1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26 * THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #define BXE_DRIVER_VERSION "1.78.91"
31
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40
41 /*
42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43 * explicitly here for older kernels that don't include this changeset.
44 */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64 CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49
50 /*
51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52 * here as zero(0) for older kernels that don't include this changeset
53 * thereby masking the functionality.
54 */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59
60 #define BXE_DEF_SB_ATT_IDX 0x0001
61 #define BXE_DEF_SB_IDX 0x0002
62
63 /*
64 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
65 * function HW initialization.
66 */
67 #define FLR_WAIT_USEC 10000 /* 10 msecs */
68 #define FLR_WAIT_INTERVAL 50 /* usecs */
69 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
70
71 struct pbf_pN_buf_regs {
72 int pN;
73 uint32_t init_crd;
74 uint32_t crd;
75 uint32_t crd_freed;
76 };
77
78 struct pbf_pN_cmd_regs {
79 int pN;
80 uint32_t lines_occup;
81 uint32_t lines_freed;
82 };
83
84 /*
85 * PCI Device ID Table used by bxe_probe().
86 */
87 #define BXE_DEVDESC_MAX 64
88 static struct bxe_device_type bxe_devs[] = {
89 {
90 BRCM_VENDORID,
91 CHIP_NUM_57710,
92 PCI_ANY_ID, PCI_ANY_ID,
93 "QLogic NetXtreme II BCM57710 10GbE"
94 },
95 {
96 BRCM_VENDORID,
97 CHIP_NUM_57711,
98 PCI_ANY_ID, PCI_ANY_ID,
99 "QLogic NetXtreme II BCM57711 10GbE"
100 },
101 {
102 BRCM_VENDORID,
103 CHIP_NUM_57711E,
104 PCI_ANY_ID, PCI_ANY_ID,
105 "QLogic NetXtreme II BCM57711E 10GbE"
106 },
107 {
108 BRCM_VENDORID,
109 CHIP_NUM_57712,
110 PCI_ANY_ID, PCI_ANY_ID,
111 "QLogic NetXtreme II BCM57712 10GbE"
112 },
113 {
114 BRCM_VENDORID,
115 CHIP_NUM_57712_MF,
116 PCI_ANY_ID, PCI_ANY_ID,
117 "QLogic NetXtreme II BCM57712 MF 10GbE"
118 },
119 {
120 BRCM_VENDORID,
121 CHIP_NUM_57800,
122 PCI_ANY_ID, PCI_ANY_ID,
123 "QLogic NetXtreme II BCM57800 10GbE"
124 },
125 {
126 BRCM_VENDORID,
127 CHIP_NUM_57800_MF,
128 PCI_ANY_ID, PCI_ANY_ID,
129 "QLogic NetXtreme II BCM57800 MF 10GbE"
130 },
131 {
132 BRCM_VENDORID,
133 CHIP_NUM_57810,
134 PCI_ANY_ID, PCI_ANY_ID,
135 "QLogic NetXtreme II BCM57810 10GbE"
136 },
137 {
138 BRCM_VENDORID,
139 CHIP_NUM_57810_MF,
140 PCI_ANY_ID, PCI_ANY_ID,
141 "QLogic NetXtreme II BCM57810 MF 10GbE"
142 },
143 {
144 BRCM_VENDORID,
145 CHIP_NUM_57811,
146 PCI_ANY_ID, PCI_ANY_ID,
147 "QLogic NetXtreme II BCM57811 10GbE"
148 },
149 {
150 BRCM_VENDORID,
151 CHIP_NUM_57811_MF,
152 PCI_ANY_ID, PCI_ANY_ID,
153 "QLogic NetXtreme II BCM57811 MF 10GbE"
154 },
155 {
156 BRCM_VENDORID,
157 CHIP_NUM_57840_4_10,
158 PCI_ANY_ID, PCI_ANY_ID,
159 "QLogic NetXtreme II BCM57840 4x10GbE"
160 },
161 {
162 QLOGIC_VENDORID,
163 CHIP_NUM_57840_4_10,
164 PCI_ANY_ID, PCI_ANY_ID,
165 "QLogic NetXtreme II BCM57840 4x10GbE"
166 },
167 {
168 BRCM_VENDORID,
169 CHIP_NUM_57840_2_20,
170 PCI_ANY_ID, PCI_ANY_ID,
171 "QLogic NetXtreme II BCM57840 2x20GbE"
172 },
173 {
174 BRCM_VENDORID,
175 CHIP_NUM_57840_MF,
176 PCI_ANY_ID, PCI_ANY_ID,
177 "QLogic NetXtreme II BCM57840 MF 10GbE"
178 },
179 {
180 0, 0, 0, 0, NULL
181 }
182 };
183
184 MALLOC_DECLARE(M_BXE_ILT);
185 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
186
187 /*
188 * FreeBSD device entry points.
189 */
190 static int bxe_probe(device_t);
191 static int bxe_attach(device_t);
192 static int bxe_detach(device_t);
193 static int bxe_shutdown(device_t);
194
195
196 /*
197 * FreeBSD KLD module/device interface event handler method.
198 */
199 static device_method_t bxe_methods[] = {
200 /* Device interface (device_if.h) */
201 DEVMETHOD(device_probe, bxe_probe),
202 DEVMETHOD(device_attach, bxe_attach),
203 DEVMETHOD(device_detach, bxe_detach),
204 DEVMETHOD(device_shutdown, bxe_shutdown),
205 /* Bus interface (bus_if.h) */
206 DEVMETHOD(bus_print_child, bus_generic_print_child),
207 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
208 KOBJMETHOD_END
209 };
210
211 /*
212 * FreeBSD KLD Module data declaration
213 */
214 static driver_t bxe_driver = {
215 "bxe", /* module name */
216 bxe_methods, /* event handler */
217 sizeof(struct bxe_softc) /* extra data */
218 };
219
220 MODULE_DEPEND(bxe, pci, 1, 1, 1);
221 MODULE_DEPEND(bxe, ether, 1, 1, 1);
222 DRIVER_MODULE(bxe, pci, bxe_driver, 0, 0);
223
224 DEBUGNET_DEFINE(bxe);
225
226 /* resources needed for unloading a previously loaded device */
227
228 #define BXE_PREV_WAIT_NEEDED 1
229 struct mtx bxe_prev_mtx;
230 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
231 struct bxe_prev_list_node {
232 LIST_ENTRY(bxe_prev_list_node) node;
233 uint8_t bus;
234 uint8_t slot;
235 uint8_t path;
236 uint8_t aer; /* XXX automatic error recovery */
237 uint8_t undi;
238 };
239 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
240
241 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
242
243 /* Tunable device values... */
244
245 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
246 "bxe driver parameters");
247
248 /* Debug */
249 unsigned long bxe_debug = 0;
250 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
251 &bxe_debug, 0, "Debug logging mode");
252
253 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
254 static int bxe_interrupt_mode = INTR_MODE_MSIX;
255 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
256 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
257
258 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
259 static int bxe_queue_count = 4;
260 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
261 &bxe_queue_count, 0, "Multi-Queue queue count");
262
263 /* max number of buffers per queue (default RX_BD_USABLE) */
264 static int bxe_max_rx_bufs = 0;
265 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
266 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
267
268 /* Host interrupt coalescing RX tick timer (usecs) */
269 static int bxe_hc_rx_ticks = 25;
270 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
271 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
272
273 /* Host interrupt coalescing TX tick timer (usecs) */
274 static int bxe_hc_tx_ticks = 50;
275 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
276 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
277
278 /* Maximum number of Rx packets to process at a time */
279 static int bxe_rx_budget = 0xffffffff;
280 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_RDTUN,
281 &bxe_rx_budget, 0, "Rx processing budget");
282
283 /* Maximum LRO aggregation size */
284 static int bxe_max_aggregation_size = 0;
285 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_RDTUN,
286 &bxe_max_aggregation_size, 0, "max aggregation size");
287
288 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
289 static int bxe_mrrs = -1;
290 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
291 &bxe_mrrs, 0, "PCIe maximum read request size");
292
293 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
294 static int bxe_autogreeen = 0;
295 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
296 &bxe_autogreeen, 0, "AutoGrEEEn support");
297
298 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
299 static int bxe_udp_rss = 0;
300 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
301 &bxe_udp_rss, 0, "UDP RSS support");
302
303
304 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
305
306 #define STATS_OFFSET32(stat_name) \
307 (offsetof(struct bxe_eth_stats, stat_name) / 4)
308
309 #define Q_STATS_OFFSET32(stat_name) \
310 (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
311
312 static const struct {
313 uint32_t offset;
314 uint32_t size;
315 uint32_t flags;
316 #define STATS_FLAGS_PORT 1
317 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */
318 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
319 char string[STAT_NAME_LEN];
320 } bxe_eth_stats_arr[] = {
321 { STATS_OFFSET32(total_bytes_received_hi),
322 8, STATS_FLAGS_BOTH, "rx_bytes" },
323 { STATS_OFFSET32(error_bytes_received_hi),
324 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
325 { STATS_OFFSET32(total_unicast_packets_received_hi),
326 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
327 { STATS_OFFSET32(total_multicast_packets_received_hi),
328 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
329 { STATS_OFFSET32(total_broadcast_packets_received_hi),
330 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
331 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
332 8, STATS_FLAGS_PORT, "rx_crc_errors" },
333 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
334 8, STATS_FLAGS_PORT, "rx_align_errors" },
335 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
336 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
337 { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
338 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
339 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
340 8, STATS_FLAGS_PORT, "rx_fragments" },
341 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
342 8, STATS_FLAGS_PORT, "rx_jabbers" },
343 { STATS_OFFSET32(no_buff_discard_hi),
344 8, STATS_FLAGS_BOTH, "rx_discards" },
345 { STATS_OFFSET32(mac_filter_discard),
346 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
347 { STATS_OFFSET32(mf_tag_discard),
348 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
349 { STATS_OFFSET32(pfc_frames_received_hi),
350 8, STATS_FLAGS_PORT, "pfc_frames_received" },
351 { STATS_OFFSET32(pfc_frames_sent_hi),
352 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
353 { STATS_OFFSET32(brb_drop_hi),
354 8, STATS_FLAGS_PORT, "rx_brb_discard" },
355 { STATS_OFFSET32(brb_truncate_hi),
356 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
357 { STATS_OFFSET32(pause_frames_received_hi),
358 8, STATS_FLAGS_PORT, "rx_pause_frames" },
359 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
360 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
361 { STATS_OFFSET32(nig_timer_max),
362 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
363 { STATS_OFFSET32(total_bytes_transmitted_hi),
364 8, STATS_FLAGS_BOTH, "tx_bytes" },
365 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
366 8, STATS_FLAGS_PORT, "tx_error_bytes" },
367 { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
368 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
369 { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
370 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
371 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
372 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
373 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
374 8, STATS_FLAGS_PORT, "tx_mac_errors" },
375 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
376 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
377 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
378 8, STATS_FLAGS_PORT, "tx_single_collisions" },
379 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
380 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
381 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
382 8, STATS_FLAGS_PORT, "tx_deferred" },
383 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
384 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
385 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
386 8, STATS_FLAGS_PORT, "tx_late_collisions" },
387 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
388 8, STATS_FLAGS_PORT, "tx_total_collisions" },
389 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
390 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
391 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
392 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
393 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
394 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
395 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
396 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
397 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
398 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
399 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
400 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
401 { STATS_OFFSET32(etherstatspktsover1522octets_hi),
402 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
403 { STATS_OFFSET32(pause_frames_sent_hi),
404 8, STATS_FLAGS_PORT, "tx_pause_frames" },
405 { STATS_OFFSET32(total_tpa_aggregations_hi),
406 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
407 { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
408 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
409 { STATS_OFFSET32(total_tpa_bytes_hi),
410 8, STATS_FLAGS_FUNC, "tpa_bytes"},
411 { STATS_OFFSET32(eee_tx_lpi),
412 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
413 { STATS_OFFSET32(rx_calls),
414 4, STATS_FLAGS_FUNC, "rx_calls"},
415 { STATS_OFFSET32(rx_pkts),
416 4, STATS_FLAGS_FUNC, "rx_pkts"},
417 { STATS_OFFSET32(rx_tpa_pkts),
418 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
419 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
420 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
421 { STATS_OFFSET32(rx_bxe_service_rxsgl),
422 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
423 { STATS_OFFSET32(rx_jumbo_sge_pkts),
424 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
425 { STATS_OFFSET32(rx_soft_errors),
426 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
427 { STATS_OFFSET32(rx_hw_csum_errors),
428 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
429 { STATS_OFFSET32(rx_ofld_frames_csum_ip),
430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
431 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
432 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
433 { STATS_OFFSET32(rx_budget_reached),
434 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
435 { STATS_OFFSET32(tx_pkts),
436 4, STATS_FLAGS_FUNC, "tx_pkts"},
437 { STATS_OFFSET32(tx_soft_errors),
438 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
439 { STATS_OFFSET32(tx_ofld_frames_csum_ip),
440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
441 { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
443 { STATS_OFFSET32(tx_ofld_frames_csum_udp),
444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
445 { STATS_OFFSET32(tx_ofld_frames_lso),
446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
447 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
448 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
449 { STATS_OFFSET32(tx_encap_failures),
450 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
451 { STATS_OFFSET32(tx_hw_queue_full),
452 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
453 { STATS_OFFSET32(tx_hw_max_queue_depth),
454 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
455 { STATS_OFFSET32(tx_dma_mapping_failure),
456 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
457 { STATS_OFFSET32(tx_max_drbr_queue_depth),
458 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
459 { STATS_OFFSET32(tx_window_violation_std),
460 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
461 { STATS_OFFSET32(tx_window_violation_tso),
462 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
463 { STATS_OFFSET32(tx_chain_lost_mbuf),
464 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
465 { STATS_OFFSET32(tx_frames_deferred),
466 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
467 { STATS_OFFSET32(tx_queue_xoff),
468 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
469 { STATS_OFFSET32(mbuf_defrag_attempts),
470 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
471 { STATS_OFFSET32(mbuf_defrag_failures),
472 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
473 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
475 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
476 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
477 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
479 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
480 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
481 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
483 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
484 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
485 { STATS_OFFSET32(mbuf_alloc_tx),
486 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
487 { STATS_OFFSET32(mbuf_alloc_rx),
488 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
489 { STATS_OFFSET32(mbuf_alloc_sge),
490 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
491 { STATS_OFFSET32(mbuf_alloc_tpa),
492 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
493 { STATS_OFFSET32(tx_queue_full_return),
494 4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
495 { STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
496 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
497 { STATS_OFFSET32(tx_request_link_down_failures),
498 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
499 { STATS_OFFSET32(bd_avail_too_less_failures),
500 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
501 { STATS_OFFSET32(tx_mq_not_empty),
502 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
503 { STATS_OFFSET32(nsegs_path1_errors),
504 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
505 { STATS_OFFSET32(nsegs_path2_errors),
506 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
507
508
509 };
510
511 static const struct {
512 uint32_t offset;
513 uint32_t size;
514 char string[STAT_NAME_LEN];
515 } bxe_eth_q_stats_arr[] = {
516 { Q_STATS_OFFSET32(total_bytes_received_hi),
517 8, "rx_bytes" },
518 { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
519 8, "rx_ucast_packets" },
520 { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
521 8, "rx_mcast_packets" },
522 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
523 8, "rx_bcast_packets" },
524 { Q_STATS_OFFSET32(no_buff_discard_hi),
525 8, "rx_discards" },
526 { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
527 8, "tx_bytes" },
528 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
529 8, "tx_ucast_packets" },
530 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
531 8, "tx_mcast_packets" },
532 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
533 8, "tx_bcast_packets" },
534 { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
535 8, "tpa_aggregations" },
536 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
537 8, "tpa_aggregated_frames"},
538 { Q_STATS_OFFSET32(total_tpa_bytes_hi),
539 8, "tpa_bytes"},
540 { Q_STATS_OFFSET32(rx_calls),
541 4, "rx_calls"},
542 { Q_STATS_OFFSET32(rx_pkts),
543 4, "rx_pkts"},
544 { Q_STATS_OFFSET32(rx_tpa_pkts),
545 4, "rx_tpa_pkts"},
546 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
547 4, "rx_erroneous_jumbo_sge_pkts"},
548 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
549 4, "rx_bxe_service_rxsgl"},
550 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
551 4, "rx_jumbo_sge_pkts"},
552 { Q_STATS_OFFSET32(rx_soft_errors),
553 4, "rx_soft_errors"},
554 { Q_STATS_OFFSET32(rx_hw_csum_errors),
555 4, "rx_hw_csum_errors"},
556 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
557 4, "rx_ofld_frames_csum_ip"},
558 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
559 4, "rx_ofld_frames_csum_tcp_udp"},
560 { Q_STATS_OFFSET32(rx_budget_reached),
561 4, "rx_budget_reached"},
562 { Q_STATS_OFFSET32(tx_pkts),
563 4, "tx_pkts"},
564 { Q_STATS_OFFSET32(tx_soft_errors),
565 4, "tx_soft_errors"},
566 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
567 4, "tx_ofld_frames_csum_ip"},
568 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
569 4, "tx_ofld_frames_csum_tcp"},
570 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
571 4, "tx_ofld_frames_csum_udp"},
572 { Q_STATS_OFFSET32(tx_ofld_frames_lso),
573 4, "tx_ofld_frames_lso"},
574 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
575 4, "tx_ofld_frames_lso_hdr_splits"},
576 { Q_STATS_OFFSET32(tx_encap_failures),
577 4, "tx_encap_failures"},
578 { Q_STATS_OFFSET32(tx_hw_queue_full),
579 4, "tx_hw_queue_full"},
580 { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
581 4, "tx_hw_max_queue_depth"},
582 { Q_STATS_OFFSET32(tx_dma_mapping_failure),
583 4, "tx_dma_mapping_failure"},
584 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
585 4, "tx_max_drbr_queue_depth"},
586 { Q_STATS_OFFSET32(tx_window_violation_std),
587 4, "tx_window_violation_std"},
588 { Q_STATS_OFFSET32(tx_window_violation_tso),
589 4, "tx_window_violation_tso"},
590 { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
591 4, "tx_chain_lost_mbuf"},
592 { Q_STATS_OFFSET32(tx_frames_deferred),
593 4, "tx_frames_deferred"},
594 { Q_STATS_OFFSET32(tx_queue_xoff),
595 4, "tx_queue_xoff"},
596 { Q_STATS_OFFSET32(mbuf_defrag_attempts),
597 4, "mbuf_defrag_attempts"},
598 { Q_STATS_OFFSET32(mbuf_defrag_failures),
599 4, "mbuf_defrag_failures"},
600 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
601 4, "mbuf_rx_bd_alloc_failed"},
602 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
603 4, "mbuf_rx_bd_mapping_failed"},
604 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
605 4, "mbuf_rx_tpa_alloc_failed"},
606 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
607 4, "mbuf_rx_tpa_mapping_failed"},
608 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
609 4, "mbuf_rx_sge_alloc_failed"},
610 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
611 4, "mbuf_rx_sge_mapping_failed"},
612 { Q_STATS_OFFSET32(mbuf_alloc_tx),
613 4, "mbuf_alloc_tx"},
614 { Q_STATS_OFFSET32(mbuf_alloc_rx),
615 4, "mbuf_alloc_rx"},
616 { Q_STATS_OFFSET32(mbuf_alloc_sge),
617 4, "mbuf_alloc_sge"},
618 { Q_STATS_OFFSET32(mbuf_alloc_tpa),
619 4, "mbuf_alloc_tpa"},
620 { Q_STATS_OFFSET32(tx_queue_full_return),
621 4, "tx_queue_full_return"},
622 { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
623 4, "bxe_tx_mq_sc_state_failures"},
624 { Q_STATS_OFFSET32(tx_request_link_down_failures),
625 4, "tx_request_link_down_failures"},
626 { Q_STATS_OFFSET32(bd_avail_too_less_failures),
627 4, "bd_avail_too_less_failures"},
628 { Q_STATS_OFFSET32(tx_mq_not_empty),
629 4, "tx_mq_not_empty"},
630 { Q_STATS_OFFSET32(nsegs_path1_errors),
631 4, "nsegs_path1_errors"},
632 { Q_STATS_OFFSET32(nsegs_path2_errors),
633 4, "nsegs_path2_errors"}
634
635
636 };
637
638 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr)
639 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
640
641
642 static void bxe_cmng_fns_init(struct bxe_softc *sc,
643 uint8_t read_cfg,
644 uint8_t cmng_type);
645 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc);
646 static void storm_memset_cmng(struct bxe_softc *sc,
647 struct cmng_init *cmng,
648 uint8_t port);
649 static void bxe_set_reset_global(struct bxe_softc *sc);
650 static void bxe_set_reset_in_progress(struct bxe_softc *sc);
651 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
652 int engine);
653 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
654 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
655 uint8_t *global,
656 uint8_t print);
657 static void bxe_int_disable(struct bxe_softc *sc);
658 static int bxe_release_leader_lock(struct bxe_softc *sc);
659 static void bxe_pf_disable(struct bxe_softc *sc);
660 static void bxe_free_fp_buffers(struct bxe_softc *sc);
661 static inline void bxe_update_rx_prod(struct bxe_softc *sc,
662 struct bxe_fastpath *fp,
663 uint16_t rx_bd_prod,
664 uint16_t rx_cq_prod,
665 uint16_t rx_sge_prod);
666 static void bxe_link_report_locked(struct bxe_softc *sc);
667 static void bxe_link_report(struct bxe_softc *sc);
668 static void bxe_link_status_update(struct bxe_softc *sc);
669 static void bxe_periodic_callout_func(void *xsc);
670 static void bxe_periodic_start(struct bxe_softc *sc);
671 static void bxe_periodic_stop(struct bxe_softc *sc);
672 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
673 uint16_t prev_index,
674 uint16_t index);
675 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
676 int queue);
677 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
678 uint16_t index);
679 static uint8_t bxe_txeof(struct bxe_softc *sc,
680 struct bxe_fastpath *fp);
681 static void bxe_task_fp(struct bxe_fastpath *fp);
682 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
683 struct mbuf *m,
684 uint8_t contents);
685 static int bxe_alloc_mem(struct bxe_softc *sc);
686 static void bxe_free_mem(struct bxe_softc *sc);
687 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
688 static void bxe_free_fw_stats_mem(struct bxe_softc *sc);
689 static int bxe_interrupt_attach(struct bxe_softc *sc);
690 static void bxe_interrupt_detach(struct bxe_softc *sc);
691 static void bxe_set_rx_mode(struct bxe_softc *sc);
692 static int bxe_init_locked(struct bxe_softc *sc);
693 static int bxe_stop_locked(struct bxe_softc *sc);
694 static void bxe_sp_err_timeout_task(void *arg, int pending);
695 void bxe_parity_recover(struct bxe_softc *sc);
696 void bxe_handle_error(struct bxe_softc *sc);
697 static __noinline int bxe_nic_load(struct bxe_softc *sc,
698 int load_mode);
699 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
700 uint32_t unload_mode,
701 uint8_t keep_link);
702
703 static void bxe_handle_sp_tq(void *context, int pending);
704 static void bxe_handle_fp_tq(void *context, int pending);
705
706 static int bxe_add_cdev(struct bxe_softc *sc);
707 static void bxe_del_cdev(struct bxe_softc *sc);
708 int bxe_grc_dump(struct bxe_softc *sc);
709 static int bxe_alloc_buf_rings(struct bxe_softc *sc);
710 static void bxe_free_buf_rings(struct bxe_softc *sc);
711
712 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
713 uint32_t
calc_crc32(uint8_t * crc32_packet,uint32_t crc32_length,uint32_t crc32_seed,uint8_t complement)714 calc_crc32(uint8_t *crc32_packet,
715 uint32_t crc32_length,
716 uint32_t crc32_seed,
717 uint8_t complement)
718 {
719 uint32_t byte = 0;
720 uint32_t bit = 0;
721 uint8_t msb = 0;
722 uint32_t temp = 0;
723 uint32_t shft = 0;
724 uint8_t current_byte = 0;
725 uint32_t crc32_result = crc32_seed;
726 const uint32_t CRC32_POLY = 0x1edc6f41;
727
728 if ((crc32_packet == NULL) ||
729 (crc32_length == 0) ||
730 ((crc32_length % 8) != 0))
731 {
732 return (crc32_result);
733 }
734
735 for (byte = 0; byte < crc32_length; byte = byte + 1)
736 {
737 current_byte = crc32_packet[byte];
738 for (bit = 0; bit < 8; bit = bit + 1)
739 {
740 /* msb = crc32_result[31]; */
741 msb = (uint8_t)(crc32_result >> 31);
742
743 crc32_result = crc32_result << 1;
744
745 /* it (msb != current_byte[bit]) */
746 if (msb != (0x1 & (current_byte >> bit)))
747 {
748 crc32_result = crc32_result ^ CRC32_POLY;
749 /* crc32_result[0] = 1 */
750 crc32_result |= 1;
751 }
752 }
753 }
754
755 /* Last step is to:
756 * 1. "mirror" every bit
757 * 2. swap the 4 bytes
758 * 3. complement each bit
759 */
760
761 /* Mirror */
762 temp = crc32_result;
763 shft = sizeof(crc32_result) * 8 - 1;
764
765 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
766 {
767 temp <<= 1;
768 temp |= crc32_result & 1;
769 shft-- ;
770 }
771
772 /* temp[31-bit] = crc32_result[bit] */
773 temp <<= shft;
774
775 /* Swap */
776 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
777 {
778 uint32_t t0, t1, t2, t3;
779 t0 = (0x000000ff & (temp >> 24));
780 t1 = (0x0000ff00 & (temp >> 8));
781 t2 = (0x00ff0000 & (temp << 8));
782 t3 = (0xff000000 & (temp << 24));
783 crc32_result = t0 | t1 | t2 | t3;
784 }
785
786 /* Complement */
787 if (complement)
788 {
789 crc32_result = ~crc32_result;
790 }
791
792 return (crc32_result);
793 }
794
795 int
bxe_test_bit(int nr,volatile unsigned long * addr)796 bxe_test_bit(int nr,
797 volatile unsigned long *addr)
798 {
799 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
800 }
801
802 void
bxe_set_bit(unsigned int nr,volatile unsigned long * addr)803 bxe_set_bit(unsigned int nr,
804 volatile unsigned long *addr)
805 {
806 atomic_set_acq_long(addr, (1 << nr));
807 }
808
809 void
bxe_clear_bit(int nr,volatile unsigned long * addr)810 bxe_clear_bit(int nr,
811 volatile unsigned long *addr)
812 {
813 atomic_clear_acq_long(addr, (1 << nr));
814 }
815
816 int
bxe_test_and_set_bit(int nr,volatile unsigned long * addr)817 bxe_test_and_set_bit(int nr,
818 volatile unsigned long *addr)
819 {
820 unsigned long x;
821 nr = (1 << nr);
822 do {
823 x = *addr;
824 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
825 // if (x & nr) bit_was_set; else bit_was_not_set;
826 return (x & nr);
827 }
828
829 int
bxe_test_and_clear_bit(int nr,volatile unsigned long * addr)830 bxe_test_and_clear_bit(int nr,
831 volatile unsigned long *addr)
832 {
833 unsigned long x;
834 nr = (1 << nr);
835 do {
836 x = *addr;
837 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
838 // if (x & nr) bit_was_set; else bit_was_not_set;
839 return (x & nr);
840 }
841
842 int
bxe_cmpxchg(volatile int * addr,int old,int new)843 bxe_cmpxchg(volatile int *addr,
844 int old,
845 int new)
846 {
847 int x;
848 do {
849 x = *addr;
850 } while (atomic_cmpset_acq_int(addr, old, new) == 0);
851 return (x);
852 }
853
854 /*
855 * Get DMA memory from the OS.
856 *
857 * Validates that the OS has provided DMA buffers in response to a
858 * bus_dmamap_load call and saves the physical address of those buffers.
859 * When the callback is used the OS will return 0 for the mapping function
860 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
861 * failures back to the caller.
862 *
863 * Returns:
864 * Nothing.
865 */
866 static void
bxe_dma_map_addr(void * arg,bus_dma_segment_t * segs,int nseg,int error)867 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
868 {
869 struct bxe_dma *dma = arg;
870
871 if (error) {
872 dma->paddr = 0;
873 dma->nseg = 0;
874 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
875 } else {
876 dma->paddr = segs->ds_addr;
877 dma->nseg = nseg;
878 }
879 }
880
881 /*
882 * Allocate a block of memory and map it for DMA. No partial completions
883 * allowed and release any resources acquired if we can't acquire all
884 * resources.
885 *
886 * Returns:
887 * 0 = Success, !0 = Failure
888 */
889 int
bxe_dma_alloc(struct bxe_softc * sc,bus_size_t size,struct bxe_dma * dma,const char * msg)890 bxe_dma_alloc(struct bxe_softc *sc,
891 bus_size_t size,
892 struct bxe_dma *dma,
893 const char *msg)
894 {
895 int rc;
896
897 if (dma->size > 0) {
898 BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
899 (unsigned long)dma->size);
900 return (1);
901 }
902
903 memset(dma, 0, sizeof(*dma)); /* sanity */
904 dma->sc = sc;
905 dma->size = size;
906 snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
907
908 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
909 BCM_PAGE_SIZE, /* alignment */
910 0, /* boundary limit */
911 BUS_SPACE_MAXADDR, /* restricted low */
912 BUS_SPACE_MAXADDR, /* restricted hi */
913 NULL, /* addr filter() */
914 NULL, /* addr filter() arg */
915 size, /* max map size */
916 1, /* num discontinuous */
917 size, /* max seg size */
918 BUS_DMA_ALLOCNOW, /* flags */
919 NULL, /* lock() */
920 NULL, /* lock() arg */
921 &dma->tag); /* returned dma tag */
922 if (rc != 0) {
923 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
924 memset(dma, 0, sizeof(*dma));
925 return (1);
926 }
927
928 rc = bus_dmamem_alloc(dma->tag,
929 (void **)&dma->vaddr,
930 (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
931 &dma->map);
932 if (rc != 0) {
933 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
934 bus_dma_tag_destroy(dma->tag);
935 memset(dma, 0, sizeof(*dma));
936 return (1);
937 }
938
939 rc = bus_dmamap_load(dma->tag,
940 dma->map,
941 dma->vaddr,
942 size,
943 bxe_dma_map_addr, /* BLOGD in here */
944 dma,
945 BUS_DMA_NOWAIT);
946 if (rc != 0) {
947 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
948 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
949 bus_dma_tag_destroy(dma->tag);
950 memset(dma, 0, sizeof(*dma));
951 return (1);
952 }
953
954 return (0);
955 }
956
957 void
bxe_dma_free(struct bxe_softc * sc,struct bxe_dma * dma)958 bxe_dma_free(struct bxe_softc *sc,
959 struct bxe_dma *dma)
960 {
961 if (dma->size > 0) {
962 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
963
964 bus_dmamap_sync(dma->tag, dma->map,
965 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
966 bus_dmamap_unload(dma->tag, dma->map);
967 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
968 bus_dma_tag_destroy(dma->tag);
969 }
970
971 memset(dma, 0, sizeof(*dma));
972 }
973
974 /*
975 * These indirect read and write routines are only during init.
976 * The locking is handled by the MCP.
977 */
978
979 void
bxe_reg_wr_ind(struct bxe_softc * sc,uint32_t addr,uint32_t val)980 bxe_reg_wr_ind(struct bxe_softc *sc,
981 uint32_t addr,
982 uint32_t val)
983 {
984 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
985 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
986 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
987 }
988
989 uint32_t
bxe_reg_rd_ind(struct bxe_softc * sc,uint32_t addr)990 bxe_reg_rd_ind(struct bxe_softc *sc,
991 uint32_t addr)
992 {
993 uint32_t val;
994
995 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
996 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
997 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
998
999 return (val);
1000 }
1001
1002 static int
bxe_acquire_hw_lock(struct bxe_softc * sc,uint32_t resource)1003 bxe_acquire_hw_lock(struct bxe_softc *sc,
1004 uint32_t resource)
1005 {
1006 uint32_t lock_status;
1007 uint32_t resource_bit = (1 << resource);
1008 int func = SC_FUNC(sc);
1009 uint32_t hw_lock_control_reg;
1010 int cnt;
1011
1012 /* validate the resource is within range */
1013 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1014 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1015 " resource_bit 0x%x\n", resource, resource_bit);
1016 return (-1);
1017 }
1018
1019 if (func <= 5) {
1020 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1021 } else {
1022 hw_lock_control_reg =
1023 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1024 }
1025
1026 /* validate the resource is not already taken */
1027 lock_status = REG_RD(sc, hw_lock_control_reg);
1028 if (lock_status & resource_bit) {
1029 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
1030 resource, lock_status, resource_bit);
1031 return (-1);
1032 }
1033
1034 /* try every 5ms for 5 seconds */
1035 for (cnt = 0; cnt < 1000; cnt++) {
1036 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1037 lock_status = REG_RD(sc, hw_lock_control_reg);
1038 if (lock_status & resource_bit) {
1039 return (0);
1040 }
1041 DELAY(5000);
1042 }
1043
1044 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1045 resource, resource_bit);
1046 return (-1);
1047 }
1048
1049 static int
bxe_release_hw_lock(struct bxe_softc * sc,uint32_t resource)1050 bxe_release_hw_lock(struct bxe_softc *sc,
1051 uint32_t resource)
1052 {
1053 uint32_t lock_status;
1054 uint32_t resource_bit = (1 << resource);
1055 int func = SC_FUNC(sc);
1056 uint32_t hw_lock_control_reg;
1057
1058 /* validate the resource is within range */
1059 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1060 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1061 " resource_bit 0x%x\n", resource, resource_bit);
1062 return (-1);
1063 }
1064
1065 if (func <= 5) {
1066 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1067 } else {
1068 hw_lock_control_reg =
1069 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1070 }
1071
1072 /* validate the resource is currently taken */
1073 lock_status = REG_RD(sc, hw_lock_control_reg);
1074 if (!(lock_status & resource_bit)) {
1075 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1076 resource, lock_status, resource_bit);
1077 return (-1);
1078 }
1079
1080 REG_WR(sc, hw_lock_control_reg, resource_bit);
1081 return (0);
1082 }
bxe_acquire_phy_lock(struct bxe_softc * sc)1083 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1084 {
1085 BXE_PHY_LOCK(sc);
1086 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1087 }
1088
bxe_release_phy_lock(struct bxe_softc * sc)1089 static void bxe_release_phy_lock(struct bxe_softc *sc)
1090 {
1091 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1092 BXE_PHY_UNLOCK(sc);
1093 }
1094 /*
1095 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1096 * had we done things the other way around, if two pfs from the same port
1097 * would attempt to access nvram at the same time, we could run into a
1098 * scenario such as:
1099 * pf A takes the port lock.
1100 * pf B succeeds in taking the same lock since they are from the same port.
1101 * pf A takes the per pf misc lock. Performs eeprom access.
1102 * pf A finishes. Unlocks the per pf misc lock.
1103 * Pf B takes the lock and proceeds to perform it's own access.
1104 * pf A unlocks the per port lock, while pf B is still working (!).
1105 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1106 * access corrupted by pf B).*
1107 */
1108 static int
bxe_acquire_nvram_lock(struct bxe_softc * sc)1109 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1110 {
1111 int port = SC_PORT(sc);
1112 int count, i;
1113 uint32_t val = 0;
1114
1115 /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1116 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1117
1118 /* adjust timeout for emulation/FPGA */
1119 count = NVRAM_TIMEOUT_COUNT;
1120 if (CHIP_REV_IS_SLOW(sc)) {
1121 count *= 100;
1122 }
1123
1124 /* request access to nvram interface */
1125 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1126 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1127
1128 for (i = 0; i < count*10; i++) {
1129 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1130 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1131 break;
1132 }
1133
1134 DELAY(5);
1135 }
1136
1137 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1138 BLOGE(sc, "Cannot get access to nvram interface "
1139 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1140 port, val);
1141 return (-1);
1142 }
1143
1144 return (0);
1145 }
1146
1147 static int
bxe_release_nvram_lock(struct bxe_softc * sc)1148 bxe_release_nvram_lock(struct bxe_softc *sc)
1149 {
1150 int port = SC_PORT(sc);
1151 int count, i;
1152 uint32_t val = 0;
1153
1154 /* adjust timeout for emulation/FPGA */
1155 count = NVRAM_TIMEOUT_COUNT;
1156 if (CHIP_REV_IS_SLOW(sc)) {
1157 count *= 100;
1158 }
1159
1160 /* relinquish nvram interface */
1161 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1162 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1163
1164 for (i = 0; i < count*10; i++) {
1165 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1166 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1167 break;
1168 }
1169
1170 DELAY(5);
1171 }
1172
1173 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1174 BLOGE(sc, "Cannot free access to nvram interface "
1175 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1176 port, val);
1177 return (-1);
1178 }
1179
1180 /* release HW lock: protect against other PFs in PF Direct Assignment */
1181 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1182
1183 return (0);
1184 }
1185
1186 static void
bxe_enable_nvram_access(struct bxe_softc * sc)1187 bxe_enable_nvram_access(struct bxe_softc *sc)
1188 {
1189 uint32_t val;
1190
1191 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1192
1193 /* enable both bits, even on read */
1194 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1195 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1196 }
1197
1198 static void
bxe_disable_nvram_access(struct bxe_softc * sc)1199 bxe_disable_nvram_access(struct bxe_softc *sc)
1200 {
1201 uint32_t val;
1202
1203 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1204
1205 /* disable both bits, even after read */
1206 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1207 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1208 MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1209 }
1210
1211 static int
bxe_nvram_read_dword(struct bxe_softc * sc,uint32_t offset,uint32_t * ret_val,uint32_t cmd_flags)1212 bxe_nvram_read_dword(struct bxe_softc *sc,
1213 uint32_t offset,
1214 uint32_t *ret_val,
1215 uint32_t cmd_flags)
1216 {
1217 int count, i, rc;
1218 uint32_t val;
1219
1220 /* build the command word */
1221 cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1222
1223 /* need to clear DONE bit separately */
1224 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1225
1226 /* address of the NVRAM to read from */
1227 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1228 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1229
1230 /* issue a read command */
1231 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1232
1233 /* adjust timeout for emulation/FPGA */
1234 count = NVRAM_TIMEOUT_COUNT;
1235 if (CHIP_REV_IS_SLOW(sc)) {
1236 count *= 100;
1237 }
1238
1239 /* wait for completion */
1240 *ret_val = 0;
1241 rc = -1;
1242 for (i = 0; i < count; i++) {
1243 DELAY(5);
1244 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1245
1246 if (val & MCPR_NVM_COMMAND_DONE) {
1247 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1248 /* we read nvram data in cpu order
1249 * but ethtool sees it as an array of bytes
1250 * converting to big-endian will do the work
1251 */
1252 *ret_val = htobe32(val);
1253 rc = 0;
1254 break;
1255 }
1256 }
1257
1258 if (rc == -1) {
1259 BLOGE(sc, "nvram read timeout expired "
1260 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1261 offset, cmd_flags, val);
1262 }
1263
1264 return (rc);
1265 }
1266
1267 static int
bxe_nvram_read(struct bxe_softc * sc,uint32_t offset,uint8_t * ret_buf,int buf_size)1268 bxe_nvram_read(struct bxe_softc *sc,
1269 uint32_t offset,
1270 uint8_t *ret_buf,
1271 int buf_size)
1272 {
1273 uint32_t cmd_flags;
1274 uint32_t val;
1275 int rc;
1276
1277 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1278 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1279 offset, buf_size);
1280 return (-1);
1281 }
1282
1283 if ((offset + buf_size) > sc->devinfo.flash_size) {
1284 BLOGE(sc, "Invalid parameter, "
1285 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1286 offset, buf_size, sc->devinfo.flash_size);
1287 return (-1);
1288 }
1289
1290 /* request access to nvram interface */
1291 rc = bxe_acquire_nvram_lock(sc);
1292 if (rc) {
1293 return (rc);
1294 }
1295
1296 /* enable access to nvram interface */
1297 bxe_enable_nvram_access(sc);
1298
1299 /* read the first word(s) */
1300 cmd_flags = MCPR_NVM_COMMAND_FIRST;
1301 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1302 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1303 memcpy(ret_buf, &val, 4);
1304
1305 /* advance to the next dword */
1306 offset += sizeof(uint32_t);
1307 ret_buf += sizeof(uint32_t);
1308 buf_size -= sizeof(uint32_t);
1309 cmd_flags = 0;
1310 }
1311
1312 if (rc == 0) {
1313 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1314 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1315 memcpy(ret_buf, &val, 4);
1316 }
1317
1318 /* disable access to nvram interface */
1319 bxe_disable_nvram_access(sc);
1320 bxe_release_nvram_lock(sc);
1321
1322 return (rc);
1323 }
1324
1325 static int
bxe_nvram_write_dword(struct bxe_softc * sc,uint32_t offset,uint32_t val,uint32_t cmd_flags)1326 bxe_nvram_write_dword(struct bxe_softc *sc,
1327 uint32_t offset,
1328 uint32_t val,
1329 uint32_t cmd_flags)
1330 {
1331 int count, i, rc;
1332
1333 /* build the command word */
1334 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1335
1336 /* need to clear DONE bit separately */
1337 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1338
1339 /* write the data */
1340 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1341
1342 /* address of the NVRAM to write to */
1343 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1344 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1345
1346 /* issue the write command */
1347 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1348
1349 /* adjust timeout for emulation/FPGA */
1350 count = NVRAM_TIMEOUT_COUNT;
1351 if (CHIP_REV_IS_SLOW(sc)) {
1352 count *= 100;
1353 }
1354
1355 /* wait for completion */
1356 rc = -1;
1357 for (i = 0; i < count; i++) {
1358 DELAY(5);
1359 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1360 if (val & MCPR_NVM_COMMAND_DONE) {
1361 rc = 0;
1362 break;
1363 }
1364 }
1365
1366 if (rc == -1) {
1367 BLOGE(sc, "nvram write timeout expired "
1368 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1369 offset, cmd_flags, val);
1370 }
1371
1372 return (rc);
1373 }
1374
1375 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1376
1377 static int
bxe_nvram_write1(struct bxe_softc * sc,uint32_t offset,uint8_t * data_buf,int buf_size)1378 bxe_nvram_write1(struct bxe_softc *sc,
1379 uint32_t offset,
1380 uint8_t *data_buf,
1381 int buf_size)
1382 {
1383 uint32_t cmd_flags;
1384 uint32_t align_offset;
1385 uint32_t val;
1386 int rc;
1387
1388 if ((offset + buf_size) > sc->devinfo.flash_size) {
1389 BLOGE(sc, "Invalid parameter, "
1390 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1391 offset, buf_size, sc->devinfo.flash_size);
1392 return (-1);
1393 }
1394
1395 /* request access to nvram interface */
1396 rc = bxe_acquire_nvram_lock(sc);
1397 if (rc) {
1398 return (rc);
1399 }
1400
1401 /* enable access to nvram interface */
1402 bxe_enable_nvram_access(sc);
1403
1404 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1405 align_offset = (offset & ~0x03);
1406 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1407
1408 if (rc == 0) {
1409 val &= ~(0xff << BYTE_OFFSET(offset));
1410 val |= (*data_buf << BYTE_OFFSET(offset));
1411
1412 /* nvram data is returned as an array of bytes
1413 * convert it back to cpu order
1414 */
1415 val = be32toh(val);
1416
1417 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1418 }
1419
1420 /* disable access to nvram interface */
1421 bxe_disable_nvram_access(sc);
1422 bxe_release_nvram_lock(sc);
1423
1424 return (rc);
1425 }
1426
1427 static int
bxe_nvram_write(struct bxe_softc * sc,uint32_t offset,uint8_t * data_buf,int buf_size)1428 bxe_nvram_write(struct bxe_softc *sc,
1429 uint32_t offset,
1430 uint8_t *data_buf,
1431 int buf_size)
1432 {
1433 uint32_t cmd_flags;
1434 uint32_t val;
1435 uint32_t written_so_far;
1436 int rc;
1437
1438 if (buf_size == 1) {
1439 return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1440 }
1441
1442 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1443 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1444 offset, buf_size);
1445 return (-1);
1446 }
1447
1448 if (buf_size == 0) {
1449 return (0); /* nothing to do */
1450 }
1451
1452 if ((offset + buf_size) > sc->devinfo.flash_size) {
1453 BLOGE(sc, "Invalid parameter, "
1454 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1455 offset, buf_size, sc->devinfo.flash_size);
1456 return (-1);
1457 }
1458
1459 /* request access to nvram interface */
1460 rc = bxe_acquire_nvram_lock(sc);
1461 if (rc) {
1462 return (rc);
1463 }
1464
1465 /* enable access to nvram interface */
1466 bxe_enable_nvram_access(sc);
1467
1468 written_so_far = 0;
1469 cmd_flags = MCPR_NVM_COMMAND_FIRST;
1470 while ((written_so_far < buf_size) && (rc == 0)) {
1471 if (written_so_far == (buf_size - sizeof(uint32_t))) {
1472 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1473 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1474 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1475 } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1476 cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1477 }
1478
1479 memcpy(&val, data_buf, 4);
1480
1481 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1482
1483 /* advance to the next dword */
1484 offset += sizeof(uint32_t);
1485 data_buf += sizeof(uint32_t);
1486 written_so_far += sizeof(uint32_t);
1487 cmd_flags = 0;
1488 }
1489
1490 /* disable access to nvram interface */
1491 bxe_disable_nvram_access(sc);
1492 bxe_release_nvram_lock(sc);
1493
1494 return (rc);
1495 }
1496
1497 /* copy command into DMAE command memory and set DMAE command Go */
1498 void
bxe_post_dmae(struct bxe_softc * sc,struct dmae_cmd * dmae,int idx)1499 bxe_post_dmae(struct bxe_softc *sc,
1500 struct dmae_cmd *dmae,
1501 int idx)
1502 {
1503 uint32_t cmd_offset;
1504 int i;
1505
1506 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1507 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1508 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1509 }
1510
1511 REG_WR(sc, dmae_reg_go_c[idx], 1);
1512 }
1513
1514 uint32_t
bxe_dmae_opcode_add_comp(uint32_t opcode,uint8_t comp_type)1515 bxe_dmae_opcode_add_comp(uint32_t opcode,
1516 uint8_t comp_type)
1517 {
1518 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1519 DMAE_CMD_C_TYPE_ENABLE));
1520 }
1521
1522 uint32_t
bxe_dmae_opcode_clr_src_reset(uint32_t opcode)1523 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1524 {
1525 return (opcode & ~DMAE_CMD_SRC_RESET);
1526 }
1527
1528 uint32_t
bxe_dmae_opcode(struct bxe_softc * sc,uint8_t src_type,uint8_t dst_type,uint8_t with_comp,uint8_t comp_type)1529 bxe_dmae_opcode(struct bxe_softc *sc,
1530 uint8_t src_type,
1531 uint8_t dst_type,
1532 uint8_t with_comp,
1533 uint8_t comp_type)
1534 {
1535 uint32_t opcode = 0;
1536
1537 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1538 (dst_type << DMAE_CMD_DST_SHIFT));
1539
1540 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1541
1542 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1543
1544 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1545 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1546
1547 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1548
1549 #ifdef __BIG_ENDIAN
1550 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1551 #else
1552 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1553 #endif
1554
1555 if (with_comp) {
1556 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1557 }
1558
1559 return (opcode);
1560 }
1561
1562 static void
bxe_prep_dmae_with_comp(struct bxe_softc * sc,struct dmae_cmd * dmae,uint8_t src_type,uint8_t dst_type)1563 bxe_prep_dmae_with_comp(struct bxe_softc *sc,
1564 struct dmae_cmd *dmae,
1565 uint8_t src_type,
1566 uint8_t dst_type)
1567 {
1568 memset(dmae, 0, sizeof(struct dmae_cmd));
1569
1570 /* set the opcode */
1571 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1572 TRUE, DMAE_COMP_PCI);
1573
1574 /* fill in the completion parameters */
1575 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1576 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1577 dmae->comp_val = DMAE_COMP_VAL;
1578 }
1579
1580 /* issue a DMAE command over the init channel and wait for completion */
1581 static int
bxe_issue_dmae_with_comp(struct bxe_softc * sc,struct dmae_cmd * dmae)1582 bxe_issue_dmae_with_comp(struct bxe_softc *sc,
1583 struct dmae_cmd *dmae)
1584 {
1585 uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1586 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1587
1588 BXE_DMAE_LOCK(sc);
1589
1590 /* reset completion */
1591 *wb_comp = 0;
1592
1593 /* post the command on the channel used for initializations */
1594 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1595
1596 /* wait for completion */
1597 DELAY(5);
1598
1599 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1600 if (!timeout ||
1601 (sc->recovery_state != BXE_RECOVERY_DONE &&
1602 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1603 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1604 *wb_comp, sc->recovery_state);
1605 BXE_DMAE_UNLOCK(sc);
1606 return (DMAE_TIMEOUT);
1607 }
1608
1609 timeout--;
1610 DELAY(50);
1611 }
1612
1613 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1614 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1615 *wb_comp, sc->recovery_state);
1616 BXE_DMAE_UNLOCK(sc);
1617 return (DMAE_PCI_ERROR);
1618 }
1619
1620 BXE_DMAE_UNLOCK(sc);
1621 return (0);
1622 }
1623
1624 void
bxe_read_dmae(struct bxe_softc * sc,uint32_t src_addr,uint32_t len32)1625 bxe_read_dmae(struct bxe_softc *sc,
1626 uint32_t src_addr,
1627 uint32_t len32)
1628 {
1629 struct dmae_cmd dmae;
1630 uint32_t *data;
1631 int i, rc;
1632
1633 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1634
1635 if (!sc->dmae_ready) {
1636 data = BXE_SP(sc, wb_data[0]);
1637
1638 for (i = 0; i < len32; i++) {
1639 data[i] = (CHIP_IS_E1(sc)) ?
1640 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1641 REG_RD(sc, (src_addr + (i * 4)));
1642 }
1643
1644 return;
1645 }
1646
1647 /* set opcode and fixed command fields */
1648 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1649
1650 /* fill in addresses and len */
1651 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1652 dmae.src_addr_hi = 0;
1653 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1654 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1655 dmae.len = len32;
1656
1657 /* issue the command and wait for completion */
1658 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1659 bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1660 }
1661 }
1662
1663 void
bxe_write_dmae(struct bxe_softc * sc,bus_addr_t dma_addr,uint32_t dst_addr,uint32_t len32)1664 bxe_write_dmae(struct bxe_softc *sc,
1665 bus_addr_t dma_addr,
1666 uint32_t dst_addr,
1667 uint32_t len32)
1668 {
1669 struct dmae_cmd dmae;
1670 int rc;
1671
1672 if (!sc->dmae_ready) {
1673 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1674
1675 if (CHIP_IS_E1(sc)) {
1676 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1677 } else {
1678 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1679 }
1680
1681 return;
1682 }
1683
1684 /* set opcode and fixed command fields */
1685 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1686
1687 /* fill in addresses and len */
1688 dmae.src_addr_lo = U64_LO(dma_addr);
1689 dmae.src_addr_hi = U64_HI(dma_addr);
1690 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1691 dmae.dst_addr_hi = 0;
1692 dmae.len = len32;
1693
1694 /* issue the command and wait for completion */
1695 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1696 bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1697 }
1698 }
1699
1700 void
bxe_write_dmae_phys_len(struct bxe_softc * sc,bus_addr_t phys_addr,uint32_t addr,uint32_t len)1701 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1702 bus_addr_t phys_addr,
1703 uint32_t addr,
1704 uint32_t len)
1705 {
1706 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1707 int offset = 0;
1708
1709 while (len > dmae_wr_max) {
1710 bxe_write_dmae(sc,
1711 (phys_addr + offset), /* src DMA address */
1712 (addr + offset), /* dst GRC address */
1713 dmae_wr_max);
1714 offset += (dmae_wr_max * 4);
1715 len -= dmae_wr_max;
1716 }
1717
1718 bxe_write_dmae(sc,
1719 (phys_addr + offset), /* src DMA address */
1720 (addr + offset), /* dst GRC address */
1721 len);
1722 }
1723
1724 void
bxe_set_ctx_validation(struct bxe_softc * sc,struct eth_context * cxt,uint32_t cid)1725 bxe_set_ctx_validation(struct bxe_softc *sc,
1726 struct eth_context *cxt,
1727 uint32_t cid)
1728 {
1729 /* ustorm cxt validation */
1730 cxt->ustorm_ag_context.cdu_usage =
1731 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1732 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1733 /* xcontext validation */
1734 cxt->xstorm_ag_context.cdu_reserved =
1735 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1736 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1737 }
1738
1739 static void
bxe_storm_memset_hc_timeout(struct bxe_softc * sc,uint8_t port,uint8_t fw_sb_id,uint8_t sb_index,uint8_t ticks)1740 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1741 uint8_t port,
1742 uint8_t fw_sb_id,
1743 uint8_t sb_index,
1744 uint8_t ticks)
1745 {
1746 uint32_t addr =
1747 (BAR_CSTRORM_INTMEM +
1748 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1749
1750 REG_WR8(sc, addr, ticks);
1751
1752 BLOGD(sc, DBG_LOAD,
1753 "port %d fw_sb_id %d sb_index %d ticks %d\n",
1754 port, fw_sb_id, sb_index, ticks);
1755 }
1756
1757 static void
bxe_storm_memset_hc_disable(struct bxe_softc * sc,uint8_t port,uint16_t fw_sb_id,uint8_t sb_index,uint8_t disable)1758 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1759 uint8_t port,
1760 uint16_t fw_sb_id,
1761 uint8_t sb_index,
1762 uint8_t disable)
1763 {
1764 uint32_t enable_flag =
1765 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1766 uint32_t addr =
1767 (BAR_CSTRORM_INTMEM +
1768 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1769 uint8_t flags;
1770
1771 /* clear and set */
1772 flags = REG_RD8(sc, addr);
1773 flags &= ~HC_INDEX_DATA_HC_ENABLED;
1774 flags |= enable_flag;
1775 REG_WR8(sc, addr, flags);
1776
1777 BLOGD(sc, DBG_LOAD,
1778 "port %d fw_sb_id %d sb_index %d disable %d\n",
1779 port, fw_sb_id, sb_index, disable);
1780 }
1781
1782 void
bxe_update_coalesce_sb_index(struct bxe_softc * sc,uint8_t fw_sb_id,uint8_t sb_index,uint8_t disable,uint16_t usec)1783 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1784 uint8_t fw_sb_id,
1785 uint8_t sb_index,
1786 uint8_t disable,
1787 uint16_t usec)
1788 {
1789 int port = SC_PORT(sc);
1790 uint8_t ticks = (usec / 4); /* XXX ??? */
1791
1792 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1793
1794 disable = (disable) ? 1 : ((usec) ? 0 : 1);
1795 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1796 }
1797
1798 void
elink_cb_udelay(struct bxe_softc * sc,uint32_t usecs)1799 elink_cb_udelay(struct bxe_softc *sc,
1800 uint32_t usecs)
1801 {
1802 DELAY(usecs);
1803 }
1804
1805 uint32_t
elink_cb_reg_read(struct bxe_softc * sc,uint32_t reg_addr)1806 elink_cb_reg_read(struct bxe_softc *sc,
1807 uint32_t reg_addr)
1808 {
1809 return (REG_RD(sc, reg_addr));
1810 }
1811
1812 void
elink_cb_reg_write(struct bxe_softc * sc,uint32_t reg_addr,uint32_t val)1813 elink_cb_reg_write(struct bxe_softc *sc,
1814 uint32_t reg_addr,
1815 uint32_t val)
1816 {
1817 REG_WR(sc, reg_addr, val);
1818 }
1819
1820 void
elink_cb_reg_wb_write(struct bxe_softc * sc,uint32_t offset,uint32_t * wb_write,uint16_t len)1821 elink_cb_reg_wb_write(struct bxe_softc *sc,
1822 uint32_t offset,
1823 uint32_t *wb_write,
1824 uint16_t len)
1825 {
1826 REG_WR_DMAE(sc, offset, wb_write, len);
1827 }
1828
1829 void
elink_cb_reg_wb_read(struct bxe_softc * sc,uint32_t offset,uint32_t * wb_write,uint16_t len)1830 elink_cb_reg_wb_read(struct bxe_softc *sc,
1831 uint32_t offset,
1832 uint32_t *wb_write,
1833 uint16_t len)
1834 {
1835 REG_RD_DMAE(sc, offset, wb_write, len);
1836 }
1837
1838 uint8_t
elink_cb_path_id(struct bxe_softc * sc)1839 elink_cb_path_id(struct bxe_softc *sc)
1840 {
1841 return (SC_PATH(sc));
1842 }
1843
1844 void
elink_cb_event_log(struct bxe_softc * sc,const elink_log_id_t elink_log_id,...)1845 elink_cb_event_log(struct bxe_softc *sc,
1846 const elink_log_id_t elink_log_id,
1847 ...)
1848 {
1849 /* XXX */
1850 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1851 }
1852
1853 static int
bxe_set_spio(struct bxe_softc * sc,int spio,uint32_t mode)1854 bxe_set_spio(struct bxe_softc *sc,
1855 int spio,
1856 uint32_t mode)
1857 {
1858 uint32_t spio_reg;
1859
1860 /* Only 2 SPIOs are configurable */
1861 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1862 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1863 return (-1);
1864 }
1865
1866 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1867
1868 /* read SPIO and mask except the float bits */
1869 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1870
1871 switch (mode) {
1872 case MISC_SPIO_OUTPUT_LOW:
1873 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1874 /* clear FLOAT and set CLR */
1875 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1876 spio_reg |= (spio << MISC_SPIO_CLR_POS);
1877 break;
1878
1879 case MISC_SPIO_OUTPUT_HIGH:
1880 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1881 /* clear FLOAT and set SET */
1882 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1883 spio_reg |= (spio << MISC_SPIO_SET_POS);
1884 break;
1885
1886 case MISC_SPIO_INPUT_HI_Z:
1887 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1888 /* set FLOAT */
1889 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1890 break;
1891
1892 default:
1893 break;
1894 }
1895
1896 REG_WR(sc, MISC_REG_SPIO, spio_reg);
1897 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1898
1899 return (0);
1900 }
1901
1902 static int
bxe_gpio_read(struct bxe_softc * sc,int gpio_num,uint8_t port)1903 bxe_gpio_read(struct bxe_softc *sc,
1904 int gpio_num,
1905 uint8_t port)
1906 {
1907 /* The GPIO should be swapped if swap register is set and active */
1908 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1909 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1910 int gpio_shift = (gpio_num +
1911 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1912 uint32_t gpio_mask = (1 << gpio_shift);
1913 uint32_t gpio_reg;
1914
1915 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1916 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1917 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1918 gpio_mask);
1919 return (-1);
1920 }
1921
1922 /* read GPIO value */
1923 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1924
1925 /* get the requested pin value */
1926 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1927 }
1928
1929 static int
bxe_gpio_write(struct bxe_softc * sc,int gpio_num,uint32_t mode,uint8_t port)1930 bxe_gpio_write(struct bxe_softc *sc,
1931 int gpio_num,
1932 uint32_t mode,
1933 uint8_t port)
1934 {
1935 /* The GPIO should be swapped if swap register is set and active */
1936 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1937 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1938 int gpio_shift = (gpio_num +
1939 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1940 uint32_t gpio_mask = (1 << gpio_shift);
1941 uint32_t gpio_reg;
1942
1943 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1944 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1945 " gpio_shift %d gpio_mask 0x%x\n",
1946 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1947 return (-1);
1948 }
1949
1950 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1951
1952 /* read GPIO and mask except the float bits */
1953 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1954
1955 switch (mode) {
1956 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1957 BLOGD(sc, DBG_PHY,
1958 "Set GPIO %d (shift %d) -> output low\n",
1959 gpio_num, gpio_shift);
1960 /* clear FLOAT and set CLR */
1961 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1962 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1963 break;
1964
1965 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1966 BLOGD(sc, DBG_PHY,
1967 "Set GPIO %d (shift %d) -> output high\n",
1968 gpio_num, gpio_shift);
1969 /* clear FLOAT and set SET */
1970 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1971 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1972 break;
1973
1974 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1975 BLOGD(sc, DBG_PHY,
1976 "Set GPIO %d (shift %d) -> input\n",
1977 gpio_num, gpio_shift);
1978 /* set FLOAT */
1979 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1980 break;
1981
1982 default:
1983 break;
1984 }
1985
1986 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1987 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1988
1989 return (0);
1990 }
1991
1992 static int
bxe_gpio_mult_write(struct bxe_softc * sc,uint8_t pins,uint32_t mode)1993 bxe_gpio_mult_write(struct bxe_softc *sc,
1994 uint8_t pins,
1995 uint32_t mode)
1996 {
1997 uint32_t gpio_reg;
1998
1999 /* any port swapping should be handled by caller */
2000
2001 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2002
2003 /* read GPIO and mask except the float bits */
2004 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2005 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2006 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2007 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2008
2009 switch (mode) {
2010 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2011 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2012 /* set CLR */
2013 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2014 break;
2015
2016 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2017 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2018 /* set SET */
2019 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2020 break;
2021
2022 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2023 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2024 /* set FLOAT */
2025 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2026 break;
2027
2028 default:
2029 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
2030 " gpio_reg 0x%x\n", pins, mode, gpio_reg);
2031 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2032 return (-1);
2033 }
2034
2035 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2036 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2037
2038 return (0);
2039 }
2040
2041 static int
bxe_gpio_int_write(struct bxe_softc * sc,int gpio_num,uint32_t mode,uint8_t port)2042 bxe_gpio_int_write(struct bxe_softc *sc,
2043 int gpio_num,
2044 uint32_t mode,
2045 uint8_t port)
2046 {
2047 /* The GPIO should be swapped if swap register is set and active */
2048 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2049 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2050 int gpio_shift = (gpio_num +
2051 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2052 uint32_t gpio_mask = (1 << gpio_shift);
2053 uint32_t gpio_reg;
2054
2055 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2056 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2057 " gpio_shift %d gpio_mask 0x%x\n",
2058 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2059 return (-1);
2060 }
2061
2062 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2063
2064 /* read GPIO int */
2065 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2066
2067 switch (mode) {
2068 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2069 BLOGD(sc, DBG_PHY,
2070 "Clear GPIO INT %d (shift %d) -> output low\n",
2071 gpio_num, gpio_shift);
2072 /* clear SET and set CLR */
2073 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2074 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2075 break;
2076
2077 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2078 BLOGD(sc, DBG_PHY,
2079 "Set GPIO INT %d (shift %d) -> output high\n",
2080 gpio_num, gpio_shift);
2081 /* clear CLR and set SET */
2082 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2083 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2084 break;
2085
2086 default:
2087 break;
2088 }
2089
2090 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2091 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092
2093 return (0);
2094 }
2095
2096 uint32_t
elink_cb_gpio_read(struct bxe_softc * sc,uint16_t gpio_num,uint8_t port)2097 elink_cb_gpio_read(struct bxe_softc *sc,
2098 uint16_t gpio_num,
2099 uint8_t port)
2100 {
2101 return (bxe_gpio_read(sc, gpio_num, port));
2102 }
2103
2104 uint8_t
elink_cb_gpio_write(struct bxe_softc * sc,uint16_t gpio_num,uint8_t mode,uint8_t port)2105 elink_cb_gpio_write(struct bxe_softc *sc,
2106 uint16_t gpio_num,
2107 uint8_t mode, /* 0=low 1=high */
2108 uint8_t port)
2109 {
2110 return (bxe_gpio_write(sc, gpio_num, mode, port));
2111 }
2112
2113 uint8_t
elink_cb_gpio_mult_write(struct bxe_softc * sc,uint8_t pins,uint8_t mode)2114 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2115 uint8_t pins,
2116 uint8_t mode) /* 0=low 1=high */
2117 {
2118 return (bxe_gpio_mult_write(sc, pins, mode));
2119 }
2120
2121 uint8_t
elink_cb_gpio_int_write(struct bxe_softc * sc,uint16_t gpio_num,uint8_t mode,uint8_t port)2122 elink_cb_gpio_int_write(struct bxe_softc *sc,
2123 uint16_t gpio_num,
2124 uint8_t mode, /* 0=low 1=high */
2125 uint8_t port)
2126 {
2127 return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2128 }
2129
2130 void
elink_cb_notify_link_changed(struct bxe_softc * sc)2131 elink_cb_notify_link_changed(struct bxe_softc *sc)
2132 {
2133 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2134 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2135 }
2136
2137 /* send the MCP a request, block until there is a reply */
2138 uint32_t
elink_cb_fw_command(struct bxe_softc * sc,uint32_t command,uint32_t param)2139 elink_cb_fw_command(struct bxe_softc *sc,
2140 uint32_t command,
2141 uint32_t param)
2142 {
2143 int mb_idx = SC_FW_MB_IDX(sc);
2144 uint32_t seq;
2145 uint32_t rc = 0;
2146 uint32_t cnt = 1;
2147 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2148
2149 BXE_FWMB_LOCK(sc);
2150
2151 seq = ++sc->fw_seq;
2152 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2153 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2154
2155 BLOGD(sc, DBG_PHY,
2156 "wrote command 0x%08x to FW MB param 0x%08x\n",
2157 (command | seq), param);
2158
2159 /* Let the FW do it's magic. GIve it up to 5 seconds... */
2160 do {
2161 DELAY(delay * 1000);
2162 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2163 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2164
2165 BLOGD(sc, DBG_PHY,
2166 "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2167 cnt*delay, rc, seq);
2168
2169 /* is this a reply to our command? */
2170 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2171 rc &= FW_MSG_CODE_MASK;
2172 } else {
2173 /* Ruh-roh! */
2174 BLOGE(sc, "FW failed to respond!\n");
2175 // XXX bxe_fw_dump(sc);
2176 rc = 0;
2177 }
2178
2179 BXE_FWMB_UNLOCK(sc);
2180 return (rc);
2181 }
2182
2183 static uint32_t
bxe_fw_command(struct bxe_softc * sc,uint32_t command,uint32_t param)2184 bxe_fw_command(struct bxe_softc *sc,
2185 uint32_t command,
2186 uint32_t param)
2187 {
2188 return (elink_cb_fw_command(sc, command, param));
2189 }
2190
2191 static void
__storm_memset_dma_mapping(struct bxe_softc * sc,uint32_t addr,bus_addr_t mapping)2192 __storm_memset_dma_mapping(struct bxe_softc *sc,
2193 uint32_t addr,
2194 bus_addr_t mapping)
2195 {
2196 REG_WR(sc, addr, U64_LO(mapping));
2197 REG_WR(sc, (addr + 4), U64_HI(mapping));
2198 }
2199
2200 static void
storm_memset_spq_addr(struct bxe_softc * sc,bus_addr_t mapping,uint16_t abs_fid)2201 storm_memset_spq_addr(struct bxe_softc *sc,
2202 bus_addr_t mapping,
2203 uint16_t abs_fid)
2204 {
2205 uint32_t addr = (XSEM_REG_FAST_MEMORY +
2206 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2207 __storm_memset_dma_mapping(sc, addr, mapping);
2208 }
2209
2210 static void
storm_memset_vf_to_pf(struct bxe_softc * sc,uint16_t abs_fid,uint16_t pf_id)2211 storm_memset_vf_to_pf(struct bxe_softc *sc,
2212 uint16_t abs_fid,
2213 uint16_t pf_id)
2214 {
2215 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2216 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2217 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2218 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2219 }
2220
2221 static void
storm_memset_func_en(struct bxe_softc * sc,uint16_t abs_fid,uint8_t enable)2222 storm_memset_func_en(struct bxe_softc *sc,
2223 uint16_t abs_fid,
2224 uint8_t enable)
2225 {
2226 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2227 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2228 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2229 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2230 }
2231
2232 static void
storm_memset_eq_data(struct bxe_softc * sc,struct event_ring_data * eq_data,uint16_t pfid)2233 storm_memset_eq_data(struct bxe_softc *sc,
2234 struct event_ring_data *eq_data,
2235 uint16_t pfid)
2236 {
2237 uint32_t addr;
2238 size_t size;
2239
2240 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2241 size = sizeof(struct event_ring_data);
2242 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2243 }
2244
2245 static void
storm_memset_eq_prod(struct bxe_softc * sc,uint16_t eq_prod,uint16_t pfid)2246 storm_memset_eq_prod(struct bxe_softc *sc,
2247 uint16_t eq_prod,
2248 uint16_t pfid)
2249 {
2250 uint32_t addr = (BAR_CSTRORM_INTMEM +
2251 CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2252 REG_WR16(sc, addr, eq_prod);
2253 }
2254
2255 /*
2256 * Post a slowpath command.
2257 *
2258 * A slowpath command is used to propagate a configuration change through
2259 * the controller in a controlled manner, allowing each STORM processor and
2260 * other H/W blocks to phase in the change. The commands sent on the
2261 * slowpath are referred to as ramrods. Depending on the ramrod used the
2262 * completion of the ramrod will occur in different ways. Here's a
2263 * breakdown of ramrods and how they complete:
2264 *
2265 * RAMROD_CMD_ID_ETH_PORT_SETUP
2266 * Used to setup the leading connection on a port. Completes on the
2267 * Receive Completion Queue (RCQ) of that port (typically fp[0]).
2268 *
2269 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2270 * Used to setup an additional connection on a port. Completes on the
2271 * RCQ of the multi-queue/RSS connection being initialized.
2272 *
2273 * RAMROD_CMD_ID_ETH_STAT_QUERY
2274 * Used to force the storm processors to update the statistics database
2275 * in host memory. This ramrod is send on the leading connection CID and
2276 * completes as an index increment of the CSTORM on the default status
2277 * block.
2278 *
2279 * RAMROD_CMD_ID_ETH_UPDATE
2280 * Used to update the state of the leading connection, usually to udpate
2281 * the RSS indirection table. Completes on the RCQ of the leading
2282 * connection. (Not currently used under FreeBSD until OS support becomes
2283 * available.)
2284 *
2285 * RAMROD_CMD_ID_ETH_HALT
2286 * Used when tearing down a connection prior to driver unload. Completes
2287 * on the RCQ of the multi-queue/RSS connection being torn down. Don't
2288 * use this on the leading connection.
2289 *
2290 * RAMROD_CMD_ID_ETH_SET_MAC
2291 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on
2292 * the RCQ of the leading connection.
2293 *
2294 * RAMROD_CMD_ID_ETH_CFC_DEL
2295 * Used when tearing down a conneciton prior to driver unload. Completes
2296 * on the RCQ of the leading connection (since the current connection
2297 * has been completely removed from controller memory).
2298 *
2299 * RAMROD_CMD_ID_ETH_PORT_DEL
2300 * Used to tear down the leading connection prior to driver unload,
2301 * typically fp[0]. Completes as an index increment of the CSTORM on the
2302 * default status block.
2303 *
2304 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2305 * Used for connection offload. Completes on the RCQ of the multi-queue
2306 * RSS connection that is being offloaded. (Not currently used under
2307 * FreeBSD.)
2308 *
2309 * There can only be one command pending per function.
2310 *
2311 * Returns:
2312 * 0 = Success, !0 = Failure.
2313 */
2314
2315 /* must be called under the spq lock */
2316 static inline
bxe_sp_get_next(struct bxe_softc * sc)2317 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2318 {
2319 struct eth_spe *next_spe = sc->spq_prod_bd;
2320
2321 if (sc->spq_prod_bd == sc->spq_last_bd) {
2322 /* wrap back to the first eth_spq */
2323 sc->spq_prod_bd = sc->spq;
2324 sc->spq_prod_idx = 0;
2325 } else {
2326 sc->spq_prod_bd++;
2327 sc->spq_prod_idx++;
2328 }
2329
2330 return (next_spe);
2331 }
2332
2333 /* must be called under the spq lock */
2334 static inline
bxe_sp_prod_update(struct bxe_softc * sc)2335 void bxe_sp_prod_update(struct bxe_softc *sc)
2336 {
2337 int func = SC_FUNC(sc);
2338
2339 /*
2340 * Make sure that BD data is updated before writing the producer.
2341 * BD data is written to the memory, the producer is read from the
2342 * memory, thus we need a full memory barrier to ensure the ordering.
