xref: /linux/fs/btrfs/block-rsv.c (revision 0eb4aaa230d725fa9b1cd758c0f17abca5597af6)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9 #include "fs.h"
10 #include "accessors.h"
11 
12 /*
13  * HOW DO BLOCK RESERVES WORK
14  *
15  *   Think of block_rsv's as buckets for logically grouped metadata
16  *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
17  *   how large we want our block rsv to be, ->reserved is how much space is
18  *   currently reserved for this block reserve.
19  *
20  *   ->failfast exists for the truncate case, and is described below.
21  *
22  * NORMAL OPERATION
23  *
24  *   -> Reserve
25  *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
26  *
27  *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
28  *     accounted for in space_info->bytes_may_use, and then add the bytes to
29  *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
30  *
31  *     ->size is an over-estimation of how much we may use for a particular
32  *     operation.
33  *
34  *   -> Use
35  *     Entrance: btrfs_use_block_rsv
36  *
37  *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
38  *     to determine the appropriate block_rsv to use, and then verify that
39  *     ->reserved has enough space for our tree block allocation.  Once
40  *     successful we subtract fs_info->nodesize from ->reserved.
41  *
42  *   -> Finish
43  *     Entrance: btrfs_block_rsv_release
44  *
45  *     We are finished with our operation, subtract our individual reservation
46  *     from ->size, and then subtract ->size from ->reserved and free up the
47  *     excess if there is any.
48  *
49  *     There is some logic here to refill the delayed refs rsv or the global rsv
50  *     as needed, otherwise the excess is subtracted from
51  *     space_info->bytes_may_use.
52  *
53  * TYPES OF BLOCK RESERVES
54  *
55  * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
56  *   These behave normally, as described above, just within the confines of the
57  *   lifetime of their particular operation (transaction for the whole trans
58  *   handle lifetime, for example).
59  *
60  * BLOCK_RSV_GLOBAL
61  *   It is impossible to properly account for all the space that may be required
62  *   to make our extent tree updates.  This block reserve acts as an overflow
63  *   buffer in case our delayed refs reserve does not reserve enough space to
64  *   update the extent tree.
65  *
66  *   We can steal from this in some cases as well, notably on evict() or
67  *   truncate() in order to help users recover from ENOSPC conditions.
68  *
69  * BLOCK_RSV_DELALLOC
70  *   The individual item sizes are determined by the per-inode size
71  *   calculations, which are described with the delalloc code.  This is pretty
72  *   straightforward, it's just the calculation of ->size encodes a lot of
73  *   different items, and thus it gets used when updating inodes, inserting file
74  *   extents, and inserting checksums.
75  *
76  * BLOCK_RSV_DELREFS
77  *   We keep a running tally of how many delayed refs we have on the system.
78  *   We assume each one of these delayed refs are going to use a full
79  *   reservation.  We use the transaction items and pre-reserve space for every
80  *   operation, and use this reservation to refill any gap between ->size and
81  *   ->reserved that may exist.
82  *
83  *   From there it's straightforward, removing a delayed ref means we remove its
84  *   count from ->size and free up reservations as necessary.  Since this is
85  *   the most dynamic block reserve in the system, we will try to refill this
86  *   block reserve first with any excess returned by any other block reserve.
87  *
88  * BLOCK_RSV_EMPTY
89  *   This is the fallback block reserve to make us try to reserve space if we
90  *   don't have a specific bucket for this allocation.  It is mostly used for
91  *   updating the device tree and such, since that is a separate pool we're
92  *   content to just reserve space from the space_info on demand.
93  *
94  * BLOCK_RSV_TEMP
95  *   This is used by things like truncate and iput.  We will temporarily
96  *   allocate a block reserve, set it to some size, and then truncate bytes
97  *   until we have no space left.  With ->failfast set we'll simply return
98  *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
99  *   to make a new reservation.  This is because these operations are
100  *   unbounded, so we want to do as much work as we can, and then back off and
101  *   re-reserve.
