1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Sepherosa Ziehau <sepherosa@gmail.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
37 */
38
39 #include <sys/cdefs.h>
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 #include "opt_wlan.h"
43
44 #include <sys/param.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/bus.h>
48 #include <sys/malloc.h>
49 #include <sys/proc.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_llc.h>
65
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_phy.h>
70 #include <net80211/ieee80211_ratectl.h>
71
72 #include <net/bpf.h>
73
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78
79 #include <machine/bus.h>
80
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcireg.h>
83
84 #include <dev/bwi/bitops.h>
85 #include <dev/bwi/if_bwireg.h>
86 #include <dev/bwi/if_bwivar.h>
87 #include <dev/bwi/bwimac.h>
88 #include <dev/bwi/bwirf.h>
89
90 struct bwi_clock_freq {
91 u_int clkfreq_min;
92 u_int clkfreq_max;
93 };
94
95 struct bwi_myaddr_bssid {
96 uint8_t myaddr[IEEE80211_ADDR_LEN];
97 uint8_t bssid[IEEE80211_ADDR_LEN];
98 } __packed;
99
100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
101 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
102 const uint8_t [IEEE80211_ADDR_LEN],
103 const uint8_t [IEEE80211_ADDR_LEN]);
104 static void bwi_vap_delete(struct ieee80211vap *);
105 static void bwi_init(struct bwi_softc *);
106 static void bwi_parent(struct ieee80211com *);
107 static int bwi_transmit(struct ieee80211com *, struct mbuf *);
108 static void bwi_start_locked(struct bwi_softc *);
109 static int bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
110 const struct ieee80211_bpf_params *);
111 static void bwi_watchdog(void *);
112 static void bwi_scan_start(struct ieee80211com *);
113 static void bwi_getradiocaps(struct ieee80211com *, int, int *,
114 struct ieee80211_channel[]);
115 static void bwi_set_channel(struct ieee80211com *);
116 static void bwi_scan_end(struct ieee80211com *);
117 static int bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
118 static void bwi_updateslot(struct ieee80211com *);
119
120 static void bwi_calibrate(void *);
121
122 static int bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
123 static int bwi_calc_noise(struct bwi_softc *);
124 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
125 static void bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
126 struct bwi_rxbuf_hdr *, const void *, int, int, int);
127
128 static void bwi_restart(void *, int);
129 static void bwi_init_statechg(struct bwi_softc *, int);
130 static void bwi_stop(struct bwi_softc *, int);
131 static void bwi_stop_locked(struct bwi_softc *, int);
132 static int bwi_newbuf(struct bwi_softc *, int, int);
133 static int bwi_encap(struct bwi_softc *, int, struct mbuf *,
134 struct ieee80211_node *);
135 static int bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
136 struct ieee80211_node *,
137 const struct ieee80211_bpf_params *);
138
139 static void bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
140 bus_addr_t, int, int);
141 static void bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
142
143 static int bwi_init_tx_ring32(struct bwi_softc *, int);
144 static int bwi_init_rx_ring32(struct bwi_softc *);
145 static int bwi_init_txstats32(struct bwi_softc *);
146 static void bwi_free_tx_ring32(struct bwi_softc *, int);
147 static void bwi_free_rx_ring32(struct bwi_softc *);
148 static void bwi_free_txstats32(struct bwi_softc *);
149 static void bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
150 static void bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
151 int, bus_addr_t, int);
152 static int bwi_rxeof32(struct bwi_softc *);
153 static void bwi_start_tx32(struct bwi_softc *, uint32_t, int);
154 static void bwi_txeof_status32(struct bwi_softc *);
155
156 static int bwi_init_tx_ring64(struct bwi_softc *, int);
157 static int bwi_init_rx_ring64(struct bwi_softc *);
158 static int bwi_init_txstats64(struct bwi_softc *);
159 static void bwi_free_tx_ring64(struct bwi_softc *, int);
160 static void bwi_free_rx_ring64(struct bwi_softc *);
161 static void bwi_free_txstats64(struct bwi_softc *);
162 static void bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
163 static void bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
164 int, bus_addr_t, int);
165 static int bwi_rxeof64(struct bwi_softc *);
166 static void bwi_start_tx64(struct bwi_softc *, uint32_t, int);
167 static void bwi_txeof_status64(struct bwi_softc *);
168
169 static int bwi_rxeof(struct bwi_softc *, int);
170 static void _bwi_txeof(struct bwi_softc *, uint16_t, int, int);
171 static void bwi_txeof(struct bwi_softc *);
172 static void bwi_txeof_status(struct bwi_softc *, int);
173 static void bwi_enable_intrs(struct bwi_softc *, uint32_t);
174 static void bwi_disable_intrs(struct bwi_softc *, uint32_t);
175
176 static int bwi_dma_alloc(struct bwi_softc *);
177 static void bwi_dma_free(struct bwi_softc *);
178 static int bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
179 struct bwi_ring_data *, bus_size_t,
180 uint32_t);
181 static int bwi_dma_mbuf_create(struct bwi_softc *);
182 static void bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
183 static int bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
184 static void bwi_dma_txstats_free(struct bwi_softc *);
185 static void bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
186 static void bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
187 bus_size_t, int);
188
189 static void bwi_power_on(struct bwi_softc *, int);
190 static int bwi_power_off(struct bwi_softc *, int);
191 static int bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
192 static int bwi_set_clock_delay(struct bwi_softc *);
193 static void bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
194 static int bwi_get_pwron_delay(struct bwi_softc *sc);
195 static void bwi_set_addr_filter(struct bwi_softc *, uint16_t,
196 const uint8_t *);
197 static void bwi_set_bssid(struct bwi_softc *, const uint8_t *);
198
199 static void bwi_get_card_flags(struct bwi_softc *);
200 static void bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
201
202 static int bwi_bus_attach(struct bwi_softc *);
203 static int bwi_bbp_attach(struct bwi_softc *);
204 static int bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
205 static void bwi_bbp_power_off(struct bwi_softc *);
206
207 static const char *bwi_regwin_name(const struct bwi_regwin *);
208 static uint32_t bwi_regwin_disable_bits(struct bwi_softc *);
209 static void bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
210 static int bwi_regwin_select(struct bwi_softc *, int);
211
212 static void bwi_led_attach(struct bwi_softc *);
213 static void bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
214 static void bwi_led_event(struct bwi_softc *, int);
215 static void bwi_led_blink_start(struct bwi_softc *, int, int);
216 static void bwi_led_blink_next(void *);
217 static void bwi_led_blink_end(void *);
218
219 static const struct {
220 uint16_t did_min;
221 uint16_t did_max;
222 uint16_t bbp_id;
223 } bwi_bbpid_map[] = {
224 { 0x4301, 0x4301, 0x4301 },
225 { 0x4305, 0x4307, 0x4307 },
226 { 0x4402, 0x4403, 0x4402 },
227 { 0x4610, 0x4615, 0x4610 },
228 { 0x4710, 0x4715, 0x4710 },
229 { 0x4720, 0x4725, 0x4309 }
230 };
231
232 static const struct {
233 uint16_t bbp_id;
234 int nregwin;
235 } bwi_regwin_count[] = {
236 { 0x4301, 5 },
237 { 0x4306, 6 },
238 { 0x4307, 5 },
239 { 0x4310, 8 },
240 { 0x4401, 3 },
241 { 0x4402, 3 },
242 { 0x4610, 9 },
243 { 0x4704, 9 },
244 { 0x4710, 9 },
245 { 0x5365, 7 }
246 };
247
248 #define CLKSRC(src) \
249 [BWI_CLKSRC_ ## src] = { \
250 .freq_min = BWI_CLKSRC_ ##src## _FMIN, \
251 .freq_max = BWI_CLKSRC_ ##src## _FMAX \
252 }
253
254 static const struct {
255 u_int freq_min;
256 u_int freq_max;
257 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
258 CLKSRC(LP_OSC),
259 CLKSRC(CS_OSC),
260 CLKSRC(PCI)
261 };
262
263 #undef CLKSRC
264
265 #define VENDOR_LED_ACT(vendor) \
266 { \
267 .vid = PCI_VENDOR_##vendor, \
268 .led_act = { BWI_VENDOR_LED_ACT_##vendor } \
269 }
270
271 static const struct {
272 #define PCI_VENDOR_COMPAQ 0x0e11
273 #define PCI_VENDOR_LINKSYS 0x1737
274 uint16_t vid;
275 uint8_t led_act[BWI_LED_MAX];
276 } bwi_vendor_led_act[] = {
277 VENDOR_LED_ACT(COMPAQ),
278 VENDOR_LED_ACT(LINKSYS)
279 #undef PCI_VENDOR_LINKSYS
280 #undef PCI_VENDOR_COMPAQ
281 };
282
283 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
284 { BWI_VENDOR_LED_ACT_DEFAULT };
285
286 #undef VENDOR_LED_ACT
287
288 static const struct {
289 int on_dur;
290 int off_dur;
291 } bwi_led_duration[109] = {
292 [0] = { 400, 100 },
293 [2] = { 150, 75 },
294 [4] = { 90, 45 },
295 [11] = { 66, 34 },
296 [12] = { 53, 26 },
297 [18] = { 42, 21 },
298 [22] = { 35, 17 },
299 [24] = { 32, 16 },
300 [36] = { 21, 10 },
301 [48] = { 16, 8 },
302 [72] = { 11, 5 },
303 [96] = { 9, 4 },
304 [108] = { 7, 3 }
305 };
306
307 #ifdef BWI_DEBUG
308 #ifdef BWI_DEBUG_VERBOSE
309 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
310 #else
311 static uint32_t bwi_debug;
312 #endif
313 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
