xref: /linux/block/bio-integrity.c (revision 11a299a7933e03c83818b431e6a1c53ad387423d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bio-integrity.c - bio data integrity extensions
4  *
5  * Copyright (C) 2007, 2008, 2009 Oracle Corporation
6  * Written by: Martin K. Petersen <martin.petersen@oracle.com>
7  */
8 
9 #include <linux/blk-integrity.h>
10 #include <linux/mempool.h>
11 #include <linux/export.h>
12 #include <linux/bio.h>
13 #include <linux/workqueue.h>
14 #include <linux/slab.h>
15 #include "blk.h"
16 
17 static struct kmem_cache *bip_slab;
18 static struct workqueue_struct *kintegrityd_wq;
19 
blk_flush_integrity(void)20 void blk_flush_integrity(void)
21 {
22 	flush_workqueue(kintegrityd_wq);
23 }
24 
25 /**
26  * bio_integrity_free - Free bio integrity payload
27  * @bio:	bio containing bip to be freed
28  *
29  * Description: Free the integrity portion of a bio.
30  */
bio_integrity_free(struct bio * bio)31 void bio_integrity_free(struct bio *bio)
32 {
33 	struct bio_integrity_payload *bip = bio_integrity(bio);
34 	struct bio_set *bs = bio->bi_pool;
35 
36 	if (bs && mempool_initialized(&bs->bio_integrity_pool)) {
37 		if (bip->bip_vec)
38 			bvec_free(&bs->bvec_integrity_pool, bip->bip_vec,
39 				  bip->bip_max_vcnt);
40 		mempool_free(bip, &bs->bio_integrity_pool);
41 	} else {
42 		kfree(bip);
43 	}
44 	bio->bi_integrity = NULL;
45 	bio->bi_opf &= ~REQ_INTEGRITY;
46 }
47 
48 /**
49  * bio_integrity_alloc - Allocate integrity payload and attach it to bio
50  * @bio:	bio to attach integrity metadata to
51  * @gfp_mask:	Memory allocation mask
52  * @nr_vecs:	Number of integrity metadata scatter-gather elements
53  *
54  * Description: This function prepares a bio for attaching integrity
55  * metadata.  nr_vecs specifies the maximum number of pages containing
56  * integrity metadata that can be attached.
57  */
bio_integrity_alloc(struct bio * bio,gfp_t gfp_mask,unsigned int nr_vecs)58 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
59 						  gfp_t gfp_mask,
60 						  unsigned int nr_vecs)
61 {
62 	struct bio_integrity_payload *bip;
63 	struct bio_set *bs = bio->bi_pool;
64 	unsigned inline_vecs;
65 
66 	if (WARN_ON_ONCE(bio_has_crypt_ctx(bio)))
67 		return ERR_PTR(-EOPNOTSUPP);
68 
69 	if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) {
70 		bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask);
71 		inline_vecs = nr_vecs;
72 	} else {
73 		bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask);
74 		inline_vecs = BIO_INLINE_VECS;
75 	}
76 
77 	if (unlikely(!bip))
78 		return ERR_PTR(-ENOMEM);
79 
80 	memset(bip, 0, sizeof(*bip));
81 
82 	/* always report as many vecs as asked explicitly, not inline vecs */
83 	bip->bip_max_vcnt = nr_vecs;
84 	if (nr_vecs > inline_vecs) {
85 		bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool,
86 					  &bip->bip_max_vcnt, gfp_mask);
87 		if (!bip->bip_vec)
88 			goto err;
89 	} else if (nr_vecs) {
90 		bip->bip_vec = bip->bip_inline_vecs;
91 	}
92 
93 	bip->bip_bio = bio;
94 	bio->bi_integrity = bip;