2343 */
2344 mb();
2345
2346 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2347 sc->spq_prod_idx);
2348
2349 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2350 BUS_SPACE_BARRIER_WRITE);
2351 }
2352
2353 /**
2354 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2355 *
2356 * @cmd: command to check
2357 * @cmd_type: command type
2358 */
2359 static inline
bxe_is_contextless_ramrod(int cmd,int cmd_type)2360 int bxe_is_contextless_ramrod(int cmd,
2361 int cmd_type)
2362 {
2363 if ((cmd_type == NONE_CONNECTION_TYPE) ||
2364 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2365 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2366 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2367 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2368 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2369 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2370 return (TRUE);
2371 } else {
2372 return (FALSE);
2373 }
2374 }
2375
2376 /**
2377 * bxe_sp_post - place a single command on an SP ring
2378 *
2379 * @sc: driver handle
2380 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
2381 * @cid: SW CID the command is related to
2382 * @data_hi: command private data address (high 32 bits)
2383 * @data_lo: command private data address (low 32 bits)
2384 * @cmd_type: command type (e.g. NONE, ETH)
2385 *
2386 * SP data is handled as if it's always an address pair, thus data fields are
2387 * not swapped to little endian in upper functions. Instead this function swaps
2388 * data as if it's two uint32 fields.
2389 */
2390 int
bxe_sp_post(struct bxe_softc * sc,int command,int cid,uint32_t data_hi,uint32_t data_lo,int cmd_type)2391 bxe_sp_post(struct bxe_softc *sc,
2392 int command,
2393 int cid,
2394 uint32_t data_hi,
2395 uint32_t data_lo,
2396 int cmd_type)
2397 {
2398 struct eth_spe *spe;
2399 uint16_t type;
2400 int common;
2401
2402 common = bxe_is_contextless_ramrod(command, cmd_type);
2403
2404 BXE_SP_LOCK(sc);
2405
2406 if (common) {
2407 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2408 BLOGE(sc, "EQ ring is full!\n");
2409 BXE_SP_UNLOCK(sc);
2410 return (-1);
2411 }
2412 } else {
2413 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2414 BLOGE(sc, "SPQ ring is full!\n");
2415 BXE_SP_UNLOCK(sc);
2416 return (-1);
2417 }
2418 }
2419
2420 spe = bxe_sp_get_next(sc);
2421
2422 /* CID needs port number to be encoded int it */
2423 spe->hdr.conn_and_cmd_data =
2424 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2425
2426 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2427
2428 /* TBD: Check if it works for VFs */
2429 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2430 SPE_HDR_T_FUNCTION_ID);
2431
2432 spe->hdr.type = htole16(type);
2433
2434 spe->data.update_data_addr.hi = htole32(data_hi);
2435 spe->data.update_data_addr.lo = htole32(data_lo);
2436
2437 /*
2438 * It's ok if the actual decrement is issued towards the memory
2439 * somewhere between the lock and unlock. Thus no more explict
2440 * memory barrier is needed.
2441 */
2442 if (common) {
2443 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2444 } else {
2445 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2446 }
2447
2448 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2449 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2450 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2451 BLOGD(sc, DBG_SP,
2452 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2453 sc->spq_prod_idx,
2454 (uint32_t)U64_HI(sc->spq_dma.paddr),
2455 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2456 command,
2457 common,
2458 HW_CID(sc, cid),
2459 data_hi,
2460 data_lo,
2461 type,
2462 atomic_load_acq_long(&sc->cq_spq_left),
2463 atomic_load_acq_long(&sc->eq_spq_left));
2464
2465 bxe_sp_prod_update(sc);
2466
2467 BXE_SP_UNLOCK(sc);
2468 return (0);
2469 }
2470
2471 /**
2472 * bxe_debug_print_ind_table - prints the indirection table configuration.
2473 *
2474 * @sc: driver hanlde
2475 * @p: pointer to rss configuration
2476 */
2477
2478 /*
2479 * FreeBSD Device probe function.
2480 *
2481 * Compares the device found to the driver's list of supported devices and
2482 * reports back to the bsd loader whether this is the right driver for the device.
2483 * This is the driver entry function called from the "kldload" command.
2484 *
2485 * Returns:
2486 * BUS_PROBE_DEFAULT on success, positive value on failure.
2487 */
2488 static int
bxe_probe(device_t dev)2489 bxe_probe(device_t dev)
2490 {
2491 struct bxe_device_type *t;
2492 uint16_t did, sdid, svid, vid;
2493
2494 /* Find our device structure */
2495 t = bxe_devs;
2496
2497 /* Get the data for the device to be probed. */
2498 vid = pci_get_vendor(dev);
2499 did = pci_get_device(dev);
2500 svid = pci_get_subvendor(dev);
2501 sdid = pci_get_subdevice(dev);
2502
2503 /* Look through the list of known devices for a match. */
2504 while (t->bxe_name != NULL) {
2505 if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2506 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2507 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2508 device_set_descf(dev,
2509 "%s (%c%d) BXE v:%s", t->bxe_name,
2510 (((pci_read_config(dev, PCIR_REVID, 4) &
2511 0xf0) >> 4) + 'A'),
2512 (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2513 BXE_DRIVER_VERSION);
2514 return (BUS_PROBE_DEFAULT);
2515 }
2516 t++;
2517 }
2518
2519 return (ENXIO);
2520 }
2521
2522 static void
bxe_init_mutexes(struct bxe_softc * sc)2523 bxe_init_mutexes(struct bxe_softc *sc)
2524 {
2525 #ifdef BXE_CORE_LOCK_SX
2526 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2527 "bxe%d_core_lock", sc->unit);
2528 sx_init(&sc->core_sx, sc->core_sx_name);
2529 #else
2530 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2531 "bxe%d_core_lock", sc->unit);
2532 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2533 #endif
2534
2535 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2536 "bxe%d_sp_lock", sc->unit);
2537 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2538
2539 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2540 "bxe%d_dmae_lock", sc->unit);
2541 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2542
2543 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2544 "bxe%d_phy_lock", sc->unit);
2545 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2546
2547 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2548 "bxe%d_fwmb_lock", sc->unit);
2549 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2550
2551 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2552 "bxe%d_print_lock", sc->unit);
2553 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2554
2555 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2556 "bxe%d_stats_lock", sc->unit);
2557 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2558
2559 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2560 "bxe%d_mcast_lock", sc->unit);
2561 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2562 }
2563
2564 static void
bxe_release_mutexes(struct bxe_softc * sc)2565 bxe_release_mutexes(struct bxe_softc *sc)
2566 {
2567 #ifdef BXE_CORE_LOCK_SX
2568 sx_destroy(&sc->core_sx);
2569 #else
2570 if (mtx_initialized(&sc->core_mtx)) {
2571 mtx_destroy(&sc->core_mtx);
2572 }
2573 #endif
2574
2575 if (mtx_initialized(&sc->sp_mtx)) {
2576 mtx_destroy(&sc->sp_mtx);
2577 }
2578
2579 if (mtx_initialized(&sc->dmae_mtx)) {
2580 mtx_destroy(&sc->dmae_mtx);
2581 }
2582
2583 if (mtx_initialized(&sc->port.phy_mtx)) {
2584 mtx_destroy(&sc->port.phy_mtx);
2585 }
2586
2587 if (mtx_initialized(&sc->fwmb_mtx)) {
2588 mtx_destroy(&sc->fwmb_mtx);
2589 }
2590
2591 if (mtx_initialized(&sc->print_mtx)) {
2592 mtx_destroy(&sc->print_mtx);
2593 }
2594
2595 if (mtx_initialized(&sc->stats_mtx)) {
2596 mtx_destroy(&sc->stats_mtx);
2597 }
2598
2599 if (mtx_initialized(&sc->mcast_mtx)) {
2600 mtx_destroy(&sc->mcast_mtx);
2601 }
2602 }
2603
2604 static void
bxe_tx_disable(struct bxe_softc * sc)2605 bxe_tx_disable(struct bxe_softc* sc)
2606 {
2607 if_t ifp = sc->ifp;
2608
2609 /* tell the stack the driver is stopped and TX queue is full */
2610 if (ifp != NULL) {
2611 if_setdrvflags(ifp, 0);
2612 }
2613 }
2614
2615 static void
bxe_drv_pulse(struct bxe_softc * sc)2616 bxe_drv_pulse(struct bxe_softc *sc)
2617 {
2618 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2619 sc->fw_drv_pulse_wr_seq);
2620 }
2621
2622 static inline uint16_t
bxe_tx_avail(struct bxe_softc * sc,struct bxe_fastpath * fp)2623 bxe_tx_avail(struct bxe_softc *sc,
2624 struct bxe_fastpath *fp)
2625 {
2626 int16_t used;
2627 uint16_t prod;
2628 uint16_t cons;
2629
2630 prod = fp->tx_bd_prod;
2631 cons = fp->tx_bd_cons;
2632
2633 used = SUB_S16(prod, cons);
2634
2635 return (int16_t)(sc->tx_ring_size) - used;
2636 }
2637
2638 static inline int
bxe_tx_queue_has_work(struct bxe_fastpath * fp)2639 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2640 {
2641 uint16_t hw_cons;
2642
2643 mb(); /* status block fields can change */
2644 hw_cons = le16toh(*fp->tx_cons_sb);
2645 return (hw_cons != fp->tx_pkt_cons);
2646 }
2647
2648 static inline uint8_t
bxe_has_tx_work(struct bxe_fastpath * fp)2649 bxe_has_tx_work(struct bxe_fastpath *fp)
2650 {
2651 /* expand this for multi-cos if ever supported */
2652 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2653 }
2654
2655 static inline int
bxe_has_rx_work(struct bxe_fastpath * fp)2656 bxe_has_rx_work(struct bxe_fastpath *fp)
2657 {
2658 uint16_t rx_cq_cons_sb;
2659
2660 mb(); /* status block fields can change */
2661 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2662 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2663 rx_cq_cons_sb++;
2664 return (fp->rx_cq_cons != rx_cq_cons_sb);
2665 }
2666
2667 static void
bxe_sp_event(struct bxe_softc * sc,struct bxe_fastpath * fp,union eth_rx_cqe * rr_cqe)2668 bxe_sp_event(struct bxe_softc *sc,
2669 struct bxe_fastpath *fp,
2670 union eth_rx_cqe *rr_cqe)
2671 {
2672 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2673 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2674 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2675 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2676
2677 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2678 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2679
2680 switch (command) {
2681 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2682 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2683 drv_cmd = ECORE_Q_CMD_UPDATE;
2684 break;
2685
2686 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2687 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2688 drv_cmd = ECORE_Q_CMD_SETUP;
2689 break;
2690
2691 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2692 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2693 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2694 break;
2695
2696 case (RAMROD_CMD_ID_ETH_HALT):
2697 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2698 drv_cmd = ECORE_Q_CMD_HALT;
2699 break;
2700
2701 case (RAMROD_CMD_ID_ETH_TERMINATE):
2702 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2703 drv_cmd = ECORE_Q_CMD_TERMINATE;
2704 break;
2705
2706 case (RAMROD_CMD_ID_ETH_EMPTY):
2707 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2708 drv_cmd = ECORE_Q_CMD_EMPTY;
2709 break;
2710
2711 default:
2712 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2713 command, fp->index);
2714 return;
2715 }
2716
2717 if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2718 q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2719 /*
2720 * q_obj->complete_cmd() failure means that this was
2721 * an unexpected completion.
2722 *
2723 * In this case we don't want to increase the sc->spq_left
2724 * because apparently we haven't sent this command the first
2725 * place.
2726 */
2727 // bxe_panic(sc, ("Unexpected SP completion\n"));
2728 return;
2729 }
2730
2731 atomic_add_acq_long(&sc->cq_spq_left, 1);
2732
2733 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2734 atomic_load_acq_long(&sc->cq_spq_left));
2735 }
2736
2737 /*
2738 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2739 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2740 * the current aggregation queue as in-progress.
2741 */
2742 static void
bxe_tpa_start(struct bxe_softc * sc,struct bxe_fastpath * fp,uint16_t queue,uint16_t cons,uint16_t prod,struct eth_fast_path_rx_cqe * cqe)2743 bxe_tpa_start(struct bxe_softc *sc,
2744 struct bxe_fastpath *fp,
2745 uint16_t queue,
2746 uint16_t cons,
2747 uint16_t prod,
2748 struct eth_fast_path_rx_cqe *cqe)
2749 {
2750 struct bxe_sw_rx_bd tmp_bd;
2751 struct bxe_sw_rx_bd *rx_buf;
2752 struct eth_rx_bd *rx_bd;
2753 int max_agg_queues __diagused;
2754 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2755 uint16_t index;
2756
2757 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2758 "cons=%d prod=%d\n",
2759 fp->index, queue, cons, prod);
2760
2761 max_agg_queues = MAX_AGG_QS(sc);
2762
2763 KASSERT((queue < max_agg_queues),
2764 ("fp[%02d] invalid aggr queue (%d >= %d)!",
2765 fp->index, queue, max_agg_queues));
2766
2767 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2768 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2769 fp->index, queue));
2770
2771 /* copy the existing mbuf and mapping from the TPA pool */
2772 tmp_bd = tpa_info->bd;
2773
2774 if (tmp_bd.m == NULL) {
2775 uint32_t *tmp;
2776
2777 tmp = (uint32_t *)cqe;
2778
2779 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2780 fp->index, queue, cons, prod);
2781 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2782 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2783
2784 /* XXX Error handling? */
2785 return;
2786 }
2787
2788 /* change the TPA queue to the start state */
2789 tpa_info->state = BXE_TPA_STATE_START;
2790 tpa_info->placement_offset = cqe->placement_offset;
2791 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags);
2792 tpa_info->vlan_tag = le16toh(cqe->vlan_tag);
2793 tpa_info->len_on_bd = le16toh(cqe->len_on_bd);
2794
2795 fp->rx_tpa_queue_used |= (1 << queue);
2796
2797 /*
2798 * If all the buffer descriptors are filled with mbufs then fill in
2799 * the current consumer index with a new BD. Else if a maximum Rx
2800 * buffer limit is imposed then fill in the next producer index.
2801 */
2802 index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2803 prod : cons;
2804
2805 /* move the received mbuf and mapping to TPA pool */
2806 tpa_info->bd = fp->rx_mbuf_chain[cons];
2807
2808 /* release any existing RX BD mbuf mappings */
2809 if (cons != index) {
2810 rx_buf = &fp->rx_mbuf_chain[cons];
2811
2812 if (rx_buf->m_map != NULL) {
2813 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2814 BUS_DMASYNC_POSTREAD);
2815 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2816 }
2817
2818 /*
2819 * We get here when the maximum number of rx buffers is less than
2820 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2821 * it out here without concern of a memory leak.
2822 */
2823 fp->rx_mbuf_chain[cons].m = NULL;
2824 }
2825
2826 /* update the Rx SW BD with the mbuf info from the TPA pool */
2827 fp->rx_mbuf_chain[index] = tmp_bd;
2828
2829 /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2830 rx_bd = &fp->rx_chain[index];
2831 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2832 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2833 }
2834
2835 /*
2836 * When a TPA aggregation is completed, loop through the individual mbufs
2837 * of the aggregation, combining them into a single mbuf which will be sent
2838 * up the stack. Refill all freed SGEs with mbufs as we go along.
2839 */
2840 static int
bxe_fill_frag_mbuf(struct bxe_softc * sc,struct bxe_fastpath * fp,struct bxe_sw_tpa_info * tpa_info,uint16_t queue,uint16_t pages,struct mbuf * m,struct eth_end_agg_rx_cqe * cqe,uint16_t cqe_idx)2841 bxe_fill_frag_mbuf(struct bxe_softc *sc,
2842 struct bxe_fastpath *fp,
2843 struct bxe_sw_tpa_info *tpa_info,
2844 uint16_t queue,
2845 uint16_t pages,
2846 struct mbuf *m,
2847 struct eth_end_agg_rx_cqe *cqe,
2848 uint16_t cqe_idx)
2849 {
2850 struct mbuf *m_frag;
2851 uint32_t frag_len, frag_size, i;
2852 uint16_t sge_idx;
2853 int rc = 0;
2854 int j;
2855
2856 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2857
2858 BLOGD(sc, DBG_LRO,
2859 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2860 fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2861
2862 /* make sure the aggregated frame is not too big to handle */
2863 if (pages > 8 * PAGES_PER_SGE) {
2864
2865 uint32_t *tmp = (uint32_t *)cqe;
2866
2867 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2868 "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2869 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2870 tpa_info->len_on_bd, frag_size);
2871
2872 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2873 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2874
2875 bxe_panic(sc, ("sge page count error\n"));
2876 return (EINVAL);
2877 }
2878
2879 /*
2880 * Scan through the scatter gather list pulling individual mbufs into a
2881 * single mbuf for the host stack.
2882 */
2883 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2884 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2885
2886 /*
2887 * Firmware gives the indices of the SGE as if the ring is an array
2888 * (meaning that the "next" element will consume 2 indices).
2889 */
2890 frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2891
2892 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2893 "sge_idx=%d frag_size=%d frag_len=%d\n",
2894 fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2895
2896 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2897
2898 /* allocate a new mbuf for the SGE */
2899 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2900 if (rc) {
2901 /* Leave all remaining SGEs in the ring! */
2902 return (rc);
2903 }
2904
2905 /* update the fragment length */
2906 m_frag->m_len = frag_len;
2907
2908 /* concatenate the fragment to the head mbuf */
2909 m_cat(m, m_frag);
2910 fp->eth_q_stats.mbuf_alloc_sge--;
2911
2912 /* update the TPA mbuf size and remaining fragment size */
2913 m->m_pkthdr.len += frag_len;
2914 frag_size -= frag_len;
2915 }
2916
2917 BLOGD(sc, DBG_LRO,
2918 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2919 fp->index, queue, frag_size);
2920
2921 return (rc);
2922 }
2923
2924 static inline void
bxe_clear_sge_mask_next_elems(struct bxe_fastpath * fp)2925 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2926 {
2927 int i, j;
2928
2929 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2930 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2931
2932 for (j = 0; j < 2; j++) {
2933 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2934 idx--;
2935 }
2936 }
2937 }
2938
2939 static inline void
bxe_init_sge_ring_bit_mask(struct bxe_fastpath * fp)2940 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2941 {
2942 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2943 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2944
2945 /*
2946 * Clear the two last indices in the page to 1. These are the indices that
2947 * correspond to the "next" element, hence will never be indicated and
2948 * should be removed from the calculations.
2949 */
2950 bxe_clear_sge_mask_next_elems(fp);
2951 }
2952
2953 static inline void
bxe_update_last_max_sge(struct bxe_fastpath * fp,uint16_t idx)2954 bxe_update_last_max_sge(struct bxe_fastpath *fp,
2955 uint16_t idx)
2956 {
2957 uint16_t last_max = fp->last_max_sge;
2958
2959 if (SUB_S16(idx, last_max) > 0) {
2960 fp->last_max_sge = idx;
2961 }
2962 }
2963
2964 static inline void
bxe_update_sge_prod(struct bxe_softc * sc,struct bxe_fastpath * fp,uint16_t sge_len,union eth_sgl_or_raw_data * cqe)2965 bxe_update_sge_prod(struct bxe_softc *sc,
2966 struct bxe_fastpath *fp,
2967 uint16_t sge_len,
2968 union eth_sgl_or_raw_data *cqe)
2969 {
2970 uint16_t last_max, last_elem, first_elem;
2971 uint16_t delta = 0;
2972 uint16_t i;
2973
2974 if (!sge_len) {
2975 return;
2976 }
2977
2978 /* first mark all used pages */
2979 for (i = 0; i < sge_len; i++) {
2980 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2981 RX_SGE(le16toh(cqe->sgl[i])));
2982 }
2983
2984 BLOGD(sc, DBG_LRO,
2985 "fp[%02d] fp_cqe->sgl[%d] = %d\n",
2986 fp->index, sge_len - 1,
2987 le16toh(cqe->sgl[sge_len - 1]));
2988
2989 /* assume that the last SGE index is the biggest */
2990 bxe_update_last_max_sge(fp,
2991 le16toh(cqe->sgl[sge_len - 1]));
2992
2993 last_max = RX_SGE(fp->last_max_sge);
2994 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
2995 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
2996
2997 /* if ring is not full */
2998 if (last_elem + 1 != first_elem) {
2999 last_elem++;
3000 }
3001
3002 /* now update the prod */
3003 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3004 if (__predict_true(fp->sge_mask[i])) {
3005 break;
3006 }
3007
3008 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3009 delta += BIT_VEC64_ELEM_SZ;
3010 }
3011
3012 if (delta > 0) {
3013 fp->rx_sge_prod += delta;
3014 /* clear page-end entries */
3015 bxe_clear_sge_mask_next_elems(fp);
3016 }
3017
3018 BLOGD(sc, DBG_LRO,
3019 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3020 fp->index, fp->last_max_sge, fp->rx_sge_prod);
3021 }
3022
3023 /*
3024 * The aggregation on the current TPA queue has completed. Pull the individual
3025 * mbuf fragments together into a single mbuf, perform all necessary checksum
3026 * calculations, and send the resuting mbuf to the stack.
3027 */
3028 static void
bxe_tpa_stop(struct bxe_softc * sc,struct bxe_fastpath * fp,struct bxe_sw_tpa_info * tpa_info,uint16_t queue,uint16_t pages,struct eth_end_agg_rx_cqe * cqe,uint16_t cqe_idx)3029 bxe_tpa_stop(struct bxe_softc *sc,
3030 struct bxe_fastpath *fp,
3031 struct bxe_sw_tpa_info *tpa_info,
3032 uint16_t queue,
3033 uint16_t pages,
3034 struct eth_end_agg_rx_cqe *cqe,
3035 uint16_t cqe_idx)
3036 {
3037 if_t ifp = sc->ifp;
3038 struct mbuf *m;
3039 int rc = 0;
3040
3041 BLOGD(sc, DBG_LRO,
3042 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3043 fp->index, queue, tpa_info->placement_offset,
3044 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3045
3046 m = tpa_info->bd.m;
3047
3048 /* allocate a replacement before modifying existing mbuf */
3049 rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3050 if (rc) {
3051 /* drop the frame and log an error */
3052 fp->eth_q_stats.rx_soft_errors++;
3053 goto bxe_tpa_stop_exit;
3054 }
3055
3056 /* we have a replacement, fixup the current mbuf */
3057 m_adj(m, tpa_info->placement_offset);
3058 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3059
3060 /* mark the checksums valid (taken care of by the firmware) */
3061 fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3062 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3063 m->m_pkthdr.csum_data = 0xffff;
3064 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3065 CSUM_IP_VALID |
3066 CSUM_DATA_VALID |
3067 CSUM_PSEUDO_HDR);
3068
3069 /* aggregate all of the SGEs into a single mbuf */
3070 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3071 if (rc) {
3072 /* drop the packet and log an error */
3073 fp->eth_q_stats.rx_soft_errors++;
3074 m_freem(m);
3075 } else {
3076 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3077 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3078 m->m_flags |= M_VLANTAG;
3079 }
3080
3081 /* assign packet to this interface interface */
3082 if_setrcvif(m, ifp);
3083
3084 /* specify what RSS queue was used for this flow */
3085 m->m_pkthdr.flowid = fp->index;
3086 BXE_SET_FLOWID(m);
3087
3088 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3089 fp->eth_q_stats.rx_tpa_pkts++;
3090
3091 /* pass the frame to the stack */
3092 if_input(ifp, m);
3093 }
3094
3095 /* we passed an mbuf up the stack or dropped the frame */
3096 fp->eth_q_stats.mbuf_alloc_tpa--;
3097
3098 bxe_tpa_stop_exit:
3099
3100 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3101 fp->rx_tpa_queue_used &= ~(1 << queue);
3102 }
3103
3104 static uint8_t
bxe_service_rxsgl(struct bxe_fastpath * fp,uint16_t len,uint16_t lenonbd,struct mbuf * m,struct eth_fast_path_rx_cqe * cqe_fp)3105 bxe_service_rxsgl(
3106 struct bxe_fastpath *fp,
3107 uint16_t len,
3108 uint16_t lenonbd,
3109 struct mbuf *m,
3110 struct eth_fast_path_rx_cqe *cqe_fp)
3111 {
3112 struct mbuf *m_frag;
3113 uint16_t frags, frag_len;
3114 uint16_t sge_idx = 0;
3115 uint16_t j;
3116 uint8_t i, rc = 0;
3117 uint32_t frag_size;
3118
3119 /* adjust the mbuf */
3120 m->m_len = lenonbd;
3121
3122 frag_size = len - lenonbd;
3123 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3124
3125 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3126 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3127
3128 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3129 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3130 m_frag->m_len = frag_len;
3131
3132 /* allocate a new mbuf for the SGE */
3133 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3134 if (rc) {
3135 /* Leave all remaining SGEs in the ring! */
3136 return (rc);
3137 }
3138 fp->eth_q_stats.mbuf_alloc_sge--;
3139
3140 /* concatenate the fragment to the head mbuf */
3141 m_cat(m, m_frag);
3142
3143 frag_size -= frag_len;
3144 }
3145
3146 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3147
3148 return rc;
3149 }
3150
3151 static uint8_t
bxe_rxeof(struct bxe_softc * sc,struct bxe_fastpath * fp)3152 bxe_rxeof(struct bxe_softc *sc,
3153 struct bxe_fastpath *fp)
3154 {
3155 if_t ifp = sc->ifp;
3156 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3157 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3158 int rx_pkts = 0;
3159 int rc = 0;
3160
3161 BXE_FP_RX_LOCK(fp);
3162
3163 /* CQ "next element" is of the size of the regular element */
3164 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3165 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3166 hw_cq_cons++;
3167 }
3168
3169 bd_cons = fp->rx_bd_cons;
3170 bd_prod = fp->rx_bd_prod;
3171 bd_prod_fw = bd_prod;
3172 sw_cq_cons = fp->rx_cq_cons;
3173 sw_cq_prod = fp->rx_cq_prod;
3174
3175 /*
3176 * Memory barrier necessary as speculative reads of the rx
3177 * buffer can be ahead of the index in the status block
3178 */
3179 rmb();
3180
3181 BLOGD(sc, DBG_RX,
3182 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3183 fp->index, hw_cq_cons, sw_cq_cons);
3184
3185 while (sw_cq_cons != hw_cq_cons) {
3186 struct bxe_sw_rx_bd *rx_buf = NULL;
3187 union eth_rx_cqe *cqe;
3188 struct eth_fast_path_rx_cqe *cqe_fp;
3189 uint8_t cqe_fp_flags;
3190 enum eth_rx_cqe_type cqe_fp_type;
3191 uint16_t len, lenonbd, pad;
3192 struct mbuf *m = NULL;
3193
3194 comp_ring_cons = RCQ(sw_cq_cons);
3195 bd_prod = RX_BD(bd_prod);
3196 bd_cons = RX_BD(bd_cons);
3197
3198 cqe = &fp->rcq_chain[comp_ring_cons];
3199 cqe_fp = &cqe->fast_path_cqe;
3200 cqe_fp_flags = cqe_fp->type_error_flags;
3201 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3202
3203 BLOGD(sc, DBG_RX,
3204 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3205 "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3206 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3207 fp->index,
3208 hw_cq_cons,
3209 sw_cq_cons,
3210 bd_prod,
3211 bd_cons,
3212 CQE_TYPE(cqe_fp_flags),
3213 cqe_fp_flags,
3214 cqe_fp->status_flags,
3215 le32toh(cqe_fp->rss_hash_result),
3216 le16toh(cqe_fp->vlan_tag),
3217 le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3218 le16toh(cqe_fp->len_on_bd));
3219
3220 /* is this a slowpath msg? */
3221 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3222 bxe_sp_event(sc, fp, cqe);
3223 goto next_cqe;
3224 }
3225
3226 rx_buf = &fp->rx_mbuf_chain[bd_cons];
3227
3228 if (!CQE_TYPE_FAST(cqe_fp_type)) {
3229 struct bxe_sw_tpa_info *tpa_info;
3230 uint16_t frag_size, pages;
3231 uint8_t queue;
3232
3233 if (CQE_TYPE_START(cqe_fp_type)) {
3234 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3235 bd_cons, bd_prod, cqe_fp);
3236 m = NULL; /* packet not ready yet */
3237 goto next_rx;
3238 }
3239
3240 KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3241 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3242
3243 queue = cqe->end_agg_cqe.queue_index;
3244 tpa_info = &fp->rx_tpa_info[queue];
3245
3246 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3247 fp->index, queue);
3248
3249 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3250 tpa_info->len_on_bd);
3251 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3252
3253 bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3254 &cqe->end_agg_cqe, comp_ring_cons);
3255
3256 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3257
3258 goto next_cqe;
3259 }
3260
3261 /* non TPA */
3262
3263 /* is this an error packet? */
3264 if (__predict_false(cqe_fp_flags &
3265 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3266 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3267 fp->eth_q_stats.rx_soft_errors++;
3268 goto next_rx;
3269 }
3270
3271 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3272 lenonbd = le16toh(cqe_fp->len_on_bd);
3273 pad = cqe_fp->placement_offset;
3274
3275 m = rx_buf->m;
3276
3277 if (__predict_false(m == NULL)) {
3278 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3279 bd_cons, fp->index);
3280 goto next_rx;
3281 }
3282
3283 /* XXX double copy if packet length under a threshold */
3284
3285 /*
3286 * If all the buffer descriptors are filled with mbufs then fill in
3287 * the current consumer index with a new BD. Else if a maximum Rx
3288 * buffer limit is imposed then fill in the next producer index.
3289 */
3290 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3291 (sc->max_rx_bufs != RX_BD_USABLE) ?
3292 bd_prod : bd_cons);
3293 if (rc != 0) {
3294
3295 /* we simply reuse the received mbuf and don't post it to the stack */
3296 m = NULL;
3297
3298 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3299 fp->index, rc);
3300 fp->eth_q_stats.rx_soft_errors++;
3301
3302 if (sc->max_rx_bufs != RX_BD_USABLE) {
3303 /* copy this consumer index to the producer index */
3304 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3305 sizeof(struct bxe_sw_rx_bd));
3306 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3307 }
3308
3309 goto next_rx;
3310 }
3311
3312 /* current mbuf was detached from the bd */
3313 fp->eth_q_stats.mbuf_alloc_rx--;
3314
3315 /* we allocated a replacement mbuf, fixup the current one */
3316 m_adj(m, pad);
3317 m->m_pkthdr.len = m->m_len = len;
3318
3319 if ((len > 60) && (len > lenonbd)) {
3320 fp->eth_q_stats.rx_bxe_service_rxsgl++;
3321 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3322 if (rc)
3323 break;
3324 fp->eth_q_stats.rx_jumbo_sge_pkts++;
3325 } else if (lenonbd < len) {
3326 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3327 }
3328
3329 /* assign packet to this interface interface */
3330 if_setrcvif(m, ifp);
3331
3332 /* assume no hardware checksum has complated */
3333 m->m_pkthdr.csum_flags = 0;
3334
3335 /* validate checksum if offload enabled */
3336 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3337 /* check for a valid IP frame */
3338 if (!(cqe->fast_path_cqe.status_flags &
3339 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3340 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3341 if (__predict_false(cqe_fp_flags &
3342 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3343 fp->eth_q_stats.rx_hw_csum_errors++;
3344 } else {
3345 fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3346 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3347 }
3348 }
3349
3350 /* check for a valid TCP/UDP frame */
3351 if (!(cqe->fast_path_cqe.status_flags &
3352 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3353 if (__predict_false(cqe_fp_flags &
3354 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3355 fp->eth_q_stats.rx_hw_csum_errors++;
3356 } else {
3357 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3358 m->m_pkthdr.csum_data = 0xFFFF;
3359 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3360 CSUM_PSEUDO_HDR);
3361 }
3362 }
3363 }
3364
3365 /* if there is a VLAN tag then flag that info */
3366 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3367 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3368 m->m_flags |= M_VLANTAG;
3369 }
3370
3371 /* specify what RSS queue was used for this flow */
3372 m->m_pkthdr.flowid = fp->index;
3373 BXE_SET_FLOWID(m);
3374
3375 next_rx:
3376
3377 bd_cons = RX_BD_NEXT(bd_cons);
3378 bd_prod = RX_BD_NEXT(bd_prod);
3379 bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3380
3381 /* pass the frame to the stack */
3382 if (__predict_true(m != NULL)) {
3383 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3384 rx_pkts++;
3385 if_input(ifp, m);
3386 }
3387
3388 next_cqe:
3389
3390 sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3391 sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3392
3393 /* limit spinning on the queue */
3394 if (rc != 0)
3395 break;
3396
3397 if (rx_pkts == sc->rx_budget) {
3398 fp->eth_q_stats.rx_budget_reached++;
3399 break;
3400 }
3401 } /* while work to do */
3402
3403 fp->rx_bd_cons = bd_cons;
3404 fp->rx_bd_prod = bd_prod_fw;
3405 fp->rx_cq_cons = sw_cq_cons;
3406 fp->rx_cq_prod = sw_cq_prod;
3407
3408 /* Update producers */
3409 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3410
3411 fp->eth_q_stats.rx_pkts += rx_pkts;
3412 fp->eth_q_stats.rx_calls++;
3413
3414 BXE_FP_RX_UNLOCK(fp);
3415
3416 return (sw_cq_cons != hw_cq_cons);
3417 }
3418
3419 static uint16_t
bxe_free_tx_pkt(struct bxe_softc * sc,struct bxe_fastpath * fp,uint16_t idx)3420 bxe_free_tx_pkt(struct bxe_softc *sc,
3421 struct bxe_fastpath *fp,
3422 uint16_t idx)
3423 {
3424 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3425 struct eth_tx_start_bd *tx_start_bd;
3426 uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3427 uint16_t new_cons;
3428 int nbd;
3429
3430 /* unmap the mbuf from non-paged memory */
3431 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3432
3433 tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3434 nbd = le16toh(tx_start_bd->nbd) - 1;
3435
3436 new_cons = (tx_buf->first_bd + nbd);
3437
3438 /* free the mbuf */
3439 if (__predict_true(tx_buf->m != NULL)) {
3440 m_freem(tx_buf->m);
3441 fp->eth_q_stats.mbuf_alloc_tx--;
3442 } else {
3443 fp->eth_q_stats.tx_chain_lost_mbuf++;
3444 }
3445
3446 tx_buf->m = NULL;
3447 tx_buf->first_bd = 0;
3448
3449 return (new_cons);
3450 }
3451
3452 /* transmit timeout watchdog */
3453 static int
bxe_watchdog(struct bxe_softc * sc,struct bxe_fastpath * fp)3454 bxe_watchdog(struct bxe_softc *sc,
3455 struct bxe_fastpath *fp)
3456 {
3457 BXE_FP_TX_LOCK(fp);
3458
3459 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3460 BXE_FP_TX_UNLOCK(fp);
3461 return (0);
3462 }
3463
3464 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3465
3466 BXE_FP_TX_UNLOCK(fp);
3467 BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK);
3468 taskqueue_enqueue_timeout(taskqueue_thread,
3469 &sc->sp_err_timeout_task, hz/10);
3470
3471 return (-1);
3472 }
3473
3474 /* processes transmit completions */
3475 static uint8_t
bxe_txeof(struct bxe_softc * sc,struct bxe_fastpath * fp)3476 bxe_txeof(struct bxe_softc *sc,
3477 struct bxe_fastpath *fp)
3478 {
3479 if_t ifp = sc->ifp;
3480 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3481 uint16_t tx_bd_avail;
3482
3483 BXE_FP_TX_LOCK_ASSERT(fp);
3484
3485 bd_cons = fp->tx_bd_cons;
3486 hw_cons = le16toh(*fp->tx_cons_sb);
3487 sw_cons = fp->tx_pkt_cons;
3488
3489 while (sw_cons != hw_cons) {
3490 pkt_cons = TX_BD(sw_cons);
3491
3492 BLOGD(sc, DBG_TX,
3493 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3494 fp->index, hw_cons, sw_cons, pkt_cons);
3495
3496 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3497
3498 sw_cons++;
3499 }
3500
3501 fp->tx_pkt_cons = sw_cons;
3502 fp->tx_bd_cons = bd_cons;
3503
3504 BLOGD(sc, DBG_TX,
3505 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3506 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3507
3508 mb();
3509
3510 tx_bd_avail = bxe_tx_avail(sc, fp);
3511
3512 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3513 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3514 } else {
3515 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3516 }
3517
3518 if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3519 /* reset the watchdog timer if there are pending transmits */
3520 fp->watchdog_timer = BXE_TX_TIMEOUT;
3521 return (TRUE);
3522 } else {
3523 /* clear watchdog when there are no pending transmits */
3524 fp->watchdog_timer = 0;
3525 return (FALSE);
3526 }
3527 }
3528
3529 static void
bxe_drain_tx_queues(struct bxe_softc * sc)3530 bxe_drain_tx_queues(struct bxe_softc *sc)
3531 {
3532 struct bxe_fastpath *fp;
3533 int i, count;
3534
3535 /* wait until all TX fastpath tasks have completed */
3536 for (i = 0; i < sc->num_queues; i++) {
3537 fp = &sc->fp[i];
3538
3539 count = 1000;
3540
3541 while (bxe_has_tx_work(fp)) {
3542
3543 BXE_FP_TX_LOCK(fp);
3544 bxe_txeof(sc, fp);
3545 BXE_FP_TX_UNLOCK(fp);
3546
3547 if (count == 0) {
3548 BLOGE(sc, "Timeout waiting for fp[%d] "
3549 "transmits to complete!\n", i);
3550 bxe_panic(sc, ("tx drain failure\n"));
3551 return;
3552 }
3553
3554 count--;
3555 DELAY(1000);
3556 rmb();
3557 }
3558 }
3559
3560 return;
3561 }
3562
3563 static int
bxe_del_all_macs(struct bxe_softc * sc,struct ecore_vlan_mac_obj * mac_obj,int mac_type,uint8_t wait_for_comp)3564 bxe_del_all_macs(struct bxe_softc *sc,
3565 struct ecore_vlan_mac_obj *mac_obj,
3566 int mac_type,
3567 uint8_t wait_for_comp)
3568 {
3569 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3570 int rc;
3571
3572 /* wait for completion of requested */
3573 if (wait_for_comp) {
3574 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3575 }
3576
3577 /* Set the mac type of addresses we want to clear */
3578 bxe_set_bit(mac_type, &vlan_mac_flags);
3579
3580 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3581 if (rc < 0) {
3582 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3583 rc, mac_type, wait_for_comp);
3584 }
3585
3586 return (rc);
3587 }
3588
3589 static int
bxe_fill_accept_flags(struct bxe_softc * sc,uint32_t rx_mode,unsigned long * rx_accept_flags,unsigned long * tx_accept_flags)3590 bxe_fill_accept_flags(struct bxe_softc *sc,
3591 uint32_t rx_mode,
3592 unsigned long *rx_accept_flags,
3593 unsigned long *tx_accept_flags)
3594 {
3595 /* Clear the flags first */
3596 *rx_accept_flags = 0;
3597 *tx_accept_flags = 0;
3598
3599 switch (rx_mode) {
3600 case BXE_RX_MODE_NONE:
3601 /*
3602 * 'drop all' supersedes any accept flags that may have been
3603 * passed to the function.
3604 */
3605 break;
3606
3607 case BXE_RX_MODE_NORMAL:
3608 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3609 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3610 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3611
3612 /* internal switching mode */
3613 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3614 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3615 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3616
3617 break;
3618
3619 case BXE_RX_MODE_ALLMULTI:
3620 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3621 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3622 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3623
3624 /* internal switching mode */
3625 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3626 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3627 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3628
3629 break;
3630
3631 case BXE_RX_MODE_PROMISC:
3632 /*
3633 * According to deffinition of SI mode, iface in promisc mode
3634 * should receive matched and unmatched (in resolution of port)
3635 * unicast packets.
3636 */
3637 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3638 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3639 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3640 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3641
3642 /* internal switching mode */
3643 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3644 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3645
3646 if (IS_MF_SI(sc)) {
3647 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3648 } else {
3649 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3650 }
3651
3652 break;
3653
3654 default:
3655 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3656 return (-1);
3657 }
3658
3659 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3660 if (rx_mode != BXE_RX_MODE_NONE) {
3661 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3662 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3663 }
3664
3665 return (0);
3666 }
3667
3668 static int
bxe_set_q_rx_mode(struct bxe_softc * sc,uint8_t cl_id,unsigned long rx_mode_flags,unsigned long rx_accept_flags,unsigned long tx_accept_flags,unsigned long ramrod_flags)3669 bxe_set_q_rx_mode(struct bxe_softc *sc,
3670 uint8_t cl_id,
3671 unsigned long rx_mode_flags,
3672 unsigned long rx_accept_flags,
3673 unsigned long tx_accept_flags,
3674 unsigned long ramrod_flags)
3675 {
3676 struct ecore_rx_mode_ramrod_params ramrod_param;
3677 int rc;
3678
3679 memset(&ramrod_param, 0, sizeof(ramrod_param));
3680
3681 /* Prepare ramrod parameters */
3682 ramrod_param.cid = 0;
3683 ramrod_param.cl_id = cl_id;
3684 ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3685 ramrod_param.func_id = SC_FUNC(sc);
3686
3687 ramrod_param.pstate = &sc->sp_state;
3688 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3689
3690 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3691 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3692
3693 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3694
3695 ramrod_param.ramrod_flags = ramrod_flags;
3696 ramrod_param.rx_mode_flags = rx_mode_flags;
3697
3698 ramrod_param.rx_accept_flags = rx_accept_flags;
3699 ramrod_param.tx_accept_flags = tx_accept_flags;
3700
3701 rc = ecore_config_rx_mode(sc, &ramrod_param);
3702 if (rc < 0) {
3703 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3704 "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3705 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3706 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3707 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3708 return (rc);
3709 }
3710
3711 return (0);
3712 }
3713
3714 static int
bxe_set_storm_rx_mode(struct bxe_softc * sc)3715 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3716 {
3717 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3718 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3719 int rc;
3720
3721 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3722 &tx_accept_flags);
3723 if (rc) {
3724 return (rc);
3725 }
3726
3727 bxe_set_bit(RAMROD_RX, &ramrod_flags);
3728 bxe_set_bit(RAMROD_TX, &ramrod_flags);
3729
3730 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3731 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3732 rx_accept_flags, tx_accept_flags,
3733 ramrod_flags));
3734 }
3735
3736 /* returns the "mcp load_code" according to global load_count array */
3737 static int
bxe_nic_load_no_mcp(struct bxe_softc * sc)3738 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3739 {
3740 int path = SC_PATH(sc);
3741 int port = SC_PORT(sc);
3742
3743 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
3744 path, load_count[path][0], load_count[path][1],
3745 load_count[path][2]);
3746 load_count[path][0]++;
3747 load_count[path][1 + port]++;
3748 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
3749 path, load_count[path][0], load_count[path][1],
3750 load_count[path][2]);
3751 if (load_count[path][0] == 1) {
3752 return (FW_MSG_CODE_DRV_LOAD_COMMON);
3753 } else if (load_count[path][1 + port] == 1) {
3754 return (FW_MSG_CODE_DRV_LOAD_PORT);
3755 } else {
3756 return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3757 }
3758 }
3759
3760 /* returns the "mcp load_code" according to global load_count array */
3761 static int
bxe_nic_unload_no_mcp(struct bxe_softc * sc)3762 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3763 {
3764 int port = SC_PORT(sc);
3765 int path = SC_PATH(sc);
3766
3767 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
3768 path, load_count[path][0], load_count[path][1],
3769 load_count[path][2]);
3770 load_count[path][0]--;
3771 load_count[path][1 + port]--;
3772 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
3773 path, load_count[path][0], load_count[path][1],
3774 load_count[path][2]);
3775 if (load_count[path][0] == 0) {
3776 return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3777 } else if (load_count[path][1 + port] == 0) {
3778 return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3779 } else {
3780 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3781 }
3782 }
3783
3784 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3785 static uint32_t
bxe_send_unload_req(struct bxe_softc * sc,int unload_mode)3786 bxe_send_unload_req(struct bxe_softc *sc,
3787 int unload_mode)
3788 {
3789 uint32_t reset_code = 0;
3790
3791 /* Select the UNLOAD request mode */
3792 if (unload_mode == UNLOAD_NORMAL) {
3793 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3794 } else {
3795 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3796 }
3797
3798 /* Send the request to the MCP */
3799 if (!BXE_NOMCP(sc)) {
3800 reset_code = bxe_fw_command(sc, reset_code, 0);
3801 } else {
3802 reset_code = bxe_nic_unload_no_mcp(sc);
3803 }
3804
3805 return (reset_code);
3806 }
3807
3808 /* send UNLOAD_DONE command to the MCP */
3809 static void
bxe_send_unload_done(struct bxe_softc * sc,uint8_t keep_link)3810 bxe_send_unload_done(struct bxe_softc *sc,
3811 uint8_t keep_link)
3812 {
3813 uint32_t reset_param =
3814 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3815
3816 /* Report UNLOAD_DONE to MCP */
3817 if (!BXE_NOMCP(sc)) {
3818 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3819 }
3820 }
3821
3822 static int
bxe_func_wait_started(struct bxe_softc * sc)3823 bxe_func_wait_started(struct bxe_softc *sc)
3824 {
3825 int tout = 50;
3826
3827 if (!sc->port.pmf) {
3828 return (0);
3829 }
3830
3831 /*
3832 * (assumption: No Attention from MCP at this stage)
3833 * PMF probably in the middle of TX disable/enable transaction
3834 * 1. Sync IRS for default SB
3835 * 2. Sync SP queue - this guarantees us that attention handling started
3836 * 3. Wait, that TX disable/enable transaction completes
3837 *
3838 * 1+2 guarantee that if DCBX attention was scheduled it already changed
3839 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3840 * received completion for the transaction the state is TX_STOPPED.
3841 * State will return to STARTED after completion of TX_STOPPED-->STARTED
3842 * transaction.
3843 */
3844
3845 /* XXX make sure default SB ISR is done */
3846 /* need a way to synchronize an irq (intr_mtx?) */
3847
3848 /* XXX flush any work queues */
3849
3850 while (ecore_func_get_state(sc, &sc->func_obj) !=
3851 ECORE_F_STATE_STARTED && tout--) {
3852 DELAY(20000);
3853 }
3854
3855 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3856 /*
3857 * Failed to complete the transaction in a "good way"
3858 * Force both transactions with CLR bit.
3859 */
3860 struct ecore_func_state_params func_params = { NULL };
3861
3862 BLOGE(sc, "Unexpected function state! "
3863 "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3864
3865 func_params.f_obj = &sc->func_obj;
3866 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3867
3868 /* STARTED-->TX_STOPPED */
3869 func_params.cmd = ECORE_F_CMD_TX_STOP;
3870 ecore_func_state_change(sc, &func_params);
3871
3872 /* TX_STOPPED-->STARTED */
3873 func_params.cmd = ECORE_F_CMD_TX_START;
3874 return (ecore_func_state_change(sc, &func_params));
3875 }
3876
3877 return (0);
3878 }
3879
3880 static int
bxe_stop_queue(struct bxe_softc * sc,int index)3881 bxe_stop_queue(struct bxe_softc *sc,
3882 int index)
3883 {
3884 struct bxe_fastpath *fp = &sc->fp[index];
3885 struct ecore_queue_state_params q_params = { NULL };
3886 int rc;
3887
3888 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3889
3890 q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3891 /* We want to wait for completion in this context */
3892 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3893
3894 /* Stop the primary connection: */
3895
3896 /* ...halt the connection */
3897 q_params.cmd = ECORE_Q_CMD_HALT;
3898 rc = ecore_queue_state_change(sc, &q_params);
3899 if (rc) {
3900 return (rc);
3901 }
3902
3903 /* ...terminate the connection */
3904 q_params.cmd = ECORE_Q_CMD_TERMINATE;
3905 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3906 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3907 rc = ecore_queue_state_change(sc, &q_params);
3908 if (rc) {
3909 return (rc);
3910 }
3911
3912 /* ...delete cfc entry */
3913 q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3914 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3915 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3916 return (ecore_queue_state_change(sc, &q_params));
3917 }
3918
3919 /* wait for the outstanding SP commands */
3920 static inline uint8_t
bxe_wait_sp_comp(struct bxe_softc * sc,unsigned long mask)3921 bxe_wait_sp_comp(struct bxe_softc *sc,
3922 unsigned long mask)
3923 {
3924 unsigned long tmp;
3925 int tout = 5000; /* wait for 5 secs tops */
3926
3927 while (tout--) {
3928 mb();
3929 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3930 return (TRUE);
3931 }
3932
3933 DELAY(1000);
3934 }
3935
3936 mb();
3937
3938 tmp = atomic_load_acq_long(&sc->sp_state);
3939 if (tmp & mask) {
3940 BLOGE(sc, "Filtering completion timed out: "
3941 "sp_state 0x%lx, mask 0x%lx\n",
3942 tmp, mask);
3943 return (FALSE);
3944 }
3945
3946 return (FALSE);
3947 }
3948
3949 static int
bxe_func_stop(struct bxe_softc * sc)3950 bxe_func_stop(struct bxe_softc *sc)
3951 {
3952 struct ecore_func_state_params func_params = { NULL };
3953 int rc;
3954
3955 /* prepare parameters for function state transitions */
3956 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3957 func_params.f_obj = &sc->func_obj;
3958 func_params.cmd = ECORE_F_CMD_STOP;
3959
3960 /*
3961 * Try to stop the function the 'good way'. If it fails (in case
3962 * of a parity error during bxe_chip_cleanup()) and we are
3963 * not in a debug mode, perform a state transaction in order to
3964 * enable further HW_RESET transaction.
3965 */
3966 rc = ecore_func_state_change(sc, &func_params);
3967 if (rc) {
3968 BLOGE(sc, "FUNC_STOP ramrod failed. "
3969 "Running a dry transaction (%d)\n", rc);
3970 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3971 return (ecore_func_state_change(sc, &func_params));
3972 }
3973
3974 return (0);
3975 }
3976
3977 static int
bxe_reset_hw(struct bxe_softc * sc,uint32_t load_code)3978 bxe_reset_hw(struct bxe_softc *sc,
3979 uint32_t load_code)
3980 {
3981 struct ecore_func_state_params func_params = { NULL };
3982
3983 /* Prepare parameters for function state transitions */
3984 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3985
3986 func_params.f_obj = &sc->func_obj;
3987 func_params.cmd = ECORE_F_CMD_HW_RESET;
3988
3989 func_params.params.hw_init.load_phase = load_code;
3990
3991 return (ecore_func_state_change(sc, &func_params));
3992 }
3993
3994 static void
bxe_int_disable_sync(struct bxe_softc * sc,int disable_hw)3995 bxe_int_disable_sync(struct bxe_softc *sc,
3996 int disable_hw)
3997 {
3998 if (disable_hw) {
3999 /* prevent the HW from sending interrupts */
4000 bxe_int_disable(sc);
4001 }
4002
4003 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4004 /* make sure all ISRs are done */
4005
4006 /* XXX make sure sp_task is not running */
4007 /* cancel and flush work queues */
4008 }
4009
4010 static void
bxe_chip_cleanup(struct bxe_softc * sc,uint32_t unload_mode,uint8_t keep_link)4011 bxe_chip_cleanup(struct bxe_softc *sc,
4012 uint32_t unload_mode,
4013 uint8_t keep_link)
4014 {
4015 int port = SC_PORT(sc);
4016 struct ecore_mcast_ramrod_params rparam = { NULL };
4017 uint32_t reset_code;
4018 int i, rc = 0;
4019
4020 bxe_drain_tx_queues(sc);
4021
4022 /* give HW time to discard old tx messages */
4023 DELAY(1000);
4024
4025 /* Clean all ETH MACs */
4026 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4027 if (rc < 0) {
4028 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4029 }
4030
4031 /* Clean up UC list */
4032 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4033 if (rc < 0) {
4034 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4035 }
4036
4037 /* Disable LLH */
4038 if (!CHIP_IS_E1(sc)) {
4039 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4040 }
4041
4042 /* Set "drop all" to stop Rx */
4043
4044 /*
4045 * We need to take the BXE_MCAST_LOCK() here in order to prevent
4046 * a race between the completion code and this code.
4047 */
4048 BXE_MCAST_LOCK(sc);
4049
4050 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4051 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4052 } else {
4053 bxe_set_storm_rx_mode(sc);
4054 }
4055
4056 /* Clean up multicast configuration */
4057 rparam.mcast_obj = &sc->mcast_obj;
4058 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4059 if (rc < 0) {
4060 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4061 }
4062
4063 BXE_MCAST_UNLOCK(sc);
4064
4065 // XXX bxe_iov_chip_cleanup(sc);
4066
4067 /*
4068 * Send the UNLOAD_REQUEST to the MCP. This will return if
4069 * this function should perform FUNCTION, PORT, or COMMON HW
4070 * reset.
4071 */
4072 reset_code = bxe_send_unload_req(sc, unload_mode);
4073
4074 /*
4075 * (assumption: No Attention from MCP at this stage)
4076 * PMF probably in the middle of TX disable/enable transaction
4077 */
4078 rc = bxe_func_wait_started(sc);
4079 if (rc) {
4080 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4081 }
4082
4083 /*
4084 * Close multi and leading connections
4085 * Completions for ramrods are collected in a synchronous way
4086 */
4087 for (i = 0; i < sc->num_queues; i++) {
4088 if (bxe_stop_queue(sc, i)) {
4089 goto unload_error;
4090 }
4091 }
4092
4093 /*
4094 * If SP settings didn't get completed so far - something
4095 * very wrong has happen.
4096 */
4097 if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4098 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4099 }
4100
4101 unload_error:
4102
4103 rc = bxe_func_stop(sc);
4104 if (rc) {
4105 BLOGE(sc, "Function stop failed!(%d)\n", rc);
4106 }
4107
4108 /* disable HW interrupts */
4109 bxe_int_disable_sync(sc, TRUE);
4110
4111 /* detach interrupts */
4112 bxe_interrupt_detach(sc);
4113
4114 /* Reset the chip */
4115 rc = bxe_reset_hw(sc, reset_code);
4116 if (rc) {
4117 BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4118 }
4119
4120 /* Report UNLOAD_DONE to MCP */
4121 bxe_send_unload_done(sc, keep_link);
4122 }
4123
4124 static void
bxe_disable_close_the_gate(struct bxe_softc * sc)4125 bxe_disable_close_the_gate(struct bxe_softc *sc)
4126 {
4127 uint32_t val;
4128 int port = SC_PORT(sc);
4129
4130 BLOGD(sc, DBG_LOAD,
4131 "Disabling 'close the gates'\n");
4132
4133 if (CHIP_IS_E1(sc)) {
4134 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4135 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4136 val = REG_RD(sc, addr);
4137 val &= ~(0x300);
4138 REG_WR(sc, addr, val);
4139 } else {
4140 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4141 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4142 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4143 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4144 }
4145 }
4146
4147 /*
4148 * Cleans the object that have internal lists without sending
4149 * ramrods. Should be run when interrupts are disabled.
4150 */
4151 static void
bxe_squeeze_objects(struct bxe_softc * sc)4152 bxe_squeeze_objects(struct bxe_softc *sc)
4153 {
4154 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4155 struct ecore_mcast_ramrod_params rparam = { NULL };
4156 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4157 int rc;
4158
4159 /* Cleanup MACs' object first... */
4160
4161 /* Wait for completion of requested */
4162 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4163 /* Perform a dry cleanup */
4164 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4165
4166 /* Clean ETH primary MAC */
4167 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4168 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4169 &ramrod_flags);
4170 if (rc != 0) {
4171 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4172 }
4173
4174 /* Cleanup UC list */
4175 vlan_mac_flags = 0;
4176 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4177 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4178 &ramrod_flags);
4179 if (rc != 0) {
4180 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4181 }
4182
4183 /* Now clean mcast object... */
4184
4185 rparam.mcast_obj = &sc->mcast_obj;
4186 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4187
4188 /* Add a DEL command... */
4189 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4190 if (rc < 0) {
4191 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4192 }
4193
4194 /* now wait until all pending commands are cleared */
4195
4196 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4197 while (rc != 0) {
4198 if (rc < 0) {
4199 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4200 return;
4201 }
4202
4203 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4204 }
4205 }
4206
4207 /* stop the controller */
4208 static __noinline int
bxe_nic_unload(struct bxe_softc * sc,uint32_t unload_mode,uint8_t keep_link)4209 bxe_nic_unload(struct bxe_softc *sc,
4210 uint32_t unload_mode,
4211 uint8_t keep_link)
4212 {
4213 uint8_t global = FALSE;
4214 uint32_t val;
4215 int i;
4216
4217 BXE_CORE_LOCK_ASSERT(sc);
4218
4219 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4220
4221 for (i = 0; i < sc->num_queues; i++) {
4222 struct bxe_fastpath *fp;
4223
4224 fp = &sc->fp[i];
4225 fp->watchdog_timer = 0;
4226 BXE_FP_TX_LOCK(fp);
4227 BXE_FP_TX_UNLOCK(fp);
4228 }
4229
4230 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4231
4232 /* mark driver as unloaded in shmem2 */
4233 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4234 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4235 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4236 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4237 }
4238
4239 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4240 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4241
4242 if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
4243 /*
4244 * We can get here if the driver has been unloaded
4245 * during parity error recovery and is either waiting for a
4246 * leader to complete or for other functions to unload and
4247 * then ifconfig down has been issued. In this case we want to
4248 * unload and let other functions to complete a recovery
4249 * process.
4250 */
4251 sc->recovery_state = BXE_RECOVERY_DONE;
4252 sc->is_leader = 0;
4253 bxe_release_leader_lock(sc);
4254 mb();
4255 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4256 }
4257 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4258 " state = 0x%x\n", sc->recovery_state, sc->state);
4259 return (-1);
4260 }
4261
4262 /*
4263 * Nothing to do during unload if previous bxe_nic_load()
4264 * did not completed successfully - all resourses are released.
4265 */
4266 if ((sc->state == BXE_STATE_CLOSED) ||
4267 (sc->state == BXE_STATE_ERROR)) {
4268 return (0);
4269 }
4270
4271 sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4272 mb();
4273
4274 /* stop tx */
4275 bxe_tx_disable(sc);
4276
4277 sc->rx_mode = BXE_RX_MODE_NONE;
4278 /* XXX set rx mode ??? */
4279
4280 if (IS_PF(sc) && !sc->grcdump_done) {
4281 /* set ALWAYS_ALIVE bit in shmem */
4282 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4283
4284 bxe_drv_pulse(sc);
4285
4286 bxe_stats_handle(sc, STATS_EVENT_STOP);
4287 bxe_save_statistics(sc);
4288 }
4289
4290 /* wait till consumers catch up with producers in all queues */
4291 bxe_drain_tx_queues(sc);
4292
4293 /* if VF indicate to PF this function is going down (PF will delete sp
4294 * elements and clear initializations
4295 */
4296 if (IS_VF(sc)) {
4297 ; /* bxe_vfpf_close_vf(sc); */
4298 } else if (unload_mode != UNLOAD_RECOVERY) {
4299 /* if this is a normal/close unload need to clean up chip */
4300 if (!sc->grcdump_done)
4301 bxe_chip_cleanup(sc, unload_mode, keep_link);
4302 } else {
4303 /* Send the UNLOAD_REQUEST to the MCP */
4304 bxe_send_unload_req(sc, unload_mode);
4305
4306 /*
4307 * Prevent transactions to host from the functions on the
4308 * engine that doesn't reset global blocks in case of global
4309 * attention once gloabl blocks are reset and gates are opened
4310 * (the engine which leader will perform the recovery
4311 * last).
4312 */
4313 if (!CHIP_IS_E1x(sc)) {
4314 bxe_pf_disable(sc);
4315 }
4316
4317 /* disable HW interrupts */
4318 bxe_int_disable_sync(sc, TRUE);
4319
4320 /* detach interrupts */
4321 bxe_interrupt_detach(sc);
4322
4323 /* Report UNLOAD_DONE to MCP */
4324 bxe_send_unload_done(sc, FALSE);
4325 }
4326
4327 /*
4328 * At this stage no more interrupts will arrive so we may safely clean
4329 * the queue'able objects here in case they failed to get cleaned so far.
4330 */
4331 if (IS_PF(sc)) {
4332 bxe_squeeze_objects(sc);
4333 }
4334
4335 /* There should be no more pending SP commands at this stage */
4336 sc->sp_state = 0;
4337
4338 sc->port.pmf = 0;
4339
4340 bxe_free_fp_buffers(sc);
4341
4342 if (IS_PF(sc)) {
4343 bxe_free_mem(sc);
4344 }
4345
4346 bxe_free_fw_stats_mem(sc);
4347
4348 sc->state = BXE_STATE_CLOSED;
4349
4350 /*
4351 * Check if there are pending parity attentions. If there are - set
4352 * RECOVERY_IN_PROGRESS.
4353 */
4354 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4355 bxe_set_reset_in_progress(sc);
4356
4357 /* Set RESET_IS_GLOBAL if needed */
4358 if (global) {
4359 bxe_set_reset_global(sc);
4360 }
4361 }
4362
4363 /*
4364 * The last driver must disable a "close the gate" if there is no
4365 * parity attention or "process kill" pending.
4366 */
4367 if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4368 bxe_reset_is_done(sc, SC_PATH(sc))) {
4369 bxe_disable_close_the_gate(sc);
4370 }
4371
4372 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4373
4374 bxe_link_report(sc);
4375
4376 return (0);
4377 }
4378
4379 /*
4380 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4381 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4382 */
4383 static int
bxe_ifmedia_update(if_t ifp)4384 bxe_ifmedia_update(if_t ifp)
4385 {
4386 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4387 struct ifmedia *ifm;
4388
4389 ifm = &sc->ifmedia;
4390
4391 /* We only support Ethernet media type. */
4392 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4393 return (EINVAL);
4394 }
4395
4396 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4397 case IFM_AUTO:
4398 break;
4399 case IFM_10G_CX4:
4400 case IFM_10G_SR:
4401 case IFM_10G_T:
4402 case IFM_10G_TWINAX:
4403 default:
4404 /* We don't support changing the media type. */
4405 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4406 IFM_SUBTYPE(ifm->ifm_media));
4407 return (EINVAL);
4408 }
4409
4410 return (0);
4411 }
4412
4413 /*
4414 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4415 */
4416 static void
bxe_ifmedia_status(if_t ifp,struct ifmediareq * ifmr)4417 bxe_ifmedia_status(if_t ifp, struct ifmediareq *ifmr)
4418 {
4419 struct bxe_softc *sc = if_getsoftc(ifp);
4420
4421 /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..."
4422 line if the IFM_AVALID flag is *NOT* set. So we need to set this
4423 flag unconditionally (irrespective of the admininistrative
4424 'up/down' state of the interface) to ensure that the line is always
4425 displayed.
4426 */
4427 ifmr->ifm_status = IFM_AVALID;
4428
4429 /* Setup the default interface info. */
4430 ifmr->ifm_active = IFM_ETHER;
4431
4432 /* Report link down if the driver isn't running. */
4433 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4434 ifmr->ifm_active |= IFM_NONE;
4435 BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__);
4436 BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n",
4437 __func__, sc->link_vars.link_up);
4438 return;
4439 }
4440
4441
4442 if (sc->link_vars.link_up) {
4443 ifmr->ifm_status |= IFM_ACTIVE;
4444 ifmr->ifm_active |= IFM_FDX;
4445 } else {
4446 ifmr->ifm_active |= IFM_NONE;
4447 BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n",
4448 __func__);
4449 return;
4450 }
4451
4452 ifmr->ifm_active |= sc->media;
4453 return;
4454 }
4455
4456 static void
bxe_handle_chip_tq(void * context,int pending)4457 bxe_handle_chip_tq(void *context,
4458 int pending)
4459 {
4460 struct bxe_softc *sc = (struct bxe_softc *)context;
4461 long work = atomic_load_acq_long(&sc->chip_tq_flags);
4462
4463 switch (work)
4464 {
4465
4466 case CHIP_TQ_REINIT:
4467 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4468 /* restart the interface */
4469 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4470 bxe_periodic_stop(sc);
4471 BXE_CORE_LOCK(sc);
4472 bxe_stop_locked(sc);
4473 bxe_init_locked(sc);
4474 BXE_CORE_UNLOCK(sc);
4475 }
4476 break;
4477
4478 default:
4479 break;
4480 }
4481 }
4482
4483 /*
4484 * Handles any IOCTL calls from the operating system.
4485 *
4486 * Returns:
4487 * 0 = Success, >0 Failure
4488 */
4489 static int
bxe_ioctl(if_t ifp,u_long command,caddr_t data)4490 bxe_ioctl(if_t ifp,
4491 u_long command,
4492 caddr_t data)
4493 {
4494 struct bxe_softc *sc = if_getsoftc(ifp);
4495 struct ifreq *ifr = (struct ifreq *)data;
4496 int mask = 0;
4497 int reinit = 0;
4498 int error = 0;
4499
4500 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4501 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4502
4503 switch (command)
4504 {
4505 case SIOCSIFMTU:
4506 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4507 ifr->ifr_mtu);
4508
4509 if (sc->mtu == ifr->ifr_mtu) {
4510 /* nothing to change */
4511 break;
4512 }
4513
4514 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4515 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4516 ifr->ifr_mtu, mtu_min, mtu_max);
4517 error = EINVAL;
4518 break;
4519 }
4520
4521 atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4522 (unsigned long)ifr->ifr_mtu);
4523 /*
4524 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4525 (unsigned long)ifr->ifr_mtu);
4526 XXX - Not sure why it needs to be atomic
4527 */
4528 if_setmtu(ifp, ifr->ifr_mtu);
4529 reinit = 1;
4530 break;
4531
4532 case SIOCSIFFLAGS:
4533 /* toggle the interface state up or down */
4534 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4535
4536 BXE_CORE_LOCK(sc);
4537 /* check if the interface is up */
4538 if (if_getflags(ifp) & IFF_UP) {
4539 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4540 /* set the receive mode flags */
4541 bxe_set_rx_mode(sc);
4542 } else if(sc->state != BXE_STATE_DISABLED) {
4543 bxe_init_locked(sc);
4544 }
4545 } else {
4546 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4547 bxe_periodic_stop(sc);
4548 bxe_stop_locked(sc);
4549 }
4550 }
4551 BXE_CORE_UNLOCK(sc);
4552
4553 break;
4554
4555 case SIOCADDMULTI:
4556 case SIOCDELMULTI:
4557 /* add/delete multicast addresses */
4558 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4559
4560 /* check if the interface is up */
4561 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4562 /* set the receive mode flags */
4563 BXE_CORE_LOCK(sc);
4564 bxe_set_rx_mode(sc);
4565 BXE_CORE_UNLOCK(sc);
4566 }
4567
4568 break;
4569
4570 case SIOCSIFCAP:
4571 /* find out which capabilities have changed */
4572 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4573
4574 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4575 mask);
4576
4577 /* toggle the LRO capabilites enable flag */
4578 if (mask & IFCAP_LRO) {
4579 if_togglecapenable(ifp, IFCAP_LRO);
4580 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4581 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4582 reinit = 1;
4583 }
4584
4585 /* toggle the TXCSUM checksum capabilites enable flag */
4586 if (mask & IFCAP_TXCSUM) {
4587 if_togglecapenable(ifp, IFCAP_TXCSUM);
4588 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4589 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4590 if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4591 if_sethwassistbits(ifp, (CSUM_IP |
4592 CSUM_TCP |
4593 CSUM_UDP |
4594 CSUM_TSO |
4595 CSUM_TCP_IPV6 |
4596 CSUM_UDP_IPV6), 0);
4597 } else {
4598 if_clearhwassist(ifp); /* XXX */
4599 }
4600 }
4601
4602 /* toggle the RXCSUM checksum capabilities enable flag */
4603 if (mask & IFCAP_RXCSUM) {
4604 if_togglecapenable(ifp, IFCAP_RXCSUM);
4605 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4606 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4607 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4608 if_sethwassistbits(ifp, (CSUM_IP |
4609 CSUM_TCP |
4610 CSUM_UDP |
4611 CSUM_TSO |
4612 CSUM_TCP_IPV6 |
4613 CSUM_UDP_IPV6), 0);
4614 } else {
4615 if_clearhwassist(ifp); /* XXX */
4616 }
4617 }
4618
4619 /* toggle TSO4 capabilities enabled flag */
4620 if (mask & IFCAP_TSO4) {
4621 if_togglecapenable(ifp, IFCAP_TSO4);
4622 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4623 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4624 }
4625
4626 /* toggle TSO6 capabilities enabled flag */
4627 if (mask & IFCAP_TSO6) {
4628 if_togglecapenable(ifp, IFCAP_TSO6);
4629 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4630 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4631 }
4632
4633 /* toggle VLAN_HWTSO capabilities enabled flag */
4634 if (mask & IFCAP_VLAN_HWTSO) {
4635
4636 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4637 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4638 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4639 }
4640
4641 /* toggle VLAN_HWCSUM capabilities enabled flag */
4642 if (mask & IFCAP_VLAN_HWCSUM) {
4643 /* XXX investigate this... */
4644 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4645 error = EINVAL;
4646 }
4647
4648 /* toggle VLAN_MTU capabilities enable flag */
4649 if (mask & IFCAP_VLAN_MTU) {
4650 /* XXX investigate this... */
4651 BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4652 error = EINVAL;
4653 }
4654
4655 /* toggle VLAN_HWTAGGING capabilities enabled flag */
4656 if (mask & IFCAP_VLAN_HWTAGGING) {
4657 /* XXX investigate this... */
4658 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4659 error = EINVAL;
4660 }
4661
4662 /* toggle VLAN_HWFILTER capabilities enabled flag */
4663 if (mask & IFCAP_VLAN_HWFILTER) {
4664 /* XXX investigate this... */
4665 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4666 error = EINVAL;
4667 }
4668
4669 /* XXX not yet...
4670 * IFCAP_WOL_MAGIC
4671 */
4672
4673 break;
4674
4675 case SIOCSIFMEDIA:
4676 case SIOCGIFMEDIA:
4677 /* set/get interface media */
4678 BLOGD(sc, DBG_IOCTL,
4679 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4680 (command & 0xff));
4681 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4682 break;
4683
4684 default:
4685 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4686 (command & 0xff));
4687 error = ether_ioctl(ifp, command, data);
4688 break;
4689 }
4690
4691 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4692 BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4693 "Re-initializing hardware from IOCTL change\n");
4694 bxe_periodic_stop(sc);
4695 BXE_CORE_LOCK(sc);
4696 bxe_stop_locked(sc);
4697 bxe_init_locked(sc);
4698 BXE_CORE_UNLOCK(sc);
4699 }
4700
4701 return (error);
4702 }
4703
4704 static __noinline void
bxe_dump_mbuf(struct bxe_softc * sc,struct mbuf * m,uint8_t contents)4705 bxe_dump_mbuf(struct bxe_softc *sc,
4706 struct mbuf *m,
4707 uint8_t contents)
4708 {
4709 char * type;
4710 int i = 0;
4711
4712 if (!(sc->debug & DBG_MBUF)) {
4713 return;
4714 }
4715
4716 if (m == NULL) {
4717 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4718 return;
4719 }
4720
4721 while (m) {
4722
4723 BLOGD(sc, DBG_MBUF,
4724 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4725 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4726
4727 if (m->m_flags & M_PKTHDR) {
4728 BLOGD(sc, DBG_MBUF,
4729 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4730 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4731 (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4732 }
4733
4734 if (m->m_flags & M_EXT) {
4735 switch (m->m_ext.ext_type) {
4736 case EXT_CLUSTER: type = "EXT_CLUSTER"; break;
4737 case EXT_SFBUF: type = "EXT_SFBUF"; break;
4738 case EXT_JUMBOP: type = "EXT_JUMBOP"; break;
4739 case EXT_JUMBO9: type = "EXT_JUMBO9"; break;
4740 case EXT_JUMBO16: type = "EXT_JUMBO16"; break;
4741 case EXT_PACKET: type = "EXT_PACKET"; break;
4742 case EXT_MBUF: type = "EXT_MBUF"; break;
4743 case EXT_NET_DRV: type = "EXT_NET_DRV"; break;
4744 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break;
4745 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4746 case EXT_EXTREF: type = "EXT_EXTREF"; break;
4747 default: type = "UNKNOWN"; break;
4748 }
4749
4750 BLOGD(sc, DBG_MBUF,
4751 "%02d: - m_ext: %p ext_size=%d type=%s\n",
4752 i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4753 }
4754
4755 if (contents) {
4756 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4757 }
4758
4759 m = m->m_next;
4760 i++;
4761 }
4762 }
4763
4764 /*
4765 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4766 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4767 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4768 * The headers comes in a separate bd in FreeBSD so 13-3=10.