314 #endif /* BWI_DEBUG */
315
316 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
317
318 uint16_t
bwi_read_sprom(struct bwi_softc * sc,uint16_t ofs)319 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
320 {
321 return CSR_READ_2(sc, ofs + BWI_SPROM_START);
322 }
323
324 static __inline void
bwi_setup_desc32(struct bwi_softc * sc,struct bwi_desc32 * desc_array,int ndesc,int desc_idx,bus_addr_t paddr,int buf_len,int tx)325 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
326 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
327 int tx)
328 {
329 struct bwi_desc32 *desc = &desc_array[desc_idx];
330 uint32_t ctrl, addr, addr_hi, addr_lo;
331
332 addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
333 addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
334
335 addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
336 __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
337
338 ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
339 __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
340 if (desc_idx == ndesc - 1)
341 ctrl |= BWI_DESC32_C_EOR;
342 if (tx) {
343 /* XXX */
344 ctrl |= BWI_DESC32_C_FRAME_START |
345 BWI_DESC32_C_FRAME_END |
346 BWI_DESC32_C_INTR;
347 }
348
349 desc->addr = htole32(addr);
350 desc->ctrl = htole32(ctrl);
351 }
352
353 int
bwi_attach(struct bwi_softc * sc)354 bwi_attach(struct bwi_softc *sc)
355 {
356 struct ieee80211com *ic = &sc->sc_ic;
357 device_t dev = sc->sc_dev;
358 struct bwi_mac *mac;
359 struct bwi_phy *phy;
360 int i, error;
361
362 BWI_LOCK_INIT(sc);
363
364 /*
365 * Initialize taskq and various tasks
366 */
367 sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
368 taskqueue_thread_enqueue, &sc->sc_tq);
369 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
370 device_get_nameunit(dev));
371 TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
372 callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
373 mbufq_init(&sc->sc_snd, ifqmaxlen);
374
375 /*
376 * Initialize sysctl variables
377 */
378 sc->sc_fw_version = BWI_FW_VERSION3;
379 sc->sc_led_idle = (2350 * hz) / 1000;
380 sc->sc_led_ticks = ticks - sc->sc_led_idle;
381 sc->sc_led_blink = 1;
382 sc->sc_txpwr_calib = 1;
383 #ifdef BWI_DEBUG
384 sc->sc_debug = bwi_debug;
385 #endif
386 bwi_power_on(sc, 1);
387
388 error = bwi_bbp_attach(sc);
389 if (error)
390 goto fail;
391
392 error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
393 if (error)
394 goto fail;
395
396 if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
397 error = bwi_set_clock_delay(sc);
398 if (error)
399 goto fail;
400
401 error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
402 if (error)
403 goto fail;
404
405 error = bwi_get_pwron_delay(sc);
406 if (error)
407 goto fail;
408 }
409
410 error = bwi_bus_attach(sc);
411 if (error)
412 goto fail;
413
414 bwi_get_card_flags(sc);
415
416 bwi_led_attach(sc);
417
418 for (i = 0; i < sc->sc_nmac; ++i) {
419 struct bwi_regwin *old;
420
421 mac = &sc->sc_mac[i];
422 error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
423 if (error)
424 goto fail;
425
426 error = bwi_mac_lateattach(mac);
427 if (error)
428 goto fail;
429
430 error = bwi_regwin_switch(sc, old, NULL);
431 if (error)
432 goto fail;
433 }
434
435 /*
436 * XXX First MAC is known to exist
437 * TODO2
438 */
439 mac = &sc->sc_mac[0];
440 phy = &mac->mac_phy;
441
442 bwi_bbp_power_off(sc);
443
444 error = bwi_dma_alloc(sc);
445 if (error)
446 goto fail;
447
448 error = bwi_mac_fw_alloc(mac);
449 if (error)
450 goto fail;
451
452 callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
453
454 /*
455 * Setup ratesets, phytype, channels and get MAC address
456 */
457 if (phy->phy_mode == IEEE80211_MODE_11B ||
458 phy->phy_mode == IEEE80211_MODE_11G) {
459 if (phy->phy_mode == IEEE80211_MODE_11B) {
460 ic->ic_phytype = IEEE80211_T_DS;
461 } else {
462 ic->ic_phytype = IEEE80211_T_OFDM;
463 }
464
465 bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
466 if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
467 bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
468 if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
469 device_printf(dev,
470 "invalid MAC address: %6D\n",
471 ic->ic_macaddr, ":");
472 }
473 }
474 } else if (phy->phy_mode == IEEE80211_MODE_11A) {
475 /* TODO:11A */
476 error = ENXIO;
477 goto fail;
478 } else {
479 panic("unknown phymode %d\n", phy->phy_mode);
480 }
481
482 /* Get locale */
483 sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
484 BWI_SPROM_CARD_INFO_LOCALE);
485 DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
486 /* XXX use locale */
487
488 ic->ic_softc = sc;
489
490 bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
491 ic->ic_channels);
492
493 ic->ic_name = device_get_nameunit(dev);
494 ic->ic_caps = IEEE80211_C_STA |
495 IEEE80211_C_SHSLOT |
496 IEEE80211_C_SHPREAMBLE |
497 IEEE80211_C_WPA |
498 IEEE80211_C_BGSCAN |
499 IEEE80211_C_MONITOR;
500 ic->ic_opmode = IEEE80211_M_STA;
501 ieee80211_ifattach(ic);
502
503 ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
504
505 /* override default methods */
506 ic->ic_vap_create = bwi_vap_create;
507 ic->ic_vap_delete = bwi_vap_delete;
508 ic->ic_raw_xmit = bwi_raw_xmit;
509 ic->ic_updateslot = bwi_updateslot;
510 ic->ic_scan_start = bwi_scan_start;
511 ic->ic_scan_end = bwi_scan_end;
512 ic->ic_getradiocaps = bwi_getradiocaps;
513 ic->ic_set_channel = bwi_set_channel;
514 ic->ic_transmit = bwi_transmit;
515 ic->ic_parent = bwi_parent;
516
517 sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
518
519 ieee80211_radiotap_attach(ic,
520 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
521 BWI_TX_RADIOTAP_PRESENT,
522 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
523 BWI_RX_RADIOTAP_PRESENT);
524
525 /*
526 * Add sysctl nodes
527 */
528 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
529 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
530 "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
531 "Firmware version");
532 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
533 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
534 "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
535 "# ticks before LED enters idle state");
536 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
537 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
538 "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
539 "Allow LED to blink");
540 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
541 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
542 "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
543 "Enable software TX power calibration");
544 #ifdef BWI_DEBUG
545 SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
546 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
547 "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
548 #endif
549 if (bootverbose)
550 ieee80211_announce(ic);
551
552 return (0);
553 fail:
554 BWI_LOCK_DESTROY(sc);
555 return (error);
556 }
557
558 int
bwi_detach(struct bwi_softc * sc)559 bwi_detach(struct bwi_softc *sc)
560 {
561 struct ieee80211com *ic = &sc->sc_ic;
562 int i;
563
564 bwi_stop(sc, 1);
565 callout_drain(&sc->sc_led_blink_ch);
566 callout_drain(&sc->sc_calib_ch);
567 callout_drain(&sc->sc_watchdog_timer);
568 ieee80211_ifdetach(ic);
569
570 for (i = 0; i < sc->sc_nmac; ++i)
571 bwi_mac_detach(&sc->sc_mac[i]);
572 bwi_dma_free(sc);
573 taskqueue_free(sc->sc_tq);
574 mbufq_drain(&sc->sc_snd);
575
576 BWI_LOCK_DESTROY(sc);
577
578 return (0);
579 }
580
581 static struct ieee80211vap *
bwi_vap_create(struct ieee80211com * ic,const char name[IFNAMSIZ],int unit,enum ieee80211_opmode opmode,int flags,const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t mac[IEEE80211_ADDR_LEN])582 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
583 enum ieee80211_opmode opmode, int flags,
584 const uint8_t bssid[IEEE80211_ADDR_LEN],
585 const uint8_t mac[IEEE80211_ADDR_LEN])
586 {
587 struct bwi_vap *bvp;
588 struct ieee80211vap *vap;
589
590 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
591 return NULL;
592 bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
593 vap = &bvp->bv_vap;
594 /* enable s/w bmiss handling for sta mode */
595 ieee80211_vap_setup(ic, vap, name, unit, opmode,
596 flags | IEEE80211_CLONE_NOBEACONS, bssid);
597
598 /* override default methods */
599 bvp->bv_newstate = vap->iv_newstate;
600 vap->iv_newstate = bwi_newstate;
601 #if 0
602 vap->iv_update_beacon = bwi_beacon_update;
603 #endif
604 ieee80211_ratectl_init(vap);
605
606 /* complete setup */
607 ieee80211_vap_attach(vap, ieee80211_media_change,
608 ieee80211_media_status, mac);
609 ic->ic_opmode = opmode;
610 return vap;
611 }
612
613 static void
bwi_vap_delete(struct ieee80211vap * vap)614 bwi_vap_delete(struct ieee80211vap *vap)
615 {
616 struct bwi_vap *bvp = BWI_VAP(vap);
617
618 ieee80211_ratectl_deinit(vap);
619 ieee80211_vap_detach(vap);
620 free(bvp, M_80211_VAP);
621 }
622
623 void
bwi_suspend(struct bwi_softc * sc)624 bwi_suspend(struct bwi_softc *sc)
625 {
626 bwi_stop(sc, 1);
627 }
628
629 void
bwi_resume(struct bwi_softc * sc)630 bwi_resume(struct bwi_softc *sc)
631 {
632
633 if (sc->sc_ic.ic_nrunning > 0)
