xref: /freebsd/sys/kern/vfs_cache.c (revision 6567623f831daaffa67777d17780e8f424c1bb01)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include "opt_ddb.h"
36 #include "opt_ktrace.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/capsicum.h>
41 #include <sys/counter.h>
42 #include <sys/filedesc.h>
43 #include <sys/fnv_hash.h>
44 #include <sys/inotify.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/fcntl.h>
50 #include <sys/jail.h>
51 #include <sys/mount.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/seqc.h>
55 #include <sys/sdt.h>
56 #include <sys/smr.h>
57 #include <sys/smp.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vnode.h>
62 #include <ck_queue.h>
63 #ifdef KTRACE
64 #include <sys/ktrace.h>
65 #endif
66 #ifdef INVARIANTS
67 #include <machine/_inttypes.h>
68 #endif
69 
70 #include <security/audit/audit.h>
71 #include <security/mac/mac_framework.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <vm/uma.h>
78 
79 /*
80  * High level overview of name caching in the VFS layer.
81  *
82  * Originally caching was implemented as part of UFS, later extracted to allow
83  * use by other filesystems. A decision was made to make it optional and
84  * completely detached from the rest of the kernel, which comes with limitations
85  * outlined near the end of this comment block.
86  *
87  * This fundamental choice needs to be revisited. In the meantime, the current
88  * state is described below. Significance of all notable routines is explained
89  * in comments placed above their implementation. Scattered thoroughout the
90  * file are TODO comments indicating shortcomings which can be fixed without
91  * reworking everything (most of the fixes will likely be reusable). Various
92  * details are omitted from this explanation to not clutter the overview, they
93  * have to be checked by reading the code and associated commentary.
94  *
95  * Keep in mind that it's individual path components which are cached, not full
96  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
97  * one for each name.
98  *
99  * I. Data organization
100  *
101  * Entries are described by "struct namecache" objects and stored in a hash
102  * table. See cache_get_hash for more information.
103  *
104  * "struct vnode" contains pointers to source entries (names which can be found
105  * when traversing through said vnode), destination entries (names of that
106  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
107  * the parent vnode.
108  *
109  * The (directory vnode; name) tuple reliably determines the target entry if
110  * it exists.
111  *
112  * Since there are no small locks at this time (all are 32 bytes in size on
113  * LP64), the code works around the problem by introducing lock arrays to
114  * protect hash buckets and vnode lists.
115  *
116  * II. Filesystem integration
117  *
118  * Filesystems participating in name caching do the following:
119  * - set vop_lookup routine to vfs_cache_lookup
120  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
121  * - if they support lockless lookup (see below), vop_fplookup_vexec and
122  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
123  *   mount point
124  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
125  *   applicable
126  * - call cache_enter to add entries depending on the MAKEENTRY flag
127  *
128  * With the above in mind, there are 2 entry points when doing lookups:
129  * - ... -> namei -> cache_fplookup -- this is the default
130  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
131  *   should the above fail
132  *
133  * Example code flow how an entry is added:
134  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
135  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
136  *
137  * III. Performance considerations
138  *
139  * For lockless case forward lookup avoids any writes to shared areas apart
140  * from the terminal path component. In other words non-modifying lookups of
141  * different files don't suffer any scalability problems in the namecache.
142  * Looking up the same file is limited by VFS and goes beyond the scope of this
143  * file.
144  *
145  * At least on amd64 the single-threaded bottleneck for long paths is hashing
146  * (see cache_get_hash). There are cases where the code issues acquire fence
147  * multiple times, they can be combined on architectures which suffer from it.
148  *
149  * For locked case each encountered vnode has to be referenced and locked in
150  * order to be handed out to the caller (normally that's namei). This
151  * introduces significant hit single-threaded and serialization multi-threaded.
152  *
153  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
154  * avoids any writes to shared areas to any components.
155  *
156  * Unrelated insertions are partially serialized on updating the global entry
157  * counter and possibly serialized on colliding bucket or vnode locks.
158  *
159  * IV. Observability
160  *
161  * Note not everything has an explicit dtrace probe nor it should have, thus
162  * some of the one-liners below depend on implementation details.
163  *
164  * Examples:
165  *
166  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
167  * # line number, column 2 is status code (see cache_fpl_status)
168  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
169  *
170  * # Lengths of names added by binary name
171  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
172  *
173  * # Same as above but only those which exceed 64 characters
174  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
175  *
176  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
177  * # path is it
178  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
179  *
180  * V. Limitations and implementation defects
181  *
182  * - since it is possible there is no entry for an open file, tools like
183  *   "procstat" may fail to resolve fd -> vnode -> path to anything
184  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
185  *   shortage) in which case the above problem applies
186  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
187  *   way, resolving a name may return a different path than the one used to
188  *   open it (even if said path is still valid)
189  * - by default entries are not added for newly created files
190  * - adding an entry may need to evict negative entry first, which happens in 2
191  *   distinct places (evicting on lookup, adding in a later VOP) making it
192  *   impossible to simply reuse it
193  * - there is a simple scheme to evict negative entries as the cache is approaching
194  *   its capacity, but it is very unclear if doing so is a good idea to begin with
195  * - vnodes are subject to being recycled even if target inode is left in memory,
196  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
197  *   names get duplicated -- kept by filesystem itself and namecache separately
198  * - struct namecache has a fixed size and comes in 2 variants, often wasting
199  *   space.  now hard to replace with malloc due to dependence on SMR, which
200  *   requires UMA zones to opt in
201  * - lack of better integration with the kernel also turns nullfs into a layered
202  *   filesystem instead of something which can take advantage of caching
203  *
204  * Appendix A: where is the time lost, expanding on paragraph III
205  *
206  * While some care went into optimizing lookups, there is still plenty of
207  * performance left on the table, most notably from single-threaded standpoint.
208  * Below is a woefully incomplete list of changes which can help.  Ideas are
209  * mostly sketched out, no claim is made all kinks or prerequisites are laid
210  * out.
211  *
212  * Note there is performance lost all over VFS.
213  *
214  * === SMR-only lookup
215  *
216  * For commonly used ops like stat(2), when the terminal vnode *is* cached,
217  * lockless lookup could refrain from refing/locking the found vnode and
218  * instead return while within the SMR section. Then a call to, say,
219  * vop_stat_smr could do the work (or fail with EAGAIN), finally the result
220  * would be validated with seqc not changing. This would be faster
221  * single-threaded as it dodges atomics and would provide full scalability for
222  * multicore uses. This would *not* work for open(2) or other calls which need
223  * the vnode to hang around for the long haul, but would work for aforementioned
224  * stat(2) but also access(2), readlink(2), realpathat(2) and probably more.
225  *
226  * === hotpatching for sdt probes
227  *
228  * They result in *tons* of branches all over with rather regrettable codegen
229  * at times. Removing sdt probes altogether gives over 2% boost in lookup rate.
230  * Reworking the code to patch itself at runtime with asm goto would solve it.
231  * asm goto is fully supported by gcc and clang.
232  *
233  * === copyinstr
234  *
235  * On all architectures it operates one byte at a time, while it could be
236  * word-sized instead thanks to the Mycroft trick.
237  *
238  * API itself is rather pessimal for path lookup, accepting arbitrary sizes and
239  * *optionally* filling in the length parameter.
240  *
241  * Instead a new routine (copyinpath?) could be introduced, demanding a buffer
242  * size which is a multiply of the word (and never zero), with the length
243  * always returned. On top of it the routine could be allowed to transform the
244  * buffer in arbitrary ways, most notably writing past the found length (not to
245  * be confused with writing past buffer size) -- this would allow word-sized
246  * movs while checking for '\0' later.
247  *
248  * === detour through namei
249  *
250  * Currently one suffers being called from namei, which then has to check if
251  * things worked out locklessly. Instead the lockless lookup could be the
252  * actual entry point which calls what is currently namei as a fallback.
253  *
254  * === avoidable branches in cache_can_fplookup
255  *
256  * The cache_fast_lookup_enabled flag check could be hotpatchable (in fact if
257  * this is off, none of fplookup code should execute).
258  *
259  * Both audit and capsicum branches can be combined into one, but it requires
260  * paying off a lot of tech debt first.
261  *
262  * ni_startdir could be indicated with a flag in cn_flags, eliminating the
263  * branch.
264  *
265  * === mount stacks
266  *
267  * Crossing a mount requires checking if perhaps something is mounted on top.
268  * Instead, an additional entry could be added to struct mount with a pointer
269  * to the final mount on the stack. This would be recalculated on each
270  * mount/unmount.
271  *
272  * === root vnodes
273  *
274  * It could become part of the API contract to *always* have a rootvnode set in
275  * mnt_rootvnode. Such vnodes are annotated with VV_ROOT and vnlru would have
276  * to be modified to always skip them.
277  *
278  * === inactive on v_usecount reaching 0
279  *
280  * VOP_NEED_INACTIVE should not exist. Filesystems would indicate need for such
281  * processing with a bit in usecount.
282  *
283  * === v_holdcnt
284  *
285  * Hold count should probably get eliminated, but one can argue it is a useful
286  * feature. Even if so, handling of v_usecount could be decoupled from it --
287  * vnlru et al would consider the vnode not-freeable if has either hold or
288  * usecount on it.
289  *
290  * This would eliminate 2 atomics.
291  */
292 
293 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
294     "Name cache");
295 
296 SDT_PROVIDER_DECLARE(vfs);
297 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
298     "struct vnode *");
299 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
300     "struct vnode *");
301 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
302     "char *");
303 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
304     "const char *");
305 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
306     "struct namecache *", "int", "int");
307 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
308 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
309     "char *", "struct vnode *");
310 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
311 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
312     "struct vnode *", "char *");
313 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
314     "struct vnode *");
315 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
316     "struct vnode *", "char *");
317 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
318     "char *");
319 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
320     "struct componentname *");
321 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
322     "struct componentname *");
323 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
324 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
325 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
326 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
327 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
328     "struct vnode *");
329 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
330     "char *");
331 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
332     "char *");
333 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
334 
335 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata *", "int",
336     "enum cache_fpl_status");
337 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
338 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
339 
340 static char __read_frequently cache_fast_lookup_enabled = true;
341 
342 /*
343  * This structure describes the elements in the cache of recent
344  * names looked up by namei.
345  */
346 struct negstate {
347 	u_char neg_flag;
348 	u_char neg_hit;
349 };
350 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
351     "the state must fit in a union with a pointer without growing it");
352 
353 struct	namecache {
354 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
355 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
356 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
357 	struct	vnode *nc_dvp;		/* vnode of parent of name */
358 	union {
359 		struct	vnode *nu_vp;	/* vnode the name refers to */
360 		struct	negstate nu_neg;/* negative entry state */
361 	} n_un;
362 	u_char	nc_flag;		/* flag bits */
363 	u_char	nc_nlen;		/* length of name */
364 	char	nc_name[];		/* segment name + nul */
365 };
366 
367 /*
368  * struct namecache_ts repeats struct namecache layout up to the
369  * nc_nlen member.
370  * struct namecache_ts is used in place of struct namecache when time(s) need
371  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
372  * both a non-dotdot directory name plus dotdot for the directory's
373  * parent.
374  *
375  * See below for alignment requirement.
376  */
377 struct	namecache_ts {
378 	struct	timespec nc_time;	/* timespec provided by fs */
379 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
380 	int	nc_ticks;		/* ticks value when entry was added */
381 	int	nc_pad;
382 	struct namecache nc_nc;
383 };
384 
385 TAILQ_HEAD(cache_freebatch, namecache);
386 
387 /*
388  * At least mips n32 performs 64-bit accesses to timespec as found
389  * in namecache_ts and requires them to be aligned. Since others
390  * may be in the same spot suffer a little bit and enforce the
391  * alignment for everyone. Note this is a nop for 64-bit platforms.
392  */
393 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
394 
395 /*
396  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
397  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
398  * smaller and the value was bumped to retain the total size, but it
399  * was never re-evaluated for suitability. A simple test counting
400  * lengths during package building shows that the value of 45 covers
401  * about 86% of all added entries, reaching 99% at 65.
402  *
403  * Regardless of the above, use of dedicated zones instead of malloc may be
404  * inducing additional waste. This may be hard to address as said zones are
405  * tied to VFS SMR. Even if retaining them, the current split should be
406  * re-evaluated.
407  */
408 #ifdef __LP64__
409 #define	CACHE_PATH_CUTOFF	45
410 #define	CACHE_LARGE_PAD		6
411 #else
412 #define	CACHE_PATH_CUTOFF	41
413 #define	CACHE_LARGE_PAD		2
414 #endif
415 
416 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
417 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
418 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
419 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
420 
421 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
422 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
423 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
424 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
425 
426 #define	nc_vp		n_un.nu_vp
427 #define	nc_neg		n_un.nu_neg
428 
429 /*
430  * Flags in namecache.nc_flag
431  */
432 #define NCF_WHITE	0x01
433 #define NCF_ISDOTDOT	0x02
434 #define	NCF_TS		0x04
435 #define	NCF_DTS		0x08
436 #define	NCF_DVDROP	0x10
437 #define	NCF_NEGATIVE	0x20
438 #define	NCF_INVALID	0x40
439 #define	NCF_WIP		0x80
440 
441 /*
442  * Flags in negstate.neg_flag
443  */
444 #define NEG_HOT		0x01
445 
446 static bool	cache_neg_evict_cond(u_long lnumcache);
447 
448 /*
449  * Mark an entry as invalid.
450  *
451  * This is called before it starts getting deconstructed.
452  */
453 static void
454 cache_ncp_invalidate(struct namecache *ncp)
455 {
456 
457 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
458 	    ("%s: entry %p already invalid", __func__, ncp));
459 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
460 	atomic_thread_fence_rel();
461 }
462 
463 /*
464  * Does this entry match the given directory and name?
465  */
466 static bool
467 cache_ncp_match(struct namecache *ncp, struct vnode *dvp,
468     struct componentname *cnp)
469 {
470 	return (ncp->nc_dvp == dvp &&
471 	    ncp->nc_nlen == cnp->cn_namelen &&
472 	    bcmp(ncp->nc_name, cnp->cn_nameptr, cnp->cn_namelen) == 0);
473 }
474 
475 /*
476  * Check whether the entry can be safely used.
477  *
478  * All places which elide locks are supposed to call this after they are
479  * done with reading from an entry.
480  */
481 #define cache_ncp_canuse(ncp)	({					\
482 	struct namecache *_ncp = (ncp);					\
483 	u_char _nc_flag;						\
484 									\
485 	atomic_thread_fence_acq();					\
486 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
487 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
488 })
489 
490 /*
491  * Like the above but also checks NCF_WHITE.
492  */
493 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
494 	struct namecache *_ncp = (ncp);					\
495 	u_char _nc_flag;						\
496 									\
497 	atomic_thread_fence_acq();					\
498 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
499 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
500 })
501 
502 VFS_SMR_DECLARE;
503 
504 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
505     "Name cache parameters");
506 
507 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
508 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RD, &ncsize, 0,
509     "Total namecache capacity");
510 
511 u_int ncsizefactor = 2;
512 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
513     "Size factor for namecache");
514 
515 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
516 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
517     "Ratio of negative namecache entries");
518 
519 /*
520  * Negative entry % of namecache capacity above which automatic eviction is allowed.
521  *
522  * Check cache_neg_evict_cond for details.
523  */
524 static u_int ncnegminpct = 3;
525 
526 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
527 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
528     "Negative entry count above which automatic eviction is allowed");
529 
530 /*
531  * Structures associated with name caching.
532  */
533 #define NCHHASH(hash) \
534 	(&nchashtbl[(hash) & nchash])
535 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
536 static u_long __read_mostly	nchash;			/* size of hash table */
537 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
538     "Size of namecache hash table");
539 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
540 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
541 
542 struct nchstats	nchstats;		/* cache effectiveness statistics */
543 
544 static u_int __exclusive_cache_line neg_cycle;
545 
546 #define ncneghash	3
547 #define	numneglists	(ncneghash + 1)
548 
549 struct neglist {
550 	struct mtx		nl_evict_lock;
551 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
552 	TAILQ_HEAD(, namecache) nl_list;
553 	TAILQ_HEAD(, namecache) nl_hotlist;
554 	u_long			nl_hotnum;
555 } __aligned(CACHE_LINE_SIZE);
556 
557 static struct neglist neglists[numneglists];
558 
559 static inline struct neglist *
560 NCP2NEGLIST(struct namecache *ncp)
561 {
562 
563 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
564 }
565 
566 static inline struct negstate *
567 NCP2NEGSTATE(struct namecache *ncp)
568 {
569 
570 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
571 	return (&ncp->nc_neg);
572 }
573 
574 #define	numbucketlocks (ncbuckethash + 1)
575 static u_int __read_mostly  ncbuckethash;
576 static struct mtx_padalign __read_mostly  *bucketlocks;
577 #define	HASH2BUCKETLOCK(hash) \
578 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
579 
580 #define	numvnodelocks (ncvnodehash + 1)
581 static u_int __read_mostly  ncvnodehash;
582 static struct mtx __read_mostly *vnodelocks;
583 static inline struct mtx *
584 VP2VNODELOCK(struct vnode *vp)
585 {
586 
587 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
588 }
589 
590 /*
591  * Search the hash table for a namecache entry.  Either the corresponding bucket
592  * must be locked, or the caller must be in an SMR read section.
593  */
594 static struct namecache *
595 cache_ncp_find(struct vnode *dvp, struct componentname *cnp, uint32_t hash)
596 {
597 	struct namecache *ncp;
598 
599 	KASSERT(mtx_owned(HASH2BUCKETLOCK(hash)) || VFS_SMR_ENTERED(),
600 	    ("%s: hash %u not locked", __func__, hash));
601 	CK_SLIST_FOREACH(ncp, NCHHASH(hash), nc_hash) {
602 		if (cache_ncp_match(ncp, dvp, cnp))
603 			break;
604 	}
605 	return (ncp);
606 }
607 
608 static void
609 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
610 {
611 	struct namecache_ts *ncp_ts;
612 
613 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
614 	    (tsp == NULL && ticksp == NULL),
615 	    ("No NCF_TS"));
616 
617 	if (tsp == NULL)
618 		return;
619 
620 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
621 	*tsp = ncp_ts->nc_time;
622 	*ticksp = ncp_ts->nc_ticks;
623 }
624 
625 #ifdef DEBUG_CACHE
626 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
627 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
628     "VFS namecache enabled");
629 #endif
630 
631 /* Export size information to userland */
632 SYSCTL_SIZEOF_STRUCT(namecache);
633 
634 /*
635  * The new name cache statistics
636  */
637 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
638     "Name cache statistics");
639 
640 #define STATNODE_ULONG(name, varname, descr)					\
641 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
642 #define STATNODE_COUNTER(name, varname, descr)					\
643 	static COUNTER_U64_DEFINE_EARLY(varname);				\
644 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
645 	    descr);
646 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
647 STATNODE_ULONG(count, numcache, "Number of cache entries");
648 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
649 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
650 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
651 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
652 STATNODE_COUNTER(poszaps, numposzaps,
653     "Number of cache hits (positive) we do not want to cache");
654 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
655 STATNODE_COUNTER(negzaps, numnegzaps,
656     "Number of cache hits (negative) we do not want to cache");
657 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
658 /* These count for vn_getcwd(), too. */
659 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
660 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
661     "Number of fullpath search errors (VOP_VPTOCNP failures)");
662 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
663 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
664 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
665 
666 /*
667  * Debug or developer statistics.
668  */
669 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
670     "Name cache debugging");
671 #define DEBUGNODE_ULONG(name, varname, descr)					\
672 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
673 static u_long zap_bucket_relock_success;
674 DEBUGNODE_ULONG(zap_bucket_relock_success, zap_bucket_relock_success,
675     "Number of successful removals after relocking");
676 static u_long zap_bucket_fail;
677 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
678 static u_long zap_bucket_fail2;
679 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
680 static u_long cache_lock_vnodes_cel_3_failures;
681 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
682     "Number of times 3-way vnode locking failed");
683 
684 static void cache_zap_locked(struct namecache *ncp);
685 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
686     char **retbuf, size_t *buflen, size_t addend);
687 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
688     char **retbuf, size_t *buflen);
689 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
690     char **retbuf, size_t *len, size_t addend);
691 
692 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
693 
694 static inline void
695 cache_assert_vlp_locked(struct mtx *vlp)
696 {
697 
698 	if (vlp != NULL)
699 		mtx_assert(vlp, MA_OWNED);
700 }
701 
702 static inline void
703 cache_assert_vnode_locked(struct vnode *vp)
704 {
705 	struct mtx *vlp;
706 
707 	vlp = VP2VNODELOCK(vp);
708 	cache_assert_vlp_locked(vlp);
709 }
710 
711 /*
712  * Directory vnodes with entries are held for two reasons:
713  * 1. make them less of a target for reclamation in vnlru
714  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
715  *
716  * It will be feasible to stop doing it altogether if all filesystems start
717  * supporting lockless lookup.
718  */
719 static void
720 cache_hold_vnode(struct vnode *vp)
721 {
722 
723 	cache_assert_vnode_locked(vp);
724 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
725 	vhold(vp);
726 	counter_u64_add(numcachehv, 1);
727 }
728 
729 static void
730 cache_drop_vnode(struct vnode *vp)
731 {
732 
733 	/*
734 	 * Called after all locks are dropped, meaning we can't assert
735 	 * on the state of v_cache_src.
736 	 */
737 	vdrop(vp);
738 	counter_u64_add(numcachehv, -1);
739 }
740 
741 /*
742  * UMA zones.
743  */
744 static uma_zone_t __read_mostly cache_zone_small;
745 static uma_zone_t __read_mostly cache_zone_small_ts;
746 static uma_zone_t __read_mostly cache_zone_large;
747 static uma_zone_t __read_mostly cache_zone_large_ts;
748 
749 char *
750 cache_symlink_alloc(size_t size, int flags)
751 {
752 
753 	if (size < CACHE_ZONE_SMALL_SIZE) {
754 		return (uma_zalloc_smr(cache_zone_small, flags));
755 	}
756 	if (size < CACHE_ZONE_LARGE_SIZE) {
757 		return (uma_zalloc_smr(cache_zone_large, flags));
758 	}
759 	counter_u64_add(symlinktoobig, 1);
760 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
761 	return (NULL);
762 }
763 
764 void
765 cache_symlink_free(char *string, size_t size)
766 {
767 
768 	MPASS(string != NULL);
769 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
770 	    ("%s: size %zu too big", __func__, size));
771 
772 	if (size < CACHE_ZONE_SMALL_SIZE) {
773 		uma_zfree_smr(cache_zone_small, string);
774 		return;
775 	}
776 	if (size < CACHE_ZONE_LARGE_SIZE) {
777 		uma_zfree_smr(cache_zone_large, string);
778 		return;
779 	}
780 	__assert_unreachable();
781 }
782 
783 static struct namecache *
784 cache_alloc_uma(int len, bool ts)
785 {
786 	struct namecache_ts *ncp_ts;
787 	struct namecache *ncp;
788 
789 	if (__predict_false(ts)) {
790 		if (len <= CACHE_PATH_CUTOFF)
791 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
792 		else
793 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
794 		ncp = &ncp_ts->nc_nc;
795 	} else {
796 		if (len <= CACHE_PATH_CUTOFF)
797 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
798 		else
799 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
800 	}
801 	return (ncp);
802 }
803 
804 static void
805 cache_free_uma(struct namecache *ncp)
806 {
807 	struct namecache_ts *ncp_ts;
808 
809 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
810 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
811 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
812 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
813 		else
814 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
815 	} else {
816 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
817 			uma_zfree_smr(cache_zone_small, ncp);
818 		else
819 			uma_zfree_smr(cache_zone_large, ncp);
820 	}
821 }
822 
823 static struct namecache *
824 cache_alloc(int len, bool ts)
825 {
826 	u_long lnumcache;
827 
828 	/*
829 	 * Avoid blowout in namecache entries.
830 	 *
831 	 * Bugs:
832 	 * 1. filesystems may end up trying to add an already existing entry
833 	 * (for example this can happen after a cache miss during concurrent
834 	 * lookup), in which case we will call cache_neg_evict despite not
835 	 * adding anything.
836 	 * 2. the routine may fail to free anything and no provisions are made
837 	 * to make it try harder (see the inside for failure modes)
838 	 * 3. it only ever looks at negative entries.