95 	bio->bi_opf |= REQ_INTEGRITY;
96 
97 	return bip;
98 err:
99 	if (bs && mempool_initialized(&bs->bio_integrity_pool))
100 		mempool_free(bip, &bs->bio_integrity_pool);
101 	else
102 		kfree(bip);
103 	return ERR_PTR(-ENOMEM);
104 }
105 EXPORT_SYMBOL(bio_integrity_alloc);
106 
bio_integrity_unpin_bvec(struct bio_vec * bv,int nr_vecs,bool dirty)107 static void bio_integrity_unpin_bvec(struct bio_vec *bv, int nr_vecs,
108 				     bool dirty)
109 {
110 	int i;
111 
112 	for (i = 0; i < nr_vecs; i++) {
113 		if (dirty && !PageCompound(bv[i].bv_page))
114 			set_page_dirty_lock(bv[i].bv_page);
115 		unpin_user_page(bv[i].bv_page);
116 	}
117 }
118 
bio_integrity_uncopy_user(struct bio_integrity_payload * bip)119 static void bio_integrity_uncopy_user(struct bio_integrity_payload *bip)
120 {
121 	unsigned short nr_vecs = bip->bip_max_vcnt - 1;
122 	struct bio_vec *copy = &bip->bip_vec[1];
123 	size_t bytes = bip->bip_iter.bi_size;
124 	struct iov_iter iter;
125 	int ret;
126 
127 	iov_iter_bvec(&iter, ITER_DEST, copy, nr_vecs, bytes);
128 	ret = copy_to_iter(bvec_virt(bip->bip_vec), bytes, &iter);
129 	WARN_ON_ONCE(ret != bytes);
130 
131 	bio_integrity_unpin_bvec(copy, nr_vecs, true);
132 }
133 
134 /**
135  * bio_integrity_unmap_user - Unmap user integrity payload
136  * @bio:	bio containing bip to be unmapped
137  *
138  * Unmap the user mapped integrity portion of a bio.
139  */
bio_integrity_unmap_user(struct bio * bio)140 void bio_integrity_unmap_user(struct bio *bio)
141 {
142 	struct bio_integrity_payload *bip = bio_integrity(bio);
143 
144 	if (bip->bip_flags & BIP_COPY_USER) {
145 		if (bio_data_dir(bio) == READ)
146 			bio_integrity_uncopy_user(bip);
147 		kfree(bvec_virt(bip->bip_vec));
148 		return;
149 	}
150 
151 	bio_integrity_unpin_bvec(bip->bip_vec, bip->bip_max_vcnt,
152 			bio_data_dir(bio) == READ);
153 }
154 
155 /**
156  * bio_integrity_add_page - Attach integrity metadata
157  * @bio:	bio to update
158  * @page:	page containing integrity metadata
159  * @len:	number of bytes of integrity metadata in page
160  * @offset:	start offset within page
161  *
162  * Description: Attach a page containing integrity metadata to bio.
163  */
bio_integrity_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)164 int bio_integrity_add_page(struct bio *bio, struct page *page,
165 			   unsigned int len, unsigned int offset)
166 {
167 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
168 	struct bio_integrity_payload *bip = bio_integrity(bio);
169 
170 	if (bip->bip_vcnt > 0) {
171 		struct bio_vec *bv = &bip->bip_vec[bip->bip_vcnt - 1];
172 		bool same_page = false;
173 
174 		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
175 					   &same_page)) {
176 			bip->bip_iter.bi_size += len;
177 			return len;
178 		}
179 
180 		if (bip->bip_vcnt >=
181 		    min(bip->bip_max_vcnt, queue_max_integrity_segments(q)))
182 			return 0;
183 
184 		/*
185 		 * If the queue doesn't support SG gaps and adding this segment
186 		 * would create a gap, disallow it.
