xref: /freebsd/sys/kern/vfs_cache.c (revision c5a813c9f486da49551c3be2e7700ca0cb0a489a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include "opt_ddb.h"
36 #include "opt_ktrace.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/capsicum.h>
41 #include <sys/counter.h>
42 #include <sys/filedesc.h>
43 #include <sys/fnv_hash.h>
44 #include <sys/inotify.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/fcntl.h>
50 #include <sys/jail.h>
51 #include <sys/mount.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/seqc.h>
55 #include <sys/sdt.h>
56 #include <sys/smr.h>
57 #include <sys/smp.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vnode.h>
62 #include <ck_queue.h>
63 #ifdef KTRACE
64 #include <sys/ktrace.h>
65 #endif
66 #ifdef INVARIANTS
67 #include <machine/_inttypes.h>
68 #endif
69 
70 #include <security/audit/audit.h>
71 #include <security/mac/mac_framework.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <vm/uma.h>
78 
79 /*
80  * High level overview of name caching in the VFS layer.
81  *
82  * Originally caching was implemented as part of UFS, later extracted to allow
83  * use by other filesystems. A decision was made to make it optional and
84  * completely detached from the rest of the kernel, which comes with limitations
85  * outlined near the end of this comment block.
86  *
87  * This fundamental choice needs to be revisited. In the meantime, the current
88  * state is described below. Significance of all notable routines is explained
89  * in comments placed above their implementation. Scattered throughout the
90  * file are TODO comments indicating shortcomings which can be fixed without
91  * reworking everything (most of the fixes will likely be reusable). Various
92  * details are omitted from this explanation to not clutter the overview, they
93  * have to be checked by reading the code and associated commentary.
94  *
95  * Keep in mind that it's individual path components which are cached, not full
96  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
97  * one for each name.
98  *
99  * I. Data organization
100  *
101  * Entries are described by "struct namecache" objects and stored in a hash
102  * table. See cache_get_hash for more information.
103  *
104  * "struct vnode" contains pointers to source entries (names which can be found
105  * when traversing through said vnode), destination entries (names of that
106  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
107  * the parent vnode.
108  *
109  * The (directory vnode; name) tuple reliably determines the target entry if
110  * it exists.
111  *
112  * Since there were no small locks at the time of writing this comment (all are
113  * 32 bytes in size on LP64), the code works around the problem by introducing
114  * lock arrays to protect hash buckets and vnode lists.
115  *
116  * II. Filesystem integration
117  *
118  * Filesystems participating in name caching do the following:
119  * - set vop_lookup routine to vfs_cache_lookup
120  * - set vop_cachedlookup to a routine which can perform the lookup if the
121  *   above fails
122  * - if they support lockless lookup (see below), they set vop_fplookup_vexec
123  *   and vop_fplookup_symlink along with the MNTK_FPLOOKUP flag on the mount
124  *   point
125  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
126  *   applicable
127  * - call cache_enter to add entries depending on the MAKEENTRY flag
128  *
129  * With the above in mind, there are 2 entry points when doing lookups:
130  * - ... -> namei -> cache_fplookup -- this is the default
131  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
132  *   should the above fail
133  *
134  * Example code flow how an entry is added:
135  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
136  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
137  *
138  * You may notice a degree of CPU waste in this callchain.
139  *
140  * III. Performance considerations
141  *
142  * For lockless case forward lookup avoids any writes to shared areas apart
143  * from the terminal path component. In other words non-modifying lookups of
144  * different files don't suffer any scalability problems in the namecache
145  * itself.
146  *
147  * Looking up the same file is limited by VFS and goes beyond the scope of this
148  * file.
149  *
150  * At least on amd64 the single-threaded bottleneck for long paths is hashing
151  * (see cache_get_hash). There are cases where the code issues acquire fence
152  * multiple times, they can be combined on architectures which suffer from it.
153  *
154  * For locked case each encountered vnode has to be referenced and locked in
155  * order to be handed out to the caller (normally that's namei). This
156  * introduces significant hit single-threaded and serialization multi-threaded.
157  *
158  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
159  * avoids any writes to shared areas to any components.
160  *
161  * Unrelated insertions are partially serialized on updating the global entry
162  * counter and possibly serialized on colliding bucket or vnode locks.
163  *
164  * IV. Observability
165  *
166  * Several statistics are collected in the vfs.cache sysctl tree.
167  *
168  * Some of the state can be checked for with explicit dtrace probes, must of it
169  * depends on implementation details.
170  *
171  * Examples:
172  *
173  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
174  * # line number, column 2 is status code (see cache_fpl_status)
175  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
176  *
177  * # Histogram of lengths of names added, aggregated by which programs are doing it
178  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
179  *
180  * # Same as above but only those which exceed 64 characters
181  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
182  *
183  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
184  * # path is it
185  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
186  *
187  * V. Limitations and implementation defects
188  *
189  * - since it is possible there is no entry for an open file, tools like
190  *   "procstat" may fail to resolve fd -> vnode -> path to anything
191  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
192  *   shortage) in which case the above problem applies
193  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
194  *   way, resolving a name may return a different path than the one used to
195  *   open it (even if said path is still valid)
196  * - by default entries are not added for newly created files
197  * - adding an entry may need to evict negative entry first, which happens in 2
198  *   distinct places (evicting on lookup, adding in a later VOP) making it
199  *   impossible to simply reuse it
200  * - there is a simple scheme to evict negative entries as the cache is approaching
201  *   its capacity, but it is very unclear if doing so is a good idea to begin with
202  * - vnodes are subject to being recycled even if target inode is left in memory,
203  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
204  *   names get duplicated -- kept by filesystem itself and namecache separately
205  * - vnode reclamation (see vnlru in kern/vfs_subr.c) defaults to skipping
206  *   directories for this very reason, which arguably further reducing quality
207  *   of vnode LRU. Per the above this is done to avoid breaking vnode -> path
208  *   resolution (it becomes expensive for directories and impossible for the rest)
209  *   This would not be a factor if namecache entries could persist without vnodes.
210  * - struct namecache has a fixed size and comes in 2 variants, often wasting
211  *   space.  now hard to replace with malloc due to dependence on SMR, which
212  *   requires UMA zones to opt in
213  * - lack of better integration with the kernel also turns nullfs into a layered
214  *   filesystem instead of something which can take advantage of caching
215  *
216  * Appendix A: where is the time lost, expanding on paragraph III
217  *
218  * While some care went into optimizing lookups, there is still plenty of
219  * performance left on the table, most notably from single-threaded standpoint.
220  * Below is a woefully incomplete list of changes which can help.  Ideas are
221  * mostly sketched out, no claim is made all kinks or prerequisites are laid
222  * out. The name of the game is eliding branches altogether and hopefully some
223  * of memory accesses.
224  *
225  * Note there is performance lost all over VFS.
226  *
227  * === SMR-only lookup
228  *
229  * For commonly used ops like stat(2), when the terminal vnode *is* cached,
230  * lockless lookup could refrain from refing/locking the found vnode and
231  * instead return while within the SMR section. Then a call to, say,
232  * vop_stat_smr could do the work (or fail with EAGAIN), finally the result
233  * would be validated with seqc not changing. This would be faster
234  * single-threaded as it dodges atomics and would provide full scalability for
235  * multicore uses. This would *not* work for open(2) or other calls which need
236  * the vnode to hang around for the long haul, but would work for aforementioned
237  * stat(2) but also access(2), readlink(2), realpathat(2) and probably more.
238  *
239  * === copyinstr
240  *
241  * On all architectures it operates one byte at a time, while it could be
242  * word-sized instead thanks to the Mycroft trick.
243  *
244  * API itself is rather pessimal for path lookup, accepting arbitrary sizes and
245  * *optionally* filling in the length parameter.
246  *
247  * Instead a new routine (copyinpath?) could be introduced, demanding a buffer
248  * size which is a multiply of the word (and never zero), with the length
249  * always returned. On top of it the routine could be allowed to transform the
250  * buffer in arbitrary ways, most notably writing past the found length (not to
251  * be confused with writing past buffer size) -- this would allow word-sized
252  * movs while checking for '\0' later.
253  *
254  * === detour through namei
255  *
256  * Currently one suffers being called from namei, which then has to check if
257  * things worked out locklessly. Instead the lockless lookup could be the
258  * actual entry point which calls what is currently namei as a fallback.
259  *
260  * It could be hotpatched if lockless lookup is disabled.
261  *
262  * === avoidable branches in cache_can_fplookup
263  *
264  * The cache_fast_lookup_enabled flag check could be hotpatchable (in fact if
265  * this is off, none of fplookup code should execute, see above).
266  *
267  * Both audit and capsicum branches can be combined into one, but it requires
268  * paying off a lot of tech debt first.
269  *
270  * ni_startdir could be indicated with a flag in cn_flags, eliminating the
271  * branch.
272  *
273  * === mount stacks
274  *
275  * Crossing a mount requires checking if perhaps something is mounted on top.
276  * Instead, an additional entry could be added to struct mount with a pointer
277  * to the final mount on the stack. This would be recalculated on each
278  * mount/unmount.
279  *
280  * === root vnodes
281  *
282  * It could become part of the API contract to *always* have a rootvnode set in
283  * mnt_rootvnode. Such vnodes are annotated with VV_ROOT and vnlru would have
284  * to be modified to always skip them.
285  *
286  * === inactive on v_usecount reaching 0
287  *
288  * VOP_NEED_INACTIVE should not exist. Filesystems can indicate need for such
289  * processing with a bit in usecount and adding a hold count. Then vput fast path
290  * would become as simple as (ACHTUNG: locking ignored):
291  *
292  * ref = atomic_fetchadd_int(&vp->v_count, -1) - 1;
293  * if ((ref & MAGIC_BIT) == 0) // common case
294  *	return;
295  * if (ref != 0) // the bit is set but this was not the last user
296  *	return;
297  * // do inactive here
298  *
299  * Also see below.
300  *
301  * === v_holdcnt
302  *
303  * Hold count should probably get eliminated, but one can argue it is a useful
304  * feature. Even if so, handling of v_usecount could be decoupled from it --
305  * vnlru et al would consider the vnode not-freeable if has either hold or
306  * usecount on it.
307  *
308  * This would eliminate 2 atomics in the common case of securing a vnode and
309  * undoing it.
310  */
311 
312 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
313     "Name cache");
314 
315 SDT_PROVIDER_DECLARE(vfs);
316 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
317     "struct vnode *");
318 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
319     "struct vnode *");
320 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
321     "char *");
322 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
323     "const char *");
324 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
325     "struct namecache *", "int", "int");
326 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
327 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
328     "char *", "struct vnode *");
329 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
330 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
331     "struct vnode *", "char *");
332 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
333     "struct vnode *");
334 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
335     "struct vnode *", "char *");
336 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
337     "char *");
338 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
339     "struct componentname *");
340 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
341     "struct componentname *");
342 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
343 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
344 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
345 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
346 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
347     "struct vnode *");
348 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
349     "char *");
350 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
351     "char *");
352 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
353 
354 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata *", "int",
355     "enum cache_fpl_status");
356 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
357 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
358 
359 static char __read_frequently cache_fast_lookup_enabled = true;
360 
361 /*
362  * This structure describes the elements in the cache of recent
363  * names looked up by namei.
364  */
365 struct negstate {
366 	u_char neg_flag;
367 	u_char neg_hit;
368 };
369 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
370     "the state must fit in a union with a pointer without growing it");
371 
372 struct	namecache {
373 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
374 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
375 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
376 	struct	vnode *nc_dvp;		/* vnode of parent of name */
377 	union {
378 		struct	vnode *nu_vp;	/* vnode the name refers to */
379 		struct	negstate nu_neg;/* negative entry state */
380 	} n_un;
381 	u_char	nc_flag;		/* flag bits */
382 	u_char	nc_nlen;		/* length of name */
383 	char	nc_name[];		/* segment name + nul */
384 };
385 
386 /*
387  * struct namecache_ts repeats struct namecache layout up to the
388  * nc_nlen member.
389  * struct namecache_ts is used in place of struct namecache when time(s) need
390  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
391  * both a non-dotdot directory name plus dotdot for the directory's
392  * parent.
393  *
394  * See below for alignment requirement.
395  */
396 struct	namecache_ts {
397 	struct	timespec nc_time;	/* timespec provided by fs */
398 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
399 	int	nc_ticks;		/* ticks value when entry was added */
400 	int	nc_pad;
401 	struct namecache nc_nc;
402 };
403 
404 TAILQ_HEAD(cache_freebatch, namecache);
405 
406 /*
407  * At least mips n32 performs 64-bit accesses to timespec as found
408  * in namecache_ts and requires them to be aligned. Since others
409  * may be in the same spot suffer a little bit and enforce the
410  * alignment for everyone. Note this is a nop for 64-bit platforms.
411  */
412 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
413 
414 /*
415  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
416  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
417  * smaller and the value was bumped to retain the total size, but it
418  * was never re-evaluated for suitability. A simple test counting
419  * lengths during package building shows that the value of 45 covers
420  * about 86% of all added entries, reaching 99% at 65.
421  *
422  * Regardless of the above, use of dedicated zones instead of malloc may be
423  * inducing additional waste. This may be hard to address as said zones are
424  * tied to VFS SMR. Even if retaining them, the current split should be
425  * re-evaluated.
426  */
427 #ifdef __LP64__
428 #define	CACHE_PATH_CUTOFF	45
429 #define	CACHE_LARGE_PAD		6
430 #else
431 #define	CACHE_PATH_CUTOFF	41
432 #define	CACHE_LARGE_PAD		2
433 #endif
434 
435 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
436 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
437 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
438 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
439 
440 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
441 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
442 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
443 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
444 
445 #define	nc_vp		n_un.nu_vp
446 #define	nc_neg		n_un.nu_neg
447 
448 /*
449  * Flags in namecache.nc_flag
450  */
451 #define NCF_WHITE	0x01
452 #define NCF_ISDOTDOT	0x02
453 #define	NCF_TS		0x04
454 #define	NCF_DTS		0x08
455 #define	NCF_DVDROP	0x10
456 #define	NCF_NEGATIVE	0x20
457 #define	NCF_INVALID	0x40
458 #define	NCF_WIP		0x80
459 
460 /*
461  * Flags in negstate.neg_flag
462  */
463 #define NEG_HOT		0x01
464 
465 static bool	cache_neg_evict_cond(u_long lnumcache);
466 
467 /*
468  * Mark an entry as invalid.
469  *
470  * This is called before it starts getting deconstructed.
471  */
472 static void
473 cache_ncp_invalidate(struct namecache *ncp)
474 {
475 
476 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
477 	    ("%s: entry %p already invalid", __func__, ncp));
478 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
479 	atomic_thread_fence_rel();
480 }
481 
482 /*
483  * Does this entry match the given directory and name?
484  */
485 static bool
486 cache_ncp_match(struct namecache *ncp, struct vnode *dvp,
487     struct componentname *cnp)
488 {
489 	return (ncp->nc_dvp == dvp &&
490 	    ncp->nc_nlen == cnp->cn_namelen &&
491 	    bcmp(ncp->nc_name, cnp->cn_nameptr, cnp->cn_namelen) == 0);
492 }
493 
494 /*
495  * Check whether the entry can be safely used.
496  *
497  * All places which elide locks are supposed to call this after they are
498  * done with reading from an entry.
499  */
500 #define cache_ncp_canuse(ncp)	({					\
501 	struct namecache *_ncp = (ncp);					\
502 	u_char _nc_flag;						\
503 									\
504 	atomic_thread_fence_acq();					\
505 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
506 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
507 })
508 
509 /*
510  * Like the above but also checks NCF_WHITE.
511  */
512 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
513 	struct namecache *_ncp = (ncp);					\
514 	u_char _nc_flag;						\
515 									\
516 	atomic_thread_fence_acq();					\
517 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
518 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
519 })
520 
521 VFS_SMR_DECLARE;
522 
523 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
524     "Name cache parameters");
525 
526 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
527 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RD, &ncsize, 0,
528     "Total namecache capacity");
529 
530 u_int ncsizefactor = 2;
531 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
532     "Size factor for namecache");
533 
534 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
535 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
536     "Ratio of negative namecache entries");
537 
538 /*
539  * Negative entry % of namecache capacity above which automatic eviction is allowed.
540  *
541  * Check cache_neg_evict_cond for details.
542  */
543 static u_int ncnegminpct = 3;
544 
545 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
546 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
547     "Negative entry count above which automatic eviction is allowed");
548 
549 /*
550  * Structures associated with name caching.
551  */
552 #define NCHHASH(hash) \
553 	(&nchashtbl[(hash) & nchash])
554 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
555 static u_long __read_mostly	nchash;			/* size of hash table */
556 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
557     "Size of namecache hash table");
558 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
559 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
560 
561 struct nchstats	nchstats;		/* cache effectiveness statistics */
562 
563 static u_int __exclusive_cache_line neg_cycle;
564 
565 #define ncneghash	3
566 #define	numneglists	(ncneghash + 1)
567 
568 struct neglist {
569 	struct mtx		nl_evict_lock;
570 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
571 	TAILQ_HEAD(, namecache) nl_list;
572 	TAILQ_HEAD(, namecache) nl_hotlist;
573 	u_long			nl_hotnum;
574 } __aligned(CACHE_LINE_SIZE);
575 
576 static struct neglist neglists[numneglists];
577 
578 static inline struct neglist *
579 NCP2NEGLIST(struct namecache *ncp)
580 {
581 
582 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
583 }
584 
585 static inline struct negstate *
586 NCP2NEGSTATE(struct namecache *ncp)
587 {
588 
589 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
590 	return (&ncp->nc_neg);
591 }
592 
593 #define	numbucketlocks (ncbuckethash + 1)
594 static u_int __read_mostly  ncbuckethash;
595 static struct mtx_padalign __read_mostly  *bucketlocks;
596 #define	HASH2BUCKETLOCK(hash) \
597 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
598 
599 #define	numvnodelocks (ncvnodehash + 1)
600 static u_int __read_mostly  ncvnodehash;
601 static struct mtx __read_mostly *vnodelocks;
602 static inline struct mtx *
603 VP2VNODELOCK(struct vnode *vp)
604 {
605 
606 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
607 }
608 
609 /*
610  * Search the hash table for a namecache entry.  Either the corresponding bucket
611  * must be locked, or the caller must be in an SMR read section.
612  */
613 static struct namecache *
614 cache_ncp_find(struct vnode *dvp, struct componentname *cnp, uint32_t hash)
615 {
616 	struct namecache *ncp;
617 
618 	KASSERT(mtx_owned(HASH2BUCKETLOCK(hash)) || VFS_SMR_ENTERED(),
619 	    ("%s: hash %u not locked", __func__, hash));
620 	CK_SLIST_FOREACH(ncp, NCHHASH(hash), nc_hash) {
621 		if (cache_ncp_match(ncp, dvp, cnp))
622 			break;
623 	}
624 	return (ncp);
625 }
626 
627 static void
628 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
629 {
630 	struct namecache_ts *ncp_ts;
631 
632 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
633 	    (tsp == NULL && ticksp == NULL),
634 	    ("No NCF_TS"));
635 
636 	if (tsp == NULL)
637 		return;
638 
639 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
640 	*tsp = ncp_ts->nc_time;
641 	*ticksp = ncp_ts->nc_ticks;
642 }
643 
644 #ifdef DEBUG_CACHE
645 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
646 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
647     "VFS namecache enabled");
648 #endif
649 
650 /* Export size information to userland */
651 SYSCTL_SIZEOF_STRUCT(namecache);
652 
653 /*
654  * The new name cache statistics
655  */
656 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
657     "Name cache statistics");
658 
659 #define STATNODE_ULONG(name, varname, descr)					\
660 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
661 #define STATNODE_COUNTER(name, varname, descr)					\
662 	static COUNTER_U64_DEFINE_EARLY(varname);				\
663 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
664 	    descr);
665 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
666 STATNODE_ULONG(count, numcache, "Number of cache entries");
667 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
668 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
669 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
670 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
671 STATNODE_COUNTER(poszaps, numposzaps,
672     "Number of cache hits (positive) we do not want to cache");
673 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
674 STATNODE_COUNTER(negzaps, numnegzaps,
675     "Number of cache hits (negative) we do not want to cache");
676 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
677 /* These count for vn_getcwd(), too. */
678 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
679 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
680     "Number of fullpath search errors (VOP_VPTOCNP failures)");
681 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
682 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
683 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
684 
685 /*
686  * Debug or developer statistics.
687  */
688 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
689     "Name cache debugging");
690 #define DEBUGNODE_ULONG(name, varname, descr)					\
691 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
692 static u_long zap_bucket_relock_success;
693 DEBUGNODE_ULONG(zap_bucket_relock_success, zap_bucket_relock_success,
694     "Number of successful removals after relocking");
695 static u_long zap_bucket_fail;
696 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
697 static u_long zap_bucket_fail2;
698 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
699 static u_long cache_lock_vnodes_cel_3_failures;
700 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
701     "Number of times 3-way vnode locking failed");
702 
703 static void cache_zap_locked(struct namecache *ncp);
704 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
705     char **retbuf, size_t *buflen, size_t addend);
706 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
707     char **retbuf, size_t *buflen);
708 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
709     char **retbuf, size_t *len, size_t addend);
710 
711 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
712 
713 static inline void
714 cache_assert_vlp_locked(struct mtx *vlp)
715 {
716 
717 	if (vlp != NULL)
718 		mtx_assert(vlp, MA_OWNED);
719 }
720 
721 static inline void
722 cache_assert_vnode_locked(struct vnode *vp)
723 {
724 	struct mtx *vlp;
725 
726 	vlp = VP2VNODELOCK(vp);
727 	cache_assert_vlp_locked(vlp);
728 }
729 
730 /*
731  * Directory vnodes with entries are held for two reasons:
732  * 1. make them less of a target for reclamation in vnlru
733  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
734  *
735  * It will be feasible to stop doing it altogether if all filesystems start
736  * supporting lockless lookup.
737  */
738 static void
739 cache_hold_vnode(struct vnode *vp)
740 {
741 
742 	cache_assert_vnode_locked(vp);
743 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
744 	vhold(vp);
745 	counter_u64_add(numcachehv, 1);
746 }
747 
748 static void
749 cache_drop_vnode(struct vnode *vp)
750 {
751 
752 	/*
753 	 * Called after all locks are dropped, meaning we can't assert
754 	 * on the state of v_cache_src.
755 	 */
756 	vdrop(vp);
757 	counter_u64_add(numcachehv, -1);
758 }
759 
760 /*
761  * UMA zones.
762  */
763 static uma_zone_t __read_mostly cache_zone_small;
764 static uma_zone_t __read_mostly cache_zone_small_ts;
765 static uma_zone_t __read_mostly cache_zone_large;
766 static uma_zone_t __read_mostly cache_zone_large_ts;
767 
768 char *
769 cache_symlink_alloc(size_t size, int flags)
770 {
771 
772 	if (size < CACHE_ZONE_SMALL_SIZE) {
773 		return (uma_zalloc_smr(cache_zone_small, flags));
774 	}
775 	if (size < CACHE_ZONE_LARGE_SIZE) {
776 		return (uma_zalloc_smr(cache_zone_large, flags));
777 	}
778 	counter_u64_add(symlinktoobig, 1);
779 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
780 	return (NULL);
781 }
782 
783 void
784 cache_symlink_free(char *string, size_t size)
785 {
786 
787 	MPASS(string != NULL);
788 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
789 	    ("%s: size %zu too big", __func__, size));
790 
791 	if (size < CACHE_ZONE_SMALL_SIZE) {
792 		uma_zfree_smr(cache_zone_small, string);
793 		return;
794 	}
795 	if (size < CACHE_ZONE_LARGE_SIZE) {
796 		uma_zfree_smr(cache_zone_large, string);
797 		return;
798 	}
799 	__assert_unreachable();
800 }
801 
802 static struct namecache *
803 cache_alloc_uma(int len, bool ts)
804 {
805 	struct namecache_ts *ncp_ts;
806 	struct namecache *ncp;
807 
808 	if (__predict_false(ts)) {
809 		if (len <= CACHE_PATH_CUTOFF)
810 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
811 		else
812 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
813 		ncp = &ncp_ts->nc_nc;
814 	} else {
815 		if (len <= CACHE_PATH_CUTOFF)
816 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
817 		else
818 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
819 	}
820 	return (ncp);
821 }
822 
823 static void
824 cache_free_uma(struct namecache *ncp)
825 {
826 	struct namecache_ts *ncp_ts;
827 
828 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
829 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
830 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
831 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
832 		else
833 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
834 	} else {
835 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
836 			uma_zfree_smr(cache_zone_small, ncp);
837 		else
838 			uma_zfree_smr(cache_zone_large, ncp);
839 	}
840 }
841 
842 static struct namecache *
843 cache_alloc(int len, bool ts)
844 {
845 	u_long lnumcache;
846 
847 	/*
848 	 * Avoid blowout in namecache entries.