634 bwi_init(sc);
635 }
636
637 int
bwi_shutdown(struct bwi_softc * sc)638 bwi_shutdown(struct bwi_softc *sc)
639 {
640 bwi_stop(sc, 1);
641 return 0;
642 }
643
644 static void
bwi_power_on(struct bwi_softc * sc,int with_pll)645 bwi_power_on(struct bwi_softc *sc, int with_pll)
646 {
647 uint32_t gpio_in, gpio_out, gpio_en;
648 uint16_t status;
649
650 gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
651 if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
652 goto back;
653
654 gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
655 gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
656
657 gpio_out |= BWI_PCIM_GPIO_PWR_ON;
658 gpio_en |= BWI_PCIM_GPIO_PWR_ON;
659 if (with_pll) {
660 /* Turn off PLL first */
661 gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
662 gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
663 }
664
665 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
666 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
667 DELAY(1000);
668
669 if (with_pll) {
670 /* Turn on PLL */
671 gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
672 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
673 DELAY(5000);
674 }
675
676 back:
677 /* Clear "Signaled Target Abort" */
678 status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
679 status &= ~PCIM_STATUS_STABORT;
680 pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
681 }
682
683 static int
bwi_power_off(struct bwi_softc * sc,int with_pll)684 bwi_power_off(struct bwi_softc *sc, int with_pll)
685 {
686 uint32_t gpio_out, gpio_en;
687
688 pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
689 gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
690 gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
691
692 gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
693 gpio_en |= BWI_PCIM_GPIO_PWR_ON;
694 if (with_pll) {
695 gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
696 gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
697 }
698
699 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
700 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
701 return 0;
702 }
703
704 int
bwi_regwin_switch(struct bwi_softc * sc,struct bwi_regwin * rw,struct bwi_regwin ** old_rw)705 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
706 struct bwi_regwin **old_rw)
707 {
708 int error;
709
710 if (old_rw != NULL)
711 *old_rw = NULL;
712
713 if (!BWI_REGWIN_EXIST(rw))
714 return EINVAL;
715
716 if (sc->sc_cur_regwin != rw) {
717 error = bwi_regwin_select(sc, rw->rw_id);
718 if (error) {
719 device_printf(sc->sc_dev, "can't select regwin %d\n",
720 rw->rw_id);
721 return error;
722 }
723 }
724
725 if (old_rw != NULL)
726 *old_rw = sc->sc_cur_regwin;
727 sc->sc_cur_regwin = rw;
728 return 0;
729 }
730
731 static int
bwi_regwin_select(struct bwi_softc * sc,int id)732 bwi_regwin_select(struct bwi_softc *sc, int id)
733 {
734 uint32_t win = BWI_PCIM_REGWIN(id);
735 int i;
736
737 #define RETRY_MAX 50
738 for (i = 0; i < RETRY_MAX; ++i) {
739 pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
740 if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
741 return 0;
742 DELAY(10);
743 }
744 #undef RETRY_MAX
745
746 return ENXIO;
747 }
748
749 static void
bwi_regwin_info(struct bwi_softc * sc,uint16_t * type,uint8_t * rev)750 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
751 {
752 uint32_t val;
753
754 val = CSR_READ_4(sc, BWI_ID_HI);
755 *type = BWI_ID_HI_REGWIN_TYPE(val);
756 *rev = BWI_ID_HI_REGWIN_REV(val);
757
758 DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
759 "vendor 0x%04x\n", *type, *rev,
760 __SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
761 }
762
763 static int
bwi_bbp_attach(struct bwi_softc * sc)764 bwi_bbp_attach(struct bwi_softc *sc)
765 {
766 uint16_t bbp_id, rw_type;
767 uint8_t rw_rev;
768 uint32_t info;
769 int error, nregwin, i;
770
771 /*
772 * Get 0th regwin information
773 * NOTE: 0th regwin should exist
774 */
775 error = bwi_regwin_select(sc, 0);
776 if (error) {
777 device_printf(sc->sc_dev, "can't select regwin 0\n");
778 return error;
779 }
780 bwi_regwin_info(sc, &rw_type, &rw_rev);
781
782 /*
783 * Find out BBP id
784 */
785 bbp_id = 0;
786 info = 0;
787 if (rw_type == BWI_REGWIN_T_COM) {
788 info = CSR_READ_4(sc, BWI_INFO);
789 bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
790
791 BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
792
793 sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
794 } else {
795 for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
796 if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
797 sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
798 bbp_id = bwi_bbpid_map[i].bbp_id;
799 break;
800 }
801 }
802 if (bbp_id == 0) {
803 device_printf(sc->sc_dev, "no BBP id for device id "
804 "0x%04x\n", sc->sc_pci_did);
805 return ENXIO;
806 }
807
808 info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
809 __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
810 }
811
812 /*
813 * Find out number of regwins
814 */
815 nregwin = 0;
816 if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
817 nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
818 } else {
819 for (i = 0; i < nitems(bwi_regwin_count); ++i) {
820 if (bwi_regwin_count[i].bbp_id == bbp_id) {
821 nregwin = bwi_regwin_count[i].nregwin;
822 break;
823 }
824 }
825 if (nregwin == 0) {
826 device_printf(sc->sc_dev, "no number of win for "
827 "BBP id 0x%04x\n", bbp_id);
828 return ENXIO;
829 }
830 }
831
832 /* Record BBP id/rev for later using */
833 sc->sc_bbp_id = bbp_id;
834 sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
835 sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
836 device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
837 sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
838
839 DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
840 nregwin, sc->sc_cap);
841
842 /*
843 * Create rest of the regwins
844 */
845
846 /* Don't re-create common regwin, if it is already created */
847 i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
848
849 for (; i < nregwin; ++i) {
850 /*
851 * Get regwin information
852 */
853 error = bwi_regwin_select(sc, i);
854 if (error) {
855 device_printf(sc->sc_dev,
856 "can't select regwin %d\n", i);
857 return error;
858 }
859 bwi_regwin_info(sc, &rw_type, &rw_rev);
860
861 /*
862 * Try attach:
863 * 1) Bus (PCI/PCIE) regwin
864 * 2) MAC regwin
865 * Ignore rest types of regwin
866 */
867 if (rw_type == BWI_REGWIN_T_BUSPCI ||
868 rw_type == BWI_REGWIN_T_BUSPCIE) {
869 if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
870 device_printf(sc->sc_dev,
871 "bus regwin already exists\n");
872 } else {
873 BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
874 rw_type, rw_rev);
875 }
876 } else if (rw_type == BWI_REGWIN_T_MAC) {
877 /* XXX ignore return value */
878 bwi_mac_attach(sc, i, rw_rev);
879 }
880 }
881
882 /* At least one MAC shold exist */
883 if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
884 device_printf(sc->sc_dev, "no MAC was found\n");
885 return ENXIO;
886 }
887 KASSERT(sc->sc_nmac > 0, ("no mac's"));
888
889 /* Bus regwin must exist */
890 if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
891 device_printf(sc->sc_dev, "no bus regwin was found\n");
892 return ENXIO;
893 }
894
895 /* Start with first MAC */
896 error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
897 if (error)
898 return error;
899
900 return 0;
901 }
902
903 int
bwi_bus_init(struct bwi_softc * sc,struct bwi_mac * mac)904 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
905 {
906 struct bwi_regwin *old, *bus;
907 uint32_t val;
908 int error;
909
910 bus = &sc->sc_bus_regwin;
911 KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
912
913 /*
914 * Tell bus to generate requested interrupts
915 */
916 if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
917 /*
918 * NOTE: Read BWI_FLAGS from MAC regwin
919 */
920 val = CSR_READ_4(sc, BWI_FLAGS);
921
922 error = bwi_regwin_switch(sc, bus, &old);
923 if (error)
924 return error;
925
926 CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
927 } else {
928 uint32_t mac_mask;
929
930 mac_mask = 1 << mac->mac_id;
931
932 error = bwi_regwin_switch(sc, bus, &old);
933 if (error)
934 return error;
935
936 val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
937 val |= mac_mask << 8;
938 pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
939 }
940
941 if (sc->sc_flags & BWI_F_BUS_INITED)
942 goto back;
943
944 if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
945 /*
946 * Enable prefetch and burst
947 */
948 CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
949 BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
950
951 if (bus->rw_rev < 5) {
952 struct bwi_regwin *com = &sc->sc_com_regwin;
953
954 /*
955 * Configure timeouts for bus operation
956 */
957
958 /*
959 * Set service timeout and request timeout
960 */
961 CSR_SETBITS_4(sc, BWI_CONF_LO,
962 __SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
963 __SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
964
965 /*
966 * If there is common regwin, we switch to that regwin
967 * and switch back to bus regwin once we have done.
