1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26
27 #define ALLOC_CACHE_THRESHOLD 16
28 #define ALLOC_CACHE_MAX 256
29
30 struct bio_alloc_cache {
31 struct bio *free_list;
32 struct bio *free_list_irq;
33 unsigned int nr;
34 unsigned int nr_irq;
35 };
36
37 static struct biovec_slab {
38 int nr_vecs;
39 char *name;
40 struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 { .nr_vecs = 16, .name = "biovec-16" },
43 { .nr_vecs = 64, .name = "biovec-64" },
44 { .nr_vecs = 128, .name = "biovec-128" },
45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47
biovec_slab(unsigned short nr_vecs)48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 switch (nr_vecs) {
51 /* smaller bios use inline vecs */
52 case 5 ... 16:
53 return &bvec_slabs[0];
54 case 17 ... 64:
55 return &bvec_slabs[1];
56 case 65 ... 128:
57 return &bvec_slabs[2];
58 case 129 ... BIO_MAX_VECS:
59 return &bvec_slabs[3];
60 default:
61 BUG();
62 return NULL;
63 }
64 }
65
66 /*
67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68 * IO code that does not need private memory pools.
69 */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72
73 /*
74 * Our slab pool management
75 */
76 struct bio_slab {
77 struct kmem_cache *slab;
78 unsigned int slab_ref;
79 unsigned int slab_size;
80 char name[12];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84
create_bio_slab(unsigned int size)85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88
89 if (!bslab)
90 return NULL;
91
92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 bslab->slab = kmem_cache_create(bslab->name, size,
94 ARCH_KMALLOC_MINALIGN,
95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 if (!bslab->slab)
97 goto fail_alloc_slab;
98
99 bslab->slab_ref = 1;
100 bslab->slab_size = size;
101
102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 return bslab;
104
105 kmem_cache_destroy(bslab->slab);
106
107 fail_alloc_slab:
108 kfree(bslab);
109 return NULL;
110 }
111
bs_bio_slab_size(struct bio_set * bs)112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116
bio_find_or_create_slab(struct bio_set * bs)117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 unsigned int size = bs_bio_slab_size(bs);
120 struct bio_slab *bslab;
121
122 mutex_lock(&bio_slab_lock);
123 bslab = xa_load(&bio_slabs, size);
124 if (bslab)
125 bslab->slab_ref++;
126 else
127 bslab = create_bio_slab(size);
128 mutex_unlock(&bio_slab_lock);
129
130 if (bslab)
131 return bslab->slab;
132 return NULL;
133 }
134
bio_put_slab(struct bio_set * bs)135 static void bio_put_slab(struct bio_set *bs)
136 {
137 struct bio_slab *bslab = NULL;
138 unsigned int slab_size = bs_bio_slab_size(bs);
139
140 mutex_lock(&bio_slab_lock);
141
142 bslab = xa_load(&bio_slabs, slab_size);
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
146 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147
148 WARN_ON(!bslab->slab_ref);
149
150 if (--bslab->slab_ref)
151 goto out;
152
153 xa_erase(&bio_slabs, slab_size);
154
155 kmem_cache_destroy(bslab->slab);
156 kfree(bslab);
157
158 out:
159 mutex_unlock(&bio_slab_lock);
160 }
161
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 BUG_ON(nr_vecs > BIO_MAX_VECS);
165
166 if (nr_vecs == BIO_MAX_VECS)
167 mempool_free(bv, pool);
168 else if (nr_vecs > BIO_INLINE_VECS)
169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171
172 /*
173 * Make the first allocation restricted and don't dump info on allocation
174 * failures, since we'll fall back to the mempool in case of failure.
175 */
bvec_alloc_gfp(gfp_t gfp)176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 gfp_t gfp_mask)
184 {
185 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186
187 if (WARN_ON_ONCE(!bvs))
188 return NULL;
189
190 /*
191 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 * We also rely on this in the bvec_free path.
193 */
194 *nr_vecs = bvs->nr_vecs;
195
196 /*
197 * Try a slab allocation first for all smaller allocations. If that
198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 */
201 if (*nr_vecs < BIO_MAX_VECS) {
202 struct bio_vec *bvl;
203
204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 return bvl;
207 *nr_vecs = BIO_MAX_VECS;
208 }
209
210 return mempool_alloc(pool, gfp_mask);
211 }
212
bio_uninit(struct bio * bio)213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 if (bio->bi_blkg) {
217 blkg_put(bio->bi_blkg);
218 bio->bi_blkg = NULL;
219 }
220 #endif
221 if (bio_integrity(bio))
222 bio_integrity_free(bio);
223
224 bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227
bio_free(struct bio * bio)228 static void bio_free(struct bio *bio)
229 {
230 struct bio_set *bs = bio->bi_pool;
231 void *p = bio;
232
233 WARN_ON_ONCE(!bs);
234
235 bio_uninit(bio);
236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239
240 /*
241 * Users of this function have their own bio allocation. Subsequently,
242 * they must remember to pair any call to bio_init() with bio_uninit()
243 * when IO has completed, or when the bio is released.
244 */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 unsigned short max_vecs, blk_opf_t opf)
247 {
248 bio->bi_next = NULL;
249 bio->bi_bdev = bdev;
250 bio->bi_opf = opf;
251 bio->bi_flags = 0;
252 bio->bi_ioprio = 0;
253 bio->bi_write_hint = 0;
254 bio->bi_write_stream = 0;
255 bio->bi_status = 0;
256 bio->bi_iter.bi_sector = 0;
257 bio->bi_iter.bi_size = 0;
258 bio->bi_iter.bi_idx = 0;
259 bio->bi_iter.bi_bvec_done = 0;
260 bio->bi_end_io = NULL;
261 bio->bi_private = NULL;
262 #ifdef CONFIG_BLK_CGROUP
263 bio->bi_blkg = NULL;
264 bio->bi_issue.value = 0;
265 if (bdev)
266 bio_associate_blkg(bio);
267 #ifdef CONFIG_BLK_CGROUP_IOCOST
268 bio->bi_iocost_cost = 0;
269 #endif
270 #endif
271 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
272 bio->bi_crypt_context = NULL;
273 #endif
274 #ifdef CONFIG_BLK_DEV_INTEGRITY
275 bio->bi_integrity = NULL;
276 #endif
277 bio->bi_vcnt = 0;
278
279 atomic_set(&bio->__bi_remaining, 1);
280 atomic_set(&bio->__bi_cnt, 1);
281 bio->bi_cookie = BLK_QC_T_NONE;
282
283 bio->bi_max_vecs = max_vecs;
284 bio->bi_io_vec = table;
285 bio->bi_pool = NULL;
286 }
287 EXPORT_SYMBOL(bio_init);
288
289 /**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 * @bdev: block device to use the bio for
293 * @opf: operation and flags for bio
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)301 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
302 {
303 bio_uninit(bio);
304 memset(bio, 0, BIO_RESET_BYTES);
305 atomic_set(&bio->__bi_remaining, 1);
306 bio->bi_bdev = bdev;
307 if (bio->bi_bdev)
308 bio_associate_blkg(bio);
309 bio->bi_opf = opf;
310 }
311 EXPORT_SYMBOL(bio_reset);
312
__bio_chain_endio(struct bio * bio)313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 struct bio *parent = bio->bi_private;
316
317 if (bio->bi_status && !parent->bi_status)
318 parent->bi_status = bio->bi_status;
319 bio_put(bio);
320 return parent;
321 }
322
bio_chain_endio(struct bio * bio)323 static void bio_chain_endio(struct bio *bio)
324 {
325 bio_endio(__bio_chain_endio(bio));
326 }
327
328 /**
329 * bio_chain - chain bio completions
330 * @bio: the target bio
331 * @parent: the parent bio of @bio
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
bio_chain(struct bio * bio,struct bio * parent)339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
345 bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348
349 /**
350 * bio_chain_and_submit - submit a bio after chaining it to another one
351 * @prev: bio to chain and submit
352 * @new: bio to chain to
353 *
354 * If @prev is non-NULL, chain it to @new and submit it.
