xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_topology.c (revision 5f2b6c5f6b692c696a232d12c43b8e41c0d393b9)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34 #include <linux/crc16.h>
35 
36 #include "kfd_priv.h"
37 #include "kfd_crat.h"
38 #include "kfd_topology.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_svm.h"
41 #include "kfd_debug.h"
42 #include "amdgpu_amdkfd.h"
43 #include "amdgpu_ras.h"
44 #include "amdgpu.h"
45 
46 /* topology_device_list - Master list of all topology devices */
47 static struct list_head topology_device_list;
48 static struct kfd_system_properties sys_props;
49 
50 static DECLARE_RWSEM(topology_lock);
51 static uint32_t topology_crat_proximity_domain;
52 
kfd_topology_device_by_proximity_domain_no_lock(uint32_t proximity_domain)53 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
54 						uint32_t proximity_domain)
55 {
56 	struct kfd_topology_device *top_dev;
57 	struct kfd_topology_device *device = NULL;
58 
59 	list_for_each_entry(top_dev, &topology_device_list, list)
60 		if (top_dev->proximity_domain == proximity_domain) {
61 			device = top_dev;
62 			break;
63 		}
64 
65 	return device;
66 }
67 
kfd_topology_device_by_proximity_domain(uint32_t proximity_domain)68 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
69 						uint32_t proximity_domain)
70 {
71 	struct kfd_topology_device *device = NULL;
72 
73 	down_read(&topology_lock);
74 
75 	device = kfd_topology_device_by_proximity_domain_no_lock(
76 							proximity_domain);
77 	up_read(&topology_lock);
78 
79 	return device;
80 }
81 
kfd_topology_device_by_id(uint32_t gpu_id)82 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
83 {
84 	struct kfd_topology_device *top_dev = NULL;
85 	struct kfd_topology_device *ret = NULL;
86 
87 	down_read(&topology_lock);
88 
89 	list_for_each_entry(top_dev, &topology_device_list, list)
90 		if (top_dev->gpu_id == gpu_id) {
91 			ret = top_dev;
92 			break;
93 		}
94 
95 	up_read(&topology_lock);
96 
97 	return ret;
98 }
99 
kfd_device_by_id(uint32_t gpu_id)100 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
101 {
102 	struct kfd_topology_device *top_dev;
103 
104 	top_dev = kfd_topology_device_by_id(gpu_id);
105 	if (!top_dev)
106 		return NULL;
107 
108 	return top_dev->gpu;
109 }
110 
111 /* Called with write topology_lock acquired */
kfd_release_topology_device(struct kfd_topology_device * dev)112 static void kfd_release_topology_device(struct kfd_topology_device *dev)
113 {
114 	struct kfd_mem_properties *mem;
115 	struct kfd_cache_properties *cache;
116 	struct kfd_iolink_properties *iolink;
117 	struct kfd_iolink_properties *p2plink;
118 	struct kfd_perf_properties *perf;
119 
120 	list_del(&dev->list);
121 
122 	while (dev->mem_props.next != &dev->mem_props) {
123 		mem = container_of(dev->mem_props.next,
124 				struct kfd_mem_properties, list);
125 		list_del(&mem->list);
126 		kfree(mem);
127 	}
128 
129 	while (dev->cache_props.next != &dev->cache_props) {
130 		cache = container_of(dev->cache_props.next,
131 				struct kfd_cache_properties, list);
132 		list_del(&cache->list);
133 		kfree(cache);
134 	}
135 
136 	while (dev->io_link_props.next != &dev->io_link_props) {
137 		iolink = container_of(dev->io_link_props.next,
138 				struct kfd_iolink_properties, list);
139 		list_del(&iolink->list);
140 		kfree(iolink);
141 	}
142 
143 	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
144 		p2plink = container_of(dev->p2p_link_props.next,
145 				struct kfd_iolink_properties, list);
146 		list_del(&p2plink->list);
147 		kfree(p2plink);
148 	}
149 
150 	while (dev->perf_props.next != &dev->perf_props) {
151 		perf = container_of(dev->perf_props.next,
152 				struct kfd_perf_properties, list);
153 		list_del(&perf->list);
154 		kfree(perf);
155 	}
156 
157 	kfree(dev);
158 }
159 
kfd_release_topology_device_list(struct list_head * device_list)160 void kfd_release_topology_device_list(struct list_head *device_list)
161 {
162 	struct kfd_topology_device *dev;
163 
164 	while (!list_empty(device_list)) {
165 		dev = list_first_entry(device_list,
166 				       struct kfd_topology_device, list);
167 		kfd_release_topology_device(dev);
168 	}
169 }
170 
kfd_release_live_view(void)171 static void kfd_release_live_view(void)
172 {
173 	kfd_release_topology_device_list(&topology_device_list);
174 	memset(&sys_props, 0, sizeof(sys_props));
175 }
176 
kfd_create_topology_device(struct list_head * device_list)177 struct kfd_topology_device *kfd_create_topology_device(
178 				struct list_head *device_list)
179 {
180 	struct kfd_topology_device *dev;
181 
182 	dev = kfd_alloc_struct(dev);
183 	if (!dev) {
184 		pr_err("No memory to allocate a topology device");
185 		return NULL;
186 	}
187 
188 	INIT_LIST_HEAD(&dev->mem_props);
189 	INIT_LIST_HEAD(&dev->cache_props);
190 	INIT_LIST_HEAD(&dev->io_link_props);
191 	INIT_LIST_HEAD(&dev->p2p_link_props);
192 	INIT_LIST_HEAD(&dev->perf_props);
193 
194 	list_add_tail(&dev->list, device_list);
195 
196 	return dev;
197 }
198 
199 
200 #define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
201 		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
202 				  fmt, __VA_ARGS__))
203 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
204 		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
205 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
206 		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
207 #define sysfs_show_32bit_val(buffer, offs, value) \
208 		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
209 #define sysfs_show_str_val(buffer, offs, value) \
210 		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
211 
sysprops_show(struct kobject * kobj,struct attribute * attr,char * buffer)212 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
213 		char *buffer)
214 {
215 	int offs = 0;
216 
217 	/* Making sure that the buffer is an empty string */
218 	buffer[0] = 0;
219 
220 	if (attr == &sys_props.attr_genid) {
221 		sysfs_show_32bit_val(buffer, offs,
222 				     sys_props.generation_count);
223 	} else if (attr == &sys_props.attr_props) {
224 		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
225 				      sys_props.platform_oem);
226 		sysfs_show_64bit_prop(buffer, offs, "platform_id",
227 				      sys_props.platform_id);
228 		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
229 				      sys_props.platform_rev);
230 	} else {
231 		offs = -EINVAL;
232 	}
233 
234 	return offs;
235 }
236 
kfd_topology_kobj_release(struct kobject * kobj)237 static void kfd_topology_kobj_release(struct kobject *kobj)
238 {
239 	kfree(kobj);
240 }
241 
242 static const struct sysfs_ops sysprops_ops = {
243 	.show = sysprops_show,
244 };
245 
246 static const struct kobj_type sysprops_type = {
247 	.release = kfd_topology_kobj_release,
248 	.sysfs_ops = &sysprops_ops,
249 };
250 
iolink_show(struct kobject * kobj,struct attribute * attr,char * buffer)251 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
252 		char *buffer)
253 {
254 	int offs = 0;
255 	struct kfd_iolink_properties *iolink;
256 
257 	/* Making sure that the buffer is an empty string */
258 	buffer[0] = 0;
259 
260 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
261 	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
262 		return -EPERM;
263 	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
264 	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
265 	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
266 	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
267 	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
268 	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
269 	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
270 	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
271 	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
272 			      iolink->min_bandwidth);
273 	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
274 			      iolink->max_bandwidth);
275 	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
276 			      iolink->rec_transfer_size);
277 	sysfs_show_32bit_prop(buffer, offs, "recommended_sdma_engine_id_mask",
278 			      iolink->rec_sdma_eng_id_mask);
279 	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
280 
281 	return offs;
282 }
283 
284 static const struct sysfs_ops iolink_ops = {
285 	.show = iolink_show,
286 };
287 
288 static const struct kobj_type iolink_type = {
289 	.release = kfd_topology_kobj_release,
290 	.sysfs_ops = &iolink_ops,
291 };
292 
mem_show(struct kobject * kobj,struct attribute * attr,char * buffer)293 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
294 		char *buffer)
295 {
296 	int offs = 0;
297 	struct kfd_mem_properties *mem;
298 
299 	/* Making sure that the buffer is an empty string */
300 	buffer[0] = 0;
301 
302 	mem = container_of(attr, struct kfd_mem_properties, attr);
303 	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
304 		return -EPERM;
305 	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
306 	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
307 			      mem->size_in_bytes);
308 	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
309 	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
310 	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
311 			      mem->mem_clk_max);
312 
313 	return offs;
314 }
315 
316 static const struct sysfs_ops mem_ops = {
317 	.show = mem_show,
318 };
319 
320 static const struct kobj_type mem_type = {
321 	.release = kfd_topology_kobj_release,
322 	.sysfs_ops = &mem_ops,
323 };
324 
kfd_cache_show(struct kobject * kobj,struct attribute * attr,char * buffer)325 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
326 		char *buffer)
327 {
328 	int offs = 0;
329 	uint32_t i, j;
330 	struct kfd_cache_properties *cache;
331 
332 	/* Making sure that the buffer is an empty string */
333 	buffer[0] = 0;
334 	cache = container_of(attr, struct kfd_cache_properties, attr);
335 	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
336 		return -EPERM;
337 	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
338 			cache->processor_id_low);
339 	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
340 	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
341 	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
342 			      cache->cacheline_size);
343 	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
344 			      cache->cachelines_per_tag);
345 	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
346 	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
347 	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
348 
349 	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
350 	for (i = 0; i < cache->sibling_map_size; i++)
351 		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
352 			/* Check each bit */
353 			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
354 						(cache->sibling_map[i] >> j) & 1);
355 
356 	/* Replace the last "," with end of line */
357 	buffer[offs-1] = '\n';
358 	return offs;
359 }
360 
361 static const struct sysfs_ops cache_ops = {
362 	.show = kfd_cache_show,
363 };
364 