102  */
103 
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes,u64 * qgroup_to_release_ret)104 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
105 				    struct btrfs_block_rsv *block_rsv,
106 				    struct btrfs_block_rsv *dest, u64 num_bytes,
107 				    u64 *qgroup_to_release_ret)
108 {
109 	struct btrfs_space_info *space_info = block_rsv->space_info;
110 	u64 qgroup_to_release = 0;
111 	u64 ret;
112 
113 	spin_lock(&block_rsv->lock);
114 	if (num_bytes == (u64)-1) {
115 		num_bytes = block_rsv->size;
116 		qgroup_to_release = block_rsv->qgroup_rsv_size;
117 	}
118 	block_rsv->size -= num_bytes;
119 	if (block_rsv->reserved >= block_rsv->size) {
120 		num_bytes = block_rsv->reserved - block_rsv->size;
121 		block_rsv->reserved = block_rsv->size;
122 		block_rsv->full = true;
123 	} else {
124 		num_bytes = 0;
125 	}
126 	if (qgroup_to_release_ret &&
127 	    block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
128 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
129 				    block_rsv->qgroup_rsv_size;
130 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
131 	} else {
132 		qgroup_to_release = 0;
133 	}
134 	spin_unlock(&block_rsv->lock);
135 
136 	ret = num_bytes;
137 	if (num_bytes > 0) {
138 		if (dest) {
139 			spin_lock(&dest->lock);
140 			if (!dest->full) {
141 				u64 bytes_to_add;
142 
143 				bytes_to_add = dest->size - dest->reserved;
144 				bytes_to_add = min(num_bytes, bytes_to_add);
145 				dest->reserved += bytes_to_add;
146 				if (dest->reserved >= dest->size)
147 					dest->full = true;
148 				num_bytes -= bytes_to_add;
149 			}
150 			spin_unlock(&dest->lock);
151 		}
152 		if (num_bytes)
153 			btrfs_space_info_free_bytes_may_use(space_info, num_bytes);
154 	}
155 	if (qgroup_to_release_ret)
156 		*qgroup_to_release_ret = qgroup_to_release;
157 	return ret;
158 }
159 
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes,bool update_size)160 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
161 			    struct btrfs_block_rsv *dst, u64 num_bytes,
162 			    bool update_size)
163 {
164 	int ret;
165 
166 	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
167 	if (ret)
168 		return ret;
169 
170 	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
171 	return 0;
172 }
173 
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,enum btrfs_rsv_type type)174 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
175 {
176 	memset(rsv, 0, sizeof(*rsv));
177 	spin_lock_init(&rsv->lock);
178 	rsv->type = type;
179 }
180 
btrfs_init_metadata_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv,enum btrfs_rsv_type type)181 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
182 				   struct btrfs_block_rsv *rsv,
183 				   enum btrfs_rsv_type type)
184 {
185 	btrfs_init_block_rsv(rsv, type);
186 	rsv->space_info = btrfs_find_space_info(fs_info,
187 					    BTRFS_BLOCK_GROUP_METADATA);
188 }
189 
btrfs_alloc_block_rsv(struct btrfs_fs_info * fs_info,enum btrfs_rsv_type type)190 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
191 					      enum btrfs_rsv_type type)
192 {
193 	struct btrfs_block_rsv *block_rsv;
194 
195 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
196 	if (!block_rsv)
197 		return NULL;
198 
199 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
200 	return block_rsv;
201 }
202 
btrfs_free_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)203 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
204 			  struct btrfs_block_rsv *rsv)
205 {
206 	if (!rsv)
207 		return;
208 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
209 	kfree(rsv);
210 }
211 
btrfs_block_rsv_add(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)212 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
213 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
214 			enum btrfs_reserve_flush_enum flush)
215 {
216 	int ret;
217 
218 	if (num_bytes == 0)
219 		return 0;
220 