355 *
356 * Return: @new.
357 */
bio_chain_and_submit(struct bio * prev,struct bio * new)358 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
359 {
360 if (prev) {
361 bio_chain(prev, new);
362 submit_bio(prev);
363 }
364 return new;
365 }
366
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)367 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
368 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
369 {
370 return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
371 }
372 EXPORT_SYMBOL_GPL(blk_next_bio);
373
bio_alloc_rescue(struct work_struct * work)374 static void bio_alloc_rescue(struct work_struct *work)
375 {
376 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
377 struct bio *bio;
378
379 while (1) {
380 spin_lock(&bs->rescue_lock);
381 bio = bio_list_pop(&bs->rescue_list);
382 spin_unlock(&bs->rescue_lock);
383
384 if (!bio)
385 break;
386
387 submit_bio_noacct(bio);
388 }
389 }
390
punt_bios_to_rescuer(struct bio_set * bs)391 static void punt_bios_to_rescuer(struct bio_set *bs)
392 {
393 struct bio_list punt, nopunt;
394 struct bio *bio;
395
396 if (WARN_ON_ONCE(!bs->rescue_workqueue))
397 return;
398 /*
399 * In order to guarantee forward progress we must punt only bios that
400 * were allocated from this bio_set; otherwise, if there was a bio on
401 * there for a stacking driver higher up in the stack, processing it
402 * could require allocating bios from this bio_set, and doing that from
403 * our own rescuer would be bad.
404 *
405 * Since bio lists are singly linked, pop them all instead of trying to
406 * remove from the middle of the list:
407 */
408
409 bio_list_init(&punt);
410 bio_list_init(&nopunt);
411
412 while ((bio = bio_list_pop(¤t->bio_list[0])))
413 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
414 current->bio_list[0] = nopunt;
415
416 bio_list_init(&nopunt);
417 while ((bio = bio_list_pop(¤t->bio_list[1])))
418 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
419 current->bio_list[1] = nopunt;
420
421 spin_lock(&bs->rescue_lock);
422 bio_list_merge(&bs->rescue_list, &punt);
423 spin_unlock(&bs->rescue_lock);
424
425 queue_work(bs->rescue_workqueue, &bs->rescue_work);
426 }
427
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)428 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
429 {
430 unsigned long flags;
431
432 /* cache->free_list must be empty */
433 if (WARN_ON_ONCE(cache->free_list))
434 return;
435
436 local_irq_save(flags);
437 cache->free_list = cache->free_list_irq;
438 cache->free_list_irq = NULL;
439 cache->nr += cache->nr_irq;
440 cache->nr_irq = 0;
441 local_irq_restore(flags);
442 }
443
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)444 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
445 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
446 struct bio_set *bs)
447 {
448 struct bio_alloc_cache *cache;
449 struct bio *bio;
450
451 cache = per_cpu_ptr(bs->cache, get_cpu());
452 if (!cache->free_list) {
453 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
454 bio_alloc_irq_cache_splice(cache);
455 if (!cache->free_list) {
456 put_cpu();
457 return NULL;
458 }
459 }
460 bio = cache->free_list;
461 cache->free_list = bio->bi_next;
462 cache->nr--;
463 put_cpu();
464
465 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
466 bio->bi_pool = bs;
467 return bio;
468 }
469
470 /**
471 * bio_alloc_bioset - allocate a bio for I/O
472 * @bdev: block device to allocate the bio for (can be %NULL)
473 * @nr_vecs: number of bvecs to pre-allocate
474 * @opf: operation and flags for bio
475 * @gfp_mask: the GFP_* mask given to the slab allocator
476 * @bs: the bio_set to allocate from.
477 *
478 * Allocate a bio from the mempools in @bs.
479 *
480 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
481 * allocate a bio. This is due to the mempool guarantees. To make this work,
482 * callers must never allocate more than 1 bio at a time from the general pool.
483 * Callers that need to allocate more than 1 bio must always submit the
484 * previously allocated bio for IO before attempting to allocate a new one.
485 * Failure to do so can cause deadlocks under memory pressure.
486 *
487 * Note that when running under submit_bio_noacct() (i.e. any block driver),
488 * bios are not submitted until after you return - see the code in
489 * submit_bio_noacct() that converts recursion into iteration, to prevent
490 * stack overflows.
491 *
492 * This would normally mean allocating multiple bios under submit_bio_noacct()
493 * would be susceptible to deadlocks, but we have
494 * deadlock avoidance code that resubmits any blocked bios from a rescuer
495 * thread.
496 *
497 * However, we do not guarantee forward progress for allocations from other
498 * mempools. Doing multiple allocations from the same mempool under
499 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
500 * for per bio allocations.
501 *
502 * Returns: Pointer to new bio on success, NULL on failure.
503 */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)504 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
505 blk_opf_t opf, gfp_t gfp_mask,
506 struct bio_set *bs)
507 {
508 gfp_t saved_gfp = gfp_mask;
509 struct bio *bio;
510 void *p;
511
512 /* should not use nobvec bioset for nr_vecs > 0 */
513 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
514 return NULL;
515
516 if (opf & REQ_ALLOC_CACHE) {
517 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
518 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
519 gfp_mask, bs);
520 if (bio)
521 return bio;
522 /*
523 * No cached bio available, bio returned below marked with
524 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
525 */
526 } else {
527 opf &= ~REQ_ALLOC_CACHE;
528 }
529 }
530
531 /*
532 * submit_bio_noacct() converts recursion to iteration; this means if
533 * we're running beneath it, any bios we allocate and submit will not be
534 * submitted (and thus freed) until after we return.
535 *
536 * This exposes us to a potential deadlock if we allocate multiple bios
537 * from the same bio_set() while running underneath submit_bio_noacct().