849 	 *
850 	 * Bugs:
851 	 * 1. filesystems may end up trying to add an already existing entry
852 	 * (for example this can happen after a cache miss during concurrent
853 	 * lookup), in which case we will call cache_neg_evict despite not
854 	 * adding anything.
855 	 * 2. the routine may fail to free anything and no provisions are made
856 	 * to make it try harder (see the inside for failure modes)
857 	 * 3. it only ever looks at negative entries.
858 	 */
859 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
860 	if (cache_neg_evict_cond(lnumcache)) {
861 		lnumcache = atomic_load_long(&numcache);
862 	}
863 	if (__predict_false(lnumcache >= ncsize)) {
864 		atomic_subtract_long(&numcache, 1);
865 		counter_u64_add(numdrops, 1);
866 		return (NULL);
867 	}
868 	return (cache_alloc_uma(len, ts));
869 }
870 
871 static void
872 cache_free(struct namecache *ncp)
873 {
874 
875 	MPASS(ncp != NULL);
876 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
877 		cache_drop_vnode(ncp->nc_dvp);
878 	}
879 	cache_free_uma(ncp);
880 	atomic_subtract_long(&numcache, 1);
881 }
882 
883 static void
884 cache_free_batch(struct cache_freebatch *batch)
885 {
886 	struct namecache *ncp, *nnp;
887 	int i;
888 
889 	i = 0;
890 	if (TAILQ_EMPTY(batch))
891 		goto out;
892 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
893 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
894 			cache_drop_vnode(ncp->nc_dvp);
895 		}
896 		cache_free_uma(ncp);
897 		i++;
898 	}
899 	atomic_subtract_long(&numcache, i);
900 out:
901 	SDT_PROBE1(vfs, namecache, purge, batch, i);
902 }
903 
904 /*
905  * Hashing.
906  *
907  * The code was made to use FNV in 2001 and this choice needs to be revisited.
908  *
909  * Short summary of the difficulty:
910  * The longest name which can be inserted is NAME_MAX characters in length (or
911  * 255 at the time of writing this comment), while majority of names used in
912  * practice are significantly shorter (mostly below 10). More importantly
913  * majority of lookups performed find names are even shorter than that.
914  *
915  * This poses a problem where hashes which do better than FNV past word size
916  * (or so) tend to come with additional overhead when finalizing the result,
917  * making them noticeably slower for the most commonly used range.
918  *
919  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
920  *
921  * When looking it up the most time consuming part by a large margin (at least
922  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
923  * input would make the slowest part stand out even more.
924  */
925 
926 /*
927  * TODO: With the value stored we can do better than computing the hash based
928  * on the address.
929  */
930 static void
931 cache_prehash(struct vnode *vp)
932 {
933 
934 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
935 }
936 
937 static uint32_t
938 cache_get_hash(char *name, u_char len, struct vnode *dvp)
939 {
940 
941 	return (fnv_32_buf(name, len, dvp->v_nchash));
942 }
943 
944 static uint32_t
945 cache_get_hash_iter_start(struct vnode *dvp)
946 {
947 
948 	return (dvp->v_nchash);
949 }
950 
951 static uint32_t
952 cache_get_hash_iter(char c, uint32_t hash)
953 {
954 
955 	return (fnv_32_buf(&c, 1, hash));
956 }
957 
958 static uint32_t
959 cache_get_hash_iter_finish(uint32_t hash)
960 {
961 
962 	return (hash);
963 }
964 
965 static inline struct nchashhead *
966 NCP2BUCKET(struct namecache *ncp)
967 {
968 	uint32_t hash;
969 
970 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
971 	return (NCHHASH(hash));
972 }
973 
974 static inline struct mtx *
975 NCP2BUCKETLOCK(struct namecache *ncp)
976 {
977 	uint32_t hash;
978 
979 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
980 	return (HASH2BUCKETLOCK(hash));
981 }
982 
983 #ifdef INVARIANTS
984 static void
985 cache_assert_bucket_locked(struct namecache *ncp)
986 {
987 	struct mtx *blp;
988 
989 	blp = NCP2BUCKETLOCK(ncp);
990 	mtx_assert(blp, MA_OWNED);
991 }
992 
993 static void
994 cache_assert_bucket_unlocked(struct namecache *ncp)
995 {
996 	struct mtx *blp;
997 
998 	blp = NCP2BUCKETLOCK(ncp);
999 	mtx_assert(blp, MA_NOTOWNED);
1000 }
1001 #else
1002 #define cache_assert_bucket_locked(x) do { } while (0)
1003 #define cache_assert_bucket_unlocked(x) do { } while (0)
1004 #endif
1005 
1006 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
1007 static void
1008 _cache_sort_vnodes(void **p1, void **p2)
1009 {
1010 	void *tmp;
1011 
1012 	MPASS(*p1 != NULL || *p2 != NULL);
1013 
1014 	if (*p1 > *p2) {
1015 		tmp = *p2;
1016 		*p2 = *p1;
1017 		*p1 = tmp;
1018 	}
1019 }
1020 
1021 static void
1022 cache_lock_all_buckets(void)
1023 {
1024 	u_int i;
1025 
1026 	for (i = 0; i < numbucketlocks; i++)
1027 		mtx_lock(&bucketlocks[i]);
1028 }
1029 
1030 static void
1031 cache_unlock_all_buckets(void)
1032 {
1033 	u_int i;
1034 
1035 	for (i = 0; i < numbucketlocks; i++)
1036 		mtx_unlock(&bucketlocks[i]);
1037 }
1038 
1039 static void
1040 cache_lock_all_vnodes(void)
1041 {
1042 	u_int i;
1043 
1044 	for (i = 0; i < numvnodelocks; i++)
1045 		mtx_lock(&vnodelocks[i]);
1046 }
1047 
1048 static void
1049 cache_unlock_all_vnodes(void)
1050 {
1051 	u_int i;
1052 
1053 	for (i = 0; i < numvnodelocks; i++)
1054 		mtx_unlock(&vnodelocks[i]);
1055 }
1056 
1057 static int
1058 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1059 {
1060 
1061 	cache_sort_vnodes(&vlp1, &vlp2);
1062 
1063 	if (vlp1 != NULL) {
1064 		if (!mtx_trylock(vlp1))
1065 			return (EAGAIN);
1066 	}
1067 	if (!mtx_trylock(vlp2)) {
1068 		if (vlp1 != NULL)
1069 			mtx_unlock(vlp1);
1070 		return (EAGAIN);
1071 	}
1072 
1073 	return (0);
1074 }
1075 
1076 static void
1077 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1078 {
1079 
1080 	MPASS(vlp1 != NULL || vlp2 != NULL);
1081 	MPASS(vlp1 <= vlp2);
1082 
1083 	if (vlp1 != NULL)
1084 		mtx_lock(vlp1);
1085 	if (vlp2 != NULL)
1086 		mtx_lock(vlp2);
1087 }
1088 
1089 static void
1090 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1091 {
1092 
1093 	MPASS(vlp1 != NULL || vlp2 != NULL);
1094 
1095 	if (vlp1 != NULL)
1096 		mtx_unlock(vlp1);
1097 	if (vlp2 != NULL)
1098 		mtx_unlock(vlp2);
1099 }
1100 
1101 static int
1102 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
1103 {
1104 	struct nchstats snap;
1105 
1106 	if (req->oldptr == NULL)
1107 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
1108 
1109 	snap = nchstats;
1110 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
1111 	snap.ncs_neghits = counter_u64_fetch(numneghits);
1112 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
1113 	    counter_u64_fetch(numnegzaps);
1114 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
1115 	    counter_u64_fetch(nummiss);
1116 
1117 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
1118 }
1119 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
1120     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
1121     "VFS cache effectiveness statistics");
1122 
1123 static int
1124 sysctl_hitpct(SYSCTL_HANDLER_ARGS)
1125 {
1126 	long poshits, neghits, miss, total;
1127 	long pct;
1128 
1129 	poshits = counter_u64_fetch(numposhits);
1130 	neghits = counter_u64_fetch(numneghits);
1131 	miss = counter_u64_fetch(nummiss);
1132 	total = poshits + neghits + miss;
1133 
1134 	pct = 0;
1135 	if (total != 0)
1136 		pct = ((poshits + neghits) * 100) / total;
1137 	return (sysctl_handle_int(oidp, 0, pct, req));
1138 }
1139 SYSCTL_PROC(_vfs_cache_stats, OID_AUTO, hitpct,
1140     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_hitpct,
1141     "I", "Percentage of hits");
1142 
1143 static void
1144 cache_recalc_neg_min(void)
1145 {
1146 
1147 	neg_min = (ncsize * ncnegminpct) / 100;
1148 }
1149 
1150 static int
1151 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1152 {
1153 	u_int val;
1154 	int error;
1155 
1156 	val = ncnegminpct;
1157 	error = sysctl_handle_int(oidp, &val, 0, req);
1158 	if (error != 0 || req->newptr == NULL)
1159 		return (error);
1160 
1161 	if (val == ncnegminpct)
1162 		return (0);
1163 	if (val < 0 || val > 99)
1164 		return (EINVAL);
1165 	ncnegminpct = val;
1166 	cache_recalc_neg_min();
1167 	return (0);
1168 }
1169 
1170 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1171     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1172     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1173 
1174 #ifdef DEBUG_CACHE
1175 /*
1176  * Grab an atomic snapshot of the name cache hash chain lengths
1177  */
1178 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1179     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1180     "hash table stats");
1181 
1182 static int
1183 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1184 {
1185 	struct nchashhead *ncpp;
1186 	struct namecache *ncp;
1187 	int i, error, n_nchash, *cntbuf;
1188 
1189 retry:
1190 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1191 	if (req->oldptr == NULL)
1192 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1193 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1194 	cache_lock_all_buckets();
1195 	if (n_nchash != nchash + 1) {
1196 		cache_unlock_all_buckets();
1197 		free(cntbuf, M_TEMP);
1198 		goto retry;
1199 	}
1200 	/* Scan hash tables counting entries */
1201 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1202 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1203 			cntbuf[i]++;
1204 	cache_unlock_all_buckets();
1205 	for (error = 0, i = 0; i < n_nchash; i++)
1206 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1207 			break;
1208 	free(cntbuf, M_TEMP);
1209 	return (error);
1210 }
1211 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1212     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1213     "nchash chain lengths");
1214 
1215 static int
1216 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1217 {
1218 	int error;
1219 	struct nchashhead *ncpp;
1220 	struct namecache *ncp;
1221 	int n_nchash;
1222 	int count, maxlength, used, pct;
1223 
1224 	if (!req->oldptr)
1225 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1226 
1227 	cache_lock_all_buckets();
1228 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1229 	used = 0;
1230 	maxlength = 0;
1231 
1232 	/* Scan hash tables for applicable entries */
1233 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1234 		count = 0;
1235 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1236 			count++;
1237 		}
1238 		if (count)
1239 			used++;
1240 		if (maxlength < count)
1241 			maxlength = count;
1242 	}
1243 	n_nchash = nchash + 1;
1244 	cache_unlock_all_buckets();
1245 	pct = (used * 100) / (n_nchash / 100);
1246 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1247 	if (error)
1248 		return (error);
1249 	error = SYSCTL_OUT(req, &used, sizeof(used));
1250 	if (error)
1251 		return (error);
1252 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1253 	if (error)
1254 		return (error);
1255 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1256 	if (error)
1257 		return (error);
1258 	return (0);
1259 }
1260 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1261     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1262     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1263 #endif
1264 
1265 /*
1266  * Negative entries management
1267  *
1268  * Various workloads create plenty of negative entries and barely use them
1269  * afterwards. Moreover malicious users can keep performing bogus lookups
1270  * adding even more entries. For example "make tinderbox" as of writing this
1271  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1272  * negative.
1273  *
1274  * As such, a rather aggressive eviction method is needed. The currently
1275  * employed method is a placeholder.
1276  *
1277  * Entries are split over numneglists separate lists, each of which is further
1278  * split into hot and cold entries. Entries get promoted after getting a hit.
1279  * Eviction happens on addition of new entry.
1280  */
1281 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1282     "Name cache negative entry statistics");
1283 
1284 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1285     "Number of negative cache entries");
1286 
1287 static COUNTER_U64_DEFINE_EARLY(neg_created);
1288 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1289     "Number of created negative entries");
1290 
1291 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1292 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1293     "Number of evicted negative entries");
1294 
1295 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1296 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1297     &neg_evict_skipped_empty,
1298     "Number of times evicting failed due to lack of entries");
1299 
1300 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1301 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1302     &neg_evict_skipped_missed,
1303     "Number of times evicting failed due to target entry disappearing");
1304 
1305 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1306 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1307     &neg_evict_skipped_contended,
1308     "Number of times evicting failed due to contention");
1309 
1310 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1311     "Number of cache hits (negative)");
1312 
1313 static int
1314 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1315 {
1316 	int i, out;
1317 
1318 	out = 0;
1319 	for (i = 0; i < numneglists; i++)
1320 		out += neglists[i].nl_hotnum;
1321 
1322 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1323 }
1324 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1325     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1326     "Number of hot negative entries");
1327 
1328 static void
1329 cache_neg_init(struct namecache *ncp)
1330 {
1331 	struct negstate *ns;
1332 
1333 	ncp->nc_flag |= NCF_NEGATIVE;
1334 	ns = NCP2NEGSTATE(ncp);
1335 	ns->neg_flag = 0;
1336 	ns->neg_hit = 0;
1337 	counter_u64_add(neg_created, 1);
1338 }
1339 
1340 #define CACHE_NEG_PROMOTION_THRESH 2
1341 
1342 static bool
1343 cache_neg_hit_prep(struct namecache *ncp)
1344 {
1345 	struct negstate *ns;
1346 	u_char n;
1347 
1348 	ns = NCP2NEGSTATE(ncp);
1349 	n = atomic_load_char(&ns->neg_hit);
1350 	for (;;) {
1351 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1352 			return (false);
1353 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1354 			break;
1355 	}
1356 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1357 }
1358 
1359 /*
1360  * Nothing to do here but it is provided for completeness as some
1361  * cache_neg_hit_prep callers may end up returning without even
1362  * trying to promote.
1363  */
1364 #define cache_neg_hit_abort(ncp)	do { } while (0)
1365 
1366 static void
1367 cache_neg_hit_finish(struct namecache *ncp)
1368 {
1369 
1370 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1371 	counter_u64_add(numneghits, 1);
1372 }
1373 
1374 /*
1375  * Move a negative entry to the hot list.
1376  */
1377 static void
1378 cache_neg_promote_locked(struct namecache *ncp)
1379 {
1380 	struct neglist *nl;
1381 	struct negstate *ns;
1382 
1383 	ns = NCP2NEGSTATE(ncp);
1384 	nl = NCP2NEGLIST(ncp);
1385 	mtx_assert(&nl->nl_lock, MA_OWNED);
1386 	if ((ns->neg_flag & NEG_HOT) == 0) {
1387 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1388 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1389 		nl->nl_hotnum++;
1390 		ns->neg_flag |= NEG_HOT;
1391 	}
1392 }
1393 
1394 /*
1395  * Move a hot negative entry to the cold list.
1396  */
1397 static void
1398 cache_neg_demote_locked(struct namecache *ncp)
1399 {
1400 	struct neglist *nl;
1401 	struct negstate *ns;
1402 
1403 	ns = NCP2NEGSTATE(ncp);
1404 	nl = NCP2NEGLIST(ncp);
1405 	mtx_assert(&nl->nl_lock, MA_OWNED);
1406 	MPASS(ns->neg_flag & NEG_HOT);
1407 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1408 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1409 	nl->nl_hotnum--;
1410 	ns->neg_flag &= ~NEG_HOT;
1411 	atomic_store_char(&ns->neg_hit, 0);
1412 }
1413 
1414 /*
1415  * Move a negative entry to the hot list if it matches the lookup.
1416  *
1417  * We have to take locks, but they may be contended and in the worst
1418  * case we may need to go off CPU. We don't want to spin within the
1419  * smr section and we can't block with it. Exiting the section means
1420  * the found entry could have been evicted. We are going to look it
1421  * up again.
1422  */
1423 static bool
1424 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1425     struct namecache *oncp, uint32_t hash)
1426 {
1427 	struct namecache *ncp;
1428 	struct neglist *nl;
1429 	u_char nc_flag;
1430 
1431 	nl = NCP2NEGLIST(oncp);
1432 
1433 	mtx_lock(&nl->nl_lock);
1434 	/*
1435 	 * For hash iteration.
1436 	 */
1437 	vfs_smr_enter();
1438 
1439 	/*
1440 	 * Avoid all surprises by only succeeding if we got the same entry and
1441 	 * bailing completely otherwise.
1442 	 * XXX There are no provisions to keep the vnode around, meaning we may
1443 	 * end up promoting a negative entry for a *new* vnode and returning
1444 	 * ENOENT on its account. This is the error we want to return anyway
1445 	 * and promotion is harmless.
1446 	 *
1447 	 * In particular at this point there can be a new ncp which matches the
1448 	 * search but hashes to a different neglist.
1449 	 */
1450 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1451 		if (ncp == oncp)
1452 			break;
1453 	}
1454 
1455 	/*
1456 	 * No match to begin with.
1457 	 */
1458 	if (__predict_false(ncp == NULL)) {
1459 		goto out_abort;
1460 	}
1461 
1462 	/*
1463 	 * The newly found entry may be something different...
1464 	 */
1465 	if (!cache_ncp_match(ncp, dvp, cnp)) {
1466 		goto out_abort;
1467 	}
1468 
1469 	/*
1470 	 * ... and not even negative.
1471 	 */
1472 	nc_flag = atomic_load_char(&ncp->nc_flag);
1473 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1474 		goto out_abort;
1475 	}
1476 
1477 	if (!cache_ncp_canuse(ncp)) {
1478 		goto out_abort;
1479 	}
1480 
1481 	cache_neg_promote_locked(ncp);
1482 	cache_neg_hit_finish(ncp);
1483 	vfs_smr_exit();
1484 	mtx_unlock(&nl->nl_lock);
1485 	return (true);
1486 out_abort:
1487 	vfs_smr_exit();
1488 	mtx_unlock(&nl->nl_lock);
1489 	return (false);
1490 }
1491 
1492 static void
1493 cache_neg_promote(struct namecache *ncp)
1494 {
1495 	struct neglist *nl;
1496 
1497 	nl = NCP2NEGLIST(ncp);
1498 	mtx_lock(&nl->nl_lock);
1499 	cache_neg_promote_locked(ncp);
1500 	mtx_unlock(&nl->nl_lock);
1501 }
1502 
1503 static void
1504 cache_neg_insert(struct namecache *ncp)
1505 {
1506 	struct neglist *nl;
1507 
1508 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1509 	cache_assert_bucket_locked(ncp);
1510 	nl = NCP2NEGLIST(ncp);
1511 	mtx_lock(&nl->nl_lock);
1512 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1513 	mtx_unlock(&nl->nl_lock);
1514 	atomic_add_long(&numneg, 1);
1515 }
1516 
1517 static void
1518 cache_neg_remove(struct namecache *ncp)
1519 {
1520 	struct neglist *nl;
1521 	struct negstate *ns;
1522 
1523 	cache_assert_bucket_locked(ncp);
1524 	nl = NCP2NEGLIST(ncp);
1525 	ns = NCP2NEGSTATE(ncp);
1526 	mtx_lock(&nl->nl_lock);
1527 	if ((ns->neg_flag & NEG_HOT) != 0) {
1528 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1529 		nl->nl_hotnum--;
1530 	} else {
1531 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1532 	}
1533 	mtx_unlock(&nl->nl_lock);
1534 	atomic_subtract_long(&numneg, 1);
1535 }
1536 
1537 static struct neglist *
1538 cache_neg_evict_select_list(void)
1539 {
1540 	struct neglist *nl;
1541 	u_int c;
1542 
1543 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1544 	nl = &neglists[c % numneglists];
1545 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1546 		counter_u64_add(neg_evict_skipped_contended, 1);
1547 		return (NULL);
1548 	}
1549 	return (nl);
1550 }
1551 
1552 static struct namecache *
1553 cache_neg_evict_select_entry(struct neglist *nl)
1554 {
1555 	struct namecache *ncp, *lncp;
1556 	struct negstate *ns, *lns;
1557 	int i;
1558 
1559 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1560 	mtx_assert(&nl->nl_lock, MA_OWNED);
1561 	ncp = TAILQ_FIRST(&nl->nl_list);
1562 	if (ncp == NULL)
1563 		return (NULL);
1564 	lncp = ncp;
1565 	lns = NCP2NEGSTATE(lncp);
1566 	for (i = 1; i < 4; i++) {
1567 		ncp = TAILQ_NEXT(ncp, nc_dst);
1568 		if (ncp == NULL)
1569 			break;
1570 		ns = NCP2NEGSTATE(ncp);
1571 		if (ns->neg_hit < lns->neg_hit) {
1572 			lncp = ncp;
1573 			lns = ns;
1574 		}
1575 	}
1576 	return (lncp);
1577 }
1578 
1579 static bool
1580 cache_neg_evict(void)
1581 {
1582 	struct namecache *ncp, *ncp2;
1583 	struct neglist *nl;
1584 	struct vnode *dvp;
1585 	struct mtx *dvlp;
1586 	struct mtx *blp;
1587 	uint32_t hash;
1588 	u_char nlen;
1589 	bool evicted;
1590 
1591 	nl = cache_neg_evict_select_list();
1592 	if (nl == NULL) {
1593 		return (false);
1594 	}
1595 
1596 	mtx_lock(&nl->nl_lock);
1597 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1598 	if (ncp != NULL) {
1599 		cache_neg_demote_locked(ncp);
1600 	}
1601 	ncp = cache_neg_evict_select_entry(nl);
1602 	if (ncp == NULL) {
1603 		counter_u64_add(neg_evict_skipped_empty, 1);
1604 		mtx_unlock(&nl->nl_lock);
1605 		mtx_unlock(&nl->nl_evict_lock);
1606 		return (false);
1607 	}
1608 	nlen = ncp->nc_nlen;
1609 	dvp = ncp->nc_dvp;
1610 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1611 	dvlp = VP2VNODELOCK(dvp);
1612 	blp = HASH2BUCKETLOCK(hash);
1613 	mtx_unlock(&nl->nl_lock);
1614 	mtx_unlock(&nl->nl_evict_lock);
1615 	mtx_lock(dvlp);
1616 	mtx_lock(blp);
1617 	/*
1618 	 * Note that since all locks were dropped above, the entry may be
1619 	 * gone or reallocated to be something else.
1620 	 */
1621 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1622 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1623 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1624 			break;
1625 	}
1626 	if (ncp2 == NULL) {
1627 		counter_u64_add(neg_evict_skipped_missed, 1);
1628 		ncp = NULL;
1629 		evicted = false;
1630 	} else {
1631 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1632 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1633 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1634 		    ncp->nc_name);
1635 		cache_zap_locked(ncp);
1636 		counter_u64_add(neg_evicted, 1);
1637 		evicted = true;
1638 	}
1639 	mtx_unlock(blp);
1640 	mtx_unlock(dvlp);
1641 	if (ncp != NULL)
1642 		cache_free(ncp);
1643 	return (evicted);
1644 }
1645 
1646 /*
1647  * Maybe evict a negative entry to create more room.
1648  *
1649  * The ncnegfactor parameter limits what fraction of the total count
1650  * can comprise of negative entries. However, if the cache is just
1651  * warming up this leads to excessive evictions.  As such, ncnegminpct
1652  * (recomputed to neg_min) dictates whether the above should be
1653  * applied.
1654  *
1655  * Try evicting if the cache is close to full capacity regardless of
1656  * other considerations.
1657  */
1658 static bool
1659 cache_neg_evict_cond(u_long lnumcache)
1660 {
1661 	u_long lnumneg;
1662 
1663 	if (ncsize - 1000 < lnumcache)
1664 		goto out_evict;
1665 	lnumneg = atomic_load_long(&numneg);
1666 	if (lnumneg < neg_min)
1667 		return (false);
1668 	if (lnumneg * ncnegfactor < lnumcache)
1669 		return (false);
1670 out_evict:
1671 	return (cache_neg_evict());
1672 }
1673 
1674 /*
1675  * cache_zap_locked():
1676  *
1677  *   Removes a namecache entry from cache, whether it contains an actual
1678  *   pointer to a vnode or if it is just a negative cache entry.