839 	 */
840 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
841 	if (cache_neg_evict_cond(lnumcache)) {
842 		lnumcache = atomic_load_long(&numcache);
843 	}
844 	if (__predict_false(lnumcache >= ncsize)) {
845 		atomic_subtract_long(&numcache, 1);
846 		counter_u64_add(numdrops, 1);
847 		return (NULL);
848 	}
849 	return (cache_alloc_uma(len, ts));
850 }
851 
852 static void
853 cache_free(struct namecache *ncp)
854 {
855 
856 	MPASS(ncp != NULL);
857 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
858 		cache_drop_vnode(ncp->nc_dvp);
859 	}
860 	cache_free_uma(ncp);
861 	atomic_subtract_long(&numcache, 1);
862 }
863 
864 static void
865 cache_free_batch(struct cache_freebatch *batch)
866 {
867 	struct namecache *ncp, *nnp;
868 	int i;
869 
870 	i = 0;
871 	if (TAILQ_EMPTY(batch))
872 		goto out;
873 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
874 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
875 			cache_drop_vnode(ncp->nc_dvp);
876 		}
877 		cache_free_uma(ncp);
878 		i++;
879 	}
880 	atomic_subtract_long(&numcache, i);
881 out:
882 	SDT_PROBE1(vfs, namecache, purge, batch, i);
883 }
884 
885 /*
886  * Hashing.
887  *
888  * The code was made to use FNV in 2001 and this choice needs to be revisited.
889  *
890  * Short summary of the difficulty:
891  * The longest name which can be inserted is NAME_MAX characters in length (or
892  * 255 at the time of writing this comment), while majority of names used in
893  * practice are significantly shorter (mostly below 10). More importantly
894  * majority of lookups performed find names are even shorter than that.
895  *
896  * This poses a problem where hashes which do better than FNV past word size
897  * (or so) tend to come with additional overhead when finalizing the result,
898  * making them noticeably slower for the most commonly used range.
899  *
900  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
901  *
902  * When looking it up the most time consuming part by a large margin (at least
903  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
904  * input would make the slowest part stand out even more.
905  */
906 
907 /*
908  * TODO: With the value stored we can do better than computing the hash based
909  * on the address.
910  */
911 static void
912 cache_prehash(struct vnode *vp)
913 {
914 
915 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
916 }
917 
918 static uint32_t
919 cache_get_hash(char *name, u_char len, struct vnode *dvp)
920 {
921 
922 	return (fnv_32_buf(name, len, dvp->v_nchash));
923 }
924 
925 static uint32_t
926 cache_get_hash_iter_start(struct vnode *dvp)
927 {
928 
929 	return (dvp->v_nchash);
930 }
931 
932 static uint32_t
933 cache_get_hash_iter(char c, uint32_t hash)
934 {
935 
936 	return (fnv_32_buf(&c, 1, hash));
937 }
938 
939 static uint32_t
940 cache_get_hash_iter_finish(uint32_t hash)
941 {
942 
943 	return (hash);
944 }
945 
946 static inline struct nchashhead *
947 NCP2BUCKET(struct namecache *ncp)
948 {
949 	uint32_t hash;
950 
951 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
952 	return (NCHHASH(hash));
953 }
954 
955 static inline struct mtx *
956 NCP2BUCKETLOCK(struct namecache *ncp)
957 {
958 	uint32_t hash;
959 
960 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
961 	return (HASH2BUCKETLOCK(hash));
962 }
963 
964 #ifdef INVARIANTS
965 static void
966 cache_assert_bucket_locked(struct namecache *ncp)
967 {
968 	struct mtx *blp;
969 
970 	blp = NCP2BUCKETLOCK(ncp);
971 	mtx_assert(blp, MA_OWNED);
972 }
973 
974 static void
975 cache_assert_bucket_unlocked(struct namecache *ncp)
976 {
977 	struct mtx *blp;
978 
979 	blp = NCP2BUCKETLOCK(ncp);
980 	mtx_assert(blp, MA_NOTOWNED);
981 }
982 #else
983 #define cache_assert_bucket_locked(x) do { } while (0)
984 #define cache_assert_bucket_unlocked(x) do { } while (0)
985 #endif
986 
987 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
988 static void
989 _cache_sort_vnodes(void **p1, void **p2)
990 {
991 	void *tmp;
992 
993 	MPASS(*p1 != NULL || *p2 != NULL);
994 
995 	if (*p1 > *p2) {
996 		tmp = *p2;
997 		*p2 = *p1;
998 		*p1 = tmp;
999 	}
1000 }
1001 
1002 static void
1003 cache_lock_all_buckets(void)
1004 {
1005 	u_int i;
1006 
1007 	for (i = 0; i < numbucketlocks; i++)
1008 		mtx_lock(&bucketlocks[i]);
1009 }
1010 
1011 static void
1012 cache_unlock_all_buckets(void)
1013 {
1014 	u_int i;
1015 
1016 	for (i = 0; i < numbucketlocks; i++)
1017 		mtx_unlock(&bucketlocks[i]);
1018 }
1019 
1020 static void
1021 cache_lock_all_vnodes(void)
1022 {
1023 	u_int i;
1024 
1025 	for (i = 0; i < numvnodelocks; i++)
1026 		mtx_lock(&vnodelocks[i]);
1027 }
1028 
1029 static void
1030 cache_unlock_all_vnodes(void)
1031 {
1032 	u_int i;
1033 
1034 	for (i = 0; i < numvnodelocks; i++)
1035 		mtx_unlock(&vnodelocks[i]);
1036 }
1037 
1038 static int
1039 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1040 {
1041 
1042 	cache_sort_vnodes(&vlp1, &vlp2);
1043 
1044 	if (vlp1 != NULL) {
1045 		if (!mtx_trylock(vlp1))
1046 			return (EAGAIN);
1047 	}
1048 	if (!mtx_trylock(vlp2)) {
1049 		if (vlp1 != NULL)
1050 			mtx_unlock(vlp1);
1051 		return (EAGAIN);
1052 	}
1053 
1054 	return (0);
1055 }
1056 
1057 static void
1058 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1059 {
1060 
1061 	MPASS(vlp1 != NULL || vlp2 != NULL);
1062 	MPASS(vlp1 <= vlp2);
1063 
1064 	if (vlp1 != NULL)
1065 		mtx_lock(vlp1);
1066 	if (vlp2 != NULL)
1067 		mtx_lock(vlp2);
1068 }
1069 
1070 static void
1071 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1072 {
1073 
1074 	MPASS(vlp1 != NULL || vlp2 != NULL);
1075 
1076 	if (vlp1 != NULL)
1077 		mtx_unlock(vlp1);
1078 	if (vlp2 != NULL)
1079 		mtx_unlock(vlp2);
1080 }
1081 
1082 static int
1083 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
1084 {
1085 	struct nchstats snap;
1086 
1087 	if (req->oldptr == NULL)
1088 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
1089 
1090 	snap = nchstats;
1091 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
1092 	snap.ncs_neghits = counter_u64_fetch(numneghits);
1093 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
1094 	    counter_u64_fetch(numnegzaps);
1095 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
1096 	    counter_u64_fetch(nummiss);
1097 
1098 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
1099 }
1100 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
1101     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
1102     "VFS cache effectiveness statistics");
1103 
1104 static int
1105 sysctl_hitpct(SYSCTL_HANDLER_ARGS)
1106 {
1107 	long poshits, neghits, miss, total;
1108 	long pct;
1109 
1110 	poshits = counter_u64_fetch(numposhits);
1111 	neghits = counter_u64_fetch(numneghits);
1112 	miss = counter_u64_fetch(nummiss);
1113 	total = poshits + neghits + miss;
1114 
1115 	pct = 0;
1116 	if (total != 0)
1117 		pct = ((poshits + neghits) * 100) / total;
1118 	return (sysctl_handle_int(oidp, 0, pct, req));
1119 }
1120 SYSCTL_PROC(_vfs_cache_stats, OID_AUTO, hitpct,
1121     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_hitpct,
1122     "I", "Percentage of hits");
1123 
1124 static void
1125 cache_recalc_neg_min(void)
1126 {
1127 
1128 	neg_min = (ncsize * ncnegminpct) / 100;
1129 }
1130 
1131 static int
1132 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1133 {
1134 	u_int val;
1135 	int error;
1136 
1137 	val = ncnegminpct;
1138 	error = sysctl_handle_int(oidp, &val, 0, req);
1139 	if (error != 0 || req->newptr == NULL)
1140 		return (error);
1141 
1142 	if (val == ncnegminpct)
1143 		return (0);
1144 	if (val < 0 || val > 99)
1145 		return (EINVAL);
1146 	ncnegminpct = val;
1147 	cache_recalc_neg_min();
1148 	return (0);
1149 }
1150 
1151 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1152     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1153     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1154 
1155 #ifdef DEBUG_CACHE
1156 /*
1157  * Grab an atomic snapshot of the name cache hash chain lengths
1158  */
1159 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1160     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1161     "hash table stats");
1162 
1163 static int
1164 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1165 {
1166 	struct nchashhead *ncpp;
1167 	struct namecache *ncp;
1168 	int i, error, n_nchash, *cntbuf;
1169 
1170 retry:
1171 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1172 	if (req->oldptr == NULL)
1173 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1174 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1175 	cache_lock_all_buckets();
1176 	if (n_nchash != nchash + 1) {
1177 		cache_unlock_all_buckets();
1178 		free(cntbuf, M_TEMP);
1179 		goto retry;
1180 	}
1181 	/* Scan hash tables counting entries */
1182 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1183 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1184 			cntbuf[i]++;
1185 	cache_unlock_all_buckets();
1186 	for (error = 0, i = 0; i < n_nchash; i++)
1187 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1188 			break;
1189 	free(cntbuf, M_TEMP);
1190 	return (error);
1191 }
1192 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1193     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1194     "nchash chain lengths");
1195 
1196 static int
1197 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1198 {
1199 	int error;
1200 	struct nchashhead *ncpp;
1201 	struct namecache *ncp;
1202 	int n_nchash;
1203 	int count, maxlength, used, pct;
1204 
1205 	if (!req->oldptr)
1206 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1207 
1208 	cache_lock_all_buckets();
1209 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1210 	used = 0;
1211 	maxlength = 0;
1212 
1213 	/* Scan hash tables for applicable entries */
1214 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1215 		count = 0;
1216 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1217 			count++;
1218 		}
1219 		if (count)
1220 			used++;
1221 		if (maxlength < count)
1222 			maxlength = count;
1223 	}
1224 	n_nchash = nchash + 1;
1225 	cache_unlock_all_buckets();
1226 	pct = (used * 100) / (n_nchash / 100);
1227 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1228 	if (error)
1229 		return (error);
1230 	error = SYSCTL_OUT(req, &used, sizeof(used));
1231 	if (error)
1232 		return (error);
1233 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1234 	if (error)
1235 		return (error);
1236 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1237 	if (error)
1238 		return (error);
1239 	return (0);
1240 }
1241 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1242     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1243     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1244 #endif
1245 
1246 /*
1247  * Negative entries management
1248  *
1249  * Various workloads create plenty of negative entries and barely use them
1250  * afterwards. Moreover malicious users can keep performing bogus lookups
1251  * adding even more entries. For example "make tinderbox" as of writing this
1252  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1253  * negative.
1254  *
1255  * As such, a rather aggressive eviction method is needed. The currently
1256  * employed method is a placeholder.
1257  *
1258  * Entries are split over numneglists separate lists, each of which is further
1259  * split into hot and cold entries. Entries get promoted after getting a hit.
1260  * Eviction happens on addition of new entry.
1261  */
1262 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1263     "Name cache negative entry statistics");
1264 
1265 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1266     "Number of negative cache entries");
1267 
1268 static COUNTER_U64_DEFINE_EARLY(neg_created);
1269 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1270     "Number of created negative entries");
1271 
1272 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1273 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1274     "Number of evicted negative entries");
1275 
1276 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1277 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1278     &neg_evict_skipped_empty,
1279     "Number of times evicting failed due to lack of entries");
1280 
1281 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1282 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1283     &neg_evict_skipped_missed,
1284     "Number of times evicting failed due to target entry disappearing");
1285 
1286 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1287 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1288     &neg_evict_skipped_contended,
1289     "Number of times evicting failed due to contention");
1290 
1291 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1292     "Number of cache hits (negative)");
1293 
1294 static int
1295 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1296 {
1297 	int i, out;
1298 
1299 	out = 0;
1300 	for (i = 0; i < numneglists; i++)
1301 		out += neglists[i].nl_hotnum;
1302 
1303 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1304 }
1305 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1306     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1307     "Number of hot negative entries");
1308 
1309 static void
1310 cache_neg_init(struct namecache *ncp)
1311 {
1312 	struct negstate *ns;
1313 
1314 	ncp->nc_flag |= NCF_NEGATIVE;
1315 	ns = NCP2NEGSTATE(ncp);
1316 	ns->neg_flag = 0;
1317 	ns->neg_hit = 0;
1318 	counter_u64_add(neg_created, 1);
1319 }
1320 
1321 #define CACHE_NEG_PROMOTION_THRESH 2
1322 
1323 static bool
1324 cache_neg_hit_prep(struct namecache *ncp)
1325 {
1326 	struct negstate *ns;
1327 	u_char n;
1328 
1329 	ns = NCP2NEGSTATE(ncp);
1330 	n = atomic_load_char(&ns->neg_hit);
1331 	for (;;) {
1332 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1333 			return (false);
1334 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1335 			break;
1336 	}
1337 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1338 }
1339 
1340 /*
1341  * Nothing to do here but it is provided for completeness as some
1342  * cache_neg_hit_prep callers may end up returning without even
1343  * trying to promote.
1344  */
1345 #define cache_neg_hit_abort(ncp)	do { } while (0)
1346 
1347 static void
1348 cache_neg_hit_finish(struct namecache *ncp)
1349 {
1350 
1351 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1352 	counter_u64_add(numneghits, 1);
1353 }
1354 
1355 /*
1356  * Move a negative entry to the hot list.
1357  */
1358 static void
1359 cache_neg_promote_locked(struct namecache *ncp)
1360 {
1361 	struct neglist *nl;
1362 	struct negstate *ns;
1363 
1364 	ns = NCP2NEGSTATE(ncp);
1365 	nl = NCP2NEGLIST(ncp);
1366 	mtx_assert(&nl->nl_lock, MA_OWNED);
1367 	if ((ns->neg_flag & NEG_HOT) == 0) {
1368 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1369 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1370 		nl->nl_hotnum++;
1371 		ns->neg_flag |= NEG_HOT;
1372 	}
1373 }
1374 
1375 /*
1376  * Move a hot negative entry to the cold list.
1377  */
1378 static void
1379 cache_neg_demote_locked(struct namecache *ncp)
1380 {
1381 	struct neglist *nl;
1382 	struct negstate *ns;
1383 
1384 	ns = NCP2NEGSTATE(ncp);
1385 	nl = NCP2NEGLIST(ncp);
1386 	mtx_assert(&nl->nl_lock, MA_OWNED);
1387 	MPASS(ns->neg_flag & NEG_HOT);
1388 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1389 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1390 	nl->nl_hotnum--;
1391 	ns->neg_flag &= ~NEG_HOT;
1392 	atomic_store_char(&ns->neg_hit, 0);
1393 }
1394 
1395 /*
1396  * Move a negative entry to the hot list if it matches the lookup.
1397  *
1398  * We have to take locks, but they may be contended and in the worst
1399  * case we may need to go off CPU. We don't want to spin within the
1400  * smr section and we can't block with it. Exiting the section means
1401  * the found entry could have been evicted. We are going to look it
1402  * up again.
1403  */
1404 static bool
1405 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1406     struct namecache *oncp, uint32_t hash)
1407 {
1408 	struct namecache *ncp;
1409 	struct neglist *nl;
1410 	u_char nc_flag;
1411 
1412 	nl = NCP2NEGLIST(oncp);
1413 
1414 	mtx_lock(&nl->nl_lock);
1415 	/*
1416 	 * For hash iteration.
1417 	 */
1418 	vfs_smr_enter();
1419 
1420 	/*
1421 	 * Avoid all surprises by only succeeding if we got the same entry and
1422 	 * bailing completely otherwise.
1423 	 * XXX There are no provisions to keep the vnode around, meaning we may
1424 	 * end up promoting a negative entry for a *new* vnode and returning
1425 	 * ENOENT on its account. This is the error we want to return anyway
1426 	 * and promotion is harmless.
1427 	 *
1428 	 * In particular at this point there can be a new ncp which matches the
1429 	 * search but hashes to a different neglist.
1430 	 */
1431 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1432 		if (ncp == oncp)
1433 			break;
1434 	}
1435 
1436 	/*
1437 	 * No match to begin with.
1438 	 */
1439 	if (__predict_false(ncp == NULL)) {
1440 		goto out_abort;
1441 	}
1442 
1443 	/*
1444 	 * The newly found entry may be something different...
1445 	 */
1446 	if (!cache_ncp_match(ncp, dvp, cnp)) {
1447 		goto out_abort;
1448 	}
1449 
1450 	/*
1451 	 * ... and not even negative.
1452 	 */
1453 	nc_flag = atomic_load_char(&ncp->nc_flag);
1454 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1455 		goto out_abort;
1456 	}
1457 
1458 	if (!cache_ncp_canuse(ncp)) {
1459 		goto out_abort;
1460 	}
1461 
1462 	cache_neg_promote_locked(ncp);
1463 	cache_neg_hit_finish(ncp);
1464 	vfs_smr_exit();
1465 	mtx_unlock(&nl->nl_lock);
1466 	return (true);
1467 out_abort:
1468 	vfs_smr_exit();
1469 	mtx_unlock(&nl->nl_lock);
1470 	return (false);
1471 }
1472 
1473 static void
1474 cache_neg_promote(struct namecache *ncp)
1475 {
1476 	struct neglist *nl;
1477 
1478 	nl = NCP2NEGLIST(ncp);
1479 	mtx_lock(&nl->nl_lock);
1480 	cache_neg_promote_locked(ncp);
1481 	mtx_unlock(&nl->nl_lock);
1482 }
1483 
1484 static void
1485 cache_neg_insert(struct namecache *ncp)
1486 {
1487 	struct neglist *nl;
1488 
1489 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1490 	cache_assert_bucket_locked(ncp);
1491 	nl = NCP2NEGLIST(ncp);
1492 	mtx_lock(&nl->nl_lock);
1493 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1494 	mtx_unlock(&nl->nl_lock);
1495 	atomic_add_long(&numneg, 1);
1496 }
1497 
1498 static void
1499 cache_neg_remove(struct namecache *ncp)
1500 {
1501 	struct neglist *nl;
1502 	struct negstate *ns;
1503 
1504 	cache_assert_bucket_locked(ncp);
1505 	nl = NCP2NEGLIST(ncp);
1506 	ns = NCP2NEGSTATE(ncp);
1507 	mtx_lock(&nl->nl_lock);
1508 	if ((ns->neg_flag & NEG_HOT) != 0) {
1509 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1510 		nl->nl_hotnum--;
1511 	} else {
1512 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1513 	}
1514 	mtx_unlock(&nl->nl_lock);
1515 	atomic_subtract_long(&numneg, 1);
1516 }
1517 
1518 static struct neglist *
1519 cache_neg_evict_select_list(void)
1520 {
1521 	struct neglist *nl;
1522 	u_int c;
1523 
1524 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1525 	nl = &neglists[c % numneglists];
1526 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1527 		counter_u64_add(neg_evict_skipped_contended, 1);
1528 		return (NULL);
1529 	}
1530 	return (nl);
1531 }
1532 
1533 static struct namecache *
1534 cache_neg_evict_select_entry(struct neglist *nl)
1535 {
1536 	struct namecache *ncp, *lncp;
1537 	struct negstate *ns, *lns;
1538 	int i;
1539 
1540 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1541 	mtx_assert(&nl->nl_lock, MA_OWNED);
1542 	ncp = TAILQ_FIRST(&nl->nl_list);
1543 	if (ncp == NULL)
1544 		return (NULL);
1545 	lncp = ncp;
1546 	lns = NCP2NEGSTATE(lncp);
1547 	for (i = 1; i < 4; i++) {
1548 		ncp = TAILQ_NEXT(ncp, nc_dst);
1549 		if (ncp == NULL)
1550 			break;
1551 		ns = NCP2NEGSTATE(ncp);
1552 		if (ns->neg_hit < lns->neg_hit) {
1553 			lncp = ncp;
1554 			lns = ns;
1555 		}
1556 	}
1557 	return (lncp);
1558 }
1559 
1560 static bool
1561 cache_neg_evict(void)
1562 {
1563 	struct namecache *ncp, *ncp2;
1564 	struct neglist *nl;
1565 	struct vnode *dvp;
1566 	struct mtx *dvlp;
1567 	struct mtx *blp;
1568 	uint32_t hash;
1569 	u_char nlen;
1570 	bool evicted;
1571 
1572 	nl = cache_neg_evict_select_list();
1573 	if (nl == NULL) {
1574 		return (false);
1575 	}
1576 
1577 	mtx_lock(&nl->nl_lock);
1578 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1579 	if (ncp != NULL) {
1580 		cache_neg_demote_locked(ncp);
1581 	}
1582 	ncp = cache_neg_evict_select_entry(nl);
1583 	if (ncp == NULL) {
1584 		counter_u64_add(neg_evict_skipped_empty, 1);
1585 		mtx_unlock(&nl->nl_lock);
1586 		mtx_unlock(&nl->nl_evict_lock);
1587 		return (false);
1588 	}
1589 	nlen = ncp->nc_nlen;
1590 	dvp = ncp->nc_dvp;
1591 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1592 	dvlp = VP2VNODELOCK(dvp);
1593 	blp = HASH2BUCKETLOCK(hash);
1594 	mtx_unlock(&nl->nl_lock);
1595 	mtx_unlock(&nl->nl_evict_lock);
1596 	mtx_lock(dvlp);
1597 	mtx_lock(blp);
1598 	/*
1599 	 * Note that since all locks were dropped above, the entry may be
1600 	 * gone or reallocated to be something else.
1601 	 */
1602 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1603 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1604 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1605 			break;
1606 	}
1607 	if (ncp2 == NULL) {
1608 		counter_u64_add(neg_evict_skipped_missed, 1);
1609 		ncp = NULL;
1610 		evicted = false;
1611 	} else {
1612 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1613 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1614 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1615 		    ncp->nc_name);
1616 		cache_zap_locked(ncp);
1617 		counter_u64_add(neg_evicted, 1);
1618 		evicted = true;
1619 	}
1620 	mtx_unlock(blp);
1621 	mtx_unlock(dvlp);
1622 	if (ncp != NULL)
1623 		cache_free(ncp);
1624 	return (evicted);
1625 }
1626 
1627 /*
1628  * Maybe evict a negative entry to create more room.
1629  *
1630  * The ncnegfactor parameter limits what fraction of the total count
1631  * can comprise of negative entries. However, if the cache is just
1632  * warming up this leads to excessive evictions.  As such, ncnegminpct
1633  * (recomputed to neg_min) dictates whether the above should be
1634  * applied.
1635  *
1636  * Try evicting if the cache is close to full capacity regardless of
1637  * other considerations.
1638  */
1639 static bool
1640 cache_neg_evict_cond(u_long lnumcache)
1641 {
1642 	u_long lnumneg;
1643 
1644 	if (ncsize - 1000 < lnumcache)
1645 		goto out_evict;
1646 	lnumneg = atomic_load_long(&numneg);
1647 	if (lnumneg < neg_min)
1648 		return (false);
1649 	if (lnumneg * ncnegfactor < lnumcache)
1650 		return (false);
1651 out_evict:
1652 	return (cache_neg_evict());
1653 }
1654 
1655 /*
1656  * cache_zap_locked():
1657  *
1658  *   Removes a namecache entry from cache, whether it contains an actual
1659  *   pointer to a vnode or if it is just a negative cache entry.