538 * If we were to allocate multiple bios (say a stacking block driver
539 * that was splitting bios), we would deadlock if we exhausted the
540 * mempool's reserve.
541 *
542 * We solve this, and guarantee forward progress, with a rescuer
543 * workqueue per bio_set. If we go to allocate and there are bios on
544 * current->bio_list, we first try the allocation without
545 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
546 * blocking to the rescuer workqueue before we retry with the original
547 * gfp_flags.
548 */
549 if (current->bio_list &&
550 (!bio_list_empty(¤t->bio_list[0]) ||
551 !bio_list_empty(¤t->bio_list[1])) &&
552 bs->rescue_workqueue)
553 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
554
555 p = mempool_alloc(&bs->bio_pool, gfp_mask);
556 if (!p && gfp_mask != saved_gfp) {
557 punt_bios_to_rescuer(bs);
558 gfp_mask = saved_gfp;
559 p = mempool_alloc(&bs->bio_pool, gfp_mask);
560 }
561 if (unlikely(!p))
562 return NULL;
563 if (!mempool_is_saturated(&bs->bio_pool))
564 opf &= ~REQ_ALLOC_CACHE;
565
566 bio = p + bs->front_pad;
567 if (nr_vecs > BIO_INLINE_VECS) {
568 struct bio_vec *bvl = NULL;
569
570 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
571 if (!bvl && gfp_mask != saved_gfp) {
572 punt_bios_to_rescuer(bs);
573 gfp_mask = saved_gfp;
574 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
575 }
576 if (unlikely(!bvl))
577 goto err_free;
578
579 bio_init(bio, bdev, bvl, nr_vecs, opf);
580 } else if (nr_vecs) {
581 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
582 } else {
583 bio_init(bio, bdev, NULL, 0, opf);
584 }
585
586 bio->bi_pool = bs;
587 return bio;
588
589 err_free:
590 mempool_free(p, &bs->bio_pool);
591 return NULL;
592 }
593 EXPORT_SYMBOL(bio_alloc_bioset);
594
595 /**
596 * bio_kmalloc - kmalloc a bio
597 * @nr_vecs: number of bio_vecs to allocate
598 * @gfp_mask: the GFP_* mask given to the slab allocator
599 *
600 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
601 * using bio_init() before use. To free a bio returned from this function use
602 * kfree() after calling bio_uninit(). A bio returned from this function can
603 * be reused by calling bio_uninit() before calling bio_init() again.
604 *
605 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
606 * function are not backed by a mempool can fail. Do not use this function
607 * for allocations in the file system I/O path.
608 *
609 * Returns: Pointer to new bio on success, NULL on failure.
610 */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)611 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
612 {
613 struct bio *bio;
614
615 if (nr_vecs > BIO_MAX_INLINE_VECS)
616 return NULL;
617 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
618 }
619 EXPORT_SYMBOL(bio_kmalloc);
620
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)621 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
622 {
623 struct bio_vec bv;
624 struct bvec_iter iter;
625
626 __bio_for_each_segment(bv, bio, iter, start)
627 memzero_bvec(&bv);
628 }
629 EXPORT_SYMBOL(zero_fill_bio_iter);
630
631 /**
632 * bio_truncate - truncate the bio to small size of @new_size
633 * @bio: the bio to be truncated
634 * @new_size: new size for truncating the bio
635 *
636 * Description:
637 * Truncate the bio to new size of @new_size. If bio_op(bio) is
638 * REQ_OP_READ, zero the truncated part. This function should only
639 * be used for handling corner cases, such as bio eod.
640 */
bio_truncate(struct bio * bio,unsigned new_size)641 static void bio_truncate(struct bio *bio, unsigned new_size)
642 {
643 struct bio_vec bv;
644 struct bvec_iter iter;
645 unsigned int done = 0;
646 bool truncated = false;
647
648 if (new_size >= bio->bi_iter.bi_size)
649 return;
650
651 if (bio_op(bio) != REQ_OP_READ)
652 goto exit;
653
654 bio_for_each_segment(bv, bio, iter) {
655 if (done + bv.bv_len > new_size) {
656 unsigned offset;
657
658 if (!truncated)
659 offset = new_size - done;
660 else
661 offset = 0;
662 zero_user(bv.bv_page, bv.bv_offset + offset,
663 bv.bv_len - offset);
664 truncated = true;
665 }
666 done += bv.bv_len;
667 }
668
669 exit:
670 /*
671 * Don't touch bvec table here and make it really immutable, since
672 * fs bio user has to retrieve all pages via bio_for_each_segment_all
673 * in its .end_bio() callback.
674 *
675 * It is enough to truncate bio by updating .bi_size since we can make
676 * correct bvec with the updated .bi_size for drivers.
677 */
678 bio->bi_iter.bi_size = new_size;
679 }
680
681 /**
682 * guard_bio_eod - truncate a BIO to fit the block device
683 * @bio: bio to truncate
684 *
685 * This allows us to do IO even on the odd last sectors of a device, even if the
686 * block size is some multiple of the physical sector size.
687 *
688 * We'll just truncate the bio to the size of the device, and clear the end of
689 * the buffer head manually. Truly out-of-range accesses will turn into actual
690 * I/O errors, this only handles the "we need to be able to do I/O at the final
691 * sector" case.
692 */
guard_bio_eod(struct bio * bio)693 void guard_bio_eod(struct bio *bio)
694 {
695 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
696
697 if (!maxsector)
698 return;
699
700 /*
701 * If the *whole* IO is past the end of the device,
702 * let it through, and the IO layer will turn it into
703 * an EIO.