968 */
969 if (BWI_REGWIN_EXIST(com)) {
970 error = bwi_regwin_switch(sc, com, NULL);
971 if (error)
972 return error;
973 }
974
975 /* Let bus know what we have changed */
976 CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
977 CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
978 CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
979 CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
980
981 if (BWI_REGWIN_EXIST(com)) {
982 error = bwi_regwin_switch(sc, bus, NULL);
983 if (error)
984 return error;
985 }
986 } else if (bus->rw_rev >= 11) {
987 /*
988 * Enable memory read multiple
989 */
990 CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
991 }
992 } else {
993 /* TODO:PCIE */
994 }
995
996 sc->sc_flags |= BWI_F_BUS_INITED;
997 back:
998 return bwi_regwin_switch(sc, old, NULL);
999 }
1000
1001 static void
bwi_get_card_flags(struct bwi_softc * sc)1002 bwi_get_card_flags(struct bwi_softc *sc)
1003 {
1004 #define PCI_VENDOR_APPLE 0x106b
1005 #define PCI_VENDOR_DELL 0x1028
1006 sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1007 if (sc->sc_card_flags == 0xffff)
1008 sc->sc_card_flags = 0;
1009
1010 if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1011 sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1012 sc->sc_pci_revid == 0x74)
1013 sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1014
1015 if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1016 sc->sc_pci_subdid == 0x4e && /* XXX */
1017 sc->sc_pci_revid > 0x40)
1018 sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1019
1020 DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1021 #undef PCI_VENDOR_DELL
1022 #undef PCI_VENDOR_APPLE
1023 }
1024
1025 static void
bwi_get_eaddr(struct bwi_softc * sc,uint16_t eaddr_ofs,uint8_t * eaddr)1026 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1027 {
1028 int i;
1029
1030 for (i = 0; i < 3; ++i) {
1031 *((uint16_t *)eaddr + i) =
1032 htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1033 }
1034 }
1035
1036 static void
bwi_get_clock_freq(struct bwi_softc * sc,struct bwi_clock_freq * freq)1037 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1038 {
1039 struct bwi_regwin *com;
1040 uint32_t val;
1041 u_int div;
1042 int src;
1043
1044 bzero(freq, sizeof(*freq));
1045 com = &sc->sc_com_regwin;
1046
1047 KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1048 KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1049 KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1050
1051 /*
1052 * Calculate clock frequency
1053 */
1054 src = -1;
1055 div = 0;
1056 if (com->rw_rev < 6) {
1057 val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1058 if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1059 src = BWI_CLKSRC_PCI;
1060 div = 64;
1061 } else {
1062 src = BWI_CLKSRC_CS_OSC;
1063 div = 32;
1064 }
1065 } else if (com->rw_rev < 10) {
1066 val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1067
1068 src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1069 if (src == BWI_CLKSRC_LP_OSC) {
1070 div = 1;
1071 } else {
1072 div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1073
1074 /* Unknown source */
1075 if (src >= BWI_CLKSRC_MAX)
1076 src = BWI_CLKSRC_CS_OSC;
1077 }
1078 } else {
1079 val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1080
1081 src = BWI_CLKSRC_CS_OSC;
1082 div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1083 }
1084
1085 KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1086 KASSERT(div != 0, ("div zero"));
1087
1088 DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1089 src == BWI_CLKSRC_PCI ? "PCI" :
1090 (src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1091
1092 freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1093 freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1094
1095 DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1096 freq->clkfreq_min, freq->clkfreq_max);
1097 }
1098
1099 static int
bwi_set_clock_mode(struct bwi_softc * sc,enum bwi_clock_mode clk_mode)1100 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1101 {
1102 struct bwi_regwin *old, *com;
1103 uint32_t clk_ctrl, clk_src;
1104 int error, pwr_off = 0;
1105
1106 com = &sc->sc_com_regwin;
1107 if (!BWI_REGWIN_EXIST(com))
1108 return 0;
1109
1110 if (com->rw_rev >= 10 || com->rw_rev < 6)
1111 return 0;
1112
1113 /*
1114 * For common regwin whose rev is [6, 10), the chip
1115 * must be capable to change clock mode.
1116 */
1117 if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1118 return 0;
1119
1120 error = bwi_regwin_switch(sc, com, &old);
1121 if (error)
1122 return error;
1123
1124 if (clk_mode == BWI_CLOCK_MODE_FAST)
1125 bwi_power_on(sc, 0); /* Don't turn on PLL */
1126
1127 clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1128 clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1129
1130 switch (clk_mode) {
1131 case BWI_CLOCK_MODE_FAST:
1132 clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1133 clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1134 break;
1135 case BWI_CLOCK_MODE_SLOW:
1136 clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1137 break;
1138 case BWI_CLOCK_MODE_DYN:
1139 clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1140 BWI_CLOCK_CTRL_IGNPLL |
1141 BWI_CLOCK_CTRL_NODYN);
1142 if (clk_src != BWI_CLKSRC_CS_OSC) {
1143 clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1144 pwr_off = 1;
1145 }
1146 break;
1147 }
1148 CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1149
1150 if (pwr_off)
1151 bwi_power_off(sc, 0); /* Leave PLL as it is */
1152
1153 return bwi_regwin_switch(sc, old, NULL);
1154 }
1155
1156 static int
bwi_set_clock_delay(struct bwi_softc * sc)1157 bwi_set_clock_delay(struct bwi_softc *sc)
1158 {
1159 struct bwi_regwin *old, *com;
1160 int error;
1161
1162 com = &sc->sc_com_regwin;
1163 if (!BWI_REGWIN_EXIST(com))
1164 return 0;
1165
1166 error = bwi_regwin_switch(sc, com, &old);
1167 if (error)
1168 return error;
1169
1170 if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1171 if (sc->sc_bbp_rev == 0)
1172 CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1173 else if (sc->sc_bbp_rev == 1)
1174 CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1175 }
1176
1177 if (sc->sc_cap & BWI_CAP_CLKMODE) {
1178 if (com->rw_rev >= 10) {
1179 CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1180 } else {
1181 struct bwi_clock_freq freq;
1182
1183 bwi_get_clock_freq(sc, &freq);
1184 CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1185 howmany(freq.clkfreq_max * 150, 1000000));
1186 CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1187 howmany(freq.clkfreq_max * 15, 1000000));
1188 }
1189 }
1190
1191 return bwi_regwin_switch(sc, old, NULL);
1192 }
1193
1194 static void
bwi_init(struct bwi_softc * sc)1195 bwi_init(struct bwi_softc *sc)
1196 {
1197 struct ieee80211com *ic = &sc->sc_ic;
1198
1199 BWI_LOCK(sc);
1200 bwi_init_statechg(sc, 1);
1201 BWI_UNLOCK(sc);
1202
1203 if (sc->sc_flags & BWI_F_RUNNING)
1204 ieee80211_start_all(ic); /* start all vap's */
1205 }
1206
1207 static void
bwi_init_statechg(struct bwi_softc * sc,int statechg)1208 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1209 {
1210 struct bwi_mac *mac;
1211 int error;
1212
1213 BWI_ASSERT_LOCKED(sc);
1214
1215 bwi_stop_locked(sc, statechg);
1216
1217 bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1218
1219 /* TODO: 2 MAC */
1220
1221 mac = &sc->sc_mac[0];
1222 error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1223 if (error) {
1224 device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1225 __func__, error);
1226 goto bad;
1227 }
1228 error = bwi_mac_init(mac);
1229 if (error) {
1230 device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1231 __func__, error);
1232 goto bad;
1233 }
1234
1235 bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1236
1237 bwi_set_bssid(sc, bwi_zero_addr); /* Clear BSSID */
1238 bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1239
1240 bwi_mac_reset_hwkeys(mac);
1241
1242 if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1243 int i;
1244
1245 #define NRETRY 1000
1246 /*
1247 * Drain any possible pending TX status
1248 */
1249 for (i = 0; i < NRETRY; ++i) {
1250 if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1251 BWI_TXSTATUS0_VALID) == 0)
1252 break;
1253 CSR_READ_4(sc, BWI_TXSTATUS1);
1254 }
1255 if (i == NRETRY)
1256 device_printf(sc->sc_dev,
1257 "%s: can't drain TX status\n", __func__);
1258 #undef NRETRY
1259 }
1260
1261 if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1262 bwi_mac_updateslot(mac, 1);
1263
1264 /* Start MAC */
1265 error = bwi_mac_start(mac);
1266 if (error) {
1267 device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1268 __func__, error);
1269 goto bad;
1270 }
1271
1272 /* Clear stop flag before enabling interrupt */
