*>(cli);
314   LiveInterval::iterator LVI = li->begin();
315   LiveInterval::iterator LVE = li->end();
316   unsigned Count = 0;
317 
318   // Loop over basic blocks where li is live.
319   MachineFunction::const_iterator MFI =
320       LIS.getMBBFromIndex(LVI->start)->getIterator();
321   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
322   while (true) {
323     ++Count;
324     LVI = li->advanceTo(LVI, Stop);
325     if (LVI == LVE)
326       return Count;
327     do {
328       ++MFI;
329       Stop = LIS.getMBBEndIdx(&*MFI);
330     } while (Stop <= LVI->start);
331   }
332 }
333 
isOriginalEndpoint(SlotIndex Idx) const334 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
335   Register OrigReg = VRM.getOriginal(CurLI->reg());
336   const LiveInterval &Orig = LIS.getInterval(OrigReg);
337   assert(!Orig.empty() && "Splitting empty interval?");
338   LiveInterval::const_iterator I = Orig.find(Idx);
339 
340   // Range containing Idx should begin at Idx.
341   if (I != Orig.end() && I->start <= Idx)
342     return I->start == Idx;
343 
344   // Range does not contain Idx, previous must end at Idx.
345   return I != Orig.begin() && (--I)->end == Idx;
346 }
347 
analyze(const LiveInterval * li)348 void SplitAnalysis::analyze(const LiveInterval *li) {
349   clear();
350   CurLI = li;
351   analyzeUses();
352 }
353 
354 //===----------------------------------------------------------------------===//
355 //                               Split Editor
356 //===----------------------------------------------------------------------===//
357 
358 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor(SplitAnalysis & SA,LiveIntervals & LIS,VirtRegMap & VRM,MachineDominatorTree & MDT,MachineBlockFrequencyInfo & MBFI,VirtRegAuxInfo & VRAI)359 SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM,
360                          MachineDominatorTree &MDT,
361                          MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
362     : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()),
363       MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
364       TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
365       MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
366 
reset(LiveRangeEdit & LRE,ComplementSpillMode SM)367 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
368   Edit = &LRE;
369   SpillMode = SM;
370   OpenIdx = 0;
371   RegAssign.clear();
372   Values.clear();
373 
374   // Reset the LiveIntervalCalc instances needed for this spill mode.
375   LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
376                   &LIS.getVNInfoAllocator());
377   if (SpillMode)
378     LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
379                     &LIS.getVNInfoAllocator());
380 
381   Edit->anyRematerializable();
382 }
383 
384 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const385 LLVM_DUMP_METHOD void SplitEditor::dump() const {
386   if (RegAssign.empty()) {
387     dbgs() << " empty\n";
388     return;
389   }
390 
391   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
392     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
393   dbgs() << '\n';
394 }
395 #endif
396 
397 /// Find a subrange corresponding to the exact lane mask @p LM in the live
398 /// interval @p LI. The interval @p LI is assumed to contain such a subrange.
399 /// This function is used to find corresponding subranges between the
400 /// original interval and the new intervals.
getSubrangeImpl(LaneBitmask LM,T & LI)401 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) {
402   for (auto &S : LI.subranges())
403     if (S.LaneMask == LM)
404       return S;
405   llvm_unreachable("SubRange for this mask not found");
406 }
407 
getSubRangeForMaskExact(LaneBitmask LM,LiveInterval & LI)408 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
409                                                 LiveInterval &LI) {
410   return getSubrangeImpl(LM, LI);
411 }
412 
getSubRangeForMaskExact(LaneBitmask LM,const LiveInterval & LI)413 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
414                                                       const LiveInterval &LI) {
415   return getSubrangeImpl(LM, LI);
416 }
417 
418 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
419 /// in the live interval @p LI. The interval @p LI is assumed to contain such
420 /// a subrange.  This function is used to find corresponding subranges between
421 /// the original interval and the new intervals.
getSubRangeForMask(LaneBitmask LM,const LiveInterval & LI)422 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM,
423                                                  const LiveInterval &LI) {
424   for (const LiveInterval::SubRange &S : LI.subranges())
425     if ((S.LaneMask & LM) == LM)
426       return S;
427   llvm_unreachable("SubRange for this mask not found");
428 }
429 
addDeadDef(LiveInterval & LI,VNInfo * VNI,bool Original)430 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
431   if (!LI.hasSubRanges()) {
432     LI.createDeadDef(VNI);
433     return;
434   }
435 
436   SlotIndex Def = VNI->def;
437   if (Original) {
438     // If we are transferring a def from the original interval, make sure
439     // to only update the subranges for which the original subranges had
440     // a def at this location.
441     for (LiveInterval::SubRange &S : LI.subranges()) {
442       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
443       VNInfo *PV = PS.getVNInfoAt(Def);
444       if (PV != nullptr && PV->def == Def)
445         S.createDeadDef(Def, LIS.getVNInfoAllocator());
446     }
447   } else {
448     // This is a new def: either from rematerialization, or from an inserted
449     // copy. Since rematerialization can regenerate a definition of a sub-
450     // register, we need to check which subranges need to be updated.
451     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
452     assert(DefMI != nullptr);
453     LaneBitmask LM;
454     for (const MachineOperand &DefOp : DefMI->defs()) {
455       Register R = DefOp.getReg();
456       if (R != LI.reg())
457         continue;
458       if (unsigned SR = DefOp.getSubReg())
459         LM |= TRI.getSubRegIndexLaneMask(SR);
460       else {
461         LM = MRI.getMaxLaneMaskForVReg(R);
462         break;
463       }
464     }
465     for (LiveInterval::SubRange &S : LI.subranges())
466       if ((S.LaneMask & LM).any())
467         S.createDeadDef(Def, LIS.getVNInfoAllocator());
468   }
469 }
470 
defValue(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex Idx,bool Original)471 VNInfo *SplitEditor::defValue(unsigned RegIdx,
472                               const VNInfo *ParentVNI,
473                               SlotIndex Idx,
474                               bool Original) {
475   assert(ParentVNI && "Mapping  NULL value");
476   assert(Idx.isValid() && "Invalid SlotIndex");
477   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
478   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
479 
480   // Create a new value.
481   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
482 
483   bool Force = LI->hasSubRanges();
484   ValueForcePair FP(Force ? nullptr : VNI, Force);
485   // Use insert for lookup, so we can add missing values with a second lookup.
486   std::pair<ValueMap::iterator, bool> InsP =
487     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
488 
489   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
490   // forced. Keep it as a simple def without any liveness.
491   if (!Force && InsP.second)
492     return VNI;
493 
494   // If the previous value was a simple mapping, add liveness for it now.
495   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
496     addDeadDef(*LI, OldVNI, Original);
497 
498     // No longer a simple mapping.  Switch to a complex mapping. If the
499     // interval has subranges, make it a forced mapping.