704 */
705 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
706 return;
707
708 maxsector -= bio->bi_iter.bi_sector;
709 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
710 return;
711
712 bio_truncate(bio, maxsector << 9);
713 }
714
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)715 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
716 unsigned int nr)
717 {
718 unsigned int i = 0;
719 struct bio *bio;
720
721 while ((bio = cache->free_list) != NULL) {
722 cache->free_list = bio->bi_next;
723 cache->nr--;
724 bio_free(bio);
725 if (++i == nr)
726 break;
727 }
728 return i;
729 }
730
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)731 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
732 unsigned int nr)
733 {
734 nr -= __bio_alloc_cache_prune(cache, nr);
735 if (!READ_ONCE(cache->free_list)) {
736 bio_alloc_irq_cache_splice(cache);
737 __bio_alloc_cache_prune(cache, nr);
738 }
739 }
740
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)741 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
742 {
743 struct bio_set *bs;
744
745 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
746 if (bs->cache) {
747 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
748
749 bio_alloc_cache_prune(cache, -1U);
750 }
751 return 0;
752 }
753
bio_alloc_cache_destroy(struct bio_set * bs)754 static void bio_alloc_cache_destroy(struct bio_set *bs)
755 {
756 int cpu;
757
758 if (!bs->cache)
759 return;
760
761 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
762 for_each_possible_cpu(cpu) {
763 struct bio_alloc_cache *cache;
764
765 cache = per_cpu_ptr(bs->cache, cpu);
766 bio_alloc_cache_prune(cache, -1U);
767 }
768 free_percpu(bs->cache);
769 bs->cache = NULL;
770 }
771
bio_put_percpu_cache(struct bio * bio)772 static inline void bio_put_percpu_cache(struct bio *bio)
773 {
774 struct bio_alloc_cache *cache;
775
776 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
777 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
778 goto out_free;
779
780 if (in_task()) {
781 bio_uninit(bio);
782 bio->bi_next = cache->free_list;
783 /* Not necessary but helps not to iopoll already freed bios */
784 bio->bi_bdev = NULL;
785 cache->free_list = bio;
786 cache->nr++;
787 } else if (in_hardirq()) {
788 lockdep_assert_irqs_disabled();
789
790 bio_uninit(bio);
791 bio->bi_next = cache->free_list_irq;
792 cache->free_list_irq = bio;
793 cache->nr_irq++;
794 } else {
795 goto out_free;
796 }
797 put_cpu();
798 return;
799 out_free:
800 put_cpu();
801 bio_free(bio);
802 }
803
804 /**
805 * bio_put - release a reference to a bio
806 * @bio: bio to release reference to
807 *
808 * Description:
809 * Put a reference to a &struct bio, either one you have gotten with
810 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
811 **/
bio_put(struct bio * bio)812 void bio_put(struct bio *bio)
813 {
814 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
815 BUG_ON(!atomic_read(&bio->__bi_cnt));
816 if (!atomic_dec_and_test(&bio->__bi_cnt))
817 return;
818 }
819 if (bio->bi_opf & REQ_ALLOC_CACHE)
820 bio_put_percpu_cache(bio);
821 else
822 bio_free(bio);
823 }
824 EXPORT_SYMBOL(bio_put);
825
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)826 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
827 {
828 bio_set_flag(bio, BIO_CLONED);
829 bio->bi_ioprio = bio_src->bi_ioprio;
830 bio->bi_write_hint = bio_src->bi_write_hint;
831 bio->bi_write_stream = bio_src->bi_write_stream;
832 bio->bi_iter = bio_src->bi_iter;
833
834 if (bio->bi_bdev) {
835 if (bio->bi_bdev == bio_src->bi_bdev &&
836 bio_flagged(bio_src, BIO_REMAPPED))
837 bio_set_flag(bio, BIO_REMAPPED);
838 bio_clone_blkg_association(bio, bio_src);
839 }
840
841 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
842 return -ENOMEM;
843 if (bio_integrity(bio_src) &&
844 bio_integrity_clone(bio, bio_src, gfp) < 0)
845 return -ENOMEM;
846 return 0;
847 }
848
849 /**
850 * bio_alloc_clone - clone a bio that shares the original bio's biovec
851 * @bdev: block_device to clone onto
852 * @bio_src: bio to clone from
853 * @gfp: allocation priority
854 * @bs: bio_set to allocate from
855 *
856 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
857 * bio, but not the actual data it points to.
858 *
859 * The caller must ensure that the return bio is not freed before @bio_src.
860 */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)861 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
862 gfp_t gfp, struct bio_set *bs)
863 {
864 struct bio *bio;
865
866 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
867 if (!bio)
868 return NULL;
869
870 if (__bio_clone(bio, bio_src, gfp) < 0) {
871 bio_put(bio);
872 return NULL;
873 }
874 bio->bi_io_vec = bio_src->bi_io_vec;
875
876 return bio;
877 }
878 EXPORT_SYMBOL(bio_alloc_clone);
879
880 /**
881 * bio_init_clone - clone a bio that shares the original bio's biovec
882 * @bdev: block_device to clone onto
883 * @bio: bio to clone into
884 * @bio_src: bio to clone from
885 * @gfp: allocation priority
886 *
887 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
888 * The caller owns the returned bio, but not the actual data it points to.
889 *
890 * The caller must ensure that @bio_src is not freed before @bio.
891 */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)892 int bio_init_clone(struct block_device *bdev, struct bio *bio,
893 struct bio *bio_src, gfp_t gfp)
894 {
895 int ret;
896
897 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
898 ret = __bio_clone(bio, bio_src, gfp);
899 if (ret)
900 bio_uninit(bio);
901 return ret;
902 }
903 EXPORT_SYMBOL(bio_init_clone);
904
905 /**
906 * bio_full - check if the bio is full
907 * @bio: bio to check
908 * @len: length of one segment to be added
909 *
910 * Return true if @bio is full and one segment with @len bytes can't be
911 * added to the bio, otherwise return false
912 */
bio_full(struct bio * bio,unsigned len)913 static inline bool bio_full(struct bio *bio, unsigned len)
914 {
915 if (bio->bi_vcnt >= bio->bi_max_vecs)
916 return true;
917 if (bio->bi_iter.bi_size > UINT_MAX - len)
918 return true;
919 return false;
920 }
921
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off)922 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
923 unsigned int len, unsigned int off)
924 {
925 size_t bv_end = bv->bv_offset + bv->bv_len;
926 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
927 phys_addr_t page_addr = page_to_phys(page);
928
929 if (vec_end_addr + 1 != page_addr + off)
930 return false;
931 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
932 return false;
933 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
934 return false;
935
936 if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
937 if (IS_ENABLED(CONFIG_KMSAN))
938 return false;
939 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
940 return false;
941 }
942
943 bv->bv_len += len;
944 return true;
945 }
946
947 /*
948 * Try to merge a page into a segment, while obeying the hardware segment
949 * size limit.
950 *
951 * This is kept around for the integrity metadata, which is still tries
952 * to build the initial bio to the hardware limit and doesn't have proper
953 * helpers to split. Hopefully this will go away soon.
954 */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset)955 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
956 struct page *page, unsigned len, unsigned offset)
957 {
958 unsigned long mask = queue_segment_boundary(q);
959 phys_addr_t addr1 = bvec_phys(bv);
960 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
961
962 if ((addr1 | mask) != (addr2 | mask))
963 return false;
964 if (len > queue_max_segment_size(q) - bv->bv_len)
965 return false;
966 return bvec_try_merge_page(bv, page, len, offset);
967 }
968
969 /**
970 * __bio_add_page - add page(s) to a bio in a new segment
971 * @bio: destination bio
972 * @page: start page to add
973 * @len: length of the data to add, may cross pages
974 * @off: offset of the data relative to @page, may cross pages
975 *
976 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
977 * that @bio has space for another bvec.
978 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)979 void __bio_add_page(struct bio *bio, struct page *page,
980 unsigned int len, unsigned int off)
981 {
982 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
983 WARN_ON_ONCE(bio_full(bio, len));
984
985 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
986 bio->bi_iter.bi_size += len;
987 bio->bi_vcnt++;
988 }
989 EXPORT_SYMBOL_GPL(__bio_add_page);
990
991 /**
992 * bio_add_virt_nofail - add data in the direct kernel mapping to a bio
993 * @bio: destination bio
994 * @vaddr: data to add
995 * @len: length of the data to add, may cross pages
996 *
997 * Add the data at @vaddr to @bio. The caller must have ensure a segment
998 * is available for the added data. No merging into an existing segment
999 * will be performed.