4769 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4770 */
4771 static int
bxe_chktso_window(struct bxe_softc * sc,int nsegs,bus_dma_segment_t * segs,struct mbuf * m)4772 bxe_chktso_window(struct bxe_softc *sc,
4773 int nsegs,
4774 bus_dma_segment_t *segs,
4775 struct mbuf *m)
4776 {
4777 uint32_t num_wnds, wnd_size, wnd_sum;
4778 int32_t frag_idx, wnd_idx;
4779 unsigned short lso_mss;
4780
4781 wnd_sum = 0;
4782 wnd_size = 10;
4783 num_wnds = nsegs - wnd_size;
4784 lso_mss = htole16(m->m_pkthdr.tso_segsz);
4785
4786 /*
4787 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4788 * first window sum of data while skipping the first assuming it is the
4789 * header in FreeBSD.
4790 */
4791 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4792 wnd_sum += htole16(segs[frag_idx].ds_len);
4793 }
4794
4795 /* check the first 10 bd window size */
4796 if (wnd_sum < lso_mss) {
4797 return (1);
4798 }
4799
4800 /* run through the windows */
4801 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4802 /* subtract the first mbuf->m_len of the last wndw(-header) */
4803 wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4804 /* add the next mbuf len to the len of our new window */
4805 wnd_sum += htole16(segs[frag_idx].ds_len);
4806 if (wnd_sum < lso_mss) {
4807 return (1);
4808 }
4809 }
4810
4811 return (0);
4812 }
4813
4814 static uint8_t
bxe_set_pbd_csum_e2(struct bxe_fastpath * fp,struct mbuf * m,uint32_t * parsing_data)4815 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4816 struct mbuf *m,
4817 uint32_t *parsing_data)
4818 {
4819 struct ether_vlan_header *eh = NULL;
4820 struct ip *ip4 = NULL;
4821 struct ip6_hdr *ip6 = NULL;
4822 caddr_t ip = NULL;
4823 struct tcphdr *th = NULL;
4824 int e_hlen, ip_hlen, l4_off;
4825 uint16_t proto;
4826
4827 if (m->m_pkthdr.csum_flags == CSUM_IP) {
4828 /* no L4 checksum offload needed */
4829 return (0);
4830 }
4831
4832 /* get the Ethernet header */
4833 eh = mtod(m, struct ether_vlan_header *);
4834
4835 /* handle VLAN encapsulation if present */
4836 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4837 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4838 proto = ntohs(eh->evl_proto);
4839 } else {
4840 e_hlen = ETHER_HDR_LEN;
4841 proto = ntohs(eh->evl_encap_proto);
4842 }
4843
4844 switch (proto) {
4845 case ETHERTYPE_IP:
4846 /* get the IP header, if mbuf len < 20 then header in next mbuf */
4847 ip4 = (m->m_len < sizeof(struct ip)) ?
4848 (struct ip *)m->m_next->m_data :
4849 (struct ip *)(m->m_data + e_hlen);
4850 /* ip_hl is number of 32-bit words */
4851 ip_hlen = (ip4->ip_hl << 2);
4852 ip = (caddr_t)ip4;
4853 break;
4854 case ETHERTYPE_IPV6:
4855 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4856 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4857 (struct ip6_hdr *)m->m_next->m_data :
4858 (struct ip6_hdr *)(m->m_data + e_hlen);
4859 /* XXX cannot support offload with IPv6 extensions */
4860 ip_hlen = sizeof(struct ip6_hdr);
4861 ip = (caddr_t)ip6;
4862 break;
4863 default:
4864 /* We can't offload in this case... */
4865 /* XXX error stat ??? */
4866 return (0);
4867 }
4868
4869 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4870 l4_off = (e_hlen + ip_hlen);
4871
4872 *parsing_data |=
4873 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4874 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4875
4876 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4877 CSUM_TSO |
4878 CSUM_TCP_IPV6)) {
4879 fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4880 th = (struct tcphdr *)(ip + ip_hlen);
4881 /* th_off is number of 32-bit words */
4882 *parsing_data |= ((th->th_off <<
4883 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4884 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4885 return (l4_off + (th->th_off << 2)); /* entire header length */
4886 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4887 CSUM_UDP_IPV6)) {
4888 fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4889 return (l4_off + sizeof(struct udphdr)); /* entire header length */
4890 } else {
4891 /* XXX error stat ??? */
4892 return (0);
4893 }
4894 }
4895
4896 static uint8_t
bxe_set_pbd_csum(struct bxe_fastpath * fp,struct mbuf * m,struct eth_tx_parse_bd_e1x * pbd)4897 bxe_set_pbd_csum(struct bxe_fastpath *fp,
4898 struct mbuf *m,
4899 struct eth_tx_parse_bd_e1x *pbd)
4900 {
4901 struct ether_vlan_header *eh = NULL;
4902 struct ip *ip4 = NULL;
4903 struct ip6_hdr *ip6 = NULL;
4904 caddr_t ip = NULL;
4905 struct tcphdr *th = NULL;
4906 struct udphdr *uh = NULL;
4907 int e_hlen, ip_hlen;
4908 uint16_t proto;
4909 uint8_t hlen;
4910 uint16_t tmp_csum;
4911 uint32_t *tmp_uh;
4912
4913 /* get the Ethernet header */
4914 eh = mtod(m, struct ether_vlan_header *);
4915
4916 /* handle VLAN encapsulation if present */
4917 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4918 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4919 proto = ntohs(eh->evl_proto);
4920 } else {
4921 e_hlen = ETHER_HDR_LEN;
4922 proto = ntohs(eh->evl_encap_proto);
4923 }
4924
4925 switch (proto) {
4926 case ETHERTYPE_IP:
4927 /* get the IP header, if mbuf len < 20 then header in next mbuf */
4928 ip4 = (m->m_len < sizeof(struct ip)) ?
4929 (struct ip *)m->m_next->m_data :
4930 (struct ip *)(m->m_data + e_hlen);
4931 /* ip_hl is number of 32-bit words */
4932 ip_hlen = (ip4->ip_hl << 1);
4933 ip = (caddr_t)ip4;
4934 break;
4935 case ETHERTYPE_IPV6:
4936 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4937 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4938 (struct ip6_hdr *)m->m_next->m_data :
4939 (struct ip6_hdr *)(m->m_data + e_hlen);
4940 /* XXX cannot support offload with IPv6 extensions */
4941 ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4942 ip = (caddr_t)ip6;
4943 break;
4944 default:
4945 /* We can't offload in this case... */
4946 /* XXX error stat ??? */
4947 return (0);
4948 }
4949
4950 hlen = (e_hlen >> 1);
4951
4952 /* note that rest of global_data is indirectly zeroed here */
4953 if (m->m_flags & M_VLANTAG) {
4954 pbd->global_data =
4955 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4956 } else {
4957 pbd->global_data = htole16(hlen);
4958 }
4959
4960 pbd->ip_hlen_w = ip_hlen;
4961
4962 hlen += pbd->ip_hlen_w;
4963
4964 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4965
4966 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4967 CSUM_TSO |
4968 CSUM_TCP_IPV6)) {
4969 th = (struct tcphdr *)(ip + (ip_hlen << 1));
4970 /* th_off is number of 32-bit words */
4971 hlen += (uint16_t)(th->th_off << 1);
4972 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4973 CSUM_UDP_IPV6)) {
4974 uh = (struct udphdr *)(ip + (ip_hlen << 1));
4975 hlen += (sizeof(struct udphdr) / 2);
4976 } else {
4977 /* valid case as only CSUM_IP was set */
4978 return (0);
4979 }
4980
4981 pbd->total_hlen_w = htole16(hlen);
4982
4983 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4984 CSUM_TSO |
4985 CSUM_TCP_IPV6)) {
4986 fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4987 pbd->tcp_pseudo_csum = ntohs(th->th_sum);
4988 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4989 CSUM_UDP_IPV6)) {
4990 fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4991
4992 /*
4993 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
4994 * checksums and does not know anything about the UDP header and where
4995 * the checksum field is located. It only knows about TCP. Therefore
4996 * we "lie" to the hardware for outgoing UDP packets w/ checksum
4997 * offload. Since the checksum field offset for TCP is 16 bytes and
4998 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
4999 * bytes less than the start of the UDP header. This allows the
5000 * hardware to write the checksum in the correct spot. But the
5001 * hardware will compute a checksum which includes the last 10 bytes
5002 * of the IP header. To correct this we tweak the stack computed
5003 * pseudo checksum by folding in the calculation of the inverse
5004 * checksum for those final 10 bytes of the IP header. This allows
5005 * the correct checksum to be computed by the hardware.
5006 */
5007
5008 /* set pointer 10 bytes before UDP header */
5009 tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5010
5011 /* calculate a pseudo header checksum over the first 10 bytes */
5012 tmp_csum = in_pseudo(*tmp_uh,
5013 *(tmp_uh + 1),
5014 *(uint16_t *)(tmp_uh + 2));
5015
5016 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5017 }
5018
5019 return (hlen * 2); /* entire header length, number of bytes */
5020 }
5021
5022 static void
bxe_set_pbd_lso_e2(struct mbuf * m,uint32_t * parsing_data)5023 bxe_set_pbd_lso_e2(struct mbuf *m,
5024 uint32_t *parsing_data)
5025 {
5026 *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5027 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5028 ETH_TX_PARSE_BD_E2_LSO_MSS);
5029
5030 /* XXX test for IPv6 with extension header... */
5031 }
5032
5033 static void
bxe_set_pbd_lso(struct mbuf * m,struct eth_tx_parse_bd_e1x * pbd)5034 bxe_set_pbd_lso(struct mbuf *m,
5035 struct eth_tx_parse_bd_e1x *pbd)
5036 {
5037 struct ether_vlan_header *eh = NULL;
5038 struct ip *ip = NULL;
5039 struct tcphdr *th = NULL;
5040 int e_hlen;
5041
5042 /* get the Ethernet header */
5043 eh = mtod(m, struct ether_vlan_header *);
5044
5045 /* handle VLAN encapsulation if present */
5046 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5047 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5048
5049 /* get the IP and TCP header, with LSO entire header in first mbuf */
5050 /* XXX assuming IPv4 */
5051 ip = (struct ip *)(m->m_data + e_hlen);
5052 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5053
5054 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5055 pbd->tcp_send_seq = ntohl(th->th_seq);
5056 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5057
5058 #if 1
5059 /* XXX IPv4 */
5060 pbd->ip_id = ntohs(ip->ip_id);
5061 pbd->tcp_pseudo_csum =
5062 ntohs(in_pseudo(ip->ip_src.s_addr,
5063 ip->ip_dst.s_addr,
5064 htons(IPPROTO_TCP)));
5065 #else
5066 /* XXX IPv6 */
5067 pbd->tcp_pseudo_csum =
5068 ntohs(in_pseudo(&ip6->ip6_src,
5069 &ip6->ip6_dst,
5070 htons(IPPROTO_TCP)));
5071 #endif
5072
5073 pbd->global_data |=
5074 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5075 }
5076
5077 /*
5078 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5079 * visible to the controller.
5080 *
5081 * If an mbuf is submitted to this routine and cannot be given to the
5082 * controller (e.g. it has too many fragments) then the function may free
5083 * the mbuf and return to the caller.
5084 *
5085 * Returns:
5086 * 0 = Success, !0 = Failure
5087 * Note the side effect that an mbuf may be freed if it causes a problem.
5088 */
5089 static int
bxe_tx_encap(struct bxe_fastpath * fp,struct mbuf ** m_head)5090 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5091 {
5092 bus_dma_segment_t segs[32];
5093 struct mbuf *m0;
5094 struct bxe_sw_tx_bd *tx_buf;
5095 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5096 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5097 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5098 struct eth_tx_bd *tx_data_bd;
5099 struct eth_tx_bd *tx_total_pkt_size_bd;
5100 struct eth_tx_start_bd *tx_start_bd;
5101 uint16_t bd_prod, pkt_prod, total_pkt_size;
5102 uint8_t mac_type;
5103 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5104 struct bxe_softc *sc;
5105 uint16_t tx_bd_avail;
5106 struct ether_vlan_header *eh;
5107 uint32_t pbd_e2_parsing_data = 0;
5108 uint8_t hlen = 0;
5109 int tmp_bd;
5110 int i;
5111
5112 sc = fp->sc;
5113
5114 M_ASSERTPKTHDR(*m_head);
5115
5116 m0 = *m_head;
5117 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5118 tx_start_bd = NULL;
5119 tx_data_bd = NULL;
5120 tx_total_pkt_size_bd = NULL;
5121
5122 /* get the H/W pointer for packets and BDs */
5123 pkt_prod = fp->tx_pkt_prod;
5124 bd_prod = fp->tx_bd_prod;
5125
5126 mac_type = UNICAST_ADDRESS;
5127
5128 /* map the mbuf into the next open DMAable memory */
5129 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5130 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5131 tx_buf->m_map, m0,
5132 segs, &nsegs, BUS_DMA_NOWAIT);
5133
5134 /* mapping errors */
5135 if(__predict_false(error != 0)) {
5136 fp->eth_q_stats.tx_dma_mapping_failure++;
5137 if (error == ENOMEM) {
5138 /* resource issue, try again later */
5139 rc = ENOMEM;
5140 } else if (error == EFBIG) {
5141 /* possibly recoverable with defragmentation */
5142 fp->eth_q_stats.mbuf_defrag_attempts++;
5143 m0 = m_defrag(*m_head, M_NOWAIT);
5144 if (m0 == NULL) {
5145 fp->eth_q_stats.mbuf_defrag_failures++;
5146 rc = ENOBUFS;
5147 } else {
5148 /* defrag successful, try mapping again */
5149 *m_head = m0;
5150 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5151 tx_buf->m_map, m0,
5152 segs, &nsegs, BUS_DMA_NOWAIT);
5153 if (error) {
5154 fp->eth_q_stats.tx_dma_mapping_failure++;
5155 rc = error;
5156 }
5157 }
5158 } else {
5159 /* unknown, unrecoverable mapping error */
5160 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5161 bxe_dump_mbuf(sc, m0, FALSE);
5162 rc = error;
5163 }
5164
5165 goto bxe_tx_encap_continue;
5166 }
5167
5168 tx_bd_avail = bxe_tx_avail(sc, fp);
5169
5170 /* make sure there is enough room in the send queue */
5171 if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5172 /* Recoverable, try again later. */
5173 fp->eth_q_stats.tx_hw_queue_full++;
5174 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5175 rc = ENOMEM;
5176 goto bxe_tx_encap_continue;
5177 }
5178
5179 /* capture the current H/W TX chain high watermark */
5180 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5181 (TX_BD_USABLE - tx_bd_avail))) {
5182 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5183 }
5184
5185 /* make sure it fits in the packet window */
5186 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5187 /*
5188 * The mbuf may be to big for the controller to handle. If the frame
5189 * is a TSO frame we'll need to do an additional check.
5190 */
5191 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5192 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5193 goto bxe_tx_encap_continue; /* OK to send */
5194 } else {
5195 fp->eth_q_stats.tx_window_violation_tso++;
5196 }
5197 } else {
5198 fp->eth_q_stats.tx_window_violation_std++;
5199 }
5200
5201 /* lets try to defragment this mbuf and remap it */
5202 fp->eth_q_stats.mbuf_defrag_attempts++;
5203 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5204
5205 m0 = m_defrag(*m_head, M_NOWAIT);
5206 if (m0 == NULL) {
5207 fp->eth_q_stats.mbuf_defrag_failures++;
5208 /* Ugh, just drop the frame... :( */
5209 rc = ENOBUFS;
5210 } else {
5211 /* defrag successful, try mapping again */
5212 *m_head = m0;
5213 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5214 tx_buf->m_map, m0,
5215 segs, &nsegs, BUS_DMA_NOWAIT);
5216 if (error) {
5217 fp->eth_q_stats.tx_dma_mapping_failure++;
5218 /* No sense in trying to defrag/copy chain, drop it. :( */
5219 rc = error;
5220 } else {
5221 /* if the chain is still too long then drop it */
5222 if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
5223 /*
5224 * in case TSO is enabled nsegs should be checked against
5225 * BXE_TSO_MAX_SEGMENTS
5226 */
5227 if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
5228 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5229 fp->eth_q_stats.nsegs_path1_errors++;
5230 rc = ENODEV;
5231 }
5232 } else {
5233 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5234 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5235 fp->eth_q_stats.nsegs_path2_errors++;
5236 rc = ENODEV;
5237 }
5238 }
5239 }
5240 }
5241 }
5242
5243 bxe_tx_encap_continue:
5244
5245 /* Check for errors */
5246 if (rc) {
5247 if (rc == ENOMEM) {
5248 /* recoverable try again later */
5249 } else {
5250 fp->eth_q_stats.tx_soft_errors++;
5251 fp->eth_q_stats.mbuf_alloc_tx--;
5252 m_freem(*m_head);
5253 *m_head = NULL;
5254 }
5255
5256 return (rc);
5257 }
5258
5259 /* set flag according to packet type (UNICAST_ADDRESS is default) */
5260 if (m0->m_flags & M_BCAST) {
5261 mac_type = BROADCAST_ADDRESS;
5262 } else if (m0->m_flags & M_MCAST) {
5263 mac_type = MULTICAST_ADDRESS;
5264 }
5265
5266 /* store the mbuf into the mbuf ring */
5267 tx_buf->m = m0;
5268 tx_buf->first_bd = fp->tx_bd_prod;
5269 tx_buf->flags = 0;
5270
5271 /* prepare the first transmit (start) BD for the mbuf */
5272 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5273
5274 BLOGD(sc, DBG_TX,
5275 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5276 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5277
5278 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5279 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5280 tx_start_bd->nbytes = htole16(segs[0].ds_len);
5281 total_pkt_size += tx_start_bd->nbytes;
5282 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5283
5284 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5285
5286 /* all frames have at least Start BD + Parsing BD */
5287 nbds = nsegs + 1;
5288 tx_start_bd->nbd = htole16(nbds);
5289
5290 if (m0->m_flags & M_VLANTAG) {
5291 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5292 tx_start_bd->bd_flags.as_bitfield |=
5293 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5294 } else {
5295 /* vf tx, start bd must hold the ethertype for fw to enforce it */
5296 if (IS_VF(sc)) {
5297 /* map ethernet header to find type and header length */
5298 eh = mtod(m0, struct ether_vlan_header *);
5299 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5300 } else {
5301 /* used by FW for packet accounting */
5302 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5303 }
5304 }
5305
5306 /*
5307 * add a parsing BD from the chain. The parsing BD is always added
5308 * though it is only used for TSO and chksum
5309 */
5310 bd_prod = TX_BD_NEXT(bd_prod);
5311
5312 if (m0->m_pkthdr.csum_flags) {
5313 if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5314 fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5315 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5316 }
5317
5318 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5319 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5320 ETH_TX_BD_FLAGS_L4_CSUM);
5321 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5322 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5323 ETH_TX_BD_FLAGS_IS_UDP |
5324 ETH_TX_BD_FLAGS_L4_CSUM);
5325 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5326 (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5327 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5328 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5329 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5330 ETH_TX_BD_FLAGS_IS_UDP);
5331 }
5332 }
5333
5334 if (!CHIP_IS_E1x(sc)) {
5335 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5336 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5337
5338 if (m0->m_pkthdr.csum_flags) {
5339 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5340 }
5341
5342 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5343 mac_type);
5344 } else {
5345 uint16_t global_data = 0;
5346
5347 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5348 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5349
5350 if (m0->m_pkthdr.csum_flags) {
5351 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5352 }
5353
5354 SET_FLAG(global_data,
5355 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5356 pbd_e1x->global_data |= htole16(global_data);
5357 }
5358
5359 /* setup the parsing BD with TSO specific info */
5360 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5361 fp->eth_q_stats.tx_ofld_frames_lso++;
5362 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5363
5364 if (__predict_false(tx_start_bd->nbytes > hlen)) {
5365 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5366
5367 /* split the first BD into header/data making the fw job easy */
5368 nbds++;
5369 tx_start_bd->nbd = htole16(nbds);
5370 tx_start_bd->nbytes = htole16(hlen);
5371
5372 bd_prod = TX_BD_NEXT(bd_prod);
5373
5374 /* new transmit BD after the tx_parse_bd */
5375 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5376 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5377 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5378 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen);
5379 if (tx_total_pkt_size_bd == NULL) {
5380 tx_total_pkt_size_bd = tx_data_bd;
5381 }
5382
5383 BLOGD(sc, DBG_TX,
5384 "TSO split header size is %d (%x:%x) nbds %d\n",
5385 le16toh(tx_start_bd->nbytes),
5386 le32toh(tx_start_bd->addr_hi),
5387 le32toh(tx_start_bd->addr_lo),
5388 nbds);
5389 }
5390
5391 if (!CHIP_IS_E1x(sc)) {
5392 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5393 } else {
5394 bxe_set_pbd_lso(m0, pbd_e1x);
5395 }
5396 }
5397
5398 if (pbd_e2_parsing_data) {
5399 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5400 }
5401
5402 /* prepare remaining BDs, start tx bd contains first seg/frag */
5403 for (i = 1; i < nsegs ; i++) {
5404 bd_prod = TX_BD_NEXT(bd_prod);
5405 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5406 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5407 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5408 tx_data_bd->nbytes = htole16(segs[i].ds_len);
5409 if (tx_total_pkt_size_bd == NULL) {
5410 tx_total_pkt_size_bd = tx_data_bd;
5411 }
5412 total_pkt_size += tx_data_bd->nbytes;
5413 }
5414
5415 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5416
5417 if (tx_total_pkt_size_bd != NULL) {
5418 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5419 }
5420
5421 if (__predict_false(sc->debug & DBG_TX)) {
5422 tmp_bd = tx_buf->first_bd;
5423 for (i = 0; i < nbds; i++)
5424 {
5425 if (i == 0) {
5426 BLOGD(sc, DBG_TX,
5427 "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5428 "bd_flags=0x%x hdr_nbds=%d\n",
5429 tx_start_bd,
5430 tmp_bd,
5431 le16toh(tx_start_bd->nbd),
5432 le16toh(tx_start_bd->vlan_or_ethertype),
5433 tx_start_bd->bd_flags.as_bitfield,
5434 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5435 } else if (i == 1) {
5436 if (pbd_e1x) {
5437 BLOGD(sc, DBG_TX,
5438 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5439 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5440 "tcp_seq=%u total_hlen_w=%u\n",
5441 pbd_e1x,
5442 tmp_bd,
5443 pbd_e1x->global_data,
5444 pbd_e1x->ip_hlen_w,
5445 pbd_e1x->ip_id,
5446 pbd_e1x->lso_mss,
5447 pbd_e1x->tcp_flags,
5448 pbd_e1x->tcp_pseudo_csum,
5449 pbd_e1x->tcp_send_seq,
5450 le16toh(pbd_e1x->total_hlen_w));
5451 } else { /* if (pbd_e2) */
5452 BLOGD(sc, DBG_TX,
5453 "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5454 "src=%02x:%02x:%02x parsing_data=0x%x\n",
5455 pbd_e2,
5456 tmp_bd,
5457 pbd_e2->data.mac_addr.dst_hi,
5458 pbd_e2->data.mac_addr.dst_mid,
5459 pbd_e2->data.mac_addr.dst_lo,
5460 pbd_e2->data.mac_addr.src_hi,
5461 pbd_e2->data.mac_addr.src_mid,
5462 pbd_e2->data.mac_addr.src_lo,
5463 pbd_e2->parsing_data);
5464 }
5465 }
5466
5467 if (i != 1) { /* skip parse db as it doesn't hold data */
5468 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5469 BLOGD(sc, DBG_TX,
5470 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5471 tx_data_bd,
5472 tmp_bd,
5473 le16toh(tx_data_bd->nbytes),
5474 le32toh(tx_data_bd->addr_hi),
5475 le32toh(tx_data_bd->addr_lo));
5476 }
5477
5478 tmp_bd = TX_BD_NEXT(tmp_bd);
5479 }
5480 }
5481
5482 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5483
5484 /* update TX BD producer index value for next TX */
5485 bd_prod = TX_BD_NEXT(bd_prod);
5486
5487 /*
5488 * If the chain of tx_bd's describing this frame is adjacent to or spans
5489 * an eth_tx_next_bd element then we need to increment the nbds value.
5490 */
5491 if (TX_BD_IDX(bd_prod) < nbds) {
5492 nbds++;
5493 }
5494
5495 /* don't allow reordering of writes for nbd and packets */
5496 mb();
5497
5498 fp->tx_db.data.prod += nbds;
5499
5500 /* producer points to the next free tx_bd at this point */
5501 fp->tx_pkt_prod++;
5502 fp->tx_bd_prod = bd_prod;
5503
5504 DOORBELL(sc, fp->index, fp->tx_db.raw);
5505
5506 fp->eth_q_stats.tx_pkts++;
5507
5508 /* Prevent speculative reads from getting ahead of the status block. */
5509 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5510 0, 0, BUS_SPACE_BARRIER_READ);
5511
5512 /* Prevent speculative reads from getting ahead of the doorbell. */
5513 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5514 0, 0, BUS_SPACE_BARRIER_READ);
5515
5516 return (0);
5517 }
5518
5519 static void
bxe_tx_start_locked(struct bxe_softc * sc,if_t ifp,struct bxe_fastpath * fp)5520 bxe_tx_start_locked(struct bxe_softc *sc,
5521 if_t ifp,
5522 struct bxe_fastpath *fp)
5523 {
5524 struct mbuf *m = NULL;
5525 int tx_count = 0;
5526 uint16_t tx_bd_avail;
5527
5528 BXE_FP_TX_LOCK_ASSERT(fp);
5529
5530 /* keep adding entries while there are frames to send */
5531 while (!if_sendq_empty(ifp)) {
5532
5533 /*
5534 * check for any frames to send
5535 * dequeue can still be NULL even if queue is not empty
5536 */
5537 m = if_dequeue(ifp);
5538 if (__predict_false(m == NULL)) {
5539 break;
5540 }
5541
5542 /* the mbuf now belongs to us */
5543 fp->eth_q_stats.mbuf_alloc_tx++;
5544
5545 /*
5546 * Put the frame into the transmit ring. If we don't have room,
5547 * place the mbuf back at the head of the TX queue, set the
5548 * OACTIVE flag, and wait for the NIC to drain the chain.
5549 */
5550 if (__predict_false(bxe_tx_encap(fp, &m))) {
5551 fp->eth_q_stats.tx_encap_failures++;
5552 if (m != NULL) {
5553 /* mark the TX queue as full and return the frame */
5554 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5555 if_sendq_prepend(ifp, m);
5556 fp->eth_q_stats.mbuf_alloc_tx--;
5557 fp->eth_q_stats.tx_queue_xoff++;
5558 }
5559
5560 /* stop looking for more work */
5561 break;
5562 }
5563
5564 /* the frame was enqueued successfully */
5565 tx_count++;
5566
5567 /* send a copy of the frame to any BPF listeners. */
5568 ether_bpf_mtap_if(ifp, m);
5569
5570 tx_bd_avail = bxe_tx_avail(sc, fp);
5571
5572 /* handle any completions if we're running low */
5573 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5574 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5575 bxe_txeof(sc, fp);
5576 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5577 break;
5578 }
5579 }
5580 }
5581
5582 /* all TX packets were dequeued and/or the tx ring is full */
5583 if (tx_count > 0) {
5584 /* reset the TX watchdog timeout timer */
5585 fp->watchdog_timer = BXE_TX_TIMEOUT;
5586 }
5587 }
5588
5589 /* Legacy (non-RSS) dispatch routine */
5590 static void
bxe_tx_start(if_t ifp)5591 bxe_tx_start(if_t ifp)
5592 {
5593 struct bxe_softc *sc;
5594 struct bxe_fastpath *fp;
5595
5596 sc = if_getsoftc(ifp);
5597
5598 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5599 BLOGW(sc, "Interface not running, ignoring transmit request\n");
5600 return;
5601 }
5602
5603 if (!sc->link_vars.link_up) {
5604 BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5605 return;
5606 }
5607
5608 fp = &sc->fp[0];
5609
5610 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5611 fp->eth_q_stats.tx_queue_full_return++;
5612 return;
5613 }
5614
5615 BXE_FP_TX_LOCK(fp);
5616 bxe_tx_start_locked(sc, ifp, fp);
5617 BXE_FP_TX_UNLOCK(fp);
5618 }
5619
5620 static int
bxe_tx_mq_start_locked(struct bxe_softc * sc,if_t ifp,struct bxe_fastpath * fp,struct mbuf * m)5621 bxe_tx_mq_start_locked(struct bxe_softc *sc,
5622 if_t ifp,
5623 struct bxe_fastpath *fp,
5624 struct mbuf *m)
5625 {
5626 struct buf_ring *tx_br = fp->tx_br;
5627 struct mbuf *next;
5628 int depth, rc, tx_count;
5629 uint16_t tx_bd_avail;
5630
5631 rc = tx_count = 0;
5632
5633 BXE_FP_TX_LOCK_ASSERT(fp);
5634
5635 if (sc->state != BXE_STATE_OPEN) {
5636 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5637 return ENETDOWN;
5638 }
5639
5640 if (!tx_br) {
5641 BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5642 return (EINVAL);
5643 }
5644
5645 if (m != NULL) {
5646 rc = drbr_enqueue(ifp, tx_br, m);
5647 if (rc != 0) {
5648 fp->eth_q_stats.tx_soft_errors++;
5649 goto bxe_tx_mq_start_locked_exit;
5650 }
5651 }
5652
5653 if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5654 fp->eth_q_stats.tx_request_link_down_failures++;
5655 goto bxe_tx_mq_start_locked_exit;
5656 }
5657
5658 /* fetch the depth of the driver queue */
5659 depth = drbr_inuse(ifp, tx_br);
5660 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5661 fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5662 }
5663
5664 /* keep adding entries while there are frames to send */
5665 while ((next = drbr_peek(ifp, tx_br)) != NULL) {
5666 /* handle any completions if we're running low */
5667 tx_bd_avail = bxe_tx_avail(sc, fp);
5668 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5669 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5670 bxe_txeof(sc, fp);
5671 tx_bd_avail = bxe_tx_avail(sc, fp);
5672 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
5673 fp->eth_q_stats.bd_avail_too_less_failures++;
5674 m_freem(next);
5675 drbr_advance(ifp, tx_br);
5676 rc = ENOBUFS;
5677 break;
5678 }
5679 }
5680
5681 /* the mbuf now belongs to us */
5682 fp->eth_q_stats.mbuf_alloc_tx++;
5683
5684 /*
5685 * Put the frame into the transmit ring. If we don't have room,
5686 * place the mbuf back at the head of the TX queue, set the
5687 * OACTIVE flag, and wait for the NIC to drain the chain.
5688 */
5689 rc = bxe_tx_encap(fp, &next);
5690 if (__predict_false(rc != 0)) {
5691 fp->eth_q_stats.tx_encap_failures++;
5692 if (next != NULL) {
5693 /* mark the TX queue as full and save the frame */
5694 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5695 drbr_putback(ifp, tx_br, next);
5696 fp->eth_q_stats.mbuf_alloc_tx--;
5697 fp->eth_q_stats.tx_frames_deferred++;
5698 } else
5699 drbr_advance(ifp, tx_br);
5700
5701 /* stop looking for more work */
5702 break;
5703 }
5704
5705 /* the transmit frame was enqueued successfully */
5706 tx_count++;
5707
5708 /* send a copy of the frame to any BPF listeners */
5709 ether_bpf_mtap_if(ifp, next);
5710
5711 drbr_advance(ifp, tx_br);
5712 }
5713
5714 /* all TX packets were dequeued and/or the tx ring is full */
5715 if (tx_count > 0) {
5716 /* reset the TX watchdog timeout timer */
5717 fp->watchdog_timer = BXE_TX_TIMEOUT;
5718 }
5719
5720 bxe_tx_mq_start_locked_exit:
5721 /* If we didn't drain the drbr, enqueue a task in the future to do it. */
5722 if (!drbr_empty(ifp, tx_br)) {
5723 fp->eth_q_stats.tx_mq_not_empty++;
5724 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
5725 }
5726
5727 return (rc);
5728 }
5729
5730 static void
bxe_tx_mq_start_deferred(void * arg,int pending)5731 bxe_tx_mq_start_deferred(void *arg,
5732 int pending)
5733 {
5734 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
5735 struct bxe_softc *sc = fp->sc;
5736 if_t ifp = sc->ifp;
5737
5738 BXE_FP_TX_LOCK(fp);
5739 bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
5740 BXE_FP_TX_UNLOCK(fp);
5741 }
5742
5743 /* Multiqueue (TSS) dispatch routine. */
5744 static int
bxe_tx_mq_start(if_t ifp,struct mbuf * m)5745 bxe_tx_mq_start(if_t ifp,
5746 struct mbuf *m)
5747 {
5748 struct bxe_softc *sc = if_getsoftc(ifp);
5749 struct bxe_fastpath *fp;
5750 int fp_index, rc;
5751
5752 fp_index = 0; /* default is the first queue */
5753
5754 /* check if flowid is set */
5755
5756 if (BXE_VALID_FLOWID(m))
5757 fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5758
5759 fp = &sc->fp[fp_index];
5760
5761 if (sc->state != BXE_STATE_OPEN) {
5762 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5763 return ENETDOWN;
5764 }
5765
5766 if (BXE_FP_TX_TRYLOCK(fp)) {
5767 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5768 BXE_FP_TX_UNLOCK(fp);
5769 } else {
5770 rc = drbr_enqueue(ifp, fp->tx_br, m);
5771 taskqueue_enqueue(fp->tq, &fp->tx_task);
5772 }
5773
5774 return (rc);
5775 }
5776
5777 static void
bxe_mq_flush(if_t ifp)5778 bxe_mq_flush(if_t ifp)
5779 {
5780 struct bxe_softc *sc = if_getsoftc(ifp);
5781 struct bxe_fastpath *fp;
5782 struct mbuf *m;
5783 int i;
5784
5785 for (i = 0; i < sc->num_queues; i++) {
5786 fp = &sc->fp[i];
5787
5788 if (fp->state != BXE_FP_STATE_IRQ) {
5789 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5790 fp->index, fp->state);
5791 continue;
5792 }
5793
5794 if (fp->tx_br != NULL) {
5795 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5796 BXE_FP_TX_LOCK(fp);
5797 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5798 m_freem(m);
5799 }
5800 BXE_FP_TX_UNLOCK(fp);
5801 }
5802 }
5803
5804 if_qflush(ifp);
5805 }
5806
5807 static uint16_t
bxe_cid_ilt_lines(struct bxe_softc * sc)5808 bxe_cid_ilt_lines(struct bxe_softc *sc)
5809 {
5810 if (IS_SRIOV(sc)) {
5811 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5812 }
5813 return (L2_ILT_LINES(sc));
5814 }
5815
5816 static void
bxe_ilt_set_info(struct bxe_softc * sc)5817 bxe_ilt_set_info(struct bxe_softc *sc)
5818 {
5819 struct ilt_client_info *ilt_client;
5820 struct ecore_ilt *ilt = sc->ilt;
5821 uint16_t line = 0;
5822
5823 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5824 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5825
5826 /* CDU */
5827 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5828 ilt_client->client_num = ILT_CLIENT_CDU;
5829 ilt_client->page_size = CDU_ILT_PAGE_SZ;
5830 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5831 ilt_client->start = line;
5832 line += bxe_cid_ilt_lines(sc);
5833
5834 if (CNIC_SUPPORT(sc)) {
5835 line += CNIC_ILT_LINES;
5836 }
5837
5838 ilt_client->end = (line - 1);
5839
5840 BLOGD(sc, DBG_LOAD,
5841 "ilt client[CDU]: start %d, end %d, "
5842 "psz 0x%x, flags 0x%x, hw psz %d\n",
5843 ilt_client->start, ilt_client->end,
5844 ilt_client->page_size,
5845 ilt_client->flags,
5846 ilog2(ilt_client->page_size >> 12));
5847
5848 /* QM */
5849 if (QM_INIT(sc->qm_cid_count)) {
5850 ilt_client = &ilt->clients[ILT_CLIENT_QM];
5851 ilt_client->client_num = ILT_CLIENT_QM;
5852 ilt_client->page_size = QM_ILT_PAGE_SZ;
5853 ilt_client->flags = 0;
5854 ilt_client->start = line;
5855
5856 /* 4 bytes for each cid */
5857 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5858 QM_ILT_PAGE_SZ);
5859
5860 ilt_client->end = (line - 1);
5861
5862 BLOGD(sc, DBG_LOAD,
5863 "ilt client[QM]: start %d, end %d, "
5864 "psz 0x%x, flags 0x%x, hw psz %d\n",
5865 ilt_client->start, ilt_client->end,
5866 ilt_client->page_size, ilt_client->flags,
5867 ilog2(ilt_client->page_size >> 12));
5868 }
5869
5870 if (CNIC_SUPPORT(sc)) {
5871 /* SRC */
5872 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5873 ilt_client->client_num = ILT_CLIENT_SRC;
5874 ilt_client->page_size = SRC_ILT_PAGE_SZ;
5875 ilt_client->flags = 0;
5876 ilt_client->start = line;
5877 line += SRC_ILT_LINES;
5878 ilt_client->end = (line - 1);
5879
5880 BLOGD(sc, DBG_LOAD,
5881 "ilt client[SRC]: start %d, end %d, "
5882 "psz 0x%x, flags 0x%x, hw psz %d\n",
5883 ilt_client->start, ilt_client->end,
5884 ilt_client->page_size, ilt_client->flags,
5885 ilog2(ilt_client->page_size >> 12));
5886
5887 /* TM */
5888 ilt_client = &ilt->clients[ILT_CLIENT_TM];
5889 ilt_client->client_num = ILT_CLIENT_TM;
5890 ilt_client->page_size = TM_ILT_PAGE_SZ;
5891 ilt_client->flags = 0;
5892 ilt_client->start = line;
5893 line += TM_ILT_LINES;
5894 ilt_client->end = (line - 1);
5895
5896 BLOGD(sc, DBG_LOAD,
5897 "ilt client[TM]: start %d, end %d, "
5898 "psz 0x%x, flags 0x%x, hw psz %d\n",
5899 ilt_client->start, ilt_client->end,
5900 ilt_client->page_size, ilt_client->flags,
5901 ilog2(ilt_client->page_size >> 12));
5902 }
5903
5904 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5905 }
5906
5907 static void
bxe_set_fp_rx_buf_size(struct bxe_softc * sc)5908 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5909 {
5910 int i;
5911 uint32_t rx_buf_size;
5912
5913 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5914
5915 for (i = 0; i < sc->num_queues; i++) {
5916 if(rx_buf_size <= MCLBYTES){
5917 sc->fp[i].rx_buf_size = rx_buf_size;
5918 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5919 }else if (rx_buf_size <= MJUMPAGESIZE){
5920 sc->fp[i].rx_buf_size = rx_buf_size;
5921 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5922 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5923 sc->fp[i].rx_buf_size = MCLBYTES;
5924 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5925 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5926 sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5927 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5928 }else {
5929 sc->fp[i].rx_buf_size = MCLBYTES;
5930 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5931 }
5932 }
5933 }
5934
5935 static int
bxe_alloc_ilt_mem(struct bxe_softc * sc)5936 bxe_alloc_ilt_mem(struct bxe_softc *sc)
5937 {
5938 int rc = 0;
5939
5940 if ((sc->ilt =
5941 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5942 M_BXE_ILT,
5943 (M_NOWAIT | M_ZERO))) == NULL) {
5944 rc = 1;
5945 }
5946
5947 return (rc);
5948 }
5949
5950 static int
bxe_alloc_ilt_lines_mem(struct bxe_softc * sc)5951 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5952 {
5953 int rc = 0;
5954
5955 if ((sc->ilt->lines =
5956 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5957 M_BXE_ILT,
5958 (M_NOWAIT | M_ZERO))) == NULL) {
5959 rc = 1;
5960 }
5961
5962 return (rc);
5963 }
5964
5965 static void
bxe_free_ilt_mem(struct bxe_softc * sc)5966 bxe_free_ilt_mem(struct bxe_softc *sc)
5967 {
5968 if (sc->ilt != NULL) {
5969 free(sc->ilt, M_BXE_ILT);
5970 sc->ilt = NULL;
5971 }
5972 }
5973
5974 static void
bxe_free_ilt_lines_mem(struct bxe_softc * sc)5975 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
5976 {
5977 if (sc->ilt->lines != NULL) {
5978 free(sc->ilt->lines, M_BXE_ILT);
5979 sc->ilt->lines = NULL;
5980 }
5981 }
5982
5983 static void
bxe_free_mem(struct bxe_softc * sc)5984 bxe_free_mem(struct bxe_softc *sc)
5985 {
5986 int i;
5987
5988 for (i = 0; i < L2_ILT_LINES(sc); i++) {
5989 bxe_dma_free(sc, &sc->context[i].vcxt_dma);
5990 sc->context[i].vcxt = NULL;
5991 sc->context[i].size = 0;
5992 }
5993
5994 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
5995
5996 bxe_free_ilt_lines_mem(sc);
5997
5998 }
5999
6000 static int
bxe_alloc_mem(struct bxe_softc * sc)6001 bxe_alloc_mem(struct bxe_softc *sc)
6002 {
6003
6004 int context_size;
6005 int allocated;
6006 int i;
6007
6008 /*
6009 * Allocate memory for CDU context:
6010 * This memory is allocated separately and not in the generic ILT
6011 * functions because CDU differs in few aspects:
6012 * 1. There can be multiple entities allocating memory for context -
6013 * regular L2, CNIC, and SRIOV drivers. Each separately controls
6014 * its own ILT lines.
6015 * 2. Since CDU page-size is not a single 4KB page (which is the case
6016 * for the other ILT clients), to be efficient we want to support
6017 * allocation of sub-page-size in the last entry.
6018 * 3. Context pointers are used by the driver to pass to FW / update
6019 * the context (for the other ILT clients the pointers are used just to
6020 * free the memory during unload).
6021 */
6022 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6023 for (i = 0, allocated = 0; allocated < context_size; i++) {
6024 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6025 (context_size - allocated));
6026
6027 if (bxe_dma_alloc(sc, sc->context[i].size,
6028 &sc->context[i].vcxt_dma,
6029 "cdu context") != 0) {
6030 bxe_free_mem(sc);
6031 return (-1);
6032 }
6033
6034 sc->context[i].vcxt =
6035 (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6036
6037 allocated += sc->context[i].size;
6038 }
6039
6040 bxe_alloc_ilt_lines_mem(sc);
6041
6042 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6043 sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6044 {
6045 for (i = 0; i < 4; i++) {
6046 BLOGD(sc, DBG_LOAD,
6047 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6048 i,
6049 sc->ilt->clients[i].page_size,
6050 sc->ilt->clients[i].start,
6051 sc->ilt->clients[i].end,
6052 sc->ilt->clients[i].client_num,
6053 sc->ilt->clients[i].flags);
6054 }
6055 }
6056 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6057 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6058 bxe_free_mem(sc);
6059 return (-1);
6060 }
6061
6062 return (0);
6063 }
6064
6065 static void
bxe_free_rx_bd_chain(struct bxe_fastpath * fp)6066 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6067 {
6068 int i;
6069
6070 if (fp->rx_mbuf_tag == NULL) {
6071 return;
6072 }
6073
6074 /* free all mbufs and unload all maps */
6075 for (i = 0; i < RX_BD_TOTAL; i++) {
6076 if (fp->rx_mbuf_chain[i].m_map != NULL) {
6077 bus_dmamap_sync(fp->rx_mbuf_tag,
6078 fp->rx_mbuf_chain[i].m_map,
6079 BUS_DMASYNC_POSTREAD);
6080 bus_dmamap_unload(fp->rx_mbuf_tag,
6081 fp->rx_mbuf_chain[i].m_map);
6082 }
6083
6084 if (fp->rx_mbuf_chain[i].m != NULL) {
6085 m_freem(fp->rx_mbuf_chain[i].m);
6086 fp->rx_mbuf_chain[i].m = NULL;
6087 fp->eth_q_stats.mbuf_alloc_rx--;
6088 }
6089 }
6090 }
6091
6092 static void
bxe_free_tpa_pool(struct bxe_fastpath * fp)6093 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6094 {
6095 struct bxe_softc *sc;
6096 int i, max_agg_queues;
6097
6098 sc = fp->sc;
6099
6100 if (fp->rx_mbuf_tag == NULL) {
6101 return;
6102 }
6103
6104 max_agg_queues = MAX_AGG_QS(sc);
6105
6106 /* release all mbufs and unload all DMA maps in the TPA pool */
6107 for (i = 0; i < max_agg_queues; i++) {
6108 if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6109 bus_dmamap_sync(fp->rx_mbuf_tag,
6110 fp->rx_tpa_info[i].bd.m_map,
6111 BUS_DMASYNC_POSTREAD);
6112 bus_dmamap_unload(fp->rx_mbuf_tag,
6113 fp->rx_tpa_info[i].bd.m_map);
6114 }
6115
6116 if (fp->rx_tpa_info[i].bd.m != NULL) {
6117 m_freem(fp->rx_tpa_info[i].bd.m);
6118 fp->rx_tpa_info[i].bd.m = NULL;
6119 fp->eth_q_stats.mbuf_alloc_tpa--;
6120 }
6121 }
6122 }
6123
6124 static void
bxe_free_sge_chain(struct bxe_fastpath * fp)6125 bxe_free_sge_chain(struct bxe_fastpath *fp)
6126 {
6127 int i;
6128
6129 if (fp->rx_sge_mbuf_tag == NULL) {
6130 return;
6131 }
6132
6133 /* rree all mbufs and unload all maps */
6134 for (i = 0; i < RX_SGE_TOTAL; i++) {
6135 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6136 bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6137 fp->rx_sge_mbuf_chain[i].m_map,
6138 BUS_DMASYNC_POSTREAD);
6139 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6140 fp->rx_sge_mbuf_chain[i].m_map);
6141 }
6142
6143 if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6144 m_freem(fp->rx_sge_mbuf_chain[i].m);
6145 fp->rx_sge_mbuf_chain[i].m = NULL;
6146 fp->eth_q_stats.mbuf_alloc_sge--;
6147 }
6148 }
6149 }
6150
6151 static void
bxe_free_fp_buffers(struct bxe_softc * sc)6152 bxe_free_fp_buffers(struct bxe_softc *sc)
6153 {
6154 struct bxe_fastpath *fp;
6155 int i;
6156
6157 for (i = 0; i < sc->num_queues; i++) {
6158 fp = &sc->fp[i];
6159
6160 if (fp->tx_br != NULL) {
6161 /* just in case bxe_mq_flush() wasn't called */
6162 if (mtx_initialized(&fp->tx_mtx)) {
6163 struct mbuf *m;
6164
6165 BXE_FP_TX_LOCK(fp);
6166 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6167 m_freem(m);
6168 BXE_FP_TX_UNLOCK(fp);
6169 }
6170 }
6171
6172 /* free all RX buffers */
6173 bxe_free_rx_bd_chain(fp);
6174 bxe_free_tpa_pool(fp);
6175 bxe_free_sge_chain(fp);
6176
6177 if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6178 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6179 fp->eth_q_stats.mbuf_alloc_rx);
6180 }
6181
6182 if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6183 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6184 fp->eth_q_stats.mbuf_alloc_sge);
6185 }
6186
6187 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6188 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6189 fp->eth_q_stats.mbuf_alloc_tpa);
6190 }
6191
6192 if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6193 BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6194 fp->eth_q_stats.mbuf_alloc_tx);
6195 }
6196
6197 /* XXX verify all mbufs were reclaimed */
6198 }
6199 }
6200
6201 static int
bxe_alloc_rx_bd_mbuf(struct bxe_fastpath * fp,uint16_t prev_index,uint16_t index)6202 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6203 uint16_t prev_index,
6204 uint16_t index)
6205 {
6206 struct bxe_sw_rx_bd *rx_buf;
6207 struct eth_rx_bd *rx_bd;
6208 bus_dma_segment_t segs[1];
6209 bus_dmamap_t map;
6210 struct mbuf *m;
6211 int nsegs, rc;
6212
6213 rc = 0;
6214
6215 /* allocate the new RX BD mbuf */
6216 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6217 if (__predict_false(m == NULL)) {
6218 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6219 return (ENOBUFS);
6220 }
6221
6222 fp->eth_q_stats.mbuf_alloc_rx++;
6223
6224 /* initialize the mbuf buffer length */
6225 m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6226
6227 /* map the mbuf into non-paged pool */
6228 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6229 fp->rx_mbuf_spare_map,
6230 m, segs, &nsegs, BUS_DMA_NOWAIT);
6231 if (__predict_false(rc != 0)) {
6232 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6233 m_freem(m);
6234 fp->eth_q_stats.mbuf_alloc_rx--;
6235 return (rc);
6236 }
6237
6238 /* all mbufs must map to a single segment */
6239 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6240
6241 /* release any existing RX BD mbuf mappings */
6242
6243 if (prev_index != index) {
6244 rx_buf = &fp->rx_mbuf_chain[prev_index];
6245
6246 if (rx_buf->m_map != NULL) {
6247 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6248 BUS_DMASYNC_POSTREAD);
6249 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6250 }
6251
6252 /*
6253 * We only get here from bxe_rxeof() when the maximum number
6254 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6255 * holds the mbuf in the prev_index so it's OK to NULL it out
6256 * here without concern of a memory leak.
6257 */
6258 fp->rx_mbuf_chain[prev_index].m = NULL;
6259 }
6260
6261 rx_buf = &fp->rx_mbuf_chain[index];
6262
6263 if (rx_buf->m_map != NULL) {
6264 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6265 BUS_DMASYNC_POSTREAD);
6266 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6267 }
6268
6269 /* save the mbuf and mapping info for a future packet */
6270 map = (prev_index != index) ?
6271 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6272 rx_buf->m_map = fp->rx_mbuf_spare_map;
6273 fp->rx_mbuf_spare_map = map;
6274 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6275 BUS_DMASYNC_PREREAD);
6276 rx_buf->m = m;
6277
6278 rx_bd = &fp->rx_chain[index];
6279 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6280 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6281
6282 return (rc);
6283 }
6284
6285 static int
bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath * fp,int queue)6286 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6287 int queue)
6288 {
6289 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6290 bus_dma_segment_t segs[1];
6291 bus_dmamap_t map;
6292 struct mbuf *m;
6293 int nsegs;
6294 int rc = 0;
6295
6296 /* allocate the new TPA mbuf */
6297 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6298 if (__predict_false(m == NULL)) {
6299 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6300 return (ENOBUFS);
6301 }
6302
6303 fp->eth_q_stats.mbuf_alloc_tpa++;
6304
6305 /* initialize the mbuf buffer length */
6306 m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6307
6308 /* map the mbuf into non-paged pool */
6309 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6310 fp->rx_tpa_info_mbuf_spare_map,
6311 m, segs, &nsegs, BUS_DMA_NOWAIT);
6312 if (__predict_false(rc != 0)) {
6313 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6314 m_free(m);
6315 fp->eth_q_stats.mbuf_alloc_tpa--;
6316 return (rc);
6317 }
6318
6319 /* all mbufs must map to a single segment */
6320 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6321
6322 /* release any existing TPA mbuf mapping */
6323 if (tpa_info->bd.m_map != NULL) {
6324 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6325 BUS_DMASYNC_POSTREAD);
6326 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6327 }
6328
6329 /* save the mbuf and mapping info for the TPA mbuf */
6330 map = tpa_info->bd.m_map;
6331 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6332 fp->rx_tpa_info_mbuf_spare_map = map;
6333 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6334 BUS_DMASYNC_PREREAD);
6335 tpa_info->bd.m = m;
6336 tpa_info->seg = segs[0];
6337
6338 return (rc);
6339 }
6340
6341 /*
6342 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6343 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6344 * chain.
6345 */
6346 static int
bxe_alloc_rx_sge_mbuf(struct bxe_fastpath * fp,uint16_t index)6347 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6348 uint16_t index)
6349 {
6350 struct bxe_sw_rx_bd *sge_buf;
6351 struct eth_rx_sge *sge;
6352 bus_dma_segment_t segs[1];
6353 bus_dmamap_t map;
6354 struct mbuf *m;
6355 int nsegs;
6356 int rc = 0;
6357
6358 /* allocate a new SGE mbuf */
6359 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6360 if (__predict_false(m == NULL)) {
6361 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6362 return (ENOMEM);
6363 }
6364
6365 fp->eth_q_stats.mbuf_alloc_sge++;
6366
6367 /* initialize the mbuf buffer length */
6368 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6369
6370 /* map the SGE mbuf into non-paged pool */
6371 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6372 fp->rx_sge_mbuf_spare_map,
6373 m, segs, &nsegs, BUS_DMA_NOWAIT);
6374 if (__predict_false(rc != 0)) {
6375 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6376 m_freem(m);
6377 fp->eth_q_stats.mbuf_alloc_sge--;
6378 return (rc);
6379 }
6380
6381 /* all mbufs must map to a single segment */
6382 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6383
6384 sge_buf = &fp->rx_sge_mbuf_chain[index];
6385
6386 /* release any existing SGE mbuf mapping */
6387 if (sge_buf->m_map != NULL) {
6388 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6389 BUS_DMASYNC_POSTREAD);
6390 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6391 }
6392
6393 /* save the mbuf and mapping info for a future packet */
6394 map = sge_buf->m_map;
6395 sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6396 fp->rx_sge_mbuf_spare_map = map;
6397 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6398 BUS_DMASYNC_PREREAD);
6399 sge_buf->m = m;
6400
6401 sge = &fp->rx_sge_chain[index];
6402 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6403 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6404
6405 return (rc);
6406 }
6407
6408 static __noinline int
bxe_alloc_fp_buffers(struct bxe_softc * sc)6409 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6410 {
6411 struct bxe_fastpath *fp;
6412 int i, j, rc = 0;
6413 int ring_prod, cqe_ring_prod;
6414 int max_agg_queues;
6415
6416 for (i = 0; i < sc->num_queues; i++) {
6417 fp = &sc->fp[i];
6418
6419 ring_prod = cqe_ring_prod = 0;
6420 fp->rx_bd_cons = 0;
6421 fp->rx_cq_cons = 0;
6422
6423 /* allocate buffers for the RX BDs in RX BD chain */
6424 for (j = 0; j < sc->max_rx_bufs; j++) {
6425 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6426 if (rc != 0) {
6427 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6428 i, rc);
6429 goto bxe_alloc_fp_buffers_error;
6430 }
6431
6432 ring_prod = RX_BD_NEXT(ring_prod);
6433 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6434 }
6435
6436 fp->rx_bd_prod = ring_prod;
6437 fp->rx_cq_prod = cqe_ring_prod;
6438 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6439
6440 max_agg_queues = MAX_AGG_QS(sc);
6441
6442 fp->tpa_enable = TRUE;
6443
6444 /* fill the TPA pool */
6445 for (j = 0; j < max_agg_queues; j++) {
6446 rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6447 if (rc != 0) {
6448 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6449 i, j);
6450 fp->tpa_enable = FALSE;
6451 goto bxe_alloc_fp_buffers_error;
6452 }
6453
6454 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6455 }
6456
6457 if (fp->tpa_enable) {
6458 /* fill the RX SGE chain */
6459 ring_prod = 0;
6460 for (j = 0; j < RX_SGE_USABLE; j++) {
6461 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6462 if (rc != 0) {
6463 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6464 i, ring_prod);
6465 fp->tpa_enable = FALSE;
6466 ring_prod = 0;
6467 goto bxe_alloc_fp_buffers_error;
6468 }
6469
6470 ring_prod = RX_SGE_NEXT(ring_prod);
6471 }
6472
6473 fp->rx_sge_prod = ring_prod;
6474 }
6475 }
6476
6477 return (0);
6478
6479 bxe_alloc_fp_buffers_error:
6480
6481 /* unwind what was already allocated */
6482 bxe_free_rx_bd_chain(fp);
6483 bxe_free_tpa_pool(fp);
6484 bxe_free_sge_chain(fp);
6485
6486 return (ENOBUFS);
6487 }
6488
6489 static void
bxe_free_fw_stats_mem(struct bxe_softc * sc)6490 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6491 {
6492 bxe_dma_free(sc, &sc->fw_stats_dma);
6493
6494 sc->fw_stats_num = 0;
6495
6496 sc->fw_stats_req_size = 0;
6497 sc->fw_stats_req = NULL;
6498 sc->fw_stats_req_mapping = 0;
6499
6500 sc->fw_stats_data_size = 0;
6501 sc->fw_stats_data = NULL;
6502 sc->fw_stats_data_mapping = 0;
6503 }
6504
6505 static int
bxe_alloc_fw_stats_mem(struct bxe_softc * sc)6506 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6507 {
6508 uint8_t num_queue_stats;
6509 int num_groups;
6510
6511 /* number of queues for statistics is number of eth queues */
6512 num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6513
6514 /*
6515 * Total number of FW statistics requests =
6516 * 1 for port stats + 1 for PF stats + num of queues
6517 */
6518 sc->fw_stats_num = (2 + num_queue_stats);
6519
6520 /*
6521 * Request is built from stats_query_header and an array of
6522 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6523 * rules. The real number or requests is configured in the
6524 * stats_query_header.
6525 */
6526 num_groups =
6527 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6528 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6529
6530 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6531 sc->fw_stats_num, num_groups);
6532
6533 sc->fw_stats_req_size =
6534 (sizeof(struct stats_query_header) +
6535 (num_groups * sizeof(struct stats_query_cmd_group)));
6536
6537 /*
6538 * Data for statistics requests + stats_counter.
6539 * stats_counter holds per-STORM counters that are incremented when
6540 * STORM has finished with the current request. Memory for FCoE
6541 * offloaded statistics are counted anyway, even if they will not be sent.
6542 * VF stats are not accounted for here as the data of VF stats is stored
6543 * in memory allocated by the VF, not here.
6544 */
6545 sc->fw_stats_data_size =
6546 (sizeof(struct stats_counter) +
6547 sizeof(struct per_port_stats) +
6548 sizeof(struct per_pf_stats) +
6549 /* sizeof(struct fcoe_statistics_params) + */
6550 (sizeof(struct per_queue_stats) * num_queue_stats));
6551
6552 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6553 &sc->fw_stats_dma, "fw stats") != 0) {
6554 bxe_free_fw_stats_mem(sc);
6555 return (-1);
6556 }
6557
6558 /* set up the shortcuts */
6559
6560 sc->fw_stats_req =
6561 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6562 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6563
6564 sc->fw_stats_data =
6565 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6566 sc->fw_stats_req_size);
6567 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6568 sc->fw_stats_req_size);
6569
6570 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6571 (uintmax_t)sc->fw_stats_req_mapping);
6572
6573 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6574 (uintmax_t)sc->fw_stats_data_mapping);
6575
6576 return (0);
6577 }
6578
6579 /*
6580 * Bits map:
6581 * 0-7 - Engine0 load counter.
6582 * 8-15 - Engine1 load counter.
6583 * 16 - Engine0 RESET_IN_PROGRESS bit.
6584 * 17 - Engine1 RESET_IN_PROGRESS bit.
6585 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active
6586 * function on the engine
6587 * 19 - Engine1 ONE_IS_LOADED.
6588 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
6589 * leader to complete (check for both RESET_IN_PROGRESS bits and not
6590 * for just the one belonging to its engine).
6591 */
6592 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
6593 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff
6594 #define BXE_PATH0_LOAD_CNT_SHIFT 0
6595 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00
6596 #define BXE_PATH1_LOAD_CNT_SHIFT 8
6597 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6598 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6599 #define BXE_GLOBAL_RESET_BIT 0x00040000
6600
6601 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6602 static void
bxe_set_reset_global(struct bxe_softc * sc)6603 bxe_set_reset_global(struct bxe_softc *sc)
6604 {
6605 uint32_t val;
6606 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6607 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6608 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6609 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6610 }
6611
6612 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6613 static void
bxe_clear_reset_global(struct bxe_softc * sc)6614 bxe_clear_reset_global(struct bxe_softc *sc)
6615 {
6616 uint32_t val;
6617 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6618 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6619 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6620 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6621 }
6622
6623 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6624 static uint8_t
bxe_reset_is_global(struct bxe_softc * sc)6625 bxe_reset_is_global(struct bxe_softc *sc)
6626 {
6627 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6628 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6629 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6630 }
6631
6632 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6633 static void
bxe_set_reset_done(struct bxe_softc * sc)6634 bxe_set_reset_done(struct bxe_softc *sc)
6635 {
6636 uint32_t val;
6637 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6638 BXE_PATH0_RST_IN_PROG_BIT;
6639
6640 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6641
6642 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6643 /* Clear the bit */
6644 val &= ~bit;
6645 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6646
6647 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6648 }
6649
6650 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6651 static void
bxe_set_reset_in_progress(struct bxe_softc * sc)6652 bxe_set_reset_in_progress(struct bxe_softc *sc)
6653 {
6654 uint32_t val;
6655 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6656 BXE_PATH0_RST_IN_PROG_BIT;
6657
6658 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6659
6660 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6661 /* Set the bit */
6662 val |= bit;
6663 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6664
6665 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6666 }
6667
6668 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6669 static uint8_t
bxe_reset_is_done(struct bxe_softc * sc,int engine)6670 bxe_reset_is_done(struct bxe_softc *sc,
6671 int engine)
6672 {
6673 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6674 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6675 BXE_PATH0_RST_IN_PROG_BIT;
6676
6677 /* return false if bit is set */
6678 return (val & bit) ? FALSE : TRUE;
6679 }
6680
6681 /* get the load status for an engine, should be run under rtnl lock */
6682 static uint8_t
bxe_get_load_status(struct bxe_softc * sc,int engine)6683 bxe_get_load_status(struct bxe_softc *sc,
6684 int engine)
6685 {
6686 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6687 BXE_PATH0_LOAD_CNT_MASK;
6688 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6689 BXE_PATH0_LOAD_CNT_SHIFT;
6690 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6691
6692 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6693
6694 val = ((val & mask) >> shift);
6695
6696 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6697
6698 return (val != 0);
6699 }
6700
6701 /* set pf load mark */
6702 /* XXX needs to be under rtnl lock */
6703 static void
bxe_set_pf_load(struct bxe_softc * sc)6704 bxe_set_pf_load(struct bxe_softc *sc)
6705 {
6706 uint32_t val;
6707 uint32_t val1;
6708 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6709 BXE_PATH0_LOAD_CNT_MASK;
6710 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6711 BXE_PATH0_LOAD_CNT_SHIFT;
6712
6713 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6714
6715 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6716 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6717
6718 /* get the current counter value */
6719 val1 = ((val & mask) >> shift);
6720
6721 /* set bit of this PF */
6722 val1 |= (1 << SC_ABS_FUNC(sc));
6723
6724 /* clear the old value */
6725 val &= ~mask;
6726
6727 /* set the new one */
6728 val |= ((val1 << shift) & mask);
6729
6730 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6731
6732 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6733 }
6734
6735 /* clear pf load mark */
6736 /* XXX needs to be under rtnl lock */
6737 static uint8_t
bxe_clear_pf_load(struct bxe_softc * sc)6738 bxe_clear_pf_load(struct bxe_softc *sc)
6739 {
6740 uint32_t val1, val;
6741 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6742 BXE_PATH0_LOAD_CNT_MASK;
6743 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6744 BXE_PATH0_LOAD_CNT_SHIFT;
6745
6746 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6747 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6748 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6749
6750 /* get the current counter value */
6751 val1 = (val & mask) >> shift;
6752
6753 /* clear bit of that PF */
6754 val1 &= ~(1 << SC_ABS_FUNC(sc));
6755
6756 /* clear the old value */
6757 val &= ~mask;
6758
6759 /* set the new one */
6760 val |= ((val1 << shift) & mask);
6761
6762 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6763 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6764 return (val1 != 0);
6765 }
6766
6767 /* send load requrest to mcp and analyze response */
6768 static int
bxe_nic_load_request(struct bxe_softc * sc,uint32_t * load_code)6769 bxe_nic_load_request(struct bxe_softc *sc,
6770 uint32_t *load_code)
6771 {
6772 /* init fw_seq */
6773 sc->fw_seq =
6774 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6775 DRV_MSG_SEQ_NUMBER_MASK);
6776
6777 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6778
6779 /* get the current FW pulse sequence */
6780 sc->fw_drv_pulse_wr_seq =
6781 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6782 DRV_PULSE_SEQ_MASK);
6783
6784 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6785 sc->fw_drv_pulse_wr_seq);
6786
6787 /* load request */
6788 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6789 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6790
6791 /* if the MCP fails to respond we must abort */
6792 if (!(*load_code)) {
6793 BLOGE(sc, "MCP response failure!\n");
6794 return (-1);
6795 }
6796
6797 /* if MCP refused then must abort */
6798 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6799 BLOGE(sc, "MCP refused load request\n");
6800 return (-1);
6801 }
6802
6803 return (0);
6804 }
6805
6806 /*
6807 * Check whether another PF has already loaded FW to chip. In virtualized
6808 * environments a pf from anoth VM may have already initialized the device
6809 * including loading FW.
6810 */
6811 static int
bxe_nic_load_analyze_req(struct bxe_softc * sc,uint32_t load_code)6812 bxe_nic_load_analyze_req(struct bxe_softc *sc,
6813 uint32_t load_code)
6814 {
6815 uint32_t my_fw, loaded_fw;
6816
6817 /* is another pf loaded on this engine? */
6818 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6819 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6820 /* build my FW version dword */
6821 my_fw = (BCM_5710_FW_MAJOR_VERSION +
6822 (BCM_5710_FW_MINOR_VERSION << 8 ) +
6823 (BCM_5710_FW_REVISION_VERSION << 16) +
6824 (BCM_5710_FW_ENGINEERING_VERSION << 24));
6825
6826 /* read loaded FW from chip */
6827 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6828 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6829 loaded_fw, my_fw);
6830
6831 /* abort nic load if version mismatch */
6832 if (my_fw != loaded_fw) {
6833 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6834 loaded_fw, my_fw);
6835 return (-1);
6836 }
6837 }
6838
6839 return (0);
6840 }
6841
6842 /* mark PMF if applicable */
6843 static void
bxe_nic_load_pmf(struct bxe_softc * sc,uint32_t load_code)6844 bxe_nic_load_pmf(struct bxe_softc *sc,
6845 uint32_t load_code)
6846 {
6847 uint32_t ncsi_oem_data_addr;
6848
6849 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6850 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6851 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6852 /*
6853 * Barrier here for ordering between the writing to sc->port.pmf here
6854 * and reading it from the periodic task.
6855 */
6856 sc->port.pmf = 1;
6857 mb();
6858 } else {
6859 sc->port.pmf = 0;
6860 }
6861
6862 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6863
6864 /* XXX needed? */
6865 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6866 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6867 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6868 if (ncsi_oem_data_addr) {
6869 REG_WR(sc,
6870 (ncsi_oem_data_addr +
6871 offsetof(struct glob_ncsi_oem_data, driver_version)),
6872 0);
6873 }
6874 }
6875 }
6876 }
6877
6878 static void
bxe_read_mf_cfg(struct bxe_softc * sc)6879 bxe_read_mf_cfg(struct bxe_softc *sc)
6880 {
6881 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6882 int abs_func;
6883 int vn;
6884
6885 if (BXE_NOMCP(sc)) {
6886 return; /* what should be the default bvalue in this case */
6887 }
6888
6889 /*
6890 * The formula for computing the absolute function number is...
6891 * For 2 port configuration (4 functions per port):
6892 * abs_func = 2 * vn + SC_PORT + SC_PATH
6893 * For 4 port configuration (2 functions per port):
6894 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6895 */
6896 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6897 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6898 if (abs_func >= E1H_FUNC_MAX) {
6899 break;
6900 }
6901 sc->devinfo.mf_info.mf_config[vn] =
6902 MFCFG_RD(sc, func_mf_config[abs_func].config);
6903 }
6904
6905 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6906 FUNC_MF_CFG_FUNC_DISABLED) {
6907 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6908 sc->flags |= BXE_MF_FUNC_DIS;
6909 } else {
6910 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6911 sc->flags &= ~BXE_MF_FUNC_DIS;
6912 }
6913 }
6914
6915 /* acquire split MCP access lock register */
bxe_acquire_alr(struct bxe_softc * sc)6916 static int bxe_acquire_alr(struct bxe_softc *sc)
6917 {
6918 uint32_t j, val;
6919
6920 for (j = 0; j < 1000; j++) {
6921 val = (1UL << 31);
6922 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6923 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6924 if (val & (1L << 31))
6925 break;
6926
6927 DELAY(5000);
6928 }
6929
6930 if (!(val & (1L << 31))) {
6931 BLOGE(sc, "Cannot acquire MCP access lock register\n");
6932 return (-1);
6933 }
6934
6935 return (0);
6936 }
6937
6938 /* release split MCP access lock register */
bxe_release_alr(struct bxe_softc * sc)6939 static void bxe_release_alr(struct bxe_softc *sc)
6940 {
6941 REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6942 }
6943
6944 static void
bxe_fan_failure(struct bxe_softc * sc)6945 bxe_fan_failure(struct bxe_softc *sc)
6946 {
6947 int port = SC_PORT(sc);
6948 uint32_t ext_phy_config;
6949
6950 /* mark the failure */
6951 ext_phy_config =
6952 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6953
6954 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6955 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6956 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6957 ext_phy_config);
6958
6959 /* log the failure */
6960 BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6961 "the card to prevent permanent damage. "
6962 "Please contact OEM Support for assistance\n");
6963
6964 /* XXX */
6965 #if 1
6966 bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6967 #else
6968 /*
6969 * Schedule device reset (unload)
6970 * This is due to some boards consuming sufficient power when driver is
6971 * up to overheat if fan fails.
6972 */
6973 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6974 schedule_delayed_work(&sc->sp_rtnl_task, 0);
6975 #endif
6976 }
6977
6978 /* this function is called upon a link interrupt */
6979 static void
bxe_link_attn(struct bxe_softc * sc)6980 bxe_link_attn(struct bxe_softc *sc)
6981 {
6982 uint32_t pause_enabled = 0;
6983 struct host_port_stats *pstats;
6984 int cmng_fns;
6985 struct bxe_fastpath *fp;
6986 int i;
6987
6988 /* Make sure that we are synced with the current statistics */
6989 bxe_stats_handle(sc, STATS_EVENT_STOP);
6990 BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
6991 elink_link_update(&sc->link_params, &sc->link_vars);
6992
6993 if (sc->link_vars.link_up) {
6994
6995 /* dropless flow control */
6996 if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
6997 pause_enabled = 0;
6998
6999 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7000 pause_enabled = 1;
7001 }
7002
7003 REG_WR(sc,
7004 (BAR_USTRORM_INTMEM +
7005 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7006 pause_enabled);
7007 }
7008
7009 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7010 pstats = BXE_SP(sc, port_stats);
7011 /* reset old mac stats */
7012 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7013 }
7014
7015 if (sc->state == BXE_STATE_OPEN) {
7016 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7017 /* Restart tx when the link comes back. */
7018 FOR_EACH_ETH_QUEUE(sc, i) {
7019 fp = &sc->fp[i];
7020 taskqueue_enqueue(fp->tq, &fp->tx_task);
7021 }
7022 }
7023
7024 }
7025
7026 if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7027 cmng_fns = bxe_get_cmng_fns_mode(sc);
7028
7029 if (cmng_fns != CMNG_FNS_NONE) {
7030 bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7031 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7032 } else {
7033 /* rate shaping and fairness are disabled */
7034 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7035 }
7036 }
7037
7038 bxe_link_report_locked(sc);
7039
7040 if (IS_MF(sc)) {
7041 ; // XXX bxe_link_sync_notify(sc);
7042 }
7043 }
7044
7045 static void
bxe_attn_int_asserted(struct bxe_softc * sc,uint32_t asserted)7046 bxe_attn_int_asserted(struct bxe_softc *sc,
7047 uint32_t asserted)
7048 {
7049 int port = SC_PORT(sc);
7050 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7051 MISC_REG_AEU_MASK_ATTN_FUNC_0;
7052 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7053 NIG_REG_MASK_INTERRUPT_PORT0;
7054 uint32_t aeu_mask;
7055 uint32_t nig_mask = 0;
7056 uint32_t reg_addr;
7057 uint32_t igu_acked;
7058 uint32_t cnt;
7059
7060 if (sc->attn_state & asserted) {
7061 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7062 }
7063
7064 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7065
7066 aeu_mask = REG_RD(sc, aeu_addr);
7067
7068 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7069 aeu_mask, asserted);
7070
7071 aeu_mask &= ~(asserted & 0x3ff);
7072
7073 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7074
7075 REG_WR(sc, aeu_addr, aeu_mask);
7076
7077 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7078
7079 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7080 sc->attn_state |= asserted;
7081 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7082
7083 if (asserted & ATTN_HARD_WIRED_MASK) {
7084 if (asserted & ATTN_NIG_FOR_FUNC) {
7085
7086 bxe_acquire_phy_lock(sc);
7087 /* save nig interrupt mask */
7088 nig_mask = REG_RD(sc, nig_int_mask_addr);
7089
7090 /* If nig_mask is not set, no need to call the update function */
7091 if (nig_mask) {
7092 REG_WR(sc, nig_int_mask_addr, 0);
7093
7094 bxe_link_attn(sc);
7095 }
7096
7097 /* handle unicore attn? */
7098 }
7099
7100 if (asserted & ATTN_SW_TIMER_4_FUNC) {
7101 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7102 }
7103
7104 if (asserted & GPIO_2_FUNC) {
7105 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7106 }
7107
7108 if (asserted & GPIO_3_FUNC) {
7109 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7110 }
7111
7112 if (asserted & GPIO_4_FUNC) {
7113 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7114 }
7115
7116 if (port == 0) {
7117 if (asserted & ATTN_GENERAL_ATTN_1) {
7118 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7119 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7120 }
7121 if (asserted & ATTN_GENERAL_ATTN_2) {
7122 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7123 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7124 }
7125 if (asserted & ATTN_GENERAL_ATTN_3) {
7126 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7127 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7128 }
7129 } else {
7130 if (asserted & ATTN_GENERAL_ATTN_4) {
7131 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7132 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7133 }
7134 if (asserted & ATTN_GENERAL_ATTN_5) {
7135 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7136 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7137 }
7138 if (asserted & ATTN_GENERAL_ATTN_6) {
7139 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7140 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7141 }
7142 }
7143 } /* hardwired */
7144
7145 if (sc->devinfo.int_block == INT_BLOCK_HC) {
7146 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7147 } else {
7148 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7149 }
7150
7151 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7152 asserted,
7153 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7154 REG_WR(sc, reg_addr, asserted);
7155
7156 /* now set back the mask */
7157 if (asserted & ATTN_NIG_FOR_FUNC) {
7158 /*
7159 * Verify that IGU ack through BAR was written before restoring
7160 * NIG mask. This loop should exit after 2-3 iterations max.