500     InsP.first->second = ValueForcePair(nullptr, Force);
501   }
502 
503   // This is a complex mapping, add liveness for VNI
504   addDeadDef(*LI, VNI, Original);
505   return VNI;
506 }
507 
forceRecompute(unsigned RegIdx,const VNInfo & ParentVNI)508 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
509   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
510   VNInfo *VNI = VFP.getPointer();
511 
512   // ParentVNI was either unmapped or already complex mapped. Either way, just
513   // set the force bit.
514   if (!VNI) {
515     VFP.setInt(true);
516     return;
517   }
518 
519   // This was previously a single mapping. Make sure the old def is represented
520   // by a trivial live range.
521   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
522 
523   // Mark as complex mapped, forced.
524   VFP = ValueForcePair(nullptr, true);
525 }
526 
buildSingleSubRegCopy(Register FromReg,Register ToReg,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,unsigned SubIdx,LiveInterval & DestLI,bool Late,SlotIndex Def,const MCInstrDesc & Desc)527 SlotIndex SplitEditor::buildSingleSubRegCopy(
528     Register FromReg, Register ToReg, MachineBasicBlock &MBB,
529     MachineBasicBlock::iterator InsertBefore, unsigned SubIdx,
530     LiveInterval &DestLI, bool Late, SlotIndex Def, const MCInstrDesc &Desc) {
531   bool FirstCopy = !Def.isValid();
532   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
533       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
534               | getInternalReadRegState(!FirstCopy), SubIdx)
535       .addReg(FromReg, 0, SubIdx);
536 
537   SlotIndexes &Indexes = *LIS.getSlotIndexes();
538   if (FirstCopy) {
539     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
540   } else {
541     CopyMI->bundleWithPred();
542   }
543   return Def;
544 }
545 
buildCopy(Register FromReg,Register ToReg,LaneBitmask LaneMask,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,bool Late,unsigned RegIdx)546 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
547     LaneBitmask LaneMask, MachineBasicBlock &MBB,
548     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
549   const MCInstrDesc &Desc =
550       TII.get(TII.getLiveRangeSplitOpcode(FromReg, *MBB.getParent()));
551   SlotIndexes &Indexes = *LIS.getSlotIndexes();
552   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
553     // The full vreg is copied.
554     MachineInstr *CopyMI =
555         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
556     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
557   }
558 
559   // Only a subset of lanes needs to be copied. The following is a simple
560   // heuristic to construct a sequence of COPYs. We could add a target
561   // specific callback if this turns out to be suboptimal.
562   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
563 
564   // First pass: Try to find a perfectly matching subregister index. If none
565   // exists find the one covering the most lanemask bits.
566   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
567   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
568 
569   SmallVector<unsigned, 8> SubIndexes;
570 
571   // Abort if we cannot possibly implement the COPY with the given indexes.
572   if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
573     report_fatal_error("Impossible to implement partial COPY");
574 
575   SlotIndex Def;
576   for (unsigned BestIdx : SubIndexes) {
577     Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
578                                 DestLI, Late, Def, Desc);
579   }
580 
581   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
582   DestLI.refineSubRanges(
583       Allocator, LaneMask,
584       [Def, &Allocator](LiveInterval::SubRange &SR) {
585         SR.createDeadDef(Def, Allocator);
586       },
587       Indexes, TRI);
588 
589   return Def;
590 }
591 
defFromParent(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex UseIdx,MachineBasicBlock & MBB,MachineBasicBlock::iterator I)592 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI,
593                                    SlotIndex UseIdx, MachineBasicBlock &MBB,
594                                    MachineBasicBlock::iterator I) {
595   SlotIndex Def;
596   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
597 
598   // We may be trying to avoid interference that ends at a deleted instruction,
599   // so always begin RegIdx 0 early and all others late.
600   bool Late = RegIdx != 0;
601 
602   // Attempt cheap-as-a-copy rematerialization.
603   Register Original = VRM.getOriginal(Edit->get(RegIdx));
604   LiveInterval &OrigLI = LIS.getInterval(Original);
605   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
606 
607   Register Reg = LI->reg();
608   bool DidRemat = false;
609   if (OrigVNI) {
610     LiveRangeEdit::Remat RM(ParentVNI);
611     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
612     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
613       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
614       ++NumRemats;
615       DidRemat = true;
616     }
617   }
618   if (!DidRemat) {
619     LaneBitmask LaneMask;
620     if (OrigLI.hasSubRanges()) {
621       LaneMask = LaneBitmask::getNone();
622       for (LiveInterval::SubRange &S : OrigLI.subranges()) {
623         if (S.liveAt(UseIdx))
624           LaneMask |= S.LaneMask;
625       }
626     } else {
627       LaneMask = LaneBitmask::getAll();
628     }
629 
630     if (LaneMask.none()) {
631       const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
632       MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
633       SlotIndexes &Indexes = *LIS.getSlotIndexes();
634       Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
635     } else {
636       ++NumCopies;
637       Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
638     }
639   }
640 
641   // Define the value in Reg.
642   return defValue(RegIdx, ParentVNI, Def, false);
643 }
644 
645 /// Create a new virtual register and live interval.
openIntv()646 unsigned SplitEditor::openIntv() {
647   // Create the complement as index 0.
648   if (Edit->empty())
649     Edit->createEmptyInterval();
650 
651   // Create the open interval.
652   OpenIdx = Edit->size();
653   Edit->createEmptyInterval();
654   return OpenIdx;
655 }
656 
selectIntv(unsigned Idx)657 void SplitEditor::selectIntv(unsigned Idx) {
658   assert(Idx != 0 && "Cannot select the complement interval");
659   assert(Idx < Edit->size() && "Can only select previously opened interval");
660   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
661   OpenIdx = Idx;
662 }
663 
enterIntvBefore(SlotIndex Idx)664 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
665   assert(OpenIdx && "openIntv not called before enterIntvBefore");
666   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
667   Idx = Idx.getBaseIndex();
668   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
669   if (!ParentVNI) {
670     LLVM_DEBUG(dbgs() << ": not live\n");
671     return Idx;
672   }
673   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
674   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
675   assert(MI && "enterIntvBefore called with invalid index");
676 
677   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
678   return VNI->def;
679 }
680 
enterIntvAfter(SlotIndex Idx)681 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
682   assert(OpenIdx && "openIntv not called before enterIntvAfter");
683   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
684   Idx = Idx.getBoundaryIndex();
685   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
686   if (!ParentVNI) {
687     LLVM_DEBUG(dbgs() << ": not live\n");
688     return Idx;
689   }
690   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
691   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
692   assert(MI && "enterIntvAfter called with invalid index");
693 
694   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
695                               std::next(MachineBasicBlock::iterator(MI)));
696   return VNI->def;
697 }
698 
enterIntvAtEnd(MachineBasicBlock & MBB)699 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
700   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
701   SlotIndex End = LIS.getMBBEndIdx(&MBB);
702   SlotIndex Last = End.getPrevSlot();
703   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
704                     << Last);
705   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
706   if (!ParentVNI) {
707     LLVM_DEBUG(dbgs() << ": not live\n");
708     return End;
709   }
710   SlotIndex LSP = SA.getLastSplitPoint(&MBB);
711   if (LSP < Last) {
712     // It could be that the use after LSP is a def, and thus the ParentVNI
713     // just selected starts at that def.  For this case to exist, the def
714     // must be part of a tied def/use pair (as otherwise we'd have split
715     // distinct live ranges into individual live intervals), and thus we
716     // can insert the def into the VNI of the use and the tied def/use
717     // pair can live in the resulting interval.