221 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
222 					   num_bytes, flush);
223 	if (!ret)
224 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
225 
226 	return ret;
227 }
228 
btrfs_block_rsv_check(struct btrfs_block_rsv * block_rsv,int min_percent)229 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
230 {
231 	u64 num_bytes = 0;
232 	int ret = -ENOSPC;
233 
234 	spin_lock(&block_rsv->lock);
235 	num_bytes = mult_perc(block_rsv->size, min_percent);
236 	if (block_rsv->reserved >= num_bytes)
237 		ret = 0;
238 	spin_unlock(&block_rsv->lock);
239 
240 	return ret;
241 }
242 
btrfs_block_rsv_refill(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)243 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
244 			   struct btrfs_block_rsv *block_rsv, u64 num_bytes,
245 			   enum btrfs_reserve_flush_enum flush)
246 {
247 	int ret = -ENOSPC;
248 
249 	if (!block_rsv)
250 		return 0;
251 
252 	spin_lock(&block_rsv->lock);
253 	if (block_rsv->reserved >= num_bytes)
254 		ret = 0;
255 	else
256 		num_bytes -= block_rsv->reserved;
257 	spin_unlock(&block_rsv->lock);
258 
259 	if (!ret)
260 		return 0;
261 
262 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
263 					   num_bytes, flush);
264 	if (!ret) {
265 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
266 		return 0;
267 	}
268 
269 	return ret;
270 }
271 
btrfs_block_rsv_release(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 num_bytes,u64 * qgroup_to_release)272 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
273 			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
274 			    u64 *qgroup_to_release)
275 {
276 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
277 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
278 	struct btrfs_block_rsv *target = NULL;
279 
280 	/*
281 	 * If we are a delayed block reserve then push to the global rsv,
282 	 * otherwise dump into the global delayed reserve if it is not full.
283 	 */
284 	if (block_rsv->type == BTRFS_BLOCK_RSV_DELOPS)
285 		target = global_rsv;
286 	else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
287 		target = delayed_rsv;
288 
289 	if (target && block_rsv->space_info != target->space_info)
290 		target = NULL;
291 
292 	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
293 				       qgroup_to_release);
294 }
295 
btrfs_block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)296 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
297 {
298 	int ret = -ENOSPC;
299 
300 	spin_lock(&block_rsv->lock);
301 	if (block_rsv->reserved >= num_bytes) {
302 		block_rsv->reserved -= num_bytes;
303 		if (block_rsv->reserved < block_rsv->size)
304 			block_rsv->full = false;
305 		ret = 0;
306 	}
307 	spin_unlock(&block_rsv->lock);
308 	return ret;
309 }
310 
btrfs_block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,bool update_size)311 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
312 			       u64 num_bytes, bool update_size)
313 {
314 	spin_lock(&block_rsv->lock);
315 	block_rsv->reserved += num_bytes;
316 	if (update_size)
317 		block_rsv->size += num_bytes;
318 	else if (block_rsv->reserved >= block_rsv->size)
319 		block_rsv->full = true;
320 	spin_unlock(&block_rsv->lock);
321 }
322 
btrfs_update_global_block_rsv(struct btrfs_fs_info * fs_info)323 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
324 {
325 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
326 	struct btrfs_space_info *sinfo = block_rsv->space_info;
327 	struct btrfs_root *root, *tmp;
328 	u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
329 	unsigned int min_items = 1;
330 
331 	/*
332 	 * The global block rsv is based on the size of the extent tree, the
333 	 * checksum tree and the root tree.  If the fs is empty we want to set
334 	 * it to a minimal amount for safety.
335 	 *
336 	 * We also are going to need to modify the minimum of the tree root and
337 	 * any global roots we could touch.