1679  */
1680 static void
1681 cache_zap_locked(struct namecache *ncp)
1682 {
1683 	struct nchashhead *ncpp;
1684 	struct vnode *dvp, *vp;
1685 
1686 	dvp = ncp->nc_dvp;
1687 	vp = ncp->nc_vp;
1688 
1689 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1690 		cache_assert_vnode_locked(vp);
1691 	cache_assert_vnode_locked(dvp);
1692 	cache_assert_bucket_locked(ncp);
1693 
1694 	cache_ncp_invalidate(ncp);
1695 
1696 	ncpp = NCP2BUCKET(ncp);
1697 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1698 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1699 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1700 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1701 		if (ncp == vp->v_cache_dd) {
1702 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1703 		}
1704 	} else {
1705 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1706 		cache_neg_remove(ncp);
1707 	}
1708 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1709 		if (ncp == dvp->v_cache_dd) {
1710 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1711 		}
1712 	} else {
1713 		LIST_REMOVE(ncp, nc_src);
1714 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1715 			ncp->nc_flag |= NCF_DVDROP;
1716 		}
1717 	}
1718 }
1719 
1720 static void
1721 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1722 {
1723 	struct mtx *blp;
1724 
1725 	MPASS(ncp->nc_dvp == vp);
1726 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1727 	cache_assert_vnode_locked(vp);
1728 
1729 	blp = NCP2BUCKETLOCK(ncp);
1730 	mtx_lock(blp);
1731 	cache_zap_locked(ncp);
1732 	mtx_unlock(blp);
1733 }
1734 
1735 static bool
1736 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1737     struct mtx **vlpp)
1738 {
1739 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1740 	struct mtx *blp;
1741 
1742 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1743 	cache_assert_vnode_locked(vp);
1744 
1745 	if (ncp->nc_flag & NCF_NEGATIVE) {
1746 		if (*vlpp != NULL) {
1747 			mtx_unlock(*vlpp);
1748 			*vlpp = NULL;
1749 		}
1750 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1751 		return (true);
1752 	}
1753 
1754 	pvlp = VP2VNODELOCK(vp);
1755 	blp = NCP2BUCKETLOCK(ncp);
1756 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1757 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1758 
1759 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1760 		to_unlock = *vlpp;
1761 		*vlpp = NULL;
1762 	} else {
1763 		if (*vlpp != NULL) {
1764 			mtx_unlock(*vlpp);
1765 			*vlpp = NULL;
1766 		}
1767 		cache_sort_vnodes(&vlp1, &vlp2);
1768 		if (vlp1 == pvlp) {
1769 			mtx_lock(vlp2);
1770 			to_unlock = vlp2;
1771 		} else {
1772 			if (!mtx_trylock(vlp1))
1773 				goto out_relock;
1774 			to_unlock = vlp1;
1775 		}
1776 	}
1777 	mtx_lock(blp);
1778 	cache_zap_locked(ncp);
1779 	mtx_unlock(blp);
1780 	if (to_unlock != NULL)
1781 		mtx_unlock(to_unlock);
1782 	return (true);
1783 
1784 out_relock:
1785 	mtx_unlock(vlp2);
1786 	mtx_lock(vlp1);
1787 	mtx_lock(vlp2);
1788 	MPASS(*vlpp == NULL);
1789 	*vlpp = vlp1;
1790 	return (false);
1791 }
1792 
1793 /*
1794  * If trylocking failed we can get here. We know enough to take all needed locks
1795  * in the right order and re-lookup the entry.
1796  */
1797 static int
1798 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1799     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1800     struct mtx *blp)
1801 {
1802 	struct namecache *rncp;
1803 	struct mtx *rvlp;
1804 
1805 	cache_assert_bucket_unlocked(ncp);
1806 
1807 	cache_sort_vnodes(&dvlp, &vlp);
1808 	cache_lock_vnodes(dvlp, vlp);
1809 	mtx_lock(blp);
1810 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1811 		if (rncp == ncp && cache_ncp_match(rncp, dvp, cnp))
1812 			break;
1813 	}
1814 	if (rncp == NULL)
1815 		goto out_mismatch;
1816 
1817 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1818 		rvlp = VP2VNODELOCK(rncp->nc_vp);
1819 	else
1820 		rvlp = NULL;
1821 	if (rvlp != vlp)
1822 		goto out_mismatch;
1823 
1824 	cache_zap_locked(rncp);
1825 	mtx_unlock(blp);
1826 	cache_unlock_vnodes(dvlp, vlp);
1827 	atomic_add_long(&zap_bucket_relock_success, 1);
1828 	return (0);
1829 
1830 out_mismatch:
1831 	mtx_unlock(blp);
1832 	cache_unlock_vnodes(dvlp, vlp);
1833 	return (EAGAIN);
1834 }
1835 
1836 static int __noinline
1837 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1838     uint32_t hash, struct mtx *blp)
1839 {
1840 	struct mtx *dvlp, *vlp;
1841 	struct vnode *dvp;
1842 
1843 	cache_assert_bucket_locked(ncp);
1844 
1845 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1846 	vlp = NULL;
1847 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1848 		vlp = VP2VNODELOCK(ncp->nc_vp);
1849 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1850 		cache_zap_locked(ncp);
1851 		mtx_unlock(blp);
1852 		cache_unlock_vnodes(dvlp, vlp);
1853 		return (0);
1854 	}
1855 
1856 	dvp = ncp->nc_dvp;
1857 	mtx_unlock(blp);
1858 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1859 }
1860 
1861 static __noinline int
1862 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1863 {
1864 	struct namecache *ncp;
1865 	struct mtx *blp;
1866 	struct mtx *dvlp, *dvlp2;
1867 	uint32_t hash;
1868 	int error;
1869 
1870 	if (cnp->cn_namelen == 2 &&
1871 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1872 		dvlp = VP2VNODELOCK(dvp);
1873 		dvlp2 = NULL;
1874 		mtx_lock(dvlp);
1875 retry_dotdot:
1876 		ncp = dvp->v_cache_dd;
1877 		if (ncp == NULL) {
1878 			mtx_unlock(dvlp);
1879 			if (dvlp2 != NULL)
1880 				mtx_unlock(dvlp2);
1881 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1882 			return (0);
1883 		}
1884 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1885 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1886 				goto retry_dotdot;
1887 			MPASS(dvp->v_cache_dd == NULL);
1888 			mtx_unlock(dvlp);
1889 			if (dvlp2 != NULL)
1890 				mtx_unlock(dvlp2);
1891 			cache_free(ncp);
1892 		} else {
1893 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1894 			mtx_unlock(dvlp);
1895 			if (dvlp2 != NULL)
1896 				mtx_unlock(dvlp2);
1897 		}
1898 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1899 		return (1);
1900 	}
1901 
1902 	/*
1903 	 * XXX note that access here is completely unlocked with no provisions
1904 	 * to keep the hash allocated. If one is sufficiently unlucky a
1905 	 * parallel cache resize can reallocate the hash, unmap backing pages
1906 	 * and cause the empty check below to fault.
1907 	 *
1908 	 * Fixing this has epsilon priority, but can be done with no overhead
1909 	 * for this codepath with sufficient effort.
1910 	 */
1911 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1912 	blp = HASH2BUCKETLOCK(hash);
1913 retry:
1914 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1915 		goto out_no_entry;
1916 
1917 	mtx_lock(blp);
1918 	ncp = cache_ncp_find(dvp, cnp, hash);
1919 	if (ncp == NULL) {
1920 		mtx_unlock(blp);
1921 		goto out_no_entry;
1922 	}
1923 
1924 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1925 	if (__predict_false(error != 0)) {
1926 		atomic_add_long(&zap_bucket_fail, 1);
1927 		goto retry;
1928 	}
1929 	counter_u64_add(numposzaps, 1);
1930 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1931 	cache_free(ncp);
1932 	return (1);
1933 out_no_entry:
1934 	counter_u64_add(nummisszap, 1);
1935 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1936 	return (0);
1937 }
1938 
1939 static int __noinline
1940 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1941     struct timespec *tsp, int *ticksp)
1942 {
1943 	int ltype;
1944 
1945 	*vpp = dvp;
1946 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1947 	if (tsp != NULL)
1948 		timespecclear(tsp);
1949 	if (ticksp != NULL)
1950 		*ticksp = ticks;
1951 	vrefact(*vpp);
1952 	/*
1953 	 * When we lookup "." we still can be asked to lock it
1954 	 * differently...
1955 	 */
1956 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1957 	if (ltype != VOP_ISLOCKED(*vpp)) {
1958 		if (ltype == LK_EXCLUSIVE) {
1959 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1960 			if (VN_IS_DOOMED((*vpp))) {
1961 				/* forced unmount */
1962 				vrele(*vpp);
1963 				*vpp = NULL;
1964 				return (ENOENT);
1965 			}
1966 		} else
1967 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1968 	}
1969 	return (-1);
1970 }
1971 
1972 static int __noinline
1973 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1974     struct timespec *tsp, int *ticksp)
1975 {
1976 	struct namecache_ts *ncp_ts;
1977 	struct namecache *ncp;
1978 	struct mtx *dvlp;
1979 	enum vgetstate vs;
1980 	int error, ltype;
1981 	bool whiteout;
1982 
1983 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1984 
1985 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1986 		cache_remove_cnp(dvp, cnp);
1987 		return (0);
1988 	}
1989 
1990 retry:
1991 	dvlp = VP2VNODELOCK(dvp);
1992 	mtx_lock(dvlp);
1993 	ncp = dvp->v_cache_dd;
1994 	if (ncp == NULL) {
1995 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1996 		mtx_unlock(dvlp);
1997 		return (0);
1998 	}
1999 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
2000 		if (ncp->nc_flag & NCF_NEGATIVE)
2001 			*vpp = NULL;
2002 		else
2003 			*vpp = ncp->nc_vp;
2004 	} else
2005 		*vpp = ncp->nc_dvp;
2006 	if (*vpp == NULL)
2007 		goto negative_success;
2008 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
2009 	cache_out_ts(ncp, tsp, ticksp);
2010 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
2011 	    NCF_DTS && tsp != NULL) {
2012 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2013 		*tsp = ncp_ts->nc_dotdottime;
2014 	}
2015 
2016 	MPASS(dvp != *vpp);
2017 	ltype = VOP_ISLOCKED(dvp);
2018 	VOP_UNLOCK(dvp);
2019 	vs = vget_prep(*vpp);
2020 	mtx_unlock(dvlp);
2021 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2022 	vn_lock(dvp, ltype | LK_RETRY);
2023 	if (VN_IS_DOOMED(dvp)) {
2024 		if (error == 0)
2025 			vput(*vpp);
2026 		*vpp = NULL;
2027 		return (ENOENT);
2028 	}
2029 	if (error) {
2030 		*vpp = NULL;
2031 		goto retry;
2032 	}
2033 	return (-1);
2034 negative_success:
2035 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
2036 		if (cnp->cn_flags & ISLASTCN) {
2037 			counter_u64_add(numnegzaps, 1);
2038 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
2039 			mtx_unlock(dvlp);
2040 			cache_free(ncp);
2041 			return (0);
2042 		}
2043 	}
2044 
2045 	whiteout = (ncp->nc_flag & NCF_WHITE);
2046 	cache_out_ts(ncp, tsp, ticksp);
2047 	if (cache_neg_hit_prep(ncp))
2048 		cache_neg_promote(ncp);
2049 	else
2050 		cache_neg_hit_finish(ncp);
2051 	mtx_unlock(dvlp);
2052 	if (whiteout)
2053 		cnp->cn_flags |= ISWHITEOUT;
2054 	return (ENOENT);
2055 }
2056 
2057 /**
2058  * Lookup a name in the name cache
2059  *
2060  * # Arguments
2061  *
2062  * - dvp:	Parent directory in which to search.
2063  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
2064  * - cnp:	Parameters of the name search.  The most interesting bits of
2065  *   		the cn_flags field have the following meanings:
2066  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
2067  *   			it up.
2068  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
2069  * - tsp:	Return storage for cache timestamp.  On a successful (positive
2070  *   		or negative) lookup, tsp will be filled with any timespec that
2071  *   		was stored when this cache entry was created.  However, it will
2072  *   		be clear for "." entries.
2073  * - ticks:	Return storage for alternate cache timestamp.  On a successful
2074  *   		(positive or negative) lookup, it will contain the ticks value
2075  *   		that was current when the cache entry was created, unless cnp
2076  *   		was ".".
2077  *
2078  * Either both tsp and ticks have to be provided or neither of them.
2079  *
2080  * # Returns
2081  *
2082  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
2083  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
2084  *		to a forced unmount.  vpp will not be modified.  If the entry
2085  *		is a whiteout, then the ISWHITEOUT flag will be set in
2086  *		cnp->cn_flags.
2087  * - 0:		A cache miss.  vpp will not be modified.
2088  *
2089  * # Locking
2090  *
2091  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
2092  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
2093  * lock is not recursively acquired.
2094  */
2095 static int __noinline
2096 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2097     struct timespec *tsp, int *ticksp)
2098 {
2099 	struct namecache *ncp;
2100 	struct mtx *blp;
2101 	uint32_t hash;
2102 	enum vgetstate vs;
2103 	int error;
2104 	bool whiteout;
2105 
2106 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2107 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
2108 
2109 retry:
2110 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2111 	blp = HASH2BUCKETLOCK(hash);
2112 	mtx_lock(blp);
2113 
2114 	ncp = cache_ncp_find(dvp, cnp, hash);
2115 	if (__predict_false(ncp == NULL)) {
2116 		mtx_unlock(blp);
2117 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2118 		counter_u64_add(nummiss, 1);
2119 		return (0);
2120 	}
2121 
2122 	if (ncp->nc_flag & NCF_NEGATIVE)
2123 		goto negative_success;
2124 
2125 	counter_u64_add(numposhits, 1);
2126 	*vpp = ncp->nc_vp;
2127 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2128 	cache_out_ts(ncp, tsp, ticksp);
2129 	MPASS(dvp != *vpp);
2130 	vs = vget_prep(*vpp);
2131 	mtx_unlock(blp);
2132 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2133 	if (error) {
2134 		*vpp = NULL;
2135 		goto retry;
2136 	}
2137 	return (-1);
2138 negative_success:
2139 	/*
2140 	 * We don't get here with regular lookup apart from corner cases.
2141 	 */
2142 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
2143 		if (cnp->cn_flags & ISLASTCN) {
2144 			counter_u64_add(numnegzaps, 1);
2145 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
2146 			if (__predict_false(error != 0)) {
2147 				atomic_add_long(&zap_bucket_fail2, 1);
2148 				goto retry;
2149 			}
2150 			cache_free(ncp);
2151 			return (0);
2152 		}
2153 	}
2154 
2155 	whiteout = (ncp->nc_flag & NCF_WHITE);
2156 	cache_out_ts(ncp, tsp, ticksp);
2157 	if (cache_neg_hit_prep(ncp))
2158 		cache_neg_promote(ncp);
2159 	else
2160 		cache_neg_hit_finish(ncp);
2161 	mtx_unlock(blp);
2162 	if (whiteout)
2163 		cnp->cn_flags |= ISWHITEOUT;
2164 	return (ENOENT);
2165 }
2166 
2167 int
2168 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2169     struct timespec *tsp, int *ticksp)
2170 {
2171 	struct namecache *ncp;
2172 	uint32_t hash;
2173 	enum vgetstate vs;
2174 	int error;
2175 	bool whiteout, neg_promote;
2176 	u_short nc_flag;
2177 
2178 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2179 
2180 #ifdef DEBUG_CACHE
2181 	if (__predict_false(!doingcache)) {
2182 		cnp->cn_flags &= ~MAKEENTRY;
2183 		return (0);
2184 	}
2185 #endif
2186 
2187 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2188 		if (cnp->cn_namelen == 1)
2189 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2190 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2191 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2192 	}
2193 
2194 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2195 
2196 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2197 		cache_remove_cnp(dvp, cnp);
2198 		return (0);
2199 	}
2200 
2201 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2202 	vfs_smr_enter();
2203 
2204 	ncp = cache_ncp_find(dvp, cnp, hash);
2205 	if (__predict_false(ncp == NULL)) {
2206 		vfs_smr_exit();
2207 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2208 		counter_u64_add(nummiss, 1);
2209 		return (0);
2210 	}
2211 
2212 	nc_flag = atomic_load_char(&ncp->nc_flag);
2213 	if (nc_flag & NCF_NEGATIVE)
2214 		goto negative_success;
2215 
2216 	counter_u64_add(numposhits, 1);
2217 	*vpp = ncp->nc_vp;
2218 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2219 	cache_out_ts(ncp, tsp, ticksp);
2220 	MPASS(dvp != *vpp);
2221 	if (!cache_ncp_canuse(ncp)) {
2222 		vfs_smr_exit();
2223 		*vpp = NULL;
2224 		goto out_fallback;
2225 	}
2226 	vs = vget_prep_smr(*vpp);
2227 	vfs_smr_exit();
2228 	if (__predict_false(vs == VGET_NONE)) {
2229 		*vpp = NULL;
2230 		goto out_fallback;
2231 	}
2232 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2233 	if (error) {
2234 		*vpp = NULL;
2235 		goto out_fallback;
2236 	}
2237 	return (-1);
2238 negative_success:
2239 	if (cnp->cn_nameiop == CREATE) {
2240 		if (cnp->cn_flags & ISLASTCN) {
2241 			vfs_smr_exit();
2242 			goto out_fallback;
2243 		}
2244 	}
2245 
2246 	cache_out_ts(ncp, tsp, ticksp);
2247 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2248 	neg_promote = cache_neg_hit_prep(ncp);
2249 	if (!cache_ncp_canuse(ncp)) {
2250 		cache_neg_hit_abort(ncp);
2251 		vfs_smr_exit();
2252 		goto out_fallback;
2253 	}
2254 	if (neg_promote) {
2255 		vfs_smr_exit();
2256 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2257 			goto out_fallback;
2258 	} else {
2259 		cache_neg_hit_finish(ncp);
2260 		vfs_smr_exit();
2261 	}
2262 	if (whiteout)
2263 		cnp->cn_flags |= ISWHITEOUT;
2264 	return (ENOENT);
2265 out_fallback:
2266 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2267 }
2268 
2269 struct celockstate {
2270 	struct mtx *vlp[3];
2271 	struct mtx *blp[2];
2272 };
2273 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2274 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2275 
2276 static inline void
2277 cache_celockstate_init(struct celockstate *cel)
2278 {
2279 
2280 	bzero(cel, sizeof(*cel));
2281 }
2282 
2283 static void
2284 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2285     struct vnode *dvp)
2286 {
2287 	struct mtx *vlp1, *vlp2;
2288 
2289 	MPASS(cel->vlp[0] == NULL);
2290 	MPASS(cel->vlp[1] == NULL);
2291 	MPASS(cel->vlp[2] == NULL);
2292 
2293 	MPASS(vp != NULL || dvp != NULL);
2294 
2295 	vlp1 = VP2VNODELOCK(vp);
2296 	vlp2 = VP2VNODELOCK(dvp);
2297 	cache_sort_vnodes(&vlp1, &vlp2);
2298 
2299 	if (vlp1 != NULL) {
2300 		mtx_lock(vlp1);
2301 		cel->vlp[0] = vlp1;
2302 	}
2303 	mtx_lock(vlp2);
2304 	cel->vlp[1] = vlp2;
2305 }
2306 
2307 static void
2308 cache_unlock_vnodes_cel(struct celockstate *cel)
2309 {
2310 
2311 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2312 
2313 	if (cel->vlp[0] != NULL)
2314 		mtx_unlock(cel->vlp[0]);
2315 	if (cel->vlp[1] != NULL)
2316 		mtx_unlock(cel->vlp[1]);
2317 	if (cel->vlp[2] != NULL)
2318 		mtx_unlock(cel->vlp[2]);
2319 }
2320 
2321 static bool
2322 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2323 {
2324 	struct mtx *vlp;
2325 	bool ret;
2326 
2327 	cache_assert_vlp_locked(cel->vlp[0]);
2328 	cache_assert_vlp_locked(cel->vlp[1]);
2329 	MPASS(cel->vlp[2] == NULL);
2330 
2331 	MPASS(vp != NULL);
2332 	vlp = VP2VNODELOCK(vp);
2333 
2334 	ret = true;
2335 	if (vlp >= cel->vlp[1]) {
2336 		mtx_lock(vlp);
2337 	} else {
2338 		if (mtx_trylock(vlp))
2339 			goto out;
2340 		cache_unlock_vnodes_cel(cel);
2341 		atomic_add_long(&cache_lock_vnodes_cel_3_failures, 1);
2342 		if (vlp < cel->vlp[0]) {
2343 			mtx_lock(vlp);
2344 			mtx_lock(cel->vlp[0]);
2345 			mtx_lock(cel->vlp[1]);
2346 		} else {
2347 			if (cel->vlp[0] != NULL)
2348 				mtx_lock(cel->vlp[0]);
2349 			mtx_lock(vlp);
2350 			mtx_lock(cel->vlp[1]);
2351 		}
2352 		ret = false;
2353 	}
2354 out:
2355 	cel->vlp[2] = vlp;
2356 	return (ret);
2357 }
2358 
2359 static void
2360 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2361     struct mtx *blp2)
2362 {
2363 
2364 	MPASS(cel->blp[0] == NULL);
2365 	MPASS(cel->blp[1] == NULL);
2366 
2367 	cache_sort_vnodes(&blp1, &blp2);
2368 
2369 	if (blp1 != NULL) {
2370 		mtx_lock(blp1);
2371 		cel->blp[0] = blp1;
2372 	}
2373 	mtx_lock(blp2);
2374 	cel->blp[1] = blp2;
2375 }
2376 
2377 static void
2378 cache_unlock_buckets_cel(struct celockstate *cel)
2379 {
2380 
2381 	if (cel->blp[0] != NULL)
2382 		mtx_unlock(cel->blp[0]);
2383 	mtx_unlock(cel->blp[1]);
2384 }
2385 
2386 /*
2387  * Lock part of the cache affected by the insertion.
2388  *
2389  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2390  * However, insertion can result in removal of an old entry. In this
2391  * case we have an additional vnode and bucketlock pair to lock.
2392  *
2393  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2394  * preserving the locking order (smaller address first).
2395  */
2396 static void
2397 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2398     uint32_t hash)
2399 {
2400 	struct namecache *ncp;
2401 	struct mtx *blps[2];
2402 	u_char nc_flag;
2403 
2404 	blps[0] = HASH2BUCKETLOCK(hash);
2405 	for (;;) {
2406 		blps[1] = NULL;
2407 		cache_lock_vnodes_cel(cel, dvp, vp);
2408 		if (vp == NULL || vp->v_type != VDIR)
2409 			break;
2410 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2411 		if (ncp == NULL)
2412 			break;
2413 		nc_flag = atomic_load_char(&ncp->nc_flag);
2414 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2415 			break;
2416 		MPASS(ncp->nc_dvp == vp);
2417 		blps[1] = NCP2BUCKETLOCK(ncp);
2418 		if ((nc_flag & NCF_NEGATIVE) != 0)
2419 			break;
2420 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2421 			break;
2422 		/*
2423 		 * All vnodes got re-locked. Re-validate the state and if
2424 		 * nothing changed we are done. Otherwise restart.
2425 		 */
2426 		if (ncp == vp->v_cache_dd &&
2427 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2428 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2429 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2430 			break;
2431 		cache_unlock_vnodes_cel(cel);
2432 		cel->vlp[0] = NULL;
2433 		cel->vlp[1] = NULL;
2434 		cel->vlp[2] = NULL;
2435 	}
2436 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2437 }
2438 
2439 static void
2440 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2441     uint32_t hash)
2442 {
2443 	struct namecache *ncp;
2444 	struct mtx *blps[2];
2445 	u_char nc_flag;
2446 
2447 	blps[0] = HASH2BUCKETLOCK(hash);
2448 	for (;;) {
2449 		blps[1] = NULL;
2450 		cache_lock_vnodes_cel(cel, dvp, vp);
2451 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2452 		if (ncp == NULL)
2453 			break;
2454 		nc_flag = atomic_load_char(&ncp->nc_flag);
2455 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2456 			break;
2457 		MPASS(ncp->nc_dvp == dvp);
2458 		blps[1] = NCP2BUCKETLOCK(ncp);
2459 		if ((nc_flag & NCF_NEGATIVE) != 0)
2460 			break;
2461 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2462 			break;
2463 		if (ncp == dvp->v_cache_dd &&
2464 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2465 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2466 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2467 			break;
2468 		cache_unlock_vnodes_cel(cel);
2469 		cel->vlp[0] = NULL;
2470 		cel->vlp[1] = NULL;
2471 		cel->vlp[2] = NULL;
2472 	}
2473 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2474 }
2475 
2476 static void
2477 cache_enter_unlock(struct celockstate *cel)
2478 {
2479 
2480 	cache_unlock_buckets_cel(cel);
2481 	cache_unlock_vnodes_cel(cel);
2482 }
2483 
2484 static void __noinline
2485 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2486     struct componentname *cnp)
2487 {
2488 	struct celockstate cel;
2489 	struct namecache *ncp;
2490 	uint32_t hash;
2491 	int len;
2492 
2493 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2494 		return;
2495 	len = cnp->cn_namelen;
2496 	cache_celockstate_init(&cel);
2497 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2498 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2499 	ncp = dvp->v_cache_dd;
2500 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2501 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2502 		cache_zap_locked(ncp);
2503 	} else {
2504 		ncp = NULL;
2505 	}
2506 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2507 	cache_enter_unlock(&cel);
2508 	if (ncp != NULL)
2509 		cache_free(ncp);
2510 }
2511 
2512 /*
2513  * Add an entry to the cache.