365 static const struct kobj_type cache_type = {
366 	.release = kfd_topology_kobj_release,
367 	.sysfs_ops = &cache_ops,
368 };
369 
370 /****** Sysfs of Performance Counters ******/
371 
372 struct kfd_perf_attr {
373 	struct kobj_attribute attr;
374 	uint32_t data;
375 };
376 
perf_show(struct kobject * kobj,struct kobj_attribute * attrs,char * buf)377 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
378 			char *buf)
379 {
380 	int offs = 0;
381 	struct kfd_perf_attr *attr;
382 
383 	buf[0] = 0;
384 	attr = container_of(attrs, struct kfd_perf_attr, attr);
385 	if (!attr->data) /* invalid data for PMC */
386 		return 0;
387 	else
388 		return sysfs_show_32bit_val(buf, offs, attr->data);
389 }
390 
391 #define KFD_PERF_DESC(_name, _data)			\
392 {							\
393 	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
394 	.data = _data,					\
395 }
396 
397 static struct kfd_perf_attr perf_attr_iommu[] = {
398 	KFD_PERF_DESC(max_concurrent, 0),
399 	KFD_PERF_DESC(num_counters, 0),
400 	KFD_PERF_DESC(counter_ids, 0),
401 };
402 /****************************************/
403 
node_show(struct kobject * kobj,struct attribute * attr,char * buffer)404 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
405 		char *buffer)
406 {
407 	int offs = 0;
408 	struct kfd_topology_device *dev;
409 	uint32_t log_max_watch_addr;
410 
411 	/* Making sure that the buffer is an empty string */
412 	buffer[0] = 0;
413 
414 	if (strcmp(attr->name, "gpu_id") == 0) {
415 		dev = container_of(attr, struct kfd_topology_device,
416 				attr_gpuid);
417 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
418 			return -EPERM;
419 		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
420 	}
421 
422 	if (strcmp(attr->name, "name") == 0) {
423 		dev = container_of(attr, struct kfd_topology_device,
424 				attr_name);
425 
426 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
427 			return -EPERM;
428 		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
429 	}
430 
431 	dev = container_of(attr, struct kfd_topology_device,
432 			attr_props);
433 	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
434 		return -EPERM;
435 	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
436 			      dev->node_props.cpu_cores_count);
437 	sysfs_show_32bit_prop(buffer, offs, "simd_count",
438 			      dev->gpu ? dev->node_props.simd_count : 0);
439 	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
440 			      dev->node_props.mem_banks_count);
441 	sysfs_show_32bit_prop(buffer, offs, "caches_count",
442 			      dev->node_props.caches_count);
443 	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
444 			      dev->node_props.io_links_count);
445 	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
446 			      dev->node_props.p2p_links_count);
447 	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
448 			      dev->node_props.cpu_core_id_base);
449 	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
450 			      dev->node_props.simd_id_base);
451 	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
452 			      dev->node_props.max_waves_per_simd);
453 	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
454 			      dev->node_props.lds_size_in_kb);
455 	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
456 			      dev->node_props.gds_size_in_kb);
457 	sysfs_show_32bit_prop(buffer, offs, "num_gws",
458 			      dev->node_props.num_gws);
459 	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
460 			      dev->node_props.wave_front_size);
461 	sysfs_show_32bit_prop(buffer, offs, "array_count",
462 			      dev->gpu ? (dev->node_props.array_count *
463 					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
464 	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
465 			      dev->node_props.simd_arrays_per_engine);
466 	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
467 			      dev->node_props.cu_per_simd_array);
468 	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
469 			      dev->node_props.simd_per_cu);
470 	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
471 			      dev->node_props.max_slots_scratch_cu);
472 	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
473 			      dev->node_props.gfx_target_version);
474 	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
475 			      dev->node_props.vendor_id);
476 	sysfs_show_32bit_prop(buffer, offs, "device_id",
477 			      dev->node_props.device_id);
478 	sysfs_show_32bit_prop(buffer, offs, "location_id",
479 			      dev->node_props.location_id);
480 	sysfs_show_32bit_prop(buffer, offs, "domain",
481 			      dev->node_props.domain);
482 	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
483 			      dev->node_props.drm_render_minor);
484 	sysfs_show_64bit_prop(buffer, offs, "hive_id",
485 			      dev->node_props.hive_id);
486 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
487 			      dev->node_props.num_sdma_engines);
488 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
489 			      dev->node_props.num_sdma_xgmi_engines);
490 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
491 			      dev->node_props.num_sdma_queues_per_engine);
492 	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
493 			      dev->node_props.num_cp_queues);
494 
495 	if (dev->gpu) {
496 		log_max_watch_addr =
497 			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
498 
499 		if (log_max_watch_addr) {
500 			dev->node_props.capability |=
501 					HSA_CAP_WATCH_POINTS_SUPPORTED;
502 
503 			dev->node_props.capability |=
504 				((log_max_watch_addr <<
505 					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
506 				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
507 		}
508 
509 		if (dev->gpu->adev->asic_type == CHIP_TONGA)
510 			dev->node_props.capability |=
511 					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
512 
513 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0) &&
514 			(dev->gpu->adev->sdma.supported_reset & AMDGPU_RESET_TYPE_PER_QUEUE))
515 				dev->node_props.capability2 |= HSA_CAP2_PER_SDMA_QUEUE_RESET_SUPPORTED;
516 
517 		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
518 			dev->node_props.max_engine_clk_fcompute);
519 
520 		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
521 
522 		sysfs_show_32bit_prop(buffer, offs, "fw_version",
523 				      dev->gpu->kfd->mec_fw_version);
524 		sysfs_show_32bit_prop(buffer, offs, "capability",
525 				      dev->node_props.capability);
526 		sysfs_show_32bit_prop(buffer, offs, "capability2",
527 				      dev->node_props.capability2);
528 		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
529 				      dev->node_props.debug_prop);
530 		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
531 				      dev->gpu->kfd->sdma_fw_version);
532 		sysfs_show_64bit_prop(buffer, offs, "unique_id",
533 				      dev->gpu->adev->unique_id);
534 		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
535 				      NUM_XCC(dev->gpu->xcc_mask));
536 	}
537 
538 	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
539 				     cpufreq_quick_get_max(0)/1000);
540 }
541 
542 static const struct sysfs_ops node_ops = {
543 	.show = node_show,
544 };
545 
546 static const struct kobj_type node_type = {
547 	.release = kfd_topology_kobj_release,
548 	.sysfs_ops = &node_ops,
549 };
550 
kfd_remove_sysfs_file(struct kobject * kobj,struct attribute * attr)551 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
552 {
553 	sysfs_remove_file(kobj, attr);
554 	kobject_del(kobj);
555 	kobject_put(kobj);
556 }
557 
kfd_remove_sysfs_node_entry(struct kfd_topology_device * dev)558 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
559 {
560 	struct kfd_iolink_properties *p2plink;
561 	struct kfd_iolink_properties *iolink;
562 	struct kfd_cache_properties *cache;
563 	struct kfd_mem_properties *mem;
564 	struct kfd_perf_properties *perf;
565 
566 	if (dev->kobj_iolink) {
567 		list_for_each_entry(iolink, &dev->io_link_props, list)
568 			if (iolink->kobj) {
569 				kfd_remove_sysfs_file(iolink->kobj,
570 							&iolink->attr);
571 				iolink->kobj = NULL;
572 			}
573 		kobject_del(dev->kobj_iolink);
574 		kobject_put(dev->kobj_iolink);
575 		dev->kobj_iolink = NULL;
576 	}
577 
578 	if (dev->kobj_p2plink) {
579 		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
580 			if (p2plink->kobj) {
581 				kfd_remove_sysfs_file(p2plink->kobj,
582 							&p2plink->attr);
583 				p2plink->kobj = NULL;
584 			}
585 		kobject_del(dev->kobj_p2plink);
586 		kobject_put(dev->kobj_p2plink);
587 		dev->kobj_p2plink = NULL;
588 	}
589 
590 	if (dev->kobj_cache) {
591 		list_for_each_entry(cache, &dev->cache_props, list)
592 			if (cache->kobj) {
593 				kfd_remove_sysfs_file(cache->kobj,
594 							&cache->attr);
595 				cache->kobj = NULL;
596 			}
597 		kobject_del(dev->kobj_cache);
598 		kobject_put(dev->kobj_cache);
599 		dev->kobj_cache = NULL;
600 	}
601 
602 	if (dev->kobj_mem) {
603 		list_for_each_entry(mem, &dev->mem_props, list)
604 			if (mem->kobj) {
605 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
606 				mem->kobj = NULL;
607 			}
608 		kobject_del(dev->kobj_mem);
609 		kobject_put(dev->kobj_mem);
610 		dev->kobj_mem = NULL;
611 	}
612 
613 	if (dev->kobj_perf) {
614 		list_for_each_entry(perf, &dev->perf_props, list) {
615 			kfree(perf->attr_group);
616 			perf->attr_group = NULL;
617 		}
618 		kobject_del(dev->kobj_perf);
619 		kobject_put(dev->kobj_perf);
620 		dev->kobj_perf = NULL;
621 	}
622 
623 	if (dev->kobj_node) {
624 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
625 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
626 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
627 		kobject_del(dev->kobj_node);
628 		kobject_put(dev->kobj_node);
629 		dev->kobj_node = NULL;
630 	}
631 }
632 
kfd_build_sysfs_node_entry(struct kfd_topology_device * dev,uint32_t id)633 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
634 		uint32_t id)
635 {
636 	struct kfd_iolink_properties *p2plink;
637 	struct kfd_iolink_properties *iolink;
638 	struct kfd_cache_properties *cache;
639 	struct kfd_mem_properties *mem;
640 	struct kfd_perf_properties *perf;
641 	int ret;
642 	uint32_t i, num_attrs;
643 	struct attribute **attrs;
644 
645 	if (WARN_ON(dev->kobj_node))
646 		return -EEXIST;
647 
648 	/*
649 	 * Creating the sysfs folders
650 	 */
651 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
652 	if (!dev->kobj_node)
653 		return -ENOMEM;
654 
655 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
656 			sys_props.kobj_nodes, "%d", id);
657 	if (ret < 0) {
658 		kobject_put(dev->kobj_node);
659 		return ret;
660 	}
661 
662 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
663 	if (!dev->kobj_mem)
664 		return -ENOMEM;
665 
666 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
667 	if (!dev->kobj_cache)
668 		return -ENOMEM;
669 
670 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
671 	if (!dev->kobj_iolink)
672 		return -ENOMEM;
673 
674 	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
675 	if (!dev->kobj_p2plink)
676 		return -ENOMEM;
677 
678 	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