338 	 */
339 	read_lock(&fs_info->global_root_lock);
340 	rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
341 					     rb_node) {
342 		if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID ||
343 		    btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
344 		    btrfs_root_id(root) == BTRFS_FREE_SPACE_TREE_OBJECTID) {
345 			num_bytes += btrfs_root_used(&root->root_item);
346 			min_items++;
347 		}
348 	}
349 	read_unlock(&fs_info->global_root_lock);
350 
351 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
352 		num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item);
353 		min_items++;
354 	}
355 
356 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
357 		num_bytes += btrfs_root_used(&fs_info->stripe_root->root_item);
358 		min_items++;
359 	}
360 
361 	/*
362 	 * But we also want to reserve enough space so we can do the fallback
363 	 * global reserve for an unlink, which is an additional
364 	 * BTRFS_UNLINK_METADATA_UNITS items.
365 	 *
366 	 * But we also need space for the delayed ref updates from the unlink,
367 	 * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for
368 	 * each unlink metadata item.
369 	 */
370 	min_items += BTRFS_UNLINK_METADATA_UNITS;
371 
372 	num_bytes = max_t(u64, num_bytes,
373 			  btrfs_calc_insert_metadata_size(fs_info, min_items) +
374 			  btrfs_calc_delayed_ref_bytes(fs_info,
375 					       BTRFS_UNLINK_METADATA_UNITS));
376 
377 	spin_lock(&sinfo->lock);
378 	spin_lock(&block_rsv->lock);
379 
380 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
381 
382 	if (block_rsv->reserved < block_rsv->size) {
383 		num_bytes = block_rsv->size - block_rsv->reserved;
384 		btrfs_space_info_update_bytes_may_use(sinfo, num_bytes);
385 		block_rsv->reserved = block_rsv->size;
386 	} else if (block_rsv->reserved > block_rsv->size) {
387 		num_bytes = block_rsv->reserved - block_rsv->size;
388 		btrfs_space_info_update_bytes_may_use(sinfo, -num_bytes);
389 		block_rsv->reserved = block_rsv->size;
390 		btrfs_try_granting_tickets(fs_info, sinfo);
391 	}
392 
393 	block_rsv->full = (block_rsv->reserved == block_rsv->size);
394 
395 	if (block_rsv->size >= sinfo->total_bytes)
396 		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
397 	spin_unlock(&block_rsv->lock);
398 	spin_unlock(&sinfo->lock);
399 }
400 
btrfs_init_root_block_rsv(struct btrfs_root * root)401 void btrfs_init_root_block_rsv(struct btrfs_root *root)
402 {
403 	struct btrfs_fs_info *fs_info = root->fs_info;
404 
405 	switch (btrfs_root_id(root)) {
406 	case BTRFS_CSUM_TREE_OBJECTID:
407 	case BTRFS_EXTENT_TREE_OBJECTID:
408 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
409 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
410 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
411 		root->block_rsv = &fs_info->delayed_refs_rsv;
412 		break;
413 	case BTRFS_ROOT_TREE_OBJECTID:
414 	case BTRFS_DEV_TREE_OBJECTID:
415 	case BTRFS_QUOTA_TREE_OBJECTID:
416 		root->block_rsv = &fs_info->global_block_rsv;
417 		break;
418 	case BTRFS_CHUNK_TREE_OBJECTID:
419 		root->block_rsv = &fs_info->chunk_block_rsv;
420 		break;
421 	default:
422 		root->block_rsv = NULL;
423 		break;
424 	}
425 }
426 
btrfs_init_global_block_rsv(struct btrfs_fs_info * fs_info)427 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
428 {
429 	struct btrfs_space_info *space_info;
430 
431 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
432 	fs_info->chunk_block_rsv.space_info = space_info;
433 
434 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
435 	fs_info->global_block_rsv.space_info = space_info;
436 	fs_info->trans_block_rsv.space_info = space_info;
437 	fs_info->empty_block_rsv.space_info = space_info;
438 	fs_info->delayed_block_rsv.space_info = space_info;
439 	fs_info->delayed_refs_rsv.space_info = space_info;
440 
441 	btrfs_update_global_block_rsv(fs_info);
442 }
443 
btrfs_release_global_block_rsv(struct btrfs_fs_info * fs_info)444 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
445 {
446 	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
447 				NULL);
448 	WARN_ON(fs_info->trans_block_rsv.size > 0);