2514  */
2515 void
2516 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2517     struct timespec *tsp, struct timespec *dtsp)
2518 {
2519 	struct celockstate cel;
2520 	struct namecache *ncp, *n2, *ndd;
2521 	struct namecache_ts *ncp_ts;
2522 	uint32_t hash;
2523 	int flag;
2524 	int len;
2525 
2526 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2527 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2528 	    NAME_MAX));
2529 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2530 	VNPASS(dvp->v_type != VNON, dvp);
2531 	if (vp != NULL) {
2532 		VNPASS(!VN_IS_DOOMED(vp), vp);
2533 		VNPASS(vp->v_type != VNON, vp);
2534 	}
2535 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2536 		KASSERT(dvp == vp,
2537 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2538 		    dvp, vp));
2539 	} else {
2540 		KASSERT(dvp != vp,
2541 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2542 		    cnp->cn_nameptr, dvp));
2543 	}
2544 
2545 #ifdef DEBUG_CACHE
2546 	if (__predict_false(!doingcache))
2547 		return;
2548 #endif
2549 
2550 	flag = 0;
2551 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2552 		if (cnp->cn_namelen == 1)
2553 			return;
2554 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2555 			cache_enter_dotdot_prep(dvp, vp, cnp);
2556 			flag = NCF_ISDOTDOT;
2557 		}
2558 	}
2559 
2560 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2561 	if (ncp == NULL)
2562 		return;
2563 
2564 	cache_celockstate_init(&cel);
2565 	ndd = NULL;
2566 	ncp_ts = NULL;
2567 
2568 	/*
2569 	 * Calculate the hash key and setup as much of the new
2570 	 * namecache entry as possible before acquiring the lock.
2571 	 */
2572 	ncp->nc_flag = flag | NCF_WIP;
2573 	ncp->nc_vp = vp;
2574 	if (vp == NULL)
2575 		cache_neg_init(ncp);
2576 	ncp->nc_dvp = dvp;
2577 	if (tsp != NULL) {
2578 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2579 		ncp_ts->nc_time = *tsp;
2580 		ncp_ts->nc_ticks = ticks;
2581 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2582 		if (dtsp != NULL) {
2583 			ncp_ts->nc_dotdottime = *dtsp;
2584 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2585 		}
2586 	}
2587 	len = ncp->nc_nlen = cnp->cn_namelen;
2588 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2589 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2590 	ncp->nc_name[len] = '\0';
2591 	cache_enter_lock(&cel, dvp, vp, hash);
2592 
2593 	/*
2594 	 * See if this vnode or negative entry is already in the cache
2595 	 * with this name.  This can happen with concurrent lookups of
2596 	 * the same path name.
2597 	 */
2598 	n2 = cache_ncp_find(dvp, cnp, hash);
2599 	if (n2 != NULL) {
2600 		MPASS(cache_ncp_canuse(n2));
2601 		if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2602 			KASSERT(vp == NULL,
2603 			    ("%s: found entry pointing to a different vnode "
2604 			    "(%p != %p); name [%s]",
2605 			    __func__, NULL, vp, cnp->cn_nameptr));
2606 		else
2607 			KASSERT(n2->nc_vp == vp,
2608 			    ("%s: found entry pointing to a different vnode "
2609 			    "(%p != %p); name [%s]",
2610 			    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2611 		/*
2612 		 * Entries are supposed to be immutable unless in the
2613 		 * process of getting destroyed. Accommodating for
2614 		 * changing timestamps is possible but not worth it.
2615 		 * This should be harmless in terms of correctness, in
2616 		 * the worst case resulting in an earlier expiration.
2617 		 * Alternatively, the found entry can be replaced
2618 		 * altogether.
2619 		 */
2620 		MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) ==
2621 		    (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2622 #if 0
2623 		if (tsp != NULL) {
2624 			KASSERT((n2->nc_flag & NCF_TS) != 0,
2625 			    ("no NCF_TS"));
2626 			n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2627 			n2_ts->nc_time = ncp_ts->nc_time;
2628 			n2_ts->nc_ticks = ncp_ts->nc_ticks;
2629 			if (dtsp != NULL) {
2630 				n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2631 				n2_ts->nc_nc.nc_flag |= NCF_DTS;
2632 			}
2633 		}
2634 #endif
2635 		SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2636 		    vp);
2637 		goto out_unlock_free;
2638 	}
2639 
2640 	if (flag == NCF_ISDOTDOT) {
2641 		/*
2642 		 * See if we are trying to add .. entry, but some other lookup
2643 		 * has populated v_cache_dd pointer already.
2644 		 */
2645 		if (dvp->v_cache_dd != NULL)
2646 			goto out_unlock_free;
2647 		KASSERT(vp == NULL || vp->v_type == VDIR,
2648 		    ("wrong vnode type %p", vp));
2649 		atomic_thread_fence_rel();
2650 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2651 	} else if (vp != NULL) {
2652 		/*
2653 		 * Take the slow path in INOTIFY().  This flag will be lazily
2654 		 * cleared by cache_vop_inotify() once all directories referring
2655 		 * to vp are unwatched.
2656 		 */
2657 		if (__predict_false((vn_irflag_read(dvp) & VIRF_INOTIFY) != 0))
2658 			vn_irflag_set_cond(vp, VIRF_INOTIFY_PARENT);
2659 
2660 		/*
2661 		 * For this case, the cache entry maps both the
2662 		 * directory name in it and the name ".." for the
2663 		 * directory's parent.
2664 		 */
2665 		if ((ndd = vp->v_cache_dd) != NULL) {
2666 			if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2667 				cache_zap_locked(ndd);
2668 			else
2669 				ndd = NULL;
2670 		}
2671 		atomic_thread_fence_rel();
2672 		atomic_store_ptr(&vp->v_cache_dd, ncp);
2673 	}
2674 
2675 	if (flag != NCF_ISDOTDOT) {
2676 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2677 			cache_hold_vnode(dvp);
2678 		}
2679 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2680 	}
2681 
2682 	/*
2683 	 * If the entry is "negative", we place it into the
2684 	 * "negative" cache queue, otherwise, we place it into the
2685 	 * destination vnode's cache entries queue.
2686 	 */
2687 	if (vp != NULL) {
2688 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2689 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2690 		    vp);
2691 	} else {
2692 		if (cnp->cn_flags & ISWHITEOUT)
2693 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2694 		cache_neg_insert(ncp);
2695 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2696 		    ncp->nc_name);
2697 	}
2698 
2699 	/*
2700 	 * Insert the new namecache entry into the appropriate chain
2701 	 * within the cache entries table.
2702 	 */
2703 	CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash);
2704 
2705 	atomic_thread_fence_rel();
2706 	/*
2707 	 * Mark the entry as fully constructed.
2708 	 * It is immutable past this point until its removal.
2709 	 */
2710 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2711 
2712 	cache_enter_unlock(&cel);
2713 	if (ndd != NULL)
2714 		cache_free(ndd);
2715 	return;
2716 out_unlock_free:
2717 	cache_enter_unlock(&cel);
2718 	cache_free(ncp);
2719 	return;
2720 }
2721 
2722 /*
2723  * A variant of the above accepting flags.
2724  *
2725  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2726  *
2727  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2728  * happens to match and it is doing it in an inefficient manner. It was added
2729  * to accommodate NFS which runs into a case where the target for a given name
2730  * may change from under it. Note this does nothing to solve the following
2731  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2732  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2733  */
2734 void
2735 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2736     struct timespec *tsp, struct timespec *dtsp, int flags)
2737 {
2738 
2739 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2740 
2741 	if (flags & VFS_CACHE_DROPOLD)
2742 		cache_remove_cnp(dvp, cnp);
2743 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2744 }
2745 
2746 static u_long
2747 cache_roundup_2(u_long val)
2748 {
2749 	u_long res;
2750 
2751 	for (res = 1; res <= val; res <<= 1)
2752 		continue;
2753 
2754 	return (res);
2755 }
2756 
2757 static struct nchashhead *
2758 nchinittbl(u_long elements, u_long *hashmask)
2759 {
2760 	struct nchashhead *hashtbl;
2761 	u_long hashsize, i;
2762 
2763 	hashsize = cache_roundup_2(elements) / 2;
2764 
2765 	hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2766 	for (i = 0; i < hashsize; i++)
2767 		CK_SLIST_INIT(&hashtbl[i]);
2768 	*hashmask = hashsize - 1;
2769 	return (hashtbl);
2770 }
2771 
2772 static void
2773 ncfreetbl(struct nchashhead *hashtbl)
2774 {
2775 
2776 	free(hashtbl, M_VFSCACHE);
2777 }
2778 
2779 /*
2780  * Name cache initialization, from vfs_init() when we are booting
2781  */
2782 static void
2783 nchinit(void *dummy __unused)
2784 {
2785 	u_int i;
2786 
2787 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2788 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2789 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2790 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2791 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2792 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2793 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2794 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2795 
2796 	VFS_SMR_ZONE_SET(cache_zone_small);
2797 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2798 	VFS_SMR_ZONE_SET(cache_zone_large);
2799 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2800 
2801 	ncsize = desiredvnodes * ncsizefactor;
2802 	cache_recalc_neg_min();
2803 	nchashtbl = nchinittbl(ncsize, &nchash);
2804 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2805 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2806 		ncbuckethash = 7;
2807 	if (ncbuckethash > nchash)
2808 		ncbuckethash = nchash;
2809 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2810 	    M_WAITOK | M_ZERO);
2811 	for (i = 0; i < numbucketlocks; i++)
2812 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2813 	ncvnodehash = ncbuckethash;
2814 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2815 	    M_WAITOK | M_ZERO);
2816 	for (i = 0; i < numvnodelocks; i++)
2817 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2818 
2819 	for (i = 0; i < numneglists; i++) {
2820 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2821 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2822 		TAILQ_INIT(&neglists[i].nl_list);
2823 		TAILQ_INIT(&neglists[i].nl_hotlist);
2824 	}
2825 }
2826 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2827 
2828 void
2829 cache_vnode_init(struct vnode *vp)
2830 {
2831 
2832 	LIST_INIT(&vp->v_cache_src);
2833 	TAILQ_INIT(&vp->v_cache_dst);
2834 	vp->v_cache_dd = NULL;
2835 	cache_prehash(vp);
2836 }
2837 
2838 /*
2839  * Induce transient cache misses for lockless operation in cache_lookup() by
2840  * using a temporary hash table.
2841  *
2842  * This will force a fs lookup.
2843  *
2844  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2845  * to observe all CPUs not performing the lookup.
2846  */
2847 static void
2848 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2849 {
2850 
2851 	MPASS(temphash < nchash);
2852 	/*
2853 	 * Change the size. The new size is smaller and can safely be used
2854 	 * against the existing table. All lookups which now hash wrong will
2855 	 * result in a cache miss, which all callers are supposed to know how
2856 	 * to handle.
2857 	 */
2858 	atomic_store_long(&nchash, temphash);
2859 	atomic_thread_fence_rel();
2860 	vfs_smr_synchronize();
2861 	/*
2862 	 * At this point everyone sees the updated hash value, but they still
2863 	 * see the old table.
2864 	 */
2865 	atomic_store_ptr(&nchashtbl, temptbl);
2866 	atomic_thread_fence_rel();
2867 	vfs_smr_synchronize();
2868 	/*
2869 	 * At this point everyone sees the updated table pointer and size pair.
2870 	 */
2871 }
2872 
2873 /*
2874  * Set the new hash table.
2875  *
2876  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2877  * lockless operation in cache_lookup().
2878  */
2879 static void
2880 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2881 {
2882 
2883 	MPASS(nchash < new_hash);
2884 	/*
2885 	 * Change the pointer first. This wont result in out of bounds access
2886 	 * since the temporary table is guaranteed to be smaller.
2887 	 */
2888 	atomic_store_ptr(&nchashtbl, new_tbl);
2889 	atomic_thread_fence_rel();
2890 	vfs_smr_synchronize();
2891 	/*
2892 	 * At this point everyone sees the updated pointer value, but they
2893 	 * still see the old size.
2894 	 */
2895 	atomic_store_long(&nchash, new_hash);
2896 	atomic_thread_fence_rel();
2897 	vfs_smr_synchronize();
2898 	/*
2899 	 * At this point everyone sees the updated table pointer and size pair.
2900 	 */
2901 }
2902 
2903 void
2904 cache_changesize(u_long newmaxvnodes)
2905 {
2906 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2907 	u_long new_nchash, old_nchash, temphash;
2908 	struct namecache *ncp;
2909 	uint32_t hash;
2910 	u_long newncsize;
2911 	u_long i;
2912 
2913 	newncsize = newmaxvnodes * ncsizefactor;
2914 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2915 	if (newmaxvnodes < numbucketlocks)
2916 		newmaxvnodes = numbucketlocks;
2917 
2918 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2919 	/* If same hash table size, nothing to do */
2920 	if (nchash == new_nchash) {
2921 		ncfreetbl(new_nchashtbl);
2922 		return;
2923 	}
2924 
2925 	temptbl = nchinittbl(1, &temphash);
2926 
2927 	/*
2928 	 * Move everything from the old hash table to the new table.
2929 	 * None of the namecache entries in the table can be removed
2930 	 * because to do so, they have to be removed from the hash table.
2931 	 */
2932 	cache_lock_all_vnodes();
2933 	cache_lock_all_buckets();
2934 	old_nchashtbl = nchashtbl;
2935 	old_nchash = nchash;
2936 	cache_changesize_set_temp(temptbl, temphash);
2937 	for (i = 0; i <= old_nchash; i++) {
2938 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2939 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2940 			    ncp->nc_dvp);
2941 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2942 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2943 		}
2944 	}
2945 	ncsize = newncsize;
2946 	cache_recalc_neg_min();
2947 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2948 	cache_unlock_all_buckets();
2949 	cache_unlock_all_vnodes();
2950 	ncfreetbl(old_nchashtbl);
2951 	ncfreetbl(temptbl);
2952 }
2953 
2954 /*
2955  * Remove all entries from and to a particular vnode.
2956  */
2957 static void
2958 cache_purge_impl(struct vnode *vp)
2959 {
2960 	struct cache_freebatch batch;
2961 	struct namecache *ncp;
2962 	struct mtx *vlp, *vlp2;
2963 
2964 	TAILQ_INIT(&batch);
2965 	vlp = VP2VNODELOCK(vp);
2966 	vlp2 = NULL;
2967 	mtx_lock(vlp);
2968 retry:
2969 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2970 		ncp = LIST_FIRST(&vp->v_cache_src);
2971 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2972 			goto retry;
2973 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2974 	}
2975 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2976 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2977 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2978 			goto retry;
2979 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2980 	}
2981 	ncp = vp->v_cache_dd;
2982 	if (ncp != NULL) {
2983 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2984 		   ("lost dotdot link"));
2985 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2986 			goto retry;
2987 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2988 	}
2989 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2990 	mtx_unlock(vlp);
2991 	if (vlp2 != NULL)
2992 		mtx_unlock(vlp2);
2993 	cache_free_batch(&batch);
2994 }
2995 
2996 /*
2997  * Opportunistic check to see if there is anything to do.
2998  */
2999 static bool
3000 cache_has_entries(struct vnode *vp)
3001 {
3002 
3003 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
3004 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
3005 		return (false);
3006 	return (true);
3007 }
3008 
3009 void
3010 cache_purge(struct vnode *vp)
3011 {
3012 
3013 	SDT_PROBE1(vfs, namecache, purge, done, vp);
3014 	if (!cache_has_entries(vp))
3015 		return;
3016 	cache_purge_impl(vp);
3017 }
3018 
3019 /*
3020  * Only to be used by vgone.
3021  */
3022 void
3023 cache_purge_vgone(struct vnode *vp)
3024 {
3025 	struct mtx *vlp;
3026 
3027 	VNPASS(VN_IS_DOOMED(vp), vp);
3028 	if (cache_has_entries(vp)) {
3029 		cache_purge_impl(vp);
3030 		return;
3031 	}
3032 
3033 	/*
3034 	 * Serialize against a potential thread doing cache_purge.
3035 	 */
3036 	vlp = VP2VNODELOCK(vp);
3037 	mtx_wait_unlocked(vlp);
3038 	if (cache_has_entries(vp)) {
3039 		cache_purge_impl(vp);
3040 		return;
3041 	}
3042 	return;
3043 }
3044 
3045 /*
3046  * Remove all negative entries for a particular directory vnode.
3047  */
3048 void
3049 cache_purge_negative(struct vnode *vp)
3050 {
3051 	struct cache_freebatch batch;
3052 	struct namecache *ncp, *nnp;
3053 	struct mtx *vlp;
3054 
3055 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
3056 	if (LIST_EMPTY(&vp->v_cache_src))
3057 		return;
3058 	TAILQ_INIT(&batch);
3059 	vlp = VP2VNODELOCK(vp);
3060 	mtx_lock(vlp);
3061 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
3062 		if (!(ncp->nc_flag & NCF_NEGATIVE))
3063 			continue;
3064 		cache_zap_negative_locked_vnode_kl(ncp, vp);
3065 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
3066 	}
3067 	mtx_unlock(vlp);
3068 	cache_free_batch(&batch);
3069 }
3070 
3071 /*
3072  * Entry points for modifying VOP operations.
3073  */
3074 void
3075 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
3076     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
3077 {
3078 
3079 	ASSERT_VOP_IN_SEQC(fdvp);
3080 	ASSERT_VOP_IN_SEQC(fvp);
3081 	ASSERT_VOP_IN_SEQC(tdvp);
3082 	if (tvp != NULL)
3083 		ASSERT_VOP_IN_SEQC(tvp);
3084 
3085 	cache_purge(fvp);
3086 	if (tvp != NULL) {
3087 		cache_purge(tvp);
3088 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
3089 		    ("%s: lingering negative entry", __func__));
3090 	} else {
3091 		cache_remove_cnp(tdvp, tcnp);
3092 	}
3093 
3094 	/*
3095 	 * TODO
3096 	 *
3097 	 * Historically renaming was always purging all revelang entries,
3098 	 * but that's quite wasteful. In particular turns out that in many cases
3099 	 * the target file is immediately accessed after rename, inducing a cache
3100 	 * miss.
3101 	 *
3102 	 * Recode this to reduce relocking and reuse the existing entry (if any)
3103 	 * instead of just removing it above and allocating a new one here.
3104 	 */
3105 	cache_enter(tdvp, fvp, tcnp);
3106 }
3107 
3108 void
3109 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
3110 {
3111 
3112 	ASSERT_VOP_IN_SEQC(dvp);
3113 	ASSERT_VOP_IN_SEQC(vp);
3114 	cache_purge(vp);
3115 }
3116 
3117 #ifdef INVARIANTS
3118 /*
3119  * Validate that if an entry exists it matches.
3120  */
3121 void
3122 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
3123 {
3124 	struct namecache *ncp;
3125 	struct mtx *blp;
3126 	uint32_t hash;
3127 
3128 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
3129 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
3130 		return;
3131 	blp = HASH2BUCKETLOCK(hash);
3132 	mtx_lock(blp);
3133 	ncp = cache_ncp_find(dvp, cnp, hash);
3134 	if (ncp != NULL && ncp->nc_vp != vp) {
3135 		panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
3136 		    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
3137 	}
3138 	mtx_unlock(blp);
3139 }
3140 
3141 void
3142 cache_assert_no_entries(struct vnode *vp)
3143 {
3144 
3145 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
3146 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
3147 	VNPASS(vp->v_cache_dd == NULL, vp);
3148 }
3149 #endif
3150 
3151 /*
3152  * Flush all entries referencing a particular filesystem.
3153  */
3154 void
3155 cache_purgevfs(struct mount *mp)
3156 {
3157 	struct vnode *vp, *mvp;
3158 	size_t visited __sdt_used, purged __sdt_used;
3159 
3160 	visited = purged = 0;
3161 	/*
3162 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3163 	 * support filtering and avoid the interlock to begin with.
3164 	 */
3165 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3166 		visited++;
3167 		if (!cache_has_entries(vp)) {
3168 			VI_UNLOCK(vp);
3169 			continue;
3170 		}
3171 		vholdl(vp);
3172 		VI_UNLOCK(vp);
3173 		cache_purge(vp);
3174 		purged++;
3175 		vdrop(vp);
3176 	}
3177 
3178 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3179 }
3180 
3181 /*
3182  * Perform canonical checks and cache lookup and pass on to filesystem
3183  * through the vop_cachedlookup only if needed.
3184  */
3185 
3186 int
3187 vfs_cache_lookup(struct vop_lookup_args *ap)
3188 {
3189 	struct vnode *dvp;
3190 	int error;
3191 	struct vnode **vpp = ap->a_vpp;
3192 	struct componentname *cnp = ap->a_cnp;
3193 	int flags = cnp->cn_flags;
3194 
3195 	*vpp = NULL;
3196 	dvp = ap->a_dvp;
3197 
3198 	if (dvp->v_type != VDIR)
3199 		return (ENOTDIR);
3200 
3201 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3202 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3203 		return (EROFS);
3204 
3205 	error = vn_dir_check_exec(dvp, cnp);
3206 	if (error != 0)
3207 		return (error);
3208 
3209 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3210 	if (error == 0)
3211 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3212 	if (error == -1)
3213 		return (0);
3214 	return (error);
3215 }
3216 
3217 /* Implementation of the getcwd syscall. */
3218 int
3219 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3220 {
3221 	char *buf, *retbuf;
3222 	size_t buflen;
3223 	int error;
3224 
3225 	buflen = uap->buflen;
3226 	if (__predict_false(buflen < 2))
3227 		return (EINVAL);
3228 	if (buflen > MAXPATHLEN)
3229 		buflen = MAXPATHLEN;
3230 
3231 	buf = uma_zalloc(namei_zone, M_WAITOK);
3232 	error = vn_getcwd(buf, &retbuf, &buflen);
3233 	if (error == 0)
3234 		error = copyout(retbuf, uap->buf, buflen);
3235 	uma_zfree(namei_zone, buf);
3236 	return (error);
3237 }
3238 
3239 int
3240 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3241 {
3242 	struct pwd *pwd;
3243 	int error;
3244 
3245 	vfs_smr_enter();
3246 	pwd = pwd_get_smr();
3247 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3248 	    buflen, 0);
3249 	VFS_SMR_ASSERT_NOT_ENTERED();
3250 	if (error < 0) {
3251 		pwd = pwd_hold(curthread);
3252 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3253 		    retbuf, buflen);
3254 		pwd_drop(pwd);
3255 	}
3256 
3257 #ifdef KTRACE
3258 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3259 		ktrnamei(*retbuf);
3260 #endif
3261 	return (error);
3262 }
3263 
3264 /*
3265  * Canonicalize a path by walking it forward and back.
3266  *
3267  * BUGS:
3268  * - Nothing guarantees the integrity of the entire chain. Consider the case
3269  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3270  *   "foo" into "quux" during the backwards walk. The result will be
3271  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3272  *   walk in userspace. Moreover, the path we return is inaccessible if the
3273  *   calling thread lacks permission to traverse "quux".
3274  */
3275 static int
3276 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3277     size_t size, int flags, enum uio_seg pathseg)
3278 {
3279 	struct nameidata nd;
3280 	char *retbuf, *freebuf;
3281 	int error;
3282 
3283 	if (flags != 0)
3284 		return (EINVAL);
3285 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3286 	    pathseg, path, fd, &cap_fstat_rights);
3287 	if ((error = namei(&nd)) != 0)
3288 		return (error);
3289 
3290 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
3291 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
3292 		struct vnode *covered_vp;
3293 
3294 		/*
3295 		 * This happens if vp is a file mount. The call to
3296 		 * vn_fullpath_hardlink can panic if path resolution can't be
3297 		 * handled without the directory.
3298 		 *
3299 		 * To resolve this, we find the vnode which was mounted on -
3300 		 * this should have a unique global path since we disallow
3301 		 * mounting on linked files.