679 	if (!dev->kobj_perf)
680 		return -ENOMEM;
681 
682 	/*
683 	 * Creating sysfs files for node properties
684 	 */
685 	dev->attr_gpuid.name = "gpu_id";
686 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
687 	sysfs_attr_init(&dev->attr_gpuid);
688 	dev->attr_name.name = "name";
689 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
690 	sysfs_attr_init(&dev->attr_name);
691 	dev->attr_props.name = "properties";
692 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
693 	sysfs_attr_init(&dev->attr_props);
694 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
695 	if (ret < 0)
696 		return ret;
697 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
698 	if (ret < 0)
699 		return ret;
700 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
701 	if (ret < 0)
702 		return ret;
703 
704 	i = 0;
705 	list_for_each_entry(mem, &dev->mem_props, list) {
706 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
707 		if (!mem->kobj)
708 			return -ENOMEM;
709 		ret = kobject_init_and_add(mem->kobj, &mem_type,
710 				dev->kobj_mem, "%d", i);
711 		if (ret < 0) {
712 			kobject_put(mem->kobj);
713 			return ret;
714 		}
715 
716 		mem->attr.name = "properties";
717 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
718 		sysfs_attr_init(&mem->attr);
719 		ret = sysfs_create_file(mem->kobj, &mem->attr);
720 		if (ret < 0)
721 			return ret;
722 		i++;
723 	}
724 
725 	i = 0;
726 	list_for_each_entry(cache, &dev->cache_props, list) {
727 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
728 		if (!cache->kobj)
729 			return -ENOMEM;
730 		ret = kobject_init_and_add(cache->kobj, &cache_type,
731 				dev->kobj_cache, "%d", i);
732 		if (ret < 0) {
733 			kobject_put(cache->kobj);
734 			return ret;
735 		}
736 
737 		cache->attr.name = "properties";
738 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
739 		sysfs_attr_init(&cache->attr);
740 		ret = sysfs_create_file(cache->kobj, &cache->attr);
741 		if (ret < 0)
742 			return ret;
743 		i++;
744 	}
745 
746 	i = 0;
747 	list_for_each_entry(iolink, &dev->io_link_props, list) {
748 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
749 		if (!iolink->kobj)
750 			return -ENOMEM;
751 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
752 				dev->kobj_iolink, "%d", i);
753 		if (ret < 0) {
754 			kobject_put(iolink->kobj);
755 			return ret;
756 		}
757 
758 		iolink->attr.name = "properties";
759 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
760 		sysfs_attr_init(&iolink->attr);
761 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
762 		if (ret < 0)
763 			return ret;
764 		i++;
765 	}
766 
767 	i = 0;
768 	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
769 		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
770 		if (!p2plink->kobj)
771 			return -ENOMEM;
772 		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
773 				dev->kobj_p2plink, "%d", i);
774 		if (ret < 0) {
775 			kobject_put(p2plink->kobj);
776 			return ret;
777 		}
778 
779 		p2plink->attr.name = "properties";
780 		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
781 		sysfs_attr_init(&p2plink->attr);
782 		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
783 		if (ret < 0)
784 			return ret;
785 		i++;
786 	}
787 
788 	/* All hardware blocks have the same number of attributes. */
789 	num_attrs = ARRAY_SIZE(perf_attr_iommu);
790 	list_for_each_entry(perf, &dev->perf_props, list) {
791 		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
792 			* num_attrs + sizeof(struct attribute_group),
793 			GFP_KERNEL);
794 		if (!perf->attr_group)
795 			return -ENOMEM;
796 
797 		attrs = (struct attribute **)(perf->attr_group + 1);
798 		if (!strcmp(perf->block_name, "iommu")) {
799 		/* Information of IOMMU's num_counters and counter_ids is shown
800 		 * under /sys/bus/event_source/devices/amd_iommu. We don't
801 		 * duplicate here.
802 		 */
803 			perf_attr_iommu[0].data = perf->max_concurrent;
804 			for (i = 0; i < num_attrs; i++)
805 				attrs[i] = &perf_attr_iommu[i].attr.attr;
806 		}
807 		perf->attr_group->name = perf->block_name;
808 		perf->attr_group->attrs = attrs;
809 		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
810 		if (ret < 0)
811 			return ret;
812 	}
813 
814 	return 0;
815 }
816 
817 /* Called with write topology lock acquired */
kfd_build_sysfs_node_tree(void)818 static int kfd_build_sysfs_node_tree(void)
819 {
820 	struct kfd_topology_device *dev;
821 	int ret;
822 	uint32_t i = 0;
823 
824 	list_for_each_entry(dev, &topology_device_list, list) {
825 		ret = kfd_build_sysfs_node_entry(dev, i);
826 		if (ret < 0)
827 			return ret;
828 		i++;
829 	}
830 
831 	return 0;
832 }
833 
834 /* Called with write topology lock acquired */
kfd_remove_sysfs_node_tree(void)835 static void kfd_remove_sysfs_node_tree(void)
836 {
837 	struct kfd_topology_device *dev;
838 
839 	list_for_each_entry(dev, &topology_device_list, list)
840 		kfd_remove_sysfs_node_entry(dev);
841 }
842 
kfd_topology_update_sysfs(void)843 static int kfd_topology_update_sysfs(void)
844 {
845 	int ret;
846 
847 	if (!sys_props.kobj_topology) {
848 		sys_props.kobj_topology =
849 				kfd_alloc_struct(sys_props.kobj_topology);
850 		if (!sys_props.kobj_topology)
851 			return -ENOMEM;
852 
853 		ret = kobject_init_and_add(sys_props.kobj_topology,
854 				&sysprops_type,  &kfd_device->kobj,
855 				"topology");
856 		if (ret < 0) {
857 			kobject_put(sys_props.kobj_topology);
858 			return ret;
859 		}
860 
861 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
862 				sys_props.kobj_topology);
863 		if (!sys_props.kobj_nodes)
864 			return -ENOMEM;
865 
866 		sys_props.attr_genid.name = "generation_id";
867 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
868 		sysfs_attr_init(&sys_props.attr_genid);
869 		ret = sysfs_create_file(sys_props.kobj_topology,
870 				&sys_props.attr_genid);
871 		if (ret < 0)
872 			return ret;
873 
874 		sys_props.attr_props.name = "system_properties";
875 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
876 		sysfs_attr_init(&sys_props.attr_props);
877 		ret = sysfs_create_file(sys_props.kobj_topology,
878 				&sys_props.attr_props);
879 		if (ret < 0)
880 			return ret;
881 	}
882 
883 	kfd_remove_sysfs_node_tree();
884 
885 	return kfd_build_sysfs_node_tree();
886 }
887 
kfd_topology_release_sysfs(void)888 static void kfd_topology_release_sysfs(void)
889 {
890 	kfd_remove_sysfs_node_tree();
891 	if (sys_props.kobj_topology) {
892 		sysfs_remove_file(sys_props.kobj_topology,
893 				&sys_props.attr_genid);
894 		sysfs_remove_file(sys_props.kobj_topology,
895 				&sys_props.attr_props);
896 		if (sys_props.kobj_nodes) {
897 			kobject_del(sys_props.kobj_nodes);
898 			kobject_put(sys_props.kobj_nodes);
899 			sys_props.kobj_nodes = NULL;
900 		}
901 		kobject_del(sys_props.kobj_topology);
902 		kobject_put(sys_props.kobj_topology);
903 		sys_props.kobj_topology = NULL;
904 	}
905 }
906 
907 /* Called with write topology_lock acquired */
kfd_topology_update_device_list(struct list_head * temp_list,struct list_head * master_list)908 static void kfd_topology_update_device_list(struct list_head *temp_list,
909 					struct list_head *master_list)
910 {
911 	while (!list_empty(temp_list)) {
912 		list_move_tail(temp_list->next, master_list);
913 		sys_props.num_devices++;
914 	}
915 }
916 
kfd_debug_print_topology(void)917 static void kfd_debug_print_topology(void)
918 {
919 	struct kfd_topology_device *dev;
920 
921 	down_read(&topology_lock);
922 
923 	dev = list_last_entry(&topology_device_list,
924 			struct kfd_topology_device, list);
925 	if (dev) {
926 		if (dev->node_props.cpu_cores_count &&
927 				dev->node_props.simd_count) {
928 			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
929 				dev->node_props.device_id,
930 				dev->node_props.vendor_id);
931 		} else if (dev->node_props.cpu_cores_count)
932 			pr_info("Topology: Add CPU node\n");
933 		else if (dev->node_props.simd_count)
934 			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
935 				dev->node_props.device_id,
936 				dev->node_props.vendor_id);
937 	}
938 	up_read(&topology_lock);
939 }
940 
941 /* Helper function for intializing platform_xx members of
942  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
943  */
kfd_update_system_properties(void)944 static void kfd_update_system_properties(void)
945 {
946 	struct kfd_topology_device *dev;
947 
948 	down_read(&topology_lock);
949 	dev = list_last_entry(&topology_device_list,
950 			struct kfd_topology_device, list);
951 	if (dev) {
952 		sys_props.platform_id = dev->oem_id64;
953 		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
954 		sys_props.platform_rev = dev->oem_revision;
955 	}
956 	up_read(&topology_lock);
957 }
958 
find_system_memory(const struct dmi_header * dm,void * private)959 static void find_system_memory(const struct dmi_header *dm, void *private)
960 {
961 	struct dmi_mem_device *memdev = container_of(dm, struct dmi_mem_device, header);
962 	struct kfd_mem_properties *mem;
963 	struct kfd_topology_device *kdev =
964 		(struct kfd_topology_device *)private;
965 
966 	if (memdev->header.type != DMI_ENTRY_MEM_DEVICE)
967 		return;
968 	if (memdev->header.length < sizeof(struct dmi_mem_device))
969 		return;
970 
971 	list_for_each_entry(mem, &kdev->mem_props, list) {
972 		if (memdev->total_width != 0xFFFF && memdev->total_width != 0)
973 			mem->width = memdev->total_width;
974 		if (memdev->speed != 0)
975 			mem->mem_clk_max = memdev->speed;
976 	}
977 }
978 
979 /* kfd_add_non_crat_information - Add information that is not currently
980  *	defined in CRAT but is necessary for KFD topology
981  * @dev - topology device to which addition info is added
982  */
kfd_add_non_crat_information(struct kfd_topology_device * kdev)983 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
984 {
985 	/* Check if CPU only node. */
986 	if (!kdev->gpu) {
987 		/* Add system memory information */
988 		dmi_walk(find_system_memory, kdev);
989 	}
990 	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
991 }
992 
kfd_topology_init(void)993 int kfd_topology_init(void)
994 {
995 	void *crat_image = NULL;
996 	size_t image_size = 0;
997 	int ret;
998 	struct list_head temp_topology_device_list;
999 	int cpu_only_node = 0;
1000 	struct kfd_topology_device *kdev;
1001 	int proximity_domain;
1002 
1003 	/* topology_device_list - Master list of all topology devices
1004 	 * temp_topology_device_list - temporary list created while parsing CRAT
1005 	 * or VCRAT. Once parsing is complete the contents of list is moved to
1006 	 * topology_device_list
1007 	 */
1008 
1009 	/* Initialize the head for the both the lists */
1010 	INIT_LIST_HEAD(&topology_device_list);
1011 	INIT_LIST_HEAD(&temp_topology_device_list);
1012 	init_rwsem(&topology_lock);
1013 
1014 	memset(&sys_props, 0, sizeof(sys_props));
1015 
1016 	/* Proximity domains in ACPI CRAT tables start counting at
1017 	 * 0. The same should be true for virtual CRAT tables created
1018 	 * at this stage. GPUs added later in kfd_topology_add_device
1019 	 * use a counter.