718     Last = LSP;
719     ParentVNI = Edit->getParent().getVNInfoAt(Last);
720     if (!ParentVNI) {
721       // undef use --> undef tied def
722       LLVM_DEBUG(dbgs() << ": tied use not live\n");
723       return End;
724     }
725   }
726 
727   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
728   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
729                               SA.getLastSplitPointIter(&MBB));
730   RegAssign.insert(VNI->def, End, OpenIdx);
731   LLVM_DEBUG(dump());
732   return VNI->def;
733 }
734 
735 /// useIntv - indicate that all instructions in MBB should use OpenLI.
useIntv(const MachineBasicBlock & MBB)736 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
737   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
738 }
739 
useIntv(SlotIndex Start,SlotIndex End)740 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
741   assert(OpenIdx && "openIntv not called before useIntv");
742   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
743   RegAssign.insert(Start, End, OpenIdx);
744   LLVM_DEBUG(dump());
745 }
746 
leaveIntvAfter(SlotIndex Idx)747 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
748   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
749   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
750 
751   // The interval must be live beyond the instruction at Idx.
752   SlotIndex Boundary = Idx.getBoundaryIndex();
753   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
754   if (!ParentVNI) {
755     LLVM_DEBUG(dbgs() << ": not live\n");
756     return Boundary.getNextSlot();
757   }
758   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
759   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
760   assert(MI && "No instruction at index");
761 
762   // In spill mode, make live ranges as short as possible by inserting the copy
763   // before MI.  This is only possible if that instruction doesn't redefine the
764   // value.  The inserted COPY is not a kill, and we don't need to recompute
765   // the source live range.  The spiller also won't try to hoist this copy.
766   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
767       MI->readsVirtualRegister(Edit->getReg())) {
768     forceRecompute(0, *ParentVNI);
769     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
770     return Idx;
771   }
772 
773   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
774                               std::next(MachineBasicBlock::iterator(MI)));
775   return VNI->def;
776 }
777 
leaveIntvBefore(SlotIndex Idx)778 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
779   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
780   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
781 
782   // The interval must be live into the instruction at Idx.
783   Idx = Idx.getBaseIndex();
784   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
785   if (!ParentVNI) {
786     LLVM_DEBUG(dbgs() << ": not live\n");
787     return Idx.getNextSlot();
788   }
789   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
790 
791   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
792   assert(MI && "No instruction at index");
793   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
794   return VNI->def;
795 }
796 
leaveIntvAtTop(MachineBasicBlock & MBB)797 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
798   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
799   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
800   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
801                     << Start);
802 
803   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
804   if (!ParentVNI) {
805     LLVM_DEBUG(dbgs() << ": not live\n");
806     return Start;
807   }
808 
809   unsigned RegIdx = 0;
810   Register Reg = LIS.getInterval(Edit->get(RegIdx)).reg();
811   VNInfo *VNI = defFromParent(RegIdx, ParentVNI, Start, MBB,
812                               MBB.SkipPHIsLabelsAndDebug(MBB.begin(), Reg));
813   RegAssign.insert(Start, VNI->def, OpenIdx);
814   LLVM_DEBUG(dump());
815   return VNI->def;
816 }
817 
hasTiedUseOf(MachineInstr & MI,unsigned Reg)818 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
819   return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
820     return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
821   });
822 }
823 
overlapIntv(SlotIndex Start,SlotIndex End)824 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
825   assert(OpenIdx && "openIntv not called before overlapIntv");
826   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
827   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
828          "Parent changes value in extended range");
829   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
830          "Range cannot span basic blocks");
831 
832   // The complement interval will be extended as needed by LICalc.extend().
833   if (ParentVNI)
834     forceRecompute(0, *ParentVNI);
835 
836   // If the last use is tied to a def, we can't mark it as live for the
837   // interval which includes only the use.  That would cause the tied pair
838   // to end up in two different intervals.
839   if (auto *MI = LIS.getInstructionFromIndex(End))
840     if (hasTiedUseOf(*MI, Edit->getReg())) {
841       LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
842       return;
843     }
844 
845   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
846   RegAssign.insert(Start, End, OpenIdx);
847   LLVM_DEBUG(dump());
848 }
849 
850 //===----------------------------------------------------------------------===//
851 //                                  Spill modes
852 //===----------------------------------------------------------------------===//
853 
removeBackCopies(SmallVectorImpl<VNInfo * > & Copies)854 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
855   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
856   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
857   RegAssignMap::iterator AssignI;
858   AssignI.setMap(RegAssign);
859 
860   for (const VNInfo *C : Copies) {
861     SlotIndex Def = C->def;
862     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
863     assert(MI && "No instruction for back-copy");
864 
865     MachineBasicBlock *MBB = MI->getParent();
866     MachineBasicBlock::iterator MBBI(MI);
867     bool AtBegin;
868     do AtBegin = MBBI == MBB->begin();
869     while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
870 
871     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
872     LIS.removeVRegDefAt(*LI, Def);
873     LIS.RemoveMachineInstrFromMaps(*MI);
874     MI->eraseFromParent();
875 
876     // Adjust RegAssign if a register assignment is killed at Def. We want to
877     // avoid calculating the live range of the source register if possible.
878     AssignI.find(Def.getPrevSlot());
879     if (!AssignI.valid() || AssignI.start() >= Def)
880       continue;
881     // If MI doesn't kill the assigned register, just leave it.
882     if (AssignI.stop() != Def)
883       continue;
884     unsigned RegIdx = AssignI.value();
885     // We could hoist back-copy right after another back-copy. As a result
886     // MMBI points to copy instruction which is actually dead now.
887     // We cannot set its stop to MBBI which will be the same as start and
888     // interval does not support that.