449 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
450 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
451 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
452 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
453 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
454 	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
455 	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
456 }
457 
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)458 static struct btrfs_block_rsv *get_block_rsv(
459 					const struct btrfs_trans_handle *trans,
460 					const struct btrfs_root *root)
461 {
462 	struct btrfs_fs_info *fs_info = root->fs_info;
463 	struct btrfs_block_rsv *block_rsv = NULL;
464 
465 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
466 	    (root == fs_info->uuid_root) ||
467 	    (trans->adding_csums && btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID))
468 		block_rsv = trans->block_rsv;
469 
470 	if (!block_rsv)
471 		block_rsv = root->block_rsv;
472 
473 	if (!block_rsv)
474 		block_rsv = &fs_info->empty_block_rsv;
475 
476 	return block_rsv;
477 }
478 
btrfs_use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)479 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
480 					    struct btrfs_root *root,
481 					    u32 blocksize)
482 {
483 	struct btrfs_fs_info *fs_info = root->fs_info;
484 	struct btrfs_block_rsv *block_rsv;
485 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
486 	int ret;
487 	bool global_updated = false;
488 
489 	block_rsv = get_block_rsv(trans, root);
490 
491 	if (unlikely(btrfs_block_rsv_size(block_rsv) == 0))
492 		goto try_reserve;
493 again:
494 	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
495 	if (!ret)
496 		return block_rsv;
497 
498 	if (block_rsv->failfast)
499 		return ERR_PTR(ret);
500 
501 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
502 		global_updated = true;
503 		btrfs_update_global_block_rsv(fs_info);
504 		goto again;
505 	}
506 
507 	/*
508 	 * The global reserve still exists to save us from ourselves, so don't
509 	 * warn_on if we are short on our delayed refs reserve.
510 	 */
511 	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
512 	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
513 		static DEFINE_RATELIMIT_STATE(_rs,
514 				DEFAULT_RATELIMIT_INTERVAL * 10,
515 				/*DEFAULT_RATELIMIT_BURST*/ 1);
516 		if (__ratelimit(&_rs))
517 			WARN(1, KERN_DEBUG
518 				"BTRFS: block rsv %d returned %d\n",
519 				block_rsv->type, ret);
520 	}
521 try_reserve:
522 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
523 					   blocksize, BTRFS_RESERVE_NO_FLUSH);
524 	if (!ret)
525 		return block_rsv;
526 	/*
527 	 * If we couldn't reserve metadata bytes try and use some from
528 	 * the global reserve if its space type is the same as the global
529 	 * reservation.
530 	 */
531 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
532 	    block_rsv->space_info == global_rsv->space_info) {
533 		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
534 		if (!ret)
535 			return global_rsv;
536 	}
537 
538 	/*
539 	 * All hope is lost, but of course our reservations are overly
540 	 * pessimistic, so instead of possibly having an ENOSPC abort here, try
541 	 * one last time to force a reservation if there's enough actual space
542 	 * on disk to make the reservation.
543 	 */
544 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, blocksize,
545 					   BTRFS_RESERVE_FLUSH_EMERGENCY);
546 	if (!ret)
547 		return block_rsv;
548 
549 	return ERR_PTR(ret);
550 }
551 
btrfs_check_trunc_cache_free_space(const struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)552 int btrfs_check_trunc_cache_free_space(const struct btrfs_fs_info *fs_info,
553 				       struct btrfs_block_rsv *rsv)
554 {
555 	u64 needed_bytes;
556 	int ret;
557 
558 	/* 1 for slack space, 1 for updating the inode */
559 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
560 		btrfs_calc_metadata_size(fs_info, 1);
561 
562 	spin_lock(&rsv->lock);
563 	if (rsv->reserved < needed_bytes)
564 		ret = -ENOSPC;
565 	else
566 		ret = 0;
567 	spin_unlock(&rsv->lock);
568 	return ret;
569 }
570