1020 	 */
1021 	proximity_domain = 0;
1022 
1023 	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1024 					    COMPUTE_UNIT_CPU, NULL,
1025 					    proximity_domain);
1026 	cpu_only_node = 1;
1027 	if (ret) {
1028 		pr_err("Error creating VCRAT table for CPU\n");
1029 		return ret;
1030 	}
1031 
1032 	ret = kfd_parse_crat_table(crat_image,
1033 				   &temp_topology_device_list,
1034 				   proximity_domain);
1035 	if (ret) {
1036 		pr_err("Error parsing VCRAT table for CPU\n");
1037 		goto err;
1038 	}
1039 
1040 	kdev = list_first_entry(&temp_topology_device_list,
1041 				struct kfd_topology_device, list);
1042 
1043 	down_write(&topology_lock);
1044 	kfd_topology_update_device_list(&temp_topology_device_list,
1045 					&topology_device_list);
1046 	topology_crat_proximity_domain = sys_props.num_devices-1;
1047 	ret = kfd_topology_update_sysfs();
1048 	up_write(&topology_lock);
1049 
1050 	if (!ret) {
1051 		sys_props.generation_count++;
1052 		kfd_update_system_properties();
1053 		kfd_debug_print_topology();
1054 	} else
1055 		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1056 
1057 	/* For nodes with GPU, this information gets added
1058 	 * when GPU is detected (kfd_topology_add_device).
1059 	 */
1060 	if (cpu_only_node) {
1061 		/* Add additional information to CPU only node created above */
1062 		down_write(&topology_lock);
1063 		kdev = list_first_entry(&topology_device_list,
1064 				struct kfd_topology_device, list);
1065 		up_write(&topology_lock);
1066 		kfd_add_non_crat_information(kdev);
1067 	}
1068 
1069 err:
1070 	kfd_destroy_crat_image(crat_image);
1071 	return ret;
1072 }
1073 
kfd_topology_shutdown(void)1074 void kfd_topology_shutdown(void)
1075 {
1076 	down_write(&topology_lock);
1077 	kfd_topology_release_sysfs();
1078 	kfd_release_live_view();
1079 	up_write(&topology_lock);
1080 }
1081 
kfd_generate_gpu_id(struct kfd_node * gpu)1082 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1083 {
1084 	uint32_t gpu_id;
1085 	uint32_t buf[8];
1086 	uint64_t local_mem_size;
1087 	struct kfd_topology_device *dev;
1088 	bool is_unique;
1089 	uint8_t *crc_buf;
1090 
1091 	if (!gpu)
1092 		return 0;
1093 
1094 	crc_buf = (uint8_t *)&buf;
1095 	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1096 			gpu->local_mem_info.local_mem_size_public;
1097 	buf[0] = gpu->adev->pdev->devfn;
1098 	buf[1] = gpu->adev->pdev->subsystem_vendor |
1099 		(gpu->adev->pdev->subsystem_device << 16);
1100 	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1101 	buf[3] = gpu->adev->pdev->device;
1102 	buf[4] = gpu->adev->pdev->bus->number;
1103 	buf[5] = lower_32_bits(local_mem_size);
1104 	buf[6] = upper_32_bits(local_mem_size);
1105 	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1106 
1107 	gpu_id = crc16(0, crc_buf, sizeof(buf)) &
1108 		 ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1109 
1110 	/* There is a very small possibility when generating a
1111 	 * 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer
1112 	 * that the value could be 0 or non-unique. So, check if
1113 	 * it is unique and non-zero. If not unique increment till
1114 	 * unique one is found. In case of overflow, restart from 1
1115 	 */
1116 
1117 	down_read(&topology_lock);
1118 	do {
1119 		is_unique = true;
1120 		if (!gpu_id)
1121 			gpu_id = 1;
1122 		list_for_each_entry(dev, &topology_device_list, list) {
1123 			if (dev->gpu && dev->gpu_id == gpu_id) {
1124 				is_unique = false;
1125 				break;
1126 			}
1127 		}
1128 		if (unlikely(!is_unique))
1129 			gpu_id = (gpu_id + 1) &
1130 				  ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1131 	} while (!is_unique);
1132 	up_read(&topology_lock);
1133 
1134 	return gpu_id;
1135 }
1136 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1137  *		the GPU device is not already present in the topology device
1138  *		list then return NULL. This means a new topology device has to
1139  *		be created for this GPU.
1140  */
kfd_assign_gpu(struct kfd_node * gpu)1141 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1142 {
1143 	struct kfd_topology_device *dev;
1144 	struct kfd_topology_device *out_dev = NULL;
1145 	struct kfd_mem_properties *mem;
1146 	struct kfd_cache_properties *cache;
1147 	struct kfd_iolink_properties *iolink;
1148 	struct kfd_iolink_properties *p2plink;
1149 
1150 	list_for_each_entry(dev, &topology_device_list, list) {
1151 		/* Discrete GPUs need their own topology device list
1152 		 * entries. Don't assign them to CPU/APU nodes.
1153 		 */
1154 		if (dev->node_props.cpu_cores_count)
1155 			continue;
1156 
1157 		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1158 			dev->gpu = gpu;
1159 			out_dev = dev;
1160 
1161 			list_for_each_entry(mem, &dev->mem_props, list)
1162 				mem->gpu = dev->gpu;
1163 			list_for_each_entry(cache, &dev->cache_props, list)
1164 				cache->gpu = dev->gpu;
1165 			list_for_each_entry(iolink, &dev->io_link_props, list)
1166 				iolink->gpu = dev->gpu;
1167 			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1168 				p2plink->gpu = dev->gpu;
1169 			break;
1170 		}
1171 	}
1172 	return out_dev;
1173 }
1174 
kfd_notify_gpu_change(uint32_t gpu_id,int arrival)1175 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1176 {
1177 	/*
1178 	 * TODO: Generate an event for thunk about the arrival/removal
1179 	 * of the GPU
1180 	 */
1181 }
1182 
1183 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1184  *		patch this after CRAT parsing.
1185  */
kfd_fill_mem_clk_max_info(struct kfd_topology_device * dev)1186 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1187 {
1188 	struct kfd_mem_properties *mem;
1189 	struct kfd_local_mem_info local_mem_info;
1190 
1191 	if (!dev)
1192 		return;
1193 
1194 	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1195 	 * single bank of VRAM local memory.