3302 		 */
3303 		error = vn_lock(nd.ni_vp, LK_SHARED);
3304 		if (error != 0)
3305 			goto out;
3306 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
3307 		vref(covered_vp);
3308 		VOP_UNLOCK(nd.ni_vp);
3309 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
3310 		vrele(covered_vp);
3311 	} else {
3312 		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp,
3313 		    nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen, &retbuf,
3314 		    &freebuf, &size);
3315 	}
3316 	if (error == 0) {
3317 		size_t len;
3318 
3319 		len = strlen(retbuf) + 1;
3320 		if (size < len)
3321 			error = ENAMETOOLONG;
3322 		else if (pathseg == UIO_USERSPACE)
3323 			error = copyout(retbuf, buf, len);
3324 		else
3325 			memcpy(buf, retbuf, len);
3326 		free(freebuf, M_TEMP);
3327 	}
3328 out:
3329 	vrele(nd.ni_vp);
3330 	vrele(nd.ni_dvp);
3331 	NDFREE_PNBUF(&nd);
3332 	return (error);
3333 }
3334 
3335 int
3336 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3337 {
3338 
3339 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3340 	    uap->flags, UIO_USERSPACE));
3341 }
3342 
3343 static int
3344 vn_fullpath_up_to_pwd_vnode(struct vnode *vp,
3345     struct vnode *(*const get_pwd_vnode)(const struct pwd *),
3346     char **retbuf, char **freebuf)
3347 {
3348 	struct pwd *pwd;
3349 	char *buf;
3350 	size_t buflen;
3351 	int error;
3352 
3353 	if (__predict_false(vp == NULL))
3354 		return (EINVAL);
3355 
3356 	buflen = MAXPATHLEN;
3357 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3358 	vfs_smr_enter();
3359 	pwd = pwd_get_smr();
3360 	error = vn_fullpath_any_smr(vp, get_pwd_vnode(pwd), buf, retbuf,
3361 	    &buflen, 0);
3362 	VFS_SMR_ASSERT_NOT_ENTERED();
3363 	if (error < 0) {
3364 		pwd = pwd_hold(curthread);
3365 		error = vn_fullpath_any(vp, get_pwd_vnode(pwd), buf, retbuf,
3366 		    &buflen);
3367 		pwd_drop(pwd);
3368 	}
3369 	if (error == 0)
3370 		*freebuf = buf;
3371 	else
3372 		free(buf, M_TEMP);
3373 	return (error);
3374 }
3375 
3376 static inline struct vnode *
3377 get_rdir(const struct pwd *pwd)
3378 {
3379 	return (pwd->pwd_rdir);
3380 }
3381 
3382 /*
3383  * Produce a filesystem path that starts from the current chroot directory and
3384  * corresponds to the passed vnode, using the name cache (if available).
3385  */
3386 int
3387 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3388 {
3389 	return (vn_fullpath_up_to_pwd_vnode(vp, get_rdir, retbuf, freebuf));
3390 }
3391 
3392 static inline struct vnode *
3393 get_jdir(const struct pwd *pwd)
3394 {
3395 	return (pwd->pwd_jdir);
3396 }
3397 
3398 /*
3399  * Produce a filesystem path that starts from the current jail's root directory
3400  * and corresponds to the passed vnode, using the name cache (if available).
3401  *
3402  * This function allows to ignore chroots done inside a jail (or the host),
3403  * allowing path checks to remain unaffected by privileged or unprivileged
3404  * chroot calls.
3405  */
3406 int
3407 vn_fullpath_jail(struct vnode *vp, char **retbuf, char **freebuf)
3408 {
3409 	return (vn_fullpath_up_to_pwd_vnode(vp, get_jdir, retbuf, freebuf));
3410 }
3411 
3412 /*
3413  * This function is similar to vn_fullpath, but it attempts to lookup the
3414  * pathname relative to the global root mount point.  This is required for the
3415  * auditing sub-system, as audited pathnames must be absolute, relative to the
3416  * global root mount point.
3417  */
3418 int
3419 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3420 {
3421 	char *buf;
3422 	size_t buflen;
3423 	int error;
3424 
3425 	if (__predict_false(vp == NULL))
3426 		return (EINVAL);
3427 	buflen = MAXPATHLEN;
3428 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3429 	vfs_smr_enter();
3430 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3431 	VFS_SMR_ASSERT_NOT_ENTERED();
3432 	if (error < 0) {
3433 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3434 	}
3435 	if (error == 0)
3436 		*freebuf = buf;
3437 	else
3438 		free(buf, M_TEMP);
3439 	return (error);
3440 }
3441 
3442 static struct namecache *
3443 vn_dd_from_dst(struct vnode *vp)
3444 {
3445 	struct namecache *ncp;
3446 
3447 	cache_assert_vnode_locked(vp);
3448 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3449 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3450 			return (ncp);
3451 	}
3452 	return (NULL);
3453 }
3454 
3455 int
3456 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3457 {
3458 	struct vnode *dvp;
3459 	struct namecache *ncp;
3460 	struct mtx *vlp;
3461 	int error;
3462 
3463 	vlp = VP2VNODELOCK(*vp);
3464 	mtx_lock(vlp);
3465 	ncp = (*vp)->v_cache_dd;
3466 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3467 		KASSERT(ncp == vn_dd_from_dst(*vp),
3468 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3469 		    ncp, vn_dd_from_dst(*vp)));
3470 	} else {
3471 		ncp = vn_dd_from_dst(*vp);
3472 	}
3473 	if (ncp != NULL) {
3474 		if (*buflen < ncp->nc_nlen) {
3475 			mtx_unlock(vlp);
3476 			vrele(*vp);
3477 			counter_u64_add(numfullpathfail4, 1);
3478 			error = ENOMEM;
3479 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3480 			    vp, NULL);
3481 			return (error);
3482 		}
3483 		*buflen -= ncp->nc_nlen;
3484 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3485 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3486 		    ncp->nc_name, vp);
3487 		dvp = *vp;
3488 		*vp = ncp->nc_dvp;
3489 		vref(*vp);
3490 		mtx_unlock(vlp);
3491 		vrele(dvp);
3492 		return (0);
3493 	}
3494 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3495 
3496 	mtx_unlock(vlp);
3497 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3498 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3499 	vput(*vp);
3500 	if (error) {
3501 		counter_u64_add(numfullpathfail2, 1);
3502 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3503 		return (error);
3504 	}
3505 
3506 	*vp = dvp;
3507 	if (VN_IS_DOOMED(dvp)) {
3508 		/* forced unmount */
3509 		vrele(dvp);
3510 		error = ENOENT;
3511 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3512 		return (error);
3513 	}
3514 	/*
3515 	 * *vp has its use count incremented still.
3516 	 */
3517 
3518 	return (0);
3519 }
3520 
3521 /*
3522  * Resolve a directory to a pathname.
3523  *
3524  * The name of the directory can always be found in the namecache or fetched
3525  * from the filesystem. There is also guaranteed to be only one parent, meaning
3526  * we can just follow vnodes up until we find the root.
3527  *
3528  * The vnode must be referenced.
3529  */
3530 static int
3531 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3532     size_t *len, size_t addend)
3533 {
3534 #ifdef KDTRACE_HOOKS
3535 	struct vnode *startvp = vp;
3536 #endif
3537 	struct vnode *vp1;
3538 	size_t buflen;
3539 	int error;
3540 	bool slash_prefixed;
3541 
3542 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3543 	VNPASS(vp->v_usecount > 0, vp);
3544 
3545 	buflen = *len;
3546 
3547 	slash_prefixed = true;
3548 	if (addend == 0) {
3549 		MPASS(*len >= 2);
3550 		buflen--;
3551 		buf[buflen] = '\0';
3552 		slash_prefixed = false;
3553 	}
3554 
3555 	error = 0;
3556 
3557 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3558 	counter_u64_add(numfullpathcalls, 1);
3559 	while (vp != rdir && vp != rootvnode) {
3560 		/*
3561 		 * The vp vnode must be already fully constructed,
3562 		 * since it is either found in namecache or obtained
3563 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3564 		 * without obtaining the vnode lock.
3565 		 */
3566 		if ((vp->v_vflag & VV_ROOT) != 0) {
3567 			vn_lock(vp, LK_RETRY | LK_SHARED);
3568 
3569 			/*
3570 			 * With the vnode locked, check for races with
3571 			 * unmount, forced or not.  Note that we
3572 			 * already verified that vp is not equal to
3573 			 * the root vnode, which means that
3574 			 * mnt_vnodecovered can be NULL only for the
3575 			 * case of unmount.
3576 			 */
3577 			if (VN_IS_DOOMED(vp) ||
3578 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3579 			    vp1->v_mountedhere != vp->v_mount) {
3580 				vput(vp);
3581 				error = ENOENT;
3582 				SDT_PROBE3(vfs, namecache, fullpath, return,
3583 				    error, vp, NULL);
3584 				break;
3585 			}
3586 
3587 			vref(vp1);
3588 			vput(vp);
3589 			vp = vp1;
3590 			continue;
3591 		}
3592 		VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3593 		error = vn_vptocnp(&vp, buf, &buflen);
3594 		if (error)
3595 			break;
3596 		if (buflen == 0) {
3597 			vrele(vp);
3598 			error = ENOMEM;
3599 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3600 			    startvp, NULL);
3601 			break;
3602 		}
3603 		buf[--buflen] = '/';
3604 		slash_prefixed = true;
3605 	}
3606 	if (error)
3607 		return (error);
3608 	if (!slash_prefixed) {
3609 		if (buflen == 0) {
3610 			vrele(vp);
3611 			counter_u64_add(numfullpathfail4, 1);
3612 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3613 			    startvp, NULL);
3614 			return (ENOMEM);
3615 		}
3616 		buf[--buflen] = '/';
3617 	}
3618 	counter_u64_add(numfullpathfound, 1);
3619 	vrele(vp);
3620 
3621 	*retbuf = buf + buflen;
3622 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3623 	*len -= buflen;
3624 	*len += addend;
3625 	return (0);
3626 }
3627 
3628 /*
3629  * Resolve an arbitrary vnode to a pathname.
3630  *
3631  * Note 2 caveats:
3632  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3633  *   resolve to a different path than the one used to find it
3634  * - namecache is not mandatory, meaning names are not guaranteed to be added
3635  *   (in which case resolving fails)
3636  */
3637 static void __inline
3638 cache_rev_failed_impl(int *reason, int line)
3639 {
3640 
3641 	*reason = line;
3642 }
3643 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3644 
3645 static int
3646 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3647     char **retbuf, size_t *buflen, size_t addend)
3648 {
3649 #ifdef KDTRACE_HOOKS
3650 	struct vnode *startvp = vp;
3651 #endif
3652 	struct vnode *tvp;
3653 	struct mount *mp;
3654 	struct namecache *ncp;
3655 	size_t orig_buflen;
3656 	int reason;
3657 	int error;
3658 #ifdef KDTRACE_HOOKS
3659 	int i;
3660 #endif
3661 	seqc_t vp_seqc, tvp_seqc;
3662 	u_char nc_flag;
3663 
3664 	VFS_SMR_ASSERT_ENTERED();
3665 
3666 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3667 		vfs_smr_exit();
3668 		return (-1);
3669 	}
3670 
3671 	orig_buflen = *buflen;
3672 
3673 	if (addend == 0) {
3674 		MPASS(*buflen >= 2);
3675 		*buflen -= 1;
3676 		buf[*buflen] = '\0';
3677 	}
3678 
3679 	if (vp == rdir || vp == rootvnode) {
3680 		if (addend == 0) {
3681 			*buflen -= 1;
3682 			buf[*buflen] = '/';
3683 		}
3684 		goto out_ok;
3685 	}
3686 
3687 #ifdef KDTRACE_HOOKS
3688 	i = 0;
3689 #endif
3690 	error = -1;
3691 	ncp = NULL; /* for sdt probe down below */
3692 	vp_seqc = vn_seqc_read_any(vp);
3693 	if (seqc_in_modify(vp_seqc)) {
3694 		cache_rev_failed(&reason);
3695 		goto out_abort;
3696 	}
3697 
3698 	for (;;) {
3699 #ifdef KDTRACE_HOOKS
3700 		i++;
3701 #endif
3702 		if ((vp->v_vflag & VV_ROOT) != 0) {
3703 			mp = atomic_load_ptr(&vp->v_mount);
3704 			if (mp == NULL) {
3705 				cache_rev_failed(&reason);
3706 				goto out_abort;
3707 			}
3708 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3709 			tvp_seqc = vn_seqc_read_any(tvp);
3710 			if (seqc_in_modify(tvp_seqc)) {
3711 				cache_rev_failed(&reason);
3712 				goto out_abort;
3713 			}
3714 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3715 				cache_rev_failed(&reason);
3716 				goto out_abort;
3717 			}
3718 			vp = tvp;
3719 			vp_seqc = tvp_seqc;
3720 			continue;
3721 		}
3722 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3723 		if (ncp == NULL) {
3724 			cache_rev_failed(&reason);
3725 			goto out_abort;
3726 		}
3727 		nc_flag = atomic_load_char(&ncp->nc_flag);
3728 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3729 			cache_rev_failed(&reason);
3730 			goto out_abort;
3731 		}
3732 		if (ncp->nc_nlen >= *buflen) {
3733 			cache_rev_failed(&reason);
3734 			error = ENOMEM;
3735 			goto out_abort;
3736 		}
3737 		*buflen -= ncp->nc_nlen;
3738 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3739 		*buflen -= 1;
3740 		buf[*buflen] = '/';
3741 		tvp = ncp->nc_dvp;
3742 		tvp_seqc = vn_seqc_read_any(tvp);
3743 		if (seqc_in_modify(tvp_seqc)) {
3744 			cache_rev_failed(&reason);
3745 			goto out_abort;
3746 		}
3747 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3748 			cache_rev_failed(&reason);
3749 			goto out_abort;
3750 		}
3751 		/*
3752 		 * Acquire fence provided by vn_seqc_read_any above.
3753 		 */
3754 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3755 			cache_rev_failed(&reason);
3756 			goto out_abort;
3757 		}
3758 		if (!cache_ncp_canuse(ncp)) {
3759 			cache_rev_failed(&reason);
3760 			goto out_abort;
3761 		}
3762 		vp = tvp;
3763 		vp_seqc = tvp_seqc;
3764 		if (vp == rdir || vp == rootvnode)
3765 			break;
3766 	}
3767 out_ok:
3768 	vfs_smr_exit();
3769 	*retbuf = buf + *buflen;
3770 	*buflen = orig_buflen - *buflen + addend;
3771 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3772 	return (0);
3773 
3774 out_abort:
3775 	*buflen = orig_buflen;
3776 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3777 	vfs_smr_exit();
3778 	return (error);
3779 }
3780 
3781 static int
3782 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3783     size_t *buflen)
3784 {
3785 	size_t orig_buflen, addend;
3786 	int error;
3787 
3788 	if (*buflen < 2)
3789 		return (EINVAL);
3790 
3791 	orig_buflen = *buflen;
3792 
3793 	vref(vp);
3794 	addend = 0;
3795 	if (vp->v_type != VDIR) {
3796 		*buflen -= 1;
3797 		buf[*buflen] = '\0';
3798 		error = vn_vptocnp(&vp, buf, buflen);
3799 		if (error)
3800 			return (error);
3801 		if (*buflen == 0) {
3802 			vrele(vp);
3803 			return (ENOMEM);
3804 		}
3805 		*buflen -= 1;
3806 		buf[*buflen] = '/';
3807 		addend = orig_buflen - *buflen;
3808 	}
3809 
3810 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3811 }
3812 
3813 /*
3814  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3815  *
3816  * Since the namecache does not track hardlinks, the caller is expected to
3817  * first look up the target vnode with WANTPARENT flag passed to namei to get
3818  * dvp and vp.
3819  *
3820  * Then we have 2 cases:
3821  * - if the found vnode is a directory, the path can be constructed just by
3822  *   following names up the chain
3823  * - otherwise we populate the buffer with the saved name and start resolving
3824  *   from the parent
3825  */
3826 int
3827 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3828     const char *hrdl_name, size_t hrdl_name_length,
3829     char **retbuf, char **freebuf, size_t *buflen)
3830 {
3831 	char *buf, *tmpbuf;
3832 	struct pwd *pwd;
3833 	size_t addend;
3834 	int error;
3835 	__enum_uint8(vtype) type;
3836 
3837 	if (*buflen < 2)
3838 		return (EINVAL);
3839 	if (*buflen > MAXPATHLEN)
3840 		*buflen = MAXPATHLEN;
3841 
3842 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3843 
3844 	addend = 0;
3845 
3846 	/*
3847 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3848 	 *
3849 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3850 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3851 	 * If the type is VDIR (like in this very case) we can skip looking
3852 	 * at ni_dvp in the first place. However, since vnodes get passed here
3853 	 * unlocked the target may transition to doomed state (type == VBAD)
3854 	 * before we get to evaluate the condition. If this happens, we will
3855 	 * populate part of the buffer and descend to vn_fullpath_dir with
3856 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3857 	 */
3858 	type = atomic_load_8(&vp->v_type);
3859 	if (type == VBAD) {
3860 		error = ENOENT;
3861 		goto out_bad;
3862 	}
3863 	if (type != VDIR) {
3864 		addend = hrdl_name_length + 2;
3865 		if (*buflen < addend) {
3866 			error = ENOMEM;
3867 			goto out_bad;
3868 		}
3869 		*buflen -= addend;
3870 		tmpbuf = buf + *buflen;
3871 		tmpbuf[0] = '/';
3872 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3873 		tmpbuf[addend - 1] = '\0';
3874 		vp = dvp;
3875 	}
3876 
3877 	vfs_smr_enter();
3878 	pwd = pwd_get_smr();
3879 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3880 	    addend);
3881 	VFS_SMR_ASSERT_NOT_ENTERED();
3882 	if (error < 0) {
3883 		pwd = pwd_hold(curthread);
3884 		vref(vp);
3885 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3886 		    addend);
3887 		pwd_drop(pwd);
3888 	}
3889 	if (error != 0)
3890 		goto out_bad;
3891 
3892 	*freebuf = buf;
3893 
3894 	return (0);
3895 out_bad:
3896 	free(buf, M_TEMP);
3897 	return (error);
3898 }
3899 
3900 struct vnode *
3901 vn_dir_dd_ino(struct vnode *vp)
3902 {
3903 	struct namecache *ncp;
3904 	struct vnode *ddvp;
3905 	struct mtx *vlp;
3906 	enum vgetstate vs;
3907 
3908 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3909 	vlp = VP2VNODELOCK(vp);
3910 	mtx_lock(vlp);
3911 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3912 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3913 			continue;
3914 		ddvp = ncp->nc_dvp;
3915 		vs = vget_prep(ddvp);
3916 		mtx_unlock(vlp);
3917 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3918 			return (NULL);
3919 		return (ddvp);
3920 	}
3921 	mtx_unlock(vlp);
3922 	return (NULL);
3923 }
3924 
3925 int
3926 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3927 {
3928 	struct namecache *ncp;
3929 	struct mtx *vlp;
3930 	int l;
3931 
3932 	vlp = VP2VNODELOCK(vp);
3933 	mtx_lock(vlp);
3934 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3935 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3936 			break;
3937 	if (ncp == NULL) {
3938 		mtx_unlock(vlp);
3939 		return (ENOENT);
3940 	}
3941 	l = min(ncp->nc_nlen, buflen - 1);
3942 	memcpy(buf, ncp->nc_name, l);
3943 	mtx_unlock(vlp);
3944 	buf[l] = '\0';
3945 	return (0);
3946 }
3947 
3948 /*
3949  * This function updates path string to vnode's full global path
3950  * and checks the size of the new path string against the pathlen argument.
3951  *
3952  * Requires a locked, referenced vnode.
3953  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3954  *
3955  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3956  * because it falls back to the ".." lookup if the namecache lookup fails.
3957  */
3958 int
3959 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3960     u_int pathlen)
3961 {
3962 	struct nameidata nd;
3963 	struct vnode *vp1;
3964 	char *rpath, *fbuf;
3965 	int error;
3966 
3967 	ASSERT_VOP_ELOCKED(vp, __func__);
3968 
3969 	/* Construct global filesystem path from vp. */
3970 	VOP_UNLOCK(vp);
3971 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3972 
3973 	if (error != 0) {
3974 		vrele(vp);
3975 		return (error);
3976 	}
3977 
3978 	if (strlen(rpath) >= pathlen) {
3979 		vrele(vp);
3980 		error = ENAMETOOLONG;
3981 		goto out;
3982 	}
3983 
3984 	/*
3985 	 * Re-lookup the vnode by path to detect a possible rename.
3986 	 * As a side effect, the vnode is relocked.
3987 	 * If vnode was renamed, return ENOENT.
3988 	 */
3989 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3990 	error = namei(&nd);
3991 	if (error != 0) {
3992 		vrele(vp);
3993 		goto out;
3994 	}
3995 	NDFREE_PNBUF(&nd);
3996 	vp1 = nd.ni_vp;
3997 	vrele(vp);
3998 	if (vp1 == vp)
3999 		strcpy(path, rpath);
4000 	else {
4001 		vput(vp1);
4002 		error = ENOENT;
4003 	}
4004 
4005 out:
4006 	free(fbuf, M_TEMP);
4007 	return (error);
4008 }
4009 
4010 /*
4011  * This is similar to vn_path_to_global_path but allows for regular
4012  * files which may not be present in the cache.
4013  *
4014  * Requires a locked, referenced vnode.
4015  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
4016  */
4017 int
4018 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
4019     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
4020     size_t leaf_length)
4021 {
4022 	struct nameidata nd;
4023 	struct vnode *vp1;
4024 	char *rpath, *fbuf;
4025 	size_t len;
4026 	int error;
4027 
4028 	ASSERT_VOP_ELOCKED(vp, __func__);
4029 
4030 	/*
4031 	 * Construct global filesystem path from dvp, vp and leaf
4032 	 * name.
4033 	 */
4034 	VOP_UNLOCK(vp);
4035 	len = pathlen;
4036 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
4037 	    &rpath, &fbuf, &len);
4038 
4039 	if (error != 0) {
4040 		vrele(vp);
4041 		return (error);
4042 	}
4043 
4044 	if (strlen(rpath) >= pathlen) {
4045 		vrele(vp);
4046 		error = ENAMETOOLONG;
4047 		goto out;
4048 	}
4049 
4050 	/*
4051 	 * Re-lookup the vnode by path to detect a possible rename.
4052 	 * As a side effect, the vnode is relocked.
4053 	 * If vnode was renamed, return ENOENT.
4054 	 */
4055 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
4056 	error = namei(&nd);
4057 	if (error != 0) {
4058 		vrele(vp);
4059 		goto out;
4060 	}
4061 	NDFREE_PNBUF(&nd);
4062 	vp1 = nd.ni_vp;
4063 	vrele(vp);
4064 	if (vp1 == vp)
4065 		strcpy(path, rpath);
4066 	else {
4067 		vput(vp1);
4068 		error = ENOENT;
4069 	}
4070 
4071 out:
4072 	free(fbuf, M_TEMP);
4073 	return (error);
4074 }
4075 
4076 void
4077 cache_vop_inotify(struct vnode *vp, int event, uint32_t cookie)
4078 {
4079 	struct mtx *vlp;
4080 	struct namecache *ncp;
4081 	int isdir;
4082 	bool logged, self;
4083 
4084 	isdir = vp->v_type == VDIR ? IN_ISDIR : 0;
4085 	self = (vn_irflag_read(vp) & VIRF_INOTIFY) != 0 &&
4086 	    (vp->v_type != VDIR || (event & ~_IN_DIR_EVENTS) != 0);
4087 
4088 	if (self) {
4089 		int selfevent;
4090 
4091 		if (event == _IN_ATTRIB_LINKCOUNT)
4092 			selfevent = IN_ATTRIB;
4093 		else
4094 			selfevent = event;
4095 		inotify_log(vp, NULL, 0, selfevent | isdir, cookie);
4096 	}
4097 	if ((event & IN_ALL_EVENTS) == 0)
4098 		return;
4099 
4100 	logged = false;
4101 	vlp = VP2VNODELOCK(vp);
4102 	mtx_lock(vlp);
4103 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
4104 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
4105 			continue;
4106 		if ((vn_irflag_read(ncp->nc_dvp) & VIRF_INOTIFY) != 0) {
4107 			/*
4108 			 * XXX-MJ if the vnode has two links in the same
4109 			 * dir, we'll log the same event twice.
4110 			 */
4111 			inotify_log(ncp->nc_dvp, ncp->nc_name, ncp->nc_nlen,
4112 			    event | isdir, cookie);
4113 			logged = true;
4114 		}
4115 	}
4116 	if (!logged && (vn_irflag_read(vp) & VIRF_INOTIFY_PARENT) != 0) {
4117 		/*
4118 		 * We didn't find a watched directory that contains this vnode,
4119 		 * so stop calling VOP_INOTIFY for operations on the vnode.