1660  */
1661 static void
1662 cache_zap_locked(struct namecache *ncp)
1663 {
1664 	struct nchashhead *ncpp;
1665 	struct vnode *dvp, *vp;
1666 
1667 	dvp = ncp->nc_dvp;
1668 	vp = ncp->nc_vp;
1669 
1670 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1671 		cache_assert_vnode_locked(vp);
1672 	cache_assert_vnode_locked(dvp);
1673 	cache_assert_bucket_locked(ncp);
1674 
1675 	cache_ncp_invalidate(ncp);
1676 
1677 	ncpp = NCP2BUCKET(ncp);
1678 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1679 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1680 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1681 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1682 		if (ncp == vp->v_cache_dd) {
1683 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1684 		}
1685 	} else {
1686 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1687 		cache_neg_remove(ncp);
1688 	}
1689 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1690 		if (ncp == dvp->v_cache_dd) {
1691 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1692 		}
1693 	} else {
1694 		LIST_REMOVE(ncp, nc_src);
1695 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1696 			ncp->nc_flag |= NCF_DVDROP;
1697 		}
1698 	}
1699 }
1700 
1701 static void
1702 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1703 {
1704 	struct mtx *blp;
1705 
1706 	MPASS(ncp->nc_dvp == vp);
1707 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1708 	cache_assert_vnode_locked(vp);
1709 
1710 	blp = NCP2BUCKETLOCK(ncp);
1711 	mtx_lock(blp);
1712 	cache_zap_locked(ncp);
1713 	mtx_unlock(blp);
1714 }
1715 
1716 static bool
1717 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1718     struct mtx **vlpp)
1719 {
1720 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1721 	struct mtx *blp;
1722 
1723 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1724 	cache_assert_vnode_locked(vp);
1725 
1726 	if (ncp->nc_flag & NCF_NEGATIVE) {
1727 		if (*vlpp != NULL) {
1728 			mtx_unlock(*vlpp);
1729 			*vlpp = NULL;
1730 		}
1731 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1732 		return (true);
1733 	}
1734 
1735 	pvlp = VP2VNODELOCK(vp);
1736 	blp = NCP2BUCKETLOCK(ncp);
1737 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1738 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1739 
1740 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1741 		to_unlock = *vlpp;
1742 		*vlpp = NULL;
1743 	} else {
1744 		if (*vlpp != NULL) {
1745 			mtx_unlock(*vlpp);
1746 			*vlpp = NULL;
1747 		}
1748 		cache_sort_vnodes(&vlp1, &vlp2);
1749 		if (vlp1 == pvlp) {
1750 			mtx_lock(vlp2);
1751 			to_unlock = vlp2;
1752 		} else {
1753 			if (!mtx_trylock(vlp1))
1754 				goto out_relock;
1755 			to_unlock = vlp1;
1756 		}
1757 	}
1758 	mtx_lock(blp);
1759 	cache_zap_locked(ncp);
1760 	mtx_unlock(blp);
1761 	if (to_unlock != NULL)
1762 		mtx_unlock(to_unlock);
1763 	return (true);
1764 
1765 out_relock:
1766 	mtx_unlock(vlp2);
1767 	mtx_lock(vlp1);
1768 	mtx_lock(vlp2);
1769 	MPASS(*vlpp == NULL);
1770 	*vlpp = vlp1;
1771 	return (false);
1772 }
1773 
1774 /*
1775  * If trylocking failed we can get here. We know enough to take all needed locks
1776  * in the right order and re-lookup the entry.
1777  */
1778 static int
1779 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1780     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1781     struct mtx *blp)
1782 {
1783 	struct namecache *rncp;
1784 	struct mtx *rvlp;
1785 
1786 	cache_assert_bucket_unlocked(ncp);
1787 
1788 	cache_sort_vnodes(&dvlp, &vlp);
1789 	cache_lock_vnodes(dvlp, vlp);
1790 	mtx_lock(blp);
1791 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1792 		if (rncp == ncp && cache_ncp_match(rncp, dvp, cnp))
1793 			break;
1794 	}
1795 	if (rncp == NULL)
1796 		goto out_mismatch;
1797 
1798 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1799 		rvlp = VP2VNODELOCK(rncp->nc_vp);
1800 	else
1801 		rvlp = NULL;
1802 	if (rvlp != vlp)
1803 		goto out_mismatch;
1804 
1805 	cache_zap_locked(rncp);
1806 	mtx_unlock(blp);
1807 	cache_unlock_vnodes(dvlp, vlp);
1808 	atomic_add_long(&zap_bucket_relock_success, 1);
1809 	return (0);
1810 
1811 out_mismatch:
1812 	mtx_unlock(blp);
1813 	cache_unlock_vnodes(dvlp, vlp);
1814 	return (EAGAIN);
1815 }
1816 
1817 static int __noinline
1818 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1819     uint32_t hash, struct mtx *blp)
1820 {
1821 	struct mtx *dvlp, *vlp;
1822 	struct vnode *dvp;
1823 
1824 	cache_assert_bucket_locked(ncp);
1825 
1826 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1827 	vlp = NULL;
1828 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1829 		vlp = VP2VNODELOCK(ncp->nc_vp);
1830 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1831 		cache_zap_locked(ncp);
1832 		mtx_unlock(blp);
1833 		cache_unlock_vnodes(dvlp, vlp);
1834 		return (0);
1835 	}
1836 
1837 	dvp = ncp->nc_dvp;
1838 	mtx_unlock(blp);
1839 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1840 }
1841 
1842 static __noinline int
1843 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1844 {
1845 	struct namecache *ncp;
1846 	struct mtx *blp;
1847 	struct mtx *dvlp, *dvlp2;
1848 	uint32_t hash;
1849 	int error;
1850 
1851 	if (cnp->cn_namelen == 2 &&
1852 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1853 		dvlp = VP2VNODELOCK(dvp);
1854 		dvlp2 = NULL;
1855 		mtx_lock(dvlp);
1856 retry_dotdot:
1857 		ncp = dvp->v_cache_dd;
1858 		if (ncp == NULL) {
1859 			mtx_unlock(dvlp);
1860 			if (dvlp2 != NULL)
1861 				mtx_unlock(dvlp2);
1862 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1863 			return (0);
1864 		}
1865 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1866 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1867 				goto retry_dotdot;
1868 			MPASS(dvp->v_cache_dd == NULL);
1869 			mtx_unlock(dvlp);
1870 			if (dvlp2 != NULL)
1871 				mtx_unlock(dvlp2);
1872 			cache_free(ncp);
1873 		} else {
1874 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1875 			mtx_unlock(dvlp);
1876 			if (dvlp2 != NULL)
1877 				mtx_unlock(dvlp2);
1878 		}
1879 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1880 		return (1);
1881 	}
1882 
1883 	/*
1884 	 * XXX note that access here is completely unlocked with no provisions
1885 	 * to keep the hash allocated. If one is sufficiently unlucky a
1886 	 * parallel cache resize can reallocate the hash, unmap backing pages
1887 	 * and cause the empty check below to fault.
1888 	 *
1889 	 * Fixing this has epsilon priority, but can be done with no overhead
1890 	 * for this codepath with sufficient effort.
1891 	 */
1892 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1893 	blp = HASH2BUCKETLOCK(hash);
1894 retry:
1895 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1896 		goto out_no_entry;
1897 
1898 	mtx_lock(blp);
1899 	ncp = cache_ncp_find(dvp, cnp, hash);
1900 	if (ncp == NULL) {
1901 		mtx_unlock(blp);
1902 		goto out_no_entry;
1903 	}
1904 
1905 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1906 	if (__predict_false(error != 0)) {
1907 		atomic_add_long(&zap_bucket_fail, 1);
1908 		goto retry;
1909 	}
1910 	counter_u64_add(numposzaps, 1);
1911 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1912 	cache_free(ncp);
1913 	return (1);
1914 out_no_entry:
1915 	counter_u64_add(nummisszap, 1);
1916 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1917 	return (0);
1918 }
1919 
1920 static int __noinline
1921 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1922     struct timespec *tsp, int *ticksp)
1923 {
1924 	int ltype;
1925 
1926 	*vpp = dvp;
1927 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1928 	if (tsp != NULL)
1929 		timespecclear(tsp);
1930 	if (ticksp != NULL)
1931 		*ticksp = ticks;
1932 	vrefact(*vpp);
1933 	/*
1934 	 * When we lookup "." we still can be asked to lock it
1935 	 * differently...
1936 	 */
1937 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1938 	if (ltype != VOP_ISLOCKED(*vpp)) {
1939 		if (ltype == LK_EXCLUSIVE) {
1940 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1941 			if (VN_IS_DOOMED((*vpp))) {
1942 				/* forced unmount */
1943 				vrele(*vpp);
1944 				*vpp = NULL;
1945 				return (ENOENT);
1946 			}
1947 		} else
1948 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1949 	}
1950 	return (-1);
1951 }
1952 
1953 static int __noinline
1954 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1955     struct timespec *tsp, int *ticksp)
1956 {
1957 	struct namecache_ts *ncp_ts;
1958 	struct namecache *ncp;
1959 	struct mtx *dvlp;
1960 	enum vgetstate vs;
1961 	int error, ltype;
1962 	bool whiteout;
1963 
1964 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1965 
1966 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1967 		cache_remove_cnp(dvp, cnp);
1968 		return (0);
1969 	}
1970 
1971 retry:
1972 	dvlp = VP2VNODELOCK(dvp);
1973 	mtx_lock(dvlp);
1974 	ncp = dvp->v_cache_dd;
1975 	if (ncp == NULL) {
1976 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1977 		mtx_unlock(dvlp);
1978 		return (0);
1979 	}
1980 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1981 		if (ncp->nc_flag & NCF_NEGATIVE)
1982 			*vpp = NULL;
1983 		else
1984 			*vpp = ncp->nc_vp;
1985 	} else
1986 		*vpp = ncp->nc_dvp;
1987 	if (*vpp == NULL)
1988 		goto negative_success;
1989 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1990 	cache_out_ts(ncp, tsp, ticksp);
1991 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1992 	    NCF_DTS && tsp != NULL) {
1993 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1994 		*tsp = ncp_ts->nc_dotdottime;
1995 	}
1996 
1997 	MPASS(dvp != *vpp);
1998 	ltype = VOP_ISLOCKED(dvp);
1999 	VOP_UNLOCK(dvp);
2000 	vs = vget_prep(*vpp);
2001 	mtx_unlock(dvlp);
2002 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2003 	vn_lock(dvp, ltype | LK_RETRY);
2004 	if (VN_IS_DOOMED(dvp)) {
2005 		if (error == 0)
2006 			vput(*vpp);
2007 		*vpp = NULL;
2008 		return (ENOENT);
2009 	}
2010 	if (error) {
2011 		*vpp = NULL;
2012 		goto retry;
2013 	}
2014 	return (-1);
2015 negative_success:
2016 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
2017 		if (cnp->cn_flags & ISLASTCN) {
2018 			counter_u64_add(numnegzaps, 1);
2019 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
2020 			mtx_unlock(dvlp);
2021 			cache_free(ncp);
2022 			return (0);
2023 		}
2024 	}
2025 
2026 	whiteout = (ncp->nc_flag & NCF_WHITE);
2027 	cache_out_ts(ncp, tsp, ticksp);
2028 	if (cache_neg_hit_prep(ncp))
2029 		cache_neg_promote(ncp);
2030 	else
2031 		cache_neg_hit_finish(ncp);
2032 	mtx_unlock(dvlp);
2033 	if (whiteout)
2034 		cnp->cn_flags |= ISWHITEOUT;
2035 	return (ENOENT);
2036 }
2037 
2038 /**
2039  * Lookup a name in the name cache
2040  *
2041  * # Arguments
2042  *
2043  * - dvp:	Parent directory in which to search.
2044  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
2045  * - cnp:	Parameters of the name search.  The most interesting bits of
2046  *   		the cn_flags field have the following meanings:
2047  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
2048  *   			it up.
2049  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
2050  * - tsp:	Return storage for cache timestamp.  On a successful (positive
2051  *   		or negative) lookup, tsp will be filled with any timespec that
2052  *   		was stored when this cache entry was created.  However, it will
2053  *   		be clear for "." entries.
2054  * - ticks:	Return storage for alternate cache timestamp.  On a successful
2055  *   		(positive or negative) lookup, it will contain the ticks value
2056  *   		that was current when the cache entry was created, unless cnp
2057  *   		was ".".
2058  *
2059  * Either both tsp and ticks have to be provided or neither of them.
2060  *
2061  * # Returns
2062  *
2063  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
2064  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
2065  *		to a forced unmount.  vpp will not be modified.  If the entry
2066  *		is a whiteout, then the ISWHITEOUT flag will be set in
2067  *		cnp->cn_flags.
2068  * - 0:		A cache miss.  vpp will not be modified.
2069  *
2070  * # Locking
2071  *
2072  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
2073  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
2074  * lock is not recursively acquired.
2075  */
2076 static int __noinline
2077 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2078     struct timespec *tsp, int *ticksp)
2079 {
2080 	struct namecache *ncp;
2081 	struct mtx *blp;
2082 	uint32_t hash;
2083 	enum vgetstate vs;
2084 	int error;
2085 	bool whiteout;
2086 
2087 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2088 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
2089 
2090 retry:
2091 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2092 	blp = HASH2BUCKETLOCK(hash);
2093 	mtx_lock(blp);
2094 
2095 	ncp = cache_ncp_find(dvp, cnp, hash);
2096 	if (__predict_false(ncp == NULL)) {
2097 		mtx_unlock(blp);
2098 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2099 		counter_u64_add(nummiss, 1);
2100 		return (0);
2101 	}
2102 
2103 	if (ncp->nc_flag & NCF_NEGATIVE)
2104 		goto negative_success;
2105 
2106 	counter_u64_add(numposhits, 1);
2107 	*vpp = ncp->nc_vp;
2108 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2109 	cache_out_ts(ncp, tsp, ticksp);
2110 	MPASS(dvp != *vpp);
2111 	vs = vget_prep(*vpp);
2112 	mtx_unlock(blp);
2113 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2114 	if (error) {
2115 		*vpp = NULL;
2116 		goto retry;
2117 	}
2118 	return (-1);
2119 negative_success:
2120 	/*
2121 	 * We don't get here with regular lookup apart from corner cases.
2122 	 */
2123 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
2124 		if (cnp->cn_flags & ISLASTCN) {
2125 			counter_u64_add(numnegzaps, 1);
2126 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
2127 			if (__predict_false(error != 0)) {
2128 				atomic_add_long(&zap_bucket_fail2, 1);
2129 				goto retry;
2130 			}
2131 			cache_free(ncp);
2132 			return (0);
2133 		}
2134 	}
2135 
2136 	whiteout = (ncp->nc_flag & NCF_WHITE);
2137 	cache_out_ts(ncp, tsp, ticksp);
2138 	if (cache_neg_hit_prep(ncp))
2139 		cache_neg_promote(ncp);
2140 	else
2141 		cache_neg_hit_finish(ncp);
2142 	mtx_unlock(blp);
2143 	if (whiteout)
2144 		cnp->cn_flags |= ISWHITEOUT;
2145 	return (ENOENT);
2146 }
2147 
2148 int
2149 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2150     struct timespec *tsp, int *ticksp)
2151 {
2152 	struct namecache *ncp;
2153 	uint32_t hash;
2154 	enum vgetstate vs;
2155 	int error;
2156 	bool whiteout, neg_promote;
2157 	u_short nc_flag;
2158 
2159 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2160 
2161 #ifdef DEBUG_CACHE
2162 	if (__predict_false(!doingcache)) {
2163 		cnp->cn_flags &= ~MAKEENTRY;
2164 		return (0);
2165 	}
2166 #endif
2167 
2168 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2169 		if (cnp->cn_namelen == 1)
2170 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2171 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2172 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2173 	}
2174 
2175 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2176 
2177 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2178 		cache_remove_cnp(dvp, cnp);
2179 		return (0);
2180 	}
2181 
2182 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2183 	vfs_smr_enter();
2184 
2185 	ncp = cache_ncp_find(dvp, cnp, hash);
2186 	if (__predict_false(ncp == NULL)) {
2187 		vfs_smr_exit();
2188 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2189 		counter_u64_add(nummiss, 1);
2190 		return (0);
2191 	}
2192 
2193 	nc_flag = atomic_load_char(&ncp->nc_flag);
2194 	if (nc_flag & NCF_NEGATIVE)
2195 		goto negative_success;
2196 
2197 	counter_u64_add(numposhits, 1);
2198 	*vpp = ncp->nc_vp;
2199 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2200 	cache_out_ts(ncp, tsp, ticksp);
2201 	MPASS(dvp != *vpp);
2202 	if (!cache_ncp_canuse(ncp)) {
2203 		vfs_smr_exit();
2204 		*vpp = NULL;
2205 		goto out_fallback;
2206 	}
2207 	vs = vget_prep_smr(*vpp);
2208 	vfs_smr_exit();
2209 	if (__predict_false(vs == VGET_NONE)) {
2210 		*vpp = NULL;
2211 		goto out_fallback;
2212 	}
2213 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2214 	if (error) {
2215 		*vpp = NULL;
2216 		goto out_fallback;
2217 	}
2218 	return (-1);
2219 negative_success:
2220 	if (cnp->cn_nameiop == CREATE) {
2221 		if (cnp->cn_flags & ISLASTCN) {
2222 			vfs_smr_exit();
2223 			goto out_fallback;
2224 		}
2225 	}
2226 
2227 	cache_out_ts(ncp, tsp, ticksp);
2228 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2229 	neg_promote = cache_neg_hit_prep(ncp);
2230 	if (!cache_ncp_canuse(ncp)) {
2231 		cache_neg_hit_abort(ncp);
2232 		vfs_smr_exit();
2233 		goto out_fallback;
2234 	}
2235 	if (neg_promote) {
2236 		vfs_smr_exit();
2237 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2238 			goto out_fallback;
2239 	} else {
2240 		cache_neg_hit_finish(ncp);
2241 		vfs_smr_exit();
2242 	}
2243 	if (whiteout)
2244 		cnp->cn_flags |= ISWHITEOUT;
2245 	return (ENOENT);
2246 out_fallback:
2247 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2248 }
2249 
2250 struct celockstate {
2251 	struct mtx *vlp[3];
2252 	struct mtx *blp[2];
2253 };
2254 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2255 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2256 
2257 static inline void
2258 cache_celockstate_init(struct celockstate *cel)
2259 {
2260 
2261 	bzero(cel, sizeof(*cel));
2262 }
2263 
2264 static void
2265 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2266     struct vnode *dvp)
2267 {
2268 	struct mtx *vlp1, *vlp2;
2269 
2270 	MPASS(cel->vlp[0] == NULL);
2271 	MPASS(cel->vlp[1] == NULL);
2272 	MPASS(cel->vlp[2] == NULL);
2273 
2274 	MPASS(vp != NULL || dvp != NULL);
2275 
2276 	vlp1 = VP2VNODELOCK(vp);
2277 	vlp2 = VP2VNODELOCK(dvp);
2278 	cache_sort_vnodes(&vlp1, &vlp2);
2279 
2280 	if (vlp1 != NULL) {
2281 		mtx_lock(vlp1);
2282 		cel->vlp[0] = vlp1;
2283 	}
2284 	mtx_lock(vlp2);
2285 	cel->vlp[1] = vlp2;
2286 }
2287 
2288 static void
2289 cache_unlock_vnodes_cel(struct celockstate *cel)
2290 {
2291 
2292 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2293 
2294 	if (cel->vlp[0] != NULL)
2295 		mtx_unlock(cel->vlp[0]);
2296 	if (cel->vlp[1] != NULL)
2297 		mtx_unlock(cel->vlp[1]);
2298 	if (cel->vlp[2] != NULL)
2299 		mtx_unlock(cel->vlp[2]);
2300 }
2301 
2302 static bool
2303 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2304 {
2305 	struct mtx *vlp;
2306 	bool ret;
2307 
2308 	cache_assert_vlp_locked(cel->vlp[0]);
2309 	cache_assert_vlp_locked(cel->vlp[1]);
2310 	MPASS(cel->vlp[2] == NULL);
2311 
2312 	MPASS(vp != NULL);
2313 	vlp = VP2VNODELOCK(vp);
2314 
2315 	ret = true;
2316 	if (vlp >= cel->vlp[1]) {
2317 		mtx_lock(vlp);
2318 	} else {
2319 		if (mtx_trylock(vlp))
2320 			goto out;
2321 		cache_unlock_vnodes_cel(cel);
2322 		atomic_add_long(&cache_lock_vnodes_cel_3_failures, 1);
2323 		if (vlp < cel->vlp[0]) {
2324 			mtx_lock(vlp);
2325 			mtx_lock(cel->vlp[0]);
2326 			mtx_lock(cel->vlp[1]);
2327 		} else {
2328 			if (cel->vlp[0] != NULL)
2329 				mtx_lock(cel->vlp[0]);
2330 			mtx_lock(vlp);
2331 			mtx_lock(cel->vlp[1]);
2332 		}
2333 		ret = false;
2334 	}
2335 out:
2336 	cel->vlp[2] = vlp;
2337 	return (ret);
2338 }
2339 
2340 static void
2341 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2342     struct mtx *blp2)
2343 {
2344 
2345 	MPASS(cel->blp[0] == NULL);
2346 	MPASS(cel->blp[1] == NULL);
2347 
2348 	cache_sort_vnodes(&blp1, &blp2);
2349 
2350 	if (blp1 != NULL) {
2351 		mtx_lock(blp1);
2352 		cel->blp[0] = blp1;
2353 	}
2354 	mtx_lock(blp2);
2355 	cel->blp[1] = blp2;
2356 }
2357 
2358 static void
2359 cache_unlock_buckets_cel(struct celockstate *cel)
2360 {
2361 
2362 	if (cel->blp[0] != NULL)
2363 		mtx_unlock(cel->blp[0]);
2364 	mtx_unlock(cel->blp[1]);
2365 }
2366 
2367 /*
2368  * Lock part of the cache affected by the insertion.
2369  *
2370  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2371  * However, insertion can result in removal of an old entry. In this
2372  * case we have an additional vnode and bucketlock pair to lock.
2373  *
2374  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2375  * preserving the locking order (smaller address first).
2376  */
2377 static void
2378 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2379     uint32_t hash)
2380 {
2381 	struct namecache *ncp;
2382 	struct mtx *blps[2];
2383 	u_char nc_flag;
2384 
2385 	blps[0] = HASH2BUCKETLOCK(hash);
2386 	for (;;) {
2387 		blps[1] = NULL;
2388 		cache_lock_vnodes_cel(cel, dvp, vp);
2389 		if (vp == NULL || vp->v_type != VDIR)
2390 			break;
2391 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2392 		if (ncp == NULL)
2393 			break;
2394 		nc_flag = atomic_load_char(&ncp->nc_flag);
2395 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2396 			break;
2397 		MPASS(ncp->nc_dvp == vp);
2398 		blps[1] = NCP2BUCKETLOCK(ncp);
2399 		if ((nc_flag & NCF_NEGATIVE) != 0)
2400 			break;
2401 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2402 			break;
2403 		/*
2404 		 * All vnodes got re-locked. Re-validate the state and if
2405 		 * nothing changed we are done. Otherwise restart.
2406 		 */
2407 		if (ncp == vp->v_cache_dd &&
2408 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2409 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2410 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2411 			break;
2412 		cache_unlock_vnodes_cel(cel);
2413 		cel->vlp[0] = NULL;
2414 		cel->vlp[1] = NULL;
2415 		cel->vlp[2] = NULL;
2416 	}
2417 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2418 }
2419 
2420 static void
2421 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2422     uint32_t hash)
2423 {
2424 	struct namecache *ncp;
2425 	struct mtx *blps[2];
2426 	u_char nc_flag;
2427 
2428 	blps[0] = HASH2BUCKETLOCK(hash);
2429 	for (;;) {
2430 		blps[1] = NULL;
2431 		cache_lock_vnodes_cel(cel, dvp, vp);
2432 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2433 		if (ncp == NULL)
2434 			break;
2435 		nc_flag = atomic_load_char(&ncp->nc_flag);
2436 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2437 			break;
2438 		MPASS(ncp->nc_dvp == dvp);
2439 		blps[1] = NCP2BUCKETLOCK(ncp);
2440 		if ((nc_flag & NCF_NEGATIVE) != 0)
2441 			break;
2442 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2443 			break;
2444 		if (ncp == dvp->v_cache_dd &&
2445 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2446 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2447 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2448 			break;
2449 		cache_unlock_vnodes_cel(cel);
2450 		cel->vlp[0] = NULL;
2451 		cel->vlp[1] = NULL;
2452 		cel->vlp[2] = NULL;
2453 	}
2454 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2455 }
2456 
2457 static void
2458 cache_enter_unlock(struct celockstate *cel)
2459 {
2460 
2461 	cache_unlock_buckets_cel(cel);
2462 	cache_unlock_vnodes_cel(cel);
2463 }
2464 
2465 static void __noinline
2466 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2467     struct componentname *cnp)
2468 {
2469 	struct celockstate cel;
2470 	struct namecache *ncp;
2471 	uint32_t hash;
2472 	int len;
2473 
2474 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2475 		return;
2476 	len = cnp->cn_namelen;
2477 	cache_celockstate_init(&cel);
2478 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2479 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2480 	ncp = dvp->v_cache_dd;
2481 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2482 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2483 		cache_zap_locked(ncp);
2484 	} else {
2485 		ncp = NULL;
2486 	}
2487 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2488 	cache_enter_unlock(&cel);
2489 	if (ncp != NULL)
2490 		cache_free(ncp);
2491 }
2492 
2493 /*
2494  * Add an entry to the cache.