1196 	 * for dGPUs - VCRAT reports only one bank of Local Memory
1197 	 * for APUs - If CRAT from ACPI reports more than one bank, then
1198 	 *	all the banks will report the same mem_clk_max information
1199 	 */
1200 	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1201 					 dev->gpu->xcp);
1202 
1203 	list_for_each_entry(mem, &dev->mem_props, list)
1204 		mem->mem_clk_max = local_mem_info.mem_clk_max;
1205 }
1206 
kfd_set_iolink_no_atomics(struct kfd_topology_device * dev,struct kfd_topology_device * target_gpu_dev,struct kfd_iolink_properties * link)1207 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1208 					struct kfd_topology_device *target_gpu_dev,
1209 					struct kfd_iolink_properties *link)
1210 {
1211 	/* xgmi always supports atomics between links. */
1212 	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1213 		return;
1214 
1215 	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1216 	if (target_gpu_dev) {
1217 		uint32_t cap;
1218 
1219 		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1220 				PCI_EXP_DEVCAP2, &cap);
1221 
1222 		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1223 			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1224 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1225 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1226 	/* set gpu (dev) flags. */
1227 	} else {
1228 		if (!dev->gpu->kfd->pci_atomic_requested ||
1229 				dev->gpu->adev->asic_type == CHIP_HAWAII)
1230 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1231 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1232 	}
1233 }
1234 
kfd_set_iolink_non_coherent(struct kfd_topology_device * to_dev,struct kfd_iolink_properties * outbound_link,struct kfd_iolink_properties * inbound_link)1235 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1236 		struct kfd_iolink_properties *outbound_link,
1237 		struct kfd_iolink_properties *inbound_link)
1238 {
1239 	/* CPU -> GPU with PCIe */
1240 	if (!to_dev->gpu &&
1241 	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1242 		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1243 
1244 	if (to_dev->gpu) {
1245 		/* GPU <-> GPU with PCIe and
1246 		 * Vega20 with XGMI
1247 		 */
1248 		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1249 		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1250 		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1251 			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1252 			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1253 		}
1254 	}
1255 }
1256 
1257 #define REC_SDMA_NUM_GPU	8
1258 static const int rec_sdma_eng_map[REC_SDMA_NUM_GPU][REC_SDMA_NUM_GPU] = {
1259 							{ -1, 14, 12, 2, 4, 8, 10, 6 },
1260 							{ 14, -1, 2, 10, 8, 4, 6, 12 },
1261 							{ 10, 2, -1, 12, 14, 6, 4, 8 },
1262 							{ 2, 12, 10, -1, 6, 14, 8, 4 },
1263 							{ 4, 8, 14, 6, -1, 10, 12, 2 },
1264 							{ 8, 4, 6, 14, 12, -1, 2, 10 },
1265 							{ 10, 6, 4, 8, 12, 2, -1, 14 },
1266 							{ 6, 12, 8, 4, 2, 10, 14, -1 }};
1267 
kfd_set_recommended_sdma_engines(struct kfd_topology_device * to_dev,struct kfd_iolink_properties * outbound_link,struct kfd_iolink_properties * inbound_link)1268 static void kfd_set_recommended_sdma_engines(struct kfd_topology_device *to_dev,
1269 					     struct kfd_iolink_properties *outbound_link,
1270 					     struct kfd_iolink_properties *inbound_link)
1271 {
1272 	struct kfd_node *gpu = outbound_link->gpu;
1273 	struct amdgpu_device *adev = gpu->adev;
1274 	unsigned int num_xgmi_nodes = adev->gmc.xgmi.num_physical_nodes;
1275 	unsigned int num_xgmi_sdma_engines = kfd_get_num_xgmi_sdma_engines(gpu);
1276 	unsigned int num_sdma_engines = kfd_get_num_sdma_engines(gpu);
1277 	uint32_t sdma_eng_id_mask = (1 << num_sdma_engines) - 1;
1278 	uint32_t xgmi_sdma_eng_id_mask =
1279 			((1 << num_xgmi_sdma_engines) - 1) << num_sdma_engines;
1280 
1281 	bool support_rec_eng = !amdgpu_sriov_vf(adev) && to_dev->gpu &&
1282 		adev->aid_mask && num_xgmi_nodes && gpu->kfd->num_nodes == 1 &&
1283 		num_xgmi_sdma_engines >= 6 && (!(adev->flags & AMD_IS_APU) &&
1284 		num_xgmi_nodes == 8);
1285 
1286 	if (support_rec_eng) {
1287 		int src_socket_id = adev->gmc.xgmi.physical_node_id;
1288 		int dst_socket_id = to_dev->gpu->adev->gmc.xgmi.physical_node_id;
1289 		unsigned int reshift = num_xgmi_sdma_engines == 6 ? 1 : 0;
1290 
1291 		outbound_link->rec_sdma_eng_id_mask =
1292 			1 << (rec_sdma_eng_map[src_socket_id][dst_socket_id] >> reshift);
1293 		inbound_link->rec_sdma_eng_id_mask =
1294 			1 << (rec_sdma_eng_map[dst_socket_id][src_socket_id] >> reshift);
1295 
1296 		/* If recommended engine is out of range, need to reset the mask */
1297 		if (outbound_link->rec_sdma_eng_id_mask & sdma_eng_id_mask)
1298 			outbound_link->rec_sdma_eng_id_mask = xgmi_sdma_eng_id_mask;
1299 		if (inbound_link->rec_sdma_eng_id_mask & sdma_eng_id_mask)
1300 			inbound_link->rec_sdma_eng_id_mask = xgmi_sdma_eng_id_mask;
1301 
1302 	} else {
1303 		uint32_t engine_mask = (outbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1304 				num_xgmi_sdma_engines && to_dev->gpu) ? xgmi_sdma_eng_id_mask :
1305 				sdma_eng_id_mask;
1306 
1307 		outbound_link->rec_sdma_eng_id_mask = engine_mask;
1308 		inbound_link->rec_sdma_eng_id_mask = engine_mask;
1309 	}
1310 }
1311 
kfd_fill_iolink_non_crat_info(struct kfd_topology_device * dev)1312 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1313 {
1314 	struct kfd_iolink_properties *link, *inbound_link;
1315 	struct kfd_topology_device *peer_dev;
1316 
1317 	if (!dev || !dev->gpu)
1318 		return;
1319 
1320 	/* GPU only creates direct links so apply flags setting to all */
1321 	list_for_each_entry(link, &dev->io_link_props, list) {
1322 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1323 		kfd_set_iolink_no_atomics(dev, NULL, link);
1324 		peer_dev = kfd_topology_device_by_proximity_domain(
1325 				link->node_to);
1326 
1327 		if (!peer_dev)
1328 			continue;
1329 
1330 		/* Include the CPU peer in GPU hive if connected over xGMI. */
1331 		if (!peer_dev->gpu &&
1332 		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1333 			/*
1334 			 * If the GPU is not part of a GPU hive, use its pci
1335 			 * device location as the hive ID to bind with the CPU.
1336 			 */
1337 			if (!dev->node_props.hive_id)
1338 				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1339 			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1340 		}
1341 
1342 		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1343 									list) {
1344 			if (inbound_link->node_to != link->node_from)
1345 				continue;
1346 
1347 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1348 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1349 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1350 			kfd_set_recommended_sdma_engines(peer_dev, link, inbound_link);
1351 		}
1352 	}
1353 
1354 	/* Create indirect links so apply flags setting to all */
1355 	list_for_each_entry(link, &dev->p2p_link_props, list) {
1356 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1357 		kfd_set_iolink_no_atomics(dev, NULL, link);
1358 		peer_dev = kfd_topology_device_by_proximity_domain(
1359 				link->node_to);
1360 
1361 		if (!peer_dev)
1362 			continue;
1363 
1364 		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1365 									list) {
1366 			if (inbound_link->node_to != link->node_from)
1367 				continue;
1368 
1369 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1370 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1371 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1372 		}
1373 	}
1374 }
1375 
kfd_build_p2p_node_entry(struct kfd_topology_device * dev,struct kfd_iolink_properties * p2plink)1376 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1377 				struct kfd_iolink_properties *p2plink)
1378 {
1379 	int ret;
1380 
1381 	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1382 	if (!p2plink->kobj)
1383 		return -ENOMEM;
1384 
1385 	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1386 			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1387 	if (ret < 0) {
1388 		kobject_put(p2plink->kobj);
1389 		return ret;
1390 	}
1391 
1392 	p2plink->attr.name = "properties";
1393 	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1394 	sysfs_attr_init(&p2plink->attr);
1395 	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1396 	if (ret < 0)
1397 		return ret;
1398 
1399 	return 0;
1400 }
1401 
kfd_create_indirect_link_prop(struct kfd_topology_device * kdev,int gpu_node)1402 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1403 {
1404 	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1405 	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1406 	struct kfd_topology_device *cpu_dev;
1407 	int ret = 0;
1408 	int i, num_cpu;
1409 
1410 	num_cpu = 0;
1411 	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1412 		if (cpu_dev->gpu)
1413 			break;
1414 		num_cpu++;
1415 	}
1416 
1417 	if (list_empty(&kdev->io_link_props))
1418 		return -ENODATA;
1419 
1420 	gpu_link = list_first_entry(&kdev->io_link_props,
1421 				    struct kfd_iolink_properties, list);
1422 
1423 	for (i = 0; i < num_cpu; i++) {
1424 		/* CPU <--> GPU */
1425 		if (gpu_link->node_to == i)
1426 			continue;
1427 
1428 		/* find CPU <-->  CPU links */
1429 		cpu_link = NULL;
1430 		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1431 		if (cpu_dev) {
1432 			list_for_each_entry(tmp_link,
1433 					&cpu_dev->io_link_props, list) {
1434 				if (tmp_link->node_to == gpu_link->node_to) {
1435 					cpu_link = tmp_link;
1436 					break;
1437 				}
1438 			}
1439 		}
1440 
1441 		if (!cpu_link)
1442 			return -ENOMEM;
1443 
1444 		/* CPU <--> CPU <--> GPU, GPU node*/
1445 		props = kfd_alloc_struct(props);
1446 		if (!props)
1447 			return -ENOMEM;
1448 
1449 		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1450 		props->weight = gpu_link->weight + cpu_link->weight;
1451 		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1452 		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1453 		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1454 		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1455 
1456 		props->node_from = gpu_node;
1457 		props->node_to = i;
1458 		kdev->node_props.p2p_links_count++;
1459 		list_add_tail(&props->list, &kdev->p2p_link_props);
1460 		ret = kfd_build_p2p_node_entry(kdev, props);
1461 		if (ret < 0)
1462 			return ret;
1463 
1464 		/* for small Bar, no CPU --> GPU in-direct links */
1465 		if (kfd_dev_is_large_bar(kdev->gpu)) {
1466 			/* CPU <--> CPU <--> GPU, CPU node*/
1467 			props2 = kfd_alloc_struct(props2);
1468 			if (!props2)
1469 				return -ENOMEM;
1470 
1471 			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1472 			props2->node_from = i;
1473 			props2->node_to = gpu_node;
1474 			props2->kobj = NULL;
1475 			cpu_dev->node_props.p2p_links_count++;
1476 			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1477 			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1478 			if (ret < 0)
1479 				return ret;
1480 		}
1481 	}
1482 	return ret;
1483 }
1484 
1485 #if defined(CONFIG_HSA_AMD_P2P)
kfd_add_peer_prop(struct kfd_topology_device * kdev,struct kfd_topology_device * peer,int from,int to)1486 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1487 		struct kfd_topology_device *peer, int from, int to)