187 		 */
188 		if (bvec_gap_to_prev(&q->limits, bv, offset))
189 			return 0;
190 	}
191 
192 	bvec_set_page(&bip->bip_vec[bip->bip_vcnt], page, len, offset);
193 	bip->bip_vcnt++;
194 	bip->bip_iter.bi_size += len;
195 
196 	return len;
197 }
198 EXPORT_SYMBOL(bio_integrity_add_page);
199 
bio_integrity_copy_user(struct bio * bio,struct bio_vec * bvec,int nr_vecs,unsigned int len,unsigned int direction,u32 seed)200 static int bio_integrity_copy_user(struct bio *bio, struct bio_vec *bvec,
201 				   int nr_vecs, unsigned int len,
202 				   unsigned int direction, u32 seed)
203 {
204 	bool write = direction == ITER_SOURCE;
205 	struct bio_integrity_payload *bip;
206 	struct iov_iter iter;
207 	void *buf;
208 	int ret;
209 
210 	buf = kmalloc(len, GFP_KERNEL);
211 	if (!buf)
212 		return -ENOMEM;
213 
214 	if (write) {
215 		iov_iter_bvec(&iter, direction, bvec, nr_vecs, len);
216 		if (!copy_from_iter_full(buf, len, &iter)) {
217 			ret = -EFAULT;
218 			goto free_buf;
219 		}
220 
221 		bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
222 	} else {
223 		memset(buf, 0, len);
224 
225 		/*
226 		 * We need to preserve the original bvec and the number of vecs
227 		 * in it for completion handling
228 		 */
229 		bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs + 1);
230 	}
231 
232 	if (IS_ERR(bip)) {
233 		ret = PTR_ERR(bip);
234 		goto free_buf;
235 	}
236 
237 	if (write)
238 		bio_integrity_unpin_bvec(bvec, nr_vecs, false);
239 	else
240 		memcpy(&bip->bip_vec[1], bvec, nr_vecs * sizeof(*bvec));
241 
242 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
243 				     offset_in_page(buf));
244 	if (ret != len) {
245 		ret = -ENOMEM;
246 		goto free_bip;
247 	}
248 
249 	bip->bip_flags |= BIP_COPY_USER;
250 	bip->bip_iter.bi_sector = seed;
251 	bip->bip_vcnt = nr_vecs;
252 	return 0;
253 free_bip:
254 	bio_integrity_free(bio);
255 free_buf:
256 	kfree(buf);
257 	return ret;
258 }
259 
bio_integrity_init_user(struct bio * bio,struct bio_vec * bvec,int nr_vecs,unsigned int len,u32 seed)260 static int bio_integrity_init_user(struct bio *bio, struct bio_vec *bvec,
261 				   int nr_vecs, unsigned int len, u32 seed)
262 {
263 	struct bio_integrity_payload *bip;
264 
265 	bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs);
266 	if (IS_ERR(bip))
267 		return PTR_ERR(bip);
268 
269 	memcpy(bip->bip_vec, bvec, nr_vecs * sizeof(*bvec));
270 	bip->bip_iter.bi_sector = seed;
271 	bip->bip_iter.bi_size = len;
272 	bip->bip_vcnt = nr_vecs;
273 	return 0;
274 }
275 
bvec_from_pages(struct bio_vec * bvec,struct page ** pages,int nr_vecs,ssize_t bytes,ssize_t offset)276 static unsigned int bvec_from_pages(struct bio_vec *bvec, struct page **pages,
277 				    int nr_vecs, ssize_t bytes, ssize_t offset)
278 {
279 	unsigned int nr_bvecs = 0;
280 	int i, j;
281 
282 	for (i = 0; i < nr_vecs; i = j) {
283 		size_t size = min_t(size_t, bytes, PAGE_SIZE - offset);
284 		struct folio *folio = page_folio(pages[i]);
285 
286 		bytes -= size;
287 		for (j = i + 1; j < nr_vecs; j++) {