2495  */
2496 void
2497 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2498     struct timespec *tsp, struct timespec *dtsp)
2499 {
2500 	struct celockstate cel;
2501 	struct namecache *ncp, *n2, *ndd;
2502 	struct namecache_ts *ncp_ts;
2503 	uint32_t hash;
2504 	int flag;
2505 	int len;
2506 
2507 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2508 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2509 	    NAME_MAX));
2510 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2511 	VNPASS(dvp->v_type != VNON, dvp);
2512 	if (vp != NULL) {
2513 		VNPASS(!VN_IS_DOOMED(vp), vp);
2514 		VNPASS(vp->v_type != VNON, vp);
2515 	}
2516 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2517 		KASSERT(dvp == vp,
2518 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2519 		    dvp, vp));
2520 	} else {
2521 		KASSERT(dvp != vp,
2522 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2523 		    cnp->cn_nameptr, dvp));
2524 	}
2525 
2526 #ifdef DEBUG_CACHE
2527 	if (__predict_false(!doingcache))
2528 		return;
2529 #endif
2530 
2531 	flag = 0;
2532 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2533 		if (cnp->cn_namelen == 1)
2534 			return;
2535 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2536 			cache_enter_dotdot_prep(dvp, vp, cnp);
2537 			flag = NCF_ISDOTDOT;
2538 		}
2539 	}
2540 
2541 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2542 	if (ncp == NULL)
2543 		return;
2544 
2545 	cache_celockstate_init(&cel);
2546 	ndd = NULL;
2547 	ncp_ts = NULL;
2548 
2549 	/*
2550 	 * Calculate the hash key and setup as much of the new
2551 	 * namecache entry as possible before acquiring the lock.
2552 	 */
2553 	ncp->nc_flag = flag | NCF_WIP;
2554 	ncp->nc_vp = vp;
2555 	if (vp == NULL)
2556 		cache_neg_init(ncp);
2557 	ncp->nc_dvp = dvp;
2558 	if (tsp != NULL) {
2559 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2560 		ncp_ts->nc_time = *tsp;
2561 		ncp_ts->nc_ticks = ticks;
2562 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2563 		if (dtsp != NULL) {
2564 			ncp_ts->nc_dotdottime = *dtsp;
2565 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2566 		}
2567 	}
2568 	len = ncp->nc_nlen = cnp->cn_namelen;
2569 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2570 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2571 	ncp->nc_name[len] = '\0';
2572 	cache_enter_lock(&cel, dvp, vp, hash);
2573 
2574 	/*
2575 	 * See if this vnode or negative entry is already in the cache
2576 	 * with this name.  This can happen with concurrent lookups of
2577 	 * the same path name.
2578 	 */
2579 	n2 = cache_ncp_find(dvp, cnp, hash);
2580 	if (n2 != NULL) {
2581 		MPASS(cache_ncp_canuse(n2));
2582 		if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2583 			KASSERT(vp == NULL,
2584 			    ("%s: found entry pointing to a different vnode "
2585 			    "(%p != %p); name [%s]",
2586 			    __func__, NULL, vp, cnp->cn_nameptr));
2587 		else
2588 			KASSERT(n2->nc_vp == vp,
2589 			    ("%s: found entry pointing to a different vnode "
2590 			    "(%p != %p); name [%s]",
2591 			    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2592 		/*
2593 		 * Entries are supposed to be immutable unless in the
2594 		 * process of getting destroyed. Accommodating for
2595 		 * changing timestamps is possible but not worth it.
2596 		 * This should be harmless in terms of correctness, in
2597 		 * the worst case resulting in an earlier expiration.
2598 		 * Alternatively, the found entry can be replaced
2599 		 * altogether.
2600 		 */
2601 		MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) ==
2602 		    (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2603 #if 0
2604 		if (tsp != NULL) {
2605 			KASSERT((n2->nc_flag & NCF_TS) != 0,
2606 			    ("no NCF_TS"));
2607 			n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2608 			n2_ts->nc_time = ncp_ts->nc_time;
2609 			n2_ts->nc_ticks = ncp_ts->nc_ticks;
2610 			if (dtsp != NULL) {
2611 				n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2612 				n2_ts->nc_nc.nc_flag |= NCF_DTS;
2613 			}
2614 		}
2615 #endif
2616 		SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2617 		    vp);
2618 		goto out_unlock_free;
2619 	}
2620 
2621 	if (flag == NCF_ISDOTDOT) {
2622 		/*
2623 		 * See if we are trying to add .. entry, but some other lookup
2624 		 * has populated v_cache_dd pointer already.
2625 		 */
2626 		if (dvp->v_cache_dd != NULL)
2627 			goto out_unlock_free;
2628 		KASSERT(vp == NULL || vp->v_type == VDIR,
2629 		    ("wrong vnode type %p", vp));
2630 		atomic_thread_fence_rel();
2631 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2632 	} else if (vp != NULL) {
2633 		/*
2634 		 * Take the slow path in INOTIFY().  This flag will be lazily
2635 		 * cleared by cache_vop_inotify() once all directories referring
2636 		 * to vp are unwatched.
2637 		 */
2638 		if (__predict_false((vn_irflag_read(dvp) & VIRF_INOTIFY) != 0))
2639 			vn_irflag_set_cond(vp, VIRF_INOTIFY_PARENT);
2640 
2641 		/*
2642 		 * For this case, the cache entry maps both the
2643 		 * directory name in it and the name ".." for the
2644 		 * directory's parent.
2645 		 */
2646 		if ((ndd = vp->v_cache_dd) != NULL) {
2647 			if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2648 				cache_zap_locked(ndd);
2649 			else
2650 				ndd = NULL;
2651 		}
2652 		atomic_thread_fence_rel();
2653 		atomic_store_ptr(&vp->v_cache_dd, ncp);
2654 	}
2655 
2656 	if (flag != NCF_ISDOTDOT) {
2657 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2658 			cache_hold_vnode(dvp);
2659 		}
2660 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2661 	}
2662 
2663 	/*
2664 	 * If the entry is "negative", we place it into the
2665 	 * "negative" cache queue, otherwise, we place it into the
2666 	 * destination vnode's cache entries queue.
2667 	 */
2668 	if (vp != NULL) {
2669 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2670 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2671 		    vp);
2672 	} else {
2673 		if (cnp->cn_flags & ISWHITEOUT)
2674 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2675 		cache_neg_insert(ncp);
2676 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2677 		    ncp->nc_name);
2678 	}
2679 
2680 	/*
2681 	 * Insert the new namecache entry into the appropriate chain
2682 	 * within the cache entries table.
2683 	 */
2684 	CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash);
2685 
2686 	atomic_thread_fence_rel();
2687 	/*
2688 	 * Mark the entry as fully constructed.
2689 	 * It is immutable past this point until its removal.
2690 	 */
2691 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2692 
2693 	cache_enter_unlock(&cel);
2694 	if (ndd != NULL)
2695 		cache_free(ndd);
2696 	return;
2697 out_unlock_free:
2698 	cache_enter_unlock(&cel);
2699 	cache_free(ncp);
2700 	return;
2701 }
2702 
2703 /*
2704  * A variant of the above accepting flags.
2705  *
2706  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2707  *
2708  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2709  * happens to match and it is doing it in an inefficient manner. It was added
2710  * to accommodate NFS which runs into a case where the target for a given name
2711  * may change from under it. Note this does nothing to solve the following
2712  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2713  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2714  */
2715 void
2716 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2717     struct timespec *tsp, struct timespec *dtsp, int flags)
2718 {
2719 
2720 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2721 
2722 	if (flags & VFS_CACHE_DROPOLD)
2723 		cache_remove_cnp(dvp, cnp);
2724 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2725 }
2726 
2727 static u_long
2728 cache_roundup_2(u_long val)
2729 {
2730 	u_long res;
2731 
2732 	for (res = 1; res <= val; res <<= 1)
2733 		continue;
2734 
2735 	return (res);
2736 }
2737 
2738 static struct nchashhead *
2739 nchinittbl(u_long elements, u_long *hashmask)
2740 {
2741 	struct nchashhead *hashtbl;
2742 	u_long hashsize, i;
2743 
2744 	hashsize = cache_roundup_2(elements) / 2;
2745 
2746 	hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2747 	for (i = 0; i < hashsize; i++)
2748 		CK_SLIST_INIT(&hashtbl[i]);
2749 	*hashmask = hashsize - 1;
2750 	return (hashtbl);
2751 }
2752 
2753 static void
2754 ncfreetbl(struct nchashhead *hashtbl)
2755 {
2756 
2757 	free(hashtbl, M_VFSCACHE);
2758 }
2759 
2760 /*
2761  * Name cache initialization, from vfs_init() when we are booting
2762  */
2763 static void
2764 nchinit(void *dummy __unused)
2765 {
2766 	u_int i;
2767 
2768 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2769 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2770 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2771 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2772 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2773 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2774 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2775 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2776 
2777 	VFS_SMR_ZONE_SET(cache_zone_small);
2778 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2779 	VFS_SMR_ZONE_SET(cache_zone_large);
2780 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2781 
2782 	ncsize = desiredvnodes * ncsizefactor;
2783 	cache_recalc_neg_min();
2784 	nchashtbl = nchinittbl(ncsize, &nchash);
2785 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2786 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2787 		ncbuckethash = 7;
2788 	if (ncbuckethash > nchash)
2789 		ncbuckethash = nchash;
2790 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2791 	    M_WAITOK | M_ZERO);
2792 	for (i = 0; i < numbucketlocks; i++)
2793 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2794 	ncvnodehash = ncbuckethash;
2795 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2796 	    M_WAITOK | M_ZERO);
2797 	for (i = 0; i < numvnodelocks; i++)
2798 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2799 
2800 	for (i = 0; i < numneglists; i++) {
2801 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2802 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2803 		TAILQ_INIT(&neglists[i].nl_list);
2804 		TAILQ_INIT(&neglists[i].nl_hotlist);
2805 	}
2806 }
2807 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2808 
2809 void
2810 cache_vnode_init(struct vnode *vp)
2811 {
2812 
2813 	LIST_INIT(&vp->v_cache_src);
2814 	TAILQ_INIT(&vp->v_cache_dst);
2815 	vp->v_cache_dd = NULL;
2816 	cache_prehash(vp);
2817 }
2818 
2819 /*
2820  * Induce transient cache misses for lockless operation in cache_lookup() by
2821  * using a temporary hash table.
2822  *
2823  * This will force a fs lookup.
2824  *
2825  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2826  * to observe all CPUs not performing the lookup.
2827  */
2828 static void
2829 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2830 {
2831 
2832 	MPASS(temphash < nchash);
2833 	/*
2834 	 * Change the size. The new size is smaller and can safely be used
2835 	 * against the existing table. All lookups which now hash wrong will
2836 	 * result in a cache miss, which all callers are supposed to know how
2837 	 * to handle.
2838 	 */
2839 	atomic_store_long(&nchash, temphash);
2840 	atomic_thread_fence_rel();
2841 	vfs_smr_synchronize();
2842 	/*
2843 	 * At this point everyone sees the updated hash value, but they still
2844 	 * see the old table.
2845 	 */
2846 	atomic_store_ptr(&nchashtbl, temptbl);
2847 	atomic_thread_fence_rel();
2848 	vfs_smr_synchronize();
2849 	/*
2850 	 * At this point everyone sees the updated table pointer and size pair.
2851 	 */
2852 }
2853 
2854 /*
2855  * Set the new hash table.
2856  *
2857  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2858  * lockless operation in cache_lookup().
2859  */
2860 static void
2861 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2862 {
2863 
2864 	MPASS(nchash < new_hash);
2865 	/*
2866 	 * Change the pointer first. This wont result in out of bounds access
2867 	 * since the temporary table is guaranteed to be smaller.
2868 	 */
2869 	atomic_store_ptr(&nchashtbl, new_tbl);
2870 	atomic_thread_fence_rel();
2871 	vfs_smr_synchronize();
2872 	/*
2873 	 * At this point everyone sees the updated pointer value, but they
2874 	 * still see the old size.
2875 	 */
2876 	atomic_store_long(&nchash, new_hash);
2877 	atomic_thread_fence_rel();
2878 	vfs_smr_synchronize();
2879 	/*
2880 	 * At this point everyone sees the updated table pointer and size pair.
2881 	 */
2882 }
2883 
2884 void
2885 cache_changesize(u_long newmaxvnodes)
2886 {
2887 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2888 	u_long new_nchash, old_nchash, temphash;
2889 	struct namecache *ncp;
2890 	uint32_t hash;
2891 	u_long newncsize;
2892 	u_long i;
2893 
2894 	newncsize = newmaxvnodes * ncsizefactor;
2895 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2896 	if (newmaxvnodes < numbucketlocks)
2897 		newmaxvnodes = numbucketlocks;
2898 
2899 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2900 	/* If same hash table size, nothing to do */
2901 	if (nchash == new_nchash) {
2902 		ncfreetbl(new_nchashtbl);
2903 		return;
2904 	}
2905 
2906 	temptbl = nchinittbl(1, &temphash);
2907 
2908 	/*
2909 	 * Move everything from the old hash table to the new table.
2910 	 * None of the namecache entries in the table can be removed
2911 	 * because to do so, they have to be removed from the hash table.
2912 	 */
2913 	cache_lock_all_vnodes();
2914 	cache_lock_all_buckets();
2915 	old_nchashtbl = nchashtbl;
2916 	old_nchash = nchash;
2917 	cache_changesize_set_temp(temptbl, temphash);
2918 	for (i = 0; i <= old_nchash; i++) {
2919 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2920 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2921 			    ncp->nc_dvp);
2922 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2923 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2924 		}
2925 	}
2926 	ncsize = newncsize;
2927 	cache_recalc_neg_min();
2928 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2929 	cache_unlock_all_buckets();
2930 	cache_unlock_all_vnodes();
2931 	ncfreetbl(old_nchashtbl);
2932 	ncfreetbl(temptbl);
2933 }
2934 
2935 /*
2936  * Remove all entries from and to a particular vnode.
2937  */
2938 static void
2939 cache_purge_impl(struct vnode *vp)
2940 {
2941 	struct cache_freebatch batch;
2942 	struct namecache *ncp;
2943 	struct mtx *vlp, *vlp2;
2944 
2945 	TAILQ_INIT(&batch);
2946 	vlp = VP2VNODELOCK(vp);
2947 	vlp2 = NULL;
2948 	mtx_lock(vlp);
2949 retry:
2950 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2951 		ncp = LIST_FIRST(&vp->v_cache_src);
2952 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2953 			goto retry;
2954 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2955 	}
2956 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2957 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2958 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2959 			goto retry;
2960 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2961 	}
2962 	ncp = vp->v_cache_dd;
2963 	if (ncp != NULL) {
2964 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2965 		   ("lost dotdot link"));
2966 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2967 			goto retry;
2968 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2969 	}
2970 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2971 	mtx_unlock(vlp);
2972 	if (vlp2 != NULL)
2973 		mtx_unlock(vlp2);
2974 	cache_free_batch(&batch);
2975 }
2976 
2977 /*
2978  * Opportunistic check to see if there is anything to do.
2979  */
2980 static bool
2981 cache_has_entries(struct vnode *vp)
2982 {
2983 
2984 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2985 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2986 		return (false);
2987 	return (true);
2988 }
2989 
2990 void
2991 cache_purge(struct vnode *vp)
2992 {
2993 
2994 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2995 	if (!cache_has_entries(vp))
2996 		return;
2997 	cache_purge_impl(vp);
2998 }
2999 
3000 /*
3001  * Only to be used by vgone.
3002  */
3003 void
3004 cache_purge_vgone(struct vnode *vp)
3005 {
3006 	struct mtx *vlp;
3007 
3008 	VNPASS(VN_IS_DOOMED(vp), vp);
3009 	if (cache_has_entries(vp)) {
3010 		cache_purge_impl(vp);
3011 		return;
3012 	}
3013 
3014 	/*
3015 	 * Serialize against a potential thread doing cache_purge.
3016 	 */
3017 	vlp = VP2VNODELOCK(vp);
3018 	mtx_wait_unlocked(vlp);
3019 	if (cache_has_entries(vp)) {
3020 		cache_purge_impl(vp);
3021 		return;
3022 	}
3023 	return;
3024 }
3025 
3026 /*
3027  * Remove all negative entries for a particular directory vnode.
3028  */
3029 void
3030 cache_purge_negative(struct vnode *vp)
3031 {
3032 	struct cache_freebatch batch;
3033 	struct namecache *ncp, *nnp;
3034 	struct mtx *vlp;
3035 
3036 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
3037 	if (LIST_EMPTY(&vp->v_cache_src))
3038 		return;
3039 	TAILQ_INIT(&batch);
3040 	vlp = VP2VNODELOCK(vp);
3041 	mtx_lock(vlp);
3042 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
3043 		if (!(ncp->nc_flag & NCF_NEGATIVE))
3044 			continue;
3045 		cache_zap_negative_locked_vnode_kl(ncp, vp);
3046 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
3047 	}
3048 	mtx_unlock(vlp);
3049 	cache_free_batch(&batch);
3050 }
3051 
3052 /*
3053  * Entry points for modifying VOP operations.
3054  */
3055 void
3056 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
3057     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
3058 {
3059 
3060 	ASSERT_VOP_IN_SEQC(fdvp);
3061 	ASSERT_VOP_IN_SEQC(fvp);
3062 	ASSERT_VOP_IN_SEQC(tdvp);
3063 	if (tvp != NULL)
3064 		ASSERT_VOP_IN_SEQC(tvp);
3065 
3066 	cache_purge(fvp);
3067 	if (tvp != NULL) {
3068 		cache_purge(tvp);
3069 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
3070 		    ("%s: lingering negative entry", __func__));
3071 	} else {
3072 		cache_remove_cnp(tdvp, tcnp);
3073 	}
3074 
3075 	/*
3076 	 * TODO
3077 	 *
3078 	 * Historically renaming was always purging all revelang entries,
3079 	 * but that's quite wasteful. In particular turns out that in many cases
3080 	 * the target file is immediately accessed after rename, inducing a cache
3081 	 * miss.
3082 	 *
3083 	 * Recode this to reduce relocking and reuse the existing entry (if any)
3084 	 * instead of just removing it above and allocating a new one here.
3085 	 */
3086 	cache_enter(tdvp, fvp, tcnp);
3087 }
3088 
3089 void
3090 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
3091 {
3092 
3093 	ASSERT_VOP_IN_SEQC(dvp);
3094 	ASSERT_VOP_IN_SEQC(vp);
3095 	cache_purge(vp);
3096 }
3097 
3098 #ifdef INVARIANTS
3099 /*
3100  * Validate that if an entry exists it matches.
3101  */
3102 void
3103 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
3104 {
3105 	struct namecache *ncp;
3106 	struct mtx *blp;
3107 	uint32_t hash;
3108 
3109 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
3110 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
3111 		return;
3112 	blp = HASH2BUCKETLOCK(hash);
3113 	mtx_lock(blp);
3114 	ncp = cache_ncp_find(dvp, cnp, hash);
3115 	if (ncp != NULL && ncp->nc_vp != vp) {
3116 		panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
3117 		    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
3118 	}
3119 	mtx_unlock(blp);
3120 }
3121 
3122 void
3123 cache_assert_no_entries(struct vnode *vp)
3124 {
3125 
3126 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
3127 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
3128 	VNPASS(vp->v_cache_dd == NULL, vp);
3129 }
3130 #endif
3131 
3132 /*
3133  * Flush all entries referencing a particular filesystem.
3134  */
3135 void
3136 cache_purgevfs(struct mount *mp)
3137 {
3138 	struct vnode *vp, *mvp;
3139 	size_t visited __sdt_used, purged __sdt_used;
3140 
3141 	visited = purged = 0;
3142 	/*
3143 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3144 	 * support filtering and avoid the interlock to begin with.
3145 	 */
3146 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3147 		visited++;
3148 		if (!cache_has_entries(vp)) {
3149 			VI_UNLOCK(vp);
3150 			continue;
3151 		}
3152 		vholdl(vp);
3153 		VI_UNLOCK(vp);
3154 		cache_purge(vp);
3155 		purged++;
3156 		vdrop(vp);
3157 	}
3158 
3159 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3160 }
3161 
3162 /*
3163  * Perform canonical checks and cache lookup and pass on to filesystem
3164  * through the vop_cachedlookup only if needed.
3165  */
3166 
3167 int
3168 vfs_cache_lookup(struct vop_lookup_args *ap)
3169 {
3170 	struct vnode *dvp;
3171 	int error;
3172 	struct vnode **vpp = ap->a_vpp;
3173 	struct componentname *cnp = ap->a_cnp;
3174 	int flags = cnp->cn_flags;
3175 
3176 	*vpp = NULL;
3177 	dvp = ap->a_dvp;
3178 
3179 	if (dvp->v_type != VDIR)
3180 		return (ENOTDIR);
3181 
3182 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3183 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3184 		return (EROFS);
3185 
3186 	error = vn_dir_check_exec(dvp, cnp);
3187 	if (error != 0)
3188 		return (error);
3189 
3190 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3191 	if (error == 0)
3192 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3193 	if (error == -1)
3194 		return (0);
3195 	return (error);
3196 }
3197 
3198 /* Implementation of the getcwd syscall. */
3199 int
3200 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3201 {
3202 	char *buf, *retbuf;
3203 	size_t buflen;
3204 	int error;
3205 
3206 	buflen = uap->buflen;
3207 	if (__predict_false(buflen < 2))
3208 		return (EINVAL);
3209 	if (buflen > MAXPATHLEN)
3210 		buflen = MAXPATHLEN;
3211 
3212 	buf = uma_zalloc(namei_zone, M_WAITOK);
3213 	error = vn_getcwd(buf, &retbuf, &buflen);
3214 	if (error == 0)
3215 		error = copyout(retbuf, uap->buf, buflen);
3216 	uma_zfree(namei_zone, buf);
3217 	return (error);
3218 }
3219 
3220 int
3221 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3222 {
3223 	struct pwd *pwd;
3224 	int error;
3225 
3226 	vfs_smr_enter();
3227 	pwd = pwd_get_smr();
3228 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3229 	    buflen, 0);
3230 	VFS_SMR_ASSERT_NOT_ENTERED();
3231 	if (error < 0) {
3232 		pwd = pwd_hold(curthread);
3233 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3234 		    retbuf, buflen);
3235 		pwd_drop(pwd);
3236 	}
3237 
3238 #ifdef KTRACE
3239 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3240 		ktrnamei(*retbuf);
3241 #endif
3242 	return (error);
3243 }
3244 
3245 /*
3246  * Canonicalize a path by walking it forward and back.
3247  *
3248  * BUGS:
3249  * - Nothing guarantees the integrity of the entire chain. Consider the case
3250  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3251  *   "foo" into "quux" during the backwards walk. The result will be
3252  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3253  *   walk in userspace. Moreover, the path we return is inaccessible if the
3254  *   calling thread lacks permission to traverse "quux".
3255  */
3256 static int
3257 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3258     size_t size, int flags, enum uio_seg pathseg)
3259 {
3260 	struct nameidata nd;
3261 	char *retbuf, *freebuf;
3262 	int error;
3263 
3264 	if (flags != 0)
3265 		return (EINVAL);
3266 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3267 	    pathseg, path, fd, &cap_fstat_rights);
3268 	if ((error = namei(&nd)) != 0)
3269 		return (error);
3270 
3271 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
3272 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
3273 		struct vnode *covered_vp;
3274 
3275 		/*
3276 		 * This happens if vp is a file mount. The call to
3277 		 * vn_fullpath_hardlink can panic if path resolution can't be
3278 		 * handled without the directory.