1488 {
1489 	struct kfd_iolink_properties *props = NULL;
1490 	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1491 	struct kfd_topology_device *cpu_dev;
1492 	int ret = 0;
1493 
1494 	if (!amdgpu_device_is_peer_accessible(
1495 				kdev->gpu->adev,
1496 				peer->gpu->adev))
1497 		return ret;
1498 
1499 	if (list_empty(&kdev->io_link_props))
1500 		return -ENODATA;
1501 
1502 	iolink1 = list_first_entry(&kdev->io_link_props,
1503 				   struct kfd_iolink_properties, list);
1504 
1505 	if (list_empty(&peer->io_link_props))
1506 		return -ENODATA;
1507 
1508 	iolink2 = list_first_entry(&peer->io_link_props,
1509 				   struct kfd_iolink_properties, list);
1510 
1511 	props = kfd_alloc_struct(props);
1512 	if (!props)
1513 		return -ENOMEM;
1514 
1515 	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1516 
1517 	props->weight = iolink1->weight + iolink2->weight;
1518 	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1519 	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1520 	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1521 	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1522 
1523 	if (iolink1->node_to != iolink2->node_to) {
1524 		/* CPU->CPU  link*/
1525 		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1526 		if (cpu_dev) {
1527 			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1528 				if (iolink3->node_to != iolink2->node_to)
1529 					continue;
1530 
1531 				props->weight += iolink3->weight;
1532 				props->min_latency += iolink3->min_latency;
1533 				props->max_latency += iolink3->max_latency;
1534 				props->min_bandwidth = min(props->min_bandwidth,
1535 							   iolink3->min_bandwidth);
1536 				props->max_bandwidth = min(props->max_bandwidth,
1537 							   iolink3->max_bandwidth);
1538 				break;
1539 			}
1540 		} else {
1541 			WARN(1, "CPU node not found");
1542 		}
1543 	}
1544 
1545 	props->node_from = from;
1546 	props->node_to = to;
1547 	peer->node_props.p2p_links_count++;
1548 	list_add_tail(&props->list, &peer->p2p_link_props);
1549 	ret = kfd_build_p2p_node_entry(peer, props);
1550 
1551 	return ret;
1552 }
1553 #endif
1554 
kfd_dev_create_p2p_links(void)1555 static int kfd_dev_create_p2p_links(void)
1556 {
1557 	struct kfd_topology_device *dev;
1558 	struct kfd_topology_device *new_dev;
1559 #if defined(CONFIG_HSA_AMD_P2P)
1560 	uint32_t i;
1561 #endif
1562 	uint32_t k;
1563 	int ret = 0;
1564 
1565 	k = 0;
1566 	list_for_each_entry(dev, &topology_device_list, list)
1567 		k++;
1568 	if (k < 2)
1569 		return 0;
1570 
1571 	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1572 	if (WARN_ON(!new_dev->gpu))
1573 		return 0;
1574 
1575 	k--;
1576 
1577 	/* create in-direct links */
1578 	ret = kfd_create_indirect_link_prop(new_dev, k);
1579 	if (ret < 0)
1580 		goto out;
1581 
1582 	/* create p2p links */
1583 #if defined(CONFIG_HSA_AMD_P2P)
1584 	i = 0;
1585 	list_for_each_entry(dev, &topology_device_list, list) {
1586 		if (dev == new_dev)
1587 			break;
1588 		if (!dev->gpu || !dev->gpu->adev ||
1589 		    (dev->gpu->kfd->hive_id &&
1590 		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1591 			goto next;
1592 
1593 		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1594 		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1595 		if (ret < 0)
1596 			goto out;
1597 
1598 		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1599 		if (ret < 0)
1600 			goto out;
1601 next:
1602 		i++;
1603 	}
1604 #endif
1605 
1606 out:
1607 	return ret;
1608 }
1609 
1610 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l1_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,int cu_bitmask,int cache_type,unsigned int cu_processor_id,int cu_block)1611 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1612 				struct kfd_gpu_cache_info *pcache_info,
1613 				int cu_bitmask,
1614 				int cache_type, unsigned int cu_processor_id,
1615 				int cu_block)
1616 {
1617 	unsigned int cu_sibling_map_mask;
1618 	int first_active_cu;
1619 	struct kfd_cache_properties *pcache = NULL;
1620 
1621 	cu_sibling_map_mask = cu_bitmask;
1622 	cu_sibling_map_mask >>= cu_block;
1623 	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1624 	first_active_cu = ffs(cu_sibling_map_mask);
1625 
1626 	/* CU could be inactive. In case of shared cache find the first active
1627 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1628 	 * inactive active skip it
1629 	 */
1630 	if (first_active_cu) {
1631 		pcache = kfd_alloc_struct(pcache);
1632 		if (!pcache)
1633 			return -ENOMEM;
1634 
1635 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1636 		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1637 		pcache->cache_level = pcache_info[cache_type].cache_level;
1638 		pcache->cache_size = pcache_info[cache_type].cache_size;
1639 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1640 
1641 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1642 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1643 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1644 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1645 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1646 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1647 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1648 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1649 
1650 		/* Sibling map is w.r.t processor_id_low, so shift out
1651 		 * inactive CU
1652 		 */
1653 		cu_sibling_map_mask =
1654 			cu_sibling_map_mask >> (first_active_cu - 1);
1655 
1656 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1657 		pcache->sibling_map[1] =
1658 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1659 		pcache->sibling_map[2] =
1660 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1661 		pcache->sibling_map[3] =
1662 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1663 
1664 		pcache->sibling_map_size = 4;
1665 		*props_ext = pcache;
1666 
1667 		return 0;
1668 	}
1669 	return 1;
1670 }
1671 
1672 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l2_l3_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,struct amdgpu_cu_info * cu_info,struct amdgpu_gfx_config * gfx_info,int cache_type,unsigned int cu_processor_id,struct kfd_node * knode)1673 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1674 				struct kfd_gpu_cache_info *pcache_info,
1675 				struct amdgpu_cu_info *cu_info,
1676 				struct amdgpu_gfx_config *gfx_info,
1677 				int cache_type, unsigned int cu_processor_id,
1678 				struct kfd_node *knode)
1679 {
1680 	unsigned int cu_sibling_map_mask = 0;
1681 	int first_active_cu;
1682 	int i, j, k, xcc, start, end;
1683 	int num_xcc = NUM_XCC(knode->xcc_mask);
1684 	struct kfd_cache_properties *pcache = NULL;
1685 	enum amdgpu_memory_partition mode;
1686 	struct amdgpu_device *adev = knode->adev;
1687 	bool found = false;
1688 
1689 	start = ffs(knode->xcc_mask) - 1;
1690 	end = start + num_xcc;
1691 
1692 	/* To find the bitmap in the first active cu in the first
1693 	 * xcc, it is based on the assumption that evrey xcc must
1694 	 * have at least one active cu.
1695 	 */
1696 	for (i = 0; i < gfx_info->max_shader_engines && !found; i++) {
1697 		for (j = 0; j < gfx_info->max_sh_per_se && !found; j++) {
1698 			if (cu_info->bitmap[start][i % 4][j % 4]) {
1699 				cu_sibling_map_mask =
1700 					cu_info->bitmap[start][i % 4][j % 4];
1701 				found = true;
1702 			}
1703 		}
1704 	}
1705 
1706 	cu_sibling_map_mask &=
1707 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1708 	first_active_cu = ffs(cu_sibling_map_mask);
1709 
1710 	/* CU could be inactive. In case of shared cache find the first active
1711 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1712 	 * inactive active skip it
1713 	 */
1714 	if (first_active_cu) {
1715 		pcache = kfd_alloc_struct(pcache);
1716 		if (!pcache)
1717 			return -ENOMEM;
1718 
1719 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1720 		pcache->processor_id_low = cu_processor_id
1721 					+ (first_active_cu - 1);
1722 		pcache->cache_level = pcache_info[cache_type].cache_level;
1723 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1724 
1725 		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) ||
1726 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4) ||
1727 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 5, 0))
1728 			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1729 		else
1730 			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1731 
1732 		pcache->cache_size = pcache_info[cache_type].cache_size;
1733 		/* Partition mode only affects L3 cache size */
1734 		if (mode && pcache->cache_level == 3)
1735 			pcache->cache_size /= mode;
1736 
1737 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1738 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1739 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1740 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1741 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1742 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1743 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1744 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1745 
1746 		/* Sibling map is w.r.t processor_id_low, so shift out
1747 		 * inactive CU
1748 		 */
1749 		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1750 		k = 0;
1751 
1752 		for (xcc = start; xcc < end; xcc++) {
1753 			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1754 				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1755 					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1756 					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1757 					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1758 					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1759 					k += 4;
1760 
1761 					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1762 					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1763 				}
1764 			}
1765 		}
1766 		pcache->sibling_map_size = k;
1767 		*props_ext = pcache;
1768 		return 0;
1769 	}
1770 	return 1;
1771 }
1772 
1773 #define KFD_MAX_CACHE_TYPES 6
1774 
1775 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1776  * tables
1777  */
kfd_fill_cache_non_crat_info(struct kfd_topology_device * dev,struct kfd_node * kdev)1778 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1779 {
1780 	struct kfd_gpu_cache_info *pcache_info = NULL;
1781 	int i, j, k, xcc, start, end;
1782 	int ct = 0;
1783 	unsigned int cu_processor_id;
1784 	int ret;
1785 	unsigned int num_cu_shared;
1786 	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1787 	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1788 	int gpu_processor_id;
1789 	struct kfd_cache_properties *props_ext = NULL;
1790 	int num_of_entries = 0;
1791 	int num_of_cache_types = 0;
1792 	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1793 
1794 
1795 	gpu_processor_id = dev->node_props.simd_id_base;
1796 
1797 	memset(cache_info, 0, sizeof(cache_info));
1798 	pcache_info = cache_info;
1799 	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1800 	if (!num_of_cache_types) {
1801 		pr_warn("no cache info found\n");
1802 		return;
1803 	}
1804 
1805 	/* For each type of cache listed in the kfd_gpu_cache_info table,
1806 	 * go through all available Compute Units.