288 			size_t next = min_t(size_t, PAGE_SIZE, bytes);
289 
290 			if (page_folio(pages[j]) != folio ||
291 			    pages[j] != pages[j - 1] + 1)
292 				break;
293 			unpin_user_page(pages[j]);
294 			size += next;
295 			bytes -= next;
296 		}
297 
298 		bvec_set_page(&bvec[nr_bvecs], pages[i], size, offset);
299 		offset = 0;
300 		nr_bvecs++;
301 	}
302 
303 	return nr_bvecs;
304 }
305 
bio_integrity_map_user(struct bio * bio,void __user * ubuf,ssize_t bytes,u32 seed)306 int bio_integrity_map_user(struct bio *bio, void __user *ubuf, ssize_t bytes,
307 			   u32 seed)
308 {
309 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
310 	unsigned int align = blk_lim_dma_alignment_and_pad(&q->limits);
311 	struct page *stack_pages[UIO_FASTIOV], **pages = stack_pages;
312 	struct bio_vec stack_vec[UIO_FASTIOV], *bvec = stack_vec;
313 	unsigned int direction, nr_bvecs;
314 	struct iov_iter iter;
315 	int ret, nr_vecs;
316 	size_t offset;
317 	bool copy;
318 
319 	if (bio_integrity(bio))
320 		return -EINVAL;
321 	if (bytes >> SECTOR_SHIFT > queue_max_hw_sectors(q))
322 		return -E2BIG;
323 
324 	if (bio_data_dir(bio) == READ)
325 		direction = ITER_DEST;
326 	else
327 		direction = ITER_SOURCE;
328 
329 	iov_iter_ubuf(&iter, direction, ubuf, bytes);
330 	nr_vecs = iov_iter_npages(&iter, BIO_MAX_VECS + 1);
331 	if (nr_vecs > BIO_MAX_VECS)
332 		return -E2BIG;
333 	if (nr_vecs > UIO_FASTIOV) {
334 		bvec = kcalloc(nr_vecs, sizeof(*bvec), GFP_KERNEL);
335 		if (!bvec)
336 			return -ENOMEM;
337 		pages = NULL;
338 	}
339 
340 	copy = !iov_iter_is_aligned(&iter, align, align);
341 	ret = iov_iter_extract_pages(&iter, &pages, bytes, nr_vecs, 0, &offset);
342 	if (unlikely(ret < 0))
343 		goto free_bvec;
344 
345 	nr_bvecs = bvec_from_pages(bvec, pages, nr_vecs, bytes, offset);
346 	if (pages != stack_pages)
347 		kvfree(pages);
348 	if (nr_bvecs > queue_max_integrity_segments(q))
349 		copy = true;
350 
351 	if (copy)
352 		ret = bio_integrity_copy_user(bio, bvec, nr_bvecs, bytes,
353 					      direction, seed);
354 	else
355 		ret = bio_integrity_init_user(bio, bvec, nr_bvecs, bytes, seed);
356 	if (ret)
357 		goto release_pages;
358 	if (bvec != stack_vec)
359 		kfree(bvec);
360 
361 	return 0;
362 
363 release_pages:
364 	bio_integrity_unpin_bvec(bvec, nr_bvecs, false);
365 free_bvec:
366 	if (bvec != stack_vec)
367 		kfree(bvec);
368 	return ret;
369 }
370 
371 /**
372  * bio_integrity_prep - Prepare bio for integrity I/O
373  * @bio:	bio to prepare
374  *
375  * Description:  Checks if the bio already has an integrity payload attached.
376  * If it does, the payload has been generated by another kernel subsystem,
377  * and we just pass it through. Otherwise allocates integrity payload.
378  * The bio must have data direction, target device and start sector set priot
379  * to calling.  In the WRITE case, integrity metadata will be generated using
380  * the block device's integrity function.  In the READ case, the buffer
381  * will be prepared for DMA and a suitable end_io handler set up.