889     SlotIndex Kill =
890         AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
891     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
892         Kill <= AssignI.start()) {
893       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
894                         << '\n');
895       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
896     } else {
897       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
898       AssignI.setStop(Kill);
899     }
900   }
901 }
902 
903 MachineBasicBlock*
findShallowDominator(MachineBasicBlock * MBB,MachineBasicBlock * DefMBB)904 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
905                                   MachineBasicBlock *DefMBB) {
906   if (MBB == DefMBB)
907     return MBB;
908   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
909 
910   const MachineLoopInfo &Loops = SA.Loops;
911   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
912   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
913 
914   // Best candidate so far.
915   MachineBasicBlock *BestMBB = MBB;
916   unsigned BestDepth = std::numeric_limits<unsigned>::max();
917 
918   while (true) {
919     const MachineLoop *Loop = Loops.getLoopFor(MBB);
920 
921     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
922     // higher frequency by definition.
923     if (!Loop) {
924       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
925                         << " dominates " << printMBBReference(*MBB)
926                         << " at depth 0\n");
927       return MBB;
928     }
929 
930     // We'll never be able to exit the DefLoop.
931     if (Loop == DefLoop) {
932       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
933                         << " dominates " << printMBBReference(*MBB)
934                         << " in the same loop\n");
935       return MBB;
936     }
937 
938     // Least busy dominator seen so far.
939     unsigned Depth = Loop->getLoopDepth();
940     if (Depth < BestDepth) {
941       BestMBB = MBB;
942       BestDepth = Depth;
943       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
944                         << " dominates " << printMBBReference(*MBB)
945                         << " at depth " << Depth << '\n');
946     }
947 
948     // Leave loop by going to the immediate dominator of the loop header.
949     // This is a bigger stride than simply walking up the dominator tree.
950     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
951 
952     // Too far up the dominator tree?
953     if (!IDom || !MDT.dominates(DefDomNode, IDom))
954       return BestMBB;
955 
956     MBB = IDom->getBlock();
957   }
958 }
959 
computeRedundantBackCopies(DenseSet<unsigned> & NotToHoistSet,SmallVectorImpl<VNInfo * > & BackCopies)960 void SplitEditor::computeRedundantBackCopies(
961     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
962   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
963   const LiveInterval *Parent = &Edit->getParent();
964   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
965   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
966 
967   // Aggregate VNIs having the same value as ParentVNI.
968   for (VNInfo *VNI : LI->valnos) {
969     if (VNI->isUnused())
970       continue;
971     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
972     EqualVNs[ParentVNI->id].insert(VNI);
973   }
974 
975   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
976   // redundant VNIs to BackCopies.
977   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
978     const VNInfo *ParentVNI = Parent->getValNumInfo(i);
979     if (!NotToHoistSet.count(ParentVNI->id))
980       continue;
981     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
982     SmallPtrSetIterator<VNInfo *> It2 = It1;
983     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
984       It2 = It1;
985       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
986         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
987           continue;
988 
989         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
990         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
991         if (MBB1 == MBB2) {
992           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
993         } else if (MDT.dominates(MBB1, MBB2)) {
994           DominatedVNIs.insert(*It2);
995         } else if (MDT.dominates(MBB2, MBB1)) {
996           DominatedVNIs.insert(*It1);
997         }
998       }
999     }
1000     if (!DominatedVNIs.empty()) {
1001       forceRecompute(0, *ParentVNI);
1002       append_range(BackCopies, DominatedVNIs);
1003       DominatedVNIs.clear();
1004     }
1005   }
1006 }
1007 
1008 /// For SM_Size mode, find a common dominator for all the back-copies for
1009 /// the same ParentVNI and hoist the backcopies to the dominator BB.
1010 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
1011 /// to do the hoisting, simply remove the dominated backcopies for the same
1012 /// ParentVNI.
hoistCopies()1013 void SplitEditor::hoistCopies() {
1014   // Get the complement interval, always RegIdx 0.
1015   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1016   const LiveInterval *Parent = &Edit->getParent();
1017 
1018   // Track the nearest common dominator for all back-copies for each ParentVNI,
1019   // indexed by ParentVNI->id.
1020   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1021   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1022   // The total cost of all the back-copies for each ParentVNI.
1023   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1024   // The ParentVNI->id set for which hoisting back-copies are not beneficial
1025   // for Speed.
1026   DenseSet<unsigned> NotToHoistSet;
1027 
1028   // Find the nearest common dominator for parent values with multiple
1029   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1030   for (VNInfo *VNI : LI->valnos) {
1031     if (VNI->isUnused())
1032       continue;
1033     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1034     assert(ParentVNI && "Parent not live at complement def");
1035 
1036     // Don't hoist remats.  The complement is probably going to disappear
1037     // completely anyway.
1038     if (Edit->didRematerialize(ParentVNI))
1039       continue;
1040 
1041     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1042 
1043     DomPair &Dom = NearestDom[ParentVNI->id];
1044 
1045     // Keep directly defined parent values.  This is either a PHI or an
1046     // instruction in the complement range.  All other copies of ParentVNI
1047     // should be eliminated.
1048     if (VNI->def == ParentVNI->def) {
1049       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1050       Dom = DomPair(ValMBB, VNI->def);
1051       continue;
1052     }
1053     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1054     // single back-copy.
1055     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1056       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1057       continue;
1058     }
1059 
1060     if (!Dom.first) {
1061       // First time we see ParentVNI.  VNI dominates itself.
1062       Dom = DomPair(ValMBB, VNI->def);
1063     } else if (Dom.first == ValMBB) {
1064       // Two defs in the same block.  Pick the earlier def.
1065       if (!Dom.second.isValid() || VNI->def < Dom.second)
1066         Dom.second = VNI->def;
1067     } else {
1068       // Different basic blocks. Check if one dominates.
1069       MachineBasicBlock *Near =
1070         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1071       if (Near == ValMBB)
1072         // Def ValMBB dominates.
1073         Dom = DomPair(ValMBB, VNI->def);
1074       else if (Near != Dom.first)
1075         // None dominate. Hoist to common dominator, need new def.
1076         Dom = DomPair(Near, SlotIndex());
1077       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1078     }
1079 
1080     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1081                       << VNI->def << " for parent " << ParentVNI->id << '@'
1082                       << ParentVNI->def << " hoist to "
1083                       << printMBBReference(*Dom.first) << ' ' << Dom.second
1084                       << '\n');
1085   }
1086 
1087   // Insert the hoisted copies.
1088   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1089     DomPair &Dom = NearestDom[i];
1090     if (!Dom.first || Dom.second.isValid())
1091       continue;
1092     // This value needs a hoisted copy inserted at the end of Dom.first.
1093     const VNInfo *ParentVNI = Parent->getValNumInfo(i);
1094     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1095     // Get a less loopy dominator than Dom.first.