4120 		 */
4121 		vn_irflag_unset(vp, VIRF_INOTIFY_PARENT);
4122 	}
4123 	mtx_unlock(vlp);
4124 }
4125 
4126 #ifdef DDB
4127 static void
4128 db_print_vpath(struct vnode *vp)
4129 {
4130 
4131 	while (vp != NULL) {
4132 		db_printf("%p: ", vp);
4133 		if (vp == rootvnode) {
4134 			db_printf("/");
4135 			vp = NULL;
4136 		} else {
4137 			if (vp->v_vflag & VV_ROOT) {
4138 				db_printf("<mount point>");
4139 				vp = vp->v_mount->mnt_vnodecovered;
4140 			} else {
4141 				struct namecache *ncp;
4142 				char *ncn;
4143 				int i;
4144 
4145 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
4146 				if (ncp != NULL) {
4147 					ncn = ncp->nc_name;
4148 					for (i = 0; i < ncp->nc_nlen; i++)
4149 						db_printf("%c", *ncn++);
4150 					vp = ncp->nc_dvp;
4151 				} else {
4152 					vp = NULL;
4153 				}
4154 			}
4155 		}
4156 		db_printf("\n");
4157 	}
4158 
4159 	return;
4160 }
4161 
4162 DB_SHOW_COMMAND(vpath, db_show_vpath)
4163 {
4164 	struct vnode *vp;
4165 
4166 	if (!have_addr) {
4167 		db_printf("usage: show vpath <struct vnode *>\n");
4168 		return;
4169 	}
4170 
4171 	vp = (struct vnode *)addr;
4172 	db_print_vpath(vp);
4173 }
4174 
4175 #endif
4176 
4177 static int cache_fast_lookup = 1;
4178 
4179 #define CACHE_FPL_FAILED	-2020
4180 
4181 static int
4182 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
4183 {
4184 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
4185 	panic("no proper vop_fplookup_vexec");
4186 }
4187 
4188 static int
4189 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
4190 {
4191 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
4192 	panic("no proper vop_fplookup_symlink");
4193 }
4194 
4195 void
4196 cache_vop_vector_register(struct vop_vector *v)
4197 {
4198 	size_t ops;
4199 
4200 	ops = 0;
4201 	if (v->vop_fplookup_vexec != NULL) {
4202 		ops++;
4203 	}
4204 	if (v->vop_fplookup_symlink != NULL) {
4205 		ops++;
4206 	}
4207 
4208 	if (ops == 2) {
4209 		return;
4210 	}
4211 
4212 	if (ops == 0) {
4213 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
4214 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
4215 		return;
4216 	}
4217 
4218 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
4219 	    "need to be provided",  __func__, v);
4220 	if (v->vop_fplookup_vexec == NULL) {
4221 		printf("%s: missing vop_fplookup_vexec\n", __func__);
4222 	}
4223 	if (v->vop_fplookup_symlink == NULL) {
4224 		printf("%s: missing vop_fplookup_symlink\n", __func__);
4225 	}
4226 	panic("bad vop vector %p", v);
4227 }
4228 
4229 #ifdef INVARIANTS
4230 void
4231 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
4232 {
4233 	if (mp == NULL)
4234 		return;
4235 
4236 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4237 		return;
4238 
4239 	if (vops->vop_fplookup_vexec == NULL ||
4240 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
4241 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
4242 		    vops, mp->mnt_vfc->vfc_name);
4243 
4244 	if (vops->vop_fplookup_symlink == NULL ||
4245 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
4246 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
4247 		    vops, mp->mnt_vfc->vfc_name);
4248 }
4249 #endif
4250 
4251 void
4252 cache_fast_lookup_enabled_recalc(void)
4253 {
4254 	int lookup_flag;
4255 	int mac_on;
4256 
4257 #ifdef MAC
4258 	mac_on = mac_vnode_check_lookup_enabled();
4259 	mac_on |= mac_vnode_check_readlink_enabled();
4260 #else
4261 	mac_on = 0;
4262 #endif
4263 
4264 	lookup_flag = atomic_load_int(&cache_fast_lookup);
4265 	if (lookup_flag && !mac_on) {
4266 		atomic_store_char(&cache_fast_lookup_enabled, true);
4267 	} else {
4268 		atomic_store_char(&cache_fast_lookup_enabled, false);
4269 	}
4270 }
4271 
4272 static int
4273 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
4274 {
4275 	int error, old;
4276 
4277 	old = atomic_load_int(&cache_fast_lookup);
4278 	error = sysctl_handle_int(oidp, arg1, arg2, req);
4279 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
4280 		cache_fast_lookup_enabled_recalc();
4281 	return (error);
4282 }
4283 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
4284     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
4285 
4286 /*
4287  * Components of nameidata (or objects it can point to) which may
4288  * need restoring in case fast path lookup fails.
4289  */
4290 struct nameidata_outer {
4291 	size_t ni_pathlen;
4292 	uint64_t cn_flags;
4293 };
4294 
4295 struct nameidata_saved {
4296 #ifdef INVARIANTS
4297 	char *cn_nameptr;
4298 	size_t ni_pathlen;
4299 #endif
4300 };
4301 
4302 #ifdef INVARIANTS
4303 struct cache_fpl_debug {
4304 	size_t ni_pathlen;
4305 };
4306 #endif
4307 
4308 struct cache_fpl {
4309 	struct nameidata *ndp;
4310 	struct componentname *cnp;
4311 	char *nulchar;
4312 	struct vnode *dvp;
4313 	struct vnode *tvp;
4314 	seqc_t dvp_seqc;
4315 	seqc_t tvp_seqc;
4316 	uint32_t hash;
4317 	struct nameidata_saved snd;
4318 	struct nameidata_outer snd_outer;
4319 	int line;
4320 	enum cache_fpl_status status:8;
4321 	bool in_smr;
4322 	bool fsearch;
4323 	struct pwd **pwd;
4324 #ifdef INVARIANTS
4325 	struct cache_fpl_debug debug;
4326 #endif
4327 };
4328 
4329 static bool cache_fplookup_mp_supported(struct mount *mp);
4330 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
4331 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
4332 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
4333 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
4334 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
4335 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
4336 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
4337 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
4338 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
4339 
4340 static void
4341 cache_fpl_cleanup_cnp(struct componentname *cnp)
4342 {
4343 
4344 	uma_zfree(namei_zone, cnp->cn_pnbuf);
4345 	cnp->cn_pnbuf = NULL;
4346 	cnp->cn_nameptr = NULL;
4347 }
4348 
4349 static struct vnode *
4350 cache_fpl_handle_root(struct cache_fpl *fpl)
4351 {
4352 	struct nameidata *ndp;
4353 	struct componentname *cnp;
4354 
4355 	ndp = fpl->ndp;
4356 	cnp = fpl->cnp;
4357 
4358 	MPASS(*(cnp->cn_nameptr) == '/');
4359 	cnp->cn_nameptr++;
4360 	cache_fpl_pathlen_dec(fpl);
4361 
4362 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4363 		do {
4364 			cnp->cn_nameptr++;
4365 			cache_fpl_pathlen_dec(fpl);
4366 		} while (*(cnp->cn_nameptr) == '/');
4367 	}
4368 
4369 	return (ndp->ni_rootdir);
4370 }
4371 
4372 static void
4373 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
4374 {
4375 
4376 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
4377 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
4378 }
4379 
4380 static void
4381 cache_fpl_checkpoint(struct cache_fpl *fpl)
4382 {
4383 
4384 #ifdef INVARIANTS
4385 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4386 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4387 #endif
4388 }
4389 
4390 static void
4391 cache_fpl_restore_partial(struct cache_fpl *fpl)
4392 {
4393 
4394 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4395 #ifdef INVARIANTS
4396 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4397 #endif
4398 }
4399 
4400 static void
4401 cache_fpl_restore_abort(struct cache_fpl *fpl)
4402 {
4403 
4404 	cache_fpl_restore_partial(fpl);
4405 	/*
4406 	 * It is 0 on entry by API contract.
4407 	 */
4408 	fpl->ndp->ni_resflags = 0;
4409 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4410 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4411 }
4412 
4413 #ifdef INVARIANTS
4414 #define cache_fpl_smr_assert_entered(fpl) ({			\
4415 	struct cache_fpl *_fpl = (fpl);				\
4416 	MPASS(_fpl->in_smr == true);				\
4417 	VFS_SMR_ASSERT_ENTERED();				\
4418 })
4419 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4420 	struct cache_fpl *_fpl = (fpl);				\
4421 	MPASS(_fpl->in_smr == false);				\
4422 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4423 })
4424 static void
4425 cache_fpl_assert_status(struct cache_fpl *fpl)
4426 {
4427 
4428 	switch (fpl->status) {
4429 	case CACHE_FPL_STATUS_UNSET:
4430 		__assert_unreachable();
4431 		break;
4432 	case CACHE_FPL_STATUS_DESTROYED:
4433 	case CACHE_FPL_STATUS_ABORTED:
4434 	case CACHE_FPL_STATUS_PARTIAL:
4435 	case CACHE_FPL_STATUS_HANDLED:
4436 		break;
4437 	}
4438 }
4439 #else
4440 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4441 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4442 #define cache_fpl_assert_status(fpl) do { } while (0)
4443 #endif
4444 
4445 #define cache_fpl_smr_enter_initial(fpl) ({			\
4446 	struct cache_fpl *_fpl = (fpl);				\
4447 	vfs_smr_enter();					\
4448 	_fpl->in_smr = true;					\
4449 })
4450 
4451 #define cache_fpl_smr_enter(fpl) ({				\
4452 	struct cache_fpl *_fpl = (fpl);				\
4453 	MPASS(_fpl->in_smr == false);				\
4454 	vfs_smr_enter();					\
4455 	_fpl->in_smr = true;					\
4456 })
4457 
4458 #define cache_fpl_smr_exit(fpl) ({				\
4459 	struct cache_fpl *_fpl = (fpl);				\
4460 	MPASS(_fpl->in_smr == true);				\
4461 	vfs_smr_exit();						\
4462 	_fpl->in_smr = false;					\
4463 })
4464 
4465 static int
4466 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4467 {
4468 
4469 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4470 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4471 		    ("%s: converting to abort from %d at %d, set at %d\n",
4472 		    __func__, fpl->status, line, fpl->line));
4473 	}
4474 	cache_fpl_smr_assert_not_entered(fpl);
4475 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4476 	fpl->line = line;
4477 	return (CACHE_FPL_FAILED);
4478 }
4479 
4480 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4481 
4482 static int __noinline
4483 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4484 {
4485 	struct nameidata *ndp;
4486 	struct componentname *cnp;
4487 
4488 	ndp = fpl->ndp;
4489 	cnp = fpl->cnp;
4490 
4491 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4492 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4493 		    ("%s: converting to abort from %d at %d, set at %d\n",
4494 		    __func__, fpl->status, line, fpl->line));
4495 	}
4496 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4497 	fpl->line = line;
4498 	if (fpl->in_smr)
4499 		cache_fpl_smr_exit(fpl);
4500 	cache_fpl_restore_abort(fpl);
4501 	/*
4502 	 * Resolving symlinks overwrites data passed by the caller.
4503 	 * Let namei know.
4504 	 */
4505 	if (ndp->ni_loopcnt > 0) {
4506 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4507 		cache_fpl_cleanup_cnp(cnp);
4508 	}
4509 	return (CACHE_FPL_FAILED);
4510 }
4511 
4512 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4513 
4514 static int __noinline
4515 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4516 {
4517 
4518 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4519 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4520 	    __func__, line, fpl->status, fpl->line));
4521 	cache_fpl_smr_assert_entered(fpl);
4522 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4523 	fpl->line = line;
4524 	return (cache_fplookup_partial_setup(fpl));
4525 }
4526 
4527 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4528 
4529 static int
4530 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4531 {
4532 
4533 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4534 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4535 	    __func__, line, fpl->status, fpl->line));
4536 	cache_fpl_smr_assert_not_entered(fpl);
4537 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4538 	fpl->line = line;
4539 	return (0);
4540 }
4541 
4542 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4543 
4544 static int
4545 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4546 {
4547 
4548 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4549 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4550 	    __func__, line, fpl->status, fpl->line));
4551 	MPASS(error != 0);
4552 	MPASS(error != CACHE_FPL_FAILED);
4553 	cache_fpl_smr_assert_not_entered(fpl);
4554 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4555 	fpl->line = line;
4556 	fpl->dvp = NULL;
4557 	fpl->tvp = NULL;
4558 	return (error);
4559 }
4560 
4561 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4562 
4563 static bool
4564 cache_fpl_terminated(struct cache_fpl *fpl)
4565 {
4566 
4567 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4568 }
4569 
4570 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4571 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4572 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
4573 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4574 	 OPENWRITE | WANTIOCTLCAPS | NAMEILOOKUP)
4575 
4576 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4577 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4578 
4579 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4580     "supported and internal flags overlap");
4581 
4582 static bool
4583 cache_fpl_islastcn(struct nameidata *ndp)
4584 {
4585 
4586 	return (*ndp->ni_next == 0);
4587 }
4588 
4589 static bool
4590 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4591 {
4592 
4593 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4594 	return (*(fpl->nulchar - 1) == '/');
4595 }
4596 
4597 static bool
4598 cache_fpl_isdotdot(struct componentname *cnp)
4599 {
4600 
4601 	if (cnp->cn_namelen == 2 &&
4602 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4603 		return (true);
4604 	return (false);
4605 }
4606 
4607 static bool
4608 cache_can_fplookup(struct cache_fpl *fpl)
4609 {
4610 	struct nameidata *ndp;
4611 	struct componentname *cnp;
4612 	struct thread *td;
4613 
4614 	ndp = fpl->ndp;
4615 	cnp = fpl->cnp;
4616 	td = curthread;
4617 
4618 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4619 		cache_fpl_aborted_early(fpl);
4620 		return (false);
4621 	}
4622 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4623 		cache_fpl_aborted_early(fpl);
4624 		return (false);
4625 	}
4626 	if (IN_CAPABILITY_MODE(td) || CAP_TRACING(td)) {
4627 		cache_fpl_aborted_early(fpl);
4628 		return (false);
4629 	}
4630 	if (AUDITING_TD(td)) {
4631 		cache_fpl_aborted_early(fpl);
4632 		return (false);
4633 	}
4634 	if (ndp->ni_startdir != NULL) {
4635 		cache_fpl_aborted_early(fpl);
4636 		return (false);
4637 	}
4638 	return (true);
4639 }
4640 
4641 static int __noinline
4642 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4643 {
4644 	struct nameidata *ndp;
4645 	struct componentname *cnp;
4646 	int error, flags;
4647 
4648 	ndp = fpl->ndp;
4649 	cnp = fpl->cnp;
4650 
4651 	error = fgetvp_lookup_smr(ndp, vpp, &flags);
4652 	if (__predict_false(error != 0)) {
4653 		return (cache_fpl_aborted(fpl));
4654 	}
4655 	if (__predict_false((flags & O_RESOLVE_BENEATH) != 0)) {
4656 		_Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & RBENEATH) == 0,
4657 		    "RBENEATH supported by fplookup");
4658 		cache_fpl_smr_exit(fpl);
4659 		cache_fpl_aborted(fpl);
4660 		return (EOPNOTSUPP);
4661 	}
4662 	fpl->fsearch = (flags & FSEARCH) != 0;
4663 	if ((*vpp)->v_type != VDIR) {
4664 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4665 			cache_fpl_smr_exit(fpl);
4666 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4667 		}
4668 	}
4669 	return (0);
4670 }
4671 
4672 static int __noinline
4673 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4674     uint32_t hash)
4675 {
4676 	struct componentname *cnp;
4677 	struct vnode *dvp;
4678 
4679 	cnp = fpl->cnp;
4680 	dvp = fpl->dvp;
4681 
4682 	cache_fpl_smr_exit(fpl);
4683 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4684 		return (cache_fpl_handled_error(fpl, ENOENT));
4685 	else
4686 		return (cache_fpl_aborted(fpl));
4687 }
4688 
4689 /*
4690  * Prepare fallback to the locked lookup while trying to retain the progress.
4691  */
4692 static int __noinline
4693 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4694 {
4695 	struct nameidata *ndp;
4696 	struct componentname *cnp;
4697 	enum vgetstate dvs;
4698 	struct vnode *dvp;
4699 	struct pwd *pwd;
4700 	seqc_t dvp_seqc;
4701 
4702 	ndp = fpl->ndp;
4703 	cnp = fpl->cnp;
4704 	pwd = *(fpl->pwd);
4705 	dvp = fpl->dvp;
4706 	dvp_seqc = fpl->dvp_seqc;
4707 
4708 	if (!pwd_hold_smr(pwd)) {
4709 		return (cache_fpl_aborted(fpl));
4710 	}
4711 
4712 	/*
4713 	 * Note that seqc is checked before the vnode is locked, so by
4714 	 * the time regular lookup gets to it it may have moved.
4715 	 *
4716 	 * Ultimately this does not affect correctness, any lookup errors
4717 	 * are userspace racing with itself. It is guaranteed that any
4718 	 * path which ultimately gets found could also have been found
4719 	 * by regular lookup going all the way in absence of concurrent
4720 	 * modifications.
4721 	 */
4722 	dvs = vget_prep_smr(dvp);
4723 	cache_fpl_smr_exit(fpl);
4724 	if (__predict_false(dvs == VGET_NONE)) {
4725 		pwd_drop(pwd);
4726 		return (cache_fpl_aborted(fpl));
4727 	}
4728 
4729 	vget_finish_ref(dvp, dvs);
4730 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4731 		vrele(dvp);
4732 		pwd_drop(pwd);
4733 		return (cache_fpl_aborted(fpl));
4734 	}
4735 
4736 	cache_fpl_restore_partial(fpl);
4737 #ifdef INVARIANTS
4738 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4739 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4740 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4741 	}
4742 #endif
4743 
4744 	ndp->ni_startdir = dvp;
4745 	cnp->cn_flags |= MAKEENTRY;
4746 	if (cache_fpl_islastcn(ndp))
4747 		cnp->cn_flags |= ISLASTCN;
4748 	if (cache_fpl_isdotdot(cnp))
4749 		cnp->cn_flags |= ISDOTDOT;
4750 
4751 	/*
4752 	 * Skip potential extra slashes parsing did not take care of.
4753 	 * cache_fplookup_skip_slashes explains the mechanism.
4754 	 */
4755 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4756 		do {
4757 			cnp->cn_nameptr++;
4758 			cache_fpl_pathlen_dec(fpl);
4759 		} while (*(cnp->cn_nameptr) == '/');
4760 	}
4761 
4762 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4763 #ifdef INVARIANTS
4764 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4765 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4766 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4767 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4768 	}
4769 #endif
4770 	return (0);
4771 }
4772 
4773 static int
4774 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4775 {
4776 	struct componentname *cnp;
4777 	struct vnode *tvp;
4778 	seqc_t tvp_seqc;
4779 	int error, lkflags;
4780 
4781 	cnp = fpl->cnp;
4782 	tvp = fpl->tvp;
4783 	tvp_seqc = fpl->tvp_seqc;
4784 
4785 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4786 		lkflags = LK_SHARED;
4787 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4788 			lkflags = LK_EXCLUSIVE;
4789 		error = vget_finish(tvp, lkflags, tvs);
4790 		if (__predict_false(error != 0)) {
4791 			return (cache_fpl_aborted(fpl));
4792 		}
4793 	} else {
4794 		vget_finish_ref(tvp, tvs);
4795 	}
4796 
4797 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4798 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4799 			vput(tvp);
4800 		else
4801 			vrele(tvp);
4802 		return (cache_fpl_aborted(fpl));
4803 	}
4804 
4805 	return (cache_fpl_handled(fpl));
4806 }
4807 
4808 /*
4809  * They want to possibly modify the state of the namecache.
4810  */
4811 static int __noinline
4812 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4813 {
4814 	struct nameidata *ndp __diagused;
4815 	struct componentname *cnp;
4816 	enum vgetstate dvs;
4817 	struct vnode *dvp, *tvp;
4818 	struct mount *mp;
4819 	seqc_t dvp_seqc;
4820 	int error;
4821 	bool docache;
4822 
4823 	ndp = fpl->ndp;
4824 	cnp = fpl->cnp;
4825 	dvp = fpl->dvp;
4826 	dvp_seqc = fpl->dvp_seqc;
4827 
4828 	MPASS(*(cnp->cn_nameptr) != '/');
4829 	MPASS(cache_fpl_islastcn(ndp));
4830 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4831 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4832 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4833 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4834 	    cnp->cn_nameiop == RENAME);
4835 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4836 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4837 
4838 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4839 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4840 		docache = false;
4841 
4842 	/*
4843 	 * Regular lookup nulifies the slash, which we don't do here.
4844 	 * Don't take chances with filesystem routines seeing it for
4845 	 * the last entry.
4846 	 */
4847 	if (cache_fpl_istrailingslash(fpl)) {
4848 		return (cache_fpl_partial(fpl));
4849 	}
4850 
4851 	mp = atomic_load_ptr(&dvp->v_mount);
4852 	if (__predict_false(mp == NULL)) {
4853 		return (cache_fpl_aborted(fpl));
4854 	}
4855 
4856 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4857 		cache_fpl_smr_exit(fpl);
4858 		/*
4859 		 * Original code keeps not checking for CREATE which
4860 		 * might be a bug. For now let the old lookup decide.
4861 		 */
4862 		if (cnp->cn_nameiop == CREATE) {
4863 			return (cache_fpl_aborted(fpl));
4864 		}
4865 		return (cache_fpl_handled_error(fpl, EROFS));
4866 	}
4867 
4868 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4869 		cache_fpl_smr_exit(fpl);
4870 		return (cache_fpl_handled_error(fpl, EEXIST));
4871 	}
4872 
4873 	/*
4874 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4875 	 * reasoning.
4876 	 *
4877 	 * XXX At least UFS requires its lookup routine to be called for
4878 	 * the last path component, which leads to some level of complication
4879 	 * and inefficiency:
4880 	 * - the target routine always locks the target vnode, but our caller
4881 	 *   may not need it locked
4882 	 * - some of the VOP machinery asserts that the parent is locked, which
4883 	 *   once more may be not required
4884 	 *
4885 	 * TODO: add a flag for filesystems which don't need this.
4886 	 */
4887 	dvs = vget_prep_smr(dvp);
4888 	cache_fpl_smr_exit(fpl);
4889 	if (__predict_false(dvs == VGET_NONE)) {
4890 		return (cache_fpl_aborted(fpl));
4891 	}
4892 
4893 	vget_finish_ref(dvp, dvs);
4894 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4895 		vrele(dvp);
4896 		return (cache_fpl_aborted(fpl));
4897 	}
4898 
4899 	error = vn_lock(dvp, LK_EXCLUSIVE);
4900 	if (__predict_false(error != 0)) {
4901 		vrele(dvp);
4902 		return (cache_fpl_aborted(fpl));
4903 	}
4904 
4905 	tvp = NULL;
4906 	cnp->cn_flags |= ISLASTCN;
4907 	if (docache)
4908 		cnp->cn_flags |= MAKEENTRY;
4909 	if (cache_fpl_isdotdot(cnp))
4910 		cnp->cn_flags |= ISDOTDOT;
4911 	cnp->cn_lkflags = LK_EXCLUSIVE;
4912 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4913 	switch (error) {
4914 	case EJUSTRETURN:
4915 	case 0:
4916 		break;
4917 	case ENOTDIR:
4918 	case ENOENT:
4919 		vput(dvp);
4920 		return (cache_fpl_handled_error(fpl, error));
4921 	default:
4922 		vput(dvp);
4923 		return (cache_fpl_aborted(fpl));
4924 	}
4925 
4926 	fpl->tvp = tvp;
4927 
4928 	if (tvp == NULL) {
4929 		MPASS(error == EJUSTRETURN);
4930 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4931 			VOP_UNLOCK(dvp);
4932 		}
4933 		return (cache_fpl_handled(fpl));
4934 	}
4935 
4936 	/*
4937 	 * There are very hairy corner cases concerning various flag combinations
4938 	 * and locking state. In particular here we only hold one lock instead of
4939 	 * two.
4940 	 *
4941 	 * Skip the complexity as it is of no significance for normal workloads.
4942 	 */
4943 	if (__predict_false(tvp == dvp)) {
4944 		vput(dvp);
4945 		vrele(tvp);
4946 		return (cache_fpl_aborted(fpl));
4947 	}
4948 
4949 	/*
4950 	 * If they want the symlink itself we are fine, but if they want to
4951 	 * follow it regular lookup has to be engaged.
4952 	 */
4953 	if (tvp->v_type == VLNK) {
4954 		if ((cnp->cn_flags & FOLLOW) != 0) {
4955 			vput(dvp);
4956 			vput(tvp);
4957 			return (cache_fpl_aborted(fpl));
4958 		}
4959 	}
4960 
4961 	/*
4962 	 * Since we expect this to be the terminal vnode it should almost never
4963 	 * be a mount point.
4964 	 */
4965 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4966 		vput(dvp);
4967 		vput(tvp);
4968 		return (cache_fpl_aborted(fpl));
4969 	}
4970 
4971 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4972 		vput(dvp);
4973 		vput(tvp);
4974 		return (cache_fpl_handled_error(fpl, EEXIST));
4975 	}
4976 
4977 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4978 		VOP_UNLOCK(tvp);
4979 	}
4980 
4981 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4982 		VOP_UNLOCK(dvp);
4983 	}
4984 
4985 	return (cache_fpl_handled(fpl));
4986 }
4987 
4988 static int __noinline
4989 cache_fplookup_modifying(struct cache_fpl *fpl)
4990 {
4991 	struct nameidata *ndp;
4992 
4993 	ndp = fpl->ndp;
4994 
4995 	if (!cache_fpl_islastcn(ndp)) {
4996 		return (cache_fpl_partial(fpl));
4997 	}
4998 	return (cache_fplookup_final_modifying(fpl));
4999 }
5000 
5001 static int __noinline
5002 cache_fplookup_final_withparent(struct cache_fpl *fpl)
5003 {
5004 	struct componentname *cnp;
5005 	enum vgetstate dvs, tvs;
5006 	struct vnode *dvp, *tvp;
5007 	seqc_t dvp_seqc;
5008 	int error;
5009 
5010 	cnp = fpl->cnp;
5011 	dvp = fpl->dvp;
5012 	dvp_seqc = fpl->dvp_seqc;
5013 	tvp = fpl->tvp;
5014 
5015 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
5016 
5017 	/*
5018 	 * This is less efficient than it can be for simplicity.