1000 */
bio_add_virt_nofail(struct bio * bio,void * vaddr,unsigned len)1001 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1002 {
1003 __bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1004 }
1005 EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1006
1007 /**
1008 * bio_add_page - attempt to add page(s) to bio
1009 * @bio: destination bio
1010 * @page: start page to add
1011 * @len: vec entry length, may cross pages
1012 * @offset: vec entry offset relative to @page, may cross pages
1013 *
1014 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1015 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1016 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1017 int bio_add_page(struct bio *bio, struct page *page,
1018 unsigned int len, unsigned int offset)
1019 {
1020 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1021 return 0;
1022 if (bio->bi_iter.bi_size > UINT_MAX - len)
1023 return 0;
1024
1025 if (bio->bi_vcnt > 0 &&
1026 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1027 page, len, offset)) {
1028 bio->bi_iter.bi_size += len;
1029 return len;
1030 }
1031
1032 if (bio->bi_vcnt >= bio->bi_max_vecs)
1033 return 0;
1034 __bio_add_page(bio, page, len, offset);
1035 return len;
1036 }
1037 EXPORT_SYMBOL(bio_add_page);
1038
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1039 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1040 size_t off)
1041 {
1042 unsigned long nr = off / PAGE_SIZE;
1043
1044 WARN_ON_ONCE(len > UINT_MAX);
1045 __bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1046 }
1047 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1048
1049 /**
1050 * bio_add_folio - Attempt to add part of a folio to a bio.
1051 * @bio: BIO to add to.
1052 * @folio: Folio to add.
1053 * @len: How many bytes from the folio to add.
1054 * @off: First byte in this folio to add.
1055 *
1056 * Filesystems that use folios can call this function instead of calling
1057 * bio_add_page() for each page in the folio. If @off is bigger than
1058 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1059 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1060 *
1061 * Return: Whether the addition was successful.
1062 */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1063 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1064 size_t off)
1065 {
1066 unsigned long nr = off / PAGE_SIZE;
1067
1068 if (len > UINT_MAX)
1069 return false;
1070 return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1071 }
1072 EXPORT_SYMBOL(bio_add_folio);
1073
1074 /**
1075 * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1076 * @bio: destination bio
1077 * @vaddr: vmalloc address to add
1078 * @len: total length in bytes of the data to add
1079 *
1080 * Add data starting at @vaddr to @bio and return how many bytes were added.
1081 * This may be less than the amount originally asked. Returns 0 if no data
1082 * could be added to @bio.
1083 *
1084 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1085 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1086 * the completion handler.
1087 */
bio_add_vmalloc_chunk(struct bio * bio,void * vaddr,unsigned len)1088 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1089 {
1090 unsigned int offset = offset_in_page(vaddr);
1091
1092 len = min(len, PAGE_SIZE - offset);
1093 if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1094 return 0;
1095 if (op_is_write(bio_op(bio)))
1096 flush_kernel_vmap_range(vaddr, len);
1097 return len;
1098 }
1099 EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1100
1101 /**
1102 * bio_add_vmalloc - add a vmalloc region to a bio
1103 * @bio: destination bio
1104 * @vaddr: vmalloc address to add
1105 * @len: total length in bytes of the data to add
1106 *
1107 * Add data starting at @vaddr to @bio. Return %true on success or %false if
1108 * @bio does not have enough space for the payload.
1109 *
1110 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1111 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1112 * the completion handler.
1113 */
bio_add_vmalloc(struct bio * bio,void * vaddr,unsigned int len)1114 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1115 {
1116 do {
1117 unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1118
1119 if (!added)
1120 return false;
1121 vaddr += added;
1122 len -= added;
1123 } while (len);
1124
1125 return true;
1126 }
1127 EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1128
__bio_release_pages(struct bio * bio,bool mark_dirty)1129 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1130 {
1131 struct folio_iter fi;
1132
1133 bio_for_each_folio_all(fi, bio) {
1134 size_t nr_pages;
1135
1136 if (mark_dirty) {
1137 folio_lock(fi.folio);
1138 folio_mark_dirty(fi.folio);
1139 folio_unlock(fi.folio);
1140 }
1141 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1142 fi.offset / PAGE_SIZE + 1;
1143 unpin_user_folio(fi.folio, nr_pages);
1144 }
1145 }
1146 EXPORT_SYMBOL_GPL(__bio_release_pages);
1147
bio_iov_bvec_set(struct bio * bio,const struct iov_iter * iter)1148 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
1149 {
1150 WARN_ON_ONCE(bio->bi_max_vecs);
1151
1152 bio->bi_vcnt = iter->nr_segs;
1153 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1154 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1155 bio->bi_iter.bi_size = iov_iter_count(iter);
1156 bio_set_flag(bio, BIO_CLONED);
1157 }
1158
get_contig_folio_len(unsigned int * num_pages,struct page ** pages,unsigned int i,struct folio * folio,size_t left,size_t offset)1159 static unsigned int get_contig_folio_len(unsigned int *num_pages,
1160 struct page **pages, unsigned int i,
1161 struct folio *folio, size_t left,
1162 size_t offset)
1163 {
1164 size_t bytes = left;
1165 size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1166 unsigned int j;
1167
1168 /*
1169 * We might COW a single page in the middle of
1170 * a large folio, so we have to check that all
1171 * pages belong to the same folio.
1172 */
1173 bytes -= contig_sz;
1174 for (j = i + 1; j < i + *num_pages; j++) {
1175 size_t next = min_t(size_t, PAGE_SIZE, bytes);
1176
1177 if (page_folio(pages[j]) != folio ||
1178 pages[j] != pages[j - 1] + 1) {
1179 break;
1180 }
1181 contig_sz += next;
1182 bytes -= next;
1183 }
1184 *num_pages = j - i;
1185
1186 return contig_sz;
1187 }
1188
1189 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1190
1191 /**
1192 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1193 * @bio: bio to add pages to
1194 * @iter: iov iterator describing the region to be mapped
1195 *
1196 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1197 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1198 * For a multi-segment *iter, this function only adds pages from the next
1199 * non-empty segment of the iov iterator.
1200 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1201 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1202 {
1203 iov_iter_extraction_t extraction_flags = 0;
1204 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1205 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1206 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1207 struct page **pages = (struct page **)bv;
1208 ssize_t size;
1209 unsigned int num_pages, i = 0;
1210 size_t offset, folio_offset, left, len;
1211 int ret = 0;
1212
1213 /*
1214 * Move page array up in the allocated memory for the bio vecs as far as
1215 * possible so that we can start filling biovecs from the beginning
1216 * without overwriting the temporary page array.