1096     Dom.first = findShallowDominator(Dom.first, DefMBB);
1097     if (SpillMode == SM_Speed &&
1098         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1099       NotToHoistSet.insert(ParentVNI->id);
1100       continue;
1101     }
1102     SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1103     if (LSP <= ParentVNI->def) {
1104       NotToHoistSet.insert(ParentVNI->id);
1105       continue;
1106     }
1107     Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1108                                SA.getLastSplitPointIter(Dom.first))->def;
1109   }
1110 
1111   // Remove redundant back-copies that are now known to be dominated by another
1112   // def with the same value.
1113   SmallVector<VNInfo*, 8> BackCopies;
1114   for (VNInfo *VNI : LI->valnos) {
1115     if (VNI->isUnused())
1116       continue;
1117     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1118     const DomPair &Dom = NearestDom[ParentVNI->id];
1119     if (!Dom.first || Dom.second == VNI->def ||
1120         NotToHoistSet.count(ParentVNI->id))
1121       continue;
1122     BackCopies.push_back(VNI);
1123     forceRecompute(0, *ParentVNI);
1124   }
1125 
1126   // If it is not beneficial to hoist all the BackCopies, simply remove
1127   // redundant BackCopies in speed mode.
1128   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1129     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1130 
1131   removeBackCopies(BackCopies);
1132 }
1133 
1134 /// transferValues - Transfer all possible values to the new live ranges.
1135 /// Values that were rematerialized are left alone, they need LICalc.extend().
transferValues()1136 bool SplitEditor::transferValues() {
1137   bool Skipped = false;
1138   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1139   for (const LiveRange::Segment &S : Edit->getParent()) {
1140     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1141     VNInfo *ParentVNI = S.valno;
1142     // RegAssign has holes where RegIdx 0 should be used.
1143     SlotIndex Start = S.start;
1144     AssignI.advanceTo(Start);
1145     do {
1146       unsigned RegIdx;
1147       SlotIndex End = S.end;
1148       if (!AssignI.valid()) {
1149         RegIdx = 0;
1150       } else if (AssignI.start() <= Start) {
1151         RegIdx = AssignI.value();
1152         if (AssignI.stop() < End) {
1153           End = AssignI.stop();
1154           ++AssignI;
1155         }
1156       } else {
1157         RegIdx = 0;
1158         End = std::min(End, AssignI.start());
1159       }
1160 
1161       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1162       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1163                         << printReg(Edit->get(RegIdx)) << ')');
1164       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1165 
1166       // Check for a simply defined value that can be blitted directly.
1167       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1168       if (VNInfo *VNI = VFP.getPointer()) {
1169         LLVM_DEBUG(dbgs() << ':' << VNI->id);
1170         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1171         Start = End;
1172         continue;
1173       }
1174 
1175       // Skip values with forced recomputation.
1176       if (VFP.getInt()) {
1177         LLVM_DEBUG(dbgs() << "(recalc)");
1178         Skipped = true;
1179         Start = End;
1180         continue;
1181       }
1182 
1183       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1184 
1185       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1186       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1187       // LiveInBlocks.
1188       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1189       SlotIndex BlockStart, BlockEnd;
1190       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1191 
1192       // The first block may be live-in, or it may have its own def.
1193       if (Start != BlockStart) {
1194         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1195         assert(VNI && "Missing def for complex mapped value");
1196         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1197         // MBB has its own def. Is it also live-out?
1198         if (BlockEnd <= End)
1199           LIC.setLiveOutValue(&*MBB, VNI);
1200 
1201         // Skip to the next block for live-in.
1202         ++MBB;
1203         BlockStart = BlockEnd;
1204       }
1205 
1206       // Handle the live-in blocks covered by [Start;End).
1207       assert(Start <= BlockStart && "Expected live-in block");
1208       while (BlockStart < End) {
1209         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1210         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1211         if (BlockStart == ParentVNI->def) {
1212           // This block has the def of a parent PHI, so it isn't live-in.
1213           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1214           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1215           assert(VNI && "Missing def for complex mapped parent PHI");
1216           if (End >= BlockEnd)
1217             LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1218         } else {
1219           // This block needs a live-in value.  The last block covered may not
1220           // be live-out.
1221           if (End < BlockEnd)
1222             LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1223           else {
1224             // Live-through, and we don't know the value.
1225             LIC.addLiveInBlock(LI, MDT[&*MBB]);
1226             LIC.setLiveOutValue(&*MBB, nullptr);
1227           }
1228         }
1229         BlockStart = BlockEnd;
1230         ++MBB;
1231       }
1232       Start = End;
1233     } while (Start != S.end);
1234     LLVM_DEBUG(dbgs() << '\n');
1235   }
1236 
1237   LICalc[0].calculateValues();
1238   if (SpillMode)
1239     LICalc[1].calculateValues();
1240 
1241   return Skipped;
1242 }
1243 
removeDeadSegment(SlotIndex Def,LiveRange & LR)1244 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1245   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1246   if (Seg == nullptr)
1247     return true;
1248   if (Seg->end != Def.getDeadSlot())
1249     return false;
1250   // This is a dead PHI. Remove it.
1251   LR.removeSegment(*Seg, true);
1252   return true;
1253 }
1254 
extendPHIRange(MachineBasicBlock & B,LiveIntervalCalc & LIC,LiveRange & LR,LaneBitmask LM,ArrayRef<SlotIndex> Undefs)1255 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1256                                  LiveRange &LR, LaneBitmask LM,
1257                                  ArrayRef<SlotIndex> Undefs) {
1258   for (MachineBasicBlock *P : B.predecessors()) {
1259     SlotIndex End = LIS.getMBBEndIdx(P);
1260     SlotIndex LastUse = End.getPrevSlot();
1261     // The predecessor may not have a live-out value. That is OK, like an
1262     // undef PHI operand.
1263     const LiveInterval &PLI = Edit->getParent();
1264     // Need the cast because the inputs to ?: would otherwise be deemed
1265     // "incompatible": SubRange vs LiveInterval.
1266     const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1267                                      : static_cast<const LiveRange &>(PLI);
1268     if (PSR.liveAt(LastUse))
1269       LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1270   }
1271 }
1272 
extendPHIKillRanges()1273 void SplitEditor::extendPHIKillRanges() {
1274   // Extend live ranges to be live-out for successor PHI values.
1275 
1276   // Visit each PHI def slot in the parent live interval. If the def is dead,
1277   // remove it. Otherwise, extend the live interval to reach the end indexes
1278   // of all predecessor blocks.