3279 		 *
3280 		 * To resolve this, we find the vnode which was mounted on -
3281 		 * this should have a unique global path since we disallow
3282 		 * mounting on linked files.
3283 		 */
3284 		error = vn_lock(nd.ni_vp, LK_SHARED);
3285 		if (error != 0)
3286 			goto out;
3287 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
3288 		vref(covered_vp);
3289 		VOP_UNLOCK(nd.ni_vp);
3290 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
3291 		vrele(covered_vp);
3292 	} else {
3293 		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp,
3294 		    nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen, &retbuf,
3295 		    &freebuf, &size);
3296 	}
3297 	if (error == 0) {
3298 		size_t len;
3299 
3300 		len = strlen(retbuf) + 1;
3301 		if (size < len)
3302 			error = ENAMETOOLONG;
3303 		else if (pathseg == UIO_USERSPACE)
3304 			error = copyout(retbuf, buf, len);
3305 		else
3306 			memcpy(buf, retbuf, len);
3307 		free(freebuf, M_TEMP);
3308 	}
3309 out:
3310 	vrele(nd.ni_vp);
3311 	vrele(nd.ni_dvp);
3312 	NDFREE_PNBUF(&nd);
3313 	return (error);
3314 }
3315 
3316 int
3317 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3318 {
3319 
3320 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3321 	    uap->flags, UIO_USERSPACE));
3322 }
3323 
3324 /*
3325  * Retrieve the full filesystem path that correspond to a vnode from the name
3326  * cache (if available)
3327  */
3328 int
3329 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3330 {
3331 	struct pwd *pwd;
3332 	char *buf;
3333 	size_t buflen;
3334 	int error;
3335 
3336 	if (__predict_false(vp == NULL))
3337 		return (EINVAL);
3338 
3339 	buflen = MAXPATHLEN;
3340 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3341 	vfs_smr_enter();
3342 	pwd = pwd_get_smr();
3343 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3344 	VFS_SMR_ASSERT_NOT_ENTERED();
3345 	if (error < 0) {
3346 		pwd = pwd_hold(curthread);
3347 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3348 		pwd_drop(pwd);
3349 	}
3350 	if (error == 0)
3351 		*freebuf = buf;
3352 	else
3353 		free(buf, M_TEMP);
3354 	return (error);
3355 }
3356 
3357 /*
3358  * This function is similar to vn_fullpath, but it attempts to lookup the
3359  * pathname relative to the global root mount point.  This is required for the
3360  * auditing sub-system, as audited pathnames must be absolute, relative to the
3361  * global root mount point.
3362  */
3363 int
3364 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3365 {
3366 	char *buf;
3367 	size_t buflen;
3368 	int error;
3369 
3370 	if (__predict_false(vp == NULL))
3371 		return (EINVAL);
3372 	buflen = MAXPATHLEN;
3373 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3374 	vfs_smr_enter();
3375 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3376 	VFS_SMR_ASSERT_NOT_ENTERED();
3377 	if (error < 0) {
3378 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3379 	}
3380 	if (error == 0)
3381 		*freebuf = buf;
3382 	else
3383 		free(buf, M_TEMP);
3384 	return (error);
3385 }
3386 
3387 static struct namecache *
3388 vn_dd_from_dst(struct vnode *vp)
3389 {
3390 	struct namecache *ncp;
3391 
3392 	cache_assert_vnode_locked(vp);
3393 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3394 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3395 			return (ncp);
3396 	}
3397 	return (NULL);
3398 }
3399 
3400 int
3401 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3402 {
3403 	struct vnode *dvp;
3404 	struct namecache *ncp;
3405 	struct mtx *vlp;
3406 	int error;
3407 
3408 	vlp = VP2VNODELOCK(*vp);
3409 	mtx_lock(vlp);
3410 	ncp = (*vp)->v_cache_dd;
3411 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3412 		KASSERT(ncp == vn_dd_from_dst(*vp),
3413 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3414 		    ncp, vn_dd_from_dst(*vp)));
3415 	} else {
3416 		ncp = vn_dd_from_dst(*vp);
3417 	}
3418 	if (ncp != NULL) {
3419 		if (*buflen < ncp->nc_nlen) {
3420 			mtx_unlock(vlp);
3421 			vrele(*vp);
3422 			counter_u64_add(numfullpathfail4, 1);
3423 			error = ENOMEM;
3424 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3425 			    vp, NULL);
3426 			return (error);
3427 		}
3428 		*buflen -= ncp->nc_nlen;
3429 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3430 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3431 		    ncp->nc_name, vp);
3432 		dvp = *vp;
3433 		*vp = ncp->nc_dvp;
3434 		vref(*vp);
3435 		mtx_unlock(vlp);
3436 		vrele(dvp);
3437 		return (0);
3438 	}
3439 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3440 
3441 	mtx_unlock(vlp);
3442 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3443 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3444 	vput(*vp);
3445 	if (error) {
3446 		counter_u64_add(numfullpathfail2, 1);
3447 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3448 		return (error);
3449 	}
3450 
3451 	*vp = dvp;
3452 	if (VN_IS_DOOMED(dvp)) {
3453 		/* forced unmount */
3454 		vrele(dvp);
3455 		error = ENOENT;
3456 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3457 		return (error);
3458 	}
3459 	/*
3460 	 * *vp has its use count incremented still.
3461 	 */
3462 
3463 	return (0);
3464 }
3465 
3466 /*
3467  * Resolve a directory to a pathname.
3468  *
3469  * The name of the directory can always be found in the namecache or fetched
3470  * from the filesystem. There is also guaranteed to be only one parent, meaning
3471  * we can just follow vnodes up until we find the root.
3472  *
3473  * The vnode must be referenced.
3474  */
3475 static int
3476 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3477     size_t *len, size_t addend)
3478 {
3479 #ifdef KDTRACE_HOOKS
3480 	struct vnode *startvp = vp;
3481 #endif
3482 	struct vnode *vp1;
3483 	size_t buflen;
3484 	int error;
3485 	bool slash_prefixed;
3486 
3487 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3488 	VNPASS(vp->v_usecount > 0, vp);
3489 
3490 	buflen = *len;
3491 
3492 	slash_prefixed = true;
3493 	if (addend == 0) {
3494 		MPASS(*len >= 2);
3495 		buflen--;
3496 		buf[buflen] = '\0';
3497 		slash_prefixed = false;
3498 	}
3499 
3500 	error = 0;
3501 
3502 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3503 	counter_u64_add(numfullpathcalls, 1);
3504 	while (vp != rdir && vp != rootvnode) {
3505 		/*
3506 		 * The vp vnode must be already fully constructed,
3507 		 * since it is either found in namecache or obtained
3508 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3509 		 * without obtaining the vnode lock.
3510 		 */
3511 		if ((vp->v_vflag & VV_ROOT) != 0) {
3512 			vn_lock(vp, LK_RETRY | LK_SHARED);
3513 
3514 			/*
3515 			 * With the vnode locked, check for races with
3516 			 * unmount, forced or not.  Note that we
3517 			 * already verified that vp is not equal to
3518 			 * the root vnode, which means that
3519 			 * mnt_vnodecovered can be NULL only for the
3520 			 * case of unmount.
3521 			 */
3522 			if (VN_IS_DOOMED(vp) ||
3523 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3524 			    vp1->v_mountedhere != vp->v_mount) {
3525 				vput(vp);
3526 				error = ENOENT;
3527 				SDT_PROBE3(vfs, namecache, fullpath, return,
3528 				    error, vp, NULL);
3529 				break;
3530 			}
3531 
3532 			vref(vp1);
3533 			vput(vp);
3534 			vp = vp1;
3535 			continue;
3536 		}
3537 		VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3538 		error = vn_vptocnp(&vp, buf, &buflen);
3539 		if (error)
3540 			break;
3541 		if (buflen == 0) {
3542 			vrele(vp);
3543 			error = ENOMEM;
3544 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3545 			    startvp, NULL);
3546 			break;
3547 		}
3548 		buf[--buflen] = '/';
3549 		slash_prefixed = true;
3550 	}
3551 	if (error)
3552 		return (error);
3553 	if (!slash_prefixed) {
3554 		if (buflen == 0) {
3555 			vrele(vp);
3556 			counter_u64_add(numfullpathfail4, 1);
3557 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3558 			    startvp, NULL);
3559 			return (ENOMEM);
3560 		}
3561 		buf[--buflen] = '/';
3562 	}
3563 	counter_u64_add(numfullpathfound, 1);
3564 	vrele(vp);
3565 
3566 	*retbuf = buf + buflen;
3567 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3568 	*len -= buflen;
3569 	*len += addend;
3570 	return (0);
3571 }
3572 
3573 /*
3574  * Resolve an arbitrary vnode to a pathname.
3575  *
3576  * Note 2 caveats:
3577  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3578  *   resolve to a different path than the one used to find it
3579  * - namecache is not mandatory, meaning names are not guaranteed to be added
3580  *   (in which case resolving fails)
3581  */
3582 static void __inline
3583 cache_rev_failed_impl(int *reason, int line)
3584 {
3585 
3586 	*reason = line;
3587 }
3588 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3589 
3590 static int
3591 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3592     char **retbuf, size_t *buflen, size_t addend)
3593 {
3594 #ifdef KDTRACE_HOOKS
3595 	struct vnode *startvp = vp;
3596 #endif
3597 	struct vnode *tvp;
3598 	struct mount *mp;
3599 	struct namecache *ncp;
3600 	size_t orig_buflen;
3601 	int reason;
3602 	int error;
3603 #ifdef KDTRACE_HOOKS
3604 	int i;
3605 #endif
3606 	seqc_t vp_seqc, tvp_seqc;
3607 	u_char nc_flag;
3608 
3609 	VFS_SMR_ASSERT_ENTERED();
3610 
3611 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3612 		vfs_smr_exit();
3613 		return (-1);
3614 	}
3615 
3616 	orig_buflen = *buflen;
3617 
3618 	if (addend == 0) {
3619 		MPASS(*buflen >= 2);
3620 		*buflen -= 1;
3621 		buf[*buflen] = '\0';
3622 	}
3623 
3624 	if (vp == rdir || vp == rootvnode) {
3625 		if (addend == 0) {
3626 			*buflen -= 1;
3627 			buf[*buflen] = '/';
3628 		}
3629 		goto out_ok;
3630 	}
3631 
3632 #ifdef KDTRACE_HOOKS
3633 	i = 0;
3634 #endif
3635 	error = -1;
3636 	ncp = NULL; /* for sdt probe down below */
3637 	vp_seqc = vn_seqc_read_any(vp);
3638 	if (seqc_in_modify(vp_seqc)) {
3639 		cache_rev_failed(&reason);
3640 		goto out_abort;
3641 	}
3642 
3643 	for (;;) {
3644 #ifdef KDTRACE_HOOKS
3645 		i++;
3646 #endif
3647 		if ((vp->v_vflag & VV_ROOT) != 0) {
3648 			mp = atomic_load_ptr(&vp->v_mount);
3649 			if (mp == NULL) {
3650 				cache_rev_failed(&reason);
3651 				goto out_abort;
3652 			}
3653 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3654 			tvp_seqc = vn_seqc_read_any(tvp);
3655 			if (seqc_in_modify(tvp_seqc)) {
3656 				cache_rev_failed(&reason);
3657 				goto out_abort;
3658 			}
3659 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3660 				cache_rev_failed(&reason);
3661 				goto out_abort;
3662 			}
3663 			vp = tvp;
3664 			vp_seqc = tvp_seqc;
3665 			continue;
3666 		}
3667 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3668 		if (ncp == NULL) {
3669 			cache_rev_failed(&reason);
3670 			goto out_abort;
3671 		}
3672 		nc_flag = atomic_load_char(&ncp->nc_flag);
3673 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3674 			cache_rev_failed(&reason);
3675 			goto out_abort;
3676 		}
3677 		if (ncp->nc_nlen >= *buflen) {
3678 			cache_rev_failed(&reason);
3679 			error = ENOMEM;
3680 			goto out_abort;
3681 		}
3682 		*buflen -= ncp->nc_nlen;
3683 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3684 		*buflen -= 1;
3685 		buf[*buflen] = '/';
3686 		tvp = ncp->nc_dvp;
3687 		tvp_seqc = vn_seqc_read_any(tvp);
3688 		if (seqc_in_modify(tvp_seqc)) {
3689 			cache_rev_failed(&reason);
3690 			goto out_abort;
3691 		}
3692 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3693 			cache_rev_failed(&reason);
3694 			goto out_abort;
3695 		}
3696 		/*
3697 		 * Acquire fence provided by vn_seqc_read_any above.
3698 		 */
3699 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3700 			cache_rev_failed(&reason);
3701 			goto out_abort;
3702 		}
3703 		if (!cache_ncp_canuse(ncp)) {
3704 			cache_rev_failed(&reason);
3705 			goto out_abort;
3706 		}
3707 		vp = tvp;
3708 		vp_seqc = tvp_seqc;
3709 		if (vp == rdir || vp == rootvnode)
3710 			break;
3711 	}
3712 out_ok:
3713 	vfs_smr_exit();
3714 	*retbuf = buf + *buflen;
3715 	*buflen = orig_buflen - *buflen + addend;
3716 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3717 	return (0);
3718 
3719 out_abort:
3720 	*buflen = orig_buflen;
3721 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3722 	vfs_smr_exit();
3723 	return (error);
3724 }
3725 
3726 static int
3727 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3728     size_t *buflen)
3729 {
3730 	size_t orig_buflen, addend;
3731 	int error;
3732 
3733 	if (*buflen < 2)
3734 		return (EINVAL);
3735 
3736 	orig_buflen = *buflen;
3737 
3738 	vref(vp);
3739 	addend = 0;
3740 	if (vp->v_type != VDIR) {
3741 		*buflen -= 1;
3742 		buf[*buflen] = '\0';
3743 		error = vn_vptocnp(&vp, buf, buflen);
3744 		if (error)
3745 			return (error);
3746 		if (*buflen == 0) {
3747 			vrele(vp);
3748 			return (ENOMEM);
3749 		}
3750 		*buflen -= 1;
3751 		buf[*buflen] = '/';
3752 		addend = orig_buflen - *buflen;
3753 	}
3754 
3755 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3756 }
3757 
3758 /*
3759  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3760  *
3761  * Since the namecache does not track hardlinks, the caller is expected to
3762  * first look up the target vnode with WANTPARENT flag passed to namei to get
3763  * dvp and vp.
3764  *
3765  * Then we have 2 cases:
3766  * - if the found vnode is a directory, the path can be constructed just by
3767  *   following names up the chain
3768  * - otherwise we populate the buffer with the saved name and start resolving
3769  *   from the parent
3770  */
3771 int
3772 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3773     const char *hrdl_name, size_t hrdl_name_length,
3774     char **retbuf, char **freebuf, size_t *buflen)
3775 {
3776 	char *buf, *tmpbuf;
3777 	struct pwd *pwd;
3778 	size_t addend;
3779 	int error;
3780 	__enum_uint8(vtype) type;
3781 
3782 	if (*buflen < 2)
3783 		return (EINVAL);
3784 	if (*buflen > MAXPATHLEN)
3785 		*buflen = MAXPATHLEN;
3786 
3787 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3788 
3789 	addend = 0;
3790 
3791 	/*
3792 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3793 	 *
3794 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3795 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3796 	 * If the type is VDIR (like in this very case) we can skip looking
3797 	 * at ni_dvp in the first place. However, since vnodes get passed here
3798 	 * unlocked the target may transition to doomed state (type == VBAD)
3799 	 * before we get to evaluate the condition. If this happens, we will
3800 	 * populate part of the buffer and descend to vn_fullpath_dir with
3801 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3802 	 */
3803 	type = atomic_load_8(&vp->v_type);
3804 	if (type == VBAD) {
3805 		error = ENOENT;
3806 		goto out_bad;
3807 	}
3808 	if (type != VDIR) {
3809 		addend = hrdl_name_length + 2;
3810 		if (*buflen < addend) {
3811 			error = ENOMEM;
3812 			goto out_bad;
3813 		}
3814 		*buflen -= addend;
3815 		tmpbuf = buf + *buflen;
3816 		tmpbuf[0] = '/';
3817 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3818 		tmpbuf[addend - 1] = '\0';
3819 		vp = dvp;
3820 	}
3821 
3822 	vfs_smr_enter();
3823 	pwd = pwd_get_smr();
3824 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3825 	    addend);
3826 	VFS_SMR_ASSERT_NOT_ENTERED();
3827 	if (error < 0) {
3828 		pwd = pwd_hold(curthread);
3829 		vref(vp);
3830 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3831 		    addend);
3832 		pwd_drop(pwd);
3833 	}
3834 	if (error != 0)
3835 		goto out_bad;
3836 
3837 	*freebuf = buf;
3838 
3839 	return (0);
3840 out_bad:
3841 	free(buf, M_TEMP);
3842 	return (error);
3843 }
3844 
3845 struct vnode *
3846 vn_dir_dd_ino(struct vnode *vp)
3847 {
3848 	struct namecache *ncp;
3849 	struct vnode *ddvp;
3850 	struct mtx *vlp;
3851 	enum vgetstate vs;
3852 
3853 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3854 	vlp = VP2VNODELOCK(vp);
3855 	mtx_lock(vlp);
3856 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3857 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3858 			continue;
3859 		ddvp = ncp->nc_dvp;
3860 		vs = vget_prep(ddvp);
3861 		mtx_unlock(vlp);
3862 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3863 			return (NULL);
3864 		return (ddvp);
3865 	}
3866 	mtx_unlock(vlp);
3867 	return (NULL);
3868 }
3869 
3870 int
3871 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3872 {
3873 	struct namecache *ncp;
3874 	struct mtx *vlp;
3875 	int l;
3876 
3877 	vlp = VP2VNODELOCK(vp);
3878 	mtx_lock(vlp);
3879 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3880 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3881 			break;
3882 	if (ncp == NULL) {
3883 		mtx_unlock(vlp);
3884 		return (ENOENT);
3885 	}
3886 	l = min(ncp->nc_nlen, buflen - 1);
3887 	memcpy(buf, ncp->nc_name, l);
3888 	mtx_unlock(vlp);
3889 	buf[l] = '\0';
3890 	return (0);
3891 }
3892 
3893 /*
3894  * This function updates path string to vnode's full global path
3895  * and checks the size of the new path string against the pathlen argument.
3896  *
3897  * Requires a locked, referenced vnode.
3898  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3899  *
3900  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3901  * because it falls back to the ".." lookup if the namecache lookup fails.
3902  */
3903 int
3904 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3905     u_int pathlen)
3906 {
3907 	struct nameidata nd;
3908 	struct vnode *vp1;
3909 	char *rpath, *fbuf;
3910 	int error;
3911 
3912 	ASSERT_VOP_ELOCKED(vp, __func__);
3913 
3914 	/* Construct global filesystem path from vp. */
3915 	VOP_UNLOCK(vp);
3916 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3917 
3918 	if (error != 0) {
3919 		vrele(vp);
3920 		return (error);
3921 	}
3922 
3923 	if (strlen(rpath) >= pathlen) {
3924 		vrele(vp);
3925 		error = ENAMETOOLONG;
3926 		goto out;
3927 	}
3928 
3929 	/*
3930 	 * Re-lookup the vnode by path to detect a possible rename.
3931 	 * As a side effect, the vnode is relocked.
3932 	 * If vnode was renamed, return ENOENT.
3933 	 */
3934 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3935 	error = namei(&nd);
3936 	if (error != 0) {
3937 		vrele(vp);
3938 		goto out;
3939 	}
3940 	NDFREE_PNBUF(&nd);
3941 	vp1 = nd.ni_vp;
3942 	vrele(vp);
3943 	if (vp1 == vp)
3944 		strcpy(path, rpath);
3945 	else {
3946 		vput(vp1);
3947 		error = ENOENT;
3948 	}
3949 
3950 out:
3951 	free(fbuf, M_TEMP);
3952 	return (error);
3953 }
3954 
3955 /*
3956  * This is similar to vn_path_to_global_path but allows for regular
3957  * files which may not be present in the cache.
3958  *
3959  * Requires a locked, referenced vnode.
3960  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3961  */
3962 int
3963 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
3964     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
3965     size_t leaf_length)
3966 {
3967 	struct nameidata nd;
3968 	struct vnode *vp1;
3969 	char *rpath, *fbuf;
3970 	size_t len;
3971 	int error;
3972 
3973 	ASSERT_VOP_ELOCKED(vp, __func__);
3974 
3975 	/*
3976 	 * Construct global filesystem path from dvp, vp and leaf
3977 	 * name.
3978 	 */
3979 	VOP_UNLOCK(vp);
3980 	len = pathlen;
3981 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
3982 	    &rpath, &fbuf, &len);
3983 
3984 	if (error != 0) {
3985 		vrele(vp);
3986 		return (error);
3987 	}
3988 
3989 	if (strlen(rpath) >= pathlen) {
3990 		vrele(vp);
3991 		error = ENAMETOOLONG;
3992 		goto out;
3993 	}
3994 
3995 	/*
3996 	 * Re-lookup the vnode by path to detect a possible rename.
3997 	 * As a side effect, the vnode is relocked.
3998 	 * If vnode was renamed, return ENOENT.
3999 	 */
4000 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
4001 	error = namei(&nd);
4002 	if (error != 0) {
4003 		vrele(vp);
4004 		goto out;
4005 	}
4006 	NDFREE_PNBUF(&nd);
4007 	vp1 = nd.ni_vp;
4008 	vrele(vp);
4009 	if (vp1 == vp)
4010 		strcpy(path, rpath);
4011 	else {
4012 		vput(vp1);
4013 		error = ENOENT;
4014 	}
4015 
4016 out:
4017 	free(fbuf, M_TEMP);
4018 	return (error);
4019 }
4020 
4021 void
4022 cache_vop_inotify(struct vnode *vp, int event, uint32_t cookie)
4023 {
4024 	struct mtx *vlp;
4025 	struct namecache *ncp;
4026 	int isdir;
4027 	bool logged, self;
4028 
4029 	isdir = vp->v_type == VDIR ? IN_ISDIR : 0;
4030 	self = (vn_irflag_read(vp) & VIRF_INOTIFY) != 0 &&
4031 	    (vp->v_type != VDIR || (event & ~_IN_DIR_EVENTS) != 0);
4032 
4033 	if (self) {
4034 		int selfevent;
4035 
4036 		if (event == _IN_ATTRIB_LINKCOUNT)
4037 			selfevent = IN_ATTRIB;
4038 		else
4039 			selfevent = event;
4040 		inotify_log(vp, NULL, 0, selfevent | isdir, cookie);
4041 	}
4042 	if ((event & IN_ALL_EVENTS) == 0)
4043 		return;
4044 
4045 	logged = false;
4046 	vlp = VP2VNODELOCK(vp);
4047 	mtx_lock(vlp);
4048 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
4049 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
4050 			continue;
4051 		if ((vn_irflag_read(ncp->nc_dvp) & VIRF_INOTIFY) != 0) {
4052 			/*
4053 			 * XXX-MJ if the vnode has two links in the same
4054 			 * dir, we'll log the same event twice.
4055 			 */
4056 			inotify_log(ncp->nc_dvp, ncp->nc_name, ncp->nc_nlen,
4057 			    event | isdir, cookie);
4058 			logged = true;
4059 		}
4060 	}
4061 	if (!logged && (vn_irflag_read(vp) & VIRF_INOTIFY_PARENT) != 0) {
4062 		/*
4063 		 * We didn't find a watched directory that contains this vnode,
4064 		 * so stop calling VOP_INOTIFY for operations on the vnode.