7161 */
7162 if (sc->devinfo.int_block != INT_BLOCK_HC) {
7163 cnt = 0;
7164
7165 do {
7166 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7167 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7168 (++cnt < MAX_IGU_ATTN_ACK_TO));
7169
7170 if (!igu_acked) {
7171 BLOGE(sc, "Failed to verify IGU ack on time\n");
7172 }
7173
7174 mb();
7175 }
7176
7177 REG_WR(sc, nig_int_mask_addr, nig_mask);
7178
7179 bxe_release_phy_lock(sc);
7180 }
7181 }
7182
7183 static void
bxe_print_next_block(struct bxe_softc * sc,int idx,const char * blk)7184 bxe_print_next_block(struct bxe_softc *sc,
7185 int idx,
7186 const char *blk)
7187 {
7188 BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7189 }
7190
7191 static int
bxe_check_blocks_with_parity0(struct bxe_softc * sc,uint32_t sig,int par_num,uint8_t print)7192 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7193 uint32_t sig,
7194 int par_num,
7195 uint8_t print)
7196 {
7197 uint32_t cur_bit = 0;
7198 int i = 0;
7199
7200 for (i = 0; sig; i++) {
7201 cur_bit = ((uint32_t)0x1 << i);
7202 if (sig & cur_bit) {
7203 switch (cur_bit) {
7204 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7205 if (print)
7206 bxe_print_next_block(sc, par_num++, "BRB");
7207 break;
7208 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7209 if (print)
7210 bxe_print_next_block(sc, par_num++, "PARSER");
7211 break;
7212 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7213 if (print)
7214 bxe_print_next_block(sc, par_num++, "TSDM");
7215 break;
7216 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7217 if (print)
7218 bxe_print_next_block(sc, par_num++, "SEARCHER");
7219 break;
7220 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7221 if (print)
7222 bxe_print_next_block(sc, par_num++, "TCM");
7223 break;
7224 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7225 if (print)
7226 bxe_print_next_block(sc, par_num++, "TSEMI");
7227 break;
7228 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7229 if (print)
7230 bxe_print_next_block(sc, par_num++, "XPB");
7231 break;
7232 }
7233
7234 /* Clear the bit */
7235 sig &= ~cur_bit;
7236 }
7237 }
7238
7239 return (par_num);
7240 }
7241
7242 static int
bxe_check_blocks_with_parity1(struct bxe_softc * sc,uint32_t sig,int par_num,uint8_t * global,uint8_t print)7243 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7244 uint32_t sig,
7245 int par_num,
7246 uint8_t *global,
7247 uint8_t print)
7248 {
7249 int i = 0;
7250 uint32_t cur_bit = 0;
7251 for (i = 0; sig; i++) {
7252 cur_bit = ((uint32_t)0x1 << i);
7253 if (sig & cur_bit) {
7254 switch (cur_bit) {
7255 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7256 if (print)
7257 bxe_print_next_block(sc, par_num++, "PBF");
7258 break;
7259 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7260 if (print)
7261 bxe_print_next_block(sc, par_num++, "QM");
7262 break;
7263 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7264 if (print)
7265 bxe_print_next_block(sc, par_num++, "TM");
7266 break;
7267 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7268 if (print)
7269 bxe_print_next_block(sc, par_num++, "XSDM");
7270 break;
7271 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7272 if (print)
7273 bxe_print_next_block(sc, par_num++, "XCM");
7274 break;
7275 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7276 if (print)
7277 bxe_print_next_block(sc, par_num++, "XSEMI");
7278 break;
7279 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7280 if (print)
7281 bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7282 break;
7283 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7284 if (print)
7285 bxe_print_next_block(sc, par_num++, "NIG");
7286 break;
7287 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7288 if (print)
7289 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7290 *global = TRUE;
7291 break;
7292 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7293 if (print)
7294 bxe_print_next_block(sc, par_num++, "DEBUG");
7295 break;
7296 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7297 if (print)
7298 bxe_print_next_block(sc, par_num++, "USDM");
7299 break;
7300 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7301 if (print)
7302 bxe_print_next_block(sc, par_num++, "UCM");
7303 break;
7304 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7305 if (print)
7306 bxe_print_next_block(sc, par_num++, "USEMI");
7307 break;
7308 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7309 if (print)
7310 bxe_print_next_block(sc, par_num++, "UPB");
7311 break;
7312 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7313 if (print)
7314 bxe_print_next_block(sc, par_num++, "CSDM");
7315 break;
7316 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7317 if (print)
7318 bxe_print_next_block(sc, par_num++, "CCM");
7319 break;
7320 }
7321
7322 /* Clear the bit */
7323 sig &= ~cur_bit;
7324 }
7325 }
7326
7327 return (par_num);
7328 }
7329
7330 static int
bxe_check_blocks_with_parity2(struct bxe_softc * sc,uint32_t sig,int par_num,uint8_t print)7331 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7332 uint32_t sig,
7333 int par_num,
7334 uint8_t print)
7335 {
7336 uint32_t cur_bit = 0;
7337 int i = 0;
7338
7339 for (i = 0; sig; i++) {
7340 cur_bit = ((uint32_t)0x1 << i);
7341 if (sig & cur_bit) {
7342 switch (cur_bit) {
7343 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7344 if (print)
7345 bxe_print_next_block(sc, par_num++, "CSEMI");
7346 break;
7347 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7348 if (print)
7349 bxe_print_next_block(sc, par_num++, "PXP");
7350 break;
7351 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7352 if (print)
7353 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7354 break;
7355 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7356 if (print)
7357 bxe_print_next_block(sc, par_num++, "CFC");
7358 break;
7359 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7360 if (print)
7361 bxe_print_next_block(sc, par_num++, "CDU");
7362 break;
7363 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7364 if (print)
7365 bxe_print_next_block(sc, par_num++, "DMAE");
7366 break;
7367 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7368 if (print)
7369 bxe_print_next_block(sc, par_num++, "IGU");
7370 break;
7371 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7372 if (print)
7373 bxe_print_next_block(sc, par_num++, "MISC");
7374 break;
7375 }
7376
7377 /* Clear the bit */
7378 sig &= ~cur_bit;
7379 }
7380 }
7381
7382 return (par_num);
7383 }
7384
7385 static int
bxe_check_blocks_with_parity3(struct bxe_softc * sc,uint32_t sig,int par_num,uint8_t * global,uint8_t print)7386 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7387 uint32_t sig,
7388 int par_num,
7389 uint8_t *global,
7390 uint8_t print)
7391 {
7392 uint32_t cur_bit = 0;
7393 int i = 0;
7394
7395 for (i = 0; sig; i++) {
7396 cur_bit = ((uint32_t)0x1 << i);
7397 if (sig & cur_bit) {
7398 switch (cur_bit) {
7399 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7400 if (print)
7401 bxe_print_next_block(sc, par_num++, "MCP ROM");
7402 *global = TRUE;
7403 break;
7404 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7405 if (print)
7406 bxe_print_next_block(sc, par_num++,
7407 "MCP UMP RX");
7408 *global = TRUE;
7409 break;
7410 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7411 if (print)
7412 bxe_print_next_block(sc, par_num++,
7413 "MCP UMP TX");
7414 *global = TRUE;
7415 break;
7416 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7417 if (print)
7418 bxe_print_next_block(sc, par_num++,
7419 "MCP SCPAD");
7420 *global = TRUE;
7421 break;
7422 }
7423
7424 /* Clear the bit */
7425 sig &= ~cur_bit;
7426 }
7427 }
7428
7429 return (par_num);
7430 }
7431
7432 static int
bxe_check_blocks_with_parity4(struct bxe_softc * sc,uint32_t sig,int par_num,uint8_t print)7433 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7434 uint32_t sig,
7435 int par_num,
7436 uint8_t print)
7437 {
7438 uint32_t cur_bit = 0;
7439 int i = 0;
7440
7441 for (i = 0; sig; i++) {
7442 cur_bit = ((uint32_t)0x1 << i);
7443 if (sig & cur_bit) {
7444 switch (cur_bit) {
7445 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7446 if (print)
7447 bxe_print_next_block(sc, par_num++, "PGLUE_B");
7448 break;
7449 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7450 if (print)
7451 bxe_print_next_block(sc, par_num++, "ATC");
7452 break;
7453 }
7454
7455 /* Clear the bit */
7456 sig &= ~cur_bit;
7457 }
7458 }
7459
7460 return (par_num);
7461 }
7462
7463 static uint8_t
bxe_parity_attn(struct bxe_softc * sc,uint8_t * global,uint8_t print,uint32_t * sig)7464 bxe_parity_attn(struct bxe_softc *sc,
7465 uint8_t *global,
7466 uint8_t print,
7467 uint32_t *sig)
7468 {
7469 int par_num = 0;
7470
7471 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7472 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7473 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7474 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7475 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7476 BLOGE(sc, "Parity error: HW block parity attention:\n"
7477 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7478 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7479 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7480 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7481 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7482 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7483
7484 if (print)
7485 BLOGI(sc, "Parity errors detected in blocks: ");
7486
7487 par_num =
7488 bxe_check_blocks_with_parity0(sc, sig[0] &
7489 HW_PRTY_ASSERT_SET_0,
7490 par_num, print);
7491 par_num =
7492 bxe_check_blocks_with_parity1(sc, sig[1] &
7493 HW_PRTY_ASSERT_SET_1,
7494 par_num, global, print);
7495 par_num =
7496 bxe_check_blocks_with_parity2(sc, sig[2] &
7497 HW_PRTY_ASSERT_SET_2,
7498 par_num, print);
7499 par_num =
7500 bxe_check_blocks_with_parity3(sc, sig[3] &
7501 HW_PRTY_ASSERT_SET_3,
7502 par_num, global, print);
7503 par_num =
7504 bxe_check_blocks_with_parity4(sc, sig[4] &
7505 HW_PRTY_ASSERT_SET_4,
7506 par_num, print);
7507
7508 if (print)
7509 BLOGI(sc, "\n");
7510
7511 if( *global == TRUE ) {
7512 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
7513 }
7514
7515 return (TRUE);
7516 }
7517
7518 return (FALSE);
7519 }
7520
7521 static uint8_t
bxe_chk_parity_attn(struct bxe_softc * sc,uint8_t * global,uint8_t print)7522 bxe_chk_parity_attn(struct bxe_softc *sc,
7523 uint8_t *global,
7524 uint8_t print)
7525 {
7526 struct attn_route attn = { {0} };
7527 int port = SC_PORT(sc);
7528
7529 if(sc->state != BXE_STATE_OPEN)
7530 return FALSE;
7531
7532 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7533 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7534 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7535 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7536
7537 /*
7538 * Since MCP attentions can't be disabled inside the block, we need to
7539 * read AEU registers to see whether they're currently disabled
7540 */
7541 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7542 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7543 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7544 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7545
7546
7547 if (!CHIP_IS_E1x(sc))
7548 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7549
7550 return (bxe_parity_attn(sc, global, print, attn.sig));
7551 }
7552
7553 static void
bxe_attn_int_deasserted4(struct bxe_softc * sc,uint32_t attn)7554 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7555 uint32_t attn)
7556 {
7557 uint32_t val;
7558 bool err_flg = false;
7559
7560 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7561 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7562 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7563 err_flg = true;
7564 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7565 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7566 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7567 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7568 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7569 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7570 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7571 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7572 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7573 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7574 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7575 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7576 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7577 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7578 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7579 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7580 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7581 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7582 }
7583
7584 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7585 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7586 BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7587 err_flg = true;
7588 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7589 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7590 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7591 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7592 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7593 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7594 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7595 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7596 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7597 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7598 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7599 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7600 }
7601
7602 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7603 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7604 BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7605 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7606 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7607 err_flg = true;
7608 }
7609 if (err_flg) {
7610 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
7611 taskqueue_enqueue_timeout(taskqueue_thread,
7612 &sc->sp_err_timeout_task, hz/10);
7613 }
7614
7615 }
7616
7617 static void
bxe_e1h_disable(struct bxe_softc * sc)7618 bxe_e1h_disable(struct bxe_softc *sc)
7619 {
7620 int port = SC_PORT(sc);
7621
7622 bxe_tx_disable(sc);
7623
7624 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7625 }
7626
7627 static void
bxe_e1h_enable(struct bxe_softc * sc)7628 bxe_e1h_enable(struct bxe_softc *sc)
7629 {
7630 int port = SC_PORT(sc);
7631
7632 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7633
7634 // XXX bxe_tx_enable(sc);
7635 }
7636
7637 /*
7638 * called due to MCP event (on pmf):
7639 * reread new bandwidth configuration
7640 * configure FW
7641 * notify others function about the change
7642 */
7643 static void
bxe_config_mf_bw(struct bxe_softc * sc)7644 bxe_config_mf_bw(struct bxe_softc *sc)
7645 {
7646 if (sc->link_vars.link_up) {
7647 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7648 // XXX bxe_link_sync_notify(sc);
7649 }
7650
7651 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7652 }
7653
7654 static void
bxe_set_mf_bw(struct bxe_softc * sc)7655 bxe_set_mf_bw(struct bxe_softc *sc)
7656 {
7657 bxe_config_mf_bw(sc);
7658 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7659 }
7660
7661 static void
bxe_handle_eee_event(struct bxe_softc * sc)7662 bxe_handle_eee_event(struct bxe_softc *sc)
7663 {
7664 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7665 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7666 }
7667
7668 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7669
7670 static void
bxe_drv_info_ether_stat(struct bxe_softc * sc)7671 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7672 {
7673 struct eth_stats_info *ether_stat =
7674 &sc->sp->drv_info_to_mcp.ether_stat;
7675
7676 strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7677 ETH_STAT_INFO_VERSION_LEN);
7678
7679 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7680 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7681 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7682 ether_stat->mac_local + MAC_PAD,
7683 MAC_PAD, ETH_ALEN);
7684
7685 ether_stat->mtu_size = sc->mtu;
7686
7687 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7688 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7689 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7690 }
7691
7692 // XXX ether_stat->feature_flags |= ???;
7693
7694 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7695
7696 ether_stat->txq_size = sc->tx_ring_size;
7697 ether_stat->rxq_size = sc->rx_ring_size;
7698 }
7699
7700 static void
bxe_handle_drv_info_req(struct bxe_softc * sc)7701 bxe_handle_drv_info_req(struct bxe_softc *sc)
7702 {
7703 enum drv_info_opcode op_code;
7704 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7705
7706 /* if drv_info version supported by MFW doesn't match - send NACK */
7707 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7708 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7709 return;
7710 }
7711
7712 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7713 DRV_INFO_CONTROL_OP_CODE_SHIFT);
7714
7715 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7716
7717 switch (op_code) {
7718 case ETH_STATS_OPCODE:
7719 bxe_drv_info_ether_stat(sc);
7720 break;
7721 case FCOE_STATS_OPCODE:
7722 case ISCSI_STATS_OPCODE:
7723 default:
7724 /* if op code isn't supported - send NACK */
7725 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7726 return;
7727 }
7728
7729 /*
7730 * If we got drv_info attn from MFW then these fields are defined in
7731 * shmem2 for sure
7732 */
7733 SHMEM2_WR(sc, drv_info_host_addr_lo,
7734 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7735 SHMEM2_WR(sc, drv_info_host_addr_hi,
7736 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7737
7738 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7739 }
7740
7741 static void
bxe_dcc_event(struct bxe_softc * sc,uint32_t dcc_event)7742 bxe_dcc_event(struct bxe_softc *sc,
7743 uint32_t dcc_event)
7744 {
7745 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7746
7747 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7748 /*
7749 * This is the only place besides the function initialization
7750 * where the sc->flags can change so it is done without any
7751 * locks
7752 */
7753 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7754 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7755 sc->flags |= BXE_MF_FUNC_DIS;
7756 bxe_e1h_disable(sc);
7757 } else {
7758 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7759 sc->flags &= ~BXE_MF_FUNC_DIS;
7760 bxe_e1h_enable(sc);
7761 }
7762 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7763 }
7764
7765 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7766 bxe_config_mf_bw(sc);
7767 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7768 }
7769
7770 /* Report results to MCP */
7771 if (dcc_event)
7772 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7773 else
7774 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7775 }
7776
7777 static void
bxe_pmf_update(struct bxe_softc * sc)7778 bxe_pmf_update(struct bxe_softc *sc)
7779 {
7780 int port = SC_PORT(sc);
7781 uint32_t val;
7782
7783 sc->port.pmf = 1;
7784 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7785
7786 /*
7787 * We need the mb() to ensure the ordering between the writing to
7788 * sc->port.pmf here and reading it from the bxe_periodic_task().
7789 */
7790 mb();
7791
7792 /* queue a periodic task */
7793 // XXX schedule task...
7794
7795 // XXX bxe_dcbx_pmf_update(sc);
7796
7797 /* enable nig attention */
7798 val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7799 if (sc->devinfo.int_block == INT_BLOCK_HC) {
7800 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7801 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7802 } else if (!CHIP_IS_E1x(sc)) {
7803 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7804 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7805 }
7806
7807 bxe_stats_handle(sc, STATS_EVENT_PMF);
7808 }
7809
7810 static int
bxe_mc_assert(struct bxe_softc * sc)7811 bxe_mc_assert(struct bxe_softc *sc)
7812 {
7813 char last_idx;
7814 int i, rc = 0;
7815 uint32_t row0, row1, row2, row3;
7816
7817 /* XSTORM */
7818 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7819 if (last_idx)
7820 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7821
7822 /* print the asserts */
7823 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7824
7825 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7826 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7827 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7828 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7829
7830 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7831 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7832 i, row3, row2, row1, row0);
7833 rc++;
7834 } else {
7835 break;
7836 }
7837 }
7838
7839 /* TSTORM */
7840 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7841 if (last_idx) {
7842 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7843 }
7844
7845 /* print the asserts */
7846 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7847
7848 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7849 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7850 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7851 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7852
7853 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7854 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7855 i, row3, row2, row1, row0);
7856 rc++;
7857 } else {
7858 break;
7859 }
7860 }
7861
7862 /* CSTORM */
7863 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7864 if (last_idx) {
7865 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7866 }
7867
7868 /* print the asserts */
7869 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7870
7871 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7872 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7873 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7874 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7875
7876 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7877 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7878 i, row3, row2, row1, row0);
7879 rc++;
7880 } else {
7881 break;
7882 }
7883 }
7884
7885 /* USTORM */
7886 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7887 if (last_idx) {
7888 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7889 }
7890
7891 /* print the asserts */
7892 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7893
7894 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7895 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7896 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7897 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7898
7899 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7900 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7901 i, row3, row2, row1, row0);
7902 rc++;
7903 } else {
7904 break;
7905 }
7906 }
7907
7908 return (rc);
7909 }
7910
7911 static void
bxe_attn_int_deasserted3(struct bxe_softc * sc,uint32_t attn)7912 bxe_attn_int_deasserted3(struct bxe_softc *sc,
7913 uint32_t attn)
7914 {
7915 int func = SC_FUNC(sc);
7916 uint32_t val;
7917
7918 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7919
7920 if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7921
7922 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7923 bxe_read_mf_cfg(sc);
7924 sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7925 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7926 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7927
7928 if (val & DRV_STATUS_DCC_EVENT_MASK)
7929 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7930
7931 if (val & DRV_STATUS_SET_MF_BW)
7932 bxe_set_mf_bw(sc);
7933
7934 if (val & DRV_STATUS_DRV_INFO_REQ)
7935 bxe_handle_drv_info_req(sc);
7936
7937 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7938 bxe_pmf_update(sc);
7939
7940 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7941 bxe_handle_eee_event(sc);
7942
7943 if (sc->link_vars.periodic_flags &
7944 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7945 /* sync with link */
7946 bxe_acquire_phy_lock(sc);
7947 sc->link_vars.periodic_flags &=
7948 ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7949 bxe_release_phy_lock(sc);
7950 if (IS_MF(sc))
7951 ; // XXX bxe_link_sync_notify(sc);
7952 bxe_link_report(sc);
7953 }
7954
7955 /*
7956 * Always call it here: bxe_link_report() will
7957 * prevent the link indication duplication.
7958 */
7959 bxe_link_status_update(sc);
7960
7961 } else if (attn & BXE_MC_ASSERT_BITS) {
7962
7963 BLOGE(sc, "MC assert!\n");
7964 bxe_mc_assert(sc);
7965 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7966 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7967 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7968 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7969 bxe_int_disable(sc);
7970 BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT);
7971 taskqueue_enqueue_timeout(taskqueue_thread,
7972 &sc->sp_err_timeout_task, hz/10);
7973
7974 } else if (attn & BXE_MCP_ASSERT) {
7975
7976 BLOGE(sc, "MCP assert!\n");
7977 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
7978 BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT);
7979 taskqueue_enqueue_timeout(taskqueue_thread,
7980 &sc->sp_err_timeout_task, hz/10);
7981 bxe_int_disable(sc); /*avoid repetive assert alert */
7982
7983
7984 } else {
7985 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
7986 }
7987 }
7988
7989 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
7990 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
7991 if (attn & BXE_GRC_TIMEOUT) {
7992 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
7993 BLOGE(sc, "GRC time-out 0x%08x\n", val);
7994 }
7995 if (attn & BXE_GRC_RSV) {
7996 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
7997 BLOGE(sc, "GRC reserved 0x%08x\n", val);
7998 }
7999 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8000 }
8001 }
8002
8003 static void
bxe_attn_int_deasserted2(struct bxe_softc * sc,uint32_t attn)8004 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8005 uint32_t attn)
8006 {
8007 int port = SC_PORT(sc);
8008 int reg_offset;
8009 uint32_t val0, mask0, val1, mask1;
8010 uint32_t val;
8011 bool err_flg = false;
8012
8013 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8014 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8015 BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8016 /* CFC error attention */
8017 if (val & 0x2) {
8018 BLOGE(sc, "FATAL error from CFC\n");
8019 err_flg = true;
8020 }
8021 }
8022
8023 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8024 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8025 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8026 /* RQ_USDMDP_FIFO_OVERFLOW */
8027 if (val & 0x18000) {
8028 BLOGE(sc, "FATAL error from PXP\n");
8029 err_flg = true;
8030 }
8031
8032 if (!CHIP_IS_E1x(sc)) {
8033 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8034 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8035 err_flg = true;
8036 }
8037 }
8038
8039 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8040 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8041
8042 if (attn & AEU_PXP2_HW_INT_BIT) {
8043 /* CQ47854 workaround do not panic on
8044 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8045 */
8046 if (!CHIP_IS_E1x(sc)) {
8047 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8048 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8049 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8050 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8051 /*
8052 * If the only PXP2_EOP_ERROR_BIT is set in
8053 * STS0 and STS1 - clear it
8054 *
8055 * probably we lose additional attentions between
8056 * STS0 and STS_CLR0, in this case user will not
8057 * be notified about them
8058 */
8059 if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8060 !(val1 & mask1))
8061 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8062
8063 /* print the register, since no one can restore it */
8064 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8065
8066 /*
8067 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8068 * then notify
8069 */
8070 if (val0 & PXP2_EOP_ERROR_BIT) {
8071 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8072 err_flg = true;
8073
8074 /*
8075 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8076 * set then clear attention from PXP2 block without panic
8077 */
8078 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8079 ((val1 & mask1) == 0))
8080 attn &= ~AEU_PXP2_HW_INT_BIT;
8081 }
8082 }
8083 }
8084
8085 if (attn & HW_INTERRUT_ASSERT_SET_2) {
8086 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8087 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8088
8089 val = REG_RD(sc, reg_offset);
8090 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8091 REG_WR(sc, reg_offset, val);
8092
8093 BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8094 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8095 err_flg = true;
8096 bxe_panic(sc, ("HW block attention set2\n"));
8097 }
8098 if(err_flg) {
8099 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
8100 taskqueue_enqueue_timeout(taskqueue_thread,
8101 &sc->sp_err_timeout_task, hz/10);
8102 }
8103
8104 }
8105
8106 static void
bxe_attn_int_deasserted1(struct bxe_softc * sc,uint32_t attn)8107 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8108 uint32_t attn)
8109 {
8110 int port = SC_PORT(sc);
8111 int reg_offset;
8112 uint32_t val;
8113 bool err_flg = false;
8114
8115 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8116 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8117 BLOGE(sc, "DB hw attention 0x%08x\n", val);
8118 /* DORQ discard attention */
8119 if (val & 0x2) {
8120 BLOGE(sc, "FATAL error from DORQ\n");
8121 err_flg = true;
8122 }
8123 }
8124
8125 if (attn & HW_INTERRUT_ASSERT_SET_1) {
8126 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8127 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8128
8129 val = REG_RD(sc, reg_offset);
8130 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8131 REG_WR(sc, reg_offset, val);
8132
8133 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8134 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8135 err_flg = true;
8136 bxe_panic(sc, ("HW block attention set1\n"));
8137 }
8138 if(err_flg) {
8139 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8140 taskqueue_enqueue_timeout(taskqueue_thread,
8141 &sc->sp_err_timeout_task, hz/10);
8142 }
8143
8144 }
8145
8146 static void
bxe_attn_int_deasserted0(struct bxe_softc * sc,uint32_t attn)8147 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8148 uint32_t attn)
8149 {
8150 int port = SC_PORT(sc);
8151 int reg_offset;
8152 uint32_t val;
8153
8154 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8155 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8156
8157 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8158 val = REG_RD(sc, reg_offset);
8159 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8160 REG_WR(sc, reg_offset, val);
8161
8162 BLOGW(sc, "SPIO5 hw attention\n");
8163
8164 /* Fan failure attention */
8165 elink_hw_reset_phy(&sc->link_params);
8166 bxe_fan_failure(sc);
8167 }
8168
8169 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8170 bxe_acquire_phy_lock(sc);
8171 elink_handle_module_detect_int(&sc->link_params);
8172 bxe_release_phy_lock(sc);
8173 }
8174
8175 if (attn & HW_INTERRUT_ASSERT_SET_0) {
8176 val = REG_RD(sc, reg_offset);
8177 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8178 REG_WR(sc, reg_offset, val);
8179
8180
8181 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8182 taskqueue_enqueue_timeout(taskqueue_thread,
8183 &sc->sp_err_timeout_task, hz/10);
8184
8185 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8186 (attn & HW_INTERRUT_ASSERT_SET_0)));
8187 }
8188 }
8189
8190 static void
bxe_attn_int_deasserted(struct bxe_softc * sc,uint32_t deasserted)8191 bxe_attn_int_deasserted(struct bxe_softc *sc,
8192 uint32_t deasserted)
8193 {
8194 struct attn_route attn;
8195 struct attn_route *group_mask;
8196 int port = SC_PORT(sc);
8197 int index;
8198 uint32_t reg_addr;
8199 uint32_t val;
8200 uint32_t aeu_mask;
8201 uint8_t global = FALSE;
8202
8203 /*
8204 * Need to take HW lock because MCP or other port might also
8205 * try to handle this event.
8206 */
8207 bxe_acquire_alr(sc);
8208
8209 if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8210 /* XXX
8211 * In case of parity errors don't handle attentions so that
8212 * other function would "see" parity errors.
8213 */
8214 // XXX schedule a recovery task...
8215 /* disable HW interrupts */
8216 bxe_int_disable(sc);
8217 BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY);
8218 taskqueue_enqueue_timeout(taskqueue_thread,
8219 &sc->sp_err_timeout_task, hz/10);
8220 bxe_release_alr(sc);
8221 return;
8222 }
8223
8224 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8225 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8226 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8227 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8228 if (!CHIP_IS_E1x(sc)) {
8229 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8230 } else {
8231 attn.sig[4] = 0;
8232 }
8233
8234 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8235 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8236
8237 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8238 if (deasserted & (1 << index)) {
8239 group_mask = &sc->attn_group[index];
8240
8241 BLOGD(sc, DBG_INTR,
8242 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8243 group_mask->sig[0], group_mask->sig[1],
8244 group_mask->sig[2], group_mask->sig[3],
8245 group_mask->sig[4]);
8246
8247 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8248 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8249 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8250 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8251 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8252 }
8253 }
8254
8255 bxe_release_alr(sc);
8256
8257 if (sc->devinfo.int_block == INT_BLOCK_HC) {
8258 reg_addr = (HC_REG_COMMAND_REG + port*32 +
8259 COMMAND_REG_ATTN_BITS_CLR);
8260 } else {
8261 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8262 }
8263
8264 val = ~deasserted;
8265 BLOGD(sc, DBG_INTR,
8266 "about to mask 0x%08x at %s addr 0x%08x\n", val,
8267 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8268 REG_WR(sc, reg_addr, val);
8269
8270 if (~sc->attn_state & deasserted) {
8271 BLOGE(sc, "IGU error\n");
8272 }
8273
8274 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8275 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8276
8277 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8278
8279 aeu_mask = REG_RD(sc, reg_addr);
8280
8281 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8282 aeu_mask, deasserted);
8283 aeu_mask |= (deasserted & 0x3ff);
8284 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8285
8286 REG_WR(sc, reg_addr, aeu_mask);
8287 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8288
8289 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8290 sc->attn_state &= ~deasserted;
8291 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8292 }
8293
8294 static void
bxe_attn_int(struct bxe_softc * sc)8295 bxe_attn_int(struct bxe_softc *sc)
8296 {
8297 /* read local copy of bits */
8298 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8299 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8300 uint32_t attn_state = sc->attn_state;
8301
8302 /* look for changed bits */
8303 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
8304 uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
8305
8306 BLOGD(sc, DBG_INTR,
8307 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8308 attn_bits, attn_ack, asserted, deasserted);
8309
8310 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8311 BLOGE(sc, "BAD attention state\n");
8312 }
8313
8314 /* handle bits that were raised */
8315 if (asserted) {
8316 bxe_attn_int_asserted(sc, asserted);
8317 }
8318
8319 if (deasserted) {
8320 bxe_attn_int_deasserted(sc, deasserted);
8321 }
8322 }
8323
8324 static uint16_t
bxe_update_dsb_idx(struct bxe_softc * sc)8325 bxe_update_dsb_idx(struct bxe_softc *sc)
8326 {
8327 struct host_sp_status_block *def_sb = sc->def_sb;
8328 uint16_t rc = 0;
8329
8330 mb(); /* status block is written to by the chip */
8331
8332 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8333 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8334 rc |= BXE_DEF_SB_ATT_IDX;
8335 }
8336
8337 if (sc->def_idx != def_sb->sp_sb.running_index) {
8338 sc->def_idx = def_sb->sp_sb.running_index;
8339 rc |= BXE_DEF_SB_IDX;
8340 }
8341
8342 mb();
8343
8344 return (rc);
8345 }
8346
8347 static inline struct ecore_queue_sp_obj *
bxe_cid_to_q_obj(struct bxe_softc * sc,uint32_t cid)8348 bxe_cid_to_q_obj(struct bxe_softc *sc,
8349 uint32_t cid)
8350 {
8351 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8352 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8353 }
8354
8355 static void
bxe_handle_mcast_eqe(struct bxe_softc * sc)8356 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8357 {
8358 struct ecore_mcast_ramrod_params rparam;
8359 int rc;
8360
8361 memset(&rparam, 0, sizeof(rparam));
8362
8363 rparam.mcast_obj = &sc->mcast_obj;
8364
8365 BXE_MCAST_LOCK(sc);
8366
8367 /* clear pending state for the last command */
8368 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8369
8370 /* if there are pending mcast commands - send them */
8371 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8372 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8373 if (rc < 0) {
8374 BLOGD(sc, DBG_SP,
8375 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8376 }
8377 }
8378
8379 BXE_MCAST_UNLOCK(sc);
8380 }
8381
8382 static void
bxe_handle_classification_eqe(struct bxe_softc * sc,union event_ring_elem * elem)8383 bxe_handle_classification_eqe(struct bxe_softc *sc,
8384 union event_ring_elem *elem)
8385 {
8386 unsigned long ramrod_flags = 0;
8387 int rc = 0;
8388 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8389 struct ecore_vlan_mac_obj *vlan_mac_obj;
8390
8391 /* always push next commands out, don't wait here */
8392 bit_set(&ramrod_flags, RAMROD_CONT);
8393
8394 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8395 case ECORE_FILTER_MAC_PENDING:
8396 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8397 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8398 break;
8399
8400 case ECORE_FILTER_MCAST_PENDING:
8401 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8402 /*
8403 * This is only relevant for 57710 where multicast MACs are
8404 * configured as unicast MACs using the same ramrod.
8405 */
8406 bxe_handle_mcast_eqe(sc);
8407 return;
8408
8409 default:
8410 BLOGE(sc, "Unsupported classification command: %d\n",
8411 elem->message.data.eth_event.echo);
8412 return;
8413 }
8414
8415 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8416
8417 if (rc < 0) {
8418 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8419 } else if (rc > 0) {
8420 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8421 }
8422 }
8423
8424 static void
bxe_handle_rx_mode_eqe(struct bxe_softc * sc,union event_ring_elem * elem)8425 bxe_handle_rx_mode_eqe(struct bxe_softc *sc,
8426 union event_ring_elem *elem)
8427 {
8428 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8429
8430 /* send rx_mode command again if was requested */
8431 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8432 &sc->sp_state)) {
8433 bxe_set_storm_rx_mode(sc);
8434 }
8435 }
8436
8437 static void
bxe_update_eq_prod(struct bxe_softc * sc,uint16_t prod)8438 bxe_update_eq_prod(struct bxe_softc *sc,
8439 uint16_t prod)
8440 {
8441 storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8442 wmb(); /* keep prod updates ordered */
8443 }
8444
8445 static void
bxe_eq_int(struct bxe_softc * sc)8446 bxe_eq_int(struct bxe_softc *sc)
8447 {
8448 uint16_t hw_cons, sw_cons, sw_prod;
8449 union event_ring_elem *elem;
8450 uint8_t echo;
8451 uint32_t cid;
8452 uint8_t opcode;
8453 int spqe_cnt = 0;
8454 struct ecore_queue_sp_obj *q_obj;
8455 struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8456 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8457
8458 hw_cons = le16toh(*sc->eq_cons_sb);
8459
8460 /*
8461 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8462 * when we get to the next-page we need to adjust so the loop
8463 * condition below will be met. The next element is the size of a
8464 * regular element and hence incrementing by 1
8465 */
8466 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8467 hw_cons++;
8468 }
8469
8470 /*
8471 * This function may never run in parallel with itself for a
8472 * specific sc and no need for a read memory barrier here.
8473 */
8474 sw_cons = sc->eq_cons;
8475 sw_prod = sc->eq_prod;
8476
8477 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8478 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8479
8480 for (;
8481 sw_cons != hw_cons;
8482 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8483
8484 elem = &sc->eq[EQ_DESC(sw_cons)];
8485
8486 /* elem CID originates from FW, actually LE */
8487 cid = SW_CID(elem->message.data.cfc_del_event.cid);
8488 opcode = elem->message.opcode;
8489
8490 /* handle eq element */
8491 switch (opcode) {
8492
8493 case EVENT_RING_OPCODE_STAT_QUERY:
8494 BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8495 sc->stats_comp++);
8496 /* nothing to do with stats comp */
8497 goto next_spqe;
8498
8499 case EVENT_RING_OPCODE_CFC_DEL:
8500 /* handle according to cid range */
8501 /* we may want to verify here that the sc state is HALTING */
8502 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8503 q_obj = bxe_cid_to_q_obj(sc, cid);
8504 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8505 break;
8506 }
8507 goto next_spqe;
8508
8509 case EVENT_RING_OPCODE_STOP_TRAFFIC:
8510 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8511 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8512 break;
8513 }
8514 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8515 goto next_spqe;
8516
8517 case EVENT_RING_OPCODE_START_TRAFFIC:
8518 BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8519 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8520 break;
8521 }
8522 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8523 goto next_spqe;
8524
8525 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8526 echo = elem->message.data.function_update_event.echo;
8527 if (echo == SWITCH_UPDATE) {
8528 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8529 if (f_obj->complete_cmd(sc, f_obj,
8530 ECORE_F_CMD_SWITCH_UPDATE)) {
8531 break;
8532 }
8533 }
8534 else {
8535 BLOGD(sc, DBG_SP,
8536 "AFEX: ramrod completed FUNCTION_UPDATE\n");
8537 }
8538 goto next_spqe;
8539
8540 case EVENT_RING_OPCODE_FORWARD_SETUP:
8541 q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8542 if (q_obj->complete_cmd(sc, q_obj,
8543 ECORE_Q_CMD_SETUP_TX_ONLY)) {
8544 break;
8545 }
8546 goto next_spqe;
8547
8548 case EVENT_RING_OPCODE_FUNCTION_START:
8549 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8550 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8551 break;
8552 }
8553 goto next_spqe;
8554
8555 case EVENT_RING_OPCODE_FUNCTION_STOP:
8556 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8557 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8558 break;
8559 }
8560 goto next_spqe;
8561 }
8562
8563 switch (opcode | sc->state) {
8564 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8565 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8566 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8567 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8568 rss_raw->clear_pending(rss_raw);
8569 break;
8570
8571 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8572 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8573 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8574 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8575 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8576 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8577 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8578 bxe_handle_classification_eqe(sc, elem);
8579 break;
8580
8581 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8582 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8583 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8584 BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8585 bxe_handle_mcast_eqe(sc);
8586 break;
8587
8588 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8589 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8590 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8591 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8592 bxe_handle_rx_mode_eqe(sc, elem);
8593 break;
8594
8595 default:
8596 /* unknown event log error and continue */
8597 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8598 elem->message.opcode, sc->state);
8599 }
8600
8601 next_spqe:
8602 spqe_cnt++;
8603 } /* for */
8604
8605 mb();
8606 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8607
8608 sc->eq_cons = sw_cons;
8609 sc->eq_prod = sw_prod;
8610
8611 /* make sure that above mem writes were issued towards the memory */
8612 wmb();
8613
8614 /* update producer */
8615 bxe_update_eq_prod(sc, sc->eq_prod);
8616 }
8617
8618 static void
bxe_handle_sp_tq(void * context,int pending)8619 bxe_handle_sp_tq(void *context,
8620 int pending)
8621 {
8622 struct bxe_softc *sc = (struct bxe_softc *)context;
8623 uint16_t status;
8624
8625 BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8626
8627 /* what work needs to be performed? */
8628 status = bxe_update_dsb_idx(sc);
8629
8630 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8631
8632 /* HW attentions */
8633 if (status & BXE_DEF_SB_ATT_IDX) {
8634 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8635 bxe_attn_int(sc);
8636 status &= ~BXE_DEF_SB_ATT_IDX;
8637 }
8638
8639 /* SP events: STAT_QUERY and others */
8640 if (status & BXE_DEF_SB_IDX) {
8641 /* handle EQ completions */
8642 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8643 bxe_eq_int(sc);
8644 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8645 le16toh(sc->def_idx), IGU_INT_NOP, 1);
8646 status &= ~BXE_DEF_SB_IDX;
8647 }
8648
8649 /* if status is non zero then something went wrong */
8650 if (__predict_false(status)) {
8651 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8652 }
8653
8654 /* ack status block only if something was actually handled */
8655 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8656 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8657
8658 /*
8659 * Must be called after the EQ processing (since eq leads to sriov
8660 * ramrod completion flows).
8661 * This flow may have been scheduled by the arrival of a ramrod
8662 * completion, or by the sriov code rescheduling itself.
8663 */
8664 // XXX bxe_iov_sp_task(sc);
8665
8666 }
8667
8668 static void
bxe_handle_fp_tq(void * context,int pending)8669 bxe_handle_fp_tq(void *context,
8670 int pending)
8671 {
8672 struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8673 struct bxe_softc *sc = fp->sc;
8674 /* uint8_t more_tx = FALSE; */
8675 uint8_t more_rx = FALSE;
8676
8677 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8678
8679 /* XXX
8680 * IFF_DRV_RUNNING state can't be checked here since we process
8681 * slowpath events on a client queue during setup. Instead
8682 * we need to add a "process/continue" flag here that the driver
8683 * can use to tell the task here not to do anything.
8684 */
8685 #if 0
8686 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8687 return;
8688 }
8689 #endif
8690
8691 /* update the fastpath index */
8692 bxe_update_fp_sb_idx(fp);
8693
8694 /* XXX add loop here if ever support multiple tx CoS */
8695 /* fp->txdata[cos] */
8696 if (bxe_has_tx_work(fp)) {
8697 BXE_FP_TX_LOCK(fp);
8698 /* more_tx = */ bxe_txeof(sc, fp);
8699 BXE_FP_TX_UNLOCK(fp);
8700 }
8701
8702 if (bxe_has_rx_work(fp)) {
8703 more_rx = bxe_rxeof(sc, fp);
8704 }
8705
8706 if (more_rx /*|| more_tx*/) {
8707 /* still more work to do */
8708 taskqueue_enqueue(fp->tq, &fp->tq_task);
8709 return;
8710 }
8711
8712 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8713 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8714 }
8715
8716 static void
bxe_task_fp(struct bxe_fastpath * fp)8717 bxe_task_fp(struct bxe_fastpath *fp)
8718 {
8719 struct bxe_softc *sc = fp->sc;
8720 /* uint8_t more_tx = FALSE; */
8721 uint8_t more_rx = FALSE;
8722
8723 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8724
8725 /* update the fastpath index */
8726 bxe_update_fp_sb_idx(fp);
8727
8728 /* XXX add loop here if ever support multiple tx CoS */
8729 /* fp->txdata[cos] */
8730 if (bxe_has_tx_work(fp)) {
8731 BXE_FP_TX_LOCK(fp);
8732 /* more_tx = */ bxe_txeof(sc, fp);
8733 BXE_FP_TX_UNLOCK(fp);
8734 }
8735
8736 if (bxe_has_rx_work(fp)) {
8737 more_rx = bxe_rxeof(sc, fp);
8738 }
8739
8740 if (more_rx /*|| more_tx*/) {
8741 /* still more work to do, bail out if this ISR and process later */
8742 taskqueue_enqueue(fp->tq, &fp->tq_task);
8743 return;
8744 }
8745
8746 /*
8747 * Here we write the fastpath index taken before doing any tx or rx work.
8748 * It is very well possible other hw events occurred up to this point and
8749 * they were actually processed accordingly above. Since we're going to
8750 * write an older fastpath index, an interrupt is coming which we might
8751 * not do any work in.
8752 */
8753 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8754 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8755 }
8756
8757 /*
8758 * Legacy interrupt entry point.
8759 *
8760 * Verifies that the controller generated the interrupt and
8761 * then calls a separate routine to handle the various
8762 * interrupt causes: link, RX, and TX.
8763 */
8764 static void
bxe_intr_legacy(void * xsc)8765 bxe_intr_legacy(void *xsc)
8766 {
8767 struct bxe_softc *sc = (struct bxe_softc *)xsc;
8768 struct bxe_fastpath *fp;
8769 uint16_t status, mask;
8770 int i;
8771
8772 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8773
8774 /*
8775 * 0 for ustorm, 1 for cstorm
8776 * the bits returned from ack_int() are 0-15
8777 * bit 0 = attention status block
8778 * bit 1 = fast path status block
8779 * a mask of 0x2 or more = tx/rx event
8780 * a mask of 1 = slow path event
8781 */
8782
8783 status = bxe_ack_int(sc);
8784
8785 /* the interrupt is not for us */
8786 if (__predict_false(status == 0)) {
8787 BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8788 return;
8789 }
8790
8791 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8792
8793 FOR_EACH_ETH_QUEUE(sc, i) {
8794 fp = &sc->fp[i];
8795 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8796 if (status & mask) {
8797 /* acknowledge and disable further fastpath interrupts */
8798 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8799 bxe_task_fp(fp);
8800 status &= ~mask;
8801 }
8802 }
8803
8804 if (__predict_false(status & 0x1)) {
8805 /* acknowledge and disable further slowpath interrupts */
8806 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8807
8808 /* schedule slowpath handler */
8809 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8810
8811 status &= ~0x1;
8812 }
8813
8814 if (__predict_false(status)) {
8815 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8816 }
8817 }
8818
8819 /* slowpath interrupt entry point */
8820 static void
bxe_intr_sp(void * xsc)8821 bxe_intr_sp(void *xsc)
8822 {
8823 struct bxe_softc *sc = (struct bxe_softc *)xsc;
8824
8825 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8826
8827 /* acknowledge and disable further slowpath interrupts */
8828 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8829
8830 /* schedule slowpath handler */
8831 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8832 }
8833
8834 /* fastpath interrupt entry point */
8835 static void
bxe_intr_fp(void * xfp)8836 bxe_intr_fp(void *xfp)
8837 {
8838 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8839 struct bxe_softc *sc = fp->sc;
8840
8841 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8842
8843 BLOGD(sc, DBG_INTR,
8844 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8845 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8846
8847 /* acknowledge and disable further fastpath interrupts */
8848 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8849
8850 bxe_task_fp(fp);
8851 }
8852
8853 /* Release all interrupts allocated by the driver. */
8854 static void
bxe_interrupt_free(struct bxe_softc * sc)8855 bxe_interrupt_free(struct bxe_softc *sc)
8856 {
8857 int i;
8858
8859 switch (sc->interrupt_mode) {
8860 case INTR_MODE_INTX:
8861 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8862 if (sc->intr[0].resource != NULL) {
8863 bus_release_resource(sc->dev,
8864 SYS_RES_IRQ,
8865 sc->intr[0].rid,
8866 sc->intr[0].resource);
8867 }
8868 break;
8869 case INTR_MODE_MSI:
8870 for (i = 0; i < sc->intr_count; i++) {
8871 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8872 if (sc->intr[i].resource && sc->intr[i].rid) {
8873 bus_release_resource(sc->dev,
8874 SYS_RES_IRQ,
8875 sc->intr[i].rid,
8876 sc->intr[i].resource);
8877 }
8878 }
8879 pci_release_msi(sc->dev);
8880 break;
8881 case INTR_MODE_MSIX:
8882 for (i = 0; i < sc->intr_count; i++) {
8883 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8884 if (sc->intr[i].resource && sc->intr[i].rid) {
8885 bus_release_resource(sc->dev,
8886 SYS_RES_IRQ,
8887 sc->intr[i].rid,
8888 sc->intr[i].resource);
8889 }
8890 }
8891 pci_release_msi(sc->dev);
8892 break;
8893 default:
8894 /* nothing to do as initial allocation failed */
8895 break;
8896 }
8897 }
8898
8899 /*
8900 * This function determines and allocates the appropriate
8901 * interrupt based on system capabilites and user request.
8902 *
8903 * The user may force a particular interrupt mode, specify
8904 * the number of receive queues, specify the method for
8905 * distribuitng received frames to receive queues, or use
8906 * the default settings which will automatically select the
8907 * best supported combination. In addition, the OS may or
8908 * may not support certain combinations of these settings.
8909 * This routine attempts to reconcile the settings requested
8910 * by the user with the capabilites available from the system
8911 * to select the optimal combination of features.
8912 *
8913 * Returns:
8914 * 0 = Success, !0 = Failure.
8915 */
8916 static int
bxe_interrupt_alloc(struct bxe_softc * sc)8917 bxe_interrupt_alloc(struct bxe_softc *sc)
8918 {
8919 int msix_count = 0;
8920 int msi_count = 0;
8921 int num_requested = 0;
8922 int num_allocated = 0;
8923 int rid, i, j;
8924 int rc;
8925
8926 /* get the number of available MSI/MSI-X interrupts from the OS */
8927 if (sc->interrupt_mode > 0) {
8928 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8929 msix_count = pci_msix_count(sc->dev);
8930 }
8931
8932 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8933 msi_count = pci_msi_count(sc->dev);
8934 }
8935
8936 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8937 msi_count, msix_count);
8938 }
8939
8940 do { /* try allocating MSI-X interrupt resources (at least 2) */
8941 if (sc->interrupt_mode != INTR_MODE_MSIX) {
8942 break;
8943 }
8944
8945 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8946 (msix_count < 2)) {
8947 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8948 break;
8949 }
8950
8951 /* ask for the necessary number of MSI-X vectors */
8952 num_requested = min((sc->num_queues + 1), msix_count);
8953
8954 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8955
8956 num_allocated = num_requested;
8957 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8958 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8959 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8960 break;
8961 }
8962
8963 if (num_allocated < 2) { /* possible? */
8964 BLOGE(sc, "MSI-X allocation less than 2!\n");
8965 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8966 pci_release_msi(sc->dev);
8967 break;
8968 }
8969
8970 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8971 num_requested, num_allocated);
8972
8973 /* best effort so use the number of vectors allocated to us */
8974 sc->intr_count = num_allocated;
8975 sc->num_queues = num_allocated - 1;
8976
8977 rid = 1; /* initial resource identifier */
8978
8979 /* allocate the MSI-X vectors */
8980 for (i = 0; i < num_allocated; i++) {
8981 sc->intr[i].rid = (rid + i);
8982
8983 if ((sc->intr[i].resource =
8984 bus_alloc_resource_any(sc->dev,
8985 SYS_RES_IRQ,
8986 &sc->intr[i].rid,
8987 RF_ACTIVE)) == NULL) {
8988 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8989 i, (rid + i));
8990
8991 for (j = (i - 1); j >= 0; j--) {
8992 bus_release_resource(sc->dev,
8993 SYS_RES_IRQ,
8994 sc->intr[j].rid,
8995 sc->intr[j].resource);
8996 }
8997
8998 sc->intr_count = 0;
8999 sc->num_queues = 0;
9000 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9001 pci_release_msi(sc->dev);
9002 break;
9003 }
9004
9005 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9006 }
9007 } while (0);
9008
9009 do { /* try allocating MSI vector resources (at least 2) */
9010 if (sc->interrupt_mode != INTR_MODE_MSI) {
9011 break;
9012 }
9013
9014 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9015 (msi_count < 1)) {
9016 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9017 break;
9018 }
9019
9020 /* ask for a single MSI vector */
9021 num_requested = 1;
9022
9023 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9024
9025 num_allocated = num_requested;
9026 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9027 BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9028 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9029 break;
9030 }
9031
9032 if (num_allocated != 1) { /* possible? */
9033 BLOGE(sc, "MSI allocation is not 1!\n");
9034 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9035 pci_release_msi(sc->dev);
9036 break;
9037 }
9038
9039 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9040 num_requested, num_allocated);
9041
9042 /* best effort so use the number of vectors allocated to us */
9043 sc->intr_count = num_allocated;
9044 sc->num_queues = num_allocated;
9045
9046 rid = 1; /* initial resource identifier */
9047
9048 sc->intr[0].rid = rid;
9049
9050 if ((sc->intr[0].resource =
9051 bus_alloc_resource_any(sc->dev,
9052 SYS_RES_IRQ,
9053 &sc->intr[0].rid,
9054 RF_ACTIVE)) == NULL) {
9055 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9056 sc->intr_count = 0;
9057 sc->num_queues = 0;
9058 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9059 pci_release_msi(sc->dev);
9060 break;
9061 }
9062
9063 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9064 } while (0);
9065
9066 do { /* try allocating INTx vector resources */
9067 if (sc->interrupt_mode != INTR_MODE_INTX) {
9068 break;
9069 }
9070
9071 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9072
9073 /* only one vector for INTx */
9074 sc->intr_count = 1;
9075 sc->num_queues = 1;
9076
9077 rid = 0; /* initial resource identifier */
9078
9079 sc->intr[0].rid = rid;
9080
9081 if ((sc->intr[0].resource =
9082 bus_alloc_resource_any(sc->dev,
9083 SYS_RES_IRQ,
9084 &sc->intr[0].rid,
9085 (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9086 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9087 sc->intr_count = 0;
9088 sc->num_queues = 0;
9089 sc->interrupt_mode = -1; /* Failed! */
9090 break;
9091 }
9092
9093 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9094 } while (0);
9095
9096 if (sc->interrupt_mode == -1) {
9097 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9098 rc = 1;
9099 } else {
9100 BLOGD(sc, DBG_LOAD,
9101 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9102 sc->interrupt_mode, sc->num_queues);
9103 rc = 0;
9104 }
9105
9106 return (rc);
9107 }
9108
9109 static void
bxe_interrupt_detach(struct bxe_softc * sc)9110 bxe_interrupt_detach(struct bxe_softc *sc)
9111 {
9112 struct bxe_fastpath *fp;
9113 int i;
9114
9115 /* release interrupt resources */
9116 for (i = 0; i < sc->intr_count; i++) {
9117 if (sc->intr[i].resource && sc->intr[i].tag) {
9118 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9119 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9120 }
9121 }
9122
9123 for (i = 0; i < sc->num_queues; i++) {
9124 fp = &sc->fp[i];
9125 if (fp->tq) {
9126 taskqueue_drain(fp->tq, &fp->tq_task);
9127 taskqueue_drain(fp->tq, &fp->tx_task);
9128 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
9129 NULL))
9130 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
9131 }
9132
9133 for (i = 0; i < sc->num_queues; i++) {
9134 fp = &sc->fp[i];
9135 if (fp->tq != NULL) {
9136 taskqueue_free(fp->tq);
9137 fp->tq = NULL;
9138 }
9139 }
9140 }
9141
9142 if (sc->sp_tq) {
9143 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9144 taskqueue_free(sc->sp_tq);
9145 sc->sp_tq = NULL;
9146 }
9147 }
9148
9149 /*
9150 * Enables interrupts and attach to the ISR.
9151 *
9152 * When using multiple MSI/MSI-X vectors the first vector
9153 * is used for slowpath operations while all remaining
9154 * vectors are used for fastpath operations. If only a
9155 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9156 * ISR must look for both slowpath and fastpath completions.
9157 */
9158 static int
bxe_interrupt_attach(struct bxe_softc * sc)9159 bxe_interrupt_attach(struct bxe_softc *sc)
9160 {
9161 struct bxe_fastpath *fp;
9162 int rc = 0;
9163 int i;
9164
9165 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9166 "bxe%d_sp_tq", sc->unit);
9167 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9168 sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
9169 taskqueue_thread_enqueue,
9170 &sc->sp_tq);
9171 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9172 "%s", sc->sp_tq_name);
9173
9174
9175 for (i = 0; i < sc->num_queues; i++) {
9176 fp = &sc->fp[i];
9177 snprintf(fp->tq_name, sizeof(fp->tq_name),
9178 "bxe%d_fp%d_tq", sc->unit, i);
9179 NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9180 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
9181 fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
9182 taskqueue_thread_enqueue,
9183 &fp->tq);
9184 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
9185 bxe_tx_mq_start_deferred, fp);
9186 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9187 "%s", fp->tq_name);
9188 }
9189
9190 /* setup interrupt handlers */
9191 if (sc->interrupt_mode == INTR_MODE_MSIX) {
9192 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9193
9194 /*
9195 * Setup the interrupt handler. Note that we pass the driver instance
9196 * to the interrupt handler for the slowpath.
9197 */
9198 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9199 (INTR_TYPE_NET | INTR_MPSAFE),
9200 NULL, bxe_intr_sp, sc,
9201 &sc->intr[0].tag)) != 0) {
9202 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9203 goto bxe_interrupt_attach_exit;
9204 }
9205
9206 bus_describe_intr(sc->dev, sc->intr[0].resource,
9207 sc->intr[0].tag, "sp");
9208
9209 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9210
9211 /* initialize the fastpath vectors (note the first was used for sp) */
9212 for (i = 0; i < sc->num_queues; i++) {
9213 fp = &sc->fp[i];
9214 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9215
9216 /*
9217 * Setup the interrupt handler. Note that we pass the
9218 * fastpath context to the interrupt handler in this
9219 * case.
9220 */
9221 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9222 (INTR_TYPE_NET | INTR_MPSAFE),
9223 NULL, bxe_intr_fp, fp,
9224 &sc->intr[i + 1].tag)) != 0) {
9225 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9226 (i + 1), rc);
9227 goto bxe_interrupt_attach_exit;
9228 }
9229
9230 bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9231 sc->intr[i + 1].tag, "fp%02d", i);
9232
9233 /* bind the fastpath instance to a cpu */
9234 if (sc->num_queues > 1) {
9235 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9236 }
9237
9238 fp->state = BXE_FP_STATE_IRQ;
9239 }
9240 } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9241 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9242
9243 /*
9244 * Setup the interrupt handler. Note that we pass the
9245 * driver instance to the interrupt handler which
9246 * will handle both the slowpath and fastpath.
9247 */
9248 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9249 (INTR_TYPE_NET | INTR_MPSAFE),
9250 NULL, bxe_intr_legacy, sc,
9251 &sc->intr[0].tag)) != 0) {
9252 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9253 goto bxe_interrupt_attach_exit;
9254 }
9255
9256 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9257 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9258
9259 /*
9260 * Setup the interrupt handler. Note that we pass the
9261 * driver instance to the interrupt handler which
9262 * will handle both the slowpath and fastpath.
9263 */
9264 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9265 (INTR_TYPE_NET | INTR_MPSAFE),
9266 NULL, bxe_intr_legacy, sc,
9267 &sc->intr[0].tag)) != 0) {
9268 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9269 goto bxe_interrupt_attach_exit;
9270 }
9271 }
9272
9273 bxe_interrupt_attach_exit:
9274
9275 return (rc);
9276 }
9277
9278 static int bxe_init_hw_common_chip(struct bxe_softc *sc);
9279 static int bxe_init_hw_common(struct bxe_softc *sc);
9280 static int bxe_init_hw_port(struct bxe_softc *sc);
9281 static int bxe_init_hw_func(struct bxe_softc *sc);
9282 static void bxe_reset_common(struct bxe_softc *sc);
9283 static void bxe_reset_port(struct bxe_softc *sc);
9284 static void bxe_reset_func(struct bxe_softc *sc);
9285 static int bxe_gunzip_init(struct bxe_softc *sc);
9286 static void bxe_gunzip_end(struct bxe_softc *sc);
9287 static int bxe_init_firmware(struct bxe_softc *sc);
9288 static void bxe_release_firmware(struct bxe_softc *sc);
9289
9290 static struct
9291 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9292 .init_hw_cmn_chip = bxe_init_hw_common_chip,
9293 .init_hw_cmn = bxe_init_hw_common,
9294 .init_hw_port = bxe_init_hw_port,
9295 .init_hw_func = bxe_init_hw_func,
9296
9297 .reset_hw_cmn = bxe_reset_common,
9298 .reset_hw_port = bxe_reset_port,
9299 .reset_hw_func = bxe_reset_func,
9300
9301 .gunzip_init = bxe_gunzip_init,
9302 .gunzip_end = bxe_gunzip_end,
9303
9304 .init_fw = bxe_init_firmware,
9305 .release_fw = bxe_release_firmware,
9306 };
9307
9308 static void
bxe_init_func_obj(struct bxe_softc * sc)9309 bxe_init_func_obj(struct bxe_softc *sc)
9310 {
9311 sc->dmae_ready = 0;
9312
9313 ecore_init_func_obj(sc,
9314 &sc->func_obj,
9315 BXE_SP(sc, func_rdata),
9316 BXE_SP_MAPPING(sc, func_rdata),
9317 BXE_SP(sc, func_afex_rdata),
9318 BXE_SP_MAPPING(sc, func_afex_rdata),
9319 &bxe_func_sp_drv);
9320 }
9321
9322 static int
bxe_init_hw(struct bxe_softc * sc,uint32_t load_code)9323 bxe_init_hw(struct bxe_softc *sc,
9324 uint32_t load_code)
9325 {
9326 struct ecore_func_state_params func_params = { NULL };
9327 int rc;
9328
9329 /* prepare the parameters for function state transitions */
9330 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9331
9332 func_params.f_obj = &sc->func_obj;
9333 func_params.cmd = ECORE_F_CMD_HW_INIT;
9334
9335 func_params.params.hw_init.load_phase = load_code;
9336
9337 /*
9338 * Via a plethora of function pointers, we will eventually reach
9339 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9340 */
9341 rc = ecore_func_state_change(sc, &func_params);
9342
9343 return (rc);
9344 }
9345
9346 static void
bxe_fill(struct bxe_softc * sc,uint32_t addr,int fill,uint32_t len)9347 bxe_fill(struct bxe_softc *sc,
9348 uint32_t addr,
9349 int fill,
9350 uint32_t len)
9351 {
9352 uint32_t i;
9353
9354 if (!(len % 4) && !(addr % 4)) {
9355 for (i = 0; i < len; i += 4) {
9356 REG_WR(sc, (addr + i), fill);
9357 }
9358 } else {
9359 for (i = 0; i < len; i++) {
9360 REG_WR8(sc, (addr + i), fill);
9361 }
9362 }
9363 }
9364
9365 /* writes FP SP data to FW - data_size in dwords */
9366 static void
bxe_wr_fp_sb_data(struct bxe_softc * sc,int fw_sb_id,uint32_t * sb_data_p,uint32_t data_size)9367 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9368 int fw_sb_id,
9369 uint32_t *sb_data_p,
9370 uint32_t data_size)
9371 {
9372 int index;
9373
9374 for (index = 0; index < data_size; index++) {
9375 REG_WR(sc,
9376 (BAR_CSTRORM_INTMEM +
9377 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9378 (sizeof(uint32_t) * index)),
9379 *(sb_data_p + index));
9380 }
9381 }
9382
9383 static void
bxe_zero_fp_sb(struct bxe_softc * sc,int fw_sb_id)9384 bxe_zero_fp_sb(struct bxe_softc *sc,
9385 int fw_sb_id)
9386 {
9387 struct hc_status_block_data_e2 sb_data_e2;
9388 struct hc_status_block_data_e1x sb_data_e1x;
9389 uint32_t *sb_data_p;
9390 uint32_t data_size = 0;
9391
9392 if (!CHIP_IS_E1x(sc)) {
9393 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9394 sb_data_e2.common.state = SB_DISABLED;
9395 sb_data_e2.common.p_func.vf_valid = FALSE;
9396 sb_data_p = (uint32_t *)&sb_data_e2;
9397 data_size = (sizeof(struct hc_status_block_data_e2) /
9398 sizeof(uint32_t));
9399 } else {
9400 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9401 sb_data_e1x.common.state = SB_DISABLED;
9402 sb_data_e1x.common.p_func.vf_valid = FALSE;
9403 sb_data_p = (uint32_t *)&sb_data_e1x;
9404 data_size = (sizeof(struct hc_status_block_data_e1x) /
9405 sizeof(uint32_t));
9406 }
9407
9408 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9409
9410 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9411 0, CSTORM_STATUS_BLOCK_SIZE);
9412 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9413 0, CSTORM_SYNC_BLOCK_SIZE);
9414 }
9415
9416 static void
bxe_wr_sp_sb_data(struct bxe_softc * sc,struct hc_sp_status_block_data * sp_sb_data)9417 bxe_wr_sp_sb_data(struct bxe_softc *sc,
9418 struct hc_sp_status_block_data *sp_sb_data)
9419 {
9420 int i;
9421
9422 for (i = 0;
9423 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9424 i++) {
9425 REG_WR(sc,
9426 (BAR_CSTRORM_INTMEM +
9427 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9428 (i * sizeof(uint32_t))),
9429 *((uint32_t *)sp_sb_data + i));
9430 }
9431 }
9432
9433 static void
bxe_zero_sp_sb(struct bxe_softc * sc)9434 bxe_zero_sp_sb(struct bxe_softc *sc)
9435 {
9436 struct hc_sp_status_block_data sp_sb_data;
9437
9438 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9439
9440 sp_sb_data.state = SB_DISABLED;
9441 sp_sb_data.p_func.vf_valid = FALSE;
9442
9443 bxe_wr_sp_sb_data(sc, &sp_sb_data);
9444
9445 bxe_fill(sc,
9446 (BAR_CSTRORM_INTMEM +
9447 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9448 0, CSTORM_SP_STATUS_BLOCK_SIZE);
9449 bxe_fill(sc,
9450 (BAR_CSTRORM_INTMEM +
9451 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9452 0, CSTORM_SP_SYNC_BLOCK_SIZE);
9453 }
9454
9455 static void
bxe_setup_ndsb_state_machine(struct hc_status_block_sm * hc_sm,int igu_sb_id,int igu_seg_id)9456 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9457 int igu_sb_id,
9458 int igu_seg_id)
9459 {
9460 hc_sm->igu_sb_id = igu_sb_id;
9461 hc_sm->igu_seg_id = igu_seg_id;
9462 hc_sm->timer_value = 0xFF;
9463 hc_sm->time_to_expire = 0xFFFFFFFF;
9464 }
9465
9466 static void
bxe_map_sb_state_machines(struct hc_index_data * index_data)9467 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9468 {
9469 /* zero out state machine indices */
9470
9471 /* rx indices */
9472 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9473
9474 /* tx indices */
9475 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9476 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9477 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9478 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9479
9480 /* map indices */
9481
9482 /* rx indices */
9483 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9484 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9485
9486 /* tx indices */
9487 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9488 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9489 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9490 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9491 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9492 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9493 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9494 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9495 }
9496
9497 static void
bxe_init_sb(struct bxe_softc * sc,bus_addr_t busaddr,int vfid,uint8_t vf_valid,int fw_sb_id,int igu_sb_id)9498 bxe_init_sb(struct bxe_softc *sc,
9499 bus_addr_t busaddr,
9500 int vfid,
9501 uint8_t vf_valid,
9502 int fw_sb_id,
9503 int igu_sb_id)
9504 {
9505 struct hc_status_block_data_e2 sb_data_e2;
9506 struct hc_status_block_data_e1x sb_data_e1x;
9507 struct hc_status_block_sm *hc_sm_p;
9508 uint32_t *sb_data_p;
9509 int igu_seg_id;
9510 int data_size;
9511
9512 if (CHIP_INT_MODE_IS_BC(sc)) {
9513 igu_seg_id = HC_SEG_ACCESS_NORM;
9514 } else {
9515 igu_seg_id = IGU_SEG_ACCESS_NORM;
9516 }
9517
9518 bxe_zero_fp_sb(sc, fw_sb_id);
9519
9520 if (!CHIP_IS_E1x(sc)) {
9521 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9522 sb_data_e2.common.state = SB_ENABLED;
9523 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9524 sb_data_e2.common.p_func.vf_id = vfid;
9525 sb_data_e2.common.p_func.vf_valid = vf_valid;
9526 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9527 sb_data_e2.common.same_igu_sb_1b = TRUE;
9528 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9529 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9530 hc_sm_p = sb_data_e2.common.state_machine;
9531 sb_data_p = (uint32_t *)&sb_data_e2;
9532 data_size = (sizeof(struct hc_status_block_data_e2) /
9533 sizeof(uint32_t));
9534 bxe_map_sb_state_machines(sb_data_e2.index_data);
9535 } else {
9536 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9537 sb_data_e1x.common.state = SB_ENABLED;
9538 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9539 sb_data_e1x.common.p_func.vf_id = 0xff;
9540 sb_data_e1x.common.p_func.vf_valid = FALSE;
9541 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9542 sb_data_e1x.common.same_igu_sb_1b = TRUE;
9543 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9544 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9545 hc_sm_p = sb_data_e1x.common.state_machine;
9546 sb_data_p = (uint32_t *)&sb_data_e1x;
9547 data_size = (sizeof(struct hc_status_block_data_e1x) /
9548 sizeof(uint32_t));
9549 bxe_map_sb_state_machines(sb_data_e1x.index_data);
9550 }
9551
9552 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9553 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9554
9555 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9556
9557 /* write indices to HW - PCI guarantees endianity of regpairs */
9558 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9559 }
9560
9561 static inline uint8_t
bxe_fp_qzone_id(struct bxe_fastpath * fp)9562 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9563 {
9564 if (CHIP_IS_E1x(fp->sc)) {
9565 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9566 } else {
9567 return (fp->cl_id);
9568 }
9569 }
9570
9571 static inline uint32_t
bxe_rx_ustorm_prods_offset(struct bxe_softc * sc,struct bxe_fastpath * fp)9572 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc,
9573 struct bxe_fastpath *fp)
9574 {
9575 uint32_t offset = BAR_USTRORM_INTMEM;
9576
9577 if (!CHIP_IS_E1x(sc)) {
9578 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9579 } else {
9580 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9581 }
9582
9583 return (offset);
9584 }
9585
9586 static void
bxe_init_eth_fp(struct bxe_softc * sc,int idx)9587 bxe_init_eth_fp(struct bxe_softc *sc,
9588 int idx)
9589 {
9590 struct bxe_fastpath *fp = &sc->fp[idx];
9591 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9592 unsigned long q_type = 0;
9593 int cos;
9594
9595 fp->sc = sc;
9596 fp->index = idx;
9597
9598 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9599 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9600
9601 fp->cl_id = (CHIP_IS_E1x(sc)) ?
9602 (SC_L_ID(sc) + idx) :
9603 /* want client ID same as IGU SB ID for non-E1 */
9604 fp->igu_sb_id;
9605 fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9606
9607 /* setup sb indices */
9608 if (!CHIP_IS_E1x(sc)) {
9609 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
9610 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9611 } else {
9612 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
9613 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9614 }
9615
9616 /* init shortcut */
9617 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9618
9619 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9620
9621 /*
9622 * XXX If multiple CoS is ever supported then each fastpath structure
9623 * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9624 */
9625 for (cos = 0; cos < sc->max_cos; cos++) {
9626 cids[cos] = idx;
9627 }
9628 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9629
9630 /* nothing more for a VF to do */
9631 if (IS_VF(sc)) {
9632 return;
9633 }
9634
9635 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9636 fp->fw_sb_id, fp->igu_sb_id);
9637
9638 bxe_update_fp_sb_idx(fp);
9639
9640 /* Configure Queue State object */
9641 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9642 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9643
9644 ecore_init_queue_obj(sc,
9645 &sc->sp_objs[idx].q_obj,
9646 fp->cl_id,
9647 cids,
9648 sc->max_cos,
9649 SC_FUNC(sc),
9650 BXE_SP(sc, q_rdata),
9651 BXE_SP_MAPPING(sc, q_rdata),
9652 q_type);
9653
9654 /* configure classification DBs */
9655 ecore_init_mac_obj(sc,
9656 &sc->sp_objs[idx].mac_obj,
9657 fp->cl_id,
9658 idx,
9659 SC_FUNC(sc),
9660 BXE_SP(sc, mac_rdata),
9661 BXE_SP_MAPPING(sc, mac_rdata),
9662 ECORE_FILTER_MAC_PENDING,
9663 &sc->sp_state,
9664 ECORE_OBJ_TYPE_RX_TX,
9665 &sc->macs_pool);
9666
9667 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9668 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9669 }
9670
9671 static inline void
bxe_update_rx_prod(struct bxe_softc * sc,struct bxe_fastpath * fp,uint16_t rx_bd_prod,uint16_t rx_cq_prod,uint16_t rx_sge_prod)9672 bxe_update_rx_prod(struct bxe_softc *sc,
9673 struct bxe_fastpath *fp,
9674 uint16_t rx_bd_prod,
9675 uint16_t rx_cq_prod,
9676 uint16_t rx_sge_prod)
9677 {
9678 struct ustorm_eth_rx_producers rx_prods = { 0 };
9679 uint32_t i;
9680
9681 /* update producers */
9682 rx_prods.bd_prod = rx_bd_prod;
9683 rx_prods.cqe_prod = rx_cq_prod;
9684 rx_prods.sge_prod = rx_sge_prod;
9685
9686 /*
9687 * Make sure that the BD and SGE data is updated before updating the
9688 * producers since FW might read the BD/SGE right after the producer
9689 * is updated.