1279 
1280   const LiveInterval &ParentLI = Edit->getParent();
1281   for (const VNInfo *V : ParentLI.valnos) {
1282     if (V->isUnused() || !V->isPHIDef())
1283       continue;
1284 
1285     unsigned RegIdx = RegAssign.lookup(V->def);
1286     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1287     LiveIntervalCalc &LIC = getLICalc(RegIdx);
1288     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1289     if (!removeDeadSegment(V->def, LI))
1290       extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1291   }
1292 
1293   SmallVector<SlotIndex, 4> Undefs;
1294   LiveIntervalCalc SubLIC;
1295 
1296   for (const LiveInterval::SubRange &PS : ParentLI.subranges()) {
1297     for (const VNInfo *V : PS.valnos) {
1298       if (V->isUnused() || !V->isPHIDef())
1299         continue;
1300       unsigned RegIdx = RegAssign.lookup(V->def);
1301       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1302       LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1303       if (removeDeadSegment(V->def, S))
1304         continue;
1305 
1306       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1307       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1308                    &LIS.getVNInfoAllocator());
1309       Undefs.clear();
1310       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1311       extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1312     }
1313   }
1314 }
1315 
1316 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
rewriteAssigned(bool ExtendRanges)1317 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1318   struct ExtPoint {
1319     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1320       : MO(O), RegIdx(R), Next(N) {}
1321 
1322     MachineOperand MO;
1323     unsigned RegIdx;
1324     SlotIndex Next;
1325   };
1326 
1327   SmallVector<ExtPoint,4> ExtPoints;
1328 
1329   for (MachineOperand &MO :
1330        llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1331     MachineInstr *MI = MO.getParent();
1332     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1333     if (MI->isDebugValue()) {
1334       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1335       MO.setReg(0);
1336       continue;
1337     }
1338 
1339     // <undef> operands don't really read the register, so it doesn't matter
1340     // which register we choose.  When the use operand is tied to a def, we must
1341     // use the same register as the def, so just do that always.
1342     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1343     if (MO.isDef() || MO.isUndef())
1344       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1345 
1346     // Rewrite to the mapped register at Idx.
1347     unsigned RegIdx = RegAssign.lookup(Idx);
1348     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1349     MO.setReg(LI.reg());
1350     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1351                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1352 
1353     // Extend liveness to Idx if the instruction reads reg.
1354     if (!ExtendRanges || MO.isUndef())
1355       continue;
1356 
1357     // Skip instructions that don't read Reg.
1358     if (MO.isDef()) {
1359       if (!MO.getSubReg() && !MO.isEarlyClobber())
1360         continue;
1361       // We may want to extend a live range for a partial redef, or for a use
1362       // tied to an early clobber.
1363       if (!Edit->getParent().liveAt(Idx.getPrevSlot()))
1364         continue;
1365     } else {
1366       assert(MO.isUse());
1367       bool IsEarlyClobber = false;
1368       if (MO.isTied()) {
1369         // We want to extend a live range into `e` slot rather than `r` slot if
1370         // tied-def is early clobber, because the `e` slot already contained
1371         // in the live range of early-clobber tied-def operand, give an example
1372         // here:
1373         //  0  %0 = ...
1374         // 16  early-clobber %0 = Op %0 (tied-def 0), ...
1375         // 32  ... = Op %0
1376         // Before extend:
1377         //   %0 = [0r, 0d) [16e, 32d)
1378         // The point we want to extend is 0d to 16e not 16r in this case, but if
1379         // we use 16r here we will extend nothing because that already contained
1380         // in [16e, 32d).
1381         unsigned OpIdx = MO.getOperandNo();
1382         unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx);
1383         const MachineOperand &DefOp = MI->getOperand(DefOpIdx);
1384         IsEarlyClobber = DefOp.isEarlyClobber();
1385       }
1386 
1387       Idx = Idx.getRegSlot(IsEarlyClobber);
1388     }
1389 
1390     SlotIndex Next = Idx;
1391     if (LI.hasSubRanges()) {
1392       // We have to delay extending subranges until we have seen all operands
1393       // defining the register. This is because a <def,read-undef> operand
1394       // will create an "undef" point, and we cannot extend any subranges
1395       // until all of them have been accounted for.
1396       if (MO.isUse())
1397         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1398     } else {
1399       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1400       LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1401     }
1402   }
1403 
1404   for (ExtPoint &EP : ExtPoints) {
1405     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1406     assert(LI.hasSubRanges());
1407 
1408     LiveIntervalCalc SubLIC;
1409     Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1410     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1411                               : MRI.getMaxLaneMaskForVReg(Reg);
1412     for (LiveInterval::SubRange &S : LI.subranges()) {
1413       if ((S.LaneMask & LM).none())
1414         continue;
1415       // The problem here can be that the new register may have been created
1416       // for a partially defined original register. For example:
1417       //   %0:subreg_hireg<def,read-undef> = ...
1418       //   ...
1419       //   %1 = COPY %0
1420       if (S.empty())
1421         continue;
1422       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1423                    &LIS.getVNInfoAllocator());
1424       SmallVector<SlotIndex, 4> Undefs;
1425       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1426       SubLIC.extend(S, EP.Next, 0, Undefs);
1427     }
1428   }
1429 
1430   for (Register R : *Edit) {
1431     LiveInterval &LI = LIS.getInterval(R);
1432     if (!LI.hasSubRanges())
1433       continue;
1434     LI.clear();
1435     LI.removeEmptySubRanges();
1436     LIS.constructMainRangeFromSubranges(LI);
1437   }
1438 }
1439 
deleteRematVictims()1440 void SplitEditor::deleteRematVictims() {
1441   SmallVector<MachineInstr*, 8> Dead;
1442   for (const Register &R : *Edit) {
1443     LiveInterval *LI = &LIS.getInterval(R);
1444     for (const LiveRange::Segment &S : LI->segments) {
1445       // Dead defs end at the dead slot.
1446       if (S.end != S.valno->def.getDeadSlot())
1447         continue;
1448       if (S.valno->isPHIDef())
1449         continue;
1450       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1451       assert(MI && "Missing instruction for dead def");
1452       MI->addRegisterDead(LI->reg(), &TRI);
1453 
1454       if (!MI->allDefsAreDead())
1455         continue;
1456 
1457       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1458       Dead.push_back(MI);
1459     }
1460   }
1461 
1462   if (Dead.empty())
1463     return;
1464 
1465   Edit->eliminateDeadDefs(Dead, std::nullopt);
1466 }
1467 
forceRecomputeVNI(const VNInfo & ParentVNI)1468 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1469   // Fast-path for common case.
1470   if (!ParentVNI.isPHIDef()) {
1471     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1472       forceRecompute(I, ParentVNI);
1473     return;
1474   }
1475 
1476   // Trace value through phis.
1477   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1478   SmallVector<const VNInfo *, 4> WorkList;
1479   Visited.insert(&ParentVNI);
1480   WorkList.push_back(&ParentVNI);
1481 
1482   const LiveInterval &ParentLI = Edit->getParent();
1483   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1484   do {
1485     const VNInfo &VNI = *WorkList.back();
1486     WorkList.pop_back();
1487     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1488       forceRecompute(I, VNI);
1489     if (!VNI.isPHIDef())
1490       continue;
1491 
1492     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1493     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1494       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1495       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1496       assert(PredVNI && "Value available in PhiVNI predecessor");
1497       if (Visited.insert(PredVNI).second)
1498         WorkList.push_back(PredVNI);
1499     }
1500   } while(!WorkList.empty());
1501 }
1502 
finish(SmallVectorImpl<unsigned> * LRMap)1503 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1504   ++NumFinished;
1505 
1506   // At this point, the live intervals in Edit contain VNInfos corresponding to
1507   // the inserted copies.