4065 		 */
4066 		vn_irflag_unset(vp, VIRF_INOTIFY_PARENT);
4067 	}
4068 	mtx_unlock(vlp);
4069 }
4070 
4071 #ifdef DDB
4072 static void
4073 db_print_vpath(struct vnode *vp)
4074 {
4075 
4076 	while (vp != NULL) {
4077 		db_printf("%p: ", vp);
4078 		if (vp == rootvnode) {
4079 			db_printf("/");
4080 			vp = NULL;
4081 		} else {
4082 			if (vp->v_vflag & VV_ROOT) {
4083 				db_printf("<mount point>");
4084 				vp = vp->v_mount->mnt_vnodecovered;
4085 			} else {
4086 				struct namecache *ncp;
4087 				char *ncn;
4088 				int i;
4089 
4090 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
4091 				if (ncp != NULL) {
4092 					ncn = ncp->nc_name;
4093 					for (i = 0; i < ncp->nc_nlen; i++)
4094 						db_printf("%c", *ncn++);
4095 					vp = ncp->nc_dvp;
4096 				} else {
4097 					vp = NULL;
4098 				}
4099 			}
4100 		}
4101 		db_printf("\n");
4102 	}
4103 
4104 	return;
4105 }
4106 
4107 DB_SHOW_COMMAND(vpath, db_show_vpath)
4108 {
4109 	struct vnode *vp;
4110 
4111 	if (!have_addr) {
4112 		db_printf("usage: show vpath <struct vnode *>\n");
4113 		return;
4114 	}
4115 
4116 	vp = (struct vnode *)addr;
4117 	db_print_vpath(vp);
4118 }
4119 
4120 #endif
4121 
4122 static int cache_fast_lookup = 1;
4123 
4124 #define CACHE_FPL_FAILED	-2020
4125 
4126 static int
4127 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
4128 {
4129 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
4130 	panic("no proper vop_fplookup_vexec");
4131 }
4132 
4133 static int
4134 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
4135 {
4136 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
4137 	panic("no proper vop_fplookup_symlink");
4138 }
4139 
4140 void
4141 cache_vop_vector_register(struct vop_vector *v)
4142 {
4143 	size_t ops;
4144 
4145 	ops = 0;
4146 	if (v->vop_fplookup_vexec != NULL) {
4147 		ops++;
4148 	}
4149 	if (v->vop_fplookup_symlink != NULL) {
4150 		ops++;
4151 	}
4152 
4153 	if (ops == 2) {
4154 		return;
4155 	}
4156 
4157 	if (ops == 0) {
4158 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
4159 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
4160 		return;
4161 	}
4162 
4163 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
4164 	    "need to be provided",  __func__, v);
4165 	if (v->vop_fplookup_vexec == NULL) {
4166 		printf("%s: missing vop_fplookup_vexec\n", __func__);
4167 	}
4168 	if (v->vop_fplookup_symlink == NULL) {
4169 		printf("%s: missing vop_fplookup_symlink\n", __func__);
4170 	}
4171 	panic("bad vop vector %p", v);
4172 }
4173 
4174 #ifdef INVARIANTS
4175 void
4176 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
4177 {
4178 	if (mp == NULL)
4179 		return;
4180 
4181 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4182 		return;
4183 
4184 	if (vops->vop_fplookup_vexec == NULL ||
4185 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
4186 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
4187 		    vops, mp->mnt_vfc->vfc_name);
4188 
4189 	if (vops->vop_fplookup_symlink == NULL ||
4190 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
4191 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
4192 		    vops, mp->mnt_vfc->vfc_name);
4193 }
4194 #endif
4195 
4196 void
4197 cache_fast_lookup_enabled_recalc(void)
4198 {
4199 	int lookup_flag;
4200 	int mac_on;
4201 
4202 #ifdef MAC
4203 	mac_on = mac_vnode_check_lookup_enabled();
4204 	mac_on |= mac_vnode_check_readlink_enabled();
4205 #else
4206 	mac_on = 0;
4207 #endif
4208 
4209 	lookup_flag = atomic_load_int(&cache_fast_lookup);
4210 	if (lookup_flag && !mac_on) {
4211 		atomic_store_char(&cache_fast_lookup_enabled, true);
4212 	} else {
4213 		atomic_store_char(&cache_fast_lookup_enabled, false);
4214 	}
4215 }
4216 
4217 static int
4218 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
4219 {
4220 	int error, old;
4221 
4222 	old = atomic_load_int(&cache_fast_lookup);
4223 	error = sysctl_handle_int(oidp, arg1, arg2, req);
4224 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
4225 		cache_fast_lookup_enabled_recalc();
4226 	return (error);
4227 }
4228 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
4229     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
4230 
4231 /*
4232  * Components of nameidata (or objects it can point to) which may
4233  * need restoring in case fast path lookup fails.
4234  */
4235 struct nameidata_outer {
4236 	size_t ni_pathlen;
4237 	uint64_t cn_flags;
4238 };
4239 
4240 struct nameidata_saved {
4241 #ifdef INVARIANTS
4242 	char *cn_nameptr;
4243 	size_t ni_pathlen;
4244 #endif
4245 };
4246 
4247 #ifdef INVARIANTS
4248 struct cache_fpl_debug {
4249 	size_t ni_pathlen;
4250 };
4251 #endif
4252 
4253 struct cache_fpl {
4254 	struct nameidata *ndp;
4255 	struct componentname *cnp;
4256 	char *nulchar;
4257 	struct vnode *dvp;
4258 	struct vnode *tvp;
4259 	seqc_t dvp_seqc;
4260 	seqc_t tvp_seqc;
4261 	uint32_t hash;
4262 	struct nameidata_saved snd;
4263 	struct nameidata_outer snd_outer;
4264 	int line;
4265 	enum cache_fpl_status status:8;
4266 	bool in_smr;
4267 	bool fsearch;
4268 	struct pwd **pwd;
4269 #ifdef INVARIANTS
4270 	struct cache_fpl_debug debug;
4271 #endif
4272 };
4273 
4274 static bool cache_fplookup_mp_supported(struct mount *mp);
4275 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
4276 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
4277 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
4278 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
4279 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
4280 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
4281 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
4282 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
4283 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
4284 
4285 static void
4286 cache_fpl_cleanup_cnp(struct componentname *cnp)
4287 {
4288 
4289 	uma_zfree(namei_zone, cnp->cn_pnbuf);
4290 	cnp->cn_pnbuf = NULL;
4291 	cnp->cn_nameptr = NULL;
4292 }
4293 
4294 static struct vnode *
4295 cache_fpl_handle_root(struct cache_fpl *fpl)
4296 {
4297 	struct nameidata *ndp;
4298 	struct componentname *cnp;
4299 
4300 	ndp = fpl->ndp;
4301 	cnp = fpl->cnp;
4302 
4303 	MPASS(*(cnp->cn_nameptr) == '/');
4304 	cnp->cn_nameptr++;
4305 	cache_fpl_pathlen_dec(fpl);
4306 
4307 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4308 		do {
4309 			cnp->cn_nameptr++;
4310 			cache_fpl_pathlen_dec(fpl);
4311 		} while (*(cnp->cn_nameptr) == '/');
4312 	}
4313 
4314 	return (ndp->ni_rootdir);
4315 }
4316 
4317 static void
4318 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
4319 {
4320 
4321 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
4322 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
4323 }
4324 
4325 static void
4326 cache_fpl_checkpoint(struct cache_fpl *fpl)
4327 {
4328 
4329 #ifdef INVARIANTS
4330 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4331 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4332 #endif
4333 }
4334 
4335 static void
4336 cache_fpl_restore_partial(struct cache_fpl *fpl)
4337 {
4338 
4339 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4340 #ifdef INVARIANTS
4341 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4342 #endif
4343 }
4344 
4345 static void
4346 cache_fpl_restore_abort(struct cache_fpl *fpl)
4347 {
4348 
4349 	cache_fpl_restore_partial(fpl);
4350 	/*
4351 	 * It is 0 on entry by API contract.
4352 	 */
4353 	fpl->ndp->ni_resflags = 0;
4354 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4355 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4356 }
4357 
4358 #ifdef INVARIANTS
4359 #define cache_fpl_smr_assert_entered(fpl) ({			\
4360 	struct cache_fpl *_fpl = (fpl);				\
4361 	MPASS(_fpl->in_smr == true);				\
4362 	VFS_SMR_ASSERT_ENTERED();				\
4363 })
4364 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4365 	struct cache_fpl *_fpl = (fpl);				\
4366 	MPASS(_fpl->in_smr == false);				\
4367 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4368 })
4369 static void
4370 cache_fpl_assert_status(struct cache_fpl *fpl)
4371 {
4372 
4373 	switch (fpl->status) {
4374 	case CACHE_FPL_STATUS_UNSET:
4375 		__assert_unreachable();
4376 		break;
4377 	case CACHE_FPL_STATUS_DESTROYED:
4378 	case CACHE_FPL_STATUS_ABORTED:
4379 	case CACHE_FPL_STATUS_PARTIAL:
4380 	case CACHE_FPL_STATUS_HANDLED:
4381 		break;
4382 	}
4383 }
4384 #else
4385 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4386 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4387 #define cache_fpl_assert_status(fpl) do { } while (0)
4388 #endif
4389 
4390 #define cache_fpl_smr_enter_initial(fpl) ({			\
4391 	struct cache_fpl *_fpl = (fpl);				\
4392 	vfs_smr_enter();					\
4393 	_fpl->in_smr = true;					\
4394 })
4395 
4396 #define cache_fpl_smr_enter(fpl) ({				\
4397 	struct cache_fpl *_fpl = (fpl);				\
4398 	MPASS(_fpl->in_smr == false);				\
4399 	vfs_smr_enter();					\
4400 	_fpl->in_smr = true;					\
4401 })
4402 
4403 #define cache_fpl_smr_exit(fpl) ({				\
4404 	struct cache_fpl *_fpl = (fpl);				\
4405 	MPASS(_fpl->in_smr == true);				\
4406 	vfs_smr_exit();						\
4407 	_fpl->in_smr = false;					\
4408 })
4409 
4410 static int
4411 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4412 {
4413 
4414 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4415 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4416 		    ("%s: converting to abort from %d at %d, set at %d\n",
4417 		    __func__, fpl->status, line, fpl->line));
4418 	}
4419 	cache_fpl_smr_assert_not_entered(fpl);
4420 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4421 	fpl->line = line;
4422 	return (CACHE_FPL_FAILED);
4423 }
4424 
4425 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4426 
4427 static int __noinline
4428 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4429 {
4430 	struct nameidata *ndp;
4431 	struct componentname *cnp;
4432 
4433 	ndp = fpl->ndp;
4434 	cnp = fpl->cnp;
4435 
4436 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4437 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4438 		    ("%s: converting to abort from %d at %d, set at %d\n",
4439 		    __func__, fpl->status, line, fpl->line));
4440 	}
4441 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4442 	fpl->line = line;
4443 	if (fpl->in_smr)
4444 		cache_fpl_smr_exit(fpl);
4445 	cache_fpl_restore_abort(fpl);
4446 	/*
4447 	 * Resolving symlinks overwrites data passed by the caller.
4448 	 * Let namei know.
4449 	 */
4450 	if (ndp->ni_loopcnt > 0) {
4451 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4452 		cache_fpl_cleanup_cnp(cnp);
4453 	}
4454 	return (CACHE_FPL_FAILED);
4455 }
4456 
4457 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4458 
4459 static int __noinline
4460 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4461 {
4462 
4463 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4464 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4465 	    __func__, line, fpl->status, fpl->line));
4466 	cache_fpl_smr_assert_entered(fpl);
4467 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4468 	fpl->line = line;
4469 	return (cache_fplookup_partial_setup(fpl));
4470 }
4471 
4472 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4473 
4474 static int
4475 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4476 {
4477 
4478 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4479 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4480 	    __func__, line, fpl->status, fpl->line));
4481 	cache_fpl_smr_assert_not_entered(fpl);
4482 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4483 	fpl->line = line;
4484 	return (0);
4485 }
4486 
4487 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4488 
4489 static int
4490 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4491 {
4492 
4493 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4494 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4495 	    __func__, line, fpl->status, fpl->line));
4496 	MPASS(error != 0);
4497 	MPASS(error != CACHE_FPL_FAILED);
4498 	cache_fpl_smr_assert_not_entered(fpl);
4499 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4500 	fpl->line = line;
4501 	fpl->dvp = NULL;
4502 	fpl->tvp = NULL;
4503 	return (error);
4504 }
4505 
4506 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4507 
4508 static bool
4509 cache_fpl_terminated(struct cache_fpl *fpl)
4510 {
4511 
4512 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4513 }
4514 
4515 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4516 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4517 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
4518 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4519 	 OPENWRITE | WANTIOCTLCAPS | NAMEILOOKUP)
4520 
4521 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4522 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4523 
4524 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4525     "supported and internal flags overlap");
4526 
4527 static bool
4528 cache_fpl_islastcn(struct nameidata *ndp)
4529 {
4530 
4531 	return (*ndp->ni_next == 0);
4532 }
4533 
4534 static bool
4535 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4536 {
4537 
4538 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4539 	return (*(fpl->nulchar - 1) == '/');
4540 }
4541 
4542 static bool
4543 cache_fpl_isdotdot(struct componentname *cnp)
4544 {
4545 
4546 	if (cnp->cn_namelen == 2 &&
4547 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4548 		return (true);
4549 	return (false);
4550 }
4551 
4552 static bool
4553 cache_can_fplookup(struct cache_fpl *fpl)
4554 {
4555 	struct nameidata *ndp;
4556 	struct componentname *cnp;
4557 	struct thread *td;
4558 
4559 	ndp = fpl->ndp;
4560 	cnp = fpl->cnp;
4561 	td = curthread;
4562 
4563 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4564 		cache_fpl_aborted_early(fpl);
4565 		return (false);
4566 	}
4567 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4568 		cache_fpl_aborted_early(fpl);
4569 		return (false);
4570 	}
4571 	if (IN_CAPABILITY_MODE(td) || CAP_TRACING(td)) {
4572 		cache_fpl_aborted_early(fpl);
4573 		return (false);
4574 	}
4575 	if (AUDITING_TD(td)) {
4576 		cache_fpl_aborted_early(fpl);
4577 		return (false);
4578 	}
4579 	if (ndp->ni_startdir != NULL) {
4580 		cache_fpl_aborted_early(fpl);
4581 		return (false);
4582 	}
4583 	return (true);
4584 }
4585 
4586 static int __noinline
4587 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4588 {
4589 	struct nameidata *ndp;
4590 	struct componentname *cnp;
4591 	int error, flags;
4592 
4593 	ndp = fpl->ndp;
4594 	cnp = fpl->cnp;
4595 
4596 	error = fgetvp_lookup_smr(ndp, vpp, &flags);
4597 	if (__predict_false(error != 0)) {
4598 		return (cache_fpl_aborted(fpl));
4599 	}
4600 	if (__predict_false((flags & O_RESOLVE_BENEATH) != 0)) {
4601 		_Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & RBENEATH) == 0,
4602 		    "RBENEATH supported by fplookup");
4603 		cache_fpl_smr_exit(fpl);
4604 		cache_fpl_aborted(fpl);
4605 		return (EOPNOTSUPP);
4606 	}
4607 	fpl->fsearch = (flags & FSEARCH) != 0;
4608 	if ((*vpp)->v_type != VDIR) {
4609 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4610 			cache_fpl_smr_exit(fpl);
4611 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4612 		}
4613 	}
4614 	return (0);
4615 }
4616 
4617 static int __noinline
4618 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4619     uint32_t hash)
4620 {
4621 	struct componentname *cnp;
4622 	struct vnode *dvp;
4623 
4624 	cnp = fpl->cnp;
4625 	dvp = fpl->dvp;
4626 
4627 	cache_fpl_smr_exit(fpl);
4628 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4629 		return (cache_fpl_handled_error(fpl, ENOENT));
4630 	else
4631 		return (cache_fpl_aborted(fpl));
4632 }
4633 
4634 /*
4635  * The target vnode is not supported, prepare for the slow path to take over.
4636  */
4637 static int __noinline
4638 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4639 {
4640 	struct nameidata *ndp;
4641 	struct componentname *cnp;
4642 	enum vgetstate dvs;
4643 	struct vnode *dvp;
4644 	struct pwd *pwd;
4645 	seqc_t dvp_seqc;
4646 
4647 	ndp = fpl->ndp;
4648 	cnp = fpl->cnp;
4649 	pwd = *(fpl->pwd);
4650 	dvp = fpl->dvp;
4651 	dvp_seqc = fpl->dvp_seqc;
4652 
4653 	if (!pwd_hold_smr(pwd)) {
4654 		return (cache_fpl_aborted(fpl));
4655 	}
4656 
4657 	/*
4658 	 * Note that seqc is checked before the vnode is locked, so by
4659 	 * the time regular lookup gets to it it may have moved.
4660 	 *
4661 	 * Ultimately this does not affect correctness, any lookup errors
4662 	 * are userspace racing with itself. It is guaranteed that any
4663 	 * path which ultimately gets found could also have been found
4664 	 * by regular lookup going all the way in absence of concurrent
4665 	 * modifications.
4666 	 */
4667 	dvs = vget_prep_smr(dvp);
4668 	cache_fpl_smr_exit(fpl);
4669 	if (__predict_false(dvs == VGET_NONE)) {
4670 		pwd_drop(pwd);
4671 		return (cache_fpl_aborted(fpl));
4672 	}
4673 
4674 	vget_finish_ref(dvp, dvs);
4675 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4676 		vrele(dvp);
4677 		pwd_drop(pwd);
4678 		return (cache_fpl_aborted(fpl));
4679 	}
4680 
4681 	cache_fpl_restore_partial(fpl);
4682 #ifdef INVARIANTS
4683 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4684 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4685 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4686 	}
4687 #endif
4688 
4689 	ndp->ni_startdir = dvp;
4690 	cnp->cn_flags |= MAKEENTRY;
4691 	if (cache_fpl_islastcn(ndp))
4692 		cnp->cn_flags |= ISLASTCN;
4693 	if (cache_fpl_isdotdot(cnp))
4694 		cnp->cn_flags |= ISDOTDOT;
4695 
4696 	/*
4697 	 * Skip potential extra slashes parsing did not take care of.
4698 	 * cache_fplookup_skip_slashes explains the mechanism.
4699 	 */
4700 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4701 		do {
4702 			cnp->cn_nameptr++;
4703 			cache_fpl_pathlen_dec(fpl);
4704 		} while (*(cnp->cn_nameptr) == '/');
4705 	}
4706 
4707 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4708 #ifdef INVARIANTS
4709 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4710 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4711 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4712 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4713 	}
4714 #endif
4715 	return (0);
4716 }
4717 
4718 static int
4719 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4720 {
4721 	struct componentname *cnp;
4722 	struct vnode *tvp;
4723 	seqc_t tvp_seqc;
4724 	int error, lkflags;
4725 
4726 	cnp = fpl->cnp;
4727 	tvp = fpl->tvp;
4728 	tvp_seqc = fpl->tvp_seqc;
4729 
4730 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4731 		lkflags = LK_SHARED;
4732 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4733 			lkflags = LK_EXCLUSIVE;
4734 		error = vget_finish(tvp, lkflags, tvs);
4735 		if (__predict_false(error != 0)) {
4736 			return (cache_fpl_aborted(fpl));
4737 		}
4738 	} else {
4739 		vget_finish_ref(tvp, tvs);
4740 	}
4741 
4742 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4743 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4744 			vput(tvp);
4745 		else
4746 			vrele(tvp);
4747 		return (cache_fpl_aborted(fpl));
4748 	}
4749 
4750 	return (cache_fpl_handled(fpl));
4751 }
4752 
4753 /*
4754  * They want to possibly modify the state of the namecache.
4755  */
4756 static int __noinline
4757 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4758 {
4759 	struct nameidata *ndp __diagused;
4760 	struct componentname *cnp;
4761 	enum vgetstate dvs;
4762 	struct vnode *dvp, *tvp;
4763 	struct mount *mp;
4764 	seqc_t dvp_seqc;
4765 	int error;
4766 	bool docache;
4767 
4768 	ndp = fpl->ndp;
4769 	cnp = fpl->cnp;
4770 	dvp = fpl->dvp;
4771 	dvp_seqc = fpl->dvp_seqc;
4772 
4773 	MPASS(*(cnp->cn_nameptr) != '/');
4774 	MPASS(cache_fpl_islastcn(ndp));
4775 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4776 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4777 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4778 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4779 	    cnp->cn_nameiop == RENAME);
4780 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4781 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4782 
4783 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4784 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4785 		docache = false;
4786 
4787 	/*
4788 	 * Regular lookup nulifies the slash, which we don't do here.
4789 	 * Don't take chances with filesystem routines seeing it for
4790 	 * the last entry.
4791 	 */
4792 	if (cache_fpl_istrailingslash(fpl)) {
4793 		return (cache_fpl_partial(fpl));
4794 	}
4795 
4796 	mp = atomic_load_ptr(&dvp->v_mount);
4797 	if (__predict_false(mp == NULL)) {
4798 		return (cache_fpl_aborted(fpl));
4799 	}
4800 
4801 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4802 		cache_fpl_smr_exit(fpl);
4803 		/*
4804 		 * Original code keeps not checking for CREATE which
4805 		 * might be a bug. For now let the old lookup decide.
4806 		 */
4807 		if (cnp->cn_nameiop == CREATE) {
4808 			return (cache_fpl_aborted(fpl));
4809 		}
4810 		return (cache_fpl_handled_error(fpl, EROFS));
4811 	}
4812 
4813 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4814 		cache_fpl_smr_exit(fpl);
4815 		return (cache_fpl_handled_error(fpl, EEXIST));
4816 	}
4817 
4818 	/*
4819 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4820 	 * reasoning.
4821 	 *
4822 	 * XXX At least UFS requires its lookup routine to be called for
4823 	 * the last path component, which leads to some level of complication
4824 	 * and inefficiency:
4825 	 * - the target routine always locks the target vnode, but our caller
4826 	 *   may not need it locked
4827 	 * - some of the VOP machinery asserts that the parent is locked, which
4828 	 *   once more may be not required
4829 	 *
4830 	 * TODO: add a flag for filesystems which don't need this.
4831 	 */
4832 	dvs = vget_prep_smr(dvp);
4833 	cache_fpl_smr_exit(fpl);
4834 	if (__predict_false(dvs == VGET_NONE)) {
4835 		return (cache_fpl_aborted(fpl));
4836 	}
4837 
4838 	vget_finish_ref(dvp, dvs);
4839 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4840 		vrele(dvp);
4841 		return (cache_fpl_aborted(fpl));
4842 	}
4843 
4844 	error = vn_lock(dvp, LK_EXCLUSIVE);
4845 	if (__predict_false(error != 0)) {
4846 		vrele(dvp);
4847 		return (cache_fpl_aborted(fpl));
4848 	}
4849 
4850 	tvp = NULL;
4851 	cnp->cn_flags |= ISLASTCN;
4852 	if (docache)
4853 		cnp->cn_flags |= MAKEENTRY;
4854 	if (cache_fpl_isdotdot(cnp))
4855 		cnp->cn_flags |= ISDOTDOT;
4856 	cnp->cn_lkflags = LK_EXCLUSIVE;
4857 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4858 	switch (error) {
4859 	case EJUSTRETURN:
4860 	case 0:
4861 		break;
4862 	case ENOTDIR:
4863 	case ENOENT:
4864 		vput(dvp);
4865 		return (cache_fpl_handled_error(fpl, error));
4866 	default:
4867 		vput(dvp);
4868 		return (cache_fpl_aborted(fpl));
4869 	}
4870 
4871 	fpl->tvp = tvp;
4872 
4873 	if (tvp == NULL) {
4874 		MPASS(error == EJUSTRETURN);
4875 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4876 			VOP_UNLOCK(dvp);
4877 		}
4878 		return (cache_fpl_handled(fpl));
4879 	}
4880 
4881 	/*
4882 	 * There are very hairy corner cases concerning various flag combinations
4883 	 * and locking state. In particular here we only hold one lock instead of
4884 	 * two.
4885 	 *
4886 	 * Skip the complexity as it is of no significance for normal workloads.
4887 	 */
4888 	if (__predict_false(tvp == dvp)) {
4889 		vput(dvp);
4890 		vrele(tvp);
4891 		return (cache_fpl_aborted(fpl));
4892 	}
4893 
4894 	/*
4895 	 * If they want the symlink itself we are fine, but if they want to
4896 	 * follow it regular lookup has to be engaged.
4897 	 */
4898 	if (tvp->v_type == VLNK) {
4899 		if ((cnp->cn_flags & FOLLOW) != 0) {
4900 			vput(dvp);
4901 			vput(tvp);
4902 			return (cache_fpl_aborted(fpl));
4903 		}
4904 	}
4905 
4906 	/*
4907 	 * Since we expect this to be the terminal vnode it should almost never
4908 	 * be a mount point.