382  */
bio_integrity_prep(struct bio * bio)383 bool bio_integrity_prep(struct bio *bio)
384 {
385 	struct bio_integrity_payload *bip;
386 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
387 	unsigned int len;
388 	void *buf;
389 	gfp_t gfp = GFP_NOIO;
390 
391 	if (!bi)
392 		return true;
393 
394 	if (!bio_sectors(bio))
395 		return true;
396 
397 	/* Already protected? */
398 	if (bio_integrity(bio))
399 		return true;
400 
401 	switch (bio_op(bio)) {
402 	case REQ_OP_READ:
403 		if (bi->flags & BLK_INTEGRITY_NOVERIFY)
404 			return true;
405 		break;
406 	case REQ_OP_WRITE:
407 		if (bi->flags & BLK_INTEGRITY_NOGENERATE)
408 			return true;
409 
410 		/*
411 		 * Zero the memory allocated to not leak uninitialized kernel
412 		 * memory to disk for non-integrity metadata where nothing else
413 		 * initializes the memory.
414 		 */
415 		if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE)
416 			gfp |= __GFP_ZERO;
417 		break;
418 	default:
419 		return true;
420 	}
421 
422 	/* Allocate kernel buffer for protection data */
423 	len = bio_integrity_bytes(bi, bio_sectors(bio));
424 	buf = kmalloc(len, gfp);
425 	if (unlikely(buf == NULL)) {
426 		goto err_end_io;
427 	}
428 
429 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
430 	if (IS_ERR(bip)) {
431 		kfree(buf);
432 		goto err_end_io;
433 	}
434 
435 	bip->bip_flags |= BIP_BLOCK_INTEGRITY;
436 	bip_set_seed(bip, bio->bi_iter.bi_sector);
437 
438 	if (bi->csum_type == BLK_INTEGRITY_CSUM_IP)
439 		bip->bip_flags |= BIP_IP_CHECKSUM;
440 
441 	if (bio_integrity_add_page(bio, virt_to_page(buf), len,
442 			offset_in_page(buf)) < len) {
443 		printk(KERN_ERR "could not attach integrity payload\n");
444 		goto err_end_io;
445 	}
446 
447 	/* Auto-generate integrity metadata if this is a write */
448 	if (bio_data_dir(bio) == WRITE)
449 		blk_integrity_generate(bio);
450 	else
451 		bip->bio_iter = bio->bi_iter;
452 	return true;
453 
454 err_end_io:
455 	bio->bi_status = BLK_STS_RESOURCE;
456 	bio_endio(bio);
457 	return false;
458 }
459 EXPORT_SYMBOL(bio_integrity_prep);
460 
461 /**
462  * bio_integrity_verify_fn - Integrity I/O completion worker
463  * @work:	Work struct stored in bio to be verified
464  *
465  * Description: This workqueue function is called to complete a READ
466  * request.  The function verifies the transferred integrity metadata
467  * and then calls the original bio end_io function.
468  */
bio_integrity_verify_fn(struct work_struct * work)469 static void bio_integrity_verify_fn(struct work_struct *work)
470 {
471 	struct bio_integrity_payload *bip =
472 		container_of(work, struct bio_integrity_payload, bip_work);
473 	struct bio *bio = bip->bip_bio;
474 
475 	blk_integrity_verify(bio);
476 
477 	kfree(bvec_virt(bip->bip_vec));
478 	bio_integrity_free(bio);
479 	bio_endio(bio);
480 }
481 
482 /**
483  * __bio_integrity_endio - Integrity I/O completion function
484  * @bio:	Protected bio
485  *
486  * Description: Completion for integrity I/O
487  *
488  * Normally I/O completion is done in interrupt context.  However,
489  * verifying I/O integrity is a time-consuming task which must be run
490  * in process context.	This function postpones completion
491  * accordingly.