1508 
1509   // Add the original defs from the parent interval.
1510   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1511     if (ParentVNI->isUnused())
1512       continue;
1513     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1514     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1515 
1516     // Force rematted values to be recomputed everywhere.
1517     // The new live ranges may be truncated.
1518     if (Edit->didRematerialize(ParentVNI))
1519       forceRecomputeVNI(*ParentVNI);
1520   }
1521 
1522   // Hoist back-copies to the complement interval when in spill mode.
1523   switch (SpillMode) {
1524   case SM_Partition:
1525     // Leave all back-copies as is.
1526     break;
1527   case SM_Size:
1528   case SM_Speed:
1529     // hoistCopies will behave differently between size and speed.
1530     hoistCopies();
1531   }
1532 
1533   // Transfer the simply mapped values, check if any are skipped.
1534   bool Skipped = transferValues();
1535 
1536   // Rewrite virtual registers, possibly extending ranges.
1537   rewriteAssigned(Skipped);
1538 
1539   if (Skipped)
1540     extendPHIKillRanges();
1541   else
1542     ++NumSimple;
1543 
1544   // Delete defs that were rematted everywhere.
1545   if (Skipped)
1546     deleteRematVictims();
1547 
1548   // Get rid of unused values and set phi-kill flags.
1549   for (Register Reg : *Edit) {
1550     LiveInterval &LI = LIS.getInterval(Reg);
1551     LI.removeEmptySubRanges();
1552     LI.RenumberValues();
1553   }
1554 
1555   // Provide a reverse mapping from original indices to Edit ranges.
1556   if (LRMap) {
1557     auto Seq = llvm::seq<unsigned>(0, Edit->size());
1558     LRMap->assign(Seq.begin(), Seq.end());
1559   }
1560 
1561   // Now check if any registers were separated into multiple components.
1562   ConnectedVNInfoEqClasses ConEQ(LIS);
1563   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1564     // Don't use iterators, they are invalidated by create() below.
1565     Register VReg = Edit->get(i);
1566     LiveInterval &LI = LIS.getInterval(VReg);
1567     SmallVector<LiveInterval*, 8> SplitLIs;
1568     LIS.splitSeparateComponents(LI, SplitLIs);
1569     Register Original = VRM.getOriginal(VReg);
1570     for (LiveInterval *SplitLI : SplitLIs)
1571       VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1572 
1573     // The new intervals all map back to i.
1574     if (LRMap)
1575       LRMap->resize(Edit->size(), i);
1576   }
1577 
1578   // Calculate spill weight and allocation hints for new intervals.
1579   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1580 
1581   assert(!LRMap || LRMap->size() == Edit->size());
1582 }
1583 
1584 //===----------------------------------------------------------------------===//
1585 //                            Single Block Splitting
1586 //===----------------------------------------------------------------------===//
1587 
shouldSplitSingleBlock(const BlockInfo & BI,bool SingleInstrs) const1588 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1589                                            bool SingleInstrs) const {
1590   // Always split for multiple instructions.
1591   if (!BI.isOneInstr())
1592     return true;
1593   // Don't split for single instructions unless explicitly requested.
1594   if (!SingleInstrs)
1595     return false;
1596   // Splitting a live-through range always makes progress.
1597   if (BI.LiveIn && BI.LiveOut)
1598     return true;
1599   // No point in isolating a copy. It has no register class constraints.
1600   MachineInstr *MI = LIS.getInstructionFromIndex(BI.FirstInstr);
1601   bool copyLike = TII.isCopyInstr(*MI) || MI->isSubregToReg();
1602   if (copyLike)
1603     return false;
1604   // Finally, don't isolate an end point that was created by earlier splits.
1605   return isOriginalEndpoint(BI.FirstInstr);
1606 }
1607 
splitSingleBlock(const SplitAnalysis::BlockInfo & BI)1608 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1609   openIntv();
1610   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1611   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1612     LastSplitPoint));
1613   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1614     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1615   } else {
1616       // The last use is after the last valid split point.
1617     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1618     useIntv(SegStart, SegStop);
1619     overlapIntv(SegStop, BI.LastInstr);
1620   }
1621 }
1622 
1623 //===----------------------------------------------------------------------===//
1624 //                    Global Live Range Splitting Support
1625 //===----------------------------------------------------------------------===//
1626 
1627 // These methods support a method of global live range splitting that uses a
1628 // global algorithm to decide intervals for CFG edges. They will insert split
1629 // points and color intervals in basic blocks while avoiding interference.
1630 //
1631 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1632 // are on the stack.
1633 
splitLiveThroughBlock(unsigned MBBNum,unsigned IntvIn,SlotIndex LeaveBefore,unsigned IntvOut,SlotIndex EnterAfter)1634 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1635                                         unsigned IntvIn, SlotIndex LeaveBefore,
1636                                         unsigned IntvOut, SlotIndex EnterAfter){
1637   SlotIndex Start, Stop;
1638   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1639 
1640   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1641                     << ") intf " << LeaveBefore << '-' << EnterAfter
1642                     << ", live-through " << IntvIn << " -> " << IntvOut);
1643 
1644   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1645 
1646   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1647   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1648   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1649 
1650   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1651 
1652   if (!IntvOut) {
1653     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1654     //
1655     //        <<<<<<<<<    Possible LeaveBefore interference.
1656     //    |-----------|    Live through.
1657     //    -____________    Spill on entry.
1658     //
1659     selectIntv(IntvIn);
1660     SlotIndex Idx = leaveIntvAtTop(*MBB);
1661     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1662     (void)Idx;
1663     return;
1664   }
1665 
1666   if (!IntvIn) {
1667     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1668     //
1669     //    >>>>>>>          Possible EnterAfter interference.
1670     //    |-----------|    Live through.
1671     //    ___________--    Reload on exit.
1672     //
1673     selectIntv(IntvOut);
1674     SlotIndex Idx = enterIntvAtEnd(*MBB);
1675     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1676     (void)Idx;
1677     return;
1678   }
1679 
1680   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1681     LLVM_DEBUG(dbgs() << ", straight through.\n");
1682     //
1683     //    |-----------|    Live through.
1684     //    -------------    Straight through, same intv, no interference.
1685     //
1686     selectIntv(IntvOut);
1687     useIntv(Start, Stop);
1688     return;
1689   }
1690 
1691   // We cannot legally insert splits after LSP.