4909 	 */
4910 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4911 		vput(dvp);
4912 		vput(tvp);
4913 		return (cache_fpl_aborted(fpl));
4914 	}
4915 
4916 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4917 		vput(dvp);
4918 		vput(tvp);
4919 		return (cache_fpl_handled_error(fpl, EEXIST));
4920 	}
4921 
4922 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4923 		VOP_UNLOCK(tvp);
4924 	}
4925 
4926 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4927 		VOP_UNLOCK(dvp);
4928 	}
4929 
4930 	return (cache_fpl_handled(fpl));
4931 }
4932 
4933 static int __noinline
4934 cache_fplookup_modifying(struct cache_fpl *fpl)
4935 {
4936 	struct nameidata *ndp;
4937 
4938 	ndp = fpl->ndp;
4939 
4940 	if (!cache_fpl_islastcn(ndp)) {
4941 		return (cache_fpl_partial(fpl));
4942 	}
4943 	return (cache_fplookup_final_modifying(fpl));
4944 }
4945 
4946 static int __noinline
4947 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4948 {
4949 	struct componentname *cnp;
4950 	enum vgetstate dvs, tvs;
4951 	struct vnode *dvp, *tvp;
4952 	seqc_t dvp_seqc;
4953 	int error;
4954 
4955 	cnp = fpl->cnp;
4956 	dvp = fpl->dvp;
4957 	dvp_seqc = fpl->dvp_seqc;
4958 	tvp = fpl->tvp;
4959 
4960 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4961 
4962 	/*
4963 	 * This is less efficient than it can be for simplicity.
4964 	 */
4965 	dvs = vget_prep_smr(dvp);
4966 	if (__predict_false(dvs == VGET_NONE)) {
4967 		return (cache_fpl_aborted(fpl));
4968 	}
4969 	tvs = vget_prep_smr(tvp);
4970 	if (__predict_false(tvs == VGET_NONE)) {
4971 		cache_fpl_smr_exit(fpl);
4972 		vget_abort(dvp, dvs);
4973 		return (cache_fpl_aborted(fpl));
4974 	}
4975 
4976 	cache_fpl_smr_exit(fpl);
4977 
4978 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4979 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4980 		if (__predict_false(error != 0)) {
4981 			vget_abort(tvp, tvs);
4982 			return (cache_fpl_aborted(fpl));
4983 		}
4984 	} else {
4985 		vget_finish_ref(dvp, dvs);
4986 	}
4987 
4988 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4989 		vget_abort(tvp, tvs);
4990 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4991 			vput(dvp);
4992 		else
4993 			vrele(dvp);
4994 		return (cache_fpl_aborted(fpl));
4995 	}
4996 
4997 	error = cache_fplookup_final_child(fpl, tvs);
4998 	if (__predict_false(error != 0)) {
4999 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
5000 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
5001 		if ((cnp->cn_flags & LOCKPARENT) != 0)
5002 			vput(dvp);
5003 		else
5004 			vrele(dvp);
5005 		return (error);
5006 	}
5007 
5008 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
5009 	return (0);
5010 }
5011 
5012 static int
5013 cache_fplookup_final(struct cache_fpl *fpl)
5014 {
5015 	struct componentname *cnp;
5016 	enum vgetstate tvs;
5017 	struct vnode *dvp, *tvp;
5018 	seqc_t dvp_seqc;
5019 
5020 	cnp = fpl->cnp;
5021 	dvp = fpl->dvp;
5022 	dvp_seqc = fpl->dvp_seqc;
5023 	tvp = fpl->tvp;
5024 
5025 	MPASS(*(cnp->cn_nameptr) != '/');
5026 
5027 	if (cnp->cn_nameiop != LOOKUP) {
5028 		return (cache_fplookup_final_modifying(fpl));
5029 	}
5030 
5031 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
5032 		return (cache_fplookup_final_withparent(fpl));
5033 
5034 	tvs = vget_prep_smr(tvp);
5035 	if (__predict_false(tvs == VGET_NONE)) {
5036 		return (cache_fpl_partial(fpl));
5037 	}
5038 
5039 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5040 		cache_fpl_smr_exit(fpl);
5041 		vget_abort(tvp, tvs);
5042 		return (cache_fpl_aborted(fpl));
5043 	}
5044 
5045 	cache_fpl_smr_exit(fpl);
5046 	return (cache_fplookup_final_child(fpl, tvs));
5047 }
5048 
5049 /*
5050  * Comment from locked lookup:
5051  * Check for degenerate name (e.g. / or "") which is a way of talking about a
5052  * directory, e.g. like "/." or ".".
5053  */
5054 static int __noinline
5055 cache_fplookup_degenerate(struct cache_fpl *fpl)
5056 {
5057 	struct componentname *cnp;
5058 	struct vnode *dvp;
5059 	enum vgetstate dvs;
5060 	int error, lkflags;
5061 #ifdef INVARIANTS
5062 	char *cp;
5063 #endif
5064 
5065 	fpl->tvp = fpl->dvp;
5066 	fpl->tvp_seqc = fpl->dvp_seqc;
5067 
5068 	cnp = fpl->cnp;
5069 	dvp = fpl->dvp;
5070 
5071 #ifdef INVARIANTS
5072 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
5073 		KASSERT(*cp == '/',
5074 		    ("%s: encountered non-slash; string [%s]\n", __func__,
5075 		    cnp->cn_pnbuf));
5076 	}
5077 #endif
5078 
5079 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
5080 		cache_fpl_smr_exit(fpl);
5081 		return (cache_fpl_handled_error(fpl, EISDIR));
5082 	}
5083 
5084 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
5085 		return (cache_fplookup_final_withparent(fpl));
5086 	}
5087 
5088 	dvs = vget_prep_smr(dvp);
5089 	cache_fpl_smr_exit(fpl);
5090 	if (__predict_false(dvs == VGET_NONE)) {
5091 		return (cache_fpl_aborted(fpl));
5092 	}
5093 
5094 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5095 		lkflags = LK_SHARED;
5096 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5097 			lkflags = LK_EXCLUSIVE;
5098 		error = vget_finish(dvp, lkflags, dvs);
5099 		if (__predict_false(error != 0)) {
5100 			return (cache_fpl_aborted(fpl));
5101 		}
5102 	} else {
5103 		vget_finish_ref(dvp, dvs);
5104 	}
5105 	return (cache_fpl_handled(fpl));
5106 }
5107 
5108 static int __noinline
5109 cache_fplookup_emptypath(struct cache_fpl *fpl)
5110 {
5111 	struct nameidata *ndp;
5112 	struct componentname *cnp;
5113 	enum vgetstate tvs;
5114 	struct vnode *tvp;
5115 	int error, lkflags;
5116 
5117 	fpl->tvp = fpl->dvp;
5118 	fpl->tvp_seqc = fpl->dvp_seqc;
5119 
5120 	ndp = fpl->ndp;
5121 	cnp = fpl->cnp;
5122 	tvp = fpl->tvp;
5123 
5124 	MPASS(*cnp->cn_pnbuf == '\0');
5125 
5126 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
5127 		cache_fpl_smr_exit(fpl);
5128 		return (cache_fpl_handled_error(fpl, ENOENT));
5129 	}
5130 
5131 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
5132 
5133 	tvs = vget_prep_smr(tvp);
5134 	cache_fpl_smr_exit(fpl);
5135 	if (__predict_false(tvs == VGET_NONE)) {
5136 		return (cache_fpl_aborted(fpl));
5137 	}
5138 
5139 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5140 		lkflags = LK_SHARED;
5141 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5142 			lkflags = LK_EXCLUSIVE;
5143 		error = vget_finish(tvp, lkflags, tvs);
5144 		if (__predict_false(error != 0)) {
5145 			return (cache_fpl_aborted(fpl));
5146 		}
5147 	} else {
5148 		vget_finish_ref(tvp, tvs);
5149 	}
5150 
5151 	ndp->ni_resflags |= NIRES_EMPTYPATH;
5152 	return (cache_fpl_handled(fpl));
5153 }
5154 
5155 static int __noinline
5156 cache_fplookup_noentry(struct cache_fpl *fpl)
5157 {
5158 	struct nameidata *ndp;
5159 	struct componentname *cnp;
5160 	enum vgetstate dvs;
5161 	struct vnode *dvp, *tvp;
5162 	seqc_t dvp_seqc;
5163 	int error;
5164 
5165 	ndp = fpl->ndp;
5166 	cnp = fpl->cnp;
5167 	dvp = fpl->dvp;
5168 	dvp_seqc = fpl->dvp_seqc;
5169 
5170 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
5171 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
5172 	if (cnp->cn_nameiop == LOOKUP)
5173 		MPASS((cnp->cn_flags & NOCACHE) == 0);
5174 	MPASS(!cache_fpl_isdotdot(cnp));
5175 
5176 	/*
5177 	 * Hack: delayed name len checking.
5178 	 */
5179 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5180 		cache_fpl_smr_exit(fpl);
5181 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5182 	}
5183 
5184 	if (cnp->cn_nameptr[0] == '/') {
5185 		return (cache_fplookup_skip_slashes(fpl));
5186 	}
5187 
5188 	if (cnp->cn_pnbuf[0] == '\0') {
5189 		return (cache_fplookup_emptypath(fpl));
5190 	}
5191 
5192 	if (cnp->cn_nameptr[0] == '\0') {
5193 		if (fpl->tvp == NULL) {
5194 			return (cache_fplookup_degenerate(fpl));
5195 		}
5196 		return (cache_fplookup_trailingslash(fpl));
5197 	}
5198 
5199 	if (cnp->cn_nameiop != LOOKUP) {
5200 		fpl->tvp = NULL;
5201 		return (cache_fplookup_modifying(fpl));
5202 	}
5203 
5204 	/*
5205 	 * Only try to fill in the component if it is the last one,
5206 	 * otherwise not only there may be several to handle but the
5207 	 * walk may be complicated.
5208 	 */
5209 	if (!cache_fpl_islastcn(ndp)) {
5210 		return (cache_fpl_partial(fpl));
5211 	}
5212 
5213 	/*
5214 	 * Regular lookup nulifies the slash, which we don't do here.
5215 	 * Don't take chances with filesystem routines seeing it for
5216 	 * the last entry.
5217 	 */
5218 	if (cache_fpl_istrailingslash(fpl)) {
5219 		return (cache_fpl_partial(fpl));
5220 	}
5221 
5222 	/*
5223 	 * Secure access to dvp; check cache_fplookup_partial_setup for
5224 	 * reasoning.
5225 	 */
5226 	dvs = vget_prep_smr(dvp);
5227 	cache_fpl_smr_exit(fpl);
5228 	if (__predict_false(dvs == VGET_NONE)) {
5229 		return (cache_fpl_aborted(fpl));
5230 	}
5231 
5232 	vget_finish_ref(dvp, dvs);
5233 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5234 		vrele(dvp);
5235 		return (cache_fpl_aborted(fpl));
5236 	}
5237 
5238 	error = vn_lock(dvp, LK_SHARED);
5239 	if (__predict_false(error != 0)) {
5240 		vrele(dvp);
5241 		return (cache_fpl_aborted(fpl));
5242 	}
5243 
5244 	tvp = NULL;
5245 	/*
5246 	 * TODO: provide variants which don't require locking either vnode.
5247 	 */
5248 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
5249 	cnp->cn_lkflags = LK_SHARED;
5250 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
5251 		cnp->cn_lkflags = LK_EXCLUSIVE;
5252 	}
5253 	error = VOP_LOOKUP(dvp, &tvp, cnp);
5254 	switch (error) {
5255 	case EJUSTRETURN:
5256 	case 0:
5257 		break;
5258 	case ENOTDIR:
5259 	case ENOENT:
5260 		vput(dvp);
5261 		return (cache_fpl_handled_error(fpl, error));
5262 	default:
5263 		vput(dvp);
5264 		return (cache_fpl_aborted(fpl));
5265 	}
5266 
5267 	fpl->tvp = tvp;
5268 
5269 	if (tvp == NULL) {
5270 		MPASS(error == EJUSTRETURN);
5271 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5272 			vput(dvp);
5273 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5274 			VOP_UNLOCK(dvp);
5275 		}
5276 		return (cache_fpl_handled(fpl));
5277 	}
5278 
5279 	if (tvp->v_type == VLNK) {
5280 		if ((cnp->cn_flags & FOLLOW) != 0) {
5281 			vput(dvp);
5282 			vput(tvp);
5283 			return (cache_fpl_aborted(fpl));
5284 		}
5285 	}
5286 
5287 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
5288 		vput(dvp);
5289 		vput(tvp);
5290 		return (cache_fpl_aborted(fpl));
5291 	}
5292 
5293 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
5294 		VOP_UNLOCK(tvp);
5295 	}
5296 
5297 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5298 		vput(dvp);
5299 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5300 		VOP_UNLOCK(dvp);
5301 	}
5302 	return (cache_fpl_handled(fpl));
5303 }
5304 
5305 static int __noinline
5306 cache_fplookup_dot(struct cache_fpl *fpl)
5307 {
5308 	int error;
5309 
5310 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
5311 
5312 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
5313 		cache_fpl_smr_exit(fpl);
5314 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5315 	}
5316 
5317 	/*
5318 	 * Just re-assign the value. seqc will be checked later for the first
5319 	 * non-dot path component in line and/or before deciding to return the
5320 	 * vnode.
5321 	 */
5322 	fpl->tvp = fpl->dvp;
5323 	fpl->tvp_seqc = fpl->dvp_seqc;
5324 
5325 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5326 
5327 	error = 0;
5328 	if (cache_fplookup_is_mp(fpl)) {
5329 		error = cache_fplookup_cross_mount(fpl);
5330 	}
5331 	return (error);
5332 }
5333 
5334 static int __noinline
5335 cache_fplookup_dotdot(struct cache_fpl *fpl)
5336 {
5337 	struct nameidata *ndp;
5338 	struct namecache *ncp;
5339 	struct vnode *dvp;
5340 	u_char nc_flag;
5341 
5342 	ndp = fpl->ndp;
5343 	dvp = fpl->dvp;
5344 
5345 	MPASS(cache_fpl_isdotdot(fpl->cnp));
5346 
5347 	/*
5348 	 * XXX this is racy the same way regular lookup is
5349 	 */
5350 	if (vfs_lookup_isroot(ndp, dvp)) {
5351 		fpl->tvp = dvp;
5352 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5353 		if (seqc_in_modify(fpl->tvp_seqc)) {
5354 			return (cache_fpl_aborted(fpl));
5355 		}
5356 		return (0);
5357 	}
5358 
5359 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5360 		/*
5361 		 * TODO
5362 		 * The opposite of climb mount is needed here.
5363 		 */
5364 		return (cache_fpl_partial(fpl));
5365 	}
5366 
5367 	if (__predict_false(dvp->v_type != VDIR)) {
5368 		cache_fpl_smr_exit(fpl);
5369 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5370 	}
5371 
5372 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5373 	if (ncp == NULL) {
5374 		return (cache_fpl_aborted(fpl));
5375 	}
5376 
5377 	nc_flag = atomic_load_char(&ncp->nc_flag);
5378 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5379 		if ((nc_flag & NCF_NEGATIVE) != 0)
5380 			return (cache_fpl_aborted(fpl));
5381 		fpl->tvp = ncp->nc_vp;
5382 	} else {
5383 		fpl->tvp = ncp->nc_dvp;
5384 	}
5385 
5386 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5387 	if (seqc_in_modify(fpl->tvp_seqc)) {
5388 		return (cache_fpl_partial(fpl));
5389 	}
5390 
5391 	/*
5392 	 * Acquire fence provided by vn_seqc_read_any above.
5393 	 */
5394 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5395 		return (cache_fpl_aborted(fpl));
5396 	}
5397 
5398 	if (!cache_ncp_canuse(ncp)) {
5399 		return (cache_fpl_aborted(fpl));
5400 	}
5401 
5402 	return (0);
5403 }
5404 
5405 static int __noinline
5406 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5407 {
5408 	u_char nc_flag __diagused;
5409 	bool neg_promote;
5410 
5411 #ifdef INVARIANTS
5412 	nc_flag = atomic_load_char(&ncp->nc_flag);
5413 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5414 #endif
5415 	/*
5416 	 * If they want to create an entry we need to replace this one.
5417 	 */
5418 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5419 		fpl->tvp = NULL;
5420 		return (cache_fplookup_modifying(fpl));
5421 	}
5422 	neg_promote = cache_neg_hit_prep(ncp);
5423 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5424 		cache_neg_hit_abort(ncp);
5425 		return (cache_fpl_partial(fpl));
5426 	}
5427 	if (neg_promote) {
5428 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5429 	}
5430 	cache_neg_hit_finish(ncp);
5431 	cache_fpl_smr_exit(fpl);
5432 	return (cache_fpl_handled_error(fpl, ENOENT));
5433 }
5434 
5435 /*
5436  * Resolve a symlink. Called by filesystem-specific routines.
5437  *
5438  * Code flow is:
5439  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5440  */
5441 int
5442 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5443 {
5444 	struct nameidata *ndp;
5445 	struct componentname *cnp;
5446 	size_t adjust;
5447 
5448 	ndp = fpl->ndp;
5449 	cnp = fpl->cnp;
5450 
5451 	if (__predict_false(len == 0)) {
5452 		return (ENOENT);
5453 	}
5454 
5455 	if (__predict_false(len > MAXPATHLEN - 2)) {
5456 		if (cache_fpl_istrailingslash(fpl)) {
5457 			return (EAGAIN);
5458 		}
5459 	}
5460 
5461 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5462 #ifdef INVARIANTS
5463 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5464 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5465 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5466 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5467 	}
5468 #endif
5469 
5470 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5471 		return (ENAMETOOLONG);
5472 	}
5473 
5474 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5475 		return (ELOOP);
5476 	}
5477 
5478 	adjust = len;
5479 	if (ndp->ni_pathlen > 1) {
5480 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5481 	} else {
5482 		if (cache_fpl_istrailingslash(fpl)) {
5483 			adjust = len + 1;
5484 			cnp->cn_pnbuf[len] = '/';
5485 			cnp->cn_pnbuf[len + 1] = '\0';
5486 		} else {
5487 			cnp->cn_pnbuf[len] = '\0';
5488 		}
5489 	}
5490 	bcopy(string, cnp->cn_pnbuf, len);
5491 
5492 	ndp->ni_pathlen += adjust;
5493 	cache_fpl_pathlen_add(fpl, adjust);
5494 	cnp->cn_nameptr = cnp->cn_pnbuf;
5495 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5496 	fpl->tvp = NULL;
5497 	return (0);
5498 }
5499 
5500 static int __noinline
5501 cache_fplookup_symlink(struct cache_fpl *fpl)
5502 {
5503 	struct mount *mp;
5504 	struct nameidata *ndp;
5505 	struct componentname *cnp;
5506 	struct vnode *dvp, *tvp;
5507 	struct pwd *pwd;
5508 	int error;
5509 
5510 	ndp = fpl->ndp;
5511 	cnp = fpl->cnp;
5512 	dvp = fpl->dvp;
5513 	tvp = fpl->tvp;
5514 	pwd = *(fpl->pwd);
5515 
5516 	if (cache_fpl_islastcn(ndp)) {
5517 		if ((cnp->cn_flags & FOLLOW) == 0) {
5518 			return (cache_fplookup_final(fpl));
5519 		}
5520 	}
5521 
5522 	mp = atomic_load_ptr(&dvp->v_mount);
5523 	if (__predict_false(mp == NULL)) {
5524 		return (cache_fpl_aborted(fpl));
5525 	}
5526 
5527 	/*
5528 	 * Note this check races against setting the flag just like regular
5529 	 * lookup.
5530 	 */
5531 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5532 		cache_fpl_smr_exit(fpl);
5533 		return (cache_fpl_handled_error(fpl, EACCES));
5534 	}
5535 
5536 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5537 	if (__predict_false(error != 0)) {
5538 		switch (error) {
5539 		case EAGAIN:
5540 			return (cache_fpl_partial(fpl));
5541 		case ENOENT:
5542 		case ENAMETOOLONG:
5543 		case ELOOP:
5544 			cache_fpl_smr_exit(fpl);
5545 			return (cache_fpl_handled_error(fpl, error));
5546 		default:
5547 			return (cache_fpl_aborted(fpl));
5548 		}
5549 	}
5550 
5551 	if (*(cnp->cn_nameptr) == '/') {
5552 		fpl->dvp = cache_fpl_handle_root(fpl);
5553 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5554 		if (seqc_in_modify(fpl->dvp_seqc)) {
5555 			return (cache_fpl_aborted(fpl));
5556 		}
5557 		/*
5558 		 * The main loop assumes that ->dvp points to a vnode belonging
5559 		 * to a filesystem which can do lockless lookup, but the absolute
5560 		 * symlink can be wandering off to one which does not.
5561 		 */
5562 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5563 		if (__predict_false(mp == NULL)) {
5564 			return (cache_fpl_aborted(fpl));
5565 		}
5566 		if (!cache_fplookup_mp_supported(mp)) {
5567 			cache_fpl_checkpoint(fpl);
5568 			return (cache_fpl_partial(fpl));
5569 		}
5570 		if (__predict_false(pwd->pwd_adir != pwd->pwd_rdir)) {
5571 			return (cache_fpl_aborted(fpl));
5572 		}
5573 	}
5574 	return (0);
5575 }
5576 
5577 static int
5578 cache_fplookup_next(struct cache_fpl *fpl)
5579 {
5580 	struct componentname *cnp;
5581 	struct namecache *ncp;
5582 	struct vnode *dvp, *tvp;
5583 	u_char nc_flag;
5584 	uint32_t hash;
5585 	int error;
5586 
5587 	cnp = fpl->cnp;
5588 	dvp = fpl->dvp;
5589 	hash = fpl->hash;
5590 
5591 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5592 		if (cnp->cn_namelen == 1) {
5593 			return (cache_fplookup_dot(fpl));
5594 		}
5595 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5596 			return (cache_fplookup_dotdot(fpl));
5597 		}
5598 	}
5599 
5600 	MPASS(!cache_fpl_isdotdot(cnp));
5601 
5602 	ncp = cache_ncp_find(dvp, cnp, hash);
5603 	if (__predict_false(ncp == NULL)) {
5604 		return (cache_fplookup_noentry(fpl));
5605 	}
5606 
5607 	tvp = atomic_load_ptr(&ncp->nc_vp);
5608 	nc_flag = atomic_load_char(&ncp->nc_flag);
5609 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5610 		return (cache_fplookup_neg(fpl, ncp, hash));
5611 	}
5612 
5613 	if (!cache_ncp_canuse(ncp)) {
5614 		return (cache_fpl_partial(fpl));
5615 	}
5616 
5617 	fpl->tvp = tvp;
5618 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5619 	if (seqc_in_modify(fpl->tvp_seqc)) {
5620 		return (cache_fpl_partial(fpl));
5621 	}
5622 
5623 	counter_u64_add(numposhits, 1);
5624 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5625 
5626 	error = 0;
5627 	if (cache_fplookup_is_mp(fpl)) {
5628 		error = cache_fplookup_cross_mount(fpl);
5629 	}
5630 	return (error);
5631 }
5632 
5633 static bool
5634 cache_fplookup_mp_supported(struct mount *mp)
5635 {
5636 
5637 	MPASS(mp != NULL);
5638 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5639 		return (false);
5640 	return (true);
5641 }
5642 
5643 /*
5644  * Walk up the mount stack (if any).
5645  *
5646  * Correctness is provided in the following ways:
5647  * - all vnodes are protected from freeing with SMR
5648  * - struct mount objects are type stable making them always safe to access
5649  * - stability of the particular mount is provided by busying it
5650  * - relationship between the vnode which is mounted on and the mount is
5651  *   verified with the vnode sequence counter after busying
5652  * - association between root vnode of the mount and the mount is protected
5653  *   by busy
5654  *
5655  * From that point on we can read the sequence counter of the root vnode
5656  * and get the next mount on the stack (if any) using the same protection.
5657  *
5658  * By the end of successful walk we are guaranteed the reached state was
5659  * indeed present at least at some point which matches the regular lookup.