9690 * This is only applicable for weak-ordered memory model archs such
9691 * as IA-64. The following barrier is also mandatory since FW will
9692 * assumes BDs must have buffers.
9693 */
9694 wmb();
9695
9696 for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9697 REG_WR(sc,
9698 (fp->ustorm_rx_prods_offset + (i * 4)),
9699 ((uint32_t *)&rx_prods)[i]);
9700 }
9701
9702 wmb(); /* keep prod updates ordered */
9703
9704 BLOGD(sc, DBG_RX,
9705 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9706 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9707 }
9708
9709 static void
bxe_init_rx_rings(struct bxe_softc * sc)9710 bxe_init_rx_rings(struct bxe_softc *sc)
9711 {
9712 struct bxe_fastpath *fp;
9713 int i;
9714
9715 for (i = 0; i < sc->num_queues; i++) {
9716 fp = &sc->fp[i];
9717
9718 fp->rx_bd_cons = 0;
9719
9720 /*
9721 * Activate the BD ring...
9722 * Warning, this will generate an interrupt (to the TSTORM)
9723 * so this can only be done after the chip is initialized
9724 */
9725 bxe_update_rx_prod(sc, fp,
9726 fp->rx_bd_prod,
9727 fp->rx_cq_prod,
9728 fp->rx_sge_prod);
9729
9730 if (i != 0) {
9731 continue;
9732 }
9733
9734 if (CHIP_IS_E1(sc)) {
9735 REG_WR(sc,
9736 (BAR_USTRORM_INTMEM +
9737 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9738 U64_LO(fp->rcq_dma.paddr));
9739 REG_WR(sc,
9740 (BAR_USTRORM_INTMEM +
9741 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9742 U64_HI(fp->rcq_dma.paddr));
9743 }
9744 }
9745 }
9746
9747 static void
bxe_init_tx_ring_one(struct bxe_fastpath * fp)9748 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9749 {
9750 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9751 fp->tx_db.data.zero_fill1 = 0;
9752 fp->tx_db.data.prod = 0;
9753
9754 fp->tx_pkt_prod = 0;
9755 fp->tx_pkt_cons = 0;
9756 fp->tx_bd_prod = 0;
9757 fp->tx_bd_cons = 0;
9758 fp->eth_q_stats.tx_pkts = 0;
9759 }
9760
9761 static inline void
bxe_init_tx_rings(struct bxe_softc * sc)9762 bxe_init_tx_rings(struct bxe_softc *sc)
9763 {
9764 int i;
9765
9766 for (i = 0; i < sc->num_queues; i++) {
9767 bxe_init_tx_ring_one(&sc->fp[i]);
9768 }
9769 }
9770
9771 static void
bxe_init_def_sb(struct bxe_softc * sc)9772 bxe_init_def_sb(struct bxe_softc *sc)
9773 {
9774 struct host_sp_status_block *def_sb = sc->def_sb;
9775 bus_addr_t mapping = sc->def_sb_dma.paddr;
9776 int igu_sp_sb_index;
9777 int igu_seg_id;
9778 int port = SC_PORT(sc);
9779 int func = SC_FUNC(sc);
9780 int reg_offset, reg_offset_en5;
9781 uint64_t section;
9782 int index, sindex;
9783 struct hc_sp_status_block_data sp_sb_data;
9784
9785 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9786
9787 if (CHIP_INT_MODE_IS_BC(sc)) {
9788 igu_sp_sb_index = DEF_SB_IGU_ID;
9789 igu_seg_id = HC_SEG_ACCESS_DEF;
9790 } else {
9791 igu_sp_sb_index = sc->igu_dsb_id;
9792 igu_seg_id = IGU_SEG_ACCESS_DEF;
9793 }
9794
9795 /* attentions */
9796 section = ((uint64_t)mapping +
9797 offsetof(struct host_sp_status_block, atten_status_block));
9798 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9799 sc->attn_state = 0;
9800
9801 reg_offset = (port) ?
9802 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9803 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9804 reg_offset_en5 = (port) ?
9805 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9806 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9807
9808 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9809 /* take care of sig[0]..sig[4] */
9810 for (sindex = 0; sindex < 4; sindex++) {
9811 sc->attn_group[index].sig[sindex] =
9812 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9813 }
9814
9815 if (!CHIP_IS_E1x(sc)) {
9816 /*
9817 * enable5 is separate from the rest of the registers,
9818 * and the address skip is 4 and not 16 between the
9819 * different groups
9820 */
9821 sc->attn_group[index].sig[4] =
9822 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9823 } else {
9824 sc->attn_group[index].sig[4] = 0;
9825 }
9826 }
9827
9828 if (sc->devinfo.int_block == INT_BLOCK_HC) {
9829 reg_offset = (port) ?
9830 HC_REG_ATTN_MSG1_ADDR_L :
9831 HC_REG_ATTN_MSG0_ADDR_L;
9832 REG_WR(sc, reg_offset, U64_LO(section));
9833 REG_WR(sc, (reg_offset + 4), U64_HI(section));
9834 } else if (!CHIP_IS_E1x(sc)) {
9835 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9836 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9837 }
9838
9839 section = ((uint64_t)mapping +
9840 offsetof(struct host_sp_status_block, sp_sb));
9841
9842 bxe_zero_sp_sb(sc);
9843
9844 /* PCI guarantees endianity of regpair */
9845 sp_sb_data.state = SB_ENABLED;
9846 sp_sb_data.host_sb_addr.lo = U64_LO(section);
9847 sp_sb_data.host_sb_addr.hi = U64_HI(section);
9848 sp_sb_data.igu_sb_id = igu_sp_sb_index;
9849 sp_sb_data.igu_seg_id = igu_seg_id;
9850 sp_sb_data.p_func.pf_id = func;
9851 sp_sb_data.p_func.vnic_id = SC_VN(sc);
9852 sp_sb_data.p_func.vf_id = 0xff;
9853
9854 bxe_wr_sp_sb_data(sc, &sp_sb_data);
9855
9856 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9857 }
9858
9859 static void
bxe_init_sp_ring(struct bxe_softc * sc)9860 bxe_init_sp_ring(struct bxe_softc *sc)
9861 {
9862 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9863 sc->spq_prod_idx = 0;
9864 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9865 sc->spq_prod_bd = sc->spq;
9866 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9867 }
9868
9869 static void
bxe_init_eq_ring(struct bxe_softc * sc)9870 bxe_init_eq_ring(struct bxe_softc *sc)
9871 {
9872 union event_ring_elem *elem;
9873 int i;
9874
9875 for (i = 1; i <= NUM_EQ_PAGES; i++) {
9876 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9877
9878 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9879 BCM_PAGE_SIZE *
9880 (i % NUM_EQ_PAGES)));
9881 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9882 BCM_PAGE_SIZE *
9883 (i % NUM_EQ_PAGES)));
9884 }
9885
9886 sc->eq_cons = 0;
9887 sc->eq_prod = NUM_EQ_DESC;
9888 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9889
9890 atomic_store_rel_long(&sc->eq_spq_left,
9891 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9892 NUM_EQ_DESC) - 1));
9893 }
9894
9895 static void
bxe_init_internal_common(struct bxe_softc * sc)9896 bxe_init_internal_common(struct bxe_softc *sc)
9897 {
9898 int i;
9899
9900 /*
9901 * Zero this manually as its initialization is currently missing
9902 * in the initTool.
9903 */
9904 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9905 REG_WR(sc,
9906 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9907 0);
9908 }
9909
9910 if (!CHIP_IS_E1x(sc)) {
9911 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9912 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9913 }
9914 }
9915
9916 static void
bxe_init_internal(struct bxe_softc * sc,uint32_t load_code)9917 bxe_init_internal(struct bxe_softc *sc,
9918 uint32_t load_code)
9919 {
9920 switch (load_code) {
9921 case FW_MSG_CODE_DRV_LOAD_COMMON:
9922 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9923 bxe_init_internal_common(sc);
9924 /* no break */
9925
9926 case FW_MSG_CODE_DRV_LOAD_PORT:
9927 /* nothing to do */
9928 /* no break */
9929
9930 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9931 /* internal memory per function is initialized inside bxe_pf_init */
9932 break;
9933
9934 default:
9935 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9936 break;
9937 }
9938 }
9939
9940 static void
storm_memset_func_cfg(struct bxe_softc * sc,struct tstorm_eth_function_common_config * tcfg,uint16_t abs_fid)9941 storm_memset_func_cfg(struct bxe_softc *sc,
9942 struct tstorm_eth_function_common_config *tcfg,
9943 uint16_t abs_fid)
9944 {
9945 uint32_t addr;
9946 size_t size;
9947
9948 addr = (BAR_TSTRORM_INTMEM +
9949 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9950 size = sizeof(struct tstorm_eth_function_common_config);
9951 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9952 }
9953
9954 static void
bxe_func_init(struct bxe_softc * sc,struct bxe_func_init_params * p)9955 bxe_func_init(struct bxe_softc *sc,
9956 struct bxe_func_init_params *p)
9957 {
9958 struct tstorm_eth_function_common_config tcfg = { 0 };
9959
9960 if (CHIP_IS_E1x(sc)) {
9961 storm_memset_func_cfg(sc, &tcfg, p->func_id);
9962 }
9963
9964 /* Enable the function in the FW */
9965 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9966 storm_memset_func_en(sc, p->func_id, 1);
9967
9968 /* spq */
9969 if (p->func_flgs & FUNC_FLG_SPQ) {
9970 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9971 REG_WR(sc,
9972 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9973 p->spq_prod);
9974 }
9975 }
9976
9977 /*
9978 * Calculates the sum of vn_min_rates.
9979 * It's needed for further normalizing of the min_rates.
9980 * Returns:
9981 * sum of vn_min_rates.
9982 * or
9983 * 0 - if all the min_rates are 0.
9984 * In the later case fainess algorithm should be deactivated.
9985 * If all min rates are not zero then those that are zeroes will be set to 1.
9986 */
9987 static void
bxe_calc_vn_min(struct bxe_softc * sc,struct cmng_init_input * input)9988 bxe_calc_vn_min(struct bxe_softc *sc,
9989 struct cmng_init_input *input)
9990 {
9991 uint32_t vn_cfg;
9992 uint32_t vn_min_rate;
9993 int all_zero = 1;
9994 int vn;
9995
9996 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9997 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9998 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
9999 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10000
10001 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10002 /* skip hidden VNs */
10003 vn_min_rate = 0;
10004 } else if (!vn_min_rate) {
10005 /* If min rate is zero - set it to 100 */
10006 vn_min_rate = DEF_MIN_RATE;
10007 } else {
10008 all_zero = 0;
10009 }
10010
10011 input->vnic_min_rate[vn] = vn_min_rate;
10012 }
10013
10014 /* if ETS or all min rates are zeros - disable fairness */
10015 if (BXE_IS_ETS_ENABLED(sc)) {
10016 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10017 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10018 } else if (all_zero) {
10019 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10020 BLOGD(sc, DBG_LOAD,
10021 "Fariness disabled (all MIN values are zeroes)\n");
10022 } else {
10023 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10024 }
10025 }
10026
10027 static inline uint16_t
bxe_extract_max_cfg(struct bxe_softc * sc,uint32_t mf_cfg)10028 bxe_extract_max_cfg(struct bxe_softc *sc,
10029 uint32_t mf_cfg)
10030 {
10031 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10032 FUNC_MF_CFG_MAX_BW_SHIFT);
10033
10034 if (!max_cfg) {
10035 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10036 max_cfg = 100;
10037 }
10038
10039 return (max_cfg);
10040 }
10041
10042 static void
bxe_calc_vn_max(struct bxe_softc * sc,int vn,struct cmng_init_input * input)10043 bxe_calc_vn_max(struct bxe_softc *sc,
10044 int vn,
10045 struct cmng_init_input *input)
10046 {
10047 uint16_t vn_max_rate;
10048 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10049 uint32_t max_cfg;
10050
10051 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10052 vn_max_rate = 0;
10053 } else {
10054 max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10055
10056 if (IS_MF_SI(sc)) {
10057 /* max_cfg in percents of linkspeed */
10058 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10059 } else { /* SD modes */
10060 /* max_cfg is absolute in 100Mb units */
10061 vn_max_rate = (max_cfg * 100);
10062 }
10063 }
10064
10065 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10066
10067 input->vnic_max_rate[vn] = vn_max_rate;
10068 }
10069
10070 static void
bxe_cmng_fns_init(struct bxe_softc * sc,uint8_t read_cfg,uint8_t cmng_type)10071 bxe_cmng_fns_init(struct bxe_softc *sc,
10072 uint8_t read_cfg,
10073 uint8_t cmng_type)
10074 {
10075 struct cmng_init_input input;
10076 int vn;
10077
10078 memset(&input, 0, sizeof(struct cmng_init_input));
10079
10080 input.port_rate = sc->link_vars.line_speed;
10081
10082 if (cmng_type == CMNG_FNS_MINMAX) {
10083 /* read mf conf from shmem */
10084 if (read_cfg) {
10085 bxe_read_mf_cfg(sc);
10086 }
10087
10088 /* get VN min rate and enable fairness if not 0 */
10089 bxe_calc_vn_min(sc, &input);
10090
10091 /* get VN max rate */
10092 if (sc->port.pmf) {
10093 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10094 bxe_calc_vn_max(sc, vn, &input);
10095 }
10096 }
10097
10098 /* always enable rate shaping and fairness */
10099 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10100
10101 ecore_init_cmng(&input, &sc->cmng);
10102 return;
10103 }
10104
10105 /* rate shaping and fairness are disabled */
10106 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10107 }
10108
10109 static int
bxe_get_cmng_fns_mode(struct bxe_softc * sc)10110 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10111 {
10112 if (CHIP_REV_IS_SLOW(sc)) {
10113 return (CMNG_FNS_NONE);
10114 }
10115
10116 if (IS_MF(sc)) {
10117 return (CMNG_FNS_MINMAX);
10118 }
10119
10120 return (CMNG_FNS_NONE);
10121 }
10122
10123 static void
storm_memset_cmng(struct bxe_softc * sc,struct cmng_init * cmng,uint8_t port)10124 storm_memset_cmng(struct bxe_softc *sc,
10125 struct cmng_init *cmng,
10126 uint8_t port)
10127 {
10128 int vn;
10129 int func;
10130 uint32_t addr;
10131 size_t size;
10132
10133 addr = (BAR_XSTRORM_INTMEM +
10134 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10135 size = sizeof(struct cmng_struct_per_port);
10136 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10137
10138 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10139 func = func_by_vn(sc, vn);
10140
10141 addr = (BAR_XSTRORM_INTMEM +
10142 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10143 size = sizeof(struct rate_shaping_vars_per_vn);
10144 ecore_storm_memset_struct(sc, addr, size,
10145 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10146
10147 addr = (BAR_XSTRORM_INTMEM +
10148 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10149 size = sizeof(struct fairness_vars_per_vn);
10150 ecore_storm_memset_struct(sc, addr, size,
10151 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10152 }
10153 }
10154
10155 static void
bxe_pf_init(struct bxe_softc * sc)10156 bxe_pf_init(struct bxe_softc *sc)
10157 {
10158 struct bxe_func_init_params func_init = { 0 };
10159 struct event_ring_data eq_data = { { 0 } };
10160 uint16_t flags;
10161
10162 if (!CHIP_IS_E1x(sc)) {
10163 /* reset IGU PF statistics: MSIX + ATTN */
10164 /* PF */
10165 REG_WR(sc,
10166 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10167 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10168 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10169 0);
10170 /* ATTN */
10171 REG_WR(sc,
10172 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10173 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10174 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10175 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10176 0);
10177 }
10178
10179 /* function setup flags */
10180 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10181
10182 /*
10183 * This flag is relevant for E1x only.
10184 * E2 doesn't have a TPA configuration in a function level.
10185 */
10186 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10187
10188 func_init.func_flgs = flags;
10189 func_init.pf_id = SC_FUNC(sc);
10190 func_init.func_id = SC_FUNC(sc);
10191 func_init.spq_map = sc->spq_dma.paddr;
10192 func_init.spq_prod = sc->spq_prod_idx;
10193
10194 bxe_func_init(sc, &func_init);
10195
10196 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10197
10198 /*
10199 * Congestion management values depend on the link rate.
10200 * There is no active link so initial link rate is set to 10Gbps.
10201 * When the link comes up the congestion management values are
10202 * re-calculated according to the actual link rate.
10203 */
10204 sc->link_vars.line_speed = SPEED_10000;
10205 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10206
10207 /* Only the PMF sets the HW */
10208 if (sc->port.pmf) {
10209 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10210 }
10211
10212 /* init Event Queue - PCI bus guarantees correct endainity */
10213 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10214 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10215 eq_data.producer = sc->eq_prod;
10216 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
10217 eq_data.sb_id = DEF_SB_ID;
10218 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10219 }
10220
10221 static void
bxe_hc_int_enable(struct bxe_softc * sc)10222 bxe_hc_int_enable(struct bxe_softc *sc)
10223 {
10224 int port = SC_PORT(sc);
10225 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10226 uint32_t val = REG_RD(sc, addr);
10227 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10228 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10229 (sc->intr_count == 1)) ? TRUE : FALSE;
10230 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10231
10232 if (msix) {
10233 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10234 HC_CONFIG_0_REG_INT_LINE_EN_0);
10235 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10236 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10237 if (single_msix) {
10238 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10239 }
10240 } else if (msi) {
10241 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10242 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10243 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10244 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10245 } else {
10246 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10247 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10248 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10249 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10250
10251 if (!CHIP_IS_E1(sc)) {
10252 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10253 val, port, addr);
10254
10255 REG_WR(sc, addr, val);
10256
10257 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10258 }
10259 }
10260
10261 if (CHIP_IS_E1(sc)) {
10262 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10263 }
10264
10265 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10266 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10267
10268 REG_WR(sc, addr, val);
10269
10270 /* ensure that HC_CONFIG is written before leading/trailing edge config */
10271 mb();
10272
10273 if (!CHIP_IS_E1(sc)) {
10274 /* init leading/trailing edge */
10275 if (IS_MF(sc)) {
10276 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10277 if (sc->port.pmf) {
10278 /* enable nig and gpio3 attention */
10279 val |= 0x1100;
10280 }
10281 } else {
10282 val = 0xffff;
10283 }
10284
10285 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10286 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10287 }
10288
10289 /* make sure that interrupts are indeed enabled from here on */
10290 mb();
10291 }
10292
10293 static void
bxe_igu_int_enable(struct bxe_softc * sc)10294 bxe_igu_int_enable(struct bxe_softc *sc)
10295 {
10296 uint32_t val;
10297 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10298 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10299 (sc->intr_count == 1)) ? TRUE : FALSE;
10300 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10301
10302 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10303
10304 if (msix) {
10305 val &= ~(IGU_PF_CONF_INT_LINE_EN |
10306 IGU_PF_CONF_SINGLE_ISR_EN);
10307 val |= (IGU_PF_CONF_MSI_MSIX_EN |
10308 IGU_PF_CONF_ATTN_BIT_EN);
10309 if (single_msix) {
10310 val |= IGU_PF_CONF_SINGLE_ISR_EN;
10311 }
10312 } else if (msi) {
10313 val &= ~IGU_PF_CONF_INT_LINE_EN;
10314 val |= (IGU_PF_CONF_MSI_MSIX_EN |
10315 IGU_PF_CONF_ATTN_BIT_EN |
10316 IGU_PF_CONF_SINGLE_ISR_EN);
10317 } else {
10318 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10319 val |= (IGU_PF_CONF_INT_LINE_EN |
10320 IGU_PF_CONF_ATTN_BIT_EN |
10321 IGU_PF_CONF_SINGLE_ISR_EN);
10322 }
10323
10324 /* clean previous status - need to configure igu prior to ack*/
10325 if ((!msix) || single_msix) {
10326 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10327 bxe_ack_int(sc);
10328 }
10329
10330 val |= IGU_PF_CONF_FUNC_EN;
10331
10332 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10333 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10334
10335 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10336
10337 mb();
10338
10339 /* init leading/trailing edge */
10340 if (IS_MF(sc)) {
10341 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10342 if (sc->port.pmf) {
10343 /* enable nig and gpio3 attention */
10344 val |= 0x1100;
10345 }
10346 } else {
10347 val = 0xffff;
10348 }
10349
10350 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10351 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10352
10353 /* make sure that interrupts are indeed enabled from here on */
10354 mb();
10355 }
10356
10357 static void
bxe_int_enable(struct bxe_softc * sc)10358 bxe_int_enable(struct bxe_softc *sc)
10359 {
10360 if (sc->devinfo.int_block == INT_BLOCK_HC) {
10361 bxe_hc_int_enable(sc);
10362 } else {
10363 bxe_igu_int_enable(sc);
10364 }
10365 }
10366
10367 static void
bxe_hc_int_disable(struct bxe_softc * sc)10368 bxe_hc_int_disable(struct bxe_softc *sc)
10369 {
10370 int port = SC_PORT(sc);
10371 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10372 uint32_t val = REG_RD(sc, addr);
10373
10374 /*
10375 * In E1 we must use only PCI configuration space to disable MSI/MSIX
10376 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10377 * block
10378 */
10379 if (CHIP_IS_E1(sc)) {
10380 /*
10381 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10382 * to prevent from HC sending interrupts after we exit the function
10383 */
10384 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10385
10386 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10387 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10388 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10389 } else {
10390 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10391 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10392 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10393 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10394 }
10395
10396 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10397
10398 /* flush all outstanding writes */
10399 mb();
10400
10401 REG_WR(sc, addr, val);
10402 if (REG_RD(sc, addr) != val) {
10403 BLOGE(sc, "proper val not read from HC IGU!\n");
10404 }
10405 }
10406
10407 static void
bxe_igu_int_disable(struct bxe_softc * sc)10408 bxe_igu_int_disable(struct bxe_softc *sc)
10409 {
10410 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10411
10412 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10413 IGU_PF_CONF_INT_LINE_EN |
10414 IGU_PF_CONF_ATTN_BIT_EN);
10415
10416 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10417
10418 /* flush all outstanding writes */
10419 mb();
10420
10421 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10422 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10423 BLOGE(sc, "proper val not read from IGU!\n");
10424 }
10425 }
10426
10427 static void
bxe_int_disable(struct bxe_softc * sc)10428 bxe_int_disable(struct bxe_softc *sc)
10429 {
10430 if (sc->devinfo.int_block == INT_BLOCK_HC) {
10431 bxe_hc_int_disable(sc);
10432 } else {
10433 bxe_igu_int_disable(sc);
10434 }
10435 }
10436
10437 static void
bxe_nic_init(struct bxe_softc * sc,int load_code)10438 bxe_nic_init(struct bxe_softc *sc,
10439 int load_code)
10440 {
10441 int i;
10442
10443 for (i = 0; i < sc->num_queues; i++) {
10444 bxe_init_eth_fp(sc, i);
10445 }
10446
10447 rmb(); /* ensure status block indices were read */
10448
10449 bxe_init_rx_rings(sc);
10450 bxe_init_tx_rings(sc);
10451
10452 if (IS_VF(sc)) {
10453 return;
10454 }
10455
10456 /* initialize MOD_ABS interrupts */
10457 elink_init_mod_abs_int(sc, &sc->link_vars,
10458 sc->devinfo.chip_id,
10459 sc->devinfo.shmem_base,
10460 sc->devinfo.shmem2_base,
10461 SC_PORT(sc));
10462
10463 bxe_init_def_sb(sc);
10464 bxe_update_dsb_idx(sc);
10465 bxe_init_sp_ring(sc);
10466 bxe_init_eq_ring(sc);
10467 bxe_init_internal(sc, load_code);
10468 bxe_pf_init(sc);
10469 bxe_stats_init(sc);
10470
10471 /* flush all before enabling interrupts */
10472 mb();
10473
10474 bxe_int_enable(sc);
10475
10476 /* check for SPIO5 */
10477 bxe_attn_int_deasserted0(sc,
10478 REG_RD(sc,
10479 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10480 SC_PORT(sc)*4)) &
10481 AEU_INPUTS_ATTN_BITS_SPIO5);
10482 }
10483
10484 static inline void
bxe_init_objs(struct bxe_softc * sc)10485 bxe_init_objs(struct bxe_softc *sc)
10486 {
10487 /* mcast rules must be added to tx if tx switching is enabled */
10488 ecore_obj_type o_type =
10489 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10490 ECORE_OBJ_TYPE_RX;
10491
10492 /* RX_MODE controlling object */
10493 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10494
10495 /* multicast configuration controlling object */
10496 ecore_init_mcast_obj(sc,
10497 &sc->mcast_obj,
10498 sc->fp[0].cl_id,
10499 sc->fp[0].index,
10500 SC_FUNC(sc),
10501 SC_FUNC(sc),
10502 BXE_SP(sc, mcast_rdata),
10503 BXE_SP_MAPPING(sc, mcast_rdata),
10504 ECORE_FILTER_MCAST_PENDING,
10505 &sc->sp_state,
10506 o_type);
10507
10508 /* Setup CAM credit pools */
10509 ecore_init_mac_credit_pool(sc,
10510 &sc->macs_pool,
10511 SC_FUNC(sc),
10512 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10513 VNICS_PER_PATH(sc));
10514
10515 ecore_init_vlan_credit_pool(sc,
10516 &sc->vlans_pool,
10517 SC_ABS_FUNC(sc) >> 1,
10518 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10519 VNICS_PER_PATH(sc));
10520
10521 /* RSS configuration object */
10522 ecore_init_rss_config_obj(sc,
10523 &sc->rss_conf_obj,
10524 sc->fp[0].cl_id,
10525 sc->fp[0].index,
10526 SC_FUNC(sc),
10527 SC_FUNC(sc),
10528 BXE_SP(sc, rss_rdata),
10529 BXE_SP_MAPPING(sc, rss_rdata),
10530 ECORE_FILTER_RSS_CONF_PENDING,
10531 &sc->sp_state, ECORE_OBJ_TYPE_RX);
10532 }
10533
10534 /*
10535 * Initialize the function. This must be called before sending CLIENT_SETUP
10536 * for the first client.
10537 */
10538 static inline int
bxe_func_start(struct bxe_softc * sc)10539 bxe_func_start(struct bxe_softc *sc)
10540 {
10541 struct ecore_func_state_params func_params = { NULL };
10542 struct ecore_func_start_params *start_params = &func_params.params.start;
10543
10544 /* Prepare parameters for function state transitions */
10545 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10546
10547 func_params.f_obj = &sc->func_obj;
10548 func_params.cmd = ECORE_F_CMD_START;
10549
10550 /* Function parameters */
10551 start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
10552 start_params->sd_vlan_tag = OVLAN(sc);
10553
10554 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10555 start_params->network_cos_mode = STATIC_COS;
10556 } else { /* CHIP_IS_E1X */
10557 start_params->network_cos_mode = FW_WRR;
10558 }
10559
10560 //start_params->gre_tunnel_mode = 0;
10561 //start_params->gre_tunnel_rss = 0;
10562
10563 return (ecore_func_state_change(sc, &func_params));
10564 }
10565
10566 static int
bxe_set_power_state(struct bxe_softc * sc,uint8_t state)10567 bxe_set_power_state(struct bxe_softc *sc,
10568 uint8_t state)
10569 {
10570 uint16_t pmcsr;
10571
10572 /* If there is no power capability, silently succeed */
10573 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10574 BLOGW(sc, "No power capability\n");
10575 return (0);
10576 }
10577
10578 pmcsr = pci_read_config(sc->dev,
10579 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10580 2);
10581
10582 switch (state) {
10583 case PCI_PM_D0:
10584 pci_write_config(sc->dev,
10585 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10586 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10587
10588 if (pmcsr & PCIM_PSTAT_DMASK) {
10589 /* delay required during transition out of D3hot */
10590 DELAY(20000);
10591 }
10592
10593 break;
10594
10595 case PCI_PM_D3hot:
10596 /* XXX if there are other clients above don't shut down the power */
10597
10598 /* don't shut down the power for emulation and FPGA */
10599 if (CHIP_REV_IS_SLOW(sc)) {
10600 return (0);
10601 }
10602
10603 pmcsr &= ~PCIM_PSTAT_DMASK;
10604 pmcsr |= PCIM_PSTAT_D3;
10605
10606 if (sc->wol) {
10607 pmcsr |= PCIM_PSTAT_PMEENABLE;
10608 }
10609
10610 pci_write_config(sc->dev,
10611 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10612 pmcsr, 4);
10613
10614 /*
10615 * No more memory access after this point until device is brought back
10616 * to D0 state.
10617 */
10618 break;
10619
10620 default:
10621 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10622 state, pmcsr);
10623 return (-1);
10624 }
10625
10626 return (0);
10627 }
10628
10629
10630 /* return true if succeeded to acquire the lock */
10631 static uint8_t
bxe_trylock_hw_lock(struct bxe_softc * sc,uint32_t resource)10632 bxe_trylock_hw_lock(struct bxe_softc *sc,
10633 uint32_t resource)
10634 {
10635 uint32_t lock_status;
10636 uint32_t resource_bit = (1 << resource);
10637 int func = SC_FUNC(sc);
10638 uint32_t hw_lock_control_reg;
10639
10640 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10641
10642 /* Validating that the resource is within range */
10643 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10644 BLOGD(sc, DBG_LOAD,
10645 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10646 resource, HW_LOCK_MAX_RESOURCE_VALUE);
10647 return (FALSE);
10648 }
10649
10650 if (func <= 5) {
10651 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10652 } else {
10653 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10654 }
10655
10656 /* try to acquire the lock */
10657 REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10658 lock_status = REG_RD(sc, hw_lock_control_reg);
10659 if (lock_status & resource_bit) {
10660 return (TRUE);
10661 }
10662
10663 BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10664 "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10665 lock_status, resource_bit);
10666
10667 return (FALSE);
10668 }
10669
10670 /*
10671 * Get the recovery leader resource id according to the engine this function
10672 * belongs to. Currently only only 2 engines is supported.
10673 */
10674 static int
bxe_get_leader_lock_resource(struct bxe_softc * sc)10675 bxe_get_leader_lock_resource(struct bxe_softc *sc)
10676 {
10677 if (SC_PATH(sc)) {
10678 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10679 } else {
10680 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10681 }
10682 }
10683
10684 /* try to acquire a leader lock for current engine */
10685 static uint8_t
bxe_trylock_leader_lock(struct bxe_softc * sc)10686 bxe_trylock_leader_lock(struct bxe_softc *sc)
10687 {
10688 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10689 }
10690
10691 static int
bxe_release_leader_lock(struct bxe_softc * sc)10692 bxe_release_leader_lock(struct bxe_softc *sc)
10693 {
10694 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10695 }
10696
10697 /* close gates #2, #3 and #4 */
10698 static void
bxe_set_234_gates(struct bxe_softc * sc,uint8_t close)10699 bxe_set_234_gates(struct bxe_softc *sc,
10700 uint8_t close)
10701 {
10702 uint32_t val;
10703
10704 /* gates #2 and #4a are closed/opened for "not E1" only */
10705 if (!CHIP_IS_E1(sc)) {
10706 /* #4 */
10707 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10708 /* #2 */
10709 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10710 }
10711
10712 /* #3 */
10713 if (CHIP_IS_E1x(sc)) {
10714 /* prevent interrupts from HC on both ports */
10715 val = REG_RD(sc, HC_REG_CONFIG_1);
10716 REG_WR(sc, HC_REG_CONFIG_1,
10717 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10718 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10719
10720 val = REG_RD(sc, HC_REG_CONFIG_0);
10721 REG_WR(sc, HC_REG_CONFIG_0,
10722 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10723 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10724 } else {
10725 /* Prevent incoming interrupts in IGU */
10726 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10727
10728 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10729 (!close) ?
10730 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10731 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10732 }
10733
10734 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10735 close ? "closing" : "opening");
10736
10737 wmb();
10738 }
10739
10740 /* poll for pending writes bit, it should get cleared in no more than 1s */
10741 static int
bxe_er_poll_igu_vq(struct bxe_softc * sc)10742 bxe_er_poll_igu_vq(struct bxe_softc *sc)
10743 {
10744 uint32_t cnt = 1000;
10745 uint32_t pend_bits = 0;
10746
10747 do {
10748 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10749
10750 if (pend_bits == 0) {
10751 break;
10752 }
10753
10754 DELAY(1000);
10755 } while (--cnt > 0);
10756
10757 if (cnt == 0) {
10758 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10759 return (-1);
10760 }
10761
10762 return (0);
10763 }
10764
10765 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */
10766
10767 static void
bxe_clp_reset_prep(struct bxe_softc * sc,uint32_t * magic_val)10768 bxe_clp_reset_prep(struct bxe_softc *sc,
10769 uint32_t *magic_val)
10770 {
10771 /* Do some magic... */
10772 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10773 *magic_val = val & SHARED_MF_CLP_MAGIC;
10774 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10775 }
10776
10777 /* restore the value of the 'magic' bit */
10778 static void
bxe_clp_reset_done(struct bxe_softc * sc,uint32_t magic_val)10779 bxe_clp_reset_done(struct bxe_softc *sc,
10780 uint32_t magic_val)
10781 {
10782 /* Restore the 'magic' bit value... */
10783 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10784 MFCFG_WR(sc, shared_mf_config.clp_mb,
10785 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10786 }
10787
10788 /* prepare for MCP reset, takes care of CLP configurations */
10789 static void
bxe_reset_mcp_prep(struct bxe_softc * sc,uint32_t * magic_val)10790 bxe_reset_mcp_prep(struct bxe_softc *sc,
10791 uint32_t *magic_val)
10792 {
10793 uint32_t shmem;
10794 uint32_t validity_offset;
10795
10796 /* set `magic' bit in order to save MF config */
10797 if (!CHIP_IS_E1(sc)) {
10798 bxe_clp_reset_prep(sc, magic_val);
10799 }
10800
10801 /* get shmem offset */
10802 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10803 validity_offset =
10804 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10805
10806 /* Clear validity map flags */
10807 if (shmem > 0) {
10808 REG_WR(sc, shmem + validity_offset, 0);
10809 }
10810 }
10811
10812 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
10813 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
10814
10815 static void
bxe_mcp_wait_one(struct bxe_softc * sc)10816 bxe_mcp_wait_one(struct bxe_softc *sc)
10817 {
10818 /* special handling for emulation and FPGA (10 times longer) */
10819 if (CHIP_REV_IS_SLOW(sc)) {
10820 DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10821 } else {
10822 DELAY((MCP_ONE_TIMEOUT) * 1000);
10823 }
10824 }
10825
10826 /* initialize shmem_base and waits for validity signature to appear */
10827 static int
bxe_init_shmem(struct bxe_softc * sc)10828 bxe_init_shmem(struct bxe_softc *sc)
10829 {
10830 int cnt = 0;
10831 uint32_t val = 0;
10832
10833 do {
10834 sc->devinfo.shmem_base =
10835 sc->link_params.shmem_base =
10836 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10837
10838 if (sc->devinfo.shmem_base) {
10839 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10840 if (val & SHR_MEM_VALIDITY_MB)
10841 return (0);
10842 }
10843
10844 bxe_mcp_wait_one(sc);
10845
10846 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10847
10848 BLOGE(sc, "BAD MCP validity signature\n");
10849
10850 return (-1);
10851 }
10852
10853 static int
bxe_reset_mcp_comp(struct bxe_softc * sc,uint32_t magic_val)10854 bxe_reset_mcp_comp(struct bxe_softc *sc,
10855 uint32_t magic_val)
10856 {
10857 int rc = bxe_init_shmem(sc);
10858
10859 /* Restore the `magic' bit value */
10860 if (!CHIP_IS_E1(sc)) {
10861 bxe_clp_reset_done(sc, magic_val);
10862 }
10863
10864 return (rc);
10865 }
10866
10867 static void
bxe_pxp_prep(struct bxe_softc * sc)10868 bxe_pxp_prep(struct bxe_softc *sc)
10869 {
10870 if (!CHIP_IS_E1(sc)) {
10871 REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10872 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10873 wmb();
10874 }
10875 }
10876
10877 /*
10878 * Reset the whole chip except for:
10879 * - PCIE core
10880 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10881 * - IGU
10882 * - MISC (including AEU)
10883 * - GRC
10884 * - RBCN, RBCP
10885 */
10886 static void
bxe_process_kill_chip_reset(struct bxe_softc * sc,uint8_t global)10887 bxe_process_kill_chip_reset(struct bxe_softc *sc,
10888 uint8_t global)
10889 {
10890 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10891 uint32_t global_bits2, stay_reset2;
10892
10893 /*
10894 * Bits that have to be set in reset_mask2 if we want to reset 'global'
10895 * (per chip) blocks.
10896 */
10897 global_bits2 =
10898 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10899 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10900
10901 /*
10902 * Don't reset the following blocks.
10903 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10904 * reset, as in 4 port device they might still be owned
10905 * by the MCP (there is only one leader per path).
10906 */
10907 not_reset_mask1 =
10908 MISC_REGISTERS_RESET_REG_1_RST_HC |
10909 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10910 MISC_REGISTERS_RESET_REG_1_RST_PXP;
10911
10912 not_reset_mask2 =
10913 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10914 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10915 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10916 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10917 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10918 MISC_REGISTERS_RESET_REG_2_RST_GRC |
10919 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10920 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10921 MISC_REGISTERS_RESET_REG_2_RST_ATC |
10922 MISC_REGISTERS_RESET_REG_2_PGLC |
10923 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10924 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10925 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10926 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10927 MISC_REGISTERS_RESET_REG_2_UMAC0 |
10928 MISC_REGISTERS_RESET_REG_2_UMAC1;
10929
10930 /*
10931 * Keep the following blocks in reset:
10932 * - all xxMACs are handled by the elink code.
10933 */
10934 stay_reset2 =
10935 MISC_REGISTERS_RESET_REG_2_XMAC |
10936 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10937
10938 /* Full reset masks according to the chip */
10939 reset_mask1 = 0xffffffff;
10940
10941 if (CHIP_IS_E1(sc))
10942 reset_mask2 = 0xffff;
10943 else if (CHIP_IS_E1H(sc))
10944 reset_mask2 = 0x1ffff;
10945 else if (CHIP_IS_E2(sc))
10946 reset_mask2 = 0xfffff;
10947 else /* CHIP_IS_E3 */
10948 reset_mask2 = 0x3ffffff;
10949
10950 /* Don't reset global blocks unless we need to */
10951 if (!global)
10952 reset_mask2 &= ~global_bits2;
10953
10954 /*
10955 * In case of attention in the QM, we need to reset PXP
10956 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10957 * because otherwise QM reset would release 'close the gates' shortly
10958 * before resetting the PXP, then the PSWRQ would send a write
10959 * request to PGLUE. Then when PXP is reset, PGLUE would try to
10960 * read the payload data from PSWWR, but PSWWR would not
10961 * respond. The write queue in PGLUE would stuck, dmae commands
10962 * would not return. Therefore it's important to reset the second
10963 * reset register (containing the
10964 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10965 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10966 * bit).
10967 */
10968 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10969 reset_mask2 & (~not_reset_mask2));
10970
10971 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10972 reset_mask1 & (~not_reset_mask1));
10973
10974 mb();
10975 wmb();
10976
10977 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10978 reset_mask2 & (~stay_reset2));
10979
10980 mb();
10981 wmb();
10982
10983 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10984 wmb();
10985 }
10986
10987 static int
bxe_process_kill(struct bxe_softc * sc,uint8_t global)10988 bxe_process_kill(struct bxe_softc *sc,
10989 uint8_t global)
10990 {
10991 int cnt = 1000;
10992 uint32_t val = 0;
10993 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
10994 uint32_t tags_63_32 = 0;
10995
10996 /* Empty the Tetris buffer, wait for 1s */
10997 do {
10998 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
10999 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11000 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11001 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11002 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11003 if (CHIP_IS_E3(sc)) {
11004 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11005 }
11006
11007 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11008 ((port_is_idle_0 & 0x1) == 0x1) &&
11009 ((port_is_idle_1 & 0x1) == 0x1) &&
11010 (pgl_exp_rom2 == 0xffffffff) &&
11011 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11012 break;
11013 DELAY(1000);
11014 } while (cnt-- > 0);
11015
11016 if (cnt <= 0) {
11017 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11018 "are still outstanding read requests after 1s! "
11019 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11020 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11021 sr_cnt, blk_cnt, port_is_idle_0,
11022 port_is_idle_1, pgl_exp_rom2);
11023 return (-1);
11024 }
11025
11026 mb();
11027
11028 /* Close gates #2, #3 and #4 */
11029 bxe_set_234_gates(sc, TRUE);
11030
11031 /* Poll for IGU VQs for 57712 and newer chips */
11032 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11033 return (-1);
11034 }
11035
11036 /* XXX indicate that "process kill" is in progress to MCP */
11037
11038 /* clear "unprepared" bit */
11039 REG_WR(sc, MISC_REG_UNPREPARED, 0);
11040 mb();
11041
11042 /* Make sure all is written to the chip before the reset */
11043 wmb();
11044
11045 /*
11046 * Wait for 1ms to empty GLUE and PCI-E core queues,
11047 * PSWHST, GRC and PSWRD Tetris buffer.
11048 */
11049 DELAY(1000);
11050
11051 /* Prepare to chip reset: */
11052 /* MCP */
11053 if (global) {
11054 bxe_reset_mcp_prep(sc, &val);
11055 }
11056
11057 /* PXP */
11058 bxe_pxp_prep(sc);
11059 mb();
11060
11061 /* reset the chip */
11062 bxe_process_kill_chip_reset(sc, global);
11063 mb();
11064
11065 /* clear errors in PGB */
11066 if (!CHIP_IS_E1(sc))
11067 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11068
11069 /* Recover after reset: */
11070 /* MCP */
11071 if (global && bxe_reset_mcp_comp(sc, val)) {
11072 return (-1);
11073 }
11074
11075 /* XXX add resetting the NO_MCP mode DB here */
11076
11077 /* Open the gates #2, #3 and #4 */
11078 bxe_set_234_gates(sc, FALSE);
11079
11080 /* XXX
11081 * IGU/AEU preparation bring back the AEU/IGU to a reset state
11082 * re-enable attentions
11083 */
11084
11085 return (0);
11086 }
11087
11088 static int
bxe_leader_reset(struct bxe_softc * sc)11089 bxe_leader_reset(struct bxe_softc *sc)
11090 {
11091 int rc = 0;
11092 uint8_t global = bxe_reset_is_global(sc);
11093 uint32_t load_code;
11094
11095 /*
11096 * If not going to reset MCP, load "fake" driver to reset HW while
11097 * driver is owner of the HW.
11098 */
11099 if (!global && !BXE_NOMCP(sc)) {
11100 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11101 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11102 if (!load_code) {
11103 BLOGE(sc, "MCP response failure, aborting\n");
11104 rc = -1;
11105 goto exit_leader_reset;
11106 }
11107
11108 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11109 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11110 BLOGE(sc, "MCP unexpected response, aborting\n");
11111 rc = -1;
11112 goto exit_leader_reset2;
11113 }
11114
11115 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11116 if (!load_code) {
11117 BLOGE(sc, "MCP response failure, aborting\n");
11118 rc = -1;
11119 goto exit_leader_reset2;
11120 }
11121 }
11122
11123 /* try to recover after the failure */
11124 if (bxe_process_kill(sc, global)) {
11125 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11126 rc = -1;
11127 goto exit_leader_reset2;
11128 }
11129
11130 /*
11131 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11132 * state.
11133 */
11134 bxe_set_reset_done(sc);
11135 if (global) {
11136 bxe_clear_reset_global(sc);
11137 }
11138
11139 exit_leader_reset2:
11140
11141 /* unload "fake driver" if it was loaded */
11142 if (!global && !BXE_NOMCP(sc)) {
11143 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11144 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11145 }
11146
11147 exit_leader_reset:
11148
11149 sc->is_leader = 0;
11150 bxe_release_leader_lock(sc);
11151
11152 mb();
11153 return (rc);
11154 }
11155
11156 /*
11157 * prepare INIT transition, parameters configured:
11158 * - HC configuration
11159 * - Queue's CDU context
11160 */
11161 static void
bxe_pf_q_prep_init(struct bxe_softc * sc,struct bxe_fastpath * fp,struct ecore_queue_init_params * init_params)11162 bxe_pf_q_prep_init(struct bxe_softc *sc,
11163 struct bxe_fastpath *fp,
11164 struct ecore_queue_init_params *init_params)
11165 {
11166 uint8_t cos;
11167 int cxt_index, cxt_offset;
11168
11169 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11170 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11171
11172 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11173 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11174
11175 /* HC rate */
11176 init_params->rx.hc_rate =
11177 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11178 init_params->tx.hc_rate =
11179 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11180
11181 /* FW SB ID */
11182 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11183
11184 /* CQ index among the SB indices */
11185 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11186 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11187
11188 /* set maximum number of COSs supported by this queue */
11189 init_params->max_cos = sc->max_cos;
11190
11191 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11192 fp->index, init_params->max_cos);
11193
11194 /* set the context pointers queue object */
11195 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11196 /* XXX change index/cid here if ever support multiple tx CoS */
11197 /* fp->txdata[cos]->cid */
11198 cxt_index = fp->index / ILT_PAGE_CIDS;
11199 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11200 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11201 }
11202 }
11203
11204 /* set flags that are common for the Tx-only and not normal connections */
11205 static unsigned long
bxe_get_common_flags(struct bxe_softc * sc,struct bxe_fastpath * fp,uint8_t zero_stats)11206 bxe_get_common_flags(struct bxe_softc *sc,
11207 struct bxe_fastpath *fp,
11208 uint8_t zero_stats)
11209 {
11210 unsigned long flags = 0;
11211
11212 /* PF driver will always initialize the Queue to an ACTIVE state */
11213 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11214
11215 /*
11216 * tx only connections collect statistics (on the same index as the
11217 * parent connection). The statistics are zeroed when the parent
11218 * connection is initialized.
11219 */
11220
11221 bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11222 if (zero_stats) {
11223 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11224 }
11225
11226 /*
11227 * tx only connections can support tx-switching, though their
11228 * CoS-ness doesn't survive the loopback
11229 */
11230 if (sc->flags & BXE_TX_SWITCHING) {
11231 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11232 }
11233
11234 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11235
11236 return (flags);
11237 }
11238
11239 static unsigned long
bxe_get_q_flags(struct bxe_softc * sc,struct bxe_fastpath * fp,uint8_t leading)11240 bxe_get_q_flags(struct bxe_softc *sc,
11241 struct bxe_fastpath *fp,
11242 uint8_t leading)
11243 {
11244 unsigned long flags = 0;
11245
11246 if (IS_MF_SD(sc)) {
11247 bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11248 }
11249
11250 if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11251 bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11252 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11253 }
11254
11255 if (leading) {
11256 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11257 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11258 }
11259
11260 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11261
11262 /* merge with common flags */
11263 return (flags | bxe_get_common_flags(sc, fp, TRUE));
11264 }
11265
11266 static void
bxe_pf_q_prep_general(struct bxe_softc * sc,struct bxe_fastpath * fp,struct ecore_general_setup_params * gen_init,uint8_t cos)11267 bxe_pf_q_prep_general(struct bxe_softc *sc,
11268 struct bxe_fastpath *fp,
11269 struct ecore_general_setup_params *gen_init,
11270 uint8_t cos)
11271 {
11272 gen_init->stat_id = bxe_stats_id(fp);
11273 gen_init->spcl_id = fp->cl_id;
11274 gen_init->mtu = sc->mtu;
11275 gen_init->cos = cos;
11276 }
11277
11278 static void
bxe_pf_rx_q_prep(struct bxe_softc * sc,struct bxe_fastpath * fp,struct rxq_pause_params * pause,struct ecore_rxq_setup_params * rxq_init)11279 bxe_pf_rx_q_prep(struct bxe_softc *sc,
11280 struct bxe_fastpath *fp,
11281 struct rxq_pause_params *pause,
11282 struct ecore_rxq_setup_params *rxq_init)
11283 {
11284 uint8_t max_sge = 0;
11285 uint16_t sge_sz = 0;
11286 uint16_t tpa_agg_size = 0;
11287
11288 pause->sge_th_lo = SGE_TH_LO(sc);
11289 pause->sge_th_hi = SGE_TH_HI(sc);
11290
11291 /* validate SGE ring has enough to cross high threshold */
11292 if (sc->dropless_fc &&
11293 (pause->sge_th_hi + FW_PREFETCH_CNT) >
11294 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11295 BLOGW(sc, "sge ring threshold limit\n");
11296 }
11297
11298 /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11299 tpa_agg_size = (2 * sc->mtu);
11300 if (tpa_agg_size < sc->max_aggregation_size) {
11301 tpa_agg_size = sc->max_aggregation_size;
11302 }
11303
11304 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11305 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11306 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11307 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11308
11309 /* pause - not for e1 */
11310 if (!CHIP_IS_E1(sc)) {
11311 pause->bd_th_lo = BD_TH_LO(sc);
11312 pause->bd_th_hi = BD_TH_HI(sc);
11313
11314 pause->rcq_th_lo = RCQ_TH_LO(sc);
11315 pause->rcq_th_hi = RCQ_TH_HI(sc);
11316
11317 /* validate rings have enough entries to cross high thresholds */
11318 if (sc->dropless_fc &&
11319 pause->bd_th_hi + FW_PREFETCH_CNT >
11320 sc->rx_ring_size) {
11321 BLOGW(sc, "rx bd ring threshold limit\n");
11322 }
11323
11324 if (sc->dropless_fc &&
11325 pause->rcq_th_hi + FW_PREFETCH_CNT >
11326 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11327 BLOGW(sc, "rcq ring threshold limit\n");
11328 }
11329
11330 pause->pri_map = 1;
11331 }
11332
11333 /* rxq setup */
11334 rxq_init->dscr_map = fp->rx_dma.paddr;
11335 rxq_init->sge_map = fp->rx_sge_dma.paddr;
11336 rxq_init->rcq_map = fp->rcq_dma.paddr;
11337 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11338
11339 /*
11340 * This should be a maximum number of data bytes that may be
11341 * placed on the BD (not including paddings).
11342 */
11343 rxq_init->buf_sz = (fp->rx_buf_size -
11344 IP_HEADER_ALIGNMENT_PADDING);
11345
11346 rxq_init->cl_qzone_id = fp->cl_qzone_id;
11347 rxq_init->tpa_agg_sz = tpa_agg_size;
11348 rxq_init->sge_buf_sz = sge_sz;
11349 rxq_init->max_sges_pkt = max_sge;
11350 rxq_init->rss_engine_id = SC_FUNC(sc);
11351 rxq_init->mcast_engine_id = SC_FUNC(sc);
11352
11353 /*
11354 * Maximum number or simultaneous TPA aggregation for this Queue.
11355 * For PF Clients it should be the maximum available number.
11356 * VF driver(s) may want to define it to a smaller value.
11357 */
11358 rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11359
11360 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11361 rxq_init->fw_sb_id = fp->fw_sb_id;
11362
11363 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11364
11365 /*
11366 * configure silent vlan removal
11367 * if multi function mode is afex, then mask default vlan
11368 */
11369 if (IS_MF_AFEX(sc)) {
11370 rxq_init->silent_removal_value =
11371 sc->devinfo.mf_info.afex_def_vlan_tag;
11372 rxq_init->silent_removal_mask = EVL_VLID_MASK;
11373 }
11374 }
11375
11376 static void
bxe_pf_tx_q_prep(struct bxe_softc * sc,struct bxe_fastpath * fp,struct ecore_txq_setup_params * txq_init,uint8_t cos)11377 bxe_pf_tx_q_prep(struct bxe_softc *sc,
11378 struct bxe_fastpath *fp,
11379 struct ecore_txq_setup_params *txq_init,
11380 uint8_t cos)
11381 {
11382 /*
11383 * XXX If multiple CoS is ever supported then each fastpath structure
11384 * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11385 * fp->txdata[cos]->tx_dma.paddr;
11386 */
11387 txq_init->dscr_map = fp->tx_dma.paddr;
11388 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11389 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11390 txq_init->fw_sb_id = fp->fw_sb_id;
11391
11392 /*
11393 * set the TSS leading client id for TX classfication to the
11394 * leading RSS client id
11395 */
11396 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11397 }
11398
11399 /*
11400 * This function performs 2 steps in a queue state machine:
11401 * 1) RESET->INIT
11402 * 2) INIT->SETUP
11403 */
11404 static int
bxe_setup_queue(struct bxe_softc * sc,struct bxe_fastpath * fp,uint8_t leading)11405 bxe_setup_queue(struct bxe_softc *sc,
11406 struct bxe_fastpath *fp,
11407 uint8_t leading)
11408 {
11409 struct ecore_queue_state_params q_params = { NULL };
11410 struct ecore_queue_setup_params *setup_params =
11411 &q_params.params.setup;
11412 int rc;
11413
11414 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11415
11416 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11417
11418 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11419
11420 /* we want to wait for completion in this context */
11421 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11422
11423 /* prepare the INIT parameters */
11424 bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11425
11426 /* Set the command */
11427 q_params.cmd = ECORE_Q_CMD_INIT;
11428
11429 /* Change the state to INIT */
11430 rc = ecore_queue_state_change(sc, &q_params);
11431 if (rc) {
11432 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11433 return (rc);
11434 }
11435
11436 BLOGD(sc, DBG_LOAD, "init complete\n");
11437
11438 /* now move the Queue to the SETUP state */
11439 memset(setup_params, 0, sizeof(*setup_params));
11440
11441 /* set Queue flags */
11442 setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11443
11444 /* set general SETUP parameters */
11445 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11446 FIRST_TX_COS_INDEX);
11447
11448 bxe_pf_rx_q_prep(sc, fp,
11449 &setup_params->pause_params,
11450 &setup_params->rxq_params);
11451
11452 bxe_pf_tx_q_prep(sc, fp,
11453 &setup_params->txq_params,
11454 FIRST_TX_COS_INDEX);
11455
11456 /* Set the command */
11457 q_params.cmd = ECORE_Q_CMD_SETUP;
11458
11459 /* change the state to SETUP */
11460 rc = ecore_queue_state_change(sc, &q_params);
11461 if (rc) {
11462 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11463 return (rc);
11464 }
11465
11466 return (rc);
11467 }
11468
11469 static int
bxe_setup_leading(struct bxe_softc * sc)11470 bxe_setup_leading(struct bxe_softc *sc)
11471 {
11472 return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11473 }
11474
11475 static int
bxe_config_rss_pf(struct bxe_softc * sc,struct ecore_rss_config_obj * rss_obj,uint8_t config_hash)11476 bxe_config_rss_pf(struct bxe_softc *sc,
11477 struct ecore_rss_config_obj *rss_obj,
11478 uint8_t config_hash)
11479 {
11480 struct ecore_config_rss_params params = { NULL };
11481 int i;
11482
11483 /*
11484 * Although RSS is meaningless when there is a single HW queue we
11485 * still need it enabled in order to have HW Rx hash generated.
11486 */
11487
11488 params.rss_obj = rss_obj;
11489
11490 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
11491
11492 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags);
11493
11494 /* RSS configuration */
11495 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags);
11496 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags);
11497 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags);
11498 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags);
11499 if (rss_obj->udp_rss_v4) {
11500 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags);
11501 }
11502 if (rss_obj->udp_rss_v6) {
11503 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags);
11504 }
11505
11506 /* Hash bits */
11507 params.rss_result_mask = MULTI_MASK;
11508
11509 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11510
11511 if (config_hash) {
11512 /* RSS keys */
11513 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11514 params.rss_key[i] = arc4random();
11515 }
11516
11517 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags);
11518 }
11519
11520 return (ecore_config_rss(sc, ¶ms));
11521 }
11522
11523 static int
bxe_config_rss_eth(struct bxe_softc * sc,uint8_t config_hash)11524 bxe_config_rss_eth(struct bxe_softc *sc,
11525 uint8_t config_hash)
11526 {
11527 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11528 }
11529
11530 static int
bxe_init_rss_pf(struct bxe_softc * sc)11531 bxe_init_rss_pf(struct bxe_softc *sc)
11532 {
11533 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11534 int i;
11535
11536 /*
11537 * Prepare the initial contents of the indirection table if
11538 * RSS is enabled
11539 */
11540 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11541 sc->rss_conf_obj.ind_table[i] =
11542 (sc->fp->cl_id + (i % num_eth_queues));
11543 }
11544
11545 if (sc->udp_rss) {
11546 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11547 }
11548
11549 /*
11550 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11551 * per-port, so if explicit configuration is needed, do it only
11552 * for a PMF.
11553 *
11554 * For 57712 and newer it's a per-function configuration.
11555 */
11556 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11557 }
11558
11559 static int
bxe_set_mac_one(struct bxe_softc * sc,uint8_t * mac,struct ecore_vlan_mac_obj * obj,uint8_t set,int mac_type,unsigned long * ramrod_flags)11560 bxe_set_mac_one(struct bxe_softc *sc,
11561 uint8_t *mac,
11562 struct ecore_vlan_mac_obj *obj,
11563 uint8_t set,
11564 int mac_type,
11565 unsigned long *ramrod_flags)
11566 {
11567 struct ecore_vlan_mac_ramrod_params ramrod_param;
11568 int rc;
11569
11570 memset(&ramrod_param, 0, sizeof(ramrod_param));
11571
11572 /* fill in general parameters */
11573 ramrod_param.vlan_mac_obj = obj;
11574 ramrod_param.ramrod_flags = *ramrod_flags;
11575
11576 /* fill a user request section if needed */
11577 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11578 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11579
11580 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11581
11582 /* Set the command: ADD or DEL */
11583 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11584 ECORE_VLAN_MAC_DEL;
11585 }
11586
11587 rc = ecore_config_vlan_mac(sc, &ramrod_param);
11588
11589 if (rc == ECORE_EXISTS) {
11590 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11591 /* do not treat adding same MAC as error */
11592 rc = 0;
11593 } else if (rc < 0) {
11594 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11595 }
11596
11597 return (rc);
11598 }
11599
11600 static int
bxe_set_eth_mac(struct bxe_softc * sc,uint8_t set)11601 bxe_set_eth_mac(struct bxe_softc *sc,
11602 uint8_t set)
11603 {
11604 unsigned long ramrod_flags = 0;
11605
11606 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11607
11608 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11609
11610 /* Eth MAC is set on RSS leading client (fp[0]) */
11611 return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11612 &sc->sp_objs->mac_obj,
11613 set, ECORE_ETH_MAC, &ramrod_flags));
11614 }
11615
11616 static int
bxe_get_cur_phy_idx(struct bxe_softc * sc)11617 bxe_get_cur_phy_idx(struct bxe_softc *sc)
11618 {
11619 uint32_t sel_phy_idx = 0;
11620
11621 if (sc->link_params.num_phys <= 1) {
11622 return (ELINK_INT_PHY);
11623 }
11624
11625 if (sc->link_vars.link_up) {
11626 sel_phy_idx = ELINK_EXT_PHY1;
11627 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11628 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11629 (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11630 ELINK_SUPPORTED_FIBRE))
11631 sel_phy_idx = ELINK_EXT_PHY2;
11632 } else {
11633 switch (elink_phy_selection(&sc->link_params)) {
11634 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11635 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11636 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11637 sel_phy_idx = ELINK_EXT_PHY1;
11638 break;
11639 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11640 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11641 sel_phy_idx = ELINK_EXT_PHY2;
11642 break;
11643 }
11644 }
11645
11646 return (sel_phy_idx);
11647 }
11648
11649 static int
bxe_get_link_cfg_idx(struct bxe_softc * sc)11650 bxe_get_link_cfg_idx(struct bxe_softc *sc)
11651 {
11652 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11653
11654 /*
11655 * The selected activated PHY is always after swapping (in case PHY
11656 * swapping is enabled). So when swapping is enabled, we need to reverse
11657 * the configuration
11658 */
11659
11660 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11661 if (sel_phy_idx == ELINK_EXT_PHY1)
11662 sel_phy_idx = ELINK_EXT_PHY2;
11663 else if (sel_phy_idx == ELINK_EXT_PHY2)
11664 sel_phy_idx = ELINK_EXT_PHY1;
11665 }
11666
11667 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11668 }
11669
11670 static void
bxe_set_requested_fc(struct bxe_softc * sc)11671 bxe_set_requested_fc(struct bxe_softc *sc)
11672 {
11673 /*
11674 * Initialize link parameters structure variables
11675 * It is recommended to turn off RX FC for jumbo frames
11676 * for better performance
11677 */
11678 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11679 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11680 } else {
11681 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11682 }
11683 }
11684
11685 static void
bxe_calc_fc_adv(struct bxe_softc * sc)11686 bxe_calc_fc_adv(struct bxe_softc *sc)
11687 {
11688 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11689
11690
11691 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11692 ADVERTISED_Pause);
11693
11694 switch (sc->link_vars.ieee_fc &
11695 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11696
11697 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11698 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11699 ADVERTISED_Pause);
11700 break;
11701
11702 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11703 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11704 break;
11705
11706 default:
11707 break;
11708
11709 }
11710 }
11711
11712 static uint16_t
bxe_get_mf_speed(struct bxe_softc * sc)11713 bxe_get_mf_speed(struct bxe_softc *sc)
11714 {
11715 uint16_t line_speed = sc->link_vars.line_speed;
11716 if (IS_MF(sc)) {
11717 uint16_t maxCfg =
11718 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11719
11720 /* calculate the current MAX line speed limit for the MF devices */
11721 if (IS_MF_SI(sc)) {
11722 line_speed = (line_speed * maxCfg) / 100;
11723 } else { /* SD mode */
11724 uint16_t vn_max_rate = maxCfg * 100;
11725
11726 if (vn_max_rate < line_speed) {
11727 line_speed = vn_max_rate;
11728 }
11729 }
11730 }
11731
11732 return (line_speed);
11733 }
11734
11735 static void
bxe_fill_report_data(struct bxe_softc * sc,struct bxe_link_report_data * data)11736 bxe_fill_report_data(struct bxe_softc *sc,
11737 struct bxe_link_report_data *data)
11738 {
11739 uint16_t line_speed = bxe_get_mf_speed(sc);
11740
11741 memset(data, 0, sizeof(*data));
11742
11743 /* fill the report data with the effective line speed */
11744 data->line_speed = line_speed;
11745
11746 /* Link is down */
11747 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11748 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11749 }
11750
11751 /* Full DUPLEX */
11752 if (sc->link_vars.duplex == DUPLEX_FULL) {
11753 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11754 }
11755
11756 /* Rx Flow Control is ON */
11757 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11758 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11759 }
11760
11761 /* Tx Flow Control is ON */
11762 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11763 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11764 }
11765 }
11766
11767 /* report link status to OS, should be called under phy_lock */
11768 static void
bxe_link_report_locked(struct bxe_softc * sc)11769 bxe_link_report_locked(struct bxe_softc *sc)
11770 {
11771 struct bxe_link_report_data cur_data;
11772
11773 /* reread mf_cfg */
11774 if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11775 bxe_read_mf_cfg(sc);
11776 }
11777
11778 /* Read the current link report info */
11779 bxe_fill_report_data(sc, &cur_data);
11780
11781 /* Don't report link down or exactly the same link status twice */
11782 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11783 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11784 &sc->last_reported_link.link_report_flags) &&
11785 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11786 &cur_data.link_report_flags))) {
11787 return;
11788 }
11789
11790 ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
11791 cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
11792 sc->link_cnt++;
11793
11794 ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
11795 /* report new link params and remember the state for the next time */
11796 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11797
11798 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11799 &cur_data.link_report_flags)) {
11800 if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11801 } else {
11802 const char *duplex;
11803 const char *flow;
11804
11805 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11806 &cur_data.link_report_flags)) {
11807 duplex = "full";
11808 ELINK_DEBUG_P0(sc, "link set to full duplex\n");
11809 } else {
11810 duplex = "half";
11811 ELINK_DEBUG_P0(sc, "link set to half duplex\n");
11812 }
11813
11814 /*
11815 * Handle the FC at the end so that only these flags would be
11816 * possibly set. This way we may easily check if there is no FC
11817 * enabled.
11818 */
11819 if (cur_data.link_report_flags) {
11820 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11821 &cur_data.link_report_flags) &&
11822 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11823 &cur_data.link_report_flags)) {
11824 flow = "ON - receive & transmit";
11825 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11826 &cur_data.link_report_flags) &&
11827 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11828 &cur_data.link_report_flags)) {
11829 flow = "ON - receive";
11830 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11831 &cur_data.link_report_flags) &&
11832 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11833 &cur_data.link_report_flags)) {
11834 flow = "ON - transmit";
11835 } else {
11836 flow = "none"; /* possible? */
11837 }
11838 } else {
11839 flow = "none";
11840 }
11841
11842 if_link_state_change(sc->ifp, LINK_STATE_UP);
11843 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11844 cur_data.line_speed, duplex, flow);
11845 }
11846 }
11847
11848 static void
bxe_link_report(struct bxe_softc * sc)11849 bxe_link_report(struct bxe_softc *sc)
11850 {
11851 bxe_acquire_phy_lock(sc);
11852 bxe_link_report_locked(sc);
11853 bxe_release_phy_lock(sc);
11854 }
11855
11856 static void
bxe_link_status_update(struct bxe_softc * sc)11857 bxe_link_status_update(struct bxe_softc *sc)
11858 {
11859 if (sc->state != BXE_STATE_OPEN) {
11860 return;
11861 }
11862
11863 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11864 elink_link_status_update(&sc->link_params, &sc->link_vars);
11865 } else {
11866 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11867 ELINK_SUPPORTED_10baseT_Full |
11868 ELINK_SUPPORTED_100baseT_Half |
11869 ELINK_SUPPORTED_100baseT_Full |
11870 ELINK_SUPPORTED_1000baseT_Full |
11871 ELINK_SUPPORTED_2500baseX_Full |
11872 ELINK_SUPPORTED_10000baseT_Full |
11873 ELINK_SUPPORTED_TP |
11874 ELINK_SUPPORTED_FIBRE |
11875 ELINK_SUPPORTED_Autoneg |
11876 ELINK_SUPPORTED_Pause |
11877 ELINK_SUPPORTED_Asym_Pause);
11878 sc->port.advertising[0] = sc->port.supported[0];
11879
11880 sc->link_params.sc = sc;
11881 sc->link_params.port = SC_PORT(sc);
11882 sc->link_params.req_duplex[0] = DUPLEX_FULL;
11883 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
11884 sc->link_params.req_line_speed[0] = SPEED_10000;
11885 sc->link_params.speed_cap_mask[0] = 0x7f0000;
11886 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
11887
11888 if (CHIP_REV_IS_FPGA(sc)) {
11889 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
11890 sc->link_vars.line_speed = ELINK_SPEED_1000;
11891 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11892 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11893 } else {
11894 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
11895 sc->link_vars.line_speed = ELINK_SPEED_10000;
11896 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11897 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11898 }
11899
11900 sc->link_vars.link_up = 1;
11901
11902 sc->link_vars.duplex = DUPLEX_FULL;
11903 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11904
11905 if (IS_PF(sc)) {
11906 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11907 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11908 bxe_link_report(sc);
11909 }
11910 }
11911
11912 if (IS_PF(sc)) {
11913 if (sc->link_vars.link_up) {
11914 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11915 } else {
11916 bxe_stats_handle(sc, STATS_EVENT_STOP);
11917 }
11918 bxe_link_report(sc);
11919 } else {
11920 bxe_link_report(sc);
11921 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11922 }
11923 }
11924
11925 static int
bxe_initial_phy_init(struct bxe_softc * sc,int load_mode)11926 bxe_initial_phy_init(struct bxe_softc *sc,
11927 int load_mode)
11928 {
11929 int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11930 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11931 struct elink_params *lp = &sc->link_params;
11932
11933 bxe_set_requested_fc(sc);
11934
11935 if (CHIP_REV_IS_SLOW(sc)) {
11936 uint32_t bond = CHIP_BOND_ID(sc);
11937 uint32_t feat = 0;
11938
11939 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11940 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11941 } else if (bond & 0x4) {
11942 if (CHIP_IS_E3(sc)) {
11943 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11944 } else {
11945 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11946 }
11947 } else if (bond & 0x8) {
11948 if (CHIP_IS_E3(sc)) {
11949 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11950 } else {
11951 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11952 }
11953 }
11954
11955 /* disable EMAC for E3 and above */
11956 if (bond & 0x2) {
11957 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11958 }
11959
11960 sc->link_params.feature_config_flags |= feat;
11961 }
11962
11963 bxe_acquire_phy_lock(sc);
11964
11965 if (load_mode == LOAD_DIAG) {
11966 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11967 /* Prefer doing PHY loopback at 10G speed, if possible */
11968 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11969 if (lp->speed_cap_mask[cfg_idx] &
11970 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11971 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11972 } else {
11973 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11974 }
11975 }
11976 }
11977
11978 if (load_mode == LOAD_LOOPBACK_EXT) {
11979 lp->loopback_mode = ELINK_LOOPBACK_EXT;
11980 }
11981
11982 rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11983
11984 bxe_release_phy_lock(sc);
11985
11986 bxe_calc_fc_adv(sc);
11987
11988 if (sc->link_vars.link_up) {
11989 bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11990 bxe_link_report(sc);
11991 }
11992
11993 if (!CHIP_REV_IS_SLOW(sc)) {
11994 bxe_periodic_start(sc);
11995 }
11996
11997 sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
11998 return (rc);
11999 }
12000
12001 static u_int
bxe_push_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)12002 bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12003 {
12004 struct ecore_mcast_list_elem *mc_mac = arg;
12005
12006 mc_mac += cnt;
12007 mc_mac->mac = (uint8_t *)LLADDR(sdl);
12008
12009 return (1);
12010 }
12011
12012 static int
bxe_init_mcast_macs_list(struct bxe_softc * sc,struct ecore_mcast_ramrod_params * p)12013 bxe_init_mcast_macs_list(struct bxe_softc *sc,
12014 struct ecore_mcast_ramrod_params *p)
12015 {
12016 if_t ifp = sc->ifp;
12017 int mc_count;
12018 struct ecore_mcast_list_elem *mc_mac;
12019
12020 ECORE_LIST_INIT(&p->mcast_list);
12021 p->mcast_list_len = 0;
12022
12023 /* XXXGL: multicast count may change later */
12024 mc_count = if_llmaddr_count(ifp);
12025
12026 if (!mc_count) {
12027 return (0);
12028 }
12029
12030 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12031 (M_NOWAIT | M_ZERO));
12032 if (!mc_mac) {
12033 BLOGE(sc, "Failed to allocate temp mcast list\n");
12034 return (-1);
12035 }
12036 bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12037 if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac);
12038
12039 for (int i = 0; i < mc_count; i ++) {
12040 ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list);
12041 BLOGD(sc, DBG_LOAD,
12042 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n",
12043 mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2],
12044 mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5],
12045 mc_count);
12046 }
12047
12048 p->mcast_list_len = mc_count;
12049
12050 return (0);
12051 }
12052
12053 static void
bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params * p)12054 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12055 {
12056 struct ecore_mcast_list_elem *mc_mac =
12057 ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12058 struct ecore_mcast_list_elem,
12059 link);
12060
12061 if (mc_mac) {
12062 /* only a single free as all mc_macs are in the same heap array */
12063 free(mc_mac, M_DEVBUF);
12064 }
12065 }
12066 static int
bxe_set_mc_list(struct bxe_softc * sc)12067 bxe_set_mc_list(struct bxe_softc *sc)
12068 {
12069 struct ecore_mcast_ramrod_params rparam = { NULL };
12070 int rc = 0;
12071
12072 rparam.mcast_obj = &sc->mcast_obj;
12073
12074 BXE_MCAST_LOCK(sc);
12075
12076 /* first, clear all configured multicast MACs */
12077 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12078 if (rc < 0) {
12079 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12080 /* Manual backport parts of FreeBSD upstream r284470. */
12081 BXE_MCAST_UNLOCK(sc);
12082 return (rc);
12083 }
12084
12085 /* configure a new MACs list */
12086 rc = bxe_init_mcast_macs_list(sc, &rparam);
12087 if (rc) {
12088 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12089 BXE_MCAST_UNLOCK(sc);
12090 return (rc);
12091 }
12092
12093 /* Now add the new MACs */
12094 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12095 if (rc < 0) {
12096 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12097 }
12098
12099 bxe_free_mcast_macs_list(&rparam);
12100
12101 BXE_MCAST_UNLOCK(sc);
12102
12103 return (rc);
12104 }
12105
12106 struct bxe_set_addr_ctx {
12107 struct bxe_softc *sc;
12108 unsigned long ramrod_flags;
12109 int rc;
12110 };
12111
12112 static u_int
bxe_set_addr(void * arg,struct sockaddr_dl * sdl,u_int cnt)12113 bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12114 {
12115 struct bxe_set_addr_ctx *ctx = arg;
12116 struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj;
12117 int rc;
12118
12119 if (ctx->rc < 0)
12120 return (0);
12121
12122 rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE,
12123 ECORE_UC_LIST_MAC, &ctx->ramrod_flags);
12124
12125 /* do not treat adding same MAC as an error */
12126 if (rc == -EEXIST)
12127 BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12128 else if (rc < 0) {
12129 BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc);
12130 ctx->rc = rc;
12131 }
12132
12133 return (1);
12134 }
12135
12136 static int
bxe_set_uc_list(struct bxe_softc * sc)12137 bxe_set_uc_list(struct bxe_softc *sc)
12138 {
12139 if_t ifp = sc->ifp;
12140 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12141 struct bxe_set_addr_ctx ctx = { sc, 0, 0 };
12142 int rc;
12143
12144 /* first schedule a cleanup up of old configuration */
12145 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12146 if (rc < 0) {
12147 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12148 return (rc);
12149 }
12150
12151 if_foreach_lladdr(ifp, bxe_set_addr, &ctx);
12152 if (ctx.rc < 0)
12153 return (ctx.rc);
12154
12155 /* Execute the pending commands */
12156 bit_set(&ctx.ramrod_flags, RAMROD_CONT);
12157 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12158 ECORE_UC_LIST_MAC, &ctx.ramrod_flags));
12159 }
12160
12161 static void
bxe_set_rx_mode(struct bxe_softc * sc)12162 bxe_set_rx_mode(struct bxe_softc *sc)
12163 {
12164 if_t ifp = sc->ifp;
12165 uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12166
12167 if (sc->state != BXE_STATE_OPEN) {
12168 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12169 return;
12170 }
12171
12172 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12173
12174 if (if_getflags(ifp) & IFF_PROMISC) {
12175 rx_mode = BXE_RX_MODE_PROMISC;
12176 } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12177 (if_llmaddr_count(ifp) > BXE_MAX_MULTICAST &&
12178 CHIP_IS_E1(sc))) {
12179 rx_mode = BXE_RX_MODE_ALLMULTI;
12180 } else {
12181 if (IS_PF(sc)) {
12182 /* some multicasts */
12183 if (bxe_set_mc_list(sc) < 0) {
12184 rx_mode = BXE_RX_MODE_ALLMULTI;
12185 }
12186 if (bxe_set_uc_list(sc) < 0) {
12187 rx_mode = BXE_RX_MODE_PROMISC;
12188 }
12189 }
12190 }
12191
12192 sc->rx_mode = rx_mode;
12193
12194 /* schedule the rx_mode command */
12195 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12196 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12197 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12198 return;
12199 }
12200
12201 if (IS_PF(sc)) {
12202 bxe_set_storm_rx_mode(sc);
12203 }
12204 }
12205
12206
12207 /* update flags in shmem */
12208 static void
bxe_update_drv_flags(struct bxe_softc * sc,uint32_t flags,uint32_t set)12209 bxe_update_drv_flags(struct bxe_softc *sc,
12210 uint32_t flags,
12211 uint32_t set)
12212 {
12213 uint32_t drv_flags;
12214
12215 if (SHMEM2_HAS(sc, drv_flags)) {
12216 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12217 drv_flags = SHMEM2_RD(sc, drv_flags);
12218
12219 if (set) {
12220 SET_FLAGS(drv_flags, flags);
12221 } else {
12222 RESET_FLAGS(drv_flags, flags);
12223 }
12224
12225 SHMEM2_WR(sc, drv_flags, drv_flags);
12226 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12227
12228 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12229 }
12230 }
12231
12232 /* periodic timer callout routine, only runs when the interface is up */
12233
12234 static void
bxe_periodic_callout_func(void * xsc)12235 bxe_periodic_callout_func(void *xsc)
12236 {
12237 struct bxe_softc *sc = (struct bxe_softc *)xsc;
12238 int i;
12239
12240 if (!BXE_CORE_TRYLOCK(sc)) {
12241 /* just bail and try again next time */
12242
12243 if ((sc->state == BXE_STATE_OPEN) &&
12244 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12245 /* schedule the next periodic callout */
12246 callout_reset(&sc->periodic_callout, hz,
12247 bxe_periodic_callout_func, sc);
12248 }
12249
12250 return;
12251 }
12252
12253 if ((sc->state != BXE_STATE_OPEN) ||
12254 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12255 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12256 BXE_CORE_UNLOCK(sc);
12257 return;
12258 }
12259
12260
12261 /* Check for TX timeouts on any fastpath. */
12262 FOR_EACH_QUEUE(sc, i) {
12263 if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12264 /* Ruh-Roh, chip was reset! */
12265 break;
12266 }
12267 }
12268
12269 if (!CHIP_REV_IS_SLOW(sc)) {
12270 /*
12271 * This barrier is needed to ensure the ordering between the writing
12272 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12273 * the reading here.