492  */
__bio_integrity_endio(struct bio * bio)493 bool __bio_integrity_endio(struct bio *bio)
494 {
495 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
496 	struct bio_integrity_payload *bip = bio_integrity(bio);
497 
498 	if (bio_op(bio) == REQ_OP_READ && !bio->bi_status && bi->csum_type) {
499 		INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
500 		queue_work(kintegrityd_wq, &bip->bip_work);
501 		return false;
502 	}
503 
504 	kfree(bvec_virt(bip->bip_vec));
505 	bio_integrity_free(bio);
506 	return true;
507 }
508 
509 /**
510  * bio_integrity_advance - Advance integrity vector
511  * @bio:	bio whose integrity vector to update
512  * @bytes_done:	number of data bytes that have been completed
513  *
514  * Description: This function calculates how many integrity bytes the
515  * number of completed data bytes correspond to and advances the
516  * integrity vector accordingly.
517  */
bio_integrity_advance(struct bio * bio,unsigned int bytes_done)518 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
519 {
520 	struct bio_integrity_payload *bip = bio_integrity(bio);
521 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
522 	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
523 
524 	bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9);
525 	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
526 }
527 
528 /**
529  * bio_integrity_trim - Trim integrity vector
530  * @bio:	bio whose integrity vector to update
531  *
532  * Description: Used to trim the integrity vector in a cloned bio.
533  */
bio_integrity_trim(struct bio * bio)534 void bio_integrity_trim(struct bio *bio)
535 {
536 	struct bio_integrity_payload *bip = bio_integrity(bio);
537 	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
538 
539 	bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
540 }
541 EXPORT_SYMBOL(bio_integrity_trim);
542 
543 /**
544  * bio_integrity_clone - Callback for cloning bios with integrity metadata
545  * @bio:	New bio
546  * @bio_src:	Original bio
547  * @gfp_mask:	Memory allocation mask
548  *
549  * Description:	Called to allocate a bip when cloning a bio
550  */
bio_integrity_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp_mask)551 int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
552 			gfp_t gfp_mask)
553 {
554 	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
555 	struct bio_integrity_payload *bip;
556 
557 	BUG_ON(bip_src == NULL);
558 
559 	bip = bio_integrity_alloc(bio, gfp_mask, 0);
560 	if (IS_ERR(bip))
561 		return PTR_ERR(bip);
562 
563 	bip->bip_vec = bip_src->bip_vec;
564 	bip->bip_iter = bip_src->bip_iter;
565 	bip->bip_flags = bip_src->bip_flags & ~BIP_BLOCK_INTEGRITY;
566 
567 	return 0;
568 }
569 
bioset_integrity_create(struct bio_set * bs,int pool_size)570 int bioset_integrity_create(struct bio_set *bs, int pool_size)
571 {
572 	if (mempool_initialized(&bs->bio_integrity_pool))
573 		return 0;
574 
575 	if (mempool_init_slab_pool(&bs->bio_integrity_pool,
576 				   pool_size, bip_slab))
577 		return -1;
578 
579 	if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) {
580 		mempool_exit(&bs->bio_integrity_pool);
581 		return -1;
582 	}
583 
584 	return 0;
585 }
586 EXPORT_SYMBOL(bioset_integrity_create);
587 
bioset_integrity_free(struct bio_set * bs)588 void bioset_integrity_free(struct bio_set *bs)
589 {
590 	mempool_exit(&bs->bio_integrity_pool);
591 	mempool_exit(&bs->bvec_integrity_pool);
592 }
593 
bio_integrity_init(void)594 void __init bio_integrity_init(void)
595 {
596 	/*
597 	 * kintegrityd won't block much but may burn a lot of CPU cycles.
598 	 * Make it highpri CPU intensive wq with max concurrency of 1.
599 	 */
600 	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
601 					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
602 	if (!kintegrityd_wq)
603 		panic("Failed to create kintegrityd\n");
604 
605 	bip_slab = kmem_cache_create("bio_integrity_payload",
606 				     sizeof(struct bio_integrity_payload) +
607 				     sizeof(struct bio_vec) * BIO_INLINE_VECS,
608 				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
609 }
610