1217 */
1218 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1219 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1220
1221 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1222 extraction_flags |= ITER_ALLOW_P2PDMA;
1223
1224 /*
1225 * Each segment in the iov is required to be a block size multiple.
1226 * However, we may not be able to get the entire segment if it spans
1227 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1228 * result to ensure the bio's total size is correct. The remainder of
1229 * the iov data will be picked up in the next bio iteration.
1230 */
1231 size = iov_iter_extract_pages(iter, &pages,
1232 UINT_MAX - bio->bi_iter.bi_size,
1233 nr_pages, extraction_flags, &offset);
1234 if (unlikely(size <= 0))
1235 return size ? size : -EFAULT;
1236
1237 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1238
1239 if (bio->bi_bdev) {
1240 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1241 iov_iter_revert(iter, trim);
1242 size -= trim;
1243 }
1244
1245 if (unlikely(!size)) {
1246 ret = -EFAULT;
1247 goto out;
1248 }
1249
1250 for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1251 struct page *page = pages[i];
1252 struct folio *folio = page_folio(page);
1253 unsigned int old_vcnt = bio->bi_vcnt;
1254
1255 folio_offset = ((size_t)folio_page_idx(folio, page) <<
1256 PAGE_SHIFT) + offset;
1257
1258 len = min(folio_size(folio) - folio_offset, left);
1259
1260 num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1261
1262 if (num_pages > 1)
1263 len = get_contig_folio_len(&num_pages, pages, i,
1264 folio, left, offset);
1265
1266 if (!bio_add_folio(bio, folio, len, folio_offset)) {
1267 WARN_ON_ONCE(1);
1268 ret = -EINVAL;
1269 goto out;
1270 }
1271
1272 if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1273 /*
1274 * We're adding another fragment of a page that already
1275 * was part of the last segment. Undo our pin as the
1276 * page was pinned when an earlier fragment of it was
1277 * added to the bio and __bio_release_pages expects a
1278 * single pin per page.
1279 */
1280 if (offset && bio->bi_vcnt == old_vcnt)
1281 unpin_user_folio(folio, 1);
1282 }
1283 offset = 0;
1284 }
1285
1286 iov_iter_revert(iter, left);
1287 out:
1288 while (i < nr_pages)
1289 bio_release_page(bio, pages[i++]);
1290
1291 return ret;
1292 }
1293
1294 /**
1295 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1296 * @bio: bio to add pages to
1297 * @iter: iov iterator describing the region to be added
1298 *
1299 * This takes either an iterator pointing to user memory, or one pointing to
1300 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1301 * map them into the kernel. On IO completion, the caller should put those
1302 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1303 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1304 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1305 * completed by a call to ->ki_complete() or returns with an error other than
1306 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1307 * on IO completion. If it isn't, then pages should be released.
1308 *
1309 * The function tries, but does not guarantee, to pin as many pages as
1310 * fit into the bio, or are requested in @iter, whatever is smaller. If
1311 * MM encounters an error pinning the requested pages, it stops. Error
1312 * is returned only if 0 pages could be pinned.
1313 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1314 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1315 {
1316 int ret = 0;
1317
1318 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1319 return -EIO;
1320
1321 if (iov_iter_is_bvec(iter)) {
1322 bio_iov_bvec_set(bio, iter);
1323 iov_iter_advance(iter, bio->bi_iter.bi_size);
1324 return 0;
1325 }
1326
1327 if (iov_iter_extract_will_pin(iter))
1328 bio_set_flag(bio, BIO_PAGE_PINNED);
1329 do {
1330 ret = __bio_iov_iter_get_pages(bio, iter);
1331 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1332
1333 return bio->bi_vcnt ? 0 : ret;
1334 }
1335 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1336
submit_bio_wait_endio(struct bio * bio)1337 static void submit_bio_wait_endio(struct bio *bio)
1338 {
1339 complete(bio->bi_private);
1340 }
1341
1342 /**
1343 * submit_bio_wait - submit a bio, and wait until it completes
1344 * @bio: The &struct bio which describes the I/O
1345 *
1346 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1347 * bio_endio() on failure.
1348 *
1349 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1350 * result in bio reference to be consumed. The caller must drop the reference
1351 * on his own.
1352 */
submit_bio_wait(struct bio * bio)1353 int submit_bio_wait(struct bio *bio)
1354 {
1355 DECLARE_COMPLETION_ONSTACK_MAP(done,
1356 bio->bi_bdev->bd_disk->lockdep_map);
1357
1358 bio->bi_private = &done;
1359 bio->bi_end_io = submit_bio_wait_endio;
1360 bio->bi_opf |= REQ_SYNC;
1361 submit_bio(bio);
1362 blk_wait_io(&done);
1363
1364 return blk_status_to_errno(bio->bi_status);
1365 }
1366 EXPORT_SYMBOL(submit_bio_wait);
1367
1368 /**
1369 * bdev_rw_virt - synchronously read into / write from kernel mapping
1370 * @bdev: block device to access
1371 * @sector: sector to access
1372 * @data: data to read/write
1373 * @len: length in byte to read/write
1374 * @op: operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1375 *
1376 * Performs synchronous I/O to @bdev for @data/@len. @data must be in
1377 * the kernel direct mapping and not a vmalloc address.