12274 */
12275 mb();
12276 if (sc->port.pmf) {
12277 bxe_acquire_phy_lock(sc);
12278 elink_period_func(&sc->link_params, &sc->link_vars);
12279 bxe_release_phy_lock(sc);
12280 }
12281 }
12282
12283 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12284 int mb_idx = SC_FW_MB_IDX(sc);
12285 uint32_t drv_pulse;
12286 uint32_t mcp_pulse;
12287
12288 ++sc->fw_drv_pulse_wr_seq;
12289 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12290
12291 drv_pulse = sc->fw_drv_pulse_wr_seq;
12292 bxe_drv_pulse(sc);
12293
12294 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12295 MCP_PULSE_SEQ_MASK);
12296
12297 /*
12298 * The delta between driver pulse and mcp response should
12299 * be 1 (before mcp response) or 0 (after mcp response).
12300 */
12301 if ((drv_pulse != mcp_pulse) &&
12302 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12303 /* someone lost a heartbeat... */
12304 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12305 drv_pulse, mcp_pulse);
12306 }
12307 }
12308
12309 /* state is BXE_STATE_OPEN */
12310 bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12311
12312 BXE_CORE_UNLOCK(sc);
12313
12314 if ((sc->state == BXE_STATE_OPEN) &&
12315 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12316 /* schedule the next periodic callout */
12317 callout_reset(&sc->periodic_callout, hz,
12318 bxe_periodic_callout_func, sc);
12319 }
12320 }
12321
12322 static void
bxe_periodic_start(struct bxe_softc * sc)12323 bxe_periodic_start(struct bxe_softc *sc)
12324 {
12325 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12326 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12327 }
12328
12329 static void
bxe_periodic_stop(struct bxe_softc * sc)12330 bxe_periodic_stop(struct bxe_softc *sc)
12331 {
12332 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12333 callout_drain(&sc->periodic_callout);
12334 }
12335
12336 void
bxe_parity_recover(struct bxe_softc * sc)12337 bxe_parity_recover(struct bxe_softc *sc)
12338 {
12339 uint8_t global = FALSE;
12340 uint32_t error_recovered, error_unrecovered;
12341
12342
12343 if ((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12344 (sc->state == BXE_STATE_ERROR)) {
12345 BLOGE(sc, "RECOVERY failed, "
12346 "stack notified driver is NOT running! "
12347 "Please reboot/power cycle the system.\n");
12348 return;
12349 }
12350
12351 while (1) {
12352 BLOGD(sc, DBG_SP,
12353 "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n",
12354 __func__, sc, sc->state, sc->recovery_state, sc->error_status);
12355
12356 switch(sc->recovery_state) {
12357
12358 case BXE_RECOVERY_INIT:
12359 bxe_chk_parity_attn(sc, &global, FALSE);
12360
12361 if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ||
12362 (sc->error_status & BXE_ERR_MCP_ASSERT) ||
12363 (sc->error_status & BXE_ERR_GLOBAL)) {
12364
12365 BXE_CORE_LOCK(sc);
12366 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12367 bxe_periodic_stop(sc);
12368 }
12369 bxe_nic_unload(sc, UNLOAD_RECOVERY, false);
12370 sc->state = BXE_STATE_ERROR;
12371 sc->recovery_state = BXE_RECOVERY_FAILED;
12372 BLOGE(sc, " No Recovery tried for error 0x%x"
12373 " stack notified driver is NOT running!"
12374 " Please reboot/power cycle the system.\n",
12375 sc->error_status);
12376 BXE_CORE_UNLOCK(sc);
12377 return;
12378 }
12379
12380
12381 /* Try to get a LEADER_LOCK HW lock */
12382 if (bxe_trylock_leader_lock(sc)) {
12383
12384 bxe_set_reset_in_progress(sc);
12385 /*
12386 * Check if there is a global attention and if
12387 * there was a global attention, set the global
12388 * reset bit.
12389 */
12390 if (global) {
12391 bxe_set_reset_global(sc);
12392 }
12393 sc->is_leader = 1;
12394 }
12395
12396 /* If interface has been removed - break */
12397
12398 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12399 bxe_periodic_stop(sc);
12400 }
12401
12402 BXE_CORE_LOCK(sc);
12403 bxe_nic_unload(sc,UNLOAD_RECOVERY, false);
12404 sc->recovery_state = BXE_RECOVERY_WAIT;
12405 BXE_CORE_UNLOCK(sc);
12406
12407 /*
12408 * Ensure "is_leader", MCP command sequence and
12409 * "recovery_state" update values are seen on other
12410 * CPUs.
12411 */
12412 mb();
12413 break;
12414 case BXE_RECOVERY_WAIT:
12415
12416 if (sc->is_leader) {
12417 int other_engine = SC_PATH(sc) ? 0 : 1;
12418 bool other_load_status =
12419 bxe_get_load_status(sc, other_engine);
12420 bool load_status =
12421 bxe_get_load_status(sc, SC_PATH(sc));
12422 global = bxe_reset_is_global(sc);
12423
12424 /*
12425 * In case of a parity in a global block, let
12426 * the first leader that performs a
12427 * leader_reset() reset the global blocks in
12428 * order to clear global attentions. Otherwise
12429 * the gates will remain closed for that
12430 * engine.
12431 */
12432 if (load_status ||
12433 (global && other_load_status)) {
12434 /*
12435 * Wait until all other functions get
12436 * down.
12437 */
12438 taskqueue_enqueue_timeout(taskqueue_thread,
12439 &sc->sp_err_timeout_task, hz/10);
12440 return;
12441 } else {
12442 /*
12443 * If all other functions got down
12444 * try to bring the chip back to
12445 * normal. In any case it's an exit
12446 * point for a leader.
12447 */
12448 if (bxe_leader_reset(sc)) {
12449 BLOGE(sc, "RECOVERY failed, "
12450 "stack notified driver is NOT running!\n");
12451 sc->recovery_state = BXE_RECOVERY_FAILED;
12452 sc->state = BXE_STATE_ERROR;
12453 mb();
12454 return;
12455 }
12456
12457 /*
12458 * If we are here, means that the
12459 * leader has succeeded and doesn't
12460 * want to be a leader any more. Try
12461 * to continue as a none-leader.
12462 */
12463 break;
12464 }
12465
12466 } else { /* non-leader */
12467 if (!bxe_reset_is_done(sc, SC_PATH(sc))) {
12468 /*
12469 * Try to get a LEADER_LOCK HW lock as
12470 * long as a former leader may have
12471 * been unloaded by the user or
12472 * released a leadership by another
12473 * reason.
12474 */
12475 if (bxe_trylock_leader_lock(sc)) {
12476 /*
12477 * I'm a leader now! Restart a
12478 * switch case.
12479 */
12480 sc->is_leader = 1;
12481 break;
12482 }
12483
12484 taskqueue_enqueue_timeout(taskqueue_thread,
12485 &sc->sp_err_timeout_task, hz/10);
12486 return;
12487
12488 } else {
12489 /*
12490 * If there was a global attention, wait
12491 * for it to be cleared.
12492 */
12493 if (bxe_reset_is_global(sc)) {
12494 taskqueue_enqueue_timeout(taskqueue_thread,
12495 &sc->sp_err_timeout_task, hz/10);
12496 return;
12497 }
12498
12499 error_recovered =
12500 sc->eth_stats.recoverable_error;
12501 error_unrecovered =
12502 sc->eth_stats.unrecoverable_error;
12503 BXE_CORE_LOCK(sc);
12504 sc->recovery_state =
12505 BXE_RECOVERY_NIC_LOADING;
12506 if (bxe_nic_load(sc, LOAD_NORMAL)) {
12507 error_unrecovered++;
12508 sc->recovery_state = BXE_RECOVERY_FAILED;
12509 sc->state = BXE_STATE_ERROR;
12510 BLOGE(sc, "Recovery is NOT successful, "
12511 " state=0x%x recovery_state=0x%x error=%x\n",
12512 sc->state, sc->recovery_state, sc->error_status);
12513 sc->error_status = 0;
12514 } else {
12515 sc->recovery_state =
12516 BXE_RECOVERY_DONE;
12517 error_recovered++;
12518 BLOGI(sc, "Recovery is successful from errors %x,"
12519 " state=0x%x"
12520 " recovery_state=0x%x \n", sc->error_status,
12521 sc->state, sc->recovery_state);
12522 mb();
12523 }
12524 sc->error_status = 0;
12525 BXE_CORE_UNLOCK(sc);
12526 sc->eth_stats.recoverable_error =
12527 error_recovered;
12528 sc->eth_stats.unrecoverable_error =
12529 error_unrecovered;
12530
12531 return;
12532 }
12533 }
12534 default:
12535 return;
12536 }
12537 }
12538 }
12539 void
bxe_handle_error(struct bxe_softc * sc)12540 bxe_handle_error(struct bxe_softc * sc)
12541 {
12542
12543 if(sc->recovery_state == BXE_RECOVERY_WAIT) {
12544 return;
12545 }
12546 if(sc->error_status) {
12547 if (sc->state == BXE_STATE_OPEN) {
12548 bxe_int_disable(sc);
12549 }
12550 if (sc->link_vars.link_up) {
12551 if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12552 }
12553 sc->recovery_state = BXE_RECOVERY_INIT;
12554 BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n",
12555 sc->unit, sc->error_status, sc->recovery_state);
12556 bxe_parity_recover(sc);
12557 }
12558 }
12559
12560 static void
bxe_sp_err_timeout_task(void * arg,int pending)12561 bxe_sp_err_timeout_task(void *arg, int pending)
12562 {
12563
12564 struct bxe_softc *sc = (struct bxe_softc *)arg;
12565
12566 BLOGD(sc, DBG_SP,
12567 "%s state = 0x%x rec state=0x%x error_status=%x\n",
12568 __func__, sc->state, sc->recovery_state, sc->error_status);
12569
12570 if((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12571 (sc->state == BXE_STATE_ERROR)) {
12572 return;
12573 }
12574 /* if can be taken */
12575 if ((sc->error_status) && (sc->trigger_grcdump)) {
12576 bxe_grc_dump(sc);
12577 }
12578 if (sc->recovery_state != BXE_RECOVERY_DONE) {
12579 bxe_handle_error(sc);
12580 bxe_parity_recover(sc);
12581 } else if (sc->error_status) {
12582 bxe_handle_error(sc);
12583 }
12584
12585 return;
12586 }
12587
12588 /* start the controller */
12589 static __noinline int
bxe_nic_load(struct bxe_softc * sc,int load_mode)12590 bxe_nic_load(struct bxe_softc *sc,
12591 int load_mode)
12592 {
12593 uint32_t val;
12594 int load_code = 0;
12595 int i, rc = 0;
12596
12597 BXE_CORE_LOCK_ASSERT(sc);
12598
12599 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12600
12601 sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12602
12603 if (IS_PF(sc)) {
12604 /* must be called before memory allocation and HW init */
12605 bxe_ilt_set_info(sc);
12606 }
12607
12608 sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12609
12610 bxe_set_fp_rx_buf_size(sc);
12611
12612 if (bxe_alloc_fp_buffers(sc) != 0) {
12613 BLOGE(sc, "Failed to allocate fastpath memory\n");
12614 sc->state = BXE_STATE_CLOSED;
12615 rc = ENOMEM;
12616 goto bxe_nic_load_error0;
12617 }
12618
12619 if (bxe_alloc_mem(sc) != 0) {
12620 sc->state = BXE_STATE_CLOSED;
12621 rc = ENOMEM;
12622 goto bxe_nic_load_error0;
12623 }
12624
12625 if (bxe_alloc_fw_stats_mem(sc) != 0) {
12626 sc->state = BXE_STATE_CLOSED;
12627 rc = ENOMEM;
12628 goto bxe_nic_load_error0;
12629 }
12630
12631 if (IS_PF(sc)) {
12632 /* set pf load just before approaching the MCP */
12633 bxe_set_pf_load(sc);
12634
12635 /* if MCP exists send load request and analyze response */
12636 if (!BXE_NOMCP(sc)) {
12637 /* attempt to load pf */
12638 if (bxe_nic_load_request(sc, &load_code) != 0) {
12639 sc->state = BXE_STATE_CLOSED;
12640 rc = ENXIO;
12641 goto bxe_nic_load_error1;
12642 }
12643
12644 /* what did the MCP say? */
12645 if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12646 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12647 sc->state = BXE_STATE_CLOSED;
12648 rc = ENXIO;
12649 goto bxe_nic_load_error2;
12650 }
12651 } else {
12652 BLOGI(sc, "Device has no MCP!\n");
12653 load_code = bxe_nic_load_no_mcp(sc);
12654 }
12655
12656 /* mark PMF if applicable */
12657 bxe_nic_load_pmf(sc, load_code);
12658
12659 /* Init Function state controlling object */
12660 bxe_init_func_obj(sc);
12661
12662 /* Initialize HW */
12663 if (bxe_init_hw(sc, load_code) != 0) {
12664 BLOGE(sc, "HW init failed\n");
12665 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12666 sc->state = BXE_STATE_CLOSED;
12667 rc = ENXIO;
12668 goto bxe_nic_load_error2;
12669 }
12670 }
12671
12672 /* set ALWAYS_ALIVE bit in shmem */
12673 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12674 bxe_drv_pulse(sc);
12675 sc->flags |= BXE_NO_PULSE;
12676
12677 /* attach interrupts */
12678 if (bxe_interrupt_attach(sc) != 0) {
12679 sc->state = BXE_STATE_CLOSED;
12680 rc = ENXIO;
12681 goto bxe_nic_load_error2;
12682 }
12683
12684 bxe_nic_init(sc, load_code);
12685
12686 /* Init per-function objects */
12687 if (IS_PF(sc)) {
12688 bxe_init_objs(sc);
12689 // XXX bxe_iov_nic_init(sc);
12690
12691 /* set AFEX default VLAN tag to an invalid value */
12692 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12693 // XXX bxe_nic_load_afex_dcc(sc, load_code);
12694
12695 sc->state = BXE_STATE_OPENING_WAITING_PORT;
12696 rc = bxe_func_start(sc);
12697 if (rc) {
12698 BLOGE(sc, "Function start failed! rc = %d\n", rc);
12699 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12700 sc->state = BXE_STATE_ERROR;
12701 goto bxe_nic_load_error3;
12702 }
12703
12704 /* send LOAD_DONE command to MCP */
12705 if (!BXE_NOMCP(sc)) {
12706 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12707 if (!load_code) {
12708 BLOGE(sc, "MCP response failure, aborting\n");
12709 sc->state = BXE_STATE_ERROR;
12710 rc = ENXIO;
12711 goto bxe_nic_load_error3;
12712 }
12713 }
12714
12715 rc = bxe_setup_leading(sc);
12716 if (rc) {
12717 BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12718 sc->state = BXE_STATE_ERROR;
12719 goto bxe_nic_load_error3;
12720 }
12721
12722 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12723 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12724 if (rc) {
12725 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12726 sc->state = BXE_STATE_ERROR;
12727 goto bxe_nic_load_error3;
12728 }
12729 }
12730
12731 rc = bxe_init_rss_pf(sc);
12732 if (rc) {
12733 BLOGE(sc, "PF RSS init failed\n");
12734 sc->state = BXE_STATE_ERROR;
12735 goto bxe_nic_load_error3;
12736 }
12737 }
12738 /* XXX VF */
12739
12740 /* now when Clients are configured we are ready to work */
12741 sc->state = BXE_STATE_OPEN;
12742
12743 /* Configure a ucast MAC */
12744 if (IS_PF(sc)) {
12745 rc = bxe_set_eth_mac(sc, TRUE);
12746 }
12747 if (rc) {
12748 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12749 sc->state = BXE_STATE_ERROR;
12750 goto bxe_nic_load_error3;
12751 }
12752
12753 if (sc->port.pmf) {
12754 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12755 if (rc) {
12756 sc->state = BXE_STATE_ERROR;
12757 goto bxe_nic_load_error3;
12758 }
12759 }
12760
12761 sc->link_params.feature_config_flags &=
12762 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12763
12764 /* start fast path */
12765
12766 /* Initialize Rx filter */
12767 bxe_set_rx_mode(sc);
12768
12769 /* start the Tx */
12770 switch (/* XXX load_mode */LOAD_OPEN) {
12771 case LOAD_NORMAL:
12772 case LOAD_OPEN:
12773 break;
12774
12775 case LOAD_DIAG:
12776 case LOAD_LOOPBACK_EXT:
12777 sc->state = BXE_STATE_DIAG;
12778 break;
12779
12780 default:
12781 break;
12782 }
12783
12784 if (sc->port.pmf) {
12785 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12786 } else {
12787 bxe_link_status_update(sc);
12788 }
12789
12790 /* start the periodic timer callout */
12791 bxe_periodic_start(sc);
12792
12793 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12794 /* mark driver is loaded in shmem2 */
12795 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12796 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12797 (val |
12798 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12799 DRV_FLAGS_CAPABILITIES_LOADED_L2));
12800 }
12801
12802 /* wait for all pending SP commands to complete */
12803 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12804 BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12805 bxe_periodic_stop(sc);
12806 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12807 return (ENXIO);
12808 }
12809
12810 /* Tell the stack the driver is running! */
12811 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12812
12813 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12814
12815 return (0);
12816
12817 bxe_nic_load_error3:
12818
12819 if (IS_PF(sc)) {
12820 bxe_int_disable_sync(sc, 1);
12821
12822 /* clean out queued objects */
12823 bxe_squeeze_objects(sc);
12824 }
12825
12826 bxe_interrupt_detach(sc);
12827
12828 bxe_nic_load_error2:
12829
12830 if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12831 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12832 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12833 }
12834
12835 sc->port.pmf = 0;
12836
12837 bxe_nic_load_error1:
12838
12839 /* clear pf_load status, as it was already set */
12840 if (IS_PF(sc)) {
12841 bxe_clear_pf_load(sc);
12842 }
12843
12844 bxe_nic_load_error0:
12845
12846 bxe_free_fw_stats_mem(sc);
12847 bxe_free_fp_buffers(sc);
12848 bxe_free_mem(sc);
12849
12850 return (rc);
12851 }
12852
12853 static int
bxe_init_locked(struct bxe_softc * sc)12854 bxe_init_locked(struct bxe_softc *sc)
12855 {
12856 int other_engine = SC_PATH(sc) ? 0 : 1;
12857 uint8_t other_load_status, load_status;
12858 uint8_t global = FALSE;
12859 int rc;
12860
12861 BXE_CORE_LOCK_ASSERT(sc);
12862
12863 /* check if the driver is already running */
12864 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12865 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12866 return (0);
12867 }
12868
12869 if((sc->state == BXE_STATE_ERROR) &&
12870 (sc->recovery_state == BXE_RECOVERY_FAILED)) {
12871 BLOGE(sc, "Initialization not done, "
12872 "as previous recovery failed."
12873 "Reboot/Power-cycle the system\n" );
12874 return (ENXIO);
12875 }
12876
12877
12878 bxe_set_power_state(sc, PCI_PM_D0);
12879
12880 /*
12881 * If parity occurred during the unload, then attentions and/or
12882 * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12883 * loaded on the current engine to complete the recovery. Parity recovery
12884 * is only relevant for PF driver.
12885 */
12886 if (IS_PF(sc)) {
12887 other_load_status = bxe_get_load_status(sc, other_engine);
12888 load_status = bxe_get_load_status(sc, SC_PATH(sc));
12889
12890 if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12891 bxe_chk_parity_attn(sc, &global, TRUE)) {
12892 do {
12893 /*
12894 * If there are attentions and they are in global blocks, set
12895 * the GLOBAL_RESET bit regardless whether it will be this
12896 * function that will complete the recovery or not.
12897 */
12898 if (global) {
12899 bxe_set_reset_global(sc);
12900 }
12901
12902 /*
12903 * Only the first function on the current engine should try
12904 * to recover in open. In case of attentions in global blocks
12905 * only the first in the chip should try to recover.
12906 */
12907 if ((!load_status && (!global || !other_load_status)) &&
12908 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12909 BLOGI(sc, "Recovered during init\n");
12910 break;
12911 }
12912
12913 /* recovery has failed... */
12914 bxe_set_power_state(sc, PCI_PM_D3hot);
12915 sc->recovery_state = BXE_RECOVERY_FAILED;
12916
12917 BLOGE(sc, "Recovery flow hasn't properly "
12918 "completed yet, try again later. "
12919 "If you still see this message after a "
12920 "few retries then power cycle is required.\n");
12921
12922 rc = ENXIO;
12923 goto bxe_init_locked_done;
12924 } while (0);
12925 }
12926 }
12927
12928 sc->recovery_state = BXE_RECOVERY_DONE;
12929
12930 rc = bxe_nic_load(sc, LOAD_OPEN);
12931
12932 bxe_init_locked_done:
12933
12934 if (rc) {
12935 /* Tell the stack the driver is NOT running! */
12936 BLOGE(sc, "Initialization failed, "
12937 "stack notified driver is NOT running!\n");
12938 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12939 }
12940
12941 return (rc);
12942 }
12943
12944 static int
bxe_stop_locked(struct bxe_softc * sc)12945 bxe_stop_locked(struct bxe_softc *sc)
12946 {
12947 BXE_CORE_LOCK_ASSERT(sc);
12948 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12949 }
12950
12951 /*
12952 * Handles controller initialization when called from an unlocked routine.
12953 * ifconfig calls this function.
12954 *
12955 * Returns:
12956 * void
12957 */
12958 static void
bxe_init(void * xsc)12959 bxe_init(void *xsc)
12960 {
12961 struct bxe_softc *sc = (struct bxe_softc *)xsc;
12962
12963 BXE_CORE_LOCK(sc);
12964 bxe_init_locked(sc);
12965 BXE_CORE_UNLOCK(sc);
12966 }
12967
12968 static void
bxe_init_ifnet(struct bxe_softc * sc)12969 bxe_init_ifnet(struct bxe_softc *sc)
12970 {
12971 if_t ifp;
12972 int capabilities;
12973
12974 /* ifconfig entrypoint for media type/status reporting */
12975 ifmedia_init(&sc->ifmedia, IFM_IMASK,
12976 bxe_ifmedia_update,
12977 bxe_ifmedia_status);
12978
12979 /* set the default interface values */
12980 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12981 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12982 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12983
12984 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12985 BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
12986
12987 /* allocate the ifnet structure */
12988 ifp = if_gethandle(IFT_ETHER);
12989
12990 if_setsoftc(ifp, sc);
12991 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12992 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12993 if_setioctlfn(ifp, bxe_ioctl);
12994 if_setstartfn(ifp, bxe_tx_start);
12995 if_setgetcounterfn(ifp, bxe_get_counter);
12996 if_settransmitfn(ifp, bxe_tx_mq_start);
12997 if_setqflushfn(ifp, bxe_mq_flush);
12998 if_setinitfn(ifp, bxe_init);
12999 if_setmtu(ifp, sc->mtu);
13000 if_sethwassist(ifp, (CSUM_IP |
13001 CSUM_TCP |
13002 CSUM_UDP |
13003 CSUM_TSO |
13004 CSUM_TCP_IPV6 |
13005 CSUM_UDP_IPV6));
13006
13007 capabilities =
13008 (IFCAP_VLAN_MTU |
13009 IFCAP_VLAN_HWTAGGING |
13010 IFCAP_VLAN_HWTSO |
13011 IFCAP_VLAN_HWFILTER |
13012 IFCAP_VLAN_HWCSUM |
13013 IFCAP_HWCSUM |
13014 IFCAP_JUMBO_MTU |
13015 IFCAP_LRO |
13016 IFCAP_TSO4 |
13017 IFCAP_TSO6 |
13018 IFCAP_WOL_MAGIC);
13019 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13020 if_setcapenable(ifp, if_getcapabilities(ifp));
13021 if_setbaudrate(ifp, IF_Gbps(10));
13022 /* XXX */
13023 if_setsendqlen(ifp, sc->tx_ring_size);
13024 if_setsendqready(ifp);
13025 /* XXX */
13026
13027 sc->ifp = ifp;
13028
13029 /* attach to the Ethernet interface list */
13030 ether_ifattach(ifp, sc->link_params.mac_addr);
13031
13032 /* Attach driver debugnet methods. */
13033 DEBUGNET_SET(ifp, bxe);
13034 }
13035
13036 static void
bxe_deallocate_bars(struct bxe_softc * sc)13037 bxe_deallocate_bars(struct bxe_softc *sc)
13038 {
13039 int i;
13040
13041 for (i = 0; i < MAX_BARS; i++) {
13042 if (sc->bar[i].resource != NULL) {
13043 bus_release_resource(sc->dev,
13044 SYS_RES_MEMORY,
13045 sc->bar[i].rid,
13046 sc->bar[i].resource);
13047 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13048 i, PCIR_BAR(i));
13049 }
13050 }
13051 }
13052
13053 static int
bxe_allocate_bars(struct bxe_softc * sc)13054 bxe_allocate_bars(struct bxe_softc *sc)
13055 {
13056 u_int flags;
13057 int i;
13058
13059 memset(sc->bar, 0, sizeof(sc->bar));
13060
13061 for (i = 0; i < MAX_BARS; i++) {
13062
13063 /* memory resources reside at BARs 0, 2, 4 */
13064 /* Run `pciconf -lb` to see mappings */
13065 if ((i != 0) && (i != 2) && (i != 4)) {
13066 continue;
13067 }
13068
13069 sc->bar[i].rid = PCIR_BAR(i);
13070
13071 flags = RF_ACTIVE;
13072 if (i == 0) {
13073 flags |= RF_SHAREABLE;
13074 }
13075
13076 if ((sc->bar[i].resource =
13077 bus_alloc_resource_any(sc->dev,
13078 SYS_RES_MEMORY,
13079 &sc->bar[i].rid,
13080 flags)) == NULL) {
13081 return (0);
13082 }
13083
13084 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource);
13085 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13086 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13087
13088 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n",
13089 i, PCIR_BAR(i),
13090 rman_get_start(sc->bar[i].resource),
13091 rman_get_end(sc->bar[i].resource),
13092 rman_get_size(sc->bar[i].resource),
13093 (uintmax_t)sc->bar[i].kva);
13094 }
13095
13096 return (0);
13097 }
13098
13099 static void
bxe_get_function_num(struct bxe_softc * sc)13100 bxe_get_function_num(struct bxe_softc *sc)
13101 {
13102 uint32_t val = 0;
13103
13104 /*
13105 * Read the ME register to get the function number. The ME register
13106 * holds the relative-function number and absolute-function number. The
13107 * absolute-function number appears only in E2 and above. Before that
13108 * these bits always contained zero, therefore we cannot blindly use them.
13109 */
13110
13111 val = REG_RD(sc, BAR_ME_REGISTER);
13112
13113 sc->pfunc_rel =
13114 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13115 sc->path_id =
13116 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13117
13118 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13119 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13120 } else {
13121 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13122 }
13123
13124 BLOGD(sc, DBG_LOAD,
13125 "Relative function %d, Absolute function %d, Path %d\n",
13126 sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13127 }
13128
13129 static uint32_t
bxe_get_shmem_mf_cfg_base(struct bxe_softc * sc)13130 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13131 {
13132 uint32_t shmem2_size;
13133 uint32_t offset;
13134 uint32_t mf_cfg_offset_value;
13135
13136 /* Non 57712 */
13137 offset = (SHMEM_RD(sc, func_mb) +
13138 (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13139
13140 /* 57712 plus */
13141 if (sc->devinfo.shmem2_base != 0) {
13142 shmem2_size = SHMEM2_RD(sc, size);
13143 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13144 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13145 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13146 offset = mf_cfg_offset_value;
13147 }
13148 }
13149 }
13150
13151 return (offset);
13152 }
13153
13154 static uint32_t
bxe_pcie_capability_read(struct bxe_softc * sc,int reg,int width)13155 bxe_pcie_capability_read(struct bxe_softc *sc,
13156 int reg,
13157 int width)
13158 {
13159 int pcie_reg;
13160
13161 /* ensure PCIe capability is enabled */
13162 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13163 if (pcie_reg != 0) {
13164 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13165 return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13166 }
13167 }
13168
13169 BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13170
13171 return (0);
13172 }
13173
13174 static uint8_t
bxe_is_pcie_pending(struct bxe_softc * sc)13175 bxe_is_pcie_pending(struct bxe_softc *sc)
13176 {
13177 return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) &
13178 PCIEM_STA_TRANSACTION_PND);
13179 }
13180
13181 /*
13182 * Walk the PCI capabiites list for the device to find what features are
13183 * supported. These capabilites may be enabled/disabled by firmware so it's
13184 * best to walk the list rather than make assumptions.
13185 */
13186 static void
bxe_probe_pci_caps(struct bxe_softc * sc)13187 bxe_probe_pci_caps(struct bxe_softc *sc)
13188 {
13189 uint16_t link_status;
13190 int reg;
13191
13192 /* check if PCI Power Management is enabled */
13193 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) {
13194 if (reg != 0) {
13195 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13196
13197 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13198 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13199 }
13200 }
13201
13202 link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2);
13203
13204 /* handle PCIe 2.0 workarounds for 57710 */
13205 if (CHIP_IS_E1(sc)) {
13206 /* workaround for 57710 errata E4_57710_27462 */
13207 sc->devinfo.pcie_link_speed =
13208 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13209
13210 /* workaround for 57710 errata E4_57710_27488 */
13211 sc->devinfo.pcie_link_width =
13212 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13213 if (sc->devinfo.pcie_link_speed > 1) {
13214 sc->devinfo.pcie_link_width =
13215 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1;
13216 }
13217 } else {
13218 sc->devinfo.pcie_link_speed =
13219 (link_status & PCIEM_LINK_STA_SPEED);
13220 sc->devinfo.pcie_link_width =
13221 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13222 }
13223
13224 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13225 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13226
13227 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13228 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13229
13230 /* check if MSI capability is enabled */
13231 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) {
13232 if (reg != 0) {
13233 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13234
13235 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13236 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13237 }
13238 }
13239
13240 /* check if MSI-X capability is enabled */
13241 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) {
13242 if (reg != 0) {
13243 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13244
13245 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13246 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13247 }
13248 }
13249 }
13250
13251 static int
bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc * sc)13252 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13253 {
13254 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13255 uint32_t val;
13256
13257 /* get the outer vlan if we're in switch-dependent mode */
13258
13259 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13260 mf_info->ext_id = (uint16_t)val;
13261
13262 mf_info->multi_vnics_mode = 1;
13263
13264 if (!VALID_OVLAN(mf_info->ext_id)) {
13265 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13266 return (1);
13267 }
13268
13269 /* get the capabilities */
13270 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13271 FUNC_MF_CFG_PROTOCOL_ISCSI) {
13272 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13273 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13274 FUNC_MF_CFG_PROTOCOL_FCOE) {
13275 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13276 } else {
13277 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13278 }
13279
13280 mf_info->vnics_per_port =
13281 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13282
13283 return (0);
13284 }
13285
13286 static uint32_t
bxe_get_shmem_ext_proto_support_flags(struct bxe_softc * sc)13287 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13288 {
13289 uint32_t retval = 0;
13290 uint32_t val;
13291
13292 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13293
13294 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13295 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13296 retval |= MF_PROTO_SUPPORT_ETHERNET;
13297 }
13298 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13299 retval |= MF_PROTO_SUPPORT_ISCSI;
13300 }
13301 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13302 retval |= MF_PROTO_SUPPORT_FCOE;
13303 }
13304 }
13305
13306 return (retval);
13307 }
13308
13309 static int
bxe_get_shmem_mf_cfg_info_si(struct bxe_softc * sc)13310 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13311 {
13312 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13313 uint32_t val;
13314
13315 /*
13316 * There is no outer vlan if we're in switch-independent mode.
13317 * If the mac is valid then assume multi-function.
13318 */
13319
13320 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13321
13322 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13323
13324 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13325
13326 mf_info->vnics_per_port =
13327 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13328
13329 return (0);
13330 }
13331
13332 static int
bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc * sc)13333 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13334 {
13335 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13336 uint32_t e1hov_tag;
13337 uint32_t func_config;
13338 uint32_t niv_config;
13339
13340 mf_info->multi_vnics_mode = 1;
13341
13342 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13343 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13344 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13345
13346 mf_info->ext_id =
13347 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13348 FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13349
13350 mf_info->default_vlan =
13351 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13352 FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13353
13354 mf_info->niv_allowed_priorities =
13355 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13356 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13357
13358 mf_info->niv_default_cos =
13359 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13360 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13361
13362 mf_info->afex_vlan_mode =
13363 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13364 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13365
13366 mf_info->niv_mba_enabled =
13367 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13368 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13369
13370 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13371
13372 mf_info->vnics_per_port =
13373 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13374
13375 return (0);
13376 }
13377
13378 static int
bxe_check_valid_mf_cfg(struct bxe_softc * sc)13379 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13380 {
13381 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13382 uint32_t mf_cfg1;
13383 uint32_t mf_cfg2;
13384 uint32_t ovlan1;
13385 uint32_t ovlan2;
13386 uint8_t i, j;
13387
13388 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13389 SC_PORT(sc));
13390 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13391 mf_info->mf_config[SC_VN(sc)]);
13392 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13393 mf_info->multi_vnics_mode);
13394 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13395 mf_info->vnics_per_port);
13396 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13397 mf_info->ext_id);
13398 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13399 mf_info->min_bw[0], mf_info->min_bw[1],
13400 mf_info->min_bw[2], mf_info->min_bw[3]);
13401 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13402 mf_info->max_bw[0], mf_info->max_bw[1],
13403 mf_info->max_bw[2], mf_info->max_bw[3]);
13404 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13405 sc->mac_addr_str);
13406
13407 /* various MF mode sanity checks... */
13408
13409 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13410 BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13411 SC_PORT(sc));
13412 return (1);
13413 }
13414
13415 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13416 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13417 mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13418 return (1);
13419 }
13420
13421 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13422 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13423 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13424 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13425 SC_VN(sc), OVLAN(sc));
13426 return (1);
13427 }
13428
13429 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13430 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13431 mf_info->multi_vnics_mode, OVLAN(sc));
13432 return (1);
13433 }
13434
13435 /*
13436 * Verify all functions are either MF or SF mode. If MF, make sure
13437 * sure that all non-hidden functions have a valid ovlan. If SF,
13438 * make sure that all non-hidden functions have an invalid ovlan.
13439 */
13440 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13441 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13442 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13443 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13444 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13445 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13446 BLOGE(sc, "mf_mode=SD function %d MF config "
13447 "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13448 i, mf_info->multi_vnics_mode, ovlan1);
13449 return (1);
13450 }
13451 }
13452
13453 /* Verify all funcs on the same port each have a different ovlan. */
13454 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13455 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13456 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13457 /* iterate from the next function on the port to the max func */
13458 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13459 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13460 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13461 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13462 VALID_OVLAN(ovlan1) &&
13463 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13464 VALID_OVLAN(ovlan2) &&
13465 (ovlan1 == ovlan2)) {
13466 BLOGE(sc, "mf_mode=SD functions %d and %d "
13467 "have the same ovlan (%d)\n",
13468 i, j, ovlan1);
13469 return (1);
13470 }
13471 }
13472 }
13473 } /* MULTI_FUNCTION_SD */
13474
13475 return (0);
13476 }
13477
13478 static int
bxe_get_mf_cfg_info(struct bxe_softc * sc)13479 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13480 {
13481 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13482 uint32_t val, mac_upper;
13483 uint8_t i, vnic;
13484
13485 /* initialize mf_info defaults */
13486 mf_info->vnics_per_port = 1;
13487 mf_info->multi_vnics_mode = FALSE;
13488 mf_info->path_has_ovlan = FALSE;
13489 mf_info->mf_mode = SINGLE_FUNCTION;
13490
13491 if (!CHIP_IS_MF_CAP(sc)) {
13492 return (0);
13493 }
13494
13495 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13496 BLOGE(sc, "Invalid mf_cfg_base!\n");
13497 return (1);
13498 }
13499
13500 /* get the MF mode (switch dependent / independent / single-function) */
13501
13502 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13503
13504 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13505 {
13506 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13507
13508 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13509
13510 /* check for legal upper mac bytes */
13511 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13512 mf_info->mf_mode = MULTI_FUNCTION_SI;
13513 } else {
13514 BLOGE(sc, "Invalid config for Switch Independent mode\n");
13515 }
13516
13517 break;
13518
13519 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13520 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13521
13522 /* get outer vlan configuration */
13523 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13524
13525 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13526 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13527 mf_info->mf_mode = MULTI_FUNCTION_SD;
13528 } else {
13529 BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13530 }
13531
13532 break;
13533
13534 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13535
13536 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13537 return (0);
13538
13539 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13540
13541 /*
13542 * Mark MF mode as NIV if MCP version includes NPAR-SD support
13543 * and the MAC address is valid.
13544 */
13545 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13546
13547 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13548 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13549 mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13550 } else {
13551 BLOGE(sc, "Invalid config for AFEX mode\n");
13552 }
13553
13554 break;
13555
13556 default:
13557
13558 BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13559 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13560
13561 return (1);
13562 }
13563
13564 /* set path mf_mode (which could be different than function mf_mode) */
13565 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13566 mf_info->path_has_ovlan = TRUE;
13567 } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13568 /*
13569 * Decide on path multi vnics mode. If we're not in MF mode and in
13570 * 4-port mode, this is good enough to check vnic-0 of the other port
13571 * on the same path
13572 */
13573 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13574 uint8_t other_port = !(PORT_ID(sc) & 1);
13575 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13576
13577 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13578
13579 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13580 }
13581 }
13582
13583 if (mf_info->mf_mode == SINGLE_FUNCTION) {
13584 /* invalid MF config */
13585 if (SC_VN(sc) >= 1) {
13586 BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13587 return (1);
13588 }
13589
13590 return (0);
13591 }
13592
13593 /* get the MF configuration */
13594 mf_info->mf_config[SC_VN(sc)] =
13595 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13596
13597 switch(mf_info->mf_mode)
13598 {
13599 case MULTI_FUNCTION_SD:
13600
13601 bxe_get_shmem_mf_cfg_info_sd(sc);
13602 break;
13603
13604 case MULTI_FUNCTION_SI:
13605
13606 bxe_get_shmem_mf_cfg_info_si(sc);
13607 break;
13608
13609 case MULTI_FUNCTION_AFEX:
13610
13611 bxe_get_shmem_mf_cfg_info_niv(sc);
13612 break;
13613
13614 default:
13615
13616 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13617 mf_info->mf_mode);
13618 return (1);
13619 }
13620
13621 /* get the congestion management parameters */
13622
13623 vnic = 0;
13624 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13625 /* get min/max bw */
13626 val = MFCFG_RD(sc, func_mf_config[i].config);
13627 mf_info->min_bw[vnic] =
13628 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13629 mf_info->max_bw[vnic] =
13630 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13631 vnic++;
13632 }
13633
13634 return (bxe_check_valid_mf_cfg(sc));
13635 }
13636
13637 static int
bxe_get_shmem_info(struct bxe_softc * sc)13638 bxe_get_shmem_info(struct bxe_softc *sc)
13639 {
13640 int port;
13641 uint32_t mac_hi, mac_lo, val;
13642
13643 port = SC_PORT(sc);
13644 mac_hi = mac_lo = 0;
13645
13646 sc->link_params.sc = sc;
13647 sc->link_params.port = port;
13648
13649 /* get the hardware config info */
13650 sc->devinfo.hw_config =
13651 SHMEM_RD(sc, dev_info.shared_hw_config.config);
13652 sc->devinfo.hw_config2 =
13653 SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13654
13655 sc->link_params.hw_led_mode =
13656 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13657 SHARED_HW_CFG_LED_MODE_SHIFT);
13658
13659 /* get the port feature config */
13660 sc->port.config =
13661 SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13662
13663 /* get the link params */
13664 sc->link_params.speed_cap_mask[0] =
13665 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13666 sc->link_params.speed_cap_mask[1] =
13667 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13668
13669 /* get the lane config */
13670 sc->link_params.lane_config =
13671 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13672
13673 /* get the link config */
13674 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13675 sc->port.link_config[ELINK_INT_PHY] = val;
13676 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13677 sc->port.link_config[ELINK_EXT_PHY1] =
13678 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13679
13680 /* get the override preemphasis flag and enable it or turn it off */
13681 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13682 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13683 sc->link_params.feature_config_flags |=
13684 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13685 } else {
13686 sc->link_params.feature_config_flags &=
13687 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13688 }
13689
13690 /* get the initial value of the link params */
13691 sc->link_params.multi_phy_config =
13692 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13693
13694 /* get external phy info */
13695 sc->port.ext_phy_config =
13696 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13697
13698 /* get the multifunction configuration */
13699 bxe_get_mf_cfg_info(sc);
13700
13701 /* get the mac address */
13702 if (IS_MF(sc)) {
13703 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13704 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13705 } else {
13706 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13707 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13708 }
13709
13710 if ((mac_lo == 0) && (mac_hi == 0)) {
13711 *sc->mac_addr_str = 0;
13712 BLOGE(sc, "No Ethernet address programmed!\n");
13713 } else {
13714 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13715 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13716 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13717 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13718 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13719 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13720 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13721 "%02x:%02x:%02x:%02x:%02x:%02x",
13722 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13723 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13724 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13725 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13726 }
13727
13728 return (0);
13729 }
13730
13731 static void
bxe_get_tunable_params(struct bxe_softc * sc)13732 bxe_get_tunable_params(struct bxe_softc *sc)
13733 {
13734 /* sanity checks */
13735
13736 if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13737 (bxe_interrupt_mode != INTR_MODE_MSI) &&
13738 (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13739 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13740 bxe_interrupt_mode = INTR_MODE_MSIX;
13741 }
13742
13743 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13744 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13745 bxe_queue_count = 0;
13746 }
13747
13748 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13749 if (bxe_max_rx_bufs == 0) {
13750 bxe_max_rx_bufs = RX_BD_USABLE;
13751 } else {
13752 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13753 bxe_max_rx_bufs = 2048;
13754 }
13755 }
13756
13757 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13758 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13759 bxe_hc_rx_ticks = 25;
13760 }
13761
13762 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13763 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13764 bxe_hc_tx_ticks = 50;
13765 }
13766
13767 if (bxe_max_aggregation_size == 0) {
13768 bxe_max_aggregation_size = TPA_AGG_SIZE;
13769 }
13770
13771 if (bxe_max_aggregation_size > 0xffff) {
13772 BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13773 bxe_max_aggregation_size);
13774 bxe_max_aggregation_size = TPA_AGG_SIZE;
13775 }
13776
13777 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13778 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13779 bxe_mrrs = -1;
13780 }
13781
13782 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13783 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13784 bxe_autogreeen = 0;
13785 }
13786
13787 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13788 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13789 bxe_udp_rss = 0;
13790 }
13791
13792 /* pull in user settings */
13793
13794 sc->interrupt_mode = bxe_interrupt_mode;
13795 sc->max_rx_bufs = bxe_max_rx_bufs;
13796 sc->hc_rx_ticks = bxe_hc_rx_ticks;
13797 sc->hc_tx_ticks = bxe_hc_tx_ticks;
13798 sc->max_aggregation_size = bxe_max_aggregation_size;
13799 sc->mrrs = bxe_mrrs;
13800 sc->autogreeen = bxe_autogreeen;
13801 sc->udp_rss = bxe_udp_rss;
13802
13803 if (bxe_interrupt_mode == INTR_MODE_INTX) {
13804 sc->num_queues = 1;
13805 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13806 sc->num_queues =
13807 min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13808 MAX_RSS_CHAINS);
13809 if (sc->num_queues > mp_ncpus) {
13810 sc->num_queues = mp_ncpus;
13811 }
13812 }
13813
13814 BLOGD(sc, DBG_LOAD,
13815 "User Config: "
13816 "debug=0x%lx "
13817 "interrupt_mode=%d "
13818 "queue_count=%d "
13819 "hc_rx_ticks=%d "
13820 "hc_tx_ticks=%d "
13821 "rx_budget=%d "
13822 "max_aggregation_size=%d "
13823 "mrrs=%d "
13824 "autogreeen=%d "
13825 "udp_rss=%d\n",
13826 bxe_debug,
13827 sc->interrupt_mode,
13828 sc->num_queues,
13829 sc->hc_rx_ticks,
13830 sc->hc_tx_ticks,
13831 bxe_rx_budget,
13832 sc->max_aggregation_size,
13833 sc->mrrs,
13834 sc->autogreeen,
13835 sc->udp_rss);
13836 }
13837
13838 static int
bxe_media_detect(struct bxe_softc * sc)13839 bxe_media_detect(struct bxe_softc *sc)
13840 {
13841 int port_type;
13842 uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13843
13844 switch (sc->link_params.phy[phy_idx].media_type) {
13845 case ELINK_ETH_PHY_SFPP_10G_FIBER:
13846 case ELINK_ETH_PHY_XFP_FIBER:
13847 BLOGI(sc, "Found 10Gb Fiber media.\n");
13848 sc->media = IFM_10G_SR;
13849 port_type = PORT_FIBRE;
13850 break;
13851 case ELINK_ETH_PHY_SFP_1G_FIBER:
13852 BLOGI(sc, "Found 1Gb Fiber media.\n");
13853 sc->media = IFM_1000_SX;
13854 port_type = PORT_FIBRE;
13855 break;
13856 case ELINK_ETH_PHY_KR:
13857 case ELINK_ETH_PHY_CX4:
13858 BLOGI(sc, "Found 10GBase-CX4 media.\n");
13859 sc->media = IFM_10G_CX4;
13860 port_type = PORT_FIBRE;
13861 break;
13862 case ELINK_ETH_PHY_DA_TWINAX:
13863 BLOGI(sc, "Found 10Gb Twinax media.\n");
13864 sc->media = IFM_10G_TWINAX;
13865 port_type = PORT_DA;
13866 break;
13867 case ELINK_ETH_PHY_BASE_T:
13868 if (sc->link_params.speed_cap_mask[0] &
13869 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13870 BLOGI(sc, "Found 10GBase-T media.\n");
13871 sc->media = IFM_10G_T;
13872 port_type = PORT_TP;
13873 } else {
13874 BLOGI(sc, "Found 1000Base-T media.\n");
13875 sc->media = IFM_1000_T;
13876 port_type = PORT_TP;
13877 }
13878 break;
13879 case ELINK_ETH_PHY_NOT_PRESENT:
13880 BLOGI(sc, "Media not present.\n");
13881 sc->media = 0;
13882 port_type = PORT_OTHER;
13883 break;
13884 case ELINK_ETH_PHY_UNSPECIFIED:
13885 default:
13886 BLOGI(sc, "Unknown media!\n");
13887 sc->media = 0;
13888 port_type = PORT_OTHER;
13889 break;
13890 }
13891 return port_type;
13892 }
13893
13894 #define GET_FIELD(value, fname) \
13895 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13896 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13897 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13898
13899 static int
bxe_get_igu_cam_info(struct bxe_softc * sc)13900 bxe_get_igu_cam_info(struct bxe_softc *sc)
13901 {
13902 int pfid = SC_FUNC(sc);
13903 int igu_sb_id;
13904 uint32_t val;
13905 uint8_t fid, igu_sb_cnt = 0;
13906
13907 sc->igu_base_sb = 0xff;
13908
13909 if (CHIP_INT_MODE_IS_BC(sc)) {
13910 int vn = SC_VN(sc);
13911 igu_sb_cnt = sc->igu_sb_cnt;
13912 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13913 FP_SB_MAX_E1x);
13914 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13915 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13916 return (0);
13917 }
13918
13919 /* IGU in normal mode - read CAM */
13920 for (igu_sb_id = 0;
13921 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13922 igu_sb_id++) {
13923 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13924 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13925 continue;
13926 }
13927 fid = IGU_FID(val);
13928 if ((fid & IGU_FID_ENCODE_IS_PF)) {
13929 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13930 continue;
13931 }
13932 if (IGU_VEC(val) == 0) {
13933 /* default status block */
13934 sc->igu_dsb_id = igu_sb_id;
13935 } else {
13936 if (sc->igu_base_sb == 0xff) {
13937 sc->igu_base_sb = igu_sb_id;
13938 }
13939 igu_sb_cnt++;
13940 }
13941 }
13942 }
13943
13944 /*
13945 * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13946 * that number of CAM entries will not be equal to the value advertised in
13947 * PCI. Driver should use the minimal value of both as the actual status
13948 * block count
13949 */
13950 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13951
13952 if (igu_sb_cnt == 0) {
13953 BLOGE(sc, "CAM configuration error\n");
13954 return (-1);
13955 }
13956
13957 return (0);
13958 }
13959
13960 /*
13961 * Gather various information from the device config space, the device itself,
13962 * shmem, and the user input.
13963 */
13964 static int
bxe_get_device_info(struct bxe_softc * sc)13965 bxe_get_device_info(struct bxe_softc *sc)
13966 {
13967 uint32_t val;
13968 int rc;
13969
13970 /* Get the data for the device */
13971 sc->devinfo.vendor_id = pci_get_vendor(sc->dev);
13972 sc->devinfo.device_id = pci_get_device(sc->dev);
13973 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13974 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13975
13976 /* get the chip revision (chip metal comes from pci config space) */
13977 sc->devinfo.chip_id =
13978 sc->link_params.chip_id =
13979 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
13980 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
13981 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
13982 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
13983
13984 /* force 57811 according to MISC register */
13985 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13986 if (CHIP_IS_57810(sc)) {
13987 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13988 (sc->devinfo.chip_id & 0x0000ffff));
13989 } else if (CHIP_IS_57810_MF(sc)) {
13990 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13991 (sc->devinfo.chip_id & 0x0000ffff));
13992 }
13993 sc->devinfo.chip_id |= 0x1;
13994 }
13995
13996 BLOGD(sc, DBG_LOAD,
13997 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13998 sc->devinfo.chip_id,
13999 ((sc->devinfo.chip_id >> 16) & 0xffff),
14000 ((sc->devinfo.chip_id >> 12) & 0xf),
14001 ((sc->devinfo.chip_id >> 4) & 0xff),
14002 ((sc->devinfo.chip_id >> 0) & 0xf));
14003
14004 val = (REG_RD(sc, 0x2874) & 0x55);
14005 if ((sc->devinfo.chip_id & 0x1) ||
14006 (CHIP_IS_E1(sc) && val) ||
14007 (CHIP_IS_E1H(sc) && (val == 0x55))) {
14008 sc->flags |= BXE_ONE_PORT_FLAG;
14009 BLOGD(sc, DBG_LOAD, "single port device\n");
14010 }
14011
14012 /* set the doorbell size */
14013 sc->doorbell_size = (1 << BXE_DB_SHIFT);
14014
14015 /* determine whether the device is in 2 port or 4 port mode */
14016 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14017 if (CHIP_IS_E2E3(sc)) {
14018 /*
14019 * Read port4mode_en_ovwr[0]:
14020 * If 1, four port mode is in port4mode_en_ovwr[1].
14021 * If 0, four port mode is in port4mode_en[0].
14022 */
14023 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14024 if (val & 1) {
14025 val = ((val >> 1) & 1);
14026 } else {
14027 val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14028 }
14029
14030 sc->devinfo.chip_port_mode =
14031 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14032
14033 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14034 }
14035
14036 /* get the function and path info for the device */
14037 bxe_get_function_num(sc);
14038
14039 /* get the shared memory base address */
14040 sc->devinfo.shmem_base =
14041 sc->link_params.shmem_base =
14042 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14043 sc->devinfo.shmem2_base =
14044 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14045 MISC_REG_GENERIC_CR_0));
14046
14047 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14048 sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14049
14050 if (!sc->devinfo.shmem_base) {
14051 /* this should ONLY prevent upcoming shmem reads */
14052 BLOGI(sc, "MCP not active\n");
14053 sc->flags |= BXE_NO_MCP_FLAG;
14054 return (0);
14055 }
14056
14057 /* make sure the shared memory contents are valid */
14058 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14059 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14060 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14061 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14062 return (0);
14063 }
14064 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14065
14066 /* get the bootcode version */
14067 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14068 snprintf(sc->devinfo.bc_ver_str,
14069 sizeof(sc->devinfo.bc_ver_str),
14070 "%d.%d.%d",
14071 ((sc->devinfo.bc_ver >> 24) & 0xff),
14072 ((sc->devinfo.bc_ver >> 16) & 0xff),
14073 ((sc->devinfo.bc_ver >> 8) & 0xff));
14074 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14075
14076 /* get the bootcode shmem address */
14077 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14078 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14079
14080 /* clean indirect addresses as they're not used */
14081 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14082 if (IS_PF(sc)) {
14083 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14084 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14085 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14086 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14087 if (CHIP_IS_E1x(sc)) {
14088 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14089 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14090 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14091 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14092 }
14093
14094 /*
14095 * Enable internal target-read (in case we are probed after PF
14096 * FLR). Must be done prior to any BAR read access. Only for
14097 * 57712 and up
14098 */
14099 if (!CHIP_IS_E1x(sc)) {
14100 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14101 }
14102 }
14103
14104 /* get the nvram size */
14105 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14106 sc->devinfo.flash_size =
14107 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14108 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14109
14110 /* get PCI capabilites */
14111 bxe_probe_pci_caps(sc);
14112
14113 bxe_set_power_state(sc, PCI_PM_D0);
14114
14115 /* get various configuration parameters from shmem */
14116 bxe_get_shmem_info(sc);
14117
14118 if (sc->devinfo.pcie_msix_cap_reg != 0) {
14119 val = pci_read_config(sc->dev,
14120 (sc->devinfo.pcie_msix_cap_reg +
14121 PCIR_MSIX_CTRL),
14122 2);
14123 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14124 } else {
14125 sc->igu_sb_cnt = 1;
14126 }
14127
14128 sc->igu_base_addr = BAR_IGU_INTMEM;
14129
14130 /* initialize IGU parameters */
14131 if (CHIP_IS_E1x(sc)) {
14132 sc->devinfo.int_block = INT_BLOCK_HC;
14133 sc->igu_dsb_id = DEF_SB_IGU_ID;
14134 sc->igu_base_sb = 0;
14135 } else {
14136 sc->devinfo.int_block = INT_BLOCK_IGU;
14137
14138 /* do not allow device reset during IGU info preocessing */
14139 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14140
14141 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14142
14143 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14144 int tout = 5000;
14145
14146 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14147
14148 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14149 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14150 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14151
14152 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14153 tout--;
14154 DELAY(1000);
14155 }
14156
14157 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14158 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14159 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14160 return (-1);
14161 }
14162 }
14163
14164 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14165 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14166 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14167 } else {
14168 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14169 }
14170
14171 rc = bxe_get_igu_cam_info(sc);
14172
14173 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14174
14175 if (rc) {
14176 return (rc);
14177 }
14178 }
14179
14180 /*
14181 * Get base FW non-default (fast path) status block ID. This value is
14182 * used to initialize the fw_sb_id saved on the fp/queue structure to
14183 * determine the id used by the FW.
14184 */
14185 if (CHIP_IS_E1x(sc)) {
14186 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14187 } else {
14188 /*
14189 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14190 * the same queue are indicated on the same IGU SB). So we prefer
14191 * FW and IGU SBs to be the same value.