1807 	 * The [i,j,k] loop will
1808 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1809 	 *			will parse through all available CU
1810 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1811 	 *			then it will consider only one CU from
1812 	 *			the shared unit
1813 	 */
1814 	start = ffs(kdev->xcc_mask) - 1;
1815 	end = start + NUM_XCC(kdev->xcc_mask);
1816 
1817 	for (ct = 0; ct < num_of_cache_types; ct++) {
1818 		cu_processor_id = gpu_processor_id;
1819 		if (pcache_info[ct].cache_level == 1) {
1820 			for (xcc = start; xcc < end; xcc++) {
1821 				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1822 					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1823 						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1824 
1825 							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1826 										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1827 										cu_processor_id, k);
1828 
1829 							if (ret < 0)
1830 								break;
1831 
1832 							if (!ret) {
1833 								num_of_entries++;
1834 								list_add_tail(&props_ext->list, &dev->cache_props);
1835 							}
1836 
1837 							/* Move to next CU block */
1838 							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1839 								gfx_info->max_cu_per_sh) ?
1840 								pcache_info[ct].num_cu_shared :
1841 								(gfx_info->max_cu_per_sh - k);
1842 							cu_processor_id += num_cu_shared;
1843 						}
1844 					}
1845 				}
1846 			}
1847 		} else {
1848 			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1849 						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1850 
1851 			if (ret < 0)
1852 				break;
1853 
1854 			if (!ret) {
1855 				num_of_entries++;
1856 				list_add_tail(&props_ext->list, &dev->cache_props);
1857 			}
1858 		}
1859 	}
1860 	dev->node_props.caches_count += num_of_entries;
1861 	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1862 }
1863 
kfd_topology_add_device_locked(struct kfd_node * gpu,struct kfd_topology_device ** dev)1864 static int kfd_topology_add_device_locked(struct kfd_node *gpu,
1865 					  struct kfd_topology_device **dev)
1866 {
1867 	int proximity_domain = ++topology_crat_proximity_domain;
1868 	struct list_head temp_topology_device_list;
1869 	void *crat_image = NULL;
1870 	size_t image_size = 0;
1871 	int res;
1872 
1873 	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1874 					    COMPUTE_UNIT_GPU, gpu,
1875 					    proximity_domain);
1876 	if (res) {
1877 		dev_err(gpu->adev->dev, "Error creating VCRAT\n");
1878 		topology_crat_proximity_domain--;
1879 		goto err;
1880 	}
1881 
1882 	INIT_LIST_HEAD(&temp_topology_device_list);
1883 
1884 	res = kfd_parse_crat_table(crat_image,
1885 				   &temp_topology_device_list,
1886 				   proximity_domain);
1887 	if (res) {
1888 		dev_err(gpu->adev->dev, "Error parsing VCRAT\n");
1889 		topology_crat_proximity_domain--;
1890 		goto err;
1891 	}
1892 
1893 	kfd_topology_update_device_list(&temp_topology_device_list,
1894 					&topology_device_list);
1895 
1896 	*dev = kfd_assign_gpu(gpu);
1897 	if (WARN_ON(!*dev)) {
1898 		res = -ENODEV;
1899 		goto err;
1900 	}
1901 
1902 	/* Fill the cache affinity information here for the GPUs
1903 	 * using VCRAT
1904 	 */
1905 	kfd_fill_cache_non_crat_info(*dev, gpu);
1906 
1907 	/* Update the SYSFS tree, since we added another topology
1908 	 * device
1909 	 */
1910 	res = kfd_topology_update_sysfs();
1911 	if (!res)
1912 		sys_props.generation_count++;
1913 	else
1914 		dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n",
1915 			res);
1916 
1917 err:
1918 	kfd_destroy_crat_image(crat_image);
1919 	return res;
1920 }
1921 
kfd_topology_set_dbg_firmware_support(struct kfd_topology_device * dev)1922 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1923 {
1924 	bool firmware_supported = true;
1925 
1926 	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1927 			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1928 		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1929 						AMDGPU_MES_API_VERSION_MASK) >>
1930 						AMDGPU_MES_API_VERSION_SHIFT;
1931 		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1932 						AMDGPU_MES_VERSION_MASK;
1933 
1934 		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1935 		goto out;
1936 	}
1937 
1938 	/*
1939 	 * Note: Any unlisted devices here are assumed to support exception handling.
1940 	 * Add additional checks here as needed.
1941 	 */
1942 	switch (KFD_GC_VERSION(dev->gpu)) {
1943 	case IP_VERSION(9, 0, 1):
1944 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1945 		break;
1946 	case IP_VERSION(9, 1, 0):
1947 	case IP_VERSION(9, 2, 1):
1948 	case IP_VERSION(9, 2, 2):
1949 	case IP_VERSION(9, 3, 0):
1950 	case IP_VERSION(9, 4, 0):
1951 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1952 		break;
1953 	case IP_VERSION(9, 4, 1):
1954 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1955 		break;
1956 	case IP_VERSION(9, 4, 2):
1957 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1958 		break;
1959 	case IP_VERSION(10, 1, 10):
1960 	case IP_VERSION(10, 1, 2):
1961 	case IP_VERSION(10, 1, 1):
1962 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1963 		break;
1964 	case IP_VERSION(10, 3, 0):
1965 	case IP_VERSION(10, 3, 2):
1966 	case IP_VERSION(10, 3, 1):
1967 	case IP_VERSION(10, 3, 4):
1968 	case IP_VERSION(10, 3, 5):
1969 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1970 		break;
1971 	case IP_VERSION(10, 1, 3):
1972 	case IP_VERSION(10, 3, 3):
1973 		firmware_supported = false;
1974 		break;
1975 	default:
1976 		break;
1977 	}
1978 
1979 out:
1980 	if (firmware_supported)
1981 		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1982 }
1983 
kfd_topology_set_capabilities(struct kfd_topology_device * dev)1984 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1985 {
1986 	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1987 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1988 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1989 
1990 	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1991 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1992 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1993 
1994 	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1995 		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1996 
1997 	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1998 		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) ||
1999 		    KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4))
2000 			dev->node_props.debug_prop |=
2001 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
2002 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
2003 		else
2004 			dev->node_props.debug_prop |=
2005 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
2006 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2007 
2008 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
2009 			dev->node_props.capability |=
2010 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2011 
2012 		if (!amdgpu_sriov_vf(dev->gpu->adev))
2013 			dev->node_props.capability |= HSA_CAP_PER_QUEUE_RESET_SUPPORTED;
2014 
2015 	} else {
2016 		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
2017 					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2018 
2019 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0))
2020 			dev->node_props.capability |=
2021 				HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED;
2022 	}
2023 
2024 	kfd_topology_set_dbg_firmware_support(dev);
2025 }
2026 
kfd_topology_add_device(struct kfd_node * gpu)2027 int kfd_topology_add_device(struct kfd_node *gpu)
2028 {
2029 	uint32_t gpu_id;
2030 	struct kfd_topology_device *dev;
2031 	int res = 0;
2032 	int i;
2033 	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
2034 	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
2035 	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
2036 
2037 	if (gpu->xcp && !gpu->xcp->ddev) {
2038 		dev_warn(gpu->adev->dev,
2039 			 "Won't add GPU to topology since it has no drm node assigned.");
2040 		return 0;
2041 	} else {
2042 		dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n");
2043 	}
2044 
2045 	/* Check to see if this gpu device exists in the topology_device_list.