5019 	 */
5020 	dvs = vget_prep_smr(dvp);
5021 	if (__predict_false(dvs == VGET_NONE)) {
5022 		return (cache_fpl_aborted(fpl));
5023 	}
5024 	tvs = vget_prep_smr(tvp);
5025 	if (__predict_false(tvs == VGET_NONE)) {
5026 		cache_fpl_smr_exit(fpl);
5027 		vget_abort(dvp, dvs);
5028 		return (cache_fpl_aborted(fpl));
5029 	}
5030 
5031 	cache_fpl_smr_exit(fpl);
5032 
5033 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
5034 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
5035 		if (__predict_false(error != 0)) {
5036 			vget_abort(tvp, tvs);
5037 			return (cache_fpl_aborted(fpl));
5038 		}
5039 	} else {
5040 		vget_finish_ref(dvp, dvs);
5041 	}
5042 
5043 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5044 		vget_abort(tvp, tvs);
5045 		if ((cnp->cn_flags & LOCKPARENT) != 0)
5046 			vput(dvp);
5047 		else
5048 			vrele(dvp);
5049 		return (cache_fpl_aborted(fpl));
5050 	}
5051 
5052 	error = cache_fplookup_final_child(fpl, tvs);
5053 	if (__predict_false(error != 0)) {
5054 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
5055 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
5056 		if ((cnp->cn_flags & LOCKPARENT) != 0)
5057 			vput(dvp);
5058 		else
5059 			vrele(dvp);
5060 		return (error);
5061 	}
5062 
5063 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
5064 	return (0);
5065 }
5066 
5067 static int
5068 cache_fplookup_final(struct cache_fpl *fpl)
5069 {
5070 	struct componentname *cnp;
5071 	enum vgetstate tvs;
5072 	struct vnode *dvp, *tvp;
5073 	seqc_t dvp_seqc;
5074 
5075 	cnp = fpl->cnp;
5076 	dvp = fpl->dvp;
5077 	dvp_seqc = fpl->dvp_seqc;
5078 	tvp = fpl->tvp;
5079 
5080 	MPASS(*(cnp->cn_nameptr) != '/');
5081 
5082 	if (cnp->cn_nameiop != LOOKUP) {
5083 		return (cache_fplookup_final_modifying(fpl));
5084 	}
5085 
5086 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
5087 		return (cache_fplookup_final_withparent(fpl));
5088 
5089 	tvs = vget_prep_smr(tvp);
5090 	if (__predict_false(tvs == VGET_NONE)) {
5091 		return (cache_fpl_partial(fpl));
5092 	}
5093 
5094 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5095 		cache_fpl_smr_exit(fpl);
5096 		vget_abort(tvp, tvs);
5097 		return (cache_fpl_aborted(fpl));
5098 	}
5099 
5100 	cache_fpl_smr_exit(fpl);
5101 	return (cache_fplookup_final_child(fpl, tvs));
5102 }
5103 
5104 /*
5105  * Comment from locked lookup:
5106  * Check for degenerate name (e.g. / or "") which is a way of talking about a
5107  * directory, e.g. like "/." or ".".
5108  */
5109 static int __noinline
5110 cache_fplookup_degenerate(struct cache_fpl *fpl)
5111 {
5112 	struct componentname *cnp;
5113 	struct vnode *dvp;
5114 	enum vgetstate dvs;
5115 	int error, lkflags;
5116 #ifdef INVARIANTS
5117 	char *cp;
5118 #endif
5119 
5120 	fpl->tvp = fpl->dvp;
5121 	fpl->tvp_seqc = fpl->dvp_seqc;
5122 
5123 	cnp = fpl->cnp;
5124 	dvp = fpl->dvp;
5125 
5126 #ifdef INVARIANTS
5127 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
5128 		KASSERT(*cp == '/',
5129 		    ("%s: encountered non-slash; string [%s]\n", __func__,
5130 		    cnp->cn_pnbuf));
5131 	}
5132 #endif
5133 
5134 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
5135 		cache_fpl_smr_exit(fpl);
5136 		return (cache_fpl_handled_error(fpl, EISDIR));
5137 	}
5138 
5139 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
5140 		return (cache_fplookup_final_withparent(fpl));
5141 	}
5142 
5143 	dvs = vget_prep_smr(dvp);
5144 	cache_fpl_smr_exit(fpl);
5145 	if (__predict_false(dvs == VGET_NONE)) {
5146 		return (cache_fpl_aborted(fpl));
5147 	}
5148 
5149 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5150 		lkflags = LK_SHARED;
5151 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5152 			lkflags = LK_EXCLUSIVE;
5153 		error = vget_finish(dvp, lkflags, dvs);
5154 		if (__predict_false(error != 0)) {
5155 			return (cache_fpl_aborted(fpl));
5156 		}
5157 	} else {
5158 		vget_finish_ref(dvp, dvs);
5159 	}
5160 	return (cache_fpl_handled(fpl));
5161 }
5162 
5163 static int __noinline
5164 cache_fplookup_emptypath(struct cache_fpl *fpl)
5165 {
5166 	struct nameidata *ndp;
5167 	struct componentname *cnp;
5168 	enum vgetstate tvs;
5169 	struct vnode *tvp;
5170 	int error, lkflags;
5171 
5172 	fpl->tvp = fpl->dvp;
5173 	fpl->tvp_seqc = fpl->dvp_seqc;
5174 
5175 	ndp = fpl->ndp;
5176 	cnp = fpl->cnp;
5177 	tvp = fpl->tvp;
5178 
5179 	MPASS(*cnp->cn_pnbuf == '\0');
5180 
5181 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
5182 		cache_fpl_smr_exit(fpl);
5183 		return (cache_fpl_handled_error(fpl, ENOENT));
5184 	}
5185 
5186 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
5187 
5188 	tvs = vget_prep_smr(tvp);
5189 	cache_fpl_smr_exit(fpl);
5190 	if (__predict_false(tvs == VGET_NONE)) {
5191 		return (cache_fpl_aborted(fpl));
5192 	}
5193 
5194 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5195 		lkflags = LK_SHARED;
5196 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5197 			lkflags = LK_EXCLUSIVE;
5198 		error = vget_finish(tvp, lkflags, tvs);
5199 		if (__predict_false(error != 0)) {
5200 			return (cache_fpl_aborted(fpl));
5201 		}
5202 	} else {
5203 		vget_finish_ref(tvp, tvs);
5204 	}
5205 
5206 	ndp->ni_resflags |= NIRES_EMPTYPATH;
5207 	return (cache_fpl_handled(fpl));
5208 }
5209 
5210 static int __noinline
5211 cache_fplookup_noentry(struct cache_fpl *fpl)
5212 {
5213 	struct nameidata *ndp;
5214 	struct componentname *cnp;
5215 	enum vgetstate dvs;
5216 	struct vnode *dvp, *tvp;
5217 	seqc_t dvp_seqc;
5218 	int error;
5219 
5220 	ndp = fpl->ndp;
5221 	cnp = fpl->cnp;
5222 	dvp = fpl->dvp;
5223 	dvp_seqc = fpl->dvp_seqc;
5224 
5225 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
5226 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
5227 	if (cnp->cn_nameiop == LOOKUP)
5228 		MPASS((cnp->cn_flags & NOCACHE) == 0);
5229 	MPASS(!cache_fpl_isdotdot(cnp));
5230 
5231 	/*
5232 	 * Hack: delayed name len checking.
5233 	 */
5234 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5235 		cache_fpl_smr_exit(fpl);
5236 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5237 	}
5238 
5239 	if (cnp->cn_nameptr[0] == '/') {
5240 		return (cache_fplookup_skip_slashes(fpl));
5241 	}
5242 
5243 	if (cnp->cn_pnbuf[0] == '\0') {
5244 		return (cache_fplookup_emptypath(fpl));
5245 	}
5246 
5247 	if (cnp->cn_nameptr[0] == '\0') {
5248 		if (fpl->tvp == NULL) {
5249 			return (cache_fplookup_degenerate(fpl));
5250 		}
5251 		return (cache_fplookup_trailingslash(fpl));
5252 	}
5253 
5254 	if (cnp->cn_nameiop != LOOKUP) {
5255 		fpl->tvp = NULL;
5256 		return (cache_fplookup_modifying(fpl));
5257 	}
5258 
5259 	/*
5260 	 * Only try to fill in the component if it is the last one,
5261 	 * otherwise not only there may be several to handle but the
5262 	 * walk may be complicated.
5263 	 */
5264 	if (!cache_fpl_islastcn(ndp)) {
5265 		return (cache_fpl_partial(fpl));
5266 	}
5267 
5268 	/*
5269 	 * Regular lookup nulifies the slash, which we don't do here.
5270 	 * Don't take chances with filesystem routines seeing it for
5271 	 * the last entry.
5272 	 */
5273 	if (cache_fpl_istrailingslash(fpl)) {
5274 		return (cache_fpl_partial(fpl));
5275 	}
5276 
5277 	/*
5278 	 * Secure access to dvp; check cache_fplookup_partial_setup for
5279 	 * reasoning.
5280 	 */
5281 	dvs = vget_prep_smr(dvp);
5282 	cache_fpl_smr_exit(fpl);
5283 	if (__predict_false(dvs == VGET_NONE)) {
5284 		return (cache_fpl_aborted(fpl));
5285 	}
5286 
5287 	vget_finish_ref(dvp, dvs);
5288 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5289 		vrele(dvp);
5290 		return (cache_fpl_aborted(fpl));
5291 	}
5292 
5293 	error = vn_lock(dvp, LK_SHARED);
5294 	if (__predict_false(error != 0)) {
5295 		vrele(dvp);
5296 		return (cache_fpl_aborted(fpl));
5297 	}
5298 
5299 	tvp = NULL;
5300 	/*
5301 	 * TODO: provide variants which don't require locking either vnode.
5302 	 */
5303 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
5304 	cnp->cn_lkflags = LK_SHARED;
5305 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
5306 		cnp->cn_lkflags = LK_EXCLUSIVE;
5307 	}
5308 	error = VOP_LOOKUP(dvp, &tvp, cnp);
5309 	switch (error) {
5310 	case EJUSTRETURN:
5311 	case 0:
5312 		break;
5313 	case ENOTDIR:
5314 	case ENOENT:
5315 		vput(dvp);
5316 		return (cache_fpl_handled_error(fpl, error));
5317 	default:
5318 		vput(dvp);
5319 		return (cache_fpl_aborted(fpl));
5320 	}
5321 
5322 	fpl->tvp = tvp;
5323 
5324 	if (tvp == NULL) {
5325 		MPASS(error == EJUSTRETURN);
5326 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5327 			vput(dvp);
5328 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5329 			VOP_UNLOCK(dvp);
5330 		}
5331 		return (cache_fpl_handled(fpl));
5332 	}
5333 
5334 	if (tvp->v_type == VLNK) {
5335 		if ((cnp->cn_flags & FOLLOW) != 0) {
5336 			vput(dvp);
5337 			vput(tvp);
5338 			return (cache_fpl_aborted(fpl));
5339 		}
5340 	}
5341 
5342 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
5343 		vput(dvp);
5344 		vput(tvp);
5345 		return (cache_fpl_aborted(fpl));
5346 	}
5347 
5348 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
5349 		VOP_UNLOCK(tvp);
5350 	}
5351 
5352 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5353 		vput(dvp);
5354 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5355 		VOP_UNLOCK(dvp);
5356 	}
5357 	return (cache_fpl_handled(fpl));
5358 }
5359 
5360 static int __noinline
5361 cache_fplookup_dot(struct cache_fpl *fpl)
5362 {
5363 	int error;
5364 
5365 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
5366 
5367 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
5368 		cache_fpl_smr_exit(fpl);
5369 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5370 	}
5371 
5372 	/*
5373 	 * Just re-assign the value. seqc will be checked later for the first
5374 	 * non-dot path component in line and/or before deciding to return the
5375 	 * vnode.
5376 	 */
5377 	fpl->tvp = fpl->dvp;
5378 	fpl->tvp_seqc = fpl->dvp_seqc;
5379 
5380 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5381 
5382 	error = 0;
5383 	if (cache_fplookup_is_mp(fpl)) {
5384 		error = cache_fplookup_cross_mount(fpl);
5385 	}
5386 	return (error);
5387 }
5388 
5389 static int __noinline
5390 cache_fplookup_dotdot(struct cache_fpl *fpl)
5391 {
5392 	struct nameidata *ndp;
5393 	struct namecache *ncp;
5394 	struct vnode *dvp;
5395 	u_char nc_flag;
5396 
5397 	ndp = fpl->ndp;
5398 	dvp = fpl->dvp;
5399 
5400 	MPASS(cache_fpl_isdotdot(fpl->cnp));
5401 
5402 	/*
5403 	 * XXX this is racy the same way regular lookup is
5404 	 */
5405 	if (vfs_lookup_isroot(ndp, dvp)) {
5406 		fpl->tvp = dvp;
5407 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5408 		if (seqc_in_modify(fpl->tvp_seqc)) {
5409 			return (cache_fpl_aborted(fpl));
5410 		}
5411 		return (0);
5412 	}
5413 
5414 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5415 		/*
5416 		 * TODO
5417 		 * The opposite of climb mount is needed here.
5418 		 */
5419 		return (cache_fpl_partial(fpl));
5420 	}
5421 
5422 	if (__predict_false(dvp->v_type != VDIR)) {
5423 		cache_fpl_smr_exit(fpl);
5424 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5425 	}
5426 
5427 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5428 	if (ncp == NULL) {
5429 		return (cache_fpl_aborted(fpl));
5430 	}
5431 
5432 	nc_flag = atomic_load_char(&ncp->nc_flag);
5433 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5434 		if ((nc_flag & NCF_NEGATIVE) != 0)
5435 			return (cache_fpl_aborted(fpl));
5436 		fpl->tvp = ncp->nc_vp;
5437 	} else {
5438 		fpl->tvp = ncp->nc_dvp;
5439 	}
5440 
5441 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5442 	if (seqc_in_modify(fpl->tvp_seqc)) {
5443 		return (cache_fpl_partial(fpl));
5444 	}
5445 
5446 	/*
5447 	 * Acquire fence provided by vn_seqc_read_any above.
5448 	 */
5449 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5450 		return (cache_fpl_aborted(fpl));
5451 	}
5452 
5453 	if (!cache_ncp_canuse(ncp)) {
5454 		return (cache_fpl_aborted(fpl));
5455 	}
5456 
5457 	return (0);
5458 }
5459 
5460 static int __noinline
5461 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5462 {
5463 	u_char nc_flag __diagused;
5464 	bool neg_promote;
5465 
5466 #ifdef INVARIANTS
5467 	nc_flag = atomic_load_char(&ncp->nc_flag);
5468 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5469 #endif
5470 	/*
5471 	 * If they want to create an entry we need to replace this one.
5472 	 */
5473 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5474 		fpl->tvp = NULL;
5475 		return (cache_fplookup_modifying(fpl));
5476 	}
5477 	neg_promote = cache_neg_hit_prep(ncp);
5478 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5479 		cache_neg_hit_abort(ncp);
5480 		return (cache_fpl_partial(fpl));
5481 	}
5482 	if (neg_promote) {
5483 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5484 	}
5485 	cache_neg_hit_finish(ncp);
5486 	cache_fpl_smr_exit(fpl);
5487 	return (cache_fpl_handled_error(fpl, ENOENT));
5488 }
5489 
5490 /*
5491  * Resolve a symlink. Called by filesystem-specific routines.
5492  *
5493  * Code flow is:
5494  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5495  */
5496 int
5497 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5498 {
5499 	struct nameidata *ndp;
5500 	struct componentname *cnp;
5501 	size_t adjust;
5502 
5503 	ndp = fpl->ndp;
5504 	cnp = fpl->cnp;
5505 
5506 	if (__predict_false(len == 0)) {
5507 		return (ENOENT);
5508 	}
5509 
5510 	if (__predict_false(len > MAXPATHLEN - 2)) {
5511 		if (cache_fpl_istrailingslash(fpl)) {
5512 			return (EAGAIN);
5513 		}
5514 	}
5515 
5516 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5517 #ifdef INVARIANTS
5518 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5519 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5520 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5521 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5522 	}
5523 #endif
5524 
5525 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5526 		return (ENAMETOOLONG);
5527 	}
5528 
5529 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5530 		return (ELOOP);
5531 	}
5532 
5533 	adjust = len;
5534 	if (ndp->ni_pathlen > 1) {
5535 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5536 	} else {
5537 		if (cache_fpl_istrailingslash(fpl)) {
5538 			adjust = len + 1;
5539 			cnp->cn_pnbuf[len] = '/';
5540 			cnp->cn_pnbuf[len + 1] = '\0';
5541 		} else {
5542 			cnp->cn_pnbuf[len] = '\0';
5543 		}
5544 	}
5545 	bcopy(string, cnp->cn_pnbuf, len);
5546 
5547 	ndp->ni_pathlen += adjust;
5548 	cache_fpl_pathlen_add(fpl, adjust);
5549 	cnp->cn_nameptr = cnp->cn_pnbuf;
5550 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5551 	fpl->tvp = NULL;
5552 	return (0);
5553 }
5554 
5555 static int __noinline
5556 cache_fplookup_symlink(struct cache_fpl *fpl)
5557 {
5558 	struct mount *mp;
5559 	struct nameidata *ndp;
5560 	struct componentname *cnp;
5561 	struct vnode *dvp, *tvp;
5562 	struct pwd *pwd;
5563 	int error;
5564 
5565 	ndp = fpl->ndp;
5566 	cnp = fpl->cnp;
5567 	dvp = fpl->dvp;
5568 	tvp = fpl->tvp;
5569 	pwd = *(fpl->pwd);
5570 
5571 	if (cache_fpl_islastcn(ndp)) {
5572 		if ((cnp->cn_flags & FOLLOW) == 0) {
5573 			return (cache_fplookup_final(fpl));
5574 		}
5575 	}
5576 
5577 	mp = atomic_load_ptr(&dvp->v_mount);
5578 	if (__predict_false(mp == NULL)) {
5579 		return (cache_fpl_aborted(fpl));
5580 	}
5581 
5582 	/*
5583 	 * Note this check races against setting the flag just like regular
5584 	 * lookup.
5585 	 */
5586 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5587 		cache_fpl_smr_exit(fpl);
5588 		return (cache_fpl_handled_error(fpl, EACCES));
5589 	}
5590 
5591 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5592 	if (__predict_false(error != 0)) {
5593 		switch (error) {
5594 		case EAGAIN:
5595 			return (cache_fpl_partial(fpl));
5596 		case ENOENT:
5597 		case ENAMETOOLONG:
5598 		case ELOOP:
5599 			cache_fpl_smr_exit(fpl);
5600 			return (cache_fpl_handled_error(fpl, error));
5601 		default:
5602 			return (cache_fpl_aborted(fpl));
5603 		}
5604 	}
5605 
5606 	if (*(cnp->cn_nameptr) == '/') {
5607 		fpl->dvp = cache_fpl_handle_root(fpl);
5608 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5609 		if (seqc_in_modify(fpl->dvp_seqc)) {
5610 			return (cache_fpl_aborted(fpl));
5611 		}
5612 		/*
5613 		 * The main loop assumes that ->dvp points to a vnode belonging
5614 		 * to a filesystem which can do lockless lookup, but the absolute
5615 		 * symlink can be wandering off to one which does not.
5616 		 */
5617 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5618 		if (__predict_false(mp == NULL)) {
5619 			return (cache_fpl_aborted(fpl));
5620 		}
5621 		if (!cache_fplookup_mp_supported(mp)) {
5622 			cache_fpl_checkpoint(fpl);
5623 			return (cache_fpl_partial(fpl));
5624 		}
5625 		if (__predict_false(pwd->pwd_adir != pwd->pwd_rdir)) {
5626 			return (cache_fpl_aborted(fpl));
5627 		}
5628 	}
5629 	return (0);
5630 }
5631 
5632 static int
5633 cache_fplookup_next(struct cache_fpl *fpl)
5634 {
5635 	struct componentname *cnp;
5636 	struct namecache *ncp;
5637 	struct vnode *dvp, *tvp;
5638 	u_char nc_flag;
5639 	uint32_t hash;
5640 	int error;
5641 
5642 	cnp = fpl->cnp;
5643 	dvp = fpl->dvp;
5644 	hash = fpl->hash;
5645 
5646 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5647 		if (cnp->cn_namelen == 1) {
5648 			return (cache_fplookup_dot(fpl));
5649 		}
5650 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5651 			return (cache_fplookup_dotdot(fpl));
5652 		}
5653 	}
5654 
5655 	MPASS(!cache_fpl_isdotdot(cnp));
5656 
5657 	ncp = cache_ncp_find(dvp, cnp, hash);
5658 	if (__predict_false(ncp == NULL)) {
5659 		return (cache_fplookup_noentry(fpl));
5660 	}
5661 
5662 	tvp = atomic_load_ptr(&ncp->nc_vp);
5663 	nc_flag = atomic_load_char(&ncp->nc_flag);
5664 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5665 		return (cache_fplookup_neg(fpl, ncp, hash));
5666 	}
5667 
5668 	if (!cache_ncp_canuse(ncp)) {
5669 		return (cache_fpl_partial(fpl));
5670 	}
5671 
5672 	fpl->tvp = tvp;
5673 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5674 	if (seqc_in_modify(fpl->tvp_seqc)) {
5675 		return (cache_fpl_partial(fpl));
5676 	}
5677 
5678 	counter_u64_add(numposhits, 1);
5679 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5680 
5681 	error = 0;
5682 	if (cache_fplookup_is_mp(fpl)) {
5683 		error = cache_fplookup_cross_mount(fpl);
5684 	}
5685 	return (error);
5686 }
5687 
5688 static bool
5689 cache_fplookup_mp_supported(struct mount *mp)
5690 {
5691 
5692 	MPASS(mp != NULL);
5693 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5694 		return (false);
5695 	return (true);
5696 }
5697 
5698 /*
5699  * Walk up the mount stack (if any).
5700  *
5701  * Correctness is provided in the following ways:
5702  * - all vnodes are protected from freeing with SMR
5703  * - struct mount objects are type stable making them always safe to access
5704  * - stability of the particular mount is provided by busying it
5705  * - relationship between the vnode which is mounted on and the mount is
5706  *   verified with the vnode sequence counter after busying
5707  * - association between root vnode of the mount and the mount is protected
5708  *   by busy
5709  *
5710  * From that point on we can read the sequence counter of the root vnode
5711  * and get the next mount on the stack (if any) using the same protection.
5712  *
5713  * By the end of successful walk we are guaranteed the reached state was
5714  * indeed present at least at some point which matches the regular lookup.
5715  */
5716 static int __noinline
5717 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5718 {
5719 	struct mount *mp, *prev_mp;
5720 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5721 	struct vnode *vp;
5722 	seqc_t vp_seqc;
5723 
5724 	vp = fpl->tvp;
5725 	vp_seqc = fpl->tvp_seqc;
5726 
5727 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5728 	mp = atomic_load_ptr(&vp->v_mountedhere);
5729 	if (__predict_false(mp == NULL)) {
5730 		return (0);
5731 	}
5732 
5733 	prev_mp = NULL;
5734 	for (;;) {
5735 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5736 			if (prev_mp != NULL)
5737 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5738 			return (cache_fpl_partial(fpl));
5739 		}
5740 		if (prev_mp != NULL)
5741 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5742 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5743 			vfs_op_thread_exit_crit(mp, mpcpu);
5744 			return (cache_fpl_partial(fpl));
5745 		}
5746 		if (!cache_fplookup_mp_supported(mp)) {
5747 			vfs_op_thread_exit_crit(mp, mpcpu);
5748 			return (cache_fpl_partial(fpl));
5749 		}
5750 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5751 		if (vp == NULL) {
5752 			vfs_op_thread_exit_crit(mp, mpcpu);
5753 			return (cache_fpl_partial(fpl));
5754 		}
5755 		vp_seqc = vn_seqc_read_any(vp);
5756 		if (seqc_in_modify(vp_seqc)) {
5757 			vfs_op_thread_exit_crit(mp, mpcpu);
5758 			return (cache_fpl_partial(fpl));
5759 		}
5760 		prev_mp = mp;
5761 		prev_mpcpu = mpcpu;
5762 		mp = atomic_load_ptr(&vp->v_mountedhere);
5763 		if (mp == NULL)
5764 			break;
5765 	}
5766 
5767 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5768 	fpl->tvp = vp;
5769 	fpl->tvp_seqc = vp_seqc;
5770 	return (0);
5771 }
5772 
5773 static int __noinline
5774 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5775 {
5776 	struct mount *mp;
5777 	struct mount_pcpu *mpcpu;
5778 	struct vnode *vp;
5779 	seqc_t vp_seqc;
5780 
5781 	vp = fpl->tvp;
5782 	vp_seqc = fpl->tvp_seqc;
5783 
5784 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5785 	mp = atomic_load_ptr(&vp->v_mountedhere);
5786 	if (__predict_false(mp == NULL)) {
5787 		return (0);
5788 	}
5789 
5790 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5791 		return (cache_fpl_partial(fpl));
5792 	}
5793 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5794 		vfs_op_thread_exit_crit(mp, mpcpu);
5795 		return (cache_fpl_partial(fpl));
5796 	}
5797 	if (!cache_fplookup_mp_supported(mp)) {
5798 		vfs_op_thread_exit_crit(mp, mpcpu);
5799 		return (cache_fpl_partial(fpl));
5800 	}
5801 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5802 	if (__predict_false(vp == NULL)) {
5803 		vfs_op_thread_exit_crit(mp, mpcpu);
5804 		return (cache_fpl_partial(fpl));
5805 	}
5806 	vp_seqc = vn_seqc_read_any(vp);
5807 	vfs_op_thread_exit_crit(mp, mpcpu);
5808 	if (seqc_in_modify(vp_seqc)) {
5809 		return (cache_fpl_partial(fpl));
5810 	}
5811 	mp = atomic_load_ptr(&vp->v_mountedhere);
5812 	if (__predict_false(mp != NULL)) {
5813 		/*
5814 		 * There are possibly more mount points on top.