14192 */
14193 sc->base_fw_ndsb = sc->igu_base_sb;
14194 }
14195
14196 BLOGD(sc, DBG_LOAD,
14197 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14198 sc->igu_dsb_id, sc->igu_base_sb,
14199 sc->igu_sb_cnt, sc->base_fw_ndsb);
14200
14201 elink_phy_probe(&sc->link_params);
14202
14203 return (0);
14204 }
14205
14206 static void
bxe_link_settings_supported(struct bxe_softc * sc,uint32_t switch_cfg)14207 bxe_link_settings_supported(struct bxe_softc *sc,
14208 uint32_t switch_cfg)
14209 {
14210 uint32_t cfg_size = 0;
14211 uint32_t idx;
14212 uint8_t port = SC_PORT(sc);
14213
14214 /* aggregation of supported attributes of all external phys */
14215 sc->port.supported[0] = 0;
14216 sc->port.supported[1] = 0;
14217
14218 switch (sc->link_params.num_phys) {
14219 case 1:
14220 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14221 cfg_size = 1;
14222 break;
14223 case 2:
14224 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14225 cfg_size = 1;
14226 break;
14227 case 3:
14228 if (sc->link_params.multi_phy_config &
14229 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14230 sc->port.supported[1] =
14231 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14232 sc->port.supported[0] =
14233 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14234 } else {
14235 sc->port.supported[0] =
14236 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14237 sc->port.supported[1] =
14238 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14239 }
14240 cfg_size = 2;
14241 break;
14242 }
14243
14244 if (!(sc->port.supported[0] || sc->port.supported[1])) {
14245 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14246 SHMEM_RD(sc,
14247 dev_info.port_hw_config[port].external_phy_config),
14248 SHMEM_RD(sc,
14249 dev_info.port_hw_config[port].external_phy_config2));
14250 return;
14251 }
14252
14253 if (CHIP_IS_E3(sc))
14254 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14255 else {
14256 switch (switch_cfg) {
14257 case ELINK_SWITCH_CFG_1G:
14258 sc->port.phy_addr =
14259 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14260 break;
14261 case ELINK_SWITCH_CFG_10G:
14262 sc->port.phy_addr =
14263 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14264 break;
14265 default:
14266 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14267 sc->port.link_config[0]);
14268 return;
14269 }
14270 }
14271
14272 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14273
14274 /* mask what we support according to speed_cap_mask per configuration */
14275 for (idx = 0; idx < cfg_size; idx++) {
14276 if (!(sc->link_params.speed_cap_mask[idx] &
14277 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14278 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14279 }
14280
14281 if (!(sc->link_params.speed_cap_mask[idx] &
14282 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14283 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14284 }
14285
14286 if (!(sc->link_params.speed_cap_mask[idx] &
14287 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14288 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14289 }
14290
14291 if (!(sc->link_params.speed_cap_mask[idx] &
14292 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14293 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14294 }
14295
14296 if (!(sc->link_params.speed_cap_mask[idx] &
14297 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14298 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14299 }
14300
14301 if (!(sc->link_params.speed_cap_mask[idx] &
14302 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14303 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14304 }
14305
14306 if (!(sc->link_params.speed_cap_mask[idx] &
14307 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14308 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14309 }
14310
14311 if (!(sc->link_params.speed_cap_mask[idx] &
14312 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14313 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14314 }
14315 }
14316
14317 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14318 sc->port.supported[0], sc->port.supported[1]);
14319 ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
14320 sc->port.supported[0], sc->port.supported[1]);
14321 }
14322
14323 static void
bxe_link_settings_requested(struct bxe_softc * sc)14324 bxe_link_settings_requested(struct bxe_softc *sc)
14325 {
14326 uint32_t link_config;
14327 uint32_t idx;
14328 uint32_t cfg_size = 0;
14329
14330 sc->port.advertising[0] = 0;
14331 sc->port.advertising[1] = 0;
14332
14333 switch (sc->link_params.num_phys) {
14334 case 1:
14335 case 2:
14336 cfg_size = 1;
14337 break;
14338 case 3:
14339 cfg_size = 2;
14340 break;
14341 }
14342
14343 for (idx = 0; idx < cfg_size; idx++) {
14344 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14345 link_config = sc->port.link_config[idx];
14346
14347 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14348 case PORT_FEATURE_LINK_SPEED_AUTO:
14349 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14350 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14351 sc->port.advertising[idx] |= sc->port.supported[idx];
14352 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14353 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14354 sc->port.advertising[idx] |=
14355 (ELINK_SUPPORTED_100baseT_Half |
14356 ELINK_SUPPORTED_100baseT_Full);
14357 } else {
14358 /* force 10G, no AN */
14359 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14360 sc->port.advertising[idx] |=
14361 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14362 continue;
14363 }
14364 break;
14365
14366 case PORT_FEATURE_LINK_SPEED_10M_FULL:
14367 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14368 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14369 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14370 ADVERTISED_TP);
14371 } else {
14372 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14373 "speed_cap_mask=0x%08x\n",
14374 link_config, sc->link_params.speed_cap_mask[idx]);
14375 return;
14376 }
14377 break;
14378
14379 case PORT_FEATURE_LINK_SPEED_10M_HALF:
14380 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14381 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14382 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14383 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14384 ADVERTISED_TP);
14385 ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
14386 sc->link_params.req_duplex[idx]);
14387 } else {
14388 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14389 "speed_cap_mask=0x%08x\n",
14390 link_config, sc->link_params.speed_cap_mask[idx]);
14391 return;
14392 }
14393 break;
14394
14395 case PORT_FEATURE_LINK_SPEED_100M_FULL:
14396 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14397 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14398 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14399 ADVERTISED_TP);
14400 } else {
14401 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14402 "speed_cap_mask=0x%08x\n",
14403 link_config, sc->link_params.speed_cap_mask[idx]);
14404 return;
14405 }
14406 break;
14407
14408 case PORT_FEATURE_LINK_SPEED_100M_HALF:
14409 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14410 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14411 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14412 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14413 ADVERTISED_TP);
14414 } else {
14415 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14416 "speed_cap_mask=0x%08x\n",
14417 link_config, sc->link_params.speed_cap_mask[idx]);
14418 return;
14419 }
14420 break;
14421
14422 case PORT_FEATURE_LINK_SPEED_1G:
14423 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14424 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14425 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14426 ADVERTISED_TP);
14427 } else {
14428 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14429 "speed_cap_mask=0x%08x\n",
14430 link_config, sc->link_params.speed_cap_mask[idx]);
14431 return;
14432 }
14433 break;
14434
14435 case PORT_FEATURE_LINK_SPEED_2_5G:
14436 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14437 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14438 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14439 ADVERTISED_TP);
14440 } else {
14441 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14442 "speed_cap_mask=0x%08x\n",
14443 link_config, sc->link_params.speed_cap_mask[idx]);
14444 return;
14445 }
14446 break;
14447
14448 case PORT_FEATURE_LINK_SPEED_10G_CX4:
14449 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14450 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14451 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14452 ADVERTISED_FIBRE);
14453 } else {
14454 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14455 "speed_cap_mask=0x%08x\n",
14456 link_config, sc->link_params.speed_cap_mask[idx]);
14457 return;
14458 }
14459 break;
14460
14461 case PORT_FEATURE_LINK_SPEED_20G:
14462 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14463 break;
14464
14465 default:
14466 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14467 "speed_cap_mask=0x%08x\n",
14468 link_config, sc->link_params.speed_cap_mask[idx]);
14469 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14470 sc->port.advertising[idx] = sc->port.supported[idx];
14471 break;
14472 }
14473
14474 sc->link_params.req_flow_ctrl[idx] =
14475 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14476
14477 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14478 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14479 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14480 } else {
14481 bxe_set_requested_fc(sc);
14482 }
14483 }
14484
14485 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14486 "req_flow_ctrl=0x%x advertising=0x%x\n",
14487 sc->link_params.req_line_speed[idx],
14488 sc->link_params.req_duplex[idx],
14489 sc->link_params.req_flow_ctrl[idx],
14490 sc->port.advertising[idx]);
14491 ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
14492 "advertising=0x%x\n",
14493 sc->link_params.req_line_speed[idx],
14494 sc->link_params.req_duplex[idx],
14495 sc->port.advertising[idx]);
14496 }
14497 }
14498
14499 static void
bxe_get_phy_info(struct bxe_softc * sc)14500 bxe_get_phy_info(struct bxe_softc *sc)
14501 {
14502 uint8_t port = SC_PORT(sc);
14503 uint32_t config = sc->port.config;
14504 uint32_t eee_mode;
14505
14506 /* shmem data already read in bxe_get_shmem_info() */
14507
14508 ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14509 "link_config0=0x%08x\n",
14510 sc->link_params.lane_config,
14511 sc->link_params.speed_cap_mask[0],
14512 sc->port.link_config[0]);
14513
14514
14515 bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14516 bxe_link_settings_requested(sc);
14517
14518 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14519 sc->link_params.feature_config_flags |=
14520 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14521 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14522 sc->link_params.feature_config_flags &=
14523 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14524 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14525 sc->link_params.feature_config_flags |=
14526 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14527 }
14528
14529 /* configure link feature according to nvram value */
14530 eee_mode =
14531 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14532 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14533 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14534 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14535 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14536 ELINK_EEE_MODE_ENABLE_LPI |
14537 ELINK_EEE_MODE_OUTPUT_TIME);
14538 } else {
14539 sc->link_params.eee_mode = 0;
14540 }
14541
14542 /* get the media type */
14543 bxe_media_detect(sc);
14544 ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
14545 }
14546
14547 static void
bxe_get_params(struct bxe_softc * sc)14548 bxe_get_params(struct bxe_softc *sc)
14549 {
14550 /* get user tunable params */
14551 bxe_get_tunable_params(sc);
14552
14553 /* select the RX and TX ring sizes */
14554 sc->tx_ring_size = TX_BD_USABLE;
14555 sc->rx_ring_size = RX_BD_USABLE;
14556
14557 /* XXX disable WoL */
14558 sc->wol = 0;
14559 }
14560
14561 static void
bxe_set_modes_bitmap(struct bxe_softc * sc)14562 bxe_set_modes_bitmap(struct bxe_softc *sc)
14563 {
14564 uint32_t flags = 0;
14565
14566 if (CHIP_REV_IS_FPGA(sc)) {
14567 SET_FLAGS(flags, MODE_FPGA);
14568 } else if (CHIP_REV_IS_EMUL(sc)) {
14569 SET_FLAGS(flags, MODE_EMUL);
14570 } else {
14571 SET_FLAGS(flags, MODE_ASIC);
14572 }
14573
14574 if (CHIP_IS_MODE_4_PORT(sc)) {
14575 SET_FLAGS(flags, MODE_PORT4);
14576 } else {
14577 SET_FLAGS(flags, MODE_PORT2);
14578 }
14579
14580 if (CHIP_IS_E2(sc)) {
14581 SET_FLAGS(flags, MODE_E2);
14582 } else if (CHIP_IS_E3(sc)) {
14583 SET_FLAGS(flags, MODE_E3);
14584 if (CHIP_REV(sc) == CHIP_REV_Ax) {
14585 SET_FLAGS(flags, MODE_E3_A0);
14586 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14587 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14588 }
14589 }
14590
14591 if (IS_MF(sc)) {
14592 SET_FLAGS(flags, MODE_MF);
14593 switch (sc->devinfo.mf_info.mf_mode) {
14594 case MULTI_FUNCTION_SD:
14595 SET_FLAGS(flags, MODE_MF_SD);
14596 break;
14597 case MULTI_FUNCTION_SI:
14598 SET_FLAGS(flags, MODE_MF_SI);
14599 break;
14600 case MULTI_FUNCTION_AFEX:
14601 SET_FLAGS(flags, MODE_MF_AFEX);
14602 break;
14603 }
14604 } else {
14605 SET_FLAGS(flags, MODE_SF);
14606 }
14607
14608 #if defined(__LITTLE_ENDIAN)
14609 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14610 #else /* __BIG_ENDIAN */
14611 SET_FLAGS(flags, MODE_BIG_ENDIAN);
14612 #endif
14613
14614 INIT_MODE_FLAGS(sc) = flags;
14615 }
14616
14617 static int
bxe_alloc_hsi_mem(struct bxe_softc * sc)14618 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14619 {
14620 struct bxe_fastpath *fp;
14621 bus_addr_t busaddr;
14622 int max_agg_queues;
14623 int max_segments;
14624 bus_size_t max_size;
14625 bus_size_t max_seg_size;
14626 char buf[32];
14627 int rc;
14628 int i, j;
14629
14630 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14631
14632 /* allocate the parent bus DMA tag */
14633 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14634 1, /* alignment */
14635 0, /* boundary limit */
14636 BUS_SPACE_MAXADDR, /* restricted low */
14637 BUS_SPACE_MAXADDR, /* restricted hi */
14638 NULL, /* addr filter() */
14639 NULL, /* addr filter() arg */
14640 BUS_SPACE_MAXSIZE_32BIT, /* max map size */
14641 BUS_SPACE_UNRESTRICTED, /* num discontinuous */
14642 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */
14643 0, /* flags */
14644 NULL, /* lock() */
14645 NULL, /* lock() arg */
14646 &sc->parent_dma_tag); /* returned dma tag */
14647 if (rc != 0) {
14648 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14649 return (1);
14650 }
14651
14652 /************************/
14653 /* DEFAULT STATUS BLOCK */
14654 /************************/
14655
14656 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14657 &sc->def_sb_dma, "default status block") != 0) {
14658 /* XXX */
14659 bus_dma_tag_destroy(sc->parent_dma_tag);
14660 return (1);
14661 }
14662
14663 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14664
14665 /***************/
14666 /* EVENT QUEUE */
14667 /***************/
14668
14669 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14670 &sc->eq_dma, "event queue") != 0) {
14671 /* XXX */
14672 bxe_dma_free(sc, &sc->def_sb_dma);
14673 sc->def_sb = NULL;
14674 bus_dma_tag_destroy(sc->parent_dma_tag);
14675 return (1);
14676 }
14677
14678 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14679
14680 /*************/
14681 /* SLOW PATH */
14682 /*************/
14683
14684 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14685 &sc->sp_dma, "slow path") != 0) {
14686 /* XXX */
14687 bxe_dma_free(sc, &sc->eq_dma);
14688 sc->eq = NULL;
14689 bxe_dma_free(sc, &sc->def_sb_dma);
14690 sc->def_sb = NULL;
14691 bus_dma_tag_destroy(sc->parent_dma_tag);
14692 return (1);
14693 }
14694
14695 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14696
14697 /*******************/
14698 /* SLOW PATH QUEUE */
14699 /*******************/
14700
14701 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14702 &sc->spq_dma, "slow path queue") != 0) {
14703 /* XXX */
14704 bxe_dma_free(sc, &sc->sp_dma);
14705 sc->sp = NULL;
14706 bxe_dma_free(sc, &sc->eq_dma);
14707 sc->eq = NULL;
14708 bxe_dma_free(sc, &sc->def_sb_dma);
14709 sc->def_sb = NULL;
14710 bus_dma_tag_destroy(sc->parent_dma_tag);
14711 return (1);
14712 }
14713
14714 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14715
14716 /***************************/
14717 /* FW DECOMPRESSION BUFFER */
14718 /***************************/
14719
14720 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14721 "fw decompression buffer") != 0) {
14722 /* XXX */
14723 bxe_dma_free(sc, &sc->spq_dma);
14724 sc->spq = NULL;
14725 bxe_dma_free(sc, &sc->sp_dma);
14726 sc->sp = NULL;
14727 bxe_dma_free(sc, &sc->eq_dma);
14728 sc->eq = NULL;
14729 bxe_dma_free(sc, &sc->def_sb_dma);
14730 sc->def_sb = NULL;
14731 bus_dma_tag_destroy(sc->parent_dma_tag);
14732 return (1);
14733 }
14734
14735 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14736
14737 if ((sc->gz_strm =
14738 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14739 /* XXX */
14740 bxe_dma_free(sc, &sc->gz_buf_dma);
14741 sc->gz_buf = NULL;
14742 bxe_dma_free(sc, &sc->spq_dma);
14743 sc->spq = NULL;
14744 bxe_dma_free(sc, &sc->sp_dma);
14745 sc->sp = NULL;
14746 bxe_dma_free(sc, &sc->eq_dma);
14747 sc->eq = NULL;
14748 bxe_dma_free(sc, &sc->def_sb_dma);
14749 sc->def_sb = NULL;
14750 bus_dma_tag_destroy(sc->parent_dma_tag);
14751 return (1);
14752 }
14753
14754 /*************/
14755 /* FASTPATHS */
14756 /*************/
14757
14758 /* allocate DMA memory for each fastpath structure */
14759 for (i = 0; i < sc->num_queues; i++) {
14760 fp = &sc->fp[i];
14761 fp->sc = sc;
14762 fp->index = i;
14763
14764 /*******************/
14765 /* FP STATUS BLOCK */
14766 /*******************/
14767
14768 snprintf(buf, sizeof(buf), "fp %d status block", i);
14769 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14770 &fp->sb_dma, buf) != 0) {
14771 /* XXX unwind and free previous fastpath allocations */
14772 BLOGE(sc, "Failed to alloc %s\n", buf);
14773 return (1);
14774 } else {
14775 if (CHIP_IS_E2E3(sc)) {
14776 fp->status_block.e2_sb =
14777 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14778 } else {
14779 fp->status_block.e1x_sb =
14780 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14781 }
14782 }
14783
14784 /******************/
14785 /* FP TX BD CHAIN */
14786 /******************/
14787
14788 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14789 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14790 &fp->tx_dma, buf) != 0) {
14791 /* XXX unwind and free previous fastpath allocations */
14792 BLOGE(sc, "Failed to alloc %s\n", buf);
14793 return (1);
14794 } else {
14795 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14796 }
14797
14798 /* link together the tx bd chain pages */
14799 for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14800 /* index into the tx bd chain array to last entry per page */
14801 struct eth_tx_next_bd *tx_next_bd =
14802 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14803 /* point to the next page and wrap from last page */
14804 busaddr = (fp->tx_dma.paddr +
14805 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14806 tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14807 tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14808 }
14809
14810 /******************/
14811 /* FP RX BD CHAIN */
14812 /******************/
14813
14814 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14815 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14816 &fp->rx_dma, buf) != 0) {
14817 /* XXX unwind and free previous fastpath allocations */
14818 BLOGE(sc, "Failed to alloc %s\n", buf);
14819 return (1);
14820 } else {
14821 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14822 }
14823
14824 /* link together the rx bd chain pages */
14825 for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14826 /* index into the rx bd chain array to last entry per page */
14827 struct eth_rx_bd *rx_bd =
14828 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14829 /* point to the next page and wrap from last page */
14830 busaddr = (fp->rx_dma.paddr +
14831 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14832 rx_bd->addr_hi = htole32(U64_HI(busaddr));
14833 rx_bd->addr_lo = htole32(U64_LO(busaddr));
14834 }
14835
14836 /*******************/
14837 /* FP RX RCQ CHAIN */
14838 /*******************/
14839
14840 snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14841 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14842 &fp->rcq_dma, buf) != 0) {
14843 /* XXX unwind and free previous fastpath allocations */
14844 BLOGE(sc, "Failed to alloc %s\n", buf);
14845 return (1);
14846 } else {
14847 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14848 }
14849
14850 /* link together the rcq chain pages */
14851 for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14852 /* index into the rcq chain array to last entry per page */
14853 struct eth_rx_cqe_next_page *rx_cqe_next =
14854 (struct eth_rx_cqe_next_page *)
14855 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14856 /* point to the next page and wrap from last page */
14857 busaddr = (fp->rcq_dma.paddr +
14858 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14859 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14860 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14861 }
14862
14863 /*******************/
14864 /* FP RX SGE CHAIN */
14865 /*******************/
14866
14867 snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14868 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14869 &fp->rx_sge_dma, buf) != 0) {
14870 /* XXX unwind and free previous fastpath allocations */
14871 BLOGE(sc, "Failed to alloc %s\n", buf);
14872 return (1);
14873 } else {
14874 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14875 }
14876
14877 /* link together the sge chain pages */
14878 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14879 /* index into the rcq chain array to last entry per page */
14880 struct eth_rx_sge *rx_sge =
14881 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14882 /* point to the next page and wrap from last page */
14883 busaddr = (fp->rx_sge_dma.paddr +
14884 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14885 rx_sge->addr_hi = htole32(U64_HI(busaddr));
14886 rx_sge->addr_lo = htole32(U64_LO(busaddr));
14887 }
14888
14889 /***********************/
14890 /* FP TX MBUF DMA MAPS */
14891 /***********************/
14892
14893 /* set required sizes before mapping to conserve resources */
14894 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14895 max_size = BXE_TSO_MAX_SIZE;
14896 max_segments = BXE_TSO_MAX_SEGMENTS;
14897 max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14898 } else {
14899 max_size = (MCLBYTES * BXE_MAX_SEGMENTS);
14900 max_segments = BXE_MAX_SEGMENTS;
14901 max_seg_size = MCLBYTES;
14902 }
14903
14904 /* create a dma tag for the tx mbufs */
14905 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14906 1, /* alignment */
14907 0, /* boundary limit */
14908 BUS_SPACE_MAXADDR, /* restricted low */
14909 BUS_SPACE_MAXADDR, /* restricted hi */
14910 NULL, /* addr filter() */
14911 NULL, /* addr filter() arg */
14912 max_size, /* max map size */
14913 max_segments, /* num discontinuous */
14914 max_seg_size, /* max seg size */
14915 0, /* flags */
14916 NULL, /* lock() */
14917 NULL, /* lock() arg */
14918 &fp->tx_mbuf_tag); /* returned dma tag */
14919 if (rc != 0) {
14920 /* XXX unwind and free previous fastpath allocations */
14921 BLOGE(sc, "Failed to create dma tag for "
14922 "'fp %d tx mbufs' (%d)\n", i, rc);
14923 return (1);
14924 }
14925
14926 /* create dma maps for each of the tx mbuf clusters */
14927 for (j = 0; j < TX_BD_TOTAL; j++) {
14928 if (bus_dmamap_create(fp->tx_mbuf_tag,
14929 BUS_DMA_NOWAIT,
14930 &fp->tx_mbuf_chain[j].m_map)) {
14931 /* XXX unwind and free previous fastpath allocations */
14932 BLOGE(sc, "Failed to create dma map for "
14933 "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14934 return (1);
14935 }
14936 }
14937
14938 /***********************/
14939 /* FP RX MBUF DMA MAPS */
14940 /***********************/
14941
14942 /* create a dma tag for the rx mbufs */
14943 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14944 1, /* alignment */
14945 0, /* boundary limit */
14946 BUS_SPACE_MAXADDR, /* restricted low */
14947 BUS_SPACE_MAXADDR, /* restricted hi */
14948 NULL, /* addr filter() */
14949 NULL, /* addr filter() arg */
14950 MJUM9BYTES, /* max map size */
14951 1, /* num discontinuous */
14952 MJUM9BYTES, /* max seg size */
14953 0, /* flags */
14954 NULL, /* lock() */
14955 NULL, /* lock() arg */
14956 &fp->rx_mbuf_tag); /* returned dma tag */
14957 if (rc != 0) {
14958 /* XXX unwind and free previous fastpath allocations */
14959 BLOGE(sc, "Failed to create dma tag for "
14960 "'fp %d rx mbufs' (%d)\n", i, rc);
14961 return (1);
14962 }
14963
14964 /* create dma maps for each of the rx mbuf clusters */
14965 for (j = 0; j < RX_BD_TOTAL; j++) {
14966 if (bus_dmamap_create(fp->rx_mbuf_tag,
14967 BUS_DMA_NOWAIT,
14968 &fp->rx_mbuf_chain[j].m_map)) {
14969 /* XXX unwind and free previous fastpath allocations */
14970 BLOGE(sc, "Failed to create dma map for "
14971 "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14972 return (1);
14973 }
14974 }
14975
14976 /* create dma map for the spare rx mbuf cluster */
14977 if (bus_dmamap_create(fp->rx_mbuf_tag,
14978 BUS_DMA_NOWAIT,
14979 &fp->rx_mbuf_spare_map)) {
14980 /* XXX unwind and free previous fastpath allocations */
14981 BLOGE(sc, "Failed to create dma map for "
14982 "'fp %d spare rx mbuf' (%d)\n", i, rc);
14983 return (1);
14984 }
14985
14986 /***************************/
14987 /* FP RX SGE MBUF DMA MAPS */
14988 /***************************/
14989
14990 /* create a dma tag for the rx sge mbufs */
14991 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14992 1, /* alignment */
14993 0, /* boundary limit */
14994 BUS_SPACE_MAXADDR, /* restricted low */
14995 BUS_SPACE_MAXADDR, /* restricted hi */
14996 NULL, /* addr filter() */
14997 NULL, /* addr filter() arg */
14998 BCM_PAGE_SIZE, /* max map size */
14999 1, /* num discontinuous */
15000 BCM_PAGE_SIZE, /* max seg size */
15001 0, /* flags */
15002 NULL, /* lock() */
15003 NULL, /* lock() arg */
15004 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15005 if (rc != 0) {
15006 /* XXX unwind and free previous fastpath allocations */
15007 BLOGE(sc, "Failed to create dma tag for "
15008 "'fp %d rx sge mbufs' (%d)\n", i, rc);
15009 return (1);
15010 }
15011
15012 /* create dma maps for the rx sge mbuf clusters */
15013 for (j = 0; j < RX_SGE_TOTAL; j++) {
15014 if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15015 BUS_DMA_NOWAIT,
15016 &fp->rx_sge_mbuf_chain[j].m_map)) {
15017 /* XXX unwind and free previous fastpath allocations */
15018 BLOGE(sc, "Failed to create dma map for "
15019 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
15020 return (1);
15021 }
15022 }
15023
15024 /* create dma map for the spare rx sge mbuf cluster */
15025 if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15026 BUS_DMA_NOWAIT,
15027 &fp->rx_sge_mbuf_spare_map)) {
15028 /* XXX unwind and free previous fastpath allocations */
15029 BLOGE(sc, "Failed to create dma map for "
15030 "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
15031 return (1);
15032 }
15033
15034 /***************************/
15035 /* FP RX TPA MBUF DMA MAPS */
15036 /***************************/
15037
15038 /* create dma maps for the rx tpa mbuf clusters */
15039 max_agg_queues = MAX_AGG_QS(sc);
15040
15041 for (j = 0; j < max_agg_queues; j++) {
15042 if (bus_dmamap_create(fp->rx_mbuf_tag,
15043 BUS_DMA_NOWAIT,
15044 &fp->rx_tpa_info[j].bd.m_map)) {
15045 /* XXX unwind and free previous fastpath allocations */
15046 BLOGE(sc, "Failed to create dma map for "
15047 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
15048 return (1);
15049 }
15050 }
15051
15052 /* create dma map for the spare rx tpa mbuf cluster */
15053 if (bus_dmamap_create(fp->rx_mbuf_tag,
15054 BUS_DMA_NOWAIT,
15055 &fp->rx_tpa_info_mbuf_spare_map)) {
15056 /* XXX unwind and free previous fastpath allocations */
15057 BLOGE(sc, "Failed to create dma map for "
15058 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
15059 return (1);
15060 }
15061
15062 bxe_init_sge_ring_bit_mask(fp);
15063 }
15064
15065 return (0);
15066 }
15067
15068 static void
bxe_free_hsi_mem(struct bxe_softc * sc)15069 bxe_free_hsi_mem(struct bxe_softc *sc)
15070 {
15071 struct bxe_fastpath *fp;
15072 int max_agg_queues;
15073 int i, j;
15074
15075 if (sc->parent_dma_tag == NULL) {
15076 return; /* assume nothing was allocated */
15077 }
15078
15079 for (i = 0; i < sc->num_queues; i++) {
15080 fp = &sc->fp[i];
15081
15082 /*******************/
15083 /* FP STATUS BLOCK */
15084 /*******************/
15085
15086 bxe_dma_free(sc, &fp->sb_dma);
15087 memset(&fp->status_block, 0, sizeof(fp->status_block));
15088
15089 /******************/
15090 /* FP TX BD CHAIN */
15091 /******************/
15092
15093 bxe_dma_free(sc, &fp->tx_dma);
15094 fp->tx_chain = NULL;
15095
15096 /******************/
15097 /* FP RX BD CHAIN */
15098 /******************/
15099
15100 bxe_dma_free(sc, &fp->rx_dma);
15101 fp->rx_chain = NULL;
15102
15103 /*******************/
15104 /* FP RX RCQ CHAIN */
15105 /*******************/
15106
15107 bxe_dma_free(sc, &fp->rcq_dma);
15108 fp->rcq_chain = NULL;
15109
15110 /*******************/
15111 /* FP RX SGE CHAIN */
15112 /*******************/
15113
15114 bxe_dma_free(sc, &fp->rx_sge_dma);
15115 fp->rx_sge_chain = NULL;
15116
15117 /***********************/
15118 /* FP TX MBUF DMA MAPS */
15119 /***********************/
15120
15121 if (fp->tx_mbuf_tag != NULL) {
15122 for (j = 0; j < TX_BD_TOTAL; j++) {
15123 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15124 bus_dmamap_unload(fp->tx_mbuf_tag,
15125 fp->tx_mbuf_chain[j].m_map);
15126 bus_dmamap_destroy(fp->tx_mbuf_tag,
15127 fp->tx_mbuf_chain[j].m_map);
15128 }
15129 }
15130
15131 bus_dma_tag_destroy(fp->tx_mbuf_tag);
15132 fp->tx_mbuf_tag = NULL;
15133 }
15134
15135 /***********************/
15136 /* FP RX MBUF DMA MAPS */
15137 /***********************/
15138
15139 if (fp->rx_mbuf_tag != NULL) {
15140 for (j = 0; j < RX_BD_TOTAL; j++) {
15141 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15142 bus_dmamap_unload(fp->rx_mbuf_tag,
15143 fp->rx_mbuf_chain[j].m_map);
15144 bus_dmamap_destroy(fp->rx_mbuf_tag,
15145 fp->rx_mbuf_chain[j].m_map);
15146 }
15147 }
15148
15149 if (fp->rx_mbuf_spare_map != NULL) {
15150 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15151 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15152 }
15153
15154 /***************************/
15155 /* FP RX TPA MBUF DMA MAPS */
15156 /***************************/
15157
15158 max_agg_queues = MAX_AGG_QS(sc);
15159
15160 for (j = 0; j < max_agg_queues; j++) {
15161 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15162 bus_dmamap_unload(fp->rx_mbuf_tag,
15163 fp->rx_tpa_info[j].bd.m_map);
15164 bus_dmamap_destroy(fp->rx_mbuf_tag,
15165 fp->rx_tpa_info[j].bd.m_map);
15166 }
15167 }
15168
15169 if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15170 bus_dmamap_unload(fp->rx_mbuf_tag,
15171 fp->rx_tpa_info_mbuf_spare_map);
15172 bus_dmamap_destroy(fp->rx_mbuf_tag,
15173 fp->rx_tpa_info_mbuf_spare_map);
15174 }
15175
15176 bus_dma_tag_destroy(fp->rx_mbuf_tag);
15177 fp->rx_mbuf_tag = NULL;
15178 }
15179
15180 /***************************/
15181 /* FP RX SGE MBUF DMA MAPS */
15182 /***************************/
15183
15184 if (fp->rx_sge_mbuf_tag != NULL) {
15185 for (j = 0; j < RX_SGE_TOTAL; j++) {
15186 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15187 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15188 fp->rx_sge_mbuf_chain[j].m_map);
15189 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15190 fp->rx_sge_mbuf_chain[j].m_map);
15191 }
15192 }
15193
15194 if (fp->rx_sge_mbuf_spare_map != NULL) {
15195 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15196 fp->rx_sge_mbuf_spare_map);
15197 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15198 fp->rx_sge_mbuf_spare_map);
15199 }
15200
15201 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15202 fp->rx_sge_mbuf_tag = NULL;
15203 }
15204 }
15205
15206 /***************************/
15207 /* FW DECOMPRESSION BUFFER */
15208 /***************************/
15209
15210 bxe_dma_free(sc, &sc->gz_buf_dma);
15211 sc->gz_buf = NULL;
15212 free(sc->gz_strm, M_DEVBUF);
15213 sc->gz_strm = NULL;
15214
15215 /*******************/
15216 /* SLOW PATH QUEUE */
15217 /*******************/
15218
15219 bxe_dma_free(sc, &sc->spq_dma);
15220 sc->spq = NULL;
15221
15222 /*************/
15223 /* SLOW PATH */
15224 /*************/
15225
15226 bxe_dma_free(sc, &sc->sp_dma);
15227 sc->sp = NULL;
15228
15229 /***************/
15230 /* EVENT QUEUE */
15231 /***************/
15232
15233 bxe_dma_free(sc, &sc->eq_dma);
15234 sc->eq = NULL;
15235
15236 /************************/
15237 /* DEFAULT STATUS BLOCK */
15238 /************************/
15239
15240 bxe_dma_free(sc, &sc->def_sb_dma);
15241 sc->def_sb = NULL;
15242
15243 bus_dma_tag_destroy(sc->parent_dma_tag);
15244 sc->parent_dma_tag = NULL;
15245 }
15246
15247 /*
15248 * Previous driver DMAE transaction may have occurred when pre-boot stage
15249 * ended and boot began. This would invalidate the addresses of the
15250 * transaction, resulting in was-error bit set in the PCI causing all
15251 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15252 * the interrupt which detected this from the pglueb and the was-done bit
15253 */
15254 static void
bxe_prev_interrupted_dmae(struct bxe_softc * sc)15255 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15256 {
15257 uint32_t val;
15258
15259 if (!CHIP_IS_E1x(sc)) {
15260 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15261 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15262 BLOGD(sc, DBG_LOAD,
15263 "Clearing 'was-error' bit that was set in pglueb");
15264 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15265 }
15266 }
15267 }
15268
15269 static int
bxe_prev_mcp_done(struct bxe_softc * sc)15270 bxe_prev_mcp_done(struct bxe_softc *sc)
15271 {
15272 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15273 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15274 if (!rc) {
15275 BLOGE(sc, "MCP response failure, aborting\n");
15276 return (-1);
15277 }
15278
15279 return (0);
15280 }
15281
15282 static struct bxe_prev_list_node *
bxe_prev_path_get_entry(struct bxe_softc * sc)15283 bxe_prev_path_get_entry(struct bxe_softc *sc)
15284 {
15285 struct bxe_prev_list_node *tmp;
15286
15287 LIST_FOREACH(tmp, &bxe_prev_list, node) {
15288 if ((sc->pcie_bus == tmp->bus) &&
15289 (sc->pcie_device == tmp->slot) &&
15290 (SC_PATH(sc) == tmp->path)) {
15291 return (tmp);
15292 }
15293 }
15294
15295 return (NULL);
15296 }
15297
15298 static uint8_t
bxe_prev_is_path_marked(struct bxe_softc * sc)15299 bxe_prev_is_path_marked(struct bxe_softc *sc)
15300 {
15301 struct bxe_prev_list_node *tmp;
15302 int rc = FALSE;
15303
15304 mtx_lock(&bxe_prev_mtx);
15305
15306 tmp = bxe_prev_path_get_entry(sc);
15307 if (tmp) {
15308 if (tmp->aer) {
15309 BLOGD(sc, DBG_LOAD,
15310 "Path %d/%d/%d was marked by AER\n",
15311 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15312 } else {
15313 rc = TRUE;
15314 BLOGD(sc, DBG_LOAD,
15315 "Path %d/%d/%d was already cleaned from previous drivers\n",
15316 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15317 }
15318 }
15319
15320 mtx_unlock(&bxe_prev_mtx);
15321
15322 return (rc);
15323 }
15324
15325 static int
bxe_prev_mark_path(struct bxe_softc * sc,uint8_t after_undi)15326 bxe_prev_mark_path(struct bxe_softc *sc,
15327 uint8_t after_undi)
15328 {
15329 struct bxe_prev_list_node *tmp;
15330
15331 mtx_lock(&bxe_prev_mtx);
15332
15333 /* Check whether the entry for this path already exists */
15334 tmp = bxe_prev_path_get_entry(sc);
15335 if (tmp) {
15336 if (!tmp->aer) {
15337 BLOGD(sc, DBG_LOAD,
15338 "Re-marking AER in path %d/%d/%d\n",
15339 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15340 } else {
15341 BLOGD(sc, DBG_LOAD,
15342 "Removing AER indication from path %d/%d/%d\n",
15343 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15344 tmp->aer = 0;
15345 }
15346
15347 mtx_unlock(&bxe_prev_mtx);
15348 return (0);
15349 }
15350
15351 mtx_unlock(&bxe_prev_mtx);
15352
15353 /* Create an entry for this path and add it */
15354 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15355 (M_NOWAIT | M_ZERO));
15356 if (!tmp) {
15357 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15358 return (-1);
15359 }
15360
15361 tmp->bus = sc->pcie_bus;
15362 tmp->slot = sc->pcie_device;
15363 tmp->path = SC_PATH(sc);
15364 tmp->aer = 0;
15365 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15366
15367 mtx_lock(&bxe_prev_mtx);
15368
15369 BLOGD(sc, DBG_LOAD,
15370 "Marked path %d/%d/%d - finished previous unload\n",
15371 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15372 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15373
15374 mtx_unlock(&bxe_prev_mtx);
15375
15376 return (0);
15377 }
15378
15379 static int
bxe_do_flr(struct bxe_softc * sc)15380 bxe_do_flr(struct bxe_softc *sc)
15381 {
15382 int i;
15383
15384 /* only E2 and onwards support FLR */
15385 if (CHIP_IS_E1x(sc)) {
15386 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15387 return (-1);
15388 }
15389
15390 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15391 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15392 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15393 sc->devinfo.bc_ver);
15394 return (-1);
15395 }
15396
15397 /* Wait for Transaction Pending bit clean */
15398 for (i = 0; i < 4; i++) {
15399 if (i) {
15400 DELAY(((1 << (i - 1)) * 100) * 1000);
15401 }
15402
15403 if (!bxe_is_pcie_pending(sc)) {
15404 goto clear;
15405 }
15406 }
15407
15408 BLOGE(sc, "PCIE transaction is not cleared, "
15409 "proceeding with reset anyway\n");
15410
15411 clear:
15412
15413 BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15414 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15415
15416 return (0);
15417 }
15418
15419 struct bxe_mac_vals {
15420 uint32_t xmac_addr;
15421 uint32_t xmac_val;
15422 uint32_t emac_addr;
15423 uint32_t emac_val;
15424 uint32_t umac_addr;
15425 uint32_t umac_val;
15426 uint32_t bmac_addr;
15427 uint32_t bmac_val[2];
15428 };
15429
15430 static void
bxe_prev_unload_close_mac(struct bxe_softc * sc,struct bxe_mac_vals * vals)15431 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15432 struct bxe_mac_vals *vals)
15433 {
15434 uint32_t val, base_addr, offset, mask, reset_reg;
15435 uint8_t mac_stopped = FALSE;
15436 uint8_t port = SC_PORT(sc);
15437 uint32_t wb_data[2];
15438
15439 /* reset addresses as they also mark which values were changed */
15440 vals->bmac_addr = 0;
15441 vals->umac_addr = 0;
15442 vals->xmac_addr = 0;
15443 vals->emac_addr = 0;
15444
15445 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15446
15447 if (!CHIP_IS_E3(sc)) {
15448 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15449 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15450 if ((mask & reset_reg) && val) {
15451 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15452 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15453 : NIG_REG_INGRESS_BMAC0_MEM;
15454 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15455 : BIGMAC_REGISTER_BMAC_CONTROL;
15456
15457 /*
15458 * use rd/wr since we cannot use dmae. This is safe
15459 * since MCP won't access the bus due to the request
15460 * to unload, and no function on the path can be
15461 * loaded at this time.
15462 */
15463 wb_data[0] = REG_RD(sc, base_addr + offset);
15464 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15465 vals->bmac_addr = base_addr + offset;
15466 vals->bmac_val[0] = wb_data[0];
15467 vals->bmac_val[1] = wb_data[1];
15468 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15469 REG_WR(sc, vals->bmac_addr, wb_data[0]);
15470 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15471 }
15472
15473 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15474 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15475 vals->emac_val = REG_RD(sc, vals->emac_addr);
15476 REG_WR(sc, vals->emac_addr, 0);
15477 mac_stopped = TRUE;
15478 } else {
15479 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15480 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15481 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15482 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15483 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15484 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15485 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15486 vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15487 REG_WR(sc, vals->xmac_addr, 0);
15488 mac_stopped = TRUE;
15489 }
15490
15491 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15492 if (mask & reset_reg) {
15493 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15494 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15495 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15496 vals->umac_val = REG_RD(sc, vals->umac_addr);
15497 REG_WR(sc, vals->umac_addr, 0);
15498 mac_stopped = TRUE;
15499 }
15500 }
15501
15502 if (mac_stopped) {
15503 DELAY(20000);
15504 }
15505 }
15506
15507 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15508 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff)
15509 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
15510 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15511
15512 static void
bxe_prev_unload_undi_inc(struct bxe_softc * sc,uint8_t port,uint8_t inc)15513 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15514 uint8_t port,
15515 uint8_t inc)
15516 {
15517 uint16_t rcq, bd;
15518 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15519
15520 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15521 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15522
15523 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15524 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15525
15526 BLOGD(sc, DBG_LOAD,
15527 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15528 port, bd, rcq);
15529 }
15530
15531 static int
bxe_prev_unload_common(struct bxe_softc * sc)15532 bxe_prev_unload_common(struct bxe_softc *sc)
15533 {
15534 uint32_t reset_reg, tmp_reg = 0, rc;
15535 uint8_t prev_undi = FALSE;
15536 struct bxe_mac_vals mac_vals;
15537 uint32_t timer_count = 1000;
15538 uint32_t prev_brb;
15539
15540 /*
15541 * It is possible a previous function received 'common' answer,
15542 * but hasn't loaded yet, therefore creating a scenario of
15543 * multiple functions receiving 'common' on the same path.
15544 */
15545 BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15546
15547 memset(&mac_vals, 0, sizeof(mac_vals));
15548
15549 if (bxe_prev_is_path_marked(sc)) {
15550 return (bxe_prev_mcp_done(sc));
15551 }
15552
15553 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15554
15555 /* Reset should be performed after BRB is emptied */
15556 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15557 /* Close the MAC Rx to prevent BRB from filling up */
15558 bxe_prev_unload_close_mac(sc, &mac_vals);
15559
15560 /* close LLH filters towards the BRB */
15561 elink_set_rx_filter(&sc->link_params, 0);
15562
15563 /*
15564 * Check if the UNDI driver was previously loaded.
15565 * UNDI driver initializes CID offset for normal bell to 0x7
15566 */
15567 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15568 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15569 if (tmp_reg == 0x7) {
15570 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15571 prev_undi = TRUE;
15572 /* clear the UNDI indication */
15573 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15574 /* clear possible idle check errors */
15575 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15576 }
15577 }
15578
15579 /* wait until BRB is empty */
15580 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15581 while (timer_count) {
15582 prev_brb = tmp_reg;
15583
15584 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15585 if (!tmp_reg) {
15586 break;
15587 }
15588
15589 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15590
15591 /* reset timer as long as BRB actually gets emptied */
15592 if (prev_brb > tmp_reg) {
15593 timer_count = 1000;
15594 } else {
15595 timer_count--;
15596 }
15597
15598 /* If UNDI resides in memory, manually increment it */
15599 if (prev_undi) {
15600 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15601 }
15602
15603 DELAY(10);
15604 }
15605
15606 if (!timer_count) {
15607 BLOGE(sc, "Failed to empty BRB\n");
15608 }
15609 }
15610
15611 /* No packets are in the pipeline, path is ready for reset */
15612 bxe_reset_common(sc);
15613
15614 if (mac_vals.xmac_addr) {
15615 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15616 }
15617 if (mac_vals.umac_addr) {
15618 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15619 }
15620 if (mac_vals.emac_addr) {
15621 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15622 }
15623 if (mac_vals.bmac_addr) {
15624 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15625 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15626 }
15627
15628 rc = bxe_prev_mark_path(sc, prev_undi);
15629 if (rc) {
15630 bxe_prev_mcp_done(sc);
15631 return (rc);
15632 }
15633
15634 return (bxe_prev_mcp_done(sc));
15635 }
15636
15637 static int
bxe_prev_unload_uncommon(struct bxe_softc * sc)15638 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15639 {
15640 int rc;
15641
15642 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15643
15644 /* Test if previous unload process was already finished for this path */
15645 if (bxe_prev_is_path_marked(sc)) {
15646 return (bxe_prev_mcp_done(sc));
15647 }
15648
15649 BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15650
15651 /*
15652 * If function has FLR capabilities, and existing FW version matches
15653 * the one required, then FLR will be sufficient to clean any residue
15654 * left by previous driver
15655 */
15656 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15657 if (!rc) {
15658 /* fw version is good */
15659 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15660 rc = bxe_do_flr(sc);
15661 }
15662
15663 if (!rc) {
15664 /* FLR was performed */
15665 BLOGD(sc, DBG_LOAD, "FLR successful\n");
15666 return (0);
15667 }
15668
15669 BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15670
15671 /* Close the MCP request, return failure*/
15672 rc = bxe_prev_mcp_done(sc);
15673 if (!rc) {
15674 rc = BXE_PREV_WAIT_NEEDED;
15675 }
15676
15677 return (rc);
15678 }
15679
15680 static int
bxe_prev_unload(struct bxe_softc * sc)15681 bxe_prev_unload(struct bxe_softc *sc)
15682 {
15683 int time_counter = 10;
15684 uint32_t fw, hw_lock_reg, hw_lock_val;
15685 uint32_t rc = 0;
15686
15687 /*
15688 * Clear HW from errors which may have resulted from an interrupted
15689 * DMAE transaction.
15690 */
15691 bxe_prev_interrupted_dmae(sc);
15692
15693 /* Release previously held locks */
15694 hw_lock_reg =
15695 (SC_FUNC(sc) <= 5) ?
15696 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15697 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15698
15699 hw_lock_val = (REG_RD(sc, hw_lock_reg));
15700 if (hw_lock_val) {
15701 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15702 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15703 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15704 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15705 }
15706 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15707 REG_WR(sc, hw_lock_reg, 0xffffffff);
15708 } else {
15709 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15710 }
15711
15712 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15713 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15714 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15715 }
15716
15717 do {
15718 /* Lock MCP using an unload request */
15719 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15720 if (!fw) {
15721 BLOGE(sc, "MCP response failure, aborting\n");
15722 rc = -1;
15723 break;
15724 }
15725
15726 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15727 rc = bxe_prev_unload_common(sc);
15728 break;
15729 }
15730
15731 /* non-common reply from MCP night require looping */
15732 rc = bxe_prev_unload_uncommon(sc);
15733 if (rc != BXE_PREV_WAIT_NEEDED) {
15734 break;
15735 }
15736
15737 DELAY(20000);
15738 } while (--time_counter);
15739
15740 if (!time_counter || rc) {
15741 BLOGE(sc, "Failed to unload previous driver!"
15742 " time_counter %d rc %d\n", time_counter, rc);
15743 rc = -1;
15744 }
15745
15746 return (rc);
15747 }
15748
15749 void
bxe_dcbx_set_state(struct bxe_softc * sc,uint8_t dcb_on,uint32_t dcbx_enabled)15750 bxe_dcbx_set_state(struct bxe_softc *sc,
15751 uint8_t dcb_on,
15752 uint32_t dcbx_enabled)
15753 {
15754 if (!CHIP_IS_E1x(sc)) {
15755 sc->dcb_state = dcb_on;
15756 sc->dcbx_enabled = dcbx_enabled;
15757 } else {
15758 sc->dcb_state = FALSE;
15759 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15760 }
15761 BLOGD(sc, DBG_LOAD,
15762 "DCB state [%s:%s]\n",
15763 dcb_on ? "ON" : "OFF",
15764 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15765 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15766 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15767 "on-chip with negotiation" : "invalid");
15768 }
15769
15770 /* must be called after sriov-enable */
15771 static int
bxe_set_qm_cid_count(struct bxe_softc * sc)15772 bxe_set_qm_cid_count(struct bxe_softc *sc)
15773 {
15774 int cid_count = BXE_L2_MAX_CID(sc);
15775
15776 if (IS_SRIOV(sc)) {
15777 cid_count += BXE_VF_CIDS;
15778 }
15779
15780 if (CNIC_SUPPORT(sc)) {
15781 cid_count += CNIC_CID_MAX;
15782 }
15783
15784 return (roundup(cid_count, QM_CID_ROUND));
15785 }
15786
15787 static void
bxe_init_multi_cos(struct bxe_softc * sc)15788 bxe_init_multi_cos(struct bxe_softc *sc)
15789 {
15790 int pri, cos;
15791
15792 uint32_t pri_map = 0; /* XXX change to user config */
15793
15794 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15795 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15796 if (cos < sc->max_cos) {
15797 sc->prio_to_cos[pri] = cos;
15798 } else {
15799 BLOGW(sc, "Invalid COS %d for priority %d "
15800 "(max COS is %d), setting to 0\n",
15801 cos, pri, (sc->max_cos - 1));
15802 sc->prio_to_cos[pri] = 0;
15803 }
15804 }
15805 }
15806
15807 static int
bxe_sysctl_state(SYSCTL_HANDLER_ARGS)15808 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15809 {
15810 struct bxe_softc *sc;
15811 int error, result;
15812
15813 result = 0;
15814 error = sysctl_handle_int(oidp, &result, 0, req);
15815
15816 if (error || !req->newptr) {
15817 return (error);
15818 }
15819
15820 if (result == 1) {
15821 uint32_t temp;
15822 sc = (struct bxe_softc *)arg1;
15823
15824 BLOGI(sc, "... dumping driver state ...\n");
15825 temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15826 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15827 }
15828
15829 return (error);
15830 }
15831
15832 static int
bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)15833 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15834 {
15835 struct bxe_softc *sc = (struct bxe_softc *)arg1;
15836 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15837 uint32_t *offset;
15838 uint64_t value = 0;
15839 int index = (int)arg2;
15840
15841 if (index >= BXE_NUM_ETH_STATS) {
15842 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15843 return (-1);
15844 }
15845
15846 offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15847
15848 switch (bxe_eth_stats_arr[index].size) {
15849 case 4:
15850 value = (uint64_t)*offset;
15851 break;
15852 case 8:
15853 value = HILO_U64(*offset, *(offset + 1));
15854 break;
15855 default:
15856 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15857 index, bxe_eth_stats_arr[index].size);
15858 return (-1);
15859 }
15860
15861 return (sysctl_handle_64(oidp, &value, 0, req));
15862 }
15863
15864 static int
bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)15865 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15866 {
15867 struct bxe_softc *sc = (struct bxe_softc *)arg1;
15868 uint32_t *eth_stats;
15869 uint32_t *offset;
15870 uint64_t value = 0;
15871 uint32_t q_stat = (uint32_t)arg2;
15872 uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15873 uint32_t index = (q_stat & 0xffff);
15874
15875 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15876
15877 if (index >= BXE_NUM_ETH_Q_STATS) {
15878 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15879 return (-1);
15880 }
15881
15882 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15883
15884 switch (bxe_eth_q_stats_arr[index].size) {
15885 case 4:
15886 value = (uint64_t)*offset;
15887 break;
15888 case 8:
15889 value = HILO_U64(*offset, *(offset + 1));
15890 break;
15891 default:
15892 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15893 index, bxe_eth_q_stats_arr[index].size);
15894 return (-1);
15895 }
15896
15897 return (sysctl_handle_64(oidp, &value, 0, req));
15898 }
15899
bxe_force_link_reset(struct bxe_softc * sc)15900 static void bxe_force_link_reset(struct bxe_softc *sc)
15901 {
15902
15903 bxe_acquire_phy_lock(sc);
15904 elink_link_reset(&sc->link_params, &sc->link_vars, 1);
15905 bxe_release_phy_lock(sc);
15906 }
15907
15908 static int
bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)15909 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
15910 {
15911 struct bxe_softc *sc = (struct bxe_softc *)arg1;
15912 uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
15913 int rc = 0;
15914 int error;
15915 int result;
15916
15917
15918 error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
15919
15920 if (error || !req->newptr) {
15921 return (error);
15922 }
15923 if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) {
15924 BLOGW(sc, "invalid pause param (%d) - use integers between 1 & 8\n",sc->bxe_pause_param);
15925 sc->bxe_pause_param = 8;
15926 }
15927
15928 result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
15929
15930
15931 if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) {
15932 BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
15933 return -EINVAL;
15934 }
15935
15936 if(IS_MF(sc))
15937 return 0;
15938 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
15939 if(result & ELINK_FLOW_CTRL_RX)
15940 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
15941
15942 if(result & ELINK_FLOW_CTRL_TX)
15943 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
15944 if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
15945 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
15946
15947 if(result & 0x400) {
15948 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
15949 sc->link_params.req_flow_ctrl[cfg_idx] =
15950 ELINK_FLOW_CTRL_AUTO;
15951 }
15952 sc->link_params.req_fc_auto_adv = 0;
15953 if (result & ELINK_FLOW_CTRL_RX)
15954 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
15955
15956 if (result & ELINK_FLOW_CTRL_TX)
15957 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
15958 if (!sc->link_params.req_fc_auto_adv)
15959 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
15960 }
15961 if (IS_PF(sc)) {
15962 if (sc->link_vars.link_up) {
15963 bxe_stats_handle(sc, STATS_EVENT_STOP);
15964 }
15965 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
15966 bxe_force_link_reset(sc);
15967 bxe_acquire_phy_lock(sc);
15968
15969 rc = elink_phy_init(&sc->link_params, &sc->link_vars);
15970
15971 bxe_release_phy_lock(sc);
15972
15973 bxe_calc_fc_adv(sc);
15974 }
15975 }
15976 return rc;
15977 }
15978
15979
15980 static void
bxe_add_sysctls(struct bxe_softc * sc)15981 bxe_add_sysctls(struct bxe_softc *sc)
15982 {
15983 struct sysctl_ctx_list *ctx;
15984 struct sysctl_oid_list *children;
15985 struct sysctl_oid *queue_top, *queue;
15986 struct sysctl_oid_list *queue_top_children, *queue_children;
15987 char queue_num_buf[32];
15988 uint32_t q_stat;
15989 int i, j;
15990
15991 ctx = device_get_sysctl_ctx(sc->dev);
15992 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15993
15994 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15995 CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15996 "version");
15997
15998 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15999 BCM_5710_FW_MAJOR_VERSION,
16000 BCM_5710_FW_MINOR_VERSION,
16001 BCM_5710_FW_REVISION_VERSION,
16002 BCM_5710_FW_ENGINEERING_VERSION);
16003
16004 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16005 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" :
16006 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" :
16007 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" :
16008 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16009 "Unknown"));
16010 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16011 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16012 "multifunction vnics per port");
16013
16014 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16015 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16016 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16017 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16018 "???GT/s"),
16019 sc->devinfo.pcie_link_width);
16020
16021 sc->debug = bxe_debug;
16022
16023 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16024 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16025 "bootcode version");
16026 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16027 CTLFLAG_RD, sc->fw_ver_str, 0,
16028 "firmware version");
16029 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16030 CTLFLAG_RD, sc->mf_mode_str, 0,
16031 "multifunction mode");
16032 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16033 CTLFLAG_RD, sc->mac_addr_str, 0,
16034 "mac address");
16035 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16036 CTLFLAG_RD, sc->pci_link_str, 0,
16037 "pci link status");
16038 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16039 CTLFLAG_RW, &sc->debug,
16040 "debug logging mode");
16041
16042 sc->trigger_grcdump = 0;
16043 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
16044 CTLFLAG_RW, &sc->trigger_grcdump, 0,
16045 "trigger grcdump should be invoked"
16046 " before collecting grcdump");
16047
16048 sc->grcdump_started = 0;
16049 sc->grcdump_done = 0;
16050 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
16051 CTLFLAG_RD, &sc->grcdump_done, 0,
16052 "set by driver when grcdump is done");
16053
16054 sc->rx_budget = bxe_rx_budget;
16055 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16056 CTLFLAG_RW, &sc->rx_budget, 0,
16057 "rx processing budget");
16058
16059 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
16060 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16061 bxe_sysctl_pauseparam, "IU",
16062 "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
16063
16064
16065 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16066 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16067 bxe_sysctl_state, "IU", "dump driver state");
16068
16069 for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16070 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16071 bxe_eth_stats_arr[i].string,
16072 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
16073 bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string);
16074 }
16075
16076 /* add a new parent node for all queues "dev.bxe.#.queue" */
16077 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16078 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue");
16079 queue_top_children = SYSCTL_CHILDREN(queue_top);
16080
16081 for (i = 0; i < sc->num_queues; i++) {
16082 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16083 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16084 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16085 queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue");
16086 queue_children = SYSCTL_CHILDREN(queue);
16087
16088 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16089 q_stat = ((i << 16) | j);
16090 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16091 bxe_eth_q_stats_arr[j].string,
16092 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, q_stat,
16093 bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string);
16094 }
16095 }
16096 }
16097
16098 static int
bxe_alloc_buf_rings(struct bxe_softc * sc)16099 bxe_alloc_buf_rings(struct bxe_softc *sc)
16100 {
16101 int i;
16102 struct bxe_fastpath *fp;
16103
16104 for (i = 0; i < sc->num_queues; i++) {
16105
16106 fp = &sc->fp[i];
16107
16108 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
16109 M_NOWAIT, &fp->tx_mtx);
16110 if (fp->tx_br == NULL)
16111 return (-1);
16112 }
16113
16114 return (0);
16115 }
16116
16117 static void
bxe_free_buf_rings(struct bxe_softc * sc)16118 bxe_free_buf_rings(struct bxe_softc *sc)
16119 {
16120 int i;
16121 struct bxe_fastpath *fp;
16122
16123 for (i = 0; i < sc->num_queues; i++) {
16124
16125 fp = &sc->fp[i];
16126
16127 if (fp->tx_br) {
16128 buf_ring_free(fp->tx_br, M_DEVBUF);
16129 fp->tx_br = NULL;
16130 }
16131 }
16132 }
16133
16134 static void
bxe_init_fp_mutexs(struct bxe_softc * sc)16135 bxe_init_fp_mutexs(struct bxe_softc *sc)
16136 {
16137 int i;
16138 struct bxe_fastpath *fp;
16139
16140 for (i = 0; i < sc->num_queues; i++) {
16141
16142 fp = &sc->fp[i];
16143
16144 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
16145 "bxe%d_fp%d_tx_lock", sc->unit, i);
16146 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
16147
16148 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
16149 "bxe%d_fp%d_rx_lock", sc->unit, i);
16150 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
16151 }
16152 }
16153
16154 static void
bxe_destroy_fp_mutexs(struct bxe_softc * sc)16155 bxe_destroy_fp_mutexs(struct bxe_softc *sc)
16156 {
16157 int i;
16158 struct bxe_fastpath *fp;
16159
16160 for (i = 0; i < sc->num_queues; i++) {
16161
16162 fp = &sc->fp[i];
16163
16164 if (mtx_initialized(&fp->tx_mtx)) {
16165 mtx_destroy(&fp->tx_mtx);
16166 }
16167
16168 if (mtx_initialized(&fp->rx_mtx)) {
16169 mtx_destroy(&fp->rx_mtx);
16170 }
16171 }
16172 }
16173
16174
16175 /*
16176 * Device attach function.
16177 *
16178 * Allocates device resources, performs secondary chip identification, and
16179 * initializes driver instance variables. This function is called from driver
16180 * load after a successful probe.
16181 *
16182 * Returns:
16183 * 0 = Success, >0 = Failure
16184 */
16185 static int
bxe_attach(device_t dev)16186 bxe_attach(device_t dev)
16187 {
16188 struct bxe_softc *sc;
16189
16190 sc = device_get_softc(dev);
16191
16192 BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16193
16194 sc->state = BXE_STATE_CLOSED;
16195
16196 sc->dev = dev;
16197 sc->unit = device_get_unit(dev);
16198
16199 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16200
16201 sc->pcie_bus = pci_get_bus(dev);
16202 sc->pcie_device = pci_get_slot(dev);
16203 sc->pcie_func = pci_get_function(dev);
16204
16205 /* enable bus master capability */
16206 pci_enable_busmaster(dev);
16207
16208 /* get the BARs */
16209 if (bxe_allocate_bars(sc) != 0) {
16210 return (ENXIO);
16211 }
16212
16213 /* initialize the mutexes */
16214 bxe_init_mutexes(sc);
16215
16216 /* prepare the periodic callout */
16217 callout_init(&sc->periodic_callout, 1);
16218
16219 /* prepare the chip taskqueue */
16220 sc->chip_tq_flags = CHIP_TQ_NONE;
16221 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16222 "bxe%d_chip_tq", sc->unit);
16223 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16224 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16225 taskqueue_thread_enqueue,
16226 &sc->chip_tq);
16227 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16228 "%s", sc->chip_tq_name);
16229
16230 TIMEOUT_TASK_INIT(taskqueue_thread,
16231 &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task, sc);
16232
16233
16234 /* get device info and set params */
16235 if (bxe_get_device_info(sc) != 0) {
16236 BLOGE(sc, "getting device info\n");
16237 bxe_deallocate_bars(sc);
16238 pci_disable_busmaster(dev);
16239 return (ENXIO);
16240 }
16241
16242 /* get final misc params */
16243 bxe_get_params(sc);
16244
16245 /* set the default MTU (changed via ifconfig) */
16246 sc->mtu = ETHERMTU;
16247
16248 bxe_set_modes_bitmap(sc);
16249
16250 /* XXX
16251 * If in AFEX mode and the function is configured for FCoE
16252 * then bail... no L2 allowed.
16253 */
16254
16255 /* get phy settings from shmem and 'and' against admin settings */
16256 bxe_get_phy_info(sc);
16257
16258 /* initialize the FreeBSD ifnet interface */
16259 bxe_init_ifnet(sc);
16260
16261 if (bxe_add_cdev(sc) != 0) {
16262 if (sc->ifp != NULL) {
16263 ether_ifdetach(sc->ifp);
16264 }
16265 ifmedia_removeall(&sc->ifmedia);
16266 bxe_release_mutexes(sc);
16267 bxe_deallocate_bars(sc);
16268 pci_disable_busmaster(dev);
16269 return (ENXIO);
16270 }
16271
16272 /* allocate device interrupts */
16273 if (bxe_interrupt_alloc(sc) != 0) {
16274 bxe_del_cdev(sc);
16275 if (sc->ifp != NULL) {
16276 ether_ifdetach(sc->ifp);
16277 }
16278 ifmedia_removeall(&sc->ifmedia);
16279 bxe_release_mutexes(sc);
16280 bxe_deallocate_bars(sc);
16281 pci_disable_busmaster(dev);
16282 return (ENXIO);
16283 }
16284
16285 bxe_init_fp_mutexs(sc);
16286
16287 if (bxe_alloc_buf_rings(sc) != 0) {
16288 bxe_free_buf_rings(sc);
16289 bxe_interrupt_free(sc);
16290 bxe_del_cdev(sc);
16291 if (sc->ifp != NULL) {
16292 ether_ifdetach(sc->ifp);
16293 }
16294 ifmedia_removeall(&sc->ifmedia);
16295 bxe_release_mutexes(sc);
16296 bxe_deallocate_bars(sc);
16297 pci_disable_busmaster(dev);
16298 return (ENXIO);
16299 }
16300
16301 /* allocate ilt */
16302 if (bxe_alloc_ilt_mem(sc) != 0) {
16303 bxe_free_buf_rings(sc);
16304 bxe_interrupt_free(sc);
16305 bxe_del_cdev(sc);
16306 if (sc->ifp != NULL) {
16307 ether_ifdetach(sc->ifp);
16308 }
16309 ifmedia_removeall(&sc->ifmedia);
16310 bxe_release_mutexes(sc);
16311 bxe_deallocate_bars(sc);
16312 pci_disable_busmaster(dev);
16313 return (ENXIO);
16314 }
16315
16316 /* allocate the host hardware/software hsi structures */
16317 if (bxe_alloc_hsi_mem(sc) != 0) {
16318 bxe_free_ilt_mem(sc);
16319 bxe_free_buf_rings(sc);
16320 bxe_interrupt_free(sc);
16321 bxe_del_cdev(sc);
16322 if (sc->ifp != NULL) {
16323 ether_ifdetach(sc->ifp);
16324 }
16325 ifmedia_removeall(&sc->ifmedia);
16326 bxe_release_mutexes(sc);
16327 bxe_deallocate_bars(sc);
16328 pci_disable_busmaster(dev);
16329 return (ENXIO);
16330 }
16331
16332 /* need to reset chip if UNDI was active */
16333 if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16334 /* init fw_seq */
16335 sc->fw_seq =
16336 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16337 DRV_MSG_SEQ_NUMBER_MASK);
16338 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16339 bxe_prev_unload(sc);
16340 }
16341
16342 #if 1
16343 /* XXX */
16344 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16345 #else
16346 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16347 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16348 SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16349 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16350 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16351 bxe_dcbx_init_params(sc);
16352 } else {
16353 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16354 }
16355 #endif
16356
16357 /* calculate qm_cid_count */
16358 sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16359 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16360
16361 sc->max_cos = 1;
16362 bxe_init_multi_cos(sc);
16363
16364 bxe_add_sysctls(sc);
16365
16366 return (0);
16367 }
16368
16369 /*
16370 * Device detach function.
16371 *
16372 * Stops the controller, resets the controller, and releases resources.
16373 *
16374 * Returns:
16375 * 0 = Success, >0 = Failure
16376 */
16377 static int
bxe_detach(device_t dev)16378 bxe_detach(device_t dev)
16379 {
16380 struct bxe_softc *sc;
16381 if_t ifp;
16382
16383 sc = device_get_softc(dev);
16384
16385 BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16386
16387 ifp = sc->ifp;
16388 if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16389 BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16390 return(EBUSY);
16391 }
16392
16393 bxe_del_cdev(sc);
16394
16395 /* stop the periodic callout */
16396 bxe_periodic_stop(sc);
16397
16398 /* stop the chip taskqueue */
16399 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16400 if (sc->chip_tq) {
16401 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16402 taskqueue_free(sc->chip_tq);
16403 sc->chip_tq = NULL;
16404 taskqueue_drain_timeout(taskqueue_thread,
16405 &sc->sp_err_timeout_task);
16406 }
16407
16408 /* stop and reset the controller if it was open */
16409 if (sc->state != BXE_STATE_CLOSED) {
16410 BXE_CORE_LOCK(sc);
16411 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16412 sc->state = BXE_STATE_DISABLED;
16413 BXE_CORE_UNLOCK(sc);
16414 }
16415
16416 /* release the network interface */
16417 if (ifp != NULL) {
16418 ether_ifdetach(ifp);
16419 }
16420 ifmedia_removeall(&sc->ifmedia);
16421
16422 /* XXX do the following based on driver state... */
16423
16424 /* free the host hardware/software hsi structures */
16425 bxe_free_hsi_mem(sc);
16426
16427 /* free ilt */
16428 bxe_free_ilt_mem(sc);
16429
16430 bxe_free_buf_rings(sc);
16431
16432 /* release the interrupts */
16433 bxe_interrupt_free(sc);
16434
16435 /* Release the mutexes*/
16436 bxe_destroy_fp_mutexs(sc);
16437 bxe_release_mutexes(sc);
16438
16439
16440 /* Release the PCIe BAR mapped memory */
16441 bxe_deallocate_bars(sc);
16442
16443 /* Release the FreeBSD interface. */
16444 if (sc->ifp != NULL) {
16445 if_free(sc->ifp);
16446 }
16447
16448 pci_disable_busmaster(dev);
16449
16450 return (0);
16451 }
16452
16453 /*
16454 * Device shutdown function.
16455 *
16456 * Stops and resets the controller.
16457 *
16458 * Returns:
16459 * Nothing
16460 */
16461 static int
bxe_shutdown(device_t dev)16462 bxe_shutdown(device_t dev)
16463 {
16464 struct bxe_softc *sc;
16465
16466 sc = device_get_softc(dev);
16467
16468 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16469
16470 /* stop the periodic callout */
16471 bxe_periodic_stop(sc);
16472
16473 if (sc->state != BXE_STATE_CLOSED) {
16474 BXE_CORE_LOCK(sc);
16475 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16476 BXE_CORE_UNLOCK(sc);
16477 }
16478
16479 return (0);
16480 }
16481
16482 void
bxe_igu_ack_sb(struct bxe_softc * sc,uint8_t igu_sb_id,uint8_t segment,uint16_t index,uint8_t op,uint8_t update)16483 bxe_igu_ack_sb(struct bxe_softc *sc,
16484 uint8_t igu_sb_id,
16485 uint8_t segment,
16486 uint16_t index,
16487 uint8_t op,
16488 uint8_t update)
16489 {
16490 uint32_t igu_addr = sc->igu_base_addr;
16491 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16492 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16493 }
16494
16495 static void
bxe_igu_clear_sb_gen(struct bxe_softc * sc,uint8_t func,uint8_t idu_sb_id,uint8_t is_pf)16496 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16497 uint8_t func,
16498 uint8_t idu_sb_id,
16499 uint8_t is_pf)
16500 {
16501 uint32_t data, ctl, cnt = 100;
16502 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16503 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16504 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16505 uint32_t sb_bit = 1 << (idu_sb_id%32);
16506 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16507 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16508
16509 /* Not supported in BC mode */
16510 if (CHIP_INT_MODE_IS_BC(sc)) {
16511 return;
16512 }
16513
16514 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16515 IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16516 IGU_REGULAR_CLEANUP_SET |
16517 IGU_REGULAR_BCLEANUP);
16518
16519 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16520 (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16521 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16522
16523 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16524 data, igu_addr_data);
16525 REG_WR(sc, igu_addr_data, data);
16526
16527 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16528 BUS_SPACE_BARRIER_WRITE);
16529 mb();
16530
16531 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16532 ctl, igu_addr_ctl);
16533 REG_WR(sc, igu_addr_ctl, ctl);
16534
16535 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16536 BUS_SPACE_BARRIER_WRITE);
16537 mb();
16538
16539 /* wait for clean up to finish */
16540 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16541 DELAY(20000);
16542 }
16543
16544 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16545 BLOGD(sc, DBG_LOAD,
16546 "Unable to finish IGU cleanup: "
16547 "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16548 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16549 }
16550 }
16551
16552 static void
bxe_igu_clear_sb(struct bxe_softc * sc,uint8_t idu_sb_id)16553 bxe_igu_clear_sb(struct bxe_softc *sc,
16554 uint8_t idu_sb_id)
16555 {
16556 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16557 }
16558
16559
16560
16561
16562
16563
16564
16565 /*******************/
16566 /* ECORE CALLBACKS */
16567 /*******************/
16568
16569 static void
bxe_reset_common(struct bxe_softc * sc)16570 bxe_reset_common(struct bxe_softc *sc)
16571 {
16572 uint32_t val = 0x1400;
16573
16574 /* reset_common */
16575 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16576
16577 if (CHIP_IS_E3(sc)) {
16578 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16579 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16580 }
16581
16582 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16583 }
16584
16585 static void
bxe_common_init_phy(struct bxe_softc * sc)16586 bxe_common_init_phy(struct bxe_softc *sc)
16587 {
16588 uint32_t shmem_base[2];
16589 uint32_t shmem2_base[2];
16590
16591 /* Avoid common init in case MFW supports LFA */
16592 if (SHMEM2_RD(sc, size) >
16593 (uint32_t)offsetof(struct shmem2_region,
16594 lfa_host_addr[SC_PORT(sc)])) {
16595 return;
16596 }
16597
16598 shmem_base[0] = sc->devinfo.shmem_base;
16599 shmem2_base[0] = sc->devinfo.shmem2_base;
16600
16601 if (!CHIP_IS_E1x(sc)) {
16602 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
16603 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16604 }
16605
16606 bxe_acquire_phy_lock(sc);
16607 elink_common_init_phy(sc, shmem_base, shmem2_base,
16608 sc->devinfo.chip_id, 0);
16609 bxe_release_phy_lock(sc);
16610 }
16611
16612 static void
bxe_pf_disable(struct bxe_softc * sc)16613 bxe_pf_disable(struct bxe_softc *sc)
16614 {
16615 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16616
16617 val &= ~IGU_PF_CONF_FUNC_EN;
16618
16619 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16620 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16621 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16622 }
16623
16624 static void
bxe_init_pxp(struct bxe_softc * sc)16625 bxe_init_pxp(struct bxe_softc *sc)
16626 {
16627 uint16_t devctl;
16628 int r_order, w_order;
16629
16630 devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2);
16631
16632 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16633
16634 w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5);
16635
16636 if (sc->mrrs == -1) {
16637 r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12);
16638 } else {
16639 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16640 r_order = sc->mrrs;
16641 }
16642
16643 ecore_init_pxp_arb(sc, r_order, w_order);
16644 }
16645
16646 static uint32_t
bxe_get_pretend_reg(struct bxe_softc * sc)16647 bxe_get_pretend_reg(struct bxe_softc *sc)
16648 {
16649 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16650 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16651 return (base + (SC_ABS_FUNC(sc)) * stride);
16652 }
16653
16654 /*
16655 * Called only on E1H or E2.
16656 * When pretending to be PF, the pretend value is the function number 0..7.
16657 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16658 * combination.
16659 */
16660 static int
bxe_pretend_func(struct bxe_softc * sc,uint16_t pretend_func_val)16661 bxe_pretend_func(struct bxe_softc *sc,
16662 uint16_t pretend_func_val)
16663 {
16664 uint32_t pretend_reg;
16665
16666 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16667 return (-1);
16668 }
16669
16670 /* get my own pretend register */
16671 pretend_reg = bxe_get_pretend_reg(sc);
16672 REG_WR(sc, pretend_reg, pretend_func_val);
16673 REG_RD(sc, pretend_reg);
16674 return (0);
16675 }
16676
16677 static void
bxe_iov_init_dmae(struct bxe_softc * sc)16678 bxe_iov_init_dmae(struct bxe_softc *sc)
16679 {
16680 return;
16681 }
16682
16683 static void
bxe_iov_init_dq(struct bxe_softc * sc)16684 bxe_iov_init_dq(struct bxe_softc *sc)
16685 {
16686 return;
16687 }
16688
16689 /* send a NIG loopback debug packet */
16690 static void
bxe_lb_pckt(struct bxe_softc * sc)16691 bxe_lb_pckt(struct bxe_softc *sc)
16692 {
16693 uint32_t wb_write[3];
16694
16695 /* Ethernet source and destination addresses */
16696 wb_write[0] = 0x55555555;
16697 wb_write[1] = 0x55555555;
16698 wb_write[2] = 0x20; /* SOP */
16699 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16700
16701 /* NON-IP protocol */
16702 wb_write[0] = 0x09000000;
16703 wb_write[1] = 0x55555555;
16704 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
16705 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16706 }
16707
16708 /*
16709 * Some of the internal memories are not directly readable from the driver.
16710 * To test them we send debug packets.
16711 */
16712 static int
bxe_int_mem_test(struct bxe_softc * sc)16713 bxe_int_mem_test(struct bxe_softc *sc)
16714 {
16715 int factor;
16716 int count, i;
16717 uint32_t val = 0;
16718
16719 if (CHIP_REV_IS_FPGA(sc)) {
16720 factor = 120;
16721 } else if (CHIP_REV_IS_EMUL(sc)) {
16722 factor = 200;
16723 } else {
16724 factor = 1;
16725 }
16726
16727 /* disable inputs of parser neighbor blocks */
16728 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16729 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16730 REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16731 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16732
16733 /* write 0 to parser credits for CFC search request */
16734 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16735
16736 /* send Ethernet packet */
16737 bxe_lb_pckt(sc);
16738
16739 /* TODO do i reset NIG statistic? */
16740 /* Wait until NIG register shows 1 packet of size 0x10 */
16741 count = 1000 * factor;
16742 while (count) {
16743 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16744 val = *BXE_SP(sc, wb_data[0]);
16745 if (val == 0x10) {
16746 break;
16747 }
16748
16749 DELAY(10000);
16750 count--;
16751 }
16752
16753 if (val != 0x10) {
16754 BLOGE(sc, "NIG timeout val=0x%x\n", val);
16755 return (-1);
16756 }
16757
16758 /* wait until PRS register shows 1 packet */
16759 count = (1000 * factor);
16760 while (count) {
16761 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16762 if (val == 1) {
16763 break;
16764 }
16765
16766 DELAY(10000);
16767 count--;
16768 }
16769
16770 if (val != 0x1) {
16771 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16772 return (-2);
16773 }
16774
16775 /* Reset and init BRB, PRS */
16776 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16777 DELAY(50000);
16778 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16779 DELAY(50000);
16780 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16781 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16782
16783 /* Disable inputs of parser neighbor blocks */
16784 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16785 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16786 REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16787 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16788
16789 /* Write 0 to parser credits for CFC search request */
16790 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16791
16792 /* send 10 Ethernet packets */
16793 for (i = 0; i < 10; i++) {
16794 bxe_lb_pckt(sc);
16795 }
16796
16797 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16798 count = (1000 * factor);
16799 while (count) {
16800 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16801 val = *BXE_SP(sc, wb_data[0]);
16802 if (val == 0xb0) {
16803 break;
16804 }
16805
16806 DELAY(10000);
16807 count--;
16808 }
16809
16810 if (val != 0xb0) {
16811 BLOGE(sc, "NIG timeout val=0x%x\n", val);
16812 return (-3);
16813 }
16814
16815 /* Wait until PRS register shows 2 packets */
16816 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16817 if (val != 2) {
16818 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16819 }
16820
16821 /* Write 1 to parser credits for CFC search request */
16822 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16823
16824 /* Wait until PRS register shows 3 packets */
16825 DELAY(10000 * factor);
16826
16827 /* Wait until NIG register shows 1 packet of size 0x10 */
16828 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16829 if (val != 3) {
16830 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16831 }
16832
16833 /* clear NIG EOP FIFO */
16834 for (i = 0; i < 11; i++) {
16835 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16836 }
16837
16838 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16839 if (val != 1) {
16840 BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16841 return (-4);
16842 }
16843
16844 /* Reset and init BRB, PRS, NIG */
16845 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16846 DELAY(50000);
16847 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16848 DELAY(50000);
16849 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16850 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16851 if (!CNIC_SUPPORT(sc)) {
16852 /* set NIC mode */
16853 REG_WR(sc, PRS_REG_NIC_MODE, 1);
16854 }
16855
16856 /* Enable inputs of parser neighbor blocks */
16857 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16858 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16859 REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16860 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16861
16862 return (0);
16863 }
16864
16865 static void
bxe_setup_fan_failure_detection(struct bxe_softc * sc)16866 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16867 {
16868 int is_required;
16869 uint32_t val;
16870 int port;
16871
16872 is_required = 0;
16873 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16874 SHARED_HW_CFG_FAN_FAILURE_MASK);
16875
16876 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16877 is_required = 1;
16878 }
16879 /*
16880 * The fan failure mechanism is usually related to the PHY type since
16881 * the power consumption of the board is affected by the PHY. Currently,
16882 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16883 */
16884 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16885 for (port = PORT_0; port < PORT_MAX; port++) {
16886 is_required |= elink_fan_failure_det_req(sc,
16887 sc->devinfo.shmem_base,
16888 sc->devinfo.shmem2_base,
16889 port);
16890 }
16891 }
16892
16893 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16894
16895 if (is_required == 0) {
16896 return;
16897 }
16898
16899 /* Fan failure is indicated by SPIO 5 */
16900 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16901
16902 /* set to active low mode */
16903 val = REG_RD(sc, MISC_REG_SPIO_INT);
16904 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16905 REG_WR(sc, MISC_REG_SPIO_INT, val);
16906
16907 /* enable interrupt to signal the IGU */
16908 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16909 val |= MISC_SPIO_SPIO5;
16910 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16911 }
16912
16913 static void
bxe_enable_blocks_attention(struct bxe_softc * sc)16914 bxe_enable_blocks_attention(struct bxe_softc *sc)
16915 {
16916 uint32_t val;
16917
16918 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16919 if (!CHIP_IS_E1x(sc)) {
16920 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16921 } else {
16922 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16923 }
16924 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16925 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16926 /*
16927 * mask read length error interrupts in brb for parser
16928 * (parsing unit and 'checksum and crc' unit)
16929 * these errors are legal (PU reads fixed length and CAC can cause
16930 * read length error on truncated packets)
16931 */
16932 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16933 REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16934 REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16935 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16936 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16937 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16938 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16939 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16940 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16941 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16942 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16943 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16944 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16945 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16946 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16947 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16948 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16949 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16950 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16951
16952 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16953 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16954 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16955 if (!CHIP_IS_E1x(sc)) {
16956 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16957 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16958 }
16959 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16960
16961 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16962 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16963 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16964 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16965
16966 if (!CHIP_IS_E1x(sc)) {
16967 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16968 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16969 }
16970
16971 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16972 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16973 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16974 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
16975 }
16976
16977 /**
16978 * bxe_init_hw_common - initialize the HW at the COMMON phase.
16979 *
16980 * @sc: driver handle
16981 */
16982 static int
bxe_init_hw_common(struct bxe_softc * sc)16983 bxe_init_hw_common(struct bxe_softc *sc)
16984 {
16985 uint8_t abs_func_id;
16986 uint32_t val;
16987
16988 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16989 SC_ABS_FUNC(sc));
16990
16991 /*
16992 * take the RESET lock to protect undi_unload flow from accessing
16993 * registers while we are resetting the chip
16994 */
16995 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16996
16997 bxe_reset_common(sc);
16998
16999 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17000
17001 val = 0xfffc;
17002 if (CHIP_IS_E3(sc)) {
17003 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17004 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17005 }
17006
17007 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17008
17009 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17010
17011 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17012 BLOGD(sc, DBG_LOAD, "after misc block init\n");
17013
17014 if (!CHIP_IS_E1x(sc)) {
17015 /*
17016 * 4-port mode or 2-port mode we need to turn off master-enable for
17017 * everyone. After that we turn it back on for self. So, we disregard
17018 * multi-function, and always disable all functions on the given path,
17019 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17020 */
17021 for (abs_func_id = SC_PATH(sc);
17022 abs_func_id < (E2_FUNC_MAX * 2);
17023 abs_func_id += 2) {
17024 if (abs_func_id == SC_ABS_FUNC(sc)) {
17025 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17026 continue;
17027 }
17028
17029 bxe_pretend_func(sc, abs_func_id);
17030
17031 /* clear pf enable */
17032 bxe_pf_disable(sc);
17033
17034 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17035 }
17036 }
17037
17038 BLOGD(sc, DBG_LOAD, "after pf disable\n");
17039
17040 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17041
17042 if (CHIP_IS_E1(sc)) {
17043 /*
17044 * enable HW interrupt from PXP on USDM overflow
17045 * bit 16 on INT_MASK_0
17046 */
17047 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17048 }
17049
17050 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17051 bxe_init_pxp(sc);
17052
17053 #ifdef __BIG_ENDIAN
17054 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17055 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17056 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17057 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17058 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17059 /* make sure this value is 0 */
17060 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17061
17062 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17063 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17064 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17065 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17066 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17067 #endif
17068
17069 ecore_ilt_init_page_size(sc, INITOP_SET);
17070
17071 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17072 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17073 }
17074
17075 /* let the HW do it's magic... */
17076 DELAY(100000);
17077
17078 /* finish PXP init */
17079 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17080 if (val != 1) {
17081 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
17082 val);
17083 return (-1);
17084 }
17085 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17086 if (val != 1) {
17087 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
17088 return (-1);
17089 }
17090
17091 BLOGD(sc, DBG_LOAD, "after pxp init\n");
17092
17093 /*
17094 * Timer bug workaround for E2 only. We need to set the entire ILT to have
17095 * entries with value "0" and valid bit on. This needs to be done by the
17096 * first PF that is loaded in a path (i.e. common phase)
17097 */
17098 if (!CHIP_IS_E1x(sc)) {
17099 /*
17100 * In E2 there is a bug in the timers block that can cause function 6 / 7
17101 * (i.e. vnic3) to start even if it is marked as "scan-off".