1378 */
bdev_rw_virt(struct block_device * bdev,sector_t sector,void * data,size_t len,enum req_op op)1379 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1380 size_t len, enum req_op op)
1381 {
1382 struct bio_vec bv;
1383 struct bio bio;
1384 int error;
1385
1386 if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1387 return -EIO;
1388
1389 bio_init(&bio, bdev, &bv, 1, op);
1390 bio.bi_iter.bi_sector = sector;
1391 bio_add_virt_nofail(&bio, data, len);
1392 error = submit_bio_wait(&bio);
1393 bio_uninit(&bio);
1394 return error;
1395 }
1396 EXPORT_SYMBOL_GPL(bdev_rw_virt);
1397
bio_wait_end_io(struct bio * bio)1398 static void bio_wait_end_io(struct bio *bio)
1399 {
1400 complete(bio->bi_private);
1401 bio_put(bio);
1402 }
1403
1404 /*
1405 * bio_await_chain - ends @bio and waits for every chained bio to complete
1406 */
bio_await_chain(struct bio * bio)1407 void bio_await_chain(struct bio *bio)
1408 {
1409 DECLARE_COMPLETION_ONSTACK_MAP(done,
1410 bio->bi_bdev->bd_disk->lockdep_map);
1411
1412 bio->bi_private = &done;
1413 bio->bi_end_io = bio_wait_end_io;
1414 bio_endio(bio);
1415 blk_wait_io(&done);
1416 }
1417
__bio_advance(struct bio * bio,unsigned bytes)1418 void __bio_advance(struct bio *bio, unsigned bytes)
1419 {
1420 if (bio_integrity(bio))
1421 bio_integrity_advance(bio, bytes);
1422
1423 bio_crypt_advance(bio, bytes);
1424 bio_advance_iter(bio, &bio->bi_iter, bytes);
1425 }
1426 EXPORT_SYMBOL(__bio_advance);
1427
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1428 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1429 struct bio *src, struct bvec_iter *src_iter)
1430 {
1431 while (src_iter->bi_size && dst_iter->bi_size) {
1432 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1433 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1434 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1435 void *src_buf = bvec_kmap_local(&src_bv);
1436 void *dst_buf = bvec_kmap_local(&dst_bv);
1437
1438 memcpy(dst_buf, src_buf, bytes);
1439
1440 kunmap_local(dst_buf);
1441 kunmap_local(src_buf);
1442
1443 bio_advance_iter_single(src, src_iter, bytes);
1444 bio_advance_iter_single(dst, dst_iter, bytes);
1445 }
1446 }
1447 EXPORT_SYMBOL(bio_copy_data_iter);
1448
1449 /**
1450 * bio_copy_data - copy contents of data buffers from one bio to another
1451 * @src: source bio
1452 * @dst: destination bio
1453 *
1454 * Stops when it reaches the end of either @src or @dst - that is, copies
1455 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1456 */
bio_copy_data(struct bio * dst,struct bio * src)1457 void bio_copy_data(struct bio *dst, struct bio *src)
1458 {
1459 struct bvec_iter src_iter = src->bi_iter;
1460 struct bvec_iter dst_iter = dst->bi_iter;
1461
1462 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1463 }
1464 EXPORT_SYMBOL(bio_copy_data);
1465
bio_free_pages(struct bio * bio)1466 void bio_free_pages(struct bio *bio)
1467 {
1468 struct bio_vec *bvec;
1469 struct bvec_iter_all iter_all;
1470
1471 bio_for_each_segment_all(bvec, bio, iter_all)
1472 __free_page(bvec->bv_page);
1473 }
1474 EXPORT_SYMBOL(bio_free_pages);
1475
1476 /*
1477 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1478 * for performing direct-IO in BIOs.
1479 *
1480 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1481 * because the required locks are not interrupt-safe. So what we can do is to
1482 * mark the pages dirty _before_ performing IO. And in interrupt context,
1483 * check that the pages are still dirty. If so, fine. If not, redirty them
1484 * in process context.
1485 *
1486 * Note that this code is very hard to test under normal circumstances because
1487 * direct-io pins the pages with get_user_pages(). This makes
1488 * is_page_cache_freeable return false, and the VM will not clean the pages.
1489 * But other code (eg, flusher threads) could clean the pages if they are mapped
1490 * pagecache.
1491 *
1492 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1493 * deferred bio dirtying paths.
1494 */
1495
1496 /*
1497 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1498 */
bio_set_pages_dirty(struct bio * bio)1499 void bio_set_pages_dirty(struct bio *bio)
1500 {
1501 struct folio_iter fi;
1502
1503 bio_for_each_folio_all(fi, bio) {
1504 folio_lock(fi.folio);
1505 folio_mark_dirty(fi.folio);
1506 folio_unlock(fi.folio);
1507 }
1508 }
1509 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1510
1511 /*
1512 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1513 * If they are, then fine. If, however, some pages are clean then they must
1514 * have been written out during the direct-IO read. So we take another ref on
1515 * the BIO and re-dirty the pages in process context.
1516 *
1517 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1518 * here on. It will unpin each page and will run one bio_put() against the
1519 * BIO.
1520 */
1521
1522 static void bio_dirty_fn(struct work_struct *work);
1523
1524 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1525 static DEFINE_SPINLOCK(bio_dirty_lock);
1526 static struct bio *bio_dirty_list;
1527
1528 /*
1529 * This runs in process context
1530 */
bio_dirty_fn(struct work_struct * work)1531 static void bio_dirty_fn(struct work_struct *work)
1532 {
1533 struct bio *bio, *next;
1534
1535 spin_lock_irq(&bio_dirty_lock);
1536 next = bio_dirty_list;
1537 bio_dirty_list = NULL;
1538 spin_unlock_irq(&bio_dirty_lock);
1539
1540 while ((bio = next) != NULL) {
1541 next = bio->bi_private;
1542
1543 bio_release_pages(bio, true);
1544 bio_put(bio);
1545 }
1546 }
1547
bio_check_pages_dirty(struct bio * bio)1548 void bio_check_pages_dirty(struct bio *bio)
1549 {
1550 struct folio_iter fi;
1551 unsigned long flags;
1552
1553 bio_for_each_folio_all(fi, bio) {
1554 if (!folio_test_dirty(fi.folio))
1555 goto defer;
1556 }
1557
1558 bio_release_pages(bio, false);
1559 bio_put(bio);
1560 return;
1561 defer:
1562 spin_lock_irqsave(&bio_dirty_lock, flags);
1563 bio->bi_private = bio_dirty_list;
1564 bio_dirty_list = bio;
1565 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1566 schedule_work(&bio_dirty_work);
1567 }
1568 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1569
bio_remaining_done(struct bio * bio)1570 static inline bool bio_remaining_done(struct bio *bio)
1571 {
1572 /*
1573 * If we're not chaining, then ->__bi_remaining is always 1 and
1574 * we always end io on the first invocation.
1575 */
1576 if (!bio_flagged(bio, BIO_CHAIN))
1577 return true;
1578
1579 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1580
1581 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1582 bio_clear_flag(bio, BIO_CHAIN);
1583 return true;
1584 }
1585
1586 return false;
1587 }
1588
1589 /**
1590 * bio_endio - end I/O on a bio
1591 * @bio: bio
1592 *
1593 * Description:
1594 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1595 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1596 * bio unless they own it and thus know that it has an end_io function.
1597 *
1598 * bio_endio() can be called several times on a bio that has been chained
1599 * using bio_chain(). The ->bi_end_io() function will only be called the
1600 * last time.
1601 **/
bio_endio(struct bio * bio)1602 void bio_endio(struct bio *bio)
1603 {
1604 again:
1605 if (!bio_remaining_done(bio))
1606 return;
1607 if (!bio_integrity_endio(bio))
1608 return;
1609
1610 blk_zone_bio_endio(bio);
1611
1612 rq_qos_done_bio(bio);
1613
1614 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1615 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1616 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1617 }
1618
1619 /*
1620 * Need to have a real endio function for chained bios, otherwise
1621 * various corner cases will break (like stacking block devices that
1622 * save/restore bi_end_io) - however, we want to avoid unbounded
1623 * recursion and blowing the stack. Tail call optimization would
1624 * handle this, but compiling with frame pointers also disables
1625 * gcc's sibling call optimization.
1626 */
1627 if (bio->bi_end_io == bio_chain_endio) {
1628 bio = __bio_chain_endio(bio);
1629 goto again;
1630 }
1631
1632 #ifdef CONFIG_BLK_CGROUP
1633 /*
1634 * Release cgroup info. We shouldn't have to do this here, but quite
1635 * a few callers of bio_init fail to call bio_uninit, so we cover up
1636 * for that here at least for now.