1692   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1693   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1694 
1695   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1696                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1697     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1698     //
1699     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1700     //    |-----------|    Live through.
1701     //    ------=======    Switch intervals between interference.
1702     //
1703     selectIntv(IntvOut);
1704     SlotIndex Idx;
1705     if (LeaveBefore && LeaveBefore < LSP) {
1706       Idx = enterIntvBefore(LeaveBefore);
1707       useIntv(Idx, Stop);
1708     } else {
1709       Idx = enterIntvAtEnd(*MBB);
1710     }
1711     selectIntv(IntvIn);
1712     useIntv(Start, Idx);
1713     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1714     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1715     return;
1716   }
1717 
1718   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1719   //
1720   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1721   //    |-----------|    Live through.
1722   //    ==---------==    Switch intervals before/after interference.
1723   //
1724   assert(LeaveBefore <= EnterAfter && "Missed case");
1725 
1726   selectIntv(IntvOut);
1727   SlotIndex Idx = enterIntvAfter(EnterAfter);
1728   useIntv(Idx, Stop);
1729   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1730 
1731   selectIntv(IntvIn);
1732   Idx = leaveIntvBefore(LeaveBefore);
1733   useIntv(Start, Idx);
1734   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1735 }
1736 
splitRegInBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvIn,SlotIndex LeaveBefore)1737 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1738                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1739   SlotIndex Start, Stop;
1740   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1741 
1742   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1743                     << Stop << "), uses " << BI.FirstInstr << '-'
1744                     << BI.LastInstr << ", reg-in " << IntvIn
1745                     << ", leave before " << LeaveBefore
1746                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1747 
1748   assert(IntvIn && "Must have register in");
1749   assert(BI.LiveIn && "Must be live-in");
1750   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1751 
1752   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1753     LLVM_DEBUG(dbgs() << " before interference.\n");
1754     //
1755     //               <<<    Interference after kill.
1756     //     |---o---x   |    Killed in block.
1757     //     =========        Use IntvIn everywhere.
1758     //
1759     selectIntv(IntvIn);
1760     useIntv(Start, BI.LastInstr);
1761     return;
1762   }
1763 
1764   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1765 
1766   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1767     //
1768     //               <<<    Possible interference after last use.
1769     //     |---o---o---|    Live-out on stack.
1770     //     =========____    Leave IntvIn after last use.
1771     //
1772     //                 <    Interference after last use.
1773     //     |---o---o--o|    Live-out on stack, late last use.
1774     //     ============     Copy to stack after LSP, overlap IntvIn.
1775     //            \_____    Stack interval is live-out.
1776     //
1777     if (BI.LastInstr < LSP) {
1778       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1779       selectIntv(IntvIn);
1780       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1781       useIntv(Start, Idx);
1782       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1783     } else {
1784       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1785       selectIntv(IntvIn);
1786       SlotIndex Idx = leaveIntvBefore(LSP);
1787       overlapIntv(Idx, BI.LastInstr);
1788       useIntv(Start, Idx);
1789       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1790     }
1791     return;
1792   }
1793 
1794   // The interference is overlapping somewhere we wanted to use IntvIn. That
1795   // means we need to create a local interval that can be allocated a
1796   // different register.
1797   unsigned LocalIntv = openIntv();
1798   (void)LocalIntv;
1799   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1800 
1801   if (!BI.LiveOut || BI.LastInstr < LSP) {
1802     //
1803     //           <<<<<<<    Interference overlapping uses.
1804     //     |---o---o---|    Live-out on stack.
1805     //     =====----____    Leave IntvIn before interference, then spill.
1806     //
1807     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1808     SlotIndex From = enterIntvBefore(LeaveBefore);
1809     useIntv(From, To);
1810     selectIntv(IntvIn);
1811     useIntv(Start, From);
1812     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1813     return;
1814   }
1815 
1816   //           <<<<<<<    Interference overlapping uses.
1817   //     |---o---o--o|    Live-out on stack, late last use.
1818   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1819   //            \_____    Stack interval is live-out.
1820   //
1821   SlotIndex To = leaveIntvBefore(LSP);
1822   overlapIntv(To, BI.LastInstr);
1823   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1824   useIntv(From, To);
1825   selectIntv(IntvIn);
1826   useIntv(Start, From);
1827   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1828 }
1829 
splitRegOutBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvOut,SlotIndex EnterAfter)1830 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1831                                    unsigned IntvOut, SlotIndex EnterAfter) {
1832   SlotIndex Start, Stop;
1833   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1834 
1835   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1836                     << Stop << "), uses " << BI.FirstInstr << '-'
1837                     << BI.LastInstr << ", reg-out " << IntvOut
1838                     << ", enter after " << EnterAfter
1839                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1840 
1841   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1842 
1843   assert(IntvOut && "Must have register out");
1844   assert(BI.LiveOut && "Must be live-out");
1845   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1846 
1847   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1848     LLVM_DEBUG(dbgs() << " after interference.\n");
1849     //
1850     //    >>>>             Interference before def.
1851     //    |   o---o---|    Defined in block.
1852     //        =========    Use IntvOut everywhere.
1853     //
1854     selectIntv(IntvOut);
1855     useIntv(BI.FirstInstr, Stop);
1856     return;
1857   }
1858 
1859   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1860     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1861     //
1862     //    >>>>             Interference before def.
1863     //    |---o---o---|    Live-through, stack-in.
1864     //    ____=========    Enter IntvOut before first use.
1865     //
1866     selectIntv(IntvOut);
1867     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1868     useIntv(Idx, Stop);
1869     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1870     return;
1871   }
1872 
1873   // The interference is overlapping somewhere we wanted to use IntvOut. That
1874   // means we need to create a local interval that can be allocated a
1875   // different register.
1876   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1877   //
1878   //    >>>>>>>          Interference overlapping uses.
1879   //    |---o---o---|    Live-through, stack-in.
1880   //    ____---======    Create local interval for interference range.
1881   //
1882   selectIntv(IntvOut);
1883   SlotIndex Idx = enterIntvAfter(EnterAfter);
1884   useIntv(Idx, Stop);
1885   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1886 
1887   openIntv();
1888   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1889   useIntv(From, Idx);
1890 }
1891 
print(raw_ostream & OS) const1892 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1893   OS << "{" << printMBBReference(*MBB) << ", "
1894      << "uses " << FirstInstr << " to " << LastInstr << ", "
1895      << "1st def " << FirstDef << ", "
1896      << (LiveIn ? "live in" : "dead in") << ", "
1897      << (LiveOut ? "live out" : "dead out") << "}";
1898 }
1899 
dump() const1900 void SplitAnalysis::BlockInfo::dump() const {
1901   print(dbgs());
1902   dbgs() << "\n";
1903 }
1904