5815 		 * Normally this does not happen so for simplicity just start
5816 		 * over.
5817 		 */
5818 		return (cache_fplookup_climb_mount(fpl));
5819 	}
5820 
5821 	fpl->tvp = vp;
5822 	fpl->tvp_seqc = vp_seqc;
5823 	return (0);
5824 }
5825 
5826 /*
5827  * Check if a vnode is mounted on.
5828  */
5829 static bool
5830 cache_fplookup_is_mp(struct cache_fpl *fpl)
5831 {
5832 	struct vnode *vp;
5833 
5834 	vp = fpl->tvp;
5835 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5836 }
5837 
5838 /*
5839  * Parse the path.
5840  *
5841  * The code was originally copy-pasted from regular lookup and despite
5842  * clean ups leaves performance on the table. Any modifications here
5843  * must take into account that in case off fallback the resulting
5844  * nameidata state has to be compatible with the original.
5845  */
5846 
5847 /*
5848  * Debug ni_pathlen tracking.
5849  */
5850 #ifdef INVARIANTS
5851 static void
5852 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5853 {
5854 
5855 	fpl->debug.ni_pathlen += n;
5856 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5857 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5858 }
5859 
5860 static void
5861 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5862 {
5863 
5864 	fpl->debug.ni_pathlen -= n;
5865 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5866 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5867 }
5868 
5869 static void
5870 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5871 {
5872 
5873 	cache_fpl_pathlen_add(fpl, 1);
5874 }
5875 
5876 static void
5877 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5878 {
5879 
5880 	cache_fpl_pathlen_sub(fpl, 1);
5881 }
5882 #else
5883 static void
5884 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5885 {
5886 }
5887 
5888 static void
5889 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5890 {
5891 }
5892 
5893 static void
5894 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5895 {
5896 }
5897 
5898 static void
5899 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5900 {
5901 }
5902 #endif
5903 
5904 static void
5905 cache_fplookup_parse(struct cache_fpl *fpl)
5906 {
5907 	struct nameidata *ndp;
5908 	struct componentname *cnp;
5909 	struct vnode *dvp;
5910 	char *cp;
5911 	uint32_t hash;
5912 
5913 	ndp = fpl->ndp;
5914 	cnp = fpl->cnp;
5915 	dvp = fpl->dvp;
5916 
5917 	/*
5918 	 * Find the end of this path component, it is either / or nul.
5919 	 *
5920 	 * Store / as a temporary sentinel so that we only have one character
5921 	 * to test for. Pathnames tend to be short so this should not be
5922 	 * resulting in cache misses.
5923 	 *
5924 	 * TODO: fix this to be word-sized.
5925 	 */
5926 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5927 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5928 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5929 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5930 	    fpl->nulchar, cnp->cn_pnbuf));
5931 	KASSERT(*fpl->nulchar == '\0',
5932 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5933 	    cnp->cn_pnbuf));
5934 	hash = cache_get_hash_iter_start(dvp);
5935 	*fpl->nulchar = '/';
5936 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5937 		KASSERT(*cp != '\0',
5938 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5939 		    cnp->cn_nameptr));
5940 		hash = cache_get_hash_iter(*cp, hash);
5941 		continue;
5942 	}
5943 	*fpl->nulchar = '\0';
5944 	fpl->hash = cache_get_hash_iter_finish(hash);
5945 
5946 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5947 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5948 
5949 #ifdef INVARIANTS
5950 	/*
5951 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5952 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5953 	 */
5954 	if (cnp->cn_namelen <= NAME_MAX) {
5955 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5956 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5957 			    cnp->cn_nameptr, cnp->cn_namelen);
5958 		}
5959 	}
5960 #endif
5961 
5962 	/*
5963 	 * Hack: we have to check if the found path component's length exceeds
5964 	 * NAME_MAX. However, the condition is very rarely true and check can
5965 	 * be elided in the common case -- if an entry was found in the cache,
5966 	 * then it could not have been too long to begin with.
5967 	 */
5968 	ndp->ni_next = cp;
5969 }
5970 
5971 static void
5972 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5973 {
5974 	struct nameidata *ndp;
5975 	struct componentname *cnp;
5976 
5977 	ndp = fpl->ndp;
5978 	cnp = fpl->cnp;
5979 
5980 	cnp->cn_nameptr = ndp->ni_next;
5981 	KASSERT(*(cnp->cn_nameptr) == '/',
5982 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5983 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5984 	cnp->cn_nameptr++;
5985 	cache_fpl_pathlen_dec(fpl);
5986 }
5987 
5988 /*
5989  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5990  *
5991  * Lockless lookup tries to elide checking for spurious slashes and should they
5992  * be present is guaranteed to fail to find an entry. In this case the caller
5993  * must check if the name starts with a slash and call this routine.  It is
5994  * going to fast forward across the spurious slashes and set the state up for
5995  * retry.
5996  */
5997 static int __noinline
5998 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5999 {
6000 	struct nameidata *ndp;
6001 	struct componentname *cnp;
6002 
6003 	ndp = fpl->ndp;
6004 	cnp = fpl->cnp;
6005 
6006 	MPASS(*(cnp->cn_nameptr) == '/');
6007 	do {
6008 		cnp->cn_nameptr++;
6009 		cache_fpl_pathlen_dec(fpl);
6010 	} while (*(cnp->cn_nameptr) == '/');
6011 
6012 	/*
6013 	 * Go back to one slash so that cache_fplookup_parse_advance has
6014 	 * something to skip.
6015 	 */
6016 	cnp->cn_nameptr--;
6017 	cache_fpl_pathlen_inc(fpl);
6018 
6019 	/*
6020 	 * cache_fplookup_parse_advance starts from ndp->ni_next
6021 	 */
6022 	ndp->ni_next = cnp->cn_nameptr;
6023 
6024 	/*
6025 	 * See cache_fplookup_dot.
6026 	 */
6027 	fpl->tvp = fpl->dvp;
6028 	fpl->tvp_seqc = fpl->dvp_seqc;
6029 
6030 	return (0);
6031 }
6032 
6033 /*
6034  * Handle trailing slashes (e.g., "foo/").
6035  *
6036  * If a trailing slash is found the terminal vnode must be a directory.
6037  * Regular lookup shortens the path by nulifying the first trailing slash and
6038  * sets the TRAILINGSLASH flag to denote this took place. There are several
6039  * checks on it performed later.
6040  *
6041  * Similarly to spurious slashes, lockless lookup handles this in a speculative
6042  * manner relying on an invariant that a non-directory vnode will get a miss.
6043  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
6044  *
6045  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
6046  * and denotes this is the last path component, which avoids looping back.
6047  *
6048  * Only plain lookups are supported for now to restrict corner cases to handle.
6049  */
6050 static int __noinline
6051 cache_fplookup_trailingslash(struct cache_fpl *fpl)
6052 {
6053 #ifdef INVARIANTS
6054 	size_t ni_pathlen;
6055 #endif
6056 	struct nameidata *ndp;
6057 	struct componentname *cnp;
6058 	struct namecache *ncp;
6059 	struct vnode *tvp;
6060 	char *cn_nameptr_orig, *cn_nameptr_slash;
6061 	seqc_t tvp_seqc;
6062 	u_char nc_flag;
6063 
6064 	ndp = fpl->ndp;
6065 	cnp = fpl->cnp;
6066 	tvp = fpl->tvp;
6067 	tvp_seqc = fpl->tvp_seqc;
6068 
6069 	MPASS(fpl->dvp == fpl->tvp);
6070 	KASSERT(cache_fpl_istrailingslash(fpl),
6071 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
6072 	    cnp->cn_pnbuf));
6073 	KASSERT(cnp->cn_nameptr[0] == '\0',
6074 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
6075 	    cnp->cn_pnbuf));
6076 	KASSERT(cnp->cn_namelen == 0,
6077 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
6078 	    cnp->cn_pnbuf));
6079 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
6080 
6081 	if (cnp->cn_nameiop != LOOKUP) {
6082 		return (cache_fpl_aborted(fpl));
6083 	}
6084 
6085 	if (__predict_false(tvp->v_type != VDIR)) {
6086 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
6087 			return (cache_fpl_aborted(fpl));
6088 		}
6089 		cache_fpl_smr_exit(fpl);
6090 		return (cache_fpl_handled_error(fpl, ENOTDIR));
6091 	}
6092 
6093 	/*
6094 	 * Denote the last component.
6095 	 */
6096 	ndp->ni_next = &cnp->cn_nameptr[0];
6097 	MPASS(cache_fpl_islastcn(ndp));
6098 
6099 	/*
6100 	 * Unwind trailing slashes.
6101 	 */
6102 	cn_nameptr_orig = cnp->cn_nameptr;
6103 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
6104 		cnp->cn_nameptr--;
6105 		if (cnp->cn_nameptr[0] != '/') {
6106 			break;
6107 		}
6108 	}
6109 
6110 	/*
6111 	 * Unwind to the beginning of the path component.
6112 	 *
6113 	 * Note the path may or may not have started with a slash.
6114 	 */
6115 	cn_nameptr_slash = cnp->cn_nameptr;
6116 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
6117 		cnp->cn_nameptr--;
6118 		if (cnp->cn_nameptr[0] == '/') {
6119 			break;
6120 		}
6121 	}
6122 	if (cnp->cn_nameptr[0] == '/') {
6123 		cnp->cn_nameptr++;
6124 	}
6125 
6126 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
6127 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
6128 	cache_fpl_checkpoint(fpl);
6129 
6130 #ifdef INVARIANTS
6131 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
6132 	if (ni_pathlen != fpl->debug.ni_pathlen) {
6133 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
6134 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
6135 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
6136 	}
6137 #endif
6138 
6139 	/*
6140 	 * If this was a "./" lookup the parent directory is already correct.
6141 	 */
6142 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
6143 		return (0);
6144 	}
6145 
6146 	/*
6147 	 * Otherwise we need to look it up.
6148 	 */
6149 	tvp = fpl->tvp;
6150 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
6151 	if (__predict_false(ncp == NULL)) {
6152 		return (cache_fpl_aborted(fpl));
6153 	}
6154 	nc_flag = atomic_load_char(&ncp->nc_flag);
6155 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
6156 		return (cache_fpl_aborted(fpl));
6157 	}
6158 	fpl->dvp = ncp->nc_dvp;
6159 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
6160 	if (seqc_in_modify(fpl->dvp_seqc)) {
6161 		return (cache_fpl_aborted(fpl));
6162 	}
6163 	return (0);
6164 }
6165 
6166 /*
6167  * See the API contract for VOP_FPLOOKUP_VEXEC.
6168  */
6169 static int __noinline
6170 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
6171 {
6172 	struct componentname *cnp;
6173 	struct vnode *dvp;
6174 	seqc_t dvp_seqc;
6175 
6176 	cnp = fpl->cnp;
6177 	dvp = fpl->dvp;
6178 	dvp_seqc = fpl->dvp_seqc;
6179 
6180 	/*
6181 	 * Hack: delayed empty path checking.
6182 	 */
6183 	if (cnp->cn_pnbuf[0] == '\0') {
6184 		return (cache_fplookup_emptypath(fpl));
6185 	}
6186 
6187 	/*
6188 	 * TODO: Due to ignoring trailing slashes lookup will perform a
6189 	 * permission check on the last dir when it should not be doing it.  It
6190 	 * may fail, but said failure should be ignored. It is possible to fix
6191 	 * it up fully without resorting to regular lookup, but for now just
6192 	 * abort.
6193 	 */
6194 	if (cache_fpl_istrailingslash(fpl)) {
6195 		return (cache_fpl_aborted(fpl));
6196 	}
6197 
6198 	/*
6199 	 * Hack: delayed degenerate path checking.
6200 	 */
6201 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
6202 		return (cache_fplookup_degenerate(fpl));
6203 	}
6204 
6205 	/*
6206 	 * Hack: delayed name len checking.
6207 	 */
6208 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
6209 		cache_fpl_smr_exit(fpl);
6210 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
6211 	}
6212 
6213 	/*
6214 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
6215 	 * In such a case we need to return ENOTDIR, but we may happen to get
6216 	 * here with a different error.
6217 	 */
6218 	if (dvp->v_type != VDIR) {
6219 		error = ENOTDIR;
6220 	}
6221 
6222 	/*
6223 	 * Hack: handle O_SEARCH.
6224 	 *
6225 	 * Open Group Base Specifications Issue 7, 2018 edition states:
6226 	 * <quote>
6227 	 * If the access mode of the open file description associated with the
6228 	 * file descriptor is not O_SEARCH, the function shall check whether
6229 	 * directory searches are permitted using the current permissions of
6230 	 * the directory underlying the file descriptor. If the access mode is
6231 	 * O_SEARCH, the function shall not perform the check.
6232 	 * </quote>
6233 	 *
6234 	 * Regular lookup tests for the NOEXECCHECK flag for every path
6235 	 * component to decide whether to do the permission check. However,
6236 	 * since most lookups never have the flag (and when they do it is only
6237 	 * present for the first path component), lockless lookup only acts on
6238 	 * it if there is a permission problem. Here the flag is represented
6239 	 * with a boolean so that we don't have to clear it on the way out.
6240 	 *
6241 	 * For simplicity this always aborts.
6242 	 * TODO: check if this is the first lookup and ignore the permission
6243 	 * problem. Note the flag has to survive fallback (if it happens to be
6244 	 * performed).
6245 	 */
6246 	if (fpl->fsearch) {
6247 		return (cache_fpl_aborted(fpl));
6248 	}
6249 
6250 	switch (error) {
6251 	case EAGAIN:
6252 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6253 			error = cache_fpl_aborted(fpl);
6254 		} else {
6255 			cache_fpl_partial(fpl);
6256 		}
6257 		break;
6258 	default:
6259 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6260 			error = cache_fpl_aborted(fpl);
6261 		} else {
6262 			cache_fpl_smr_exit(fpl);
6263 			cache_fpl_handled_error(fpl, error);
6264 		}
6265 		break;
6266 	}
6267 	return (error);
6268 }
6269 
6270 static int
6271 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
6272 {
6273 	struct nameidata *ndp;
6274 	struct componentname *cnp;
6275 	struct mount *mp;
6276 	int error;
6277 
6278 	ndp = fpl->ndp;
6279 	cnp = fpl->cnp;
6280 
6281 	cache_fpl_checkpoint(fpl);
6282 
6283 	/*
6284 	 * The vnode at hand is almost always stable, skip checking for it.
6285 	 * Worst case this postpones the check towards the end of the iteration
6286 	 * of the main loop.
6287 	 */
6288 	fpl->dvp = dvp;
6289 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
6290 
6291 	mp = atomic_load_ptr(&dvp->v_mount);
6292 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
6293 		return (cache_fpl_aborted(fpl));
6294 	}
6295 
6296 	MPASS(fpl->tvp == NULL);
6297 
6298 	for (;;) {
6299 		cache_fplookup_parse(fpl);
6300 
6301 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
6302 		if (__predict_false(error != 0)) {
6303 			error = cache_fplookup_failed_vexec(fpl, error);
6304 			break;
6305 		}
6306 
6307 		error = cache_fplookup_next(fpl);
6308 		if (__predict_false(cache_fpl_terminated(fpl))) {
6309 			break;
6310 		}
6311 
6312 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
6313 
6314 		if (fpl->tvp->v_type == VLNK) {
6315 			error = cache_fplookup_symlink(fpl);
6316 			if (cache_fpl_terminated(fpl)) {
6317 				break;
6318 			}
6319 		} else {
6320 			if (cache_fpl_islastcn(ndp)) {
6321 				error = cache_fplookup_final(fpl);
6322 				break;
6323 			}
6324 
6325 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
6326 				error = cache_fpl_aborted(fpl);
6327 				break;
6328 			}
6329 
6330 			fpl->dvp = fpl->tvp;
6331 			fpl->dvp_seqc = fpl->tvp_seqc;
6332 			cache_fplookup_parse_advance(fpl);
6333 		}
6334 
6335 		cache_fpl_checkpoint(fpl);
6336 	}
6337 
6338 	return (error);
6339 }
6340 
6341 /*
6342  * Fast path lookup protected with SMR and sequence counters.
6343  *
6344  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
6345  *
6346  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
6347  * outlined at the end.
6348  *
6349  * Traversing from one vnode to another requires atomicity with regard to
6350  * permissions, mount points and of course their relative placement (if you are
6351  * looking up "bar" in "foo" and you found it, it better be in that directory
6352  * at the time).
6353  *
6354  * Normally this is accomplished with locking, but it comes with a significant
6355  * performance hit and is untenable as a fast path even in a moderate core
6356  * count environment (at the time of writing this comment this would be a
6357  * little south of 100).
6358  *
6359  * The same guarantee can be provided with a combination of safe memory
6360  * reclamation and sequence counters instead. If all operations which affect
6361  * the relationship between the current vnode and the one we are looking for
6362  * also modify the counter, we can verify whether all the conditions held as
6363  * we made the jump.
6364  *
6365  * See places which issue vn_seqc_write_begin()/vn_seqc_write_end() for
6366  * operations affected.
6367  *
6368  * Suppose the variable "cnp" contains lookup metadata (the path etc.), then
6369  * locked lookup conceptually looks like this:
6370  *
6371  * // lock the current directory
6372  * vn_lock(dvp);
6373  * for (;;) {
6374  *      // permission check
6375  * 	if (!canlookup(dvp, cnp))
6376  * 	    abort();
6377  * 	// look for the target name inside dvp
6378  *	tvp = findnext(dvp, cnp);
6379  *	vn_lock(tvp);
6380  *	// tvp is still guaranteed to be inside of dvp because of the lock on dvp
6381  *	vn_unlock(dvp);
6382  *      // dvp is unlocked. its state is now arbitrary, but that's fine as we
6383  *      // made the jump while everything relevant was correct, continue with tvp
6384  *      // as the directory to look up names in
6385  *	tvp = dvp;
6386  *	if (last)
6387  *	    break;
6388  *	// if not last loop back and continue until done
6389  * }
6390  * vget(tvp);
6391  * return (tvp);
6392  *
6393  * Lockless lookup replaces locking with sequence counter checks:
6394  *
6395  * vfs_smr_enter();
6396  * dvp_seqc = seqc_read_any(dvp);
6397  * // fail if someone is altering the directory vnode
6398  * if (seqc_in_modify(dvp_seqc))
6399  *     abort();
6400  * for (;;) {
6401  *      // permission check. note it can race, but we will validate the outcome
6402  *      // with a seqc
6403  * 	if (!canlookup_smr(dvp, cnp)) {
6404  * 	    // has dvp changed from under us? if so, the denial may be invalid
6405  *	    if (!seqc_consistent(dvp, dvp_seqc)
6406  * 	        fallback_to_locked();
6407  * 	    // nothing changed, lookup denial is valid
6408  * 	    fail();
6409  * 	}
6410  * 	// look for the target name inside dvp
6411  * 	tvp = findnext(dvp, cnp);
6412  * 	tvp_seqc = seqc_read_any(tvp);
6413  *	// bail if someone is altering the target vnode
6414  * 	if (seqc_in_modify(tvp_seqc))
6415  * 	    fallback_to_locked();
6416  *	// bail if someone is altering the directory vnode
6417  * 	if (!seqc_consistent(dvp, dvp_seqc)
6418  * 	    fallback_to_locked();
6419  * 	// we confirmed neither dvp nor tvp changed while we were making the
6420  * 	// jump to the next component, thus the result is the same as if we
6421  *      // held the lock on dvp and tvp the entire time, continue with tvp
6422  *      // as the directory to look up names in
6423  * 	dvp = tvp;
6424  * 	dvp_seqc = tvp_seqc;
6425  * 	if (last)
6426  * 	    break;
6427  * }
6428  * vget(); // secure the vnode
6429  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6430  *     fallback_to_locked();
6431  * // at this point we know nothing has changed for any parent<->child pair
6432  * // as they were crossed during the lookup, meaning we matched the guarantee
6433  * // of the locked variant
6434  * return (tvp);
6435  *
6436  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6437  * - they are called while within vfs_smr protection which they must never exit
6438  * - EAGAIN can be returned to denote checking could not be performed, it is
6439  *   always valid to return it
6440  * - if the sequence counter has not changed the result must be valid
6441  * - if the sequence counter has changed both false positives and false negatives
6442  *   are permitted (since the result will be rejected later)
6443  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6444  *
6445  * Caveats to watch out for:
6446  * - vnodes are passed unlocked and unreferenced with nothing stopping
6447  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6448  *   to use atomic_load_ptr to fetch it.
6449  * - the aforementioned object can also get freed, meaning absent other means it
6450  *   should be protected with vfs_smr
6451  * - either safely checking permissions as they are modified or guaranteeing
6452  *   their stability is left to the routine
6453  */
6454 int
6455 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6456     struct pwd **pwdp)
6457 {
6458 	struct cache_fpl fpl;
6459 	struct pwd *pwd;
6460 	struct vnode *dvp;
6461 	struct componentname *cnp;
6462 	int error;
6463 
6464 	fpl.status = CACHE_FPL_STATUS_UNSET;
6465 	fpl.in_smr = false;
6466 	fpl.ndp = ndp;
6467 	fpl.cnp = cnp = &ndp->ni_cnd;
6468 	MPASS(ndp->ni_lcf == 0);
6469 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6470 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6471 	    cnp->cn_flags));
6472 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6473 	MPASS(ndp->ni_resflags == 0);
6474 
6475 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6476 		*status = fpl.status;
6477 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6478 		return (EOPNOTSUPP);
6479 	}
6480 
6481 	cache_fpl_checkpoint_outer(&fpl);
6482 
6483 	cache_fpl_smr_enter_initial(&fpl);
6484 #ifdef INVARIANTS
6485 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6486 #endif
6487 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6488 	fpl.fsearch = false;
6489 	fpl.tvp = NULL; /* for degenerate path handling */
6490 	fpl.pwd = pwdp;
6491 	pwd = pwd_get_smr();
6492 	*(fpl.pwd) = pwd;
6493 	namei_setup_rootdir(ndp, cnp, pwd);
6494 	ndp->ni_topdir = pwd->pwd_jdir;
6495 
6496 	if (cnp->cn_pnbuf[0] == '/') {
6497 		dvp = cache_fpl_handle_root(&fpl);
6498 		ndp->ni_resflags = NIRES_ABS;
6499 	} else {
6500 		if (ndp->ni_dirfd == AT_FDCWD) {
6501 			dvp = pwd->pwd_cdir;
6502 		} else {
6503 			error = cache_fplookup_dirfd(&fpl, &dvp);
6504 			if (__predict_false(error != 0)) {
6505 				goto out;
6506 			}
6507 		}
6508 	}
6509 
6510 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6511 	error = cache_fplookup_impl(dvp, &fpl);
6512 out:
6513 	cache_fpl_smr_assert_not_entered(&fpl);
6514 	cache_fpl_assert_status(&fpl);
6515 	*status = fpl.status;
6516 	SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6517 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6518 		MPASS(error != CACHE_FPL_FAILED);
6519 		SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6520 		    ndp);
6521 		if (error != 0) {
6522 			cache_fpl_cleanup_cnp(fpl.cnp);
6523 			MPASS(fpl.dvp == NULL);
6524 			MPASS(fpl.tvp == NULL);
6525 		}
6526 		ndp->ni_dvp = fpl.dvp;
6527 		ndp->ni_vp = fpl.tvp;
6528 	}
6529 	return (error);
6530 }
6531