1273 sc->sc_flags &= ~BWI_F_STOP;
1274 sc->sc_flags |= BWI_F_RUNNING;
1275 callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1276
1277 /* Enable intrs */
1278 bwi_enable_intrs(sc, BWI_INIT_INTRS);
1279 return;
1280 bad:
1281 bwi_stop_locked(sc, 1);
1282 }
1283
1284 static void
bwi_parent(struct ieee80211com * ic)1285 bwi_parent(struct ieee80211com *ic)
1286 {
1287 struct bwi_softc *sc = ic->ic_softc;
1288 int startall = 0;
1289
1290 BWI_LOCK(sc);
1291 if (ic->ic_nrunning > 0) {
1292 struct bwi_mac *mac;
1293 int promisc = -1;
1294
1295 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1296 ("current regwin type %d",
1297 sc->sc_cur_regwin->rw_type));
1298 mac = (struct bwi_mac *)sc->sc_cur_regwin;
1299
1300 if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1301 promisc = 1;
1302 sc->sc_flags |= BWI_F_PROMISC;
1303 } else if (ic->ic_promisc == 0 &&
1304 (sc->sc_flags & BWI_F_PROMISC) != 0) {
1305 promisc = 0;
1306 sc->sc_flags &= ~BWI_F_PROMISC;
1307 }
1308
1309 if (promisc >= 0)
1310 bwi_mac_set_promisc(mac, promisc);
1311 }
1312 if (ic->ic_nrunning > 0) {
1313 if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1314 bwi_init_statechg(sc, 1);
1315 startall = 1;
1316 }
1317 } else if (sc->sc_flags & BWI_F_RUNNING)
1318 bwi_stop_locked(sc, 1);
1319 BWI_UNLOCK(sc);
1320 if (startall)
1321 ieee80211_start_all(ic);
1322 }
1323
1324 static int
bwi_transmit(struct ieee80211com * ic,struct mbuf * m)1325 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1326 {
1327 struct bwi_softc *sc = ic->ic_softc;
1328 int error;
1329
1330 BWI_LOCK(sc);
1331 if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1332 BWI_UNLOCK(sc);
1333 return (ENXIO);
1334 }
1335 error = mbufq_enqueue(&sc->sc_snd, m);
1336 if (error) {
1337 BWI_UNLOCK(sc);
1338 return (error);
1339 }
1340 bwi_start_locked(sc);
1341 BWI_UNLOCK(sc);
1342 return (0);
1343 }
1344
1345 static void
bwi_start_locked(struct bwi_softc * sc)1346 bwi_start_locked(struct bwi_softc *sc)
1347 {
1348 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1349 struct ieee80211_frame *wh;
1350 struct ieee80211_node *ni;
1351 struct mbuf *m;
1352 int trans, idx;
1353
1354 BWI_ASSERT_LOCKED(sc);
1355
1356 trans = 0;
1357 idx = tbd->tbd_idx;
1358
1359 while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1360 tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1361 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1362 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1363 wh = mtod(m, struct ieee80211_frame *);
1364 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1365 ieee80211_crypto_encap(ni, m) == NULL) {
1366 if_inc_counter(ni->ni_vap->iv_ifp,
1367 IFCOUNTER_OERRORS, 1);
1368 ieee80211_free_node(ni);
1369 m_freem(m);
1370 continue;
1371 }
1372 if (bwi_encap(sc, idx, m, ni) != 0) {
1373 /* 'm' is freed in bwi_encap() if we reach here */
1374 if (ni != NULL) {
1375 if_inc_counter(ni->ni_vap->iv_ifp,
1376 IFCOUNTER_OERRORS, 1);
1377 ieee80211_free_node(ni);
1378 } else
1379 counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1380 continue;
1381 }
1382 trans = 1;
1383 tbd->tbd_used++;
1384 idx = (idx + 1) % BWI_TX_NDESC;
1385 }
1386
1387 tbd->tbd_idx = idx;
1388 if (trans)
1389 sc->sc_tx_timer = 5;
1390 }
1391
1392 static int
bwi_raw_xmit(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)1393 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1394 const struct ieee80211_bpf_params *params)
1395 {
1396 struct ieee80211com *ic = ni->ni_ic;
1397 struct bwi_softc *sc = ic->ic_softc;
1398 /* XXX wme? */
1399 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1400 int idx, error;
1401
1402 if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1403 m_freem(m);
1404 return ENETDOWN;
1405 }
1406
1407 BWI_LOCK(sc);
1408 idx = tbd->tbd_idx;
1409 KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1410 if (params == NULL) {
1411 /*
1412 * Legacy path; interpret frame contents to decide
1413 * precisely how to send the frame.
1414 */
1415 error = bwi_encap(sc, idx, m, ni);
1416 } else {
1417 /*
1418 * Caller supplied explicit parameters to use in
1419 * sending the frame.
1420 */
1421 error = bwi_encap_raw(sc, idx, m, ni, params);
1422 }
1423 if (error == 0) {
1424 tbd->tbd_used++;
1425 tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1426 sc->sc_tx_timer = 5;
1427 }
1428 BWI_UNLOCK(sc);
1429 return error;
1430 }
1431
1432 static void
bwi_watchdog(void * arg)1433 bwi_watchdog(void *arg)
1434 {
1435 struct bwi_softc *sc;
1436
1437 sc = arg;
1438 BWI_ASSERT_LOCKED(sc);
1439 if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1440 device_printf(sc->sc_dev, "watchdog timeout\n");
1441 counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1442 taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1443 }
1444 callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1445 }
1446
1447 static void
bwi_stop(struct bwi_softc * sc,int statechg)1448 bwi_stop(struct bwi_softc *sc, int statechg)
1449 {
1450 BWI_LOCK(sc);
1451 bwi_stop_locked(sc, statechg);
1452 BWI_UNLOCK(sc);
1453 }
1454
1455 static void
bwi_stop_locked(struct bwi_softc * sc,int statechg)1456 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1457 {
1458 struct bwi_mac *mac;
1459 int i, error, pwr_off = 0;
1460
1461 BWI_ASSERT_LOCKED(sc);
1462
1463 callout_stop(&sc->sc_calib_ch);
1464 callout_stop(&sc->sc_led_blink_ch);
1465 sc->sc_led_blinking = 0;
1466 sc->sc_flags |= BWI_F_STOP;
1467
1468 if (sc->sc_flags & BWI_F_RUNNING) {
1469 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1470 ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1471 mac = (struct bwi_mac *)sc->sc_cur_regwin;
1472
1473 bwi_disable_intrs(sc, BWI_ALL_INTRS);
1474 CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1475 bwi_mac_stop(mac);
1476 }
1477
1478 for (i = 0; i < sc->sc_nmac; ++i) {
1479 struct bwi_regwin *old_rw;
1480
1481 mac = &sc->sc_mac[i];
1482 if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1483 continue;
1484
1485 error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1486 if (error)
1487 continue;
1488
1489 bwi_mac_shutdown(mac);
1490 pwr_off = 1;
1491
1492 bwi_regwin_switch(sc, old_rw, NULL);
1493 }
1494
1495 if (pwr_off)
1496 bwi_bbp_power_off(sc);
1497
1498 sc->sc_tx_timer = 0;
1499 callout_stop(&sc->sc_watchdog_timer);
1500 sc->sc_flags &= ~BWI_F_RUNNING;
1501 }
1502
1503 void
bwi_intr(void * xsc)1504 bwi_intr(void *xsc)
1505 {
1506 struct bwi_softc *sc = xsc;
1507 struct bwi_mac *mac;
1508 uint32_t intr_status;
1509 uint32_t txrx_intr_status[BWI_TXRX_NRING];
1510 int i, txrx_error, tx = 0, rx_data = -1;
1511
1512 BWI_LOCK(sc);
1513
1514 if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1515 (sc->sc_flags & BWI_F_STOP)) {
1516 BWI_UNLOCK(sc);
1517 return;
1518 }
1519 /*
1520 * Get interrupt status
1521 */
1522 intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1523 if (intr_status == 0xffffffff) { /* Not for us */
1524 BWI_UNLOCK(sc);
1525 return;
1526 }
1527
1528 DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1529
1530 intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1531 if (intr_status == 0) { /* Nothing is interesting */
1532 BWI_UNLOCK(sc);
1533 return;
1534 }
1535
1536 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1537 ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1538 mac = (struct bwi_mac *)sc->sc_cur_regwin;
1539
1540 txrx_error = 0;
1541 DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1542 for (i = 0; i < BWI_TXRX_NRING; ++i) {
1543 uint32_t mask;
1544
1545 if (BWI_TXRX_IS_RX(i))
1546 mask = BWI_TXRX_RX_INTRS;
1547 else
1548 mask = BWI_TXRX_TX_INTRS;
1549
1550 txrx_intr_status[i] =
1551 CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1552
1553 _DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1554 i, txrx_intr_status[i]);
1555
1556 if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1557 device_printf(sc->sc_dev,
1558 "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1559 __func__, i, txrx_intr_status[i]);
1560 txrx_error = 1;
1561 }
1562 }
1563 _DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1564
1565 /*
1566 * Acknowledge interrupt
1567 */
1568 CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1569
1570 for (i = 0; i < BWI_TXRX_NRING; ++i)
1571 CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1572
1573 /* Disable all interrupts */
1574 bwi_disable_intrs(sc, BWI_ALL_INTRS);
1575
1576 /*
1577 * http://bcm-specs.sipsolutions.net/Interrupts
1578 * Says for this bit (0x800):
1579 * "Fatal Error
1580 *
1581 * We got this one while testing things when by accident the
1582 * template ram wasn't set to big endian when it should have
1583 * been after writing the initial values. It keeps on being
1584 * triggered, the only way to stop it seems to shut down the
1585 * chip."