2046 	 * If so, assign the gpu to that device,
2047 	 * else create a Virtual CRAT for this gpu device and then parse that
2048 	 * CRAT to create a new topology device. Once created assign the gpu to
2049 	 * that topology device
2050 	 */
2051 	down_write(&topology_lock);
2052 	dev = kfd_assign_gpu(gpu);
2053 	if (!dev)
2054 		res = kfd_topology_add_device_locked(gpu, &dev);
2055 	up_write(&topology_lock);
2056 	if (res)
2057 		return res;
2058 
2059 	gpu_id = kfd_generate_gpu_id(gpu);
2060 	dev->gpu_id = gpu_id;
2061 	gpu->id = gpu_id;
2062 
2063 	kfd_dev_create_p2p_links();
2064 
2065 	/* TODO: Move the following lines to function
2066 	 *	kfd_add_non_crat_information
2067 	 */
2068 
2069 	/* Fill-in additional information that is not available in CRAT but
2070 	 * needed for the topology
2071 	 */
2072 	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
2073 		dev->node_props.name[i] = __tolower(asic_name[i]);
2074 		if (asic_name[i] == '\0')
2075 			break;
2076 	}
2077 	dev->node_props.name[i] = '\0';
2078 
2079 	dev->node_props.simd_arrays_per_engine =
2080 		gfx_info->max_sh_per_se;
2081 
2082 	dev->node_props.gfx_target_version =
2083 				gpu->kfd->device_info.gfx_target_version;
2084 	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
2085 	dev->node_props.device_id = gpu->adev->pdev->device;
2086 	dev->node_props.capability |=
2087 		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
2088 			HSA_CAP_ASIC_REVISION_MASK);
2089 
2090 	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2091 	if (gpu->kfd->num_nodes > 1)
2092 		dev->node_props.location_id |= dev->gpu->node_id;
2093 
2094 	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2095 	dev->node_props.max_engine_clk_fcompute =
2096 		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2097 	dev->node_props.max_engine_clk_ccompute =
2098 		cpufreq_quick_get_max(0) / 1000;
2099 
2100 	if (gpu->xcp)
2101 		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2102 	else
2103 		dev->node_props.drm_render_minor =
2104 				gpu->kfd->shared_resources.drm_render_minor;
2105 
2106 	dev->node_props.hive_id = gpu->kfd->hive_id;
2107 	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2108 	dev->node_props.num_sdma_xgmi_engines =
2109 					kfd_get_num_xgmi_sdma_engines(gpu);
2110 	dev->node_props.num_sdma_queues_per_engine =
2111 				gpu->kfd->device_info.num_sdma_queues_per_engine -
2112 				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2113 	dev->node_props.num_gws = (dev->gpu->gws &&
2114 		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2115 		dev->gpu->adev->gds.gws_size : 0;
2116 	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2117 
2118 	kfd_fill_mem_clk_max_info(dev);
2119 	kfd_fill_iolink_non_crat_info(dev);
2120 
2121 	switch (dev->gpu->adev->asic_type) {
2122 	case CHIP_KAVERI:
2123 	case CHIP_HAWAII:
2124 	case CHIP_TONGA:
2125 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2126 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2127 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2128 		break;
2129 	case CHIP_CARRIZO:
2130 	case CHIP_FIJI:
2131 	case CHIP_POLARIS10:
2132 	case CHIP_POLARIS11:
2133 	case CHIP_POLARIS12:
2134 	case CHIP_VEGAM:
2135 		pr_debug("Adding doorbell packet type capability\n");
2136 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2137 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2138 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2139 		break;
2140 	default:
2141 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2142 			WARN(1, "Unexpected ASIC family %u",
2143 			     dev->gpu->adev->asic_type);
2144 		else
2145 			kfd_topology_set_capabilities(dev);
2146 	}
2147 
2148 	/*
2149 	 * Overwrite ATS capability according to needs_iommu_device to fix
2150 	 * potential missing corresponding bit in CRAT of BIOS.
2151 	 */
2152 	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2153 
2154 	/* Fix errors in CZ CRAT.
2155 	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2156 	 *		because it doesn't consider masked out CUs
2157 	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2158 	 */
2159 	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2160 		dev->node_props.simd_count =
2161 			cu_info->simd_per_cu * cu_info->number;
2162 		dev->node_props.max_waves_per_simd = 10;
2163 	}
2164 
2165 	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2166 	dev->node_props.capability |=
2167 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2168 		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2169 	dev->node_props.capability |=
2170 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2171 		HSA_CAP_MEM_EDCSUPPORTED : 0;
2172 
2173 	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2174 		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2175 			HSA_CAP_RASEVENTNOTIFY : 0;
2176 
2177 	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2178 		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2179 
2180 	if (dev->gpu->adev->gmc.is_app_apu ||
2181 		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2182 		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2183 
2184 	kfd_queue_ctx_save_restore_size(dev);
2185 
2186 	kfd_debug_print_topology();
2187 
2188 	kfd_notify_gpu_change(gpu_id, 1);
2189 
2190 	return 0;
2191 }
2192 
2193 /**
2194  * kfd_topology_update_io_links() - Update IO links after device removal.
2195  * @proximity_domain: Proximity domain value of the dev being removed.
2196  *
2197  * The topology list currently is arranged in increasing order of
2198  * proximity domain.
2199  *
2200  * Two things need to be done when a device is removed:
2201  * 1. All the IO links to this device need to be removed.
2202  * 2. All nodes after the current device node need to move
2203  *    up once this device node is removed from the topology
2204  *    list. As a result, the proximity domain values for
2205  *    all nodes after the node being deleted reduce by 1.
2206  *    This would also cause the proximity domain values for
2207  *    io links to be updated based on new proximity domain
2208  *    values.
2209  *
2210  * Context: The caller must hold write topology_lock.
2211  */
kfd_topology_update_io_links(int proximity_domain)2212 static void kfd_topology_update_io_links(int proximity_domain)
2213 {
2214 	struct kfd_topology_device *dev;
2215 	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2216 
2217 	list_for_each_entry(dev, &topology_device_list, list) {
2218 		if (dev->proximity_domain > proximity_domain)
2219 			dev->proximity_domain--;
2220 
2221 		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2222 			/*
2223 			 * If there is an io link to the dev being deleted
2224 			 * then remove that IO link also.
2225 			 */
2226 			if (iolink->node_to == proximity_domain) {
2227 				list_del(&iolink->list);
2228 				dev->node_props.io_links_count--;
2229 			} else {
2230 				if (iolink->node_from > proximity_domain)
2231 					iolink->node_from--;
2232 				if (iolink->node_to > proximity_domain)
2233 					iolink->node_to--;
2234 			}
2235 		}
2236 
2237 		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2238 			/*
2239 			 * If there is a p2p link to the dev being deleted
2240 			 * then remove that p2p link also.
2241 			 */
2242 			if (p2plink->node_to == proximity_domain) {
2243 				list_del(&p2plink->list);
2244 				dev->node_props.p2p_links_count--;
2245 			} else {
2246 				if (p2plink->node_from > proximity_domain)
2247 					p2plink->node_from--;
2248 				if (p2plink->node_to > proximity_domain)
2249 					p2plink->node_to--;
2250 			}
2251 		}
2252 	}
2253 }
2254 
kfd_topology_remove_device(struct kfd_node * gpu)2255 int kfd_topology_remove_device(struct kfd_node *gpu)
2256 {
2257 	struct kfd_topology_device *dev, *tmp;
2258 	uint32_t gpu_id;
2259 	int res = -ENODEV;
2260 	int i = 0;
2261 
2262 	down_write(&topology_lock);
2263 
2264 	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2265 		if (dev->gpu == gpu) {
2266 			gpu_id = dev->gpu_id;
2267 			kfd_remove_sysfs_node_entry(dev);
2268 			kfd_release_topology_device(dev);
2269 			sys_props.num_devices--;
2270 			kfd_topology_update_io_links(i);
2271 			topology_crat_proximity_domain = sys_props.num_devices-1;
2272 			sys_props.generation_count++;
2273 			res = 0;
2274 			if (kfd_topology_update_sysfs() < 0)
2275 				kfd_topology_release_sysfs();
2276 			break;
2277 		}
2278 		i++;
2279 	}
2280 
2281 	up_write(&topology_lock);
2282 
2283 	if (!res)
2284 		kfd_notify_gpu_change(gpu_id, 0);
2285 
2286 	return res;
2287 }
2288 
2289 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2290  *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2291  *	returned through @kdev
2292  * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2293  *		-1: If end of list
2294  */
kfd_topology_enum_kfd_devices(uint8_t idx,struct kfd_node ** kdev)2295 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2296 {
2297 
2298 	struct kfd_topology_device *top_dev;
2299 	uint8_t device_idx = 0;
2300 
2301 	*kdev = NULL;
2302 	down_read(&topology_lock);
2303 
2304 	list_for_each_entry(top_dev, &topology_device_list, list) {
2305 		if (device_idx == idx) {
2306 			*kdev = top_dev->gpu;
2307 			up_read(&topology_lock);
2308 			return 0;
2309 		}
2310 
2311 		device_idx++;
2312 	}
2313 
2314 	up_read(&topology_lock);
2315 
2316 	return -1;
2317 
2318 }
2319 
kfd_cpumask_to_apic_id(const struct cpumask * cpumask)2320 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2321 {
2322 	int first_cpu_of_numa_node;
2323 
2324 	if (!cpumask || cpumask == cpu_none_mask)
2325 		return -1;
2326 	first_cpu_of_numa_node = cpumask_first(cpumask);
2327 	if (first_cpu_of_numa_node >= nr_cpu_ids)
2328 		return -1;
2329 #ifdef CONFIG_X86_64
2330 	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2331 #else
2332 	return first_cpu_of_numa_node;
2333 #endif
2334 }
2335 
2336 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2337  *	of the given NUMA node (numa_node_id)
2338  * Return -1 on failure
2339  */
kfd_numa_node_to_apic_id(int numa_node_id)2340 int kfd_numa_node_to_apic_id(int numa_node_id)
2341 {
2342 	if (numa_node_id == -1) {
2343 		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2344 		return kfd_cpumask_to_apic_id(cpu_online_mask);
2345 	}
2346 	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2347 }
2348 
2349 #if defined(CONFIG_DEBUG_FS)
2350 
kfd_debugfs_hqds_by_device(struct seq_file * m,void * data)2351 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2352 {
2353 	struct kfd_topology_device *dev;
2354 	unsigned int i = 0;
2355 	int r = 0;
2356 
2357 	down_read(&topology_lock);
2358 
2359 	list_for_each_entry(dev, &topology_device_list, list) {
2360 		if (!dev->gpu) {
2361 			i++;
2362 			continue;
2363 		}
2364 
2365 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2366 		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2367 		if (r)
2368 			break;
2369 	}
2370 
2371 	up_read(&topology_lock);
2372 
2373 	return r;
2374 }
2375 
kfd_debugfs_rls_by_device(struct seq_file * m,void * data)2376 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2377 {
2378 	struct kfd_topology_device *dev;
2379 	unsigned int i = 0;
2380 	int r = 0;
2381 
2382 	down_read(&topology_lock);
2383 
2384 	list_for_each_entry(dev, &topology_device_list, list) {
2385 		if (!dev->gpu) {
2386 			i++;
2387 			continue;
2388 		}
2389 
2390 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2391 		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2392 		if (r)
2393 			break;
2394 	}
2395 
2396 	up_read(&topology_lock);
2397 
2398 	return r;
2399 }
2400 
2401 #endif
2402