1637 */
1638 if (bio->bi_blkg) {
1639 blkg_put(bio->bi_blkg);
1640 bio->bi_blkg = NULL;
1641 }
1642 #endif
1643
1644 if (bio->bi_end_io)
1645 bio->bi_end_io(bio);
1646 }
1647 EXPORT_SYMBOL(bio_endio);
1648
1649 /**
1650 * bio_split - split a bio
1651 * @bio: bio to split
1652 * @sectors: number of sectors to split from the front of @bio
1653 * @gfp: gfp mask
1654 * @bs: bio set to allocate from
1655 *
1656 * Allocates and returns a new bio which represents @sectors from the start of
1657 * @bio, and updates @bio to represent the remaining sectors.
1658 *
1659 * Unless this is a discard request the newly allocated bio will point
1660 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1661 * neither @bio nor @bs are freed before the split bio.
1662 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1663 struct bio *bio_split(struct bio *bio, int sectors,
1664 gfp_t gfp, struct bio_set *bs)
1665 {
1666 struct bio *split;
1667
1668 if (WARN_ON_ONCE(sectors <= 0))
1669 return ERR_PTR(-EINVAL);
1670 if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1671 return ERR_PTR(-EINVAL);
1672
1673 /* Zone append commands cannot be split */
1674 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1675 return ERR_PTR(-EINVAL);
1676
1677 /* atomic writes cannot be split */
1678 if (bio->bi_opf & REQ_ATOMIC)
1679 return ERR_PTR(-EINVAL);
1680
1681 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1682 if (!split)
1683 return ERR_PTR(-ENOMEM);
1684
1685 split->bi_iter.bi_size = sectors << 9;
1686
1687 if (bio_integrity(split))
1688 bio_integrity_trim(split);
1689
1690 bio_advance(bio, split->bi_iter.bi_size);
1691
1692 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1693 bio_set_flag(split, BIO_TRACE_COMPLETION);
1694
1695 return split;
1696 }
1697 EXPORT_SYMBOL(bio_split);
1698
1699 /**
1700 * bio_trim - trim a bio
1701 * @bio: bio to trim
1702 * @offset: number of sectors to trim from the front of @bio
1703 * @size: size we want to trim @bio to, in sectors
1704 *
1705 * This function is typically used for bios that are cloned and submitted
1706 * to the underlying device in parts.
1707 */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1708 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1709 {
1710 /* We should never trim an atomic write */
1711 if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1712 return;
1713
1714 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1715 offset + size > bio_sectors(bio)))
1716 return;
1717
1718 size <<= 9;
1719 if (offset == 0 && size == bio->bi_iter.bi_size)
1720 return;
1721
1722 bio_advance(bio, offset << 9);
1723 bio->bi_iter.bi_size = size;
1724
1725 if (bio_integrity(bio))
1726 bio_integrity_trim(bio);
1727 }
1728 EXPORT_SYMBOL_GPL(bio_trim);
1729
1730 /*
1731 * create memory pools for biovec's in a bio_set.
1732 * use the global biovec slabs created for general use.
1733 */
biovec_init_pool(mempool_t * pool,int pool_entries)1734 int biovec_init_pool(mempool_t *pool, int pool_entries)
1735 {
1736 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1737
1738 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1739 }
1740
1741 /*
1742 * bioset_exit - exit a bioset initialized with bioset_init()
1743 *
1744 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1745 * kzalloc()).
1746 */
bioset_exit(struct bio_set * bs)1747 void bioset_exit(struct bio_set *bs)
1748 {
1749 bio_alloc_cache_destroy(bs);
1750 if (bs->rescue_workqueue)
1751 destroy_workqueue(bs->rescue_workqueue);
1752 bs->rescue_workqueue = NULL;
1753
1754 mempool_exit(&bs->bio_pool);
1755 mempool_exit(&bs->bvec_pool);
1756
1757 if (bs->bio_slab)
1758 bio_put_slab(bs);
1759 bs->bio_slab = NULL;
1760 }
1761 EXPORT_SYMBOL(bioset_exit);
1762
1763 /**
1764 * bioset_init - Initialize a bio_set
1765 * @bs: pool to initialize
1766 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1767 * @front_pad: Number of bytes to allocate in front of the returned bio
1768 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1769 * and %BIOSET_NEED_RESCUER
1770 *
1771 * Description:
1772 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1773 * to ask for a number of bytes to be allocated in front of the bio.
1774 * Front pad allocation is useful for embedding the bio inside
1775 * another structure, to avoid allocating extra data to go with the bio.
1776 * Note that the bio must be embedded at the END of that structure always,
1777 * or things will break badly.
1778 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1779 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1780 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1781 * to dispatch queued requests when the mempool runs out of space.
1782 *
1783 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1784 int bioset_init(struct bio_set *bs,
1785 unsigned int pool_size,
1786 unsigned int front_pad,
1787 int flags)
1788 {
1789 bs->front_pad = front_pad;
1790 if (flags & BIOSET_NEED_BVECS)
1791 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1792 else
1793 bs->back_pad = 0;
1794
1795 spin_lock_init(&bs->rescue_lock);
1796 bio_list_init(&bs->rescue_list);
1797 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1798
1799 bs->bio_slab = bio_find_or_create_slab(bs);
1800 if (!bs->bio_slab)
1801 return -ENOMEM;
1802
1803 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1804 goto bad;
1805
1806 if ((flags & BIOSET_NEED_BVECS) &&
1807 biovec_init_pool(&bs->bvec_pool, pool_size))
1808 goto bad;
1809
1810 if (flags & BIOSET_NEED_RESCUER) {
1811 bs->rescue_workqueue = alloc_workqueue("bioset",
1812 WQ_MEM_RECLAIM, 0);
1813 if (!bs->rescue_workqueue)
1814 goto bad;
1815 }
1816 if (flags & BIOSET_PERCPU_CACHE) {
1817 bs->cache = alloc_percpu(struct bio_alloc_cache);
1818 if (!bs->cache)
1819 goto bad;
1820 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1821 }
1822
1823 return 0;
1824 bad:
1825 bioset_exit(bs);
1826 return -ENOMEM;
1827 }
1828 EXPORT_SYMBOL(bioset_init);
1829
init_bio(void)1830 static int __init init_bio(void)
1831 {
1832 int i;
1833
1834 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1835
1836 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1837 struct biovec_slab *bvs = bvec_slabs + i;
1838
1839 bvs->slab = kmem_cache_create(bvs->name,
1840 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1841 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1842 }
1843
1844 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1845 bio_cpu_dead);
1846
1847 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1848 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1849 panic("bio: can't allocate bios\n");
1850
1851 return 0;
1852 }
1853 subsys_initcall(init_bio);
1854