1586 *
1587 * Suggesting that we should never get it and if we do we're not
1588 * feeding TX packets into the MAC correctly if we do... Apparently,
1589 * it is valid only on mac version 5 and higher, but I couldn't
1590 * find a reference for that... Since I see them from time to time
1591 * on my card, this suggests an error in the tx path still...
1592 */
1593 if (intr_status & BWI_INTR_PHY_TXERR) {
1594 if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1595 device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1596 __func__);
1597 taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1598 BWI_UNLOCK(sc);
1599 return;
1600 }
1601 }
1602
1603 if (txrx_error) {
1604 /* TODO: reset device */
1605 }
1606
1607 if (intr_status & BWI_INTR_TBTT)
1608 bwi_mac_config_ps(mac);
1609
1610 if (intr_status & BWI_INTR_EO_ATIM)
1611 device_printf(sc->sc_dev, "EO_ATIM\n");
1612
1613 if (intr_status & BWI_INTR_PMQ) {
1614 for (;;) {
1615 if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1616 break;
1617 }
1618 CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1619 }
1620
1621 if (intr_status & BWI_INTR_NOISE)
1622 device_printf(sc->sc_dev, "intr noise\n");
1623
1624 if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1625 rx_data = sc->sc_rxeof(sc);
1626 if (sc->sc_flags & BWI_F_STOP) {
1627 BWI_UNLOCK(sc);
1628 return;
1629 }
1630 }
1631
1632 if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1633 sc->sc_txeof_status(sc);
1634 tx = 1;
1635 }
1636
1637 if (intr_status & BWI_INTR_TX_DONE) {
1638 bwi_txeof(sc);
1639 tx = 1;
1640 }
1641
1642 /* Re-enable interrupts */
1643 bwi_enable_intrs(sc, BWI_INIT_INTRS);
1644
1645 if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1646 int evt = BWI_LED_EVENT_NONE;
1647
1648 if (tx && rx_data > 0) {
1649 if (sc->sc_rx_rate > sc->sc_tx_rate)
1650 evt = BWI_LED_EVENT_RX;
1651 else
1652 evt = BWI_LED_EVENT_TX;
1653 } else if (tx) {
1654 evt = BWI_LED_EVENT_TX;
1655 } else if (rx_data > 0) {
1656 evt = BWI_LED_EVENT_RX;
1657 } else if (rx_data == 0) {
1658 evt = BWI_LED_EVENT_POLL;
1659 }
1660
1661 if (evt != BWI_LED_EVENT_NONE)
1662 bwi_led_event(sc, evt);
1663 }
1664
1665 BWI_UNLOCK(sc);
1666 }
1667
1668 static void
bwi_scan_start(struct ieee80211com * ic)1669 bwi_scan_start(struct ieee80211com *ic)
1670 {
1671 struct bwi_softc *sc = ic->ic_softc;
1672
1673 BWI_LOCK(sc);
1674 /* Enable MAC beacon promiscuity */
1675 CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1676 BWI_UNLOCK(sc);
1677 }
1678
1679 static void
bwi_getradiocaps(struct ieee80211com * ic,int maxchans,int * nchans,struct ieee80211_channel chans[])1680 bwi_getradiocaps(struct ieee80211com *ic,
1681 int maxchans, int *nchans, struct ieee80211_channel chans[])
1682 {
1683 struct bwi_softc *sc = ic->ic_softc;
1684 struct bwi_mac *mac;
1685 struct bwi_phy *phy;
1686 uint8_t bands[IEEE80211_MODE_BYTES];
1687
1688 /*
1689 * XXX First MAC is known to exist
1690 * TODO2
1691 */
1692 mac = &sc->sc_mac[0];
1693 phy = &mac->mac_phy;
1694
1695 memset(bands, 0, sizeof(bands));
1696 switch (phy->phy_mode) {
1697 case IEEE80211_MODE_11G:
1698 setbit(bands, IEEE80211_MODE_11G);
1699 /* FALLTHROUGH */
1700 case IEEE80211_MODE_11B:
1701 setbit(bands, IEEE80211_MODE_11B);
1702 break;
1703 case IEEE80211_MODE_11A:
1704 /* TODO:11A */
1705 setbit(bands, IEEE80211_MODE_11A);
1706 device_printf(sc->sc_dev, "no 11a support\n");
1707 return;
1708 default:
1709 panic("unknown phymode %d\n", phy->phy_mode);
1710 }
1711
1712 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
1713 }
1714
1715 static void
bwi_set_channel(struct ieee80211com * ic)1716 bwi_set_channel(struct ieee80211com *ic)
1717 {
1718 struct bwi_softc *sc = ic->ic_softc;
1719 struct ieee80211_channel *c = ic->ic_curchan;
1720 struct bwi_mac *mac;
1721
1722 BWI_LOCK(sc);
1723 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1724 ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1725 mac = (struct bwi_mac *)sc->sc_cur_regwin;
1726 bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1727
1728 sc->sc_rates = ieee80211_get_ratetable(c);
1729 BWI_UNLOCK(sc);
1730 }
1731
1732 static void
bwi_scan_end(struct ieee80211com * ic)1733 bwi_scan_end(struct ieee80211com *ic)
1734 {
1735 struct bwi_softc *sc = ic->ic_softc;
1736
1737 BWI_LOCK(sc);
1738 CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1739 BWI_UNLOCK(sc);
1740 }
1741
1742 static int
bwi_newstate(struct ieee80211vap * vap,enum ieee80211_state nstate,int arg)1743 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1744 {
1745 struct bwi_vap *bvp = BWI_VAP(vap);
1746 struct ieee80211com *ic= vap->iv_ic;
1747 struct bwi_softc *sc = ic->ic_softc;
1748 enum ieee80211_state ostate = vap->iv_state;
1749 struct bwi_mac *mac;
1750 int error;
1751
1752 BWI_LOCK(sc);
1753
1754 callout_stop(&sc->sc_calib_ch);
1755
1756 if (nstate == IEEE80211_S_INIT)
1757 sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1758
1759 bwi_led_newstate(sc, nstate);
1760
1761 error = bvp->bv_newstate(vap, nstate, arg);
1762 if (error != 0)
1763 goto back;
1764
1765 /*
1766 * Clear the BSSID when we stop a STA
1767 */
1768 if (vap->iv_opmode == IEEE80211_M_STA) {
1769 if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1770 /*
1771 * Clear out the BSSID. If we reassociate to
1772 * the same AP, this will reinialize things
1773 * correctly...