17102 * This occurs when a different function (func2,3) is being marked
17103 * as "scan-off". Real-life scenario for example: if a driver is being
17104 * load-unloaded while func6,7 are down. This will cause the timer to access
17105 * the ilt, translate to a logical address and send a request to read/write.
17106 * Since the ilt for the function that is down is not valid, this will cause
17107 * a translation error which is unrecoverable.
17108 * The Workaround is intended to make sure that when this happens nothing
17109 * fatal will occur. The workaround:
17110 * 1. First PF driver which loads on a path will:
17111 * a. After taking the chip out of reset, by using pretend,
17112 * it will write "0" to the following registers of
17113 * the other vnics.
17114 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17115 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17116 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17117 * And for itself it will write '1' to
17118 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17119 * dmae-operations (writing to pram for example.)
17120 * note: can be done for only function 6,7 but cleaner this
17121 * way.
17122 * b. Write zero+valid to the entire ILT.
17123 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
17124 * VNIC3 (of that port). The range allocated will be the
17125 * entire ILT. This is needed to prevent ILT range error.
17126 * 2. Any PF driver load flow:
17127 * a. ILT update with the physical addresses of the allocated
17128 * logical pages.
17129 * b. Wait 20msec. - note that this timeout is needed to make
17130 * sure there are no requests in one of the PXP internal
17131 * queues with "old" ILT addresses.
17132 * c. PF enable in the PGLC.
17133 * d. Clear the was_error of the PF in the PGLC. (could have
17134 * occurred while driver was down)
17135 * e. PF enable in the CFC (WEAK + STRONG)
17136 * f. Timers scan enable
17137 * 3. PF driver unload flow:
17138 * a. Clear the Timers scan_en.
17139 * b. Polling for scan_on=0 for that PF.
17140 * c. Clear the PF enable bit in the PXP.
17141 * d. Clear the PF enable in the CFC (WEAK + STRONG)
17142 * e. Write zero+valid to all ILT entries (The valid bit must
17143 * stay set)
17144 * f. If this is VNIC 3 of a port then also init
17145 * first_timers_ilt_entry to zero and last_timers_ilt_entry
17146 * to the last entry in the ILT.
17147 *
17148 * Notes:
17149 * Currently the PF error in the PGLC is non recoverable.
17150 * In the future the there will be a recovery routine for this error.
17151 * Currently attention is masked.
17152 * Having an MCP lock on the load/unload process does not guarantee that
17153 * there is no Timer disable during Func6/7 enable. This is because the
17154 * Timers scan is currently being cleared by the MCP on FLR.
17155 * Step 2.d can be done only for PF6/7 and the driver can also check if
17156 * there is error before clearing it. But the flow above is simpler and
17157 * more general.
17158 * All ILT entries are written by zero+valid and not just PF6/7
17159 * ILT entries since in the future the ILT entries allocation for
17160 * PF-s might be dynamic.
17161 */
17162 struct ilt_client_info ilt_cli;
17163 struct ecore_ilt ilt;
17164
17165 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17166 memset(&ilt, 0, sizeof(struct ecore_ilt));
17167
17168 /* initialize dummy TM client */
17169 ilt_cli.start = 0;
17170 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
17171 ilt_cli.client_num = ILT_CLIENT_TM;
17172
17173 /*
17174 * Step 1: set zeroes to all ilt page entries with valid bit on
17175 * Step 2: set the timers first/last ilt entry to point
17176 * to the entire range to prevent ILT range error for 3rd/4th
17177 * vnic (this code assumes existence of the vnic)
17178 *
17179 * both steps performed by call to ecore_ilt_client_init_op()
17180 * with dummy TM client
17181 *
17182 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17183 * and his brother are split registers
17184 */
17185
17186 bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17187 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17188 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17189
17190 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17191 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17192 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17193 }
17194
17195 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17196 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17197
17198 if (!CHIP_IS_E1x(sc)) {
17199 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17200 (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17201
17202 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17203 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17204
17205 /* let the HW do it's magic... */
17206 do {
17207 DELAY(200000);
17208 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17209 } while (factor-- && (val != 1));
17210
17211 if (val != 1) {
17212 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
17213 return (-1);
17214 }
17215 }
17216
17217 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17218
17219 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17220
17221 bxe_iov_init_dmae(sc);
17222
17223 /* clean the DMAE memory */
17224 sc->dmae_ready = 1;
17225 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17226
17227 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17228
17229 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17230
17231 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17232
17233 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17234
17235 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17236 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17237 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17238 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17239
17240 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17241
17242 /* QM queues pointers table */
17243 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17244
17245 /* soft reset pulse */
17246 REG_WR(sc, QM_REG_SOFT_RESET, 1);
17247 REG_WR(sc, QM_REG_SOFT_RESET, 0);
17248
17249 if (CNIC_SUPPORT(sc))
17250 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17251
17252 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17253 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17254 if (!CHIP_REV_IS_SLOW(sc)) {
17255 /* enable hw interrupt from doorbell Q */
17256 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17257 }
17258
17259 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17260
17261 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17262 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17263
17264 if (!CHIP_IS_E1(sc)) {
17265 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17266 }
17267
17268 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17269 if (IS_MF_AFEX(sc)) {
17270 /*
17271 * configure that AFEX and VLAN headers must be
17272 * received in AFEX mode
17273 */
17274 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17275 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17276 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17277 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17278 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17279 } else {
17280 /*
17281 * Bit-map indicating which L2 hdrs may appear
17282 * after the basic Ethernet header
17283 */
17284 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17285 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17286 }
17287 }
17288
17289 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17290 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17291 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17292 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17293
17294 if (!CHIP_IS_E1x(sc)) {
17295 /* reset VFC memories */
17296 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17297 VFC_MEMORIES_RST_REG_CAM_RST |
17298 VFC_MEMORIES_RST_REG_RAM_RST);
17299 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17300 VFC_MEMORIES_RST_REG_CAM_RST |
17301 VFC_MEMORIES_RST_REG_RAM_RST);
17302
17303 DELAY(20000);
17304 }
17305
17306 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17307 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17308 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17309 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17310
17311 /* sync semi rtc */
17312 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17313 0x80000000);
17314 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17315 0x80000000);
17316
17317 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17318 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17319 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17320
17321 if (!CHIP_IS_E1x(sc)) {
17322 if (IS_MF_AFEX(sc)) {
17323 /*
17324 * configure that AFEX and VLAN headers must be
17325 * sent in AFEX mode
17326 */
17327 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17328 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17329 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17330 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17331 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17332 } else {
17333 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17334 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17335 }
17336 }
17337
17338 REG_WR(sc, SRC_REG_SOFT_RST, 1);
17339
17340 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17341
17342 if (CNIC_SUPPORT(sc)) {
17343 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17344 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17345 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17346 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17347 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17348 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17349 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17350 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17351 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17352 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17353 }
17354 REG_WR(sc, SRC_REG_SOFT_RST, 0);
17355
17356 if (sizeof(union cdu_context) != 1024) {
17357 /* we currently assume that a context is 1024 bytes */
17358 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17359 (long)sizeof(union cdu_context));
17360 }
17361
17362 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17363 val = (4 << 24) + (0 << 12) + 1024;
17364 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17365
17366 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17367
17368 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17369 /* enable context validation interrupt from CFC */
17370 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17371
17372 /* set the thresholds to prevent CFC/CDU race */
17373 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17374 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17375
17376 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17377 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17378 }
17379
17380 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17381 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17382
17383 /* Reset PCIE errors for debug */
17384 REG_WR(sc, 0x2814, 0xffffffff);
17385 REG_WR(sc, 0x3820, 0xffffffff);
17386
17387 if (!CHIP_IS_E1x(sc)) {
17388 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17389 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17390 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17391 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17392 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17393 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17394 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17395 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17396 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17397 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17398 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17399 }
17400
17401 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17402
17403 if (!CHIP_IS_E1(sc)) {
17404 /* in E3 this done in per-port section */
17405 if (!CHIP_IS_E3(sc))
17406 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17407 }
17408
17409 if (CHIP_IS_E1H(sc)) {
17410 /* not applicable for E2 (and above ...) */
17411 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17412 }
17413
17414 if (CHIP_REV_IS_SLOW(sc)) {
17415 DELAY(200000);
17416 }
17417
17418 /* finish CFC init */
17419 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17420 if (val != 1) {
17421 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17422 return (-1);
17423 }
17424 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17425 if (val != 1) {
17426 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17427 return (-1);
17428 }
17429 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17430 if (val != 1) {
17431 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17432 return (-1);
17433 }
17434 REG_WR(sc, CFC_REG_DEBUG0, 0);
17435
17436 if (CHIP_IS_E1(sc)) {
17437 /* read NIG statistic to see if this is our first up since powerup */
17438 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17439 val = *BXE_SP(sc, wb_data[0]);
17440
17441 /* do internal memory self test */
17442 if ((val == 0) && bxe_int_mem_test(sc)) {
17443 BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17444 return (-1);
17445 }
17446 }
17447
17448 bxe_setup_fan_failure_detection(sc);
17449
17450 /* clear PXP2 attentions */
17451 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17452
17453 bxe_enable_blocks_attention(sc);
17454
17455 if (!CHIP_REV_IS_SLOW(sc)) {
17456 ecore_enable_blocks_parity(sc);
17457 }
17458
17459 if (!BXE_NOMCP(sc)) {
17460 if (CHIP_IS_E1x(sc)) {
17461 bxe_common_init_phy(sc);
17462 }
17463 }
17464
17465 return (0);
17466 }
17467
17468 /**
17469 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17470 *
17471 * @sc: driver handle
17472 */
17473 static int
bxe_init_hw_common_chip(struct bxe_softc * sc)17474 bxe_init_hw_common_chip(struct bxe_softc *sc)
17475 {
17476 int rc = bxe_init_hw_common(sc);
17477
17478 if (rc) {
17479 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17480 return (rc);
17481 }
17482
17483 /* In E2 2-PORT mode, same ext phy is used for the two paths */
17484 if (!BXE_NOMCP(sc)) {
17485 bxe_common_init_phy(sc);
17486 }
17487
17488 return (0);
17489 }
17490
17491 static int
bxe_init_hw_port(struct bxe_softc * sc)17492 bxe_init_hw_port(struct bxe_softc *sc)
17493 {
17494 int port = SC_PORT(sc);
17495 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17496 uint32_t low, high;
17497 uint32_t val;
17498
17499 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17500
17501 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17502
17503 ecore_init_block(sc, BLOCK_MISC, init_phase);
17504 ecore_init_block(sc, BLOCK_PXP, init_phase);
17505 ecore_init_block(sc, BLOCK_PXP2, init_phase);
17506
17507 /*
17508 * Timers bug workaround: disables the pf_master bit in pglue at
17509 * common phase, we need to enable it here before any dmae access are
17510 * attempted. Therefore we manually added the enable-master to the
17511 * port phase (it also happens in the function phase)
17512 */
17513 if (!CHIP_IS_E1x(sc)) {
17514 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17515 }
17516
17517 ecore_init_block(sc, BLOCK_ATC, init_phase);
17518 ecore_init_block(sc, BLOCK_DMAE, init_phase);
17519 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17520 ecore_init_block(sc, BLOCK_QM, init_phase);
17521
17522 ecore_init_block(sc, BLOCK_TCM, init_phase);
17523 ecore_init_block(sc, BLOCK_UCM, init_phase);
17524 ecore_init_block(sc, BLOCK_CCM, init_phase);
17525 ecore_init_block(sc, BLOCK_XCM, init_phase);
17526
17527 /* QM cid (connection) count */
17528 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17529
17530 if (CNIC_SUPPORT(sc)) {
17531 ecore_init_block(sc, BLOCK_TM, init_phase);
17532 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17533 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17534 }
17535
17536 ecore_init_block(sc, BLOCK_DORQ, init_phase);
17537
17538 ecore_init_block(sc, BLOCK_BRB1, init_phase);
17539
17540 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17541 if (IS_MF(sc)) {
17542 low = (BXE_ONE_PORT(sc) ? 160 : 246);
17543 } else if (sc->mtu > 4096) {
17544 if (BXE_ONE_PORT(sc)) {
17545 low = 160;
17546 } else {
17547 val = sc->mtu;
17548 /* (24*1024 + val*4)/256 */
17549 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17550 }
17551 } else {
17552 low = (BXE_ONE_PORT(sc) ? 80 : 160);
17553 }
17554 high = (low + 56); /* 14*1024/256 */
17555 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17556 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17557 }
17558
17559 if (CHIP_IS_MODE_4_PORT(sc)) {
17560 REG_WR(sc, SC_PORT(sc) ?
17561 BRB1_REG_MAC_GUARANTIED_1 :
17562 BRB1_REG_MAC_GUARANTIED_0, 40);
17563 }
17564
17565 ecore_init_block(sc, BLOCK_PRS, init_phase);
17566 if (CHIP_IS_E3B0(sc)) {
17567 if (IS_MF_AFEX(sc)) {
17568 /* configure headers for AFEX mode */
17569 REG_WR(sc, SC_PORT(sc) ?
17570 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17571 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17572 REG_WR(sc, SC_PORT(sc) ?
17573 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17574 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17575 REG_WR(sc, SC_PORT(sc) ?
17576 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17577 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17578 } else {
17579 /* Ovlan exists only if we are in multi-function +
17580 * switch-dependent mode, in switch-independent there
17581 * is no ovlan headers
17582 */
17583 REG_WR(sc, SC_PORT(sc) ?
17584 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17585 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17586 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17587 }
17588 }
17589
17590 ecore_init_block(sc, BLOCK_TSDM, init_phase);
17591 ecore_init_block(sc, BLOCK_CSDM, init_phase);
17592 ecore_init_block(sc, BLOCK_USDM, init_phase);
17593 ecore_init_block(sc, BLOCK_XSDM, init_phase);
17594
17595 ecore_init_block(sc, BLOCK_TSEM, init_phase);
17596 ecore_init_block(sc, BLOCK_USEM, init_phase);
17597 ecore_init_block(sc, BLOCK_CSEM, init_phase);
17598 ecore_init_block(sc, BLOCK_XSEM, init_phase);
17599
17600 ecore_init_block(sc, BLOCK_UPB, init_phase);
17601 ecore_init_block(sc, BLOCK_XPB, init_phase);
17602
17603 ecore_init_block(sc, BLOCK_PBF, init_phase);
17604
17605 if (CHIP_IS_E1x(sc)) {
17606 /* configure PBF to work without PAUSE mtu 9000 */
17607 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17608
17609 /* update threshold */
17610 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17611 /* update init credit */
17612 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17613
17614 /* probe changes */
17615 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17616 DELAY(50);
17617 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17618 }
17619
17620 if (CNIC_SUPPORT(sc)) {
17621 ecore_init_block(sc, BLOCK_SRC, init_phase);
17622 }
17623
17624 ecore_init_block(sc, BLOCK_CDU, init_phase);
17625 ecore_init_block(sc, BLOCK_CFC, init_phase);
17626
17627 if (CHIP_IS_E1(sc)) {
17628 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17629 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17630 }
17631 ecore_init_block(sc, BLOCK_HC, init_phase);
17632
17633 ecore_init_block(sc, BLOCK_IGU, init_phase);
17634
17635 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17636 /* init aeu_mask_attn_func_0/1:
17637 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17638 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17639 * bits 4-7 are used for "per vn group attention" */
17640 val = IS_MF(sc) ? 0xF7 : 0x7;
17641 /* Enable DCBX attention for all but E1 */
17642 val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17643 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17644
17645 ecore_init_block(sc, BLOCK_NIG, init_phase);
17646
17647 if (!CHIP_IS_E1x(sc)) {
17648 /* Bit-map indicating which L2 hdrs may appear after the
17649 * basic Ethernet header
17650 */
17651 if (IS_MF_AFEX(sc)) {
17652 REG_WR(sc, SC_PORT(sc) ?
17653 NIG_REG_P1_HDRS_AFTER_BASIC :
17654 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17655 } else {
17656 REG_WR(sc, SC_PORT(sc) ?
17657 NIG_REG_P1_HDRS_AFTER_BASIC :
17658 NIG_REG_P0_HDRS_AFTER_BASIC,
17659 IS_MF_SD(sc) ? 7 : 6);
17660 }
17661
17662 if (CHIP_IS_E3(sc)) {
17663 REG_WR(sc, SC_PORT(sc) ?
17664 NIG_REG_LLH1_MF_MODE :
17665 NIG_REG_LLH_MF_MODE, IS_MF(sc));
17666 }
17667 }
17668 if (!CHIP_IS_E3(sc)) {
17669 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17670 }
17671
17672 if (!CHIP_IS_E1(sc)) {
17673 /* 0x2 disable mf_ov, 0x1 enable */
17674 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17675 (IS_MF_SD(sc) ? 0x1 : 0x2));
17676
17677 if (!CHIP_IS_E1x(sc)) {
17678 val = 0;
17679 switch (sc->devinfo.mf_info.mf_mode) {
17680 case MULTI_FUNCTION_SD:
17681 val = 1;
17682 break;
17683 case MULTI_FUNCTION_SI:
17684 case MULTI_FUNCTION_AFEX:
17685 val = 2;
17686 break;
17687 }
17688
17689 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17690 NIG_REG_LLH0_CLS_TYPE), val);
17691 }
17692 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17693 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17694 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17695 }
17696
17697 /* If SPIO5 is set to generate interrupts, enable it for this port */
17698 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17699 if (val & MISC_SPIO_SPIO5) {
17700 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17701 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17702 val = REG_RD(sc, reg_addr);
17703 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17704 REG_WR(sc, reg_addr, val);
17705 }
17706
17707 return (0);
17708 }
17709
17710 static uint32_t
bxe_flr_clnup_reg_poll(struct bxe_softc * sc,uint32_t reg,uint32_t expected,uint32_t poll_count)17711 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17712 uint32_t reg,
17713 uint32_t expected,
17714 uint32_t poll_count)
17715 {
17716 uint32_t cur_cnt = poll_count;
17717 uint32_t val;
17718
17719 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17720 DELAY(FLR_WAIT_INTERVAL);
17721 }
17722
17723 return (val);
17724 }
17725
17726 static int
bxe_flr_clnup_poll_hw_counter(struct bxe_softc * sc,uint32_t reg,char * msg,uint32_t poll_cnt)17727 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17728 uint32_t reg,
17729 char *msg,
17730 uint32_t poll_cnt)
17731 {
17732 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17733
17734 if (val != 0) {
17735 BLOGE(sc, "%s usage count=%d\n", msg, val);
17736 return (1);
17737 }
17738
17739 return (0);
17740 }
17741
17742 /* Common routines with VF FLR cleanup */
17743 static uint32_t
bxe_flr_clnup_poll_count(struct bxe_softc * sc)17744 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17745 {
17746 /* adjust polling timeout */
17747 if (CHIP_REV_IS_EMUL(sc)) {
17748 return (FLR_POLL_CNT * 2000);
17749 }
17750
17751 if (CHIP_REV_IS_FPGA(sc)) {
17752 return (FLR_POLL_CNT * 120);
17753 }
17754
17755 return (FLR_POLL_CNT);
17756 }
17757
17758 static int
bxe_poll_hw_usage_counters(struct bxe_softc * sc,uint32_t poll_cnt)17759 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17760 uint32_t poll_cnt)
17761 {
17762 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17763 if (bxe_flr_clnup_poll_hw_counter(sc,
17764 CFC_REG_NUM_LCIDS_INSIDE_PF,
17765 "CFC PF usage counter timed out",
17766 poll_cnt)) {
17767 return (1);
17768 }
17769
17770 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17771 if (bxe_flr_clnup_poll_hw_counter(sc,
17772 DORQ_REG_PF_USAGE_CNT,
17773 "DQ PF usage counter timed out",
17774 poll_cnt)) {
17775 return (1);
17776 }
17777
17778 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17779 if (bxe_flr_clnup_poll_hw_counter(sc,
17780 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17781 "QM PF usage counter timed out",
17782 poll_cnt)) {
17783 return (1);
17784 }
17785
17786 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17787 if (bxe_flr_clnup_poll_hw_counter(sc,
17788 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17789 "Timers VNIC usage counter timed out",
17790 poll_cnt)) {
17791 return (1);
17792 }
17793
17794 if (bxe_flr_clnup_poll_hw_counter(sc,
17795 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17796 "Timers NUM_SCANS usage counter timed out",
17797 poll_cnt)) {
17798 return (1);
17799 }
17800
17801 /* Wait DMAE PF usage counter to zero */
17802 if (bxe_flr_clnup_poll_hw_counter(sc,
17803 dmae_reg_go_c[INIT_DMAE_C(sc)],
17804 "DMAE dommand register timed out",
17805 poll_cnt)) {
17806 return (1);
17807 }
17808
17809 return (0);
17810 }
17811
17812 #define OP_GEN_PARAM(param) \
17813 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17814 #define OP_GEN_TYPE(type) \
17815 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17816 #define OP_GEN_AGG_VECT(index) \
17817 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17818
17819 static int
bxe_send_final_clnup(struct bxe_softc * sc,uint8_t clnup_func,uint32_t poll_cnt)17820 bxe_send_final_clnup(struct bxe_softc *sc,
17821 uint8_t clnup_func,
17822 uint32_t poll_cnt)
17823 {
17824 uint32_t op_gen_command = 0;
17825 uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17826 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17827 int ret = 0;
17828
17829 if (REG_RD(sc, comp_addr)) {
17830 BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17831 return (1);
17832 }
17833
17834 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17835 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17836 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17837 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17838
17839 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17840 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17841
17842 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17843 BLOGE(sc, "FW final cleanup did not succeed\n");
17844 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17845 (REG_RD(sc, comp_addr)));
17846 bxe_panic(sc, ("FLR cleanup failed\n"));
17847 return (1);
17848 }
17849
17850 /* Zero completion for nxt FLR */
17851 REG_WR(sc, comp_addr, 0);
17852
17853 return (ret);
17854 }
17855
17856 static void
bxe_pbf_pN_buf_flushed(struct bxe_softc * sc,struct pbf_pN_buf_regs * regs,uint32_t poll_count)17857 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc,
17858 struct pbf_pN_buf_regs *regs,
17859 uint32_t poll_count)
17860 {
17861 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17862 uint32_t cur_cnt = poll_count;
17863
17864 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17865 crd = crd_start = REG_RD(sc, regs->crd);
17866 init_crd = REG_RD(sc, regs->init_crd);
17867
17868 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17869 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd);
17870 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17871
17872 while ((crd != init_crd) &&
17873 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17874 (init_crd - crd_start))) {
17875 if (cur_cnt--) {
17876 DELAY(FLR_WAIT_INTERVAL);
17877 crd = REG_RD(sc, regs->crd);
17878 crd_freed = REG_RD(sc, regs->crd_freed);
17879 } else {
17880 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17881 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd);
17882 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17883 break;
17884 }
17885 }
17886
17887 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17888 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17889 }
17890
17891 static void
bxe_pbf_pN_cmd_flushed(struct bxe_softc * sc,struct pbf_pN_cmd_regs * regs,uint32_t poll_count)17892 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc,
17893 struct pbf_pN_cmd_regs *regs,
17894 uint32_t poll_count)
17895 {
17896 uint32_t occup, to_free, freed, freed_start;
17897 uint32_t cur_cnt = poll_count;
17898
17899 occup = to_free = REG_RD(sc, regs->lines_occup);
17900 freed = freed_start = REG_RD(sc, regs->lines_freed);
17901
17902 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
17903 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17904
17905 while (occup &&
17906 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17907 if (cur_cnt--) {
17908 DELAY(FLR_WAIT_INTERVAL);
17909 occup = REG_RD(sc, regs->lines_occup);
17910 freed = REG_RD(sc, regs->lines_freed);
17911 } else {
17912 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17913 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
17914 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17915 break;
17916 }
17917 }
17918
17919 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17920 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17921 }
17922
17923 static void
bxe_tx_hw_flushed(struct bxe_softc * sc,uint32_t poll_count)17924 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17925 {
17926 struct pbf_pN_cmd_regs cmd_regs[] = {
17927 {0, (CHIP_IS_E3B0(sc)) ?
17928 PBF_REG_TQ_OCCUPANCY_Q0 :
17929 PBF_REG_P0_TQ_OCCUPANCY,
17930 (CHIP_IS_E3B0(sc)) ?
17931 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17932 PBF_REG_P0_TQ_LINES_FREED_CNT},
17933 {1, (CHIP_IS_E3B0(sc)) ?
17934 PBF_REG_TQ_OCCUPANCY_Q1 :
17935 PBF_REG_P1_TQ_OCCUPANCY,
17936 (CHIP_IS_E3B0(sc)) ?
17937 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17938 PBF_REG_P1_TQ_LINES_FREED_CNT},
17939 {4, (CHIP_IS_E3B0(sc)) ?
17940 PBF_REG_TQ_OCCUPANCY_LB_Q :
17941 PBF_REG_P4_TQ_OCCUPANCY,
17942 (CHIP_IS_E3B0(sc)) ?
17943 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17944 PBF_REG_P4_TQ_LINES_FREED_CNT}
17945 };
17946
17947 struct pbf_pN_buf_regs buf_regs[] = {
17948 {0, (CHIP_IS_E3B0(sc)) ?
17949 PBF_REG_INIT_CRD_Q0 :
17950 PBF_REG_P0_INIT_CRD ,
17951 (CHIP_IS_E3B0(sc)) ?
17952 PBF_REG_CREDIT_Q0 :
17953 PBF_REG_P0_CREDIT,
17954 (CHIP_IS_E3B0(sc)) ?
17955 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17956 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17957 {1, (CHIP_IS_E3B0(sc)) ?
17958 PBF_REG_INIT_CRD_Q1 :
17959 PBF_REG_P1_INIT_CRD,
17960 (CHIP_IS_E3B0(sc)) ?
17961 PBF_REG_CREDIT_Q1 :
17962 PBF_REG_P1_CREDIT,
17963 (CHIP_IS_E3B0(sc)) ?
17964 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17965 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17966 {4, (CHIP_IS_E3B0(sc)) ?
17967 PBF_REG_INIT_CRD_LB_Q :
17968 PBF_REG_P4_INIT_CRD,
17969 (CHIP_IS_E3B0(sc)) ?
17970 PBF_REG_CREDIT_LB_Q :
17971 PBF_REG_P4_CREDIT,
17972 (CHIP_IS_E3B0(sc)) ?
17973 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17974 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17975 };
17976
17977 int i;
17978
17979 /* Verify the command queues are flushed P0, P1, P4 */
17980 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17981 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17982 }
17983
17984 /* Verify the transmission buffers are flushed P0, P1, P4 */
17985 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17986 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17987 }
17988 }
17989
17990 static void
bxe_hw_enable_status(struct bxe_softc * sc)17991 bxe_hw_enable_status(struct bxe_softc *sc)
17992 {
17993 uint32_t val;
17994
17995 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17996 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17997
17998 val = REG_RD(sc, PBF_REG_DISABLE_PF);
17999 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18000
18001 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18002 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18003
18004 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18005 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18006
18007 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18008 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18009
18010 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18011 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18012
18013 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18014 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18015
18016 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18017 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18018 }
18019
18020 static int
bxe_pf_flr_clnup(struct bxe_softc * sc)18021 bxe_pf_flr_clnup(struct bxe_softc *sc)
18022 {
18023 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18024
18025 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18026
18027 /* Re-enable PF target read access */
18028 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18029
18030 /* Poll HW usage counters */
18031 BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18032 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18033 return (-1);
18034 }
18035
18036 /* Zero the igu 'trailing edge' and 'leading edge' */
18037
18038 /* Send the FW cleanup command */
18039 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18040 return (-1);
18041 }
18042
18043 /* ATC cleanup */
18044
18045 /* Verify TX hw is flushed */
18046 bxe_tx_hw_flushed(sc, poll_cnt);
18047
18048 /* Wait 100ms (not adjusted according to platform) */
18049 DELAY(100000);
18050
18051 /* Verify no pending pci transactions */
18052 if (bxe_is_pcie_pending(sc)) {
18053 BLOGE(sc, "PCIE Transactions still pending\n");
18054 }
18055
18056 /* Debug */
18057 bxe_hw_enable_status(sc);
18058
18059 /*
18060 * Master enable - Due to WB DMAE writes performed before this
18061 * register is re-initialized as part of the regular function init
18062 */
18063 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18064
18065 return (0);
18066 }
18067
18068 static int
bxe_init_hw_func(struct bxe_softc * sc)18069 bxe_init_hw_func(struct bxe_softc *sc)
18070 {
18071 int port = SC_PORT(sc);
18072 int func = SC_FUNC(sc);
18073 int init_phase = PHASE_PF0 + func;
18074 struct ecore_ilt *ilt = sc->ilt;
18075 uint16_t cdu_ilt_start;
18076 uint32_t addr, val;
18077 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18078 int i, main_mem_width, rc;
18079
18080 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18081
18082 /* FLR cleanup */
18083 if (!CHIP_IS_E1x(sc)) {
18084 rc = bxe_pf_flr_clnup(sc);
18085 if (rc) {
18086 BLOGE(sc, "FLR cleanup failed!\n");
18087 // XXX bxe_fw_dump(sc);
18088 // XXX bxe_idle_chk(sc);
18089 return (rc);
18090 }
18091 }
18092
18093 /* set MSI reconfigure capability */
18094 if (sc->devinfo.int_block == INT_BLOCK_HC) {
18095 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18096 val = REG_RD(sc, addr);
18097 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18098 REG_WR(sc, addr, val);
18099 }
18100
18101 ecore_init_block(sc, BLOCK_PXP, init_phase);
18102 ecore_init_block(sc, BLOCK_PXP2, init_phase);
18103
18104 ilt = sc->ilt;
18105 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18106
18107 for (i = 0; i < L2_ILT_LINES(sc); i++) {
18108 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18109 ilt->lines[cdu_ilt_start + i].page_mapping =
18110 sc->context[i].vcxt_dma.paddr;
18111 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18112 }
18113 ecore_ilt_init_op(sc, INITOP_SET);
18114
18115 /* Set NIC mode */
18116 REG_WR(sc, PRS_REG_NIC_MODE, 1);
18117 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18118
18119 if (!CHIP_IS_E1x(sc)) {
18120 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18121
18122 /* Turn on a single ISR mode in IGU if driver is going to use
18123 * INT#x or MSI
18124 */
18125 if (sc->interrupt_mode != INTR_MODE_MSIX) {
18126 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18127 }
18128
18129 /*
18130 * Timers workaround bug: function init part.
18131 * Need to wait 20msec after initializing ILT,
18132 * needed to make sure there are no requests in
18133 * one of the PXP internal queues with "old" ILT addresses
18134 */
18135 DELAY(20000);
18136
18137 /*
18138 * Master enable - Due to WB DMAE writes performed before this
18139 * register is re-initialized as part of the regular function
18140 * init
18141 */
18142 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18143 /* Enable the function in IGU */
18144 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18145 }
18146
18147 sc->dmae_ready = 1;
18148
18149 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18150
18151 if (!CHIP_IS_E1x(sc))
18152 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18153
18154 ecore_init_block(sc, BLOCK_ATC, init_phase);
18155 ecore_init_block(sc, BLOCK_DMAE, init_phase);
18156 ecore_init_block(sc, BLOCK_NIG, init_phase);
18157 ecore_init_block(sc, BLOCK_SRC, init_phase);
18158 ecore_init_block(sc, BLOCK_MISC, init_phase);
18159 ecore_init_block(sc, BLOCK_TCM, init_phase);
18160 ecore_init_block(sc, BLOCK_UCM, init_phase);
18161 ecore_init_block(sc, BLOCK_CCM, init_phase);
18162 ecore_init_block(sc, BLOCK_XCM, init_phase);
18163 ecore_init_block(sc, BLOCK_TSEM, init_phase);
18164 ecore_init_block(sc, BLOCK_USEM, init_phase);
18165 ecore_init_block(sc, BLOCK_CSEM, init_phase);
18166 ecore_init_block(sc, BLOCK_XSEM, init_phase);
18167
18168 if (!CHIP_IS_E1x(sc))
18169 REG_WR(sc, QM_REG_PF_EN, 1);
18170
18171 if (!CHIP_IS_E1x(sc)) {
18172 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18173 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18174 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18175 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18176 }
18177 ecore_init_block(sc, BLOCK_QM, init_phase);
18178
18179 ecore_init_block(sc, BLOCK_TM, init_phase);
18180 ecore_init_block(sc, BLOCK_DORQ, init_phase);
18181
18182 bxe_iov_init_dq(sc);
18183
18184 ecore_init_block(sc, BLOCK_BRB1, init_phase);
18185 ecore_init_block(sc, BLOCK_PRS, init_phase);
18186 ecore_init_block(sc, BLOCK_TSDM, init_phase);
18187 ecore_init_block(sc, BLOCK_CSDM, init_phase);
18188 ecore_init_block(sc, BLOCK_USDM, init_phase);
18189 ecore_init_block(sc, BLOCK_XSDM, init_phase);
18190 ecore_init_block(sc, BLOCK_UPB, init_phase);
18191 ecore_init_block(sc, BLOCK_XPB, init_phase);
18192 ecore_init_block(sc, BLOCK_PBF, init_phase);
18193 if (!CHIP_IS_E1x(sc))
18194 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18195
18196 ecore_init_block(sc, BLOCK_CDU, init_phase);
18197
18198 ecore_init_block(sc, BLOCK_CFC, init_phase);
18199
18200 if (!CHIP_IS_E1x(sc))
18201 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18202
18203 if (IS_MF(sc)) {
18204 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18205 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18206 }
18207
18208 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18209
18210 /* HC init per function */
18211 if (sc->devinfo.int_block == INT_BLOCK_HC) {
18212 if (CHIP_IS_E1H(sc)) {
18213 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18214
18215 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18216 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18217 }
18218 ecore_init_block(sc, BLOCK_HC, init_phase);
18219
18220 } else {
18221 int num_segs, sb_idx, prod_offset;
18222
18223 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18224
18225 if (!CHIP_IS_E1x(sc)) {
18226 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18227 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18228 }
18229
18230 ecore_init_block(sc, BLOCK_IGU, init_phase);
18231
18232 if (!CHIP_IS_E1x(sc)) {
18233 int dsb_idx = 0;
18234 /**
18235 * Producer memory:
18236 * E2 mode: address 0-135 match to the mapping memory;
18237 * 136 - PF0 default prod; 137 - PF1 default prod;
18238 * 138 - PF2 default prod; 139 - PF3 default prod;
18239 * 140 - PF0 attn prod; 141 - PF1 attn prod;
18240 * 142 - PF2 attn prod; 143 - PF3 attn prod;
18241 * 144-147 reserved.
18242 *
18243 * E1.5 mode - In backward compatible mode;
18244 * for non default SB; each even line in the memory
18245 * holds the U producer and each odd line hold
18246 * the C producer. The first 128 producers are for
18247 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18248 * producers are for the DSB for each PF.
18249 * Each PF has five segments: (the order inside each
18250 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18251 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18252 * 144-147 attn prods;
18253 */
18254 /* non-default-status-blocks */
18255 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18256 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18257 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18258 prod_offset = (sc->igu_base_sb + sb_idx) *
18259 num_segs;
18260
18261 for (i = 0; i < num_segs; i++) {
18262 addr = IGU_REG_PROD_CONS_MEMORY +
18263 (prod_offset + i) * 4;
18264 REG_WR(sc, addr, 0);
18265 }
18266 /* send consumer update with value 0 */
18267 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18268 USTORM_ID, 0, IGU_INT_NOP, 1);
18269 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18270 }
18271
18272 /* default-status-blocks */
18273 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18274 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18275
18276 if (CHIP_IS_MODE_4_PORT(sc))
18277 dsb_idx = SC_FUNC(sc);
18278 else
18279 dsb_idx = SC_VN(sc);
18280
18281 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18282 IGU_BC_BASE_DSB_PROD + dsb_idx :
18283 IGU_NORM_BASE_DSB_PROD + dsb_idx);
18284
18285 /*
18286 * igu prods come in chunks of E1HVN_MAX (4) -
18287 * does not matters what is the current chip mode
18288 */
18289 for (i = 0; i < (num_segs * E1HVN_MAX);
18290 i += E1HVN_MAX) {
18291 addr = IGU_REG_PROD_CONS_MEMORY +
18292 (prod_offset + i)*4;
18293 REG_WR(sc, addr, 0);
18294 }
18295 /* send consumer update with 0 */
18296 if (CHIP_INT_MODE_IS_BC(sc)) {
18297 bxe_ack_sb(sc, sc->igu_dsb_id,
18298 USTORM_ID, 0, IGU_INT_NOP, 1);
18299 bxe_ack_sb(sc, sc->igu_dsb_id,
18300 CSTORM_ID, 0, IGU_INT_NOP, 1);
18301 bxe_ack_sb(sc, sc->igu_dsb_id,
18302 XSTORM_ID, 0, IGU_INT_NOP, 1);
18303 bxe_ack_sb(sc, sc->igu_dsb_id,
18304 TSTORM_ID, 0, IGU_INT_NOP, 1);
18305 bxe_ack_sb(sc, sc->igu_dsb_id,
18306 ATTENTION_ID, 0, IGU_INT_NOP, 1);
18307 } else {
18308 bxe_ack_sb(sc, sc->igu_dsb_id,
18309 USTORM_ID, 0, IGU_INT_NOP, 1);
18310 bxe_ack_sb(sc, sc->igu_dsb_id,
18311 ATTENTION_ID, 0, IGU_INT_NOP, 1);
18312 }
18313 bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18314
18315 /* !!! these should become driver const once
18316 rf-tool supports split-68 const */
18317 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18318 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18319 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18320 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18321 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18322 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18323 }
18324 }
18325
18326 /* Reset PCIE errors for debug */
18327 REG_WR(sc, 0x2114, 0xffffffff);
18328 REG_WR(sc, 0x2120, 0xffffffff);
18329
18330 if (CHIP_IS_E1x(sc)) {
18331 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18332 main_mem_base = HC_REG_MAIN_MEMORY +
18333 SC_PORT(sc) * (main_mem_size * 4);
18334 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18335 main_mem_width = 8;
18336
18337 val = REG_RD(sc, main_mem_prty_clr);
18338 if (val) {
18339 BLOGD(sc, DBG_LOAD,
18340 "Parity errors in HC block during function init (0x%x)!\n",
18341 val);
18342 }
18343
18344 /* Clear "false" parity errors in MSI-X table */
18345 for (i = main_mem_base;
18346 i < main_mem_base + main_mem_size * 4;
18347 i += main_mem_width) {
18348 bxe_read_dmae(sc, i, main_mem_width / 4);
18349 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18350 i, main_mem_width / 4);
18351 }
18352 /* Clear HC parity attention */
18353 REG_RD(sc, main_mem_prty_clr);
18354 }
18355
18356 #if 1
18357 /* Enable STORMs SP logging */
18358 REG_WR8(sc, BAR_USTRORM_INTMEM +
18359 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18360 REG_WR8(sc, BAR_TSTRORM_INTMEM +
18361 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18362 REG_WR8(sc, BAR_CSTRORM_INTMEM +
18363 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18364 REG_WR8(sc, BAR_XSTRORM_INTMEM +
18365 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18366 #endif
18367
18368 elink_phy_probe(&sc->link_params);
18369
18370 return (0);
18371 }
18372
18373 static void
bxe_link_reset(struct bxe_softc * sc)18374 bxe_link_reset(struct bxe_softc *sc)
18375 {
18376 if (!BXE_NOMCP(sc)) {
18377 bxe_acquire_phy_lock(sc);
18378 elink_lfa_reset(&sc->link_params, &sc->link_vars);
18379 bxe_release_phy_lock(sc);
18380 } else {
18381 if (!CHIP_REV_IS_SLOW(sc)) {
18382 BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18383 }
18384 }
18385 }
18386
18387 static void
bxe_reset_port(struct bxe_softc * sc)18388 bxe_reset_port(struct bxe_softc *sc)
18389 {
18390 int port = SC_PORT(sc);
18391 uint32_t val;
18392
18393 ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
18394 /* reset physical Link */
18395 bxe_link_reset(sc);
18396
18397 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18398
18399 /* Do not rcv packets to BRB */
18400 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18401 /* Do not direct rcv packets that are not for MCP to the BRB */
18402 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18403 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18404
18405 /* Configure AEU */
18406 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18407
18408 DELAY(100000);
18409
18410 /* Check for BRB port occupancy */
18411 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18412 if (val) {
18413 BLOGD(sc, DBG_LOAD,
18414 "BRB1 is not empty, %d blocks are occupied\n", val);
18415 }
18416
18417 /* TODO: Close Doorbell port? */
18418 }
18419
18420 static void
bxe_ilt_wr(struct bxe_softc * sc,uint32_t index,bus_addr_t addr)18421 bxe_ilt_wr(struct bxe_softc *sc,
18422 uint32_t index,
18423 bus_addr_t addr)
18424 {
18425 int reg;
18426 uint32_t wb_write[2];
18427
18428 if (CHIP_IS_E1(sc)) {
18429 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18430 } else {
18431 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18432 }
18433
18434 wb_write[0] = ONCHIP_ADDR1(addr);
18435 wb_write[1] = ONCHIP_ADDR2(addr);
18436 REG_WR_DMAE(sc, reg, wb_write, 2);
18437 }
18438
18439 static void
bxe_clear_func_ilt(struct bxe_softc * sc,uint32_t func)18440 bxe_clear_func_ilt(struct bxe_softc *sc,
18441 uint32_t func)
18442 {
18443 uint32_t i, base = FUNC_ILT_BASE(func);
18444 for (i = base; i < base + ILT_PER_FUNC; i++) {
18445 bxe_ilt_wr(sc, i, 0);
18446 }
18447 }
18448
18449 static void
bxe_reset_func(struct bxe_softc * sc)18450 bxe_reset_func(struct bxe_softc *sc)
18451 {
18452 struct bxe_fastpath *fp;
18453 int port = SC_PORT(sc);
18454 int func = SC_FUNC(sc);
18455 int i;
18456
18457 /* Disable the function in the FW */
18458 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18459 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18460 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18461 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18462
18463 /* FP SBs */
18464 FOR_EACH_ETH_QUEUE(sc, i) {
18465 fp = &sc->fp[i];
18466 REG_WR8(sc, BAR_CSTRORM_INTMEM +
18467 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18468 SB_DISABLED);
18469 }
18470
18471 /* SP SB */
18472 REG_WR8(sc, BAR_CSTRORM_INTMEM +
18473 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18474 SB_DISABLED);
18475
18476 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18477 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18478 }
18479
18480 /* Configure IGU */
18481 if (sc->devinfo.int_block == INT_BLOCK_HC) {
18482 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18483 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18484 } else {
18485 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18486 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18487 }
18488
18489 if (CNIC_LOADED(sc)) {
18490 /* Disable Timer scan */
18491 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18492 /*
18493 * Wait for at least 10ms and up to 2 second for the timers
18494 * scan to complete
18495 */
18496 for (i = 0; i < 200; i++) {
18497 DELAY(10000);
18498 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18499 break;
18500 }
18501 }
18502
18503 /* Clear ILT */
18504 bxe_clear_func_ilt(sc, func);
18505
18506 /*
18507 * Timers workaround bug for E2: if this is vnic-3,
18508 * we need to set the entire ilt range for this timers.
18509 */
18510 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18511 struct ilt_client_info ilt_cli;
18512 /* use dummy TM client */
18513 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18514 ilt_cli.start = 0;
18515 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18516 ilt_cli.client_num = ILT_CLIENT_TM;
18517
18518 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18519 }
18520
18521 /* this assumes that reset_port() called before reset_func()*/
18522 if (!CHIP_IS_E1x(sc)) {
18523 bxe_pf_disable(sc);
18524 }
18525
18526 sc->dmae_ready = 0;
18527 }
18528
18529 static int
bxe_gunzip_init(struct bxe_softc * sc)18530 bxe_gunzip_init(struct bxe_softc *sc)
18531 {
18532 return (0);
18533 }
18534
18535 static void
bxe_gunzip_end(struct bxe_softc * sc)18536 bxe_gunzip_end(struct bxe_softc *sc)
18537 {
18538 return;
18539 }
18540
18541 static int
bxe_init_firmware(struct bxe_softc * sc)18542 bxe_init_firmware(struct bxe_softc *sc)
18543 {
18544 if (CHIP_IS_E1(sc)) {
18545 ecore_init_e1_firmware(sc);
18546 sc->iro_array = e1_iro_arr;
18547 } else if (CHIP_IS_E1H(sc)) {
18548 ecore_init_e1h_firmware(sc);
18549 sc->iro_array = e1h_iro_arr;
18550 } else if (!CHIP_IS_E1x(sc)) {
18551 ecore_init_e2_firmware(sc);
18552 sc->iro_array = e2_iro_arr;
18553 } else {
18554 BLOGE(sc, "Unsupported chip revision\n");
18555 return (-1);
18556 }
18557
18558 return (0);
18559 }
18560
18561 static void
bxe_release_firmware(struct bxe_softc * sc)18562 bxe_release_firmware(struct bxe_softc *sc)
18563 {
18564 /* Do nothing */
18565 return;
18566 }
18567
18568 static int
ecore_gunzip(struct bxe_softc * sc,const uint8_t * zbuf,int len)18569 ecore_gunzip(struct bxe_softc *sc,
18570 const uint8_t *zbuf,
18571 int len)
18572 {
18573 /* XXX : Implement... */
18574 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18575 return (FALSE);
18576 }
18577
18578 static void
ecore_reg_wr_ind(struct bxe_softc * sc,uint32_t addr,uint32_t val)18579 ecore_reg_wr_ind(struct bxe_softc *sc,
18580 uint32_t addr,
18581 uint32_t val)
18582 {
18583 bxe_reg_wr_ind(sc, addr, val);
18584 }
18585
18586 static void
ecore_write_dmae_phys_len(struct bxe_softc * sc,bus_addr_t phys_addr,uint32_t addr,uint32_t len)18587 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18588 bus_addr_t phys_addr,
18589 uint32_t addr,
18590 uint32_t len)
18591 {
18592 bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18593 }
18594
18595 void
ecore_storm_memset_struct(struct bxe_softc * sc,uint32_t addr,size_t size,uint32_t * data)18596 ecore_storm_memset_struct(struct bxe_softc *sc,
18597 uint32_t addr,
18598 size_t size,
18599 uint32_t *data)
18600 {
18601 uint8_t i;
18602 for (i = 0; i < size/4; i++) {
18603 REG_WR(sc, addr + (i * 4), data[i]);
18604 }
18605 }
18606
18607
18608 /*
18609 * character device - ioctl interface definitions
18610 */
18611
18612
18613 #include "bxe_dump.h"
18614 #include "bxe_ioctl.h"
18615 #include <sys/conf.h>
18616
18617 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18618 struct thread *td);
18619
18620 static struct cdevsw bxe_cdevsw = {
18621 .d_version = D_VERSION,
18622 .d_ioctl = bxe_eioctl,
18623 .d_name = "bxecnic",
18624 };
18625
18626 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18627
18628
18629 #define DUMP_ALL_PRESETS 0x1FFF
18630 #define DUMP_MAX_PRESETS 13
18631 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18632 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18633 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18634 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18635 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18636
18637 #define IS_REG_IN_PRESET(presets, idx) \
18638 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18639
18640
18641 static int
bxe_get_preset_regs_len(struct bxe_softc * sc,uint32_t preset)18642 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18643 {
18644 if (CHIP_IS_E1(sc))
18645 return dump_num_registers[0][preset-1];
18646 else if (CHIP_IS_E1H(sc))
18647 return dump_num_registers[1][preset-1];
18648 else if (CHIP_IS_E2(sc))
18649 return dump_num_registers[2][preset-1];
18650 else if (CHIP_IS_E3A0(sc))
18651 return dump_num_registers[3][preset-1];
18652 else if (CHIP_IS_E3B0(sc))
18653 return dump_num_registers[4][preset-1];
18654 else
18655 return 0;
18656 }
18657
18658 static int
bxe_get_total_regs_len32(struct bxe_softc * sc)18659 bxe_get_total_regs_len32(struct bxe_softc *sc)
18660 {
18661 uint32_t preset_idx;
18662 int regdump_len32 = 0;
18663
18664
18665 /* Calculate the total preset regs length */
18666 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18667 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18668 }
18669
18670 return regdump_len32;
18671 }
18672
18673 static const uint32_t *
__bxe_get_page_addr_ar(struct bxe_softc * sc)18674 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18675 {
18676 if (CHIP_IS_E2(sc))
18677 return page_vals_e2;
18678 else if (CHIP_IS_E3(sc))
18679 return page_vals_e3;
18680 else
18681 return NULL;
18682 }
18683
18684 static uint32_t
__bxe_get_page_reg_num(struct bxe_softc * sc)18685 __bxe_get_page_reg_num(struct bxe_softc *sc)
18686 {
18687 if (CHIP_IS_E2(sc))
18688 return PAGE_MODE_VALUES_E2;
18689 else if (CHIP_IS_E3(sc))
18690 return PAGE_MODE_VALUES_E3;
18691 else
18692 return 0;
18693 }
18694
18695 static const uint32_t *
__bxe_get_page_write_ar(struct bxe_softc * sc)18696 __bxe_get_page_write_ar(struct bxe_softc *sc)
18697 {
18698 if (CHIP_IS_E2(sc))
18699 return page_write_regs_e2;
18700 else if (CHIP_IS_E3(sc))
18701 return page_write_regs_e3;
18702 else
18703 return NULL;
18704 }
18705
18706 static uint32_t
__bxe_get_page_write_num(struct bxe_softc * sc)18707 __bxe_get_page_write_num(struct bxe_softc *sc)
18708 {
18709 if (CHIP_IS_E2(sc))
18710 return PAGE_WRITE_REGS_E2;
18711 else if (CHIP_IS_E3(sc))
18712 return PAGE_WRITE_REGS_E3;
18713 else
18714 return 0;
18715 }
18716
18717 static const struct reg_addr *
__bxe_get_page_read_ar(struct bxe_softc * sc)18718 __bxe_get_page_read_ar(struct bxe_softc *sc)
18719 {
18720 if (CHIP_IS_E2(sc))
18721 return page_read_regs_e2;
18722 else if (CHIP_IS_E3(sc))
18723 return page_read_regs_e3;
18724 else
18725 return NULL;
18726 }
18727
18728 static uint32_t
__bxe_get_page_read_num(struct bxe_softc * sc)18729 __bxe_get_page_read_num(struct bxe_softc *sc)
18730 {
18731 if (CHIP_IS_E2(sc))
18732 return PAGE_READ_REGS_E2;
18733 else if (CHIP_IS_E3(sc))
18734 return PAGE_READ_REGS_E3;
18735 else
18736 return 0;
18737 }
18738
18739 static bool
bxe_is_reg_in_chip(struct bxe_softc * sc,const struct reg_addr * reg_info)18740 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18741 {
18742 if (CHIP_IS_E1(sc))
18743 return IS_E1_REG(reg_info->chips);
18744 else if (CHIP_IS_E1H(sc))
18745 return IS_E1H_REG(reg_info->chips);
18746 else if (CHIP_IS_E2(sc))
18747 return IS_E2_REG(reg_info->chips);
18748 else if (CHIP_IS_E3A0(sc))
18749 return IS_E3A0_REG(reg_info->chips);
18750 else if (CHIP_IS_E3B0(sc))
18751 return IS_E3B0_REG(reg_info->chips);
18752 else
18753 return 0;
18754 }
18755
18756 static bool
bxe_is_wreg_in_chip(struct bxe_softc * sc,const struct wreg_addr * wreg_info)18757 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18758 {
18759 if (CHIP_IS_E1(sc))
18760 return IS_E1_REG(wreg_info->chips);
18761 else if (CHIP_IS_E1H(sc))
18762 return IS_E1H_REG(wreg_info->chips);
18763 else if (CHIP_IS_E2(sc))
18764 return IS_E2_REG(wreg_info->chips);
18765 else if (CHIP_IS_E3A0(sc))
18766 return IS_E3A0_REG(wreg_info->chips);
18767 else if (CHIP_IS_E3B0(sc))
18768 return IS_E3B0_REG(wreg_info->chips);
18769 else
18770 return 0;
18771 }
18772
18773 /**
18774 * bxe_read_pages_regs - read "paged" registers
18775 *
18776 * @bp device handle
18777 * @p output buffer
18778 *
18779 * Reads "paged" memories: memories that may only be read by first writing to a
18780 * specific address ("write address") and then reading from a specific address
18781 * ("read address"). There may be more than one write address per "page" and
18782 * more than one read address per write address.
18783 */
18784 static void
bxe_read_pages_regs(struct bxe_softc * sc,uint32_t * p,uint32_t preset)18785 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18786 {
18787 uint32_t i, j, k, n;
18788
18789 /* addresses of the paged registers */
18790 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18791 /* number of paged registers */
18792 int num_pages = __bxe_get_page_reg_num(sc);
18793 /* write addresses */
18794 const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18795 /* number of write addresses */
18796 int write_num = __bxe_get_page_write_num(sc);
18797 /* read addresses info */
18798 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18799 /* number of read addresses */
18800 int read_num = __bxe_get_page_read_num(sc);
18801 uint32_t addr, size;
18802
18803 for (i = 0; i < num_pages; i++) {
18804 for (j = 0; j < write_num; j++) {
18805 REG_WR(sc, write_addr[j], page_addr[i]);
18806
18807 for (k = 0; k < read_num; k++) {
18808 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18809 size = read_addr[k].size;
18810 for (n = 0; n < size; n++) {
18811 addr = read_addr[k].addr + n*4;
18812 *p++ = REG_RD(sc, addr);
18813 }
18814 }
18815 }
18816 }
18817 }
18818 return;
18819 }
18820
18821
18822 static int
bxe_get_preset_regs(struct bxe_softc * sc,uint32_t * p,uint32_t preset)18823 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18824 {
18825 uint32_t i, j, addr;
18826 const struct wreg_addr *wreg_addr_p = NULL;
18827
18828 if (CHIP_IS_E1(sc))
18829 wreg_addr_p = &wreg_addr_e1;
18830 else if (CHIP_IS_E1H(sc))
18831 wreg_addr_p = &wreg_addr_e1h;
18832 else if (CHIP_IS_E2(sc))
18833 wreg_addr_p = &wreg_addr_e2;
18834 else if (CHIP_IS_E3A0(sc))
18835 wreg_addr_p = &wreg_addr_e3;
18836 else if (CHIP_IS_E3B0(sc))
18837 wreg_addr_p = &wreg_addr_e3b0;
18838 else
18839 return (-1);
18840
18841 /* Read the idle_chk registers */
18842 for (i = 0; i < IDLE_REGS_COUNT; i++) {
18843 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18844 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18845 for (j = 0; j < idle_reg_addrs[i].size; j++)
18846 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18847 }
18848 }
18849
18850 /* Read the regular registers */
18851 for (i = 0; i < REGS_COUNT; i++) {
18852 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) &&
18853 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18854 for (j = 0; j < reg_addrs[i].size; j++)
18855 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18856 }
18857 }
18858
18859 /* Read the CAM registers */
18860 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18861 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18862 for (i = 0; i < wreg_addr_p->size; i++) {
18863 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18864
18865 /* In case of wreg_addr register, read additional
18866 registers from read_regs array
18867 */
18868 for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18869 addr = *(wreg_addr_p->read_regs);
18870 *p++ = REG_RD(sc, addr + j*4);
18871 }
18872 }
18873 }
18874
18875 /* Paged registers are supported in E2 & E3 only */
18876 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18877 /* Read "paged" registers */
18878 bxe_read_pages_regs(sc, p, preset);
18879 }
18880
18881 return 0;
18882 }
18883
18884 int
bxe_grc_dump(struct bxe_softc * sc)18885 bxe_grc_dump(struct bxe_softc *sc)
18886 {
18887 int rval = 0;
18888 uint32_t preset_idx;
18889 uint8_t *buf;
18890 uint32_t size;
18891 struct dump_header *d_hdr;
18892 uint32_t i;
18893 uint32_t reg_val;
18894 uint32_t reg_addr;
18895 uint32_t cmd_offset;
18896 struct ecore_ilt *ilt = SC_ILT(sc);
18897 struct bxe_fastpath *fp;
18898 struct ilt_client_info *ilt_cli;
18899 int grc_dump_size;
18900
18901
18902 if (sc->grcdump_done || sc->grcdump_started)
18903 return (rval);
18904
18905 sc->grcdump_started = 1;
18906 BLOGI(sc, "Started collecting grcdump\n");
18907
18908 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18909 sizeof(struct dump_header);
18910
18911 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18912
18913 if (sc->grc_dump == NULL) {
18914 BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18915 return(ENOMEM);
18916 }
18917
18918
18919
18920 /* Disable parity attentions as long as following dump may
18921 * cause false alarms by reading never written registers. We
18922 * will re-enable parity attentions right after the dump.
18923 */
18924
18925 /* Disable parity on path 0 */
18926 bxe_pretend_func(sc, 0);
18927
18928 ecore_disable_blocks_parity(sc);
18929
18930 /* Disable parity on path 1 */
18931 bxe_pretend_func(sc, 1);
18932 ecore_disable_blocks_parity(sc);
18933
18934 /* Return to current function */
18935 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18936
18937 buf = sc->grc_dump;
18938 d_hdr = sc->grc_dump;
18939
18940 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1;
18941 d_hdr->version = BNX2X_DUMP_VERSION;
18942 d_hdr->preset = DUMP_ALL_PRESETS;
18943
18944 if (CHIP_IS_E1(sc)) {
18945 d_hdr->dump_meta_data = DUMP_CHIP_E1;
18946 } else if (CHIP_IS_E1H(sc)) {
18947 d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18948 } else if (CHIP_IS_E2(sc)) {
18949 d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18950 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18951 } else if (CHIP_IS_E3A0(sc)) {
18952 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18953 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18954 } else if (CHIP_IS_E3B0(sc)) {
18955 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18956 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18957 }
18958
18959 buf += sizeof(struct dump_header);
18960
18961 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18962
18963 /* Skip presets with IOR */
18964 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18965 (preset_idx == 11))
18966 continue;
18967
18968 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18969
18970 if (rval)
18971 break;
18972
18973 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18974
18975 buf += size;
18976 }
18977
18978 bxe_pretend_func(sc, 0);
18979 ecore_clear_blocks_parity(sc);
18980 ecore_enable_blocks_parity(sc);
18981
18982 bxe_pretend_func(sc, 1);
18983 ecore_clear_blocks_parity(sc);
18984 ecore_enable_blocks_parity(sc);
18985
18986 /* Return to current function */
18987 bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18988
18989
18990
18991 if(sc->state == BXE_STATE_OPEN) {
18992 if(sc->fw_stats_req != NULL) {
18993 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
18994 (uintmax_t)sc->fw_stats_req_mapping,
18995 (uintmax_t)sc->fw_stats_data_mapping,
18996 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
18997 }
18998 if(sc->def_sb != NULL) {
18999 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
19000 (void *)sc->def_sb_dma.paddr, sc->def_sb,
19001 sizeof(struct host_sp_status_block));
19002 }
19003 if(sc->eq_dma.vaddr != NULL) {
19004 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
19005 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
19006 }
19007 if(sc->sp_dma.vaddr != NULL) {
19008 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
19009 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
19010 sizeof(struct bxe_slowpath));
19011 }
19012 if(sc->spq_dma.vaddr != NULL) {
19013 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
19014 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
19015 }
19016 if(sc->gz_buf_dma.vaddr != NULL) {
19017 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
19018 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
19019 FW_BUF_SIZE);
19020 }
19021 for (i = 0; i < sc->num_queues; i++) {
19022 fp = &sc->fp[i];
19023 if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
19024 fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
19025 fp->rx_sge_dma.vaddr != NULL) {
19026
19027 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19028 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
19029 sizeof(union bxe_host_hc_status_block));
19030 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19031 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
19032 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
19033 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19034 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
19035 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
19036 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19037 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
19038 (BCM_PAGE_SIZE * RCQ_NUM_PAGES));
19039 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19040 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
19041 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
19042 }
19043 }
19044 if(ilt != NULL ) {
19045 ilt_cli = &ilt->clients[1];
19046 if(ilt->lines != NULL) {
19047 for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
19048 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
19049 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
19050 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
19051 }
19052 }
19053 }
19054
19055
19056 cmd_offset = DMAE_REG_CMD_MEM;
19057 for (i = 0; i < 224; i++) {
19058 reg_addr = (cmd_offset +(i * 4));
19059 reg_val = REG_RD(sc, reg_addr);
19060 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
19061 reg_addr, reg_val);
19062 }
19063 }
19064
19065 BLOGI(sc, "Collection of grcdump done\n");
19066 sc->grcdump_done = 1;
19067 return(rval);
19068 }
19069
19070 static int
bxe_add_cdev(struct bxe_softc * sc)19071 bxe_add_cdev(struct bxe_softc *sc)
19072 {
19073 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
19074
19075 if (sc->eeprom == NULL) {
19076 BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
19077 return (-1);
19078 }
19079
19080 sc->ioctl_dev = make_dev(&bxe_cdevsw,
19081 if_getdunit(sc->ifp),
19082 UID_ROOT,
19083 GID_WHEEL,
19084 0600,
19085 "%s",
19086 if_name(sc->ifp));
19087
19088 if (sc->ioctl_dev == NULL) {
19089 free(sc->eeprom, M_DEVBUF);
19090 sc->eeprom = NULL;
19091 return (-1);
19092 }
19093
19094 sc->ioctl_dev->si_drv1 = sc;
19095
19096 return (0);
19097 }
19098
19099 static void
bxe_del_cdev(struct bxe_softc * sc)19100 bxe_del_cdev(struct bxe_softc *sc)
19101 {
19102 if (sc->ioctl_dev != NULL)
19103 destroy_dev(sc->ioctl_dev);
19104
19105 if (sc->eeprom != NULL) {
19106 free(sc->eeprom, M_DEVBUF);
19107 sc->eeprom = NULL;
19108 }
19109 sc->ioctl_dev = NULL;
19110
19111 return;
19112 }
19113
bxe_is_nvram_accessible(struct bxe_softc * sc)19114 static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
19115 {
19116
19117 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
19118 return FALSE;
19119
19120 return TRUE;
19121 }
19122
19123
19124 static int
bxe_wr_eeprom(struct bxe_softc * sc,void * data,uint32_t offset,uint32_t len)19125 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19126 {
19127 int rval = 0;
19128
19129 if(!bxe_is_nvram_accessible(sc)) {
19130 BLOGW(sc, "Cannot access eeprom when interface is down\n");
19131 return (-EAGAIN);
19132 }
19133 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
19134
19135
19136 return (rval);
19137 }
19138
19139 static int
bxe_rd_eeprom(struct bxe_softc * sc,void * data,uint32_t offset,uint32_t len)19140 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19141 {
19142 int rval = 0;
19143
19144 if(!bxe_is_nvram_accessible(sc)) {
19145 BLOGW(sc, "Cannot access eeprom when interface is down\n");
19146 return (-EAGAIN);
19147 }
19148 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
19149
19150 return (rval);
19151 }
19152
19153 static int
bxe_eeprom_rd_wr(struct bxe_softc * sc,bxe_eeprom_t * eeprom)19154 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
19155 {
19156 int rval = 0;
19157
19158 switch (eeprom->eeprom_cmd) {
19159
19160 case BXE_EEPROM_CMD_SET_EEPROM:
19161
19162 rval = copyin(eeprom->eeprom_data, sc->eeprom,
19163 eeprom->eeprom_data_len);
19164
19165 if (rval)
19166 break;
19167
19168 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19169 eeprom->eeprom_data_len);
19170 break;
19171
19172 case BXE_EEPROM_CMD_GET_EEPROM:
19173
19174 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19175 eeprom->eeprom_data_len);
19176
19177 if (rval) {
19178 break;
19179 }
19180
19181 rval = copyout(sc->eeprom, eeprom->eeprom_data,
19182 eeprom->eeprom_data_len);
19183 break;
19184
19185 default:
19186 rval = EINVAL;
19187 break;
19188 }
19189
19190 if (rval) {
19191 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval);
19192 }
19193
19194 return (rval);
19195 }
19196
19197 static int
bxe_get_settings(struct bxe_softc * sc,bxe_dev_setting_t * dev_p)19198 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
19199 {
19200 uint32_t ext_phy_config;
19201 int port = SC_PORT(sc);
19202 int cfg_idx = bxe_get_link_cfg_idx(sc);
19203
19204 dev_p->supported = sc->port.supported[cfg_idx] |
19205 (sc->port.supported[cfg_idx ^ 1] &
19206 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
19207 dev_p->advertising = sc->port.advertising[cfg_idx];
19208 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
19209 ELINK_ETH_PHY_SFP_1G_FIBER) {
19210 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
19211 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
19212 }
19213 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
19214 !(sc->flags & BXE_MF_FUNC_DIS)) {
19215 dev_p->duplex = sc->link_vars.duplex;
19216 if (IS_MF(sc) && !BXE_NOMCP(sc))
19217 dev_p->speed = bxe_get_mf_speed(sc);
19218 else
19219 dev_p->speed = sc->link_vars.line_speed;
19220 } else {
19221 dev_p->duplex = DUPLEX_UNKNOWN;
19222 dev_p->speed = SPEED_UNKNOWN;
19223 }
19224
19225 dev_p->port = bxe_media_detect(sc);
19226
19227 ext_phy_config = SHMEM_RD(sc,
19228 dev_info.port_hw_config[port].external_phy_config);
19229 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
19230 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
19231 dev_p->phy_address = sc->port.phy_addr;
19232 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19233 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
19234 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19235 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
19236 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
19237 else
19238 dev_p->phy_address = 0;
19239
19240 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
19241 dev_p->autoneg = AUTONEG_ENABLE;
19242 else
19243 dev_p->autoneg = AUTONEG_DISABLE;
19244
19245
19246 return 0;
19247 }
19248
19249 static int
bxe_eioctl(struct cdev * dev,u_long cmd,caddr_t data,int fflag,struct thread * td)19250 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19251 struct thread *td)
19252 {
19253 struct bxe_softc *sc;
19254 int rval = 0;
19255 bxe_grcdump_t *dump = NULL;
19256 int grc_dump_size;
19257 bxe_drvinfo_t *drv_infop = NULL;
19258 bxe_dev_setting_t *dev_p;
19259 bxe_dev_setting_t dev_set;
19260 bxe_get_regs_t *reg_p;
19261 bxe_reg_rdw_t *reg_rdw_p;
19262 bxe_pcicfg_rdw_t *cfg_rdw_p;
19263 bxe_perm_mac_addr_t *mac_addr_p;
19264
19265
19266 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19267 return ENXIO;
19268
19269 dump = (bxe_grcdump_t *)data;
19270
19271 switch(cmd) {
19272
19273 case BXE_GRC_DUMP_SIZE:
19274 dump->pci_func = sc->pcie_func;
19275 dump->grcdump_size =
19276 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19277 sizeof(struct dump_header);
19278 break;
19279
19280 case BXE_GRC_DUMP:
19281
19282 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19283 sizeof(struct dump_header);
19284 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
19285 (dump->grcdump_size < grc_dump_size)) {
19286 rval = EINVAL;
19287 break;
19288 }
19289
19290 if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
19291 (!sc->grcdump_started)) {
19292 rval = bxe_grc_dump(sc);
19293 }
19294
19295 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
19296 (sc->grc_dump != NULL)) {
19297 dump->grcdump_dwords = grc_dump_size >> 2;
19298 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
19299 free(sc->grc_dump, M_DEVBUF);
19300 sc->grc_dump = NULL;
19301 sc->grcdump_started = 0;
19302 sc->grcdump_done = 0;
19303 }
19304
19305 break;
19306
19307 case BXE_DRV_INFO:
19308 drv_infop = (bxe_drvinfo_t *)data;
19309 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
19310 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
19311 BXE_DRIVER_VERSION);
19312 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
19313 sc->devinfo.bc_ver_str);
19314 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
19315 "%s", sc->fw_ver_str);
19316 drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
19317 drv_infop->reg_dump_len =
19318 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
19319 + sizeof(struct dump_header);
19320 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
19321 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
19322 break;
19323
19324 case BXE_DEV_SETTING:
19325 dev_p = (bxe_dev_setting_t *)data;
19326 bxe_get_settings(sc, &dev_set);
19327 dev_p->supported = dev_set.supported;
19328 dev_p->advertising = dev_set.advertising;
19329 dev_p->speed = dev_set.speed;
19330 dev_p->duplex = dev_set.duplex;
19331 dev_p->port = dev_set.port;
19332 dev_p->phy_address = dev_set.phy_address;
19333 dev_p->autoneg = dev_set.autoneg;
19334
19335 break;
19336
19337 case BXE_GET_REGS:
19338
19339 reg_p = (bxe_get_regs_t *)data;
19340 grc_dump_size = reg_p->reg_buf_len;
19341
19342 if((!sc->grcdump_done) && (!sc->grcdump_started)) {
19343 bxe_grc_dump(sc);
19344 }
19345 if((sc->grcdump_done) && (sc->grcdump_started) &&
19346 (sc->grc_dump != NULL)) {
19347 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
19348 free(sc->grc_dump, M_DEVBUF);
19349 sc->grc_dump = NULL;
19350 sc->grcdump_started = 0;
19351 sc->grcdump_done = 0;
19352 }
19353
19354 break;
19355
19356 case BXE_RDW_REG:
19357 reg_rdw_p = (bxe_reg_rdw_t *)data;
19358 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
19359 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19360 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
19361
19362 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
19363 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19364 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
19365
19366 break;
19367
19368 case BXE_RDW_PCICFG:
19369 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
19370 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
19371
19372 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
19373 cfg_rdw_p->cfg_width);
19374
19375 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
19376 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
19377 cfg_rdw_p->cfg_width);
19378 } else {
19379 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
19380 }
19381 break;
19382
19383 case BXE_MAC_ADDR:
19384 mac_addr_p = (bxe_perm_mac_addr_t *)data;
19385 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
19386 sc->mac_addr_str);
19387 break;
19388
19389 case BXE_EEPROM:
19390 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
19391 break;
19392
19393
19394 default:
19395 break;
19396 }
19397
19398 return (rval);
19399 }
19400
19401 #ifdef DEBUGNET
19402 static void
bxe_debugnet_init(if_t ifp,int * nrxr,int * ncl,int * clsize)19403 bxe_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
19404 {
19405 struct bxe_softc *sc;
19406
19407 sc = if_getsoftc(ifp);
19408 BXE_CORE_LOCK(sc);
19409 *nrxr = sc->num_queues;
19410 *ncl = DEBUGNET_MAX_IN_FLIGHT;
19411 *clsize = sc->fp[0].mbuf_alloc_size;
19412 BXE_CORE_UNLOCK(sc);
19413 }
19414
19415 static void
bxe_debugnet_event(if_t ifp __unused,enum debugnet_ev event __unused)19416 bxe_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused)
19417 {
19418 }
19419
19420 static int
bxe_debugnet_transmit(if_t ifp,struct mbuf * m)19421 bxe_debugnet_transmit(if_t ifp, struct mbuf *m)
19422 {
19423 struct bxe_softc *sc;
19424 int error;
19425
19426 sc = if_getsoftc(ifp);
19427 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
19428 IFF_DRV_RUNNING || !sc->link_vars.link_up)
19429 return (ENOENT);
19430
19431 error = bxe_tx_encap(&sc->fp[0], &m);
19432 if (error != 0 && m != NULL)
19433 m_freem(m);
19434 return (error);
19435 }
19436
19437 static int
bxe_debugnet_poll(if_t ifp,int count)19438 bxe_debugnet_poll(if_t ifp, int count)
19439 {
19440 struct bxe_softc *sc;
19441 int i;
19442
19443 sc = if_getsoftc(ifp);
19444 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
19445 !sc->link_vars.link_up)
19446 return (ENOENT);
19447
19448 for (i = 0; i < sc->num_queues; i++)
19449 (void)bxe_rxeof(sc, &sc->fp[i]);
19450 (void)bxe_txeof(sc, &sc->fp[0]);
19451 return (0);
19452 }
19453 #endif /* DEBUGNET */
19454