5660  */
5661 static int __noinline
5662 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5663 {
5664 	struct mount *mp, *prev_mp;
5665 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5666 	struct vnode *vp;
5667 	seqc_t vp_seqc;
5668 
5669 	vp = fpl->tvp;
5670 	vp_seqc = fpl->tvp_seqc;
5671 
5672 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5673 	mp = atomic_load_ptr(&vp->v_mountedhere);
5674 	if (__predict_false(mp == NULL)) {
5675 		return (0);
5676 	}
5677 
5678 	prev_mp = NULL;
5679 	for (;;) {
5680 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5681 			if (prev_mp != NULL)
5682 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5683 			return (cache_fpl_partial(fpl));
5684 		}
5685 		if (prev_mp != NULL)
5686 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5687 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5688 			vfs_op_thread_exit_crit(mp, mpcpu);
5689 			return (cache_fpl_partial(fpl));
5690 		}
5691 		if (!cache_fplookup_mp_supported(mp)) {
5692 			vfs_op_thread_exit_crit(mp, mpcpu);
5693 			return (cache_fpl_partial(fpl));
5694 		}
5695 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5696 		if (vp == NULL) {
5697 			vfs_op_thread_exit_crit(mp, mpcpu);
5698 			return (cache_fpl_partial(fpl));
5699 		}
5700 		vp_seqc = vn_seqc_read_any(vp);
5701 		if (seqc_in_modify(vp_seqc)) {
5702 			vfs_op_thread_exit_crit(mp, mpcpu);
5703 			return (cache_fpl_partial(fpl));
5704 		}
5705 		prev_mp = mp;
5706 		prev_mpcpu = mpcpu;
5707 		mp = atomic_load_ptr(&vp->v_mountedhere);
5708 		if (mp == NULL)
5709 			break;
5710 	}
5711 
5712 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5713 	fpl->tvp = vp;
5714 	fpl->tvp_seqc = vp_seqc;
5715 	return (0);
5716 }
5717 
5718 static int __noinline
5719 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5720 {
5721 	struct mount *mp;
5722 	struct mount_pcpu *mpcpu;
5723 	struct vnode *vp;
5724 	seqc_t vp_seqc;
5725 
5726 	vp = fpl->tvp;
5727 	vp_seqc = fpl->tvp_seqc;
5728 
5729 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5730 	mp = atomic_load_ptr(&vp->v_mountedhere);
5731 	if (__predict_false(mp == NULL)) {
5732 		return (0);
5733 	}
5734 
5735 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5736 		return (cache_fpl_partial(fpl));
5737 	}
5738 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5739 		vfs_op_thread_exit_crit(mp, mpcpu);
5740 		return (cache_fpl_partial(fpl));
5741 	}
5742 	if (!cache_fplookup_mp_supported(mp)) {
5743 		vfs_op_thread_exit_crit(mp, mpcpu);
5744 		return (cache_fpl_partial(fpl));
5745 	}
5746 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5747 	if (__predict_false(vp == NULL)) {
5748 		vfs_op_thread_exit_crit(mp, mpcpu);
5749 		return (cache_fpl_partial(fpl));
5750 	}
5751 	vp_seqc = vn_seqc_read_any(vp);
5752 	vfs_op_thread_exit_crit(mp, mpcpu);
5753 	if (seqc_in_modify(vp_seqc)) {
5754 		return (cache_fpl_partial(fpl));
5755 	}
5756 	mp = atomic_load_ptr(&vp->v_mountedhere);
5757 	if (__predict_false(mp != NULL)) {
5758 		/*
5759 		 * There are possibly more mount points on top.
5760 		 * Normally this does not happen so for simplicity just start
5761 		 * over.
5762 		 */
5763 		return (cache_fplookup_climb_mount(fpl));
5764 	}
5765 
5766 	fpl->tvp = vp;
5767 	fpl->tvp_seqc = vp_seqc;
5768 	return (0);
5769 }
5770 
5771 /*
5772  * Check if a vnode is mounted on.
5773  */
5774 static bool
5775 cache_fplookup_is_mp(struct cache_fpl *fpl)
5776 {
5777 	struct vnode *vp;
5778 
5779 	vp = fpl->tvp;
5780 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5781 }
5782 
5783 /*
5784  * Parse the path.
5785  *
5786  * The code was originally copy-pasted from regular lookup and despite
5787  * clean ups leaves performance on the table. Any modifications here
5788  * must take into account that in case off fallback the resulting
5789  * nameidata state has to be compatible with the original.
5790  */
5791 
5792 /*
5793  * Debug ni_pathlen tracking.
5794  */
5795 #ifdef INVARIANTS
5796 static void
5797 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5798 {
5799 
5800 	fpl->debug.ni_pathlen += n;
5801 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5802 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5803 }
5804 
5805 static void
5806 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5807 {
5808 
5809 	fpl->debug.ni_pathlen -= n;
5810 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5811 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5812 }
5813 
5814 static void
5815 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5816 {
5817 
5818 	cache_fpl_pathlen_add(fpl, 1);
5819 }
5820 
5821 static void
5822 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5823 {
5824 
5825 	cache_fpl_pathlen_sub(fpl, 1);
5826 }
5827 #else
5828 static void
5829 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5830 {
5831 }
5832 
5833 static void
5834 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5835 {
5836 }
5837 
5838 static void
5839 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5840 {
5841 }
5842 
5843 static void
5844 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5845 {
5846 }
5847 #endif
5848 
5849 static void
5850 cache_fplookup_parse(struct cache_fpl *fpl)
5851 {
5852 	struct nameidata *ndp;
5853 	struct componentname *cnp;
5854 	struct vnode *dvp;
5855 	char *cp;
5856 	uint32_t hash;
5857 
5858 	ndp = fpl->ndp;
5859 	cnp = fpl->cnp;
5860 	dvp = fpl->dvp;
5861 
5862 	/*
5863 	 * Find the end of this path component, it is either / or nul.
5864 	 *
5865 	 * Store / as a temporary sentinel so that we only have one character
5866 	 * to test for. Pathnames tend to be short so this should not be
5867 	 * resulting in cache misses.
5868 	 *
5869 	 * TODO: fix this to be word-sized.
5870 	 */
5871 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5872 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5873 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5874 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5875 	    fpl->nulchar, cnp->cn_pnbuf));
5876 	KASSERT(*fpl->nulchar == '\0',
5877 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5878 	    cnp->cn_pnbuf));
5879 	hash = cache_get_hash_iter_start(dvp);
5880 	*fpl->nulchar = '/';
5881 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5882 		KASSERT(*cp != '\0',
5883 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5884 		    cnp->cn_nameptr));
5885 		hash = cache_get_hash_iter(*cp, hash);
5886 		continue;
5887 	}
5888 	*fpl->nulchar = '\0';
5889 	fpl->hash = cache_get_hash_iter_finish(hash);
5890 
5891 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5892 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5893 
5894 #ifdef INVARIANTS
5895 	/*
5896 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5897 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5898 	 */
5899 	if (cnp->cn_namelen <= NAME_MAX) {
5900 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5901 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5902 			    cnp->cn_nameptr, cnp->cn_namelen);
5903 		}
5904 	}
5905 #endif
5906 
5907 	/*
5908 	 * Hack: we have to check if the found path component's length exceeds
5909 	 * NAME_MAX. However, the condition is very rarely true and check can
5910 	 * be elided in the common case -- if an entry was found in the cache,
5911 	 * then it could not have been too long to begin with.
5912 	 */
5913 	ndp->ni_next = cp;
5914 }
5915 
5916 static void
5917 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5918 {
5919 	struct nameidata *ndp;
5920 	struct componentname *cnp;
5921 
5922 	ndp = fpl->ndp;
5923 	cnp = fpl->cnp;
5924 
5925 	cnp->cn_nameptr = ndp->ni_next;
5926 	KASSERT(*(cnp->cn_nameptr) == '/',
5927 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5928 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5929 	cnp->cn_nameptr++;
5930 	cache_fpl_pathlen_dec(fpl);
5931 }
5932 
5933 /*
5934  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5935  *
5936  * Lockless lookup tries to elide checking for spurious slashes and should they
5937  * be present is guaranteed to fail to find an entry. In this case the caller
5938  * must check if the name starts with a slash and call this routine.  It is
5939  * going to fast forward across the spurious slashes and set the state up for
5940  * retry.
5941  */
5942 static int __noinline
5943 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5944 {
5945 	struct nameidata *ndp;
5946 	struct componentname *cnp;
5947 
5948 	ndp = fpl->ndp;
5949 	cnp = fpl->cnp;
5950 
5951 	MPASS(*(cnp->cn_nameptr) == '/');
5952 	do {
5953 		cnp->cn_nameptr++;
5954 		cache_fpl_pathlen_dec(fpl);
5955 	} while (*(cnp->cn_nameptr) == '/');
5956 
5957 	/*
5958 	 * Go back to one slash so that cache_fplookup_parse_advance has
5959 	 * something to skip.
5960 	 */
5961 	cnp->cn_nameptr--;
5962 	cache_fpl_pathlen_inc(fpl);
5963 
5964 	/*
5965 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5966 	 */
5967 	ndp->ni_next = cnp->cn_nameptr;
5968 
5969 	/*
5970 	 * See cache_fplookup_dot.
5971 	 */
5972 	fpl->tvp = fpl->dvp;
5973 	fpl->tvp_seqc = fpl->dvp_seqc;
5974 
5975 	return (0);
5976 }
5977 
5978 /*
5979  * Handle trailing slashes (e.g., "foo/").
5980  *
5981  * If a trailing slash is found the terminal vnode must be a directory.
5982  * Regular lookup shortens the path by nulifying the first trailing slash and
5983  * sets the TRAILINGSLASH flag to denote this took place. There are several
5984  * checks on it performed later.
5985  *
5986  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5987  * manner relying on an invariant that a non-directory vnode will get a miss.
5988  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5989  *
5990  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5991  * and denotes this is the last path component, which avoids looping back.
5992  *
5993  * Only plain lookups are supported for now to restrict corner cases to handle.
5994  */
5995 static int __noinline
5996 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5997 {
5998 #ifdef INVARIANTS
5999 	size_t ni_pathlen;
6000 #endif
6001 	struct nameidata *ndp;
6002 	struct componentname *cnp;
6003 	struct namecache *ncp;
6004 	struct vnode *tvp;
6005 	char *cn_nameptr_orig, *cn_nameptr_slash;
6006 	seqc_t tvp_seqc;
6007 	u_char nc_flag;
6008 
6009 	ndp = fpl->ndp;
6010 	cnp = fpl->cnp;
6011 	tvp = fpl->tvp;
6012 	tvp_seqc = fpl->tvp_seqc;
6013 
6014 	MPASS(fpl->dvp == fpl->tvp);
6015 	KASSERT(cache_fpl_istrailingslash(fpl),
6016 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
6017 	    cnp->cn_pnbuf));
6018 	KASSERT(cnp->cn_nameptr[0] == '\0',
6019 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
6020 	    cnp->cn_pnbuf));
6021 	KASSERT(cnp->cn_namelen == 0,
6022 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
6023 	    cnp->cn_pnbuf));
6024 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
6025 
6026 	if (cnp->cn_nameiop != LOOKUP) {
6027 		return (cache_fpl_aborted(fpl));
6028 	}
6029 
6030 	if (__predict_false(tvp->v_type != VDIR)) {
6031 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
6032 			return (cache_fpl_aborted(fpl));
6033 		}
6034 		cache_fpl_smr_exit(fpl);
6035 		return (cache_fpl_handled_error(fpl, ENOTDIR));
6036 	}
6037 
6038 	/*
6039 	 * Denote the last component.
6040 	 */
6041 	ndp->ni_next = &cnp->cn_nameptr[0];
6042 	MPASS(cache_fpl_islastcn(ndp));
6043 
6044 	/*
6045 	 * Unwind trailing slashes.
6046 	 */
6047 	cn_nameptr_orig = cnp->cn_nameptr;
6048 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
6049 		cnp->cn_nameptr--;
6050 		if (cnp->cn_nameptr[0] != '/') {
6051 			break;
6052 		}
6053 	}
6054 
6055 	/*
6056 	 * Unwind to the beginning of the path component.
6057 	 *
6058 	 * Note the path may or may not have started with a slash.
6059 	 */
6060 	cn_nameptr_slash = cnp->cn_nameptr;
6061 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
6062 		cnp->cn_nameptr--;
6063 		if (cnp->cn_nameptr[0] == '/') {
6064 			break;
6065 		}
6066 	}
6067 	if (cnp->cn_nameptr[0] == '/') {
6068 		cnp->cn_nameptr++;
6069 	}
6070 
6071 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
6072 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
6073 	cache_fpl_checkpoint(fpl);
6074 
6075 #ifdef INVARIANTS
6076 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
6077 	if (ni_pathlen != fpl->debug.ni_pathlen) {
6078 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
6079 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
6080 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
6081 	}
6082 #endif
6083 
6084 	/*
6085 	 * If this was a "./" lookup the parent directory is already correct.
6086 	 */
6087 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
6088 		return (0);
6089 	}
6090 
6091 	/*
6092 	 * Otherwise we need to look it up.
6093 	 */
6094 	tvp = fpl->tvp;
6095 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
6096 	if (__predict_false(ncp == NULL)) {
6097 		return (cache_fpl_aborted(fpl));
6098 	}
6099 	nc_flag = atomic_load_char(&ncp->nc_flag);
6100 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
6101 		return (cache_fpl_aborted(fpl));
6102 	}
6103 	fpl->dvp = ncp->nc_dvp;
6104 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
6105 	if (seqc_in_modify(fpl->dvp_seqc)) {
6106 		return (cache_fpl_aborted(fpl));
6107 	}
6108 	return (0);
6109 }
6110 
6111 /*
6112  * See the API contract for VOP_FPLOOKUP_VEXEC.
6113  */
6114 static int __noinline
6115 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
6116 {
6117 	struct componentname *cnp;
6118 	struct vnode *dvp;
6119 	seqc_t dvp_seqc;
6120 
6121 	cnp = fpl->cnp;
6122 	dvp = fpl->dvp;
6123 	dvp_seqc = fpl->dvp_seqc;
6124 
6125 	/*
6126 	 * Hack: delayed empty path checking.
6127 	 */
6128 	if (cnp->cn_pnbuf[0] == '\0') {
6129 		return (cache_fplookup_emptypath(fpl));
6130 	}
6131 
6132 	/*
6133 	 * TODO: Due to ignoring trailing slashes lookup will perform a
6134 	 * permission check on the last dir when it should not be doing it.  It
6135 	 * may fail, but said failure should be ignored. It is possible to fix
6136 	 * it up fully without resorting to regular lookup, but for now just
6137 	 * abort.
6138 	 */
6139 	if (cache_fpl_istrailingslash(fpl)) {
6140 		return (cache_fpl_aborted(fpl));
6141 	}
6142 
6143 	/*
6144 	 * Hack: delayed degenerate path checking.
6145 	 */
6146 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
6147 		return (cache_fplookup_degenerate(fpl));
6148 	}
6149 
6150 	/*
6151 	 * Hack: delayed name len checking.
6152 	 */
6153 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
6154 		cache_fpl_smr_exit(fpl);
6155 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
6156 	}
6157 
6158 	/*
6159 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
6160 	 * In such a case we need to return ENOTDIR, but we may happen to get
6161 	 * here with a different error.
6162 	 */
6163 	if (dvp->v_type != VDIR) {
6164 		error = ENOTDIR;
6165 	}
6166 
6167 	/*
6168 	 * Hack: handle O_SEARCH.
6169 	 *
6170 	 * Open Group Base Specifications Issue 7, 2018 edition states:
6171 	 * <quote>
6172 	 * If the access mode of the open file description associated with the
6173 	 * file descriptor is not O_SEARCH, the function shall check whether
6174 	 * directory searches are permitted using the current permissions of
6175 	 * the directory underlying the file descriptor. If the access mode is
6176 	 * O_SEARCH, the function shall not perform the check.
6177 	 * </quote>
6178 	 *
6179 	 * Regular lookup tests for the NOEXECCHECK flag for every path
6180 	 * component to decide whether to do the permission check. However,
6181 	 * since most lookups never have the flag (and when they do it is only
6182 	 * present for the first path component), lockless lookup only acts on
6183 	 * it if there is a permission problem. Here the flag is represented
6184 	 * with a boolean so that we don't have to clear it on the way out.
6185 	 *
6186 	 * For simplicity this always aborts.
6187 	 * TODO: check if this is the first lookup and ignore the permission
6188 	 * problem. Note the flag has to survive fallback (if it happens to be
6189 	 * performed).
6190 	 */
6191 	if (fpl->fsearch) {
6192 		return (cache_fpl_aborted(fpl));
6193 	}
6194 
6195 	switch (error) {
6196 	case EAGAIN:
6197 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6198 			error = cache_fpl_aborted(fpl);
6199 		} else {
6200 			cache_fpl_partial(fpl);
6201 		}
6202 		break;
6203 	default:
6204 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6205 			error = cache_fpl_aborted(fpl);
6206 		} else {
6207 			cache_fpl_smr_exit(fpl);
6208 			cache_fpl_handled_error(fpl, error);
6209 		}
6210 		break;
6211 	}
6212 	return (error);
6213 }
6214 
6215 static int
6216 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
6217 {
6218 	struct nameidata *ndp;
6219 	struct componentname *cnp;
6220 	struct mount *mp;
6221 	int error;
6222 
6223 	ndp = fpl->ndp;
6224 	cnp = fpl->cnp;
6225 
6226 	cache_fpl_checkpoint(fpl);
6227 
6228 	/*
6229 	 * The vnode at hand is almost always stable, skip checking for it.
6230 	 * Worst case this postpones the check towards the end of the iteration
6231 	 * of the main loop.
6232 	 */
6233 	fpl->dvp = dvp;
6234 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
6235 
6236 	mp = atomic_load_ptr(&dvp->v_mount);
6237 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
6238 		return (cache_fpl_aborted(fpl));
6239 	}
6240 
6241 	MPASS(fpl->tvp == NULL);
6242 
6243 	for (;;) {
6244 		cache_fplookup_parse(fpl);
6245 
6246 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
6247 		if (__predict_false(error != 0)) {
6248 			error = cache_fplookup_failed_vexec(fpl, error);
6249 			break;
6250 		}
6251 
6252 		error = cache_fplookup_next(fpl);
6253 		if (__predict_false(cache_fpl_terminated(fpl))) {
6254 			break;
6255 		}
6256 
6257 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
6258 
6259 		if (fpl->tvp->v_type == VLNK) {
6260 			error = cache_fplookup_symlink(fpl);
6261 			if (cache_fpl_terminated(fpl)) {
6262 				break;
6263 			}
6264 		} else {
6265 			if (cache_fpl_islastcn(ndp)) {
6266 				error = cache_fplookup_final(fpl);
6267 				break;
6268 			}
6269 
6270 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
6271 				error = cache_fpl_aborted(fpl);
6272 				break;
6273 			}
6274 
6275 			fpl->dvp = fpl->tvp;
6276 			fpl->dvp_seqc = fpl->tvp_seqc;
6277 			cache_fplookup_parse_advance(fpl);
6278 		}
6279 
6280 		cache_fpl_checkpoint(fpl);
6281 	}
6282 
6283 	return (error);
6284 }
6285 
6286 /*
6287  * Fast path lookup protected with SMR and sequence counters.
6288  *
6289  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
6290  *
6291  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
6292  * outlined below.
6293  *
6294  * Traditional vnode lookup conceptually looks like this:
6295  *
6296  * vn_lock(current);
6297  * for (;;) {
6298  *	next = find();
6299  *	vn_lock(next);
6300  *	vn_unlock(current);
6301  *	current = next;
6302  *	if (last)
6303  *	    break;
6304  * }
6305  * return (current);
6306  *
6307  * Each jump to the next vnode is safe memory-wise and atomic with respect to
6308  * any modifications thanks to holding respective locks.
6309  *
6310  * The same guarantee can be provided with a combination of safe memory
6311  * reclamation and sequence counters instead. If all operations which affect
6312  * the relationship between the current vnode and the one we are looking for
6313  * also modify the counter, we can verify whether all the conditions held as
6314  * we made the jump. This includes things like permissions, mount points etc.
6315  * Counter modification is provided by enclosing relevant places in
6316  * vn_seqc_write_begin()/end() calls.
6317  *
6318  * Thus this translates to:
6319  *
6320  * vfs_smr_enter();
6321  * dvp_seqc = seqc_read_any(dvp);
6322  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6323  *     abort();
6324  * for (;;) {
6325  * 	tvp = find();
6326  * 	tvp_seqc = seqc_read_any(tvp);
6327  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6328  * 	    abort();
6329  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6330  * 	    abort();
6331  * 	dvp = tvp; // we know nothing of importance has changed
6332  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6333  * 	if (last)
6334  * 	    break;
6335  * }
6336  * vget(); // secure the vnode
6337  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6338  * 	    abort();
6339  * // at this point we know nothing has changed for any parent<->child pair
6340  * // as they were crossed during the lookup, meaning we matched the guarantee
6341  * // of the locked variant
6342  * return (tvp);
6343  *
6344  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6345  * - they are called while within vfs_smr protection which they must never exit
6346  * - EAGAIN can be returned to denote checking could not be performed, it is
6347  *   always valid to return it
6348  * - if the sequence counter has not changed the result must be valid
6349  * - if the sequence counter has changed both false positives and false negatives
6350  *   are permitted (since the result will be rejected later)
6351  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6352  *
6353  * Caveats to watch out for:
6354  * - vnodes are passed unlocked and unreferenced with nothing stopping
6355  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6356  *   to use atomic_load_ptr to fetch it.
6357  * - the aforementioned object can also get freed, meaning absent other means it
6358  *   should be protected with vfs_smr
6359  * - either safely checking permissions as they are modified or guaranteeing
6360  *   their stability is left to the routine
6361  */
6362 int
6363 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6364     struct pwd **pwdp)
6365 {
6366 	struct cache_fpl fpl;
6367 	struct pwd *pwd;
6368 	struct vnode *dvp;
6369 	struct componentname *cnp;
6370 	int error;
6371 
6372 	fpl.status = CACHE_FPL_STATUS_UNSET;
6373 	fpl.in_smr = false;
6374 	fpl.ndp = ndp;
6375 	fpl.cnp = cnp = &ndp->ni_cnd;
6376 	MPASS(ndp->ni_lcf == 0);
6377 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6378 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6379 	    cnp->cn_flags));
6380 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6381 	MPASS(ndp->ni_resflags == 0);
6382 
6383 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6384 		*status = fpl.status;
6385 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6386 		return (EOPNOTSUPP);
6387 	}
6388 
6389 	cache_fpl_checkpoint_outer(&fpl);
6390 
6391 	cache_fpl_smr_enter_initial(&fpl);
6392 #ifdef INVARIANTS
6393 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6394 #endif
6395 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6396 	fpl.fsearch = false;
6397 	fpl.tvp = NULL; /* for degenerate path handling */
6398 	fpl.pwd = pwdp;
6399 	pwd = pwd_get_smr();
6400 	*(fpl.pwd) = pwd;
6401 	namei_setup_rootdir(ndp, cnp, pwd);
6402 	ndp->ni_topdir = pwd->pwd_jdir;
6403 
6404 	if (cnp->cn_pnbuf[0] == '/') {
6405 		dvp = cache_fpl_handle_root(&fpl);
6406 		ndp->ni_resflags = NIRES_ABS;
6407 	} else {
6408 		if (ndp->ni_dirfd == AT_FDCWD) {
6409 			dvp = pwd->pwd_cdir;
6410 		} else {
6411 			error = cache_fplookup_dirfd(&fpl, &dvp);
6412 			if (__predict_false(error != 0)) {
6413 				goto out;
6414 			}
6415 		}
6416 	}
6417 
6418 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6419 	error = cache_fplookup_impl(dvp, &fpl);
6420 out:
6421 	cache_fpl_smr_assert_not_entered(&fpl);
6422 	cache_fpl_assert_status(&fpl);
6423 	*status = fpl.status;
6424 	if (SDT_PROBES_ENABLED()) {
6425 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6426 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6427 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6428 			    ndp);
6429 	}
6430 
6431 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6432 		MPASS(error != CACHE_FPL_FAILED);
6433 		if (error != 0) {
6434 			cache_fpl_cleanup_cnp(fpl.cnp);
6435 			MPASS(fpl.dvp == NULL);
6436 			MPASS(fpl.tvp == NULL);
6437 		}
6438 		ndp->ni_dvp = fpl.dvp;
6439 		ndp->ni_vp = fpl.tvp;
6440 	}
6441 	return (error);
6442 }
6443