1774 */
1775 if (ic->ic_opmode == IEEE80211_M_STA &&
1776 !(sc->sc_flags & BWI_F_STOP))
1777 bwi_set_bssid(sc, bwi_zero_addr);
1778 }
1779 }
1780
1781 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1782 /* Nothing to do */
1783 } else if (nstate == IEEE80211_S_RUN) {
1784 bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1785
1786 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1787 ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1788 mac = (struct bwi_mac *)sc->sc_cur_regwin;
1789
1790 /* Initial TX power calibration */
1791 bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1792 #ifdef notyet
1793 sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1794 #else
1795 sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1796 #endif
1797
1798 callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1799 }
1800 back:
1801 BWI_UNLOCK(sc);
1802
1803 return error;
1804 }
1805
1806 static int
bwi_dma_alloc(struct bwi_softc * sc)1807 bwi_dma_alloc(struct bwi_softc *sc)
1808 {
1809 int error, i, has_txstats;
1810 bus_addr_t lowaddr = 0;
1811 bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1812 uint32_t txrx_ctrl_step = 0;
1813
1814 has_txstats = 0;
1815 for (i = 0; i < sc->sc_nmac; ++i) {
1816 if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1817 has_txstats = 1;
1818 break;
1819 }
1820 }
1821
1822 switch (sc->sc_bus_space) {
1823 case BWI_BUS_SPACE_30BIT:
1824 case BWI_BUS_SPACE_32BIT:
1825 if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1826 lowaddr = BWI_BUS_SPACE_MAXADDR;
1827 else
1828 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1829 desc_sz = sizeof(struct bwi_desc32);
1830 txrx_ctrl_step = 0x20;
1831
1832 sc->sc_init_tx_ring = bwi_init_tx_ring32;
1833 sc->sc_free_tx_ring = bwi_free_tx_ring32;
1834 sc->sc_init_rx_ring = bwi_init_rx_ring32;
1835 sc->sc_free_rx_ring = bwi_free_rx_ring32;
1836 sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1837 sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1838 sc->sc_rxeof = bwi_rxeof32;
1839 sc->sc_start_tx = bwi_start_tx32;
1840 if (has_txstats) {
1841 sc->sc_init_txstats = bwi_init_txstats32;
1842 sc->sc_free_txstats = bwi_free_txstats32;
1843 sc->sc_txeof_status = bwi_txeof_status32;
1844 }
1845 break;
1846
1847 case BWI_BUS_SPACE_64BIT:
1848 lowaddr = BUS_SPACE_MAXADDR; /* XXX */
1849 desc_sz = sizeof(struct bwi_desc64);
1850 txrx_ctrl_step = 0x40;
1851
1852 sc->sc_init_tx_ring = bwi_init_tx_ring64;
1853 sc->sc_free_tx_ring = bwi_free_tx_ring64;
1854 sc->sc_init_rx_ring = bwi_init_rx_ring64;
1855 sc->sc_free_rx_ring = bwi_free_rx_ring64;
1856 sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1857 sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1858 sc->sc_rxeof = bwi_rxeof64;
1859 sc->sc_start_tx = bwi_start_tx64;
1860 if (has_txstats) {
1861 sc->sc_init_txstats = bwi_init_txstats64;
1862 sc->sc_free_txstats = bwi_free_txstats64;
1863 sc->sc_txeof_status = bwi_txeof_status64;
1864 }
1865 break;
1866 }
1867
1868 KASSERT(lowaddr != 0, ("lowaddr zero"));
1869 KASSERT(desc_sz != 0, ("desc_sz zero"));
1870 KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1871
1872 tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1873 rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1874
1875 /*
1876 * Create top level DMA tag
1877 */
1878 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */
1879 BWI_ALIGN, 0, /* alignment, bounds */
1880 lowaddr, /* lowaddr */
1881 BUS_SPACE_MAXADDR, /* highaddr */
1882 NULL, NULL, /* filter, filterarg */
1883 BUS_SPACE_MAXSIZE, /* maxsize */
1884 BUS_SPACE_UNRESTRICTED, /* nsegments */
1885 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1886 0, /* flags */
1887 NULL, NULL, /* lockfunc, lockarg */
1888 &sc->sc_parent_dtag);
1889 if (error) {
1890 device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1891 return error;
1892 }
1893
1894 #define TXRX_CTRL(idx) (BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1895
1896 /*
1897 * Create TX ring DMA stuffs
1898 */
1899 error = bus_dma_tag_create(sc->sc_parent_dtag,
1900 BWI_RING_ALIGN, 0,
1901 BUS_SPACE_MAXADDR,
1902 BUS_SPACE_MAXADDR,
1903 NULL, NULL,
1904 tx_ring_sz,
1905 1,
1906 tx_ring_sz,
1907 0,
1908 NULL, NULL,
1909 &sc->sc_txring_dtag);
1910 if (error) {
1911 device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1912 return error;
1913 }
1914
1915 for (i = 0; i < BWI_TX_NRING; ++i) {
1916 error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1917 &sc->sc_tx_rdata[i], tx_ring_sz,
1918 TXRX_CTRL(i));
1919 if (error) {
1920 device_printf(sc->sc_dev, "%dth TX ring "
1921 "DMA alloc failed\n", i);
1922 return error;
1923 }
1924 }
1925
1926 /*
1927 * Create RX ring DMA stuffs
1928 */
1929 error = bus_dma_tag_create(sc->sc_parent_dtag,
1930 BWI_RING_ALIGN, 0,
1931 BUS_SPACE_MAXADDR,
1932 BUS_SPACE_MAXADDR,
1933 NULL, NULL,
1934 rx_ring_sz,
1935 1,
1936 rx_ring_sz,
1937 0,
1938 NULL, NULL,
1939 &sc->sc_rxring_dtag);
1940 if (error) {
1941 device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1942 return error;
1943 }
1944
1945 error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1946 rx_ring_sz, TXRX_CTRL(0));
1947 if (error) {
1948 device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1949 return error;
1950 }
1951
1952 if (has_txstats) {
1953 error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1954 if (error) {
1955 device_printf(sc->sc_dev,
1956 "TX stats DMA alloc failed\n");
1957 return error;
1958 }
1959 }
1960
1961 #undef TXRX_CTRL
1962
1963 return bwi_dma_mbuf_create(sc);
1964 }
1965
1966 static void
bwi_dma_free(struct bwi_softc * sc)1967 bwi_dma_free(struct bwi_softc *sc)
1968 {
1969 if (sc->sc_txring_dtag != NULL) {
1970 int i;
1971
1972 for (i = 0; i < BWI_TX_NRING; ++i) {
1973 struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1974
1975 if (rd->rdata_desc != NULL) {
1976 bus_dmamap_unload(sc->sc_txring_dtag,
1977 rd->rdata_dmap);
1978 bus_dmamem_free(sc->sc_txring_dtag,
1979 rd->rdata_desc,
1980 rd->rdata_dmap);
1981 }
1982 }
1983 bus_dma_tag_destroy(sc->sc_txring_dtag);
1984 }
1985
1986 if (sc->sc_rxring_dtag != NULL) {
1987 struct bwi_ring_data *rd = &sc->sc_rx_rdata;
1988
1989 if (rd->rdata_desc != NULL) {
1990 bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
1991 bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
1992 rd->rdata_dmap);
1993 }
1994 bus_dma_tag_destroy(sc->sc_rxring_dtag);
1995 }
1996
1997 bwi_dma_txstats_free(sc);
1998 bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
1999
2000 if (sc->sc_parent_dtag != NULL)
2001 bus_dma_tag_destroy(sc->sc_parent_dtag);
2002 }
2003
2004 static int
bwi_dma_ring_alloc(struct bwi_softc * sc,bus_dma_tag_t dtag,struct bwi_ring_data * rd,bus_size_t size,uint32_t txrx_ctrl)2005 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2006 struct bwi_ring_data *rd, bus_size_t size,
2007 uint32_t txrx_ctrl)
2008 {
2009 int error;
2010
2011 error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2012 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2013 &rd->rdata_dmap);
2014 if (error) {
2015 device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2016 return error;
2017 }
2018
2019 error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2020 bwi_dma_ring_addr, &rd->rdata_paddr,
2021 BUS_DMA_NOWAIT);
2022 if (error) {
2023 device_printf(sc->sc_dev, "can't load DMA mem\n");
2024 bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2025 rd->rdata_desc = NULL;
2026 return error;
2027 }
2028
2029 rd->rdata_txrx_ctrl = txrx_ctrl;
2030 return 0;
2031 }
2032
2033 static int
bwi_dma_txstats_alloc(struct bwi_softc * sc,uint32_t ctrl_base,bus_size_t desc_sz)2034 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2035 bus_size_t desc_sz)
2036 {
2037 struct bwi_txstats_data *st;
2038 bus_size_t dma_size;
2039 int error;
2040
2041 st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2042 if (st == NULL) {
2043 device_printf(sc->sc_dev, "can't allocate txstats data\n");
2044 return ENOMEM;
2045 }
2046 sc->sc_txstats = st;
2047
2048 /*
2049 * Create TX stats descriptor DMA stuffs
2050 */
2051 dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2052
2053 error = bus_dma_tag_create(sc->sc_parent_dtag,
2054 BWI_RING_ALIGN,
2055 0,
2056 BUS_SPACE_MAXADDR,
2057 BUS_SPACE_MAXADDR,
2058 NULL, NULL,
2059 dma_size,
2060 1,
2061 dma_size,
2062 0,
2063 NULL, NULL,
2064 &st->stats_ring_dtag);
2065 if (error) {
2066 device_printf(sc->sc_dev, "can't create txstats ring "
2067 "DMA tag\n");
2068 return error;
2069 }
2070
2071 error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2072 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2073 &st->stats_ring_dmap);
2074 if (error) {
2075 device_printf(sc->sc_dev, "can't allocate txstats ring "
2076 "DMA mem\n");
2077 bus_dma_tag_destroy(st->stats_ring_dtag);
2078 st->stats_ring_dtag = NULL;
2079 return error;
2080 }
2081
2082 error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2083 st->stats_ring, dma_size,
2084 bwi_dma_ring_addr, &st->stats_ring_paddr,
2085 BUS_DMA_NOWAIT);
2086 if (error) {
2087 device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2088 bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2089 st->stats_ring_dmap);
2090 bus_dma_tag_destroy(st->stats_ring_dtag);
2091 st->stats_ring_dtag = NULL;
2092 return error;
2093 }
2094
2095 /*
2096 * Create TX stats DMA stuffs
2097 */
2098 dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2099 BWI_ALIGN);
2100
2101 error = bus_dma_tag_create(sc->sc_parent_dtag,
2102 BWI_ALIGN,
2103 0,
2104 BUS_SPACE_MAXADDR,
2105 BUS_SPACE_MAXADDR,
2106 NULL, NULL,
2107 dma_size,
2108 1,
2109 dma_size,
2110 0,
2111 NULL, NULL,
2112 &st->stats_dtag);
2113 if (error) {
2114 device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2115 return error;
2116 }
2117
2118 error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2119 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2120 &st->stats_dmap);
2121 if (error) {
2122 device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2123 bus_dma_tag_destroy(st->stats_dtag);
2124 st->stats_dtag = NULL;
2125 return error;
2126 }
2127
2128 error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2129 dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2130 BUS_DMA_NOWAIT);
2131 if (error) {
2132 device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2133 bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2134 bus_dma_tag_destroy(st->stats_dtag);
2135 st->stats_dtag = NULL;
2136 return error;
2137 }
2138
2139 st->stats_ctrl_base = ctrl_base;
2140 return 0;
2141 }
2142
2143 static void
bwi_dma_txstats_free(struct bwi_softc * sc)2144 bwi_dma_txstats_free(struct bwi_softc *sc)
2145 {
2146 struct bwi_txstats_data *st;
2147
2148 if (sc->sc_txstats == NULL)
2149 return;
2150 st = sc->sc_txstats;
2151
2152 if (st->stats_ring_dtag != NULL) {
2153 bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2154 bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2155 st->stats_ring_dmap);
2156 bus_dma_tag_destroy(st->stats_ring_dtag);
2157 }
2158
2159 if (st->stats_dtag != NULL) {
2160 bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2161 bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2162 bus_dma_tag_destroy(st->stats_dtag);
2163 }
2164
2165 free(st, M_DEVBUF);
2166 }
2167
2168 static void
bwi_dma_ring_addr(void * arg,bus_dma_segment_t * seg,int nseg,int error)2169 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2170 {
2171 KASSERT(nseg == 1, ("too many segments\n"));
2172 *((bus_addr_t *)arg) = seg->ds_addr;
2173 }
2174
2175 static int
bwi_dma_mbuf_create(struct bwi_softc * sc)2176 bwi_dma_mbuf_create(struct bwi_softc *sc)
2177 {
2178 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2179 int i, j, k, ntx, error;
2180
2181 /*
2182 * Create TX/RX mbuf DMA tag
2183 */
2184 error = bus_dma_tag_create(sc->sc_parent_dtag,
2185 1,
2186 0,
2187 BUS_SPACE_MAXADDR,
2188 BUS_SPACE_MAXADDR,
2189 NULL, NULL,
2190 MCLBYTES,
2191 1,
2192 MCLBYTES,
2193 BUS_DMA_ALLOCNOW,
2194 NULL, NULL,
2195 &sc->sc_buf_dtag);
2196 if (error) {
2197 device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2198 return error;
2199 }
2200
2201 ntx = 0;
2202
2203 /*
2204 * Create TX mbuf DMA map
2205 */
2206 for (i = 0; i < BWI_TX_NRING; ++i) {
2207 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2208
2209 for (j = 0; j < BWI_TX_NDESC; ++j) {
2210 error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2211 &tbd->tbd_buf[j].tb_dmap);
2212 if (error) {
2213 device_printf(sc->sc_dev, "can't create "
2214 "%dth tbd, %dth DMA map\n", i, j);
2215
2216 ntx = i;
2217 for (k = 0; k < j; ++k) {
2218 bus_dmamap_destroy(sc->sc_buf_dtag,
2219 tbd->tbd_buf[k].tb_dmap);
2220 }
2221 goto fail;
2222 }
2223 }
2224 }
2225 ntx = BWI_TX_NRING;
2226
2227 /*
2228 * Create RX mbuf DMA map and a spare DMA map
2229 */
2230 error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2231 &rbd->rbd_tmp_dmap);
2232 if (error) {
2233 device_printf(sc->sc_dev,
2234 "can't create spare RX buf DMA map\n");
2235 goto fail;
2236 }
2237
2238 for (j = 0; j < BWI_RX_NDESC; ++j) {
2239 error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2240 &rbd->rbd_buf[j].rb_dmap);
2241 if (error) {
2242 device_printf(sc->sc_dev, "can't create %dth "
2243 "RX buf DMA map\n", j);
2244
2245 for (k = 0; k < j; ++k) {
2246 bus_dmamap_destroy(sc->sc_buf_dtag,
2247 rbd->rbd_buf[j].rb_dmap);
2248 }
2249 bus_dmamap_destroy(sc->sc_buf_dtag,
2250 rbd->rbd_tmp_dmap);
2251 goto fail;
2252 }
2253 }
2254
2255 return 0;
2256 fail:
2257 bwi_dma_mbuf_destroy(sc, ntx, 0);
2258 return error;
2259 }
2260
2261 static void
bwi_dma_mbuf_destroy(struct bwi_softc * sc,int ntx,int nrx)2262 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2263 {
2264 int i, j;
2265
2266 if (sc->sc_buf_dtag == NULL)
2267 return;
2268
2269 for (i = 0; i < ntx; ++i) {
2270 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2271
2272 for (j = 0; j < BWI_TX_NDESC; ++j) {
2273 struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2274
2275 if (tb->tb_mbuf != NULL) {
2276 bus_dmamap_unload(sc->sc_buf_dtag,
2277 tb->tb_dmap);
2278 m_freem(tb->tb_mbuf);
2279 }
2280 if (tb->tb_ni != NULL)
2281 ieee80211_free_node(tb->tb_ni);
2282 bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2283 }
2284 }
2285
2286 if (nrx) {
2287 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2288
2289 bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2290 for (j = 0; j < BWI_RX_NDESC; ++j) {
2291 struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2292
2293 if (rb->rb_mbuf != NULL) {
2294 bus_dmamap_unload(sc->sc_buf_dtag,
2295 rb->rb_dmap);
2296 m_freem(rb->rb_mbuf);
2297 }
2298 bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2299 }
2300 }
2301
2302 bus_dma_tag_destroy(sc->sc_buf_dtag);
2303 sc->sc_buf_dtag = NULL;
2304 }
2305
2306 static void
bwi_enable_intrs(struct bwi_softc * sc,uint32_t enable_intrs)2307 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2308 {
2309 CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2310 }
2311
2312 static void
bwi_disable_intrs(struct bwi_softc * sc,uint32_t disable_intrs)2313 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2314 {
2315 CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2316 }
2317
2318 static int
bwi_init_tx_ring32(struct bwi_softc * sc,int ring_idx)2319 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2320 {
2321 struct bwi_ring_data *rd;
2322 struct bwi_txbuf_data *tbd;
2323 uint32_t val, addr_hi, addr_lo;
2324
2325 KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2326 rd = &sc->sc_tx_rdata[ring_idx];
2327 tbd = &sc->sc_tx_bdata[ring_idx];
2328
2329 tbd->tbd_idx = 0;
2330 tbd->tbd_used = 0;
2331
2332 bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2333 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2334 BUS_DMASYNC_PREWRITE);
2335
2336 addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2337 addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2338
2339 val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2340 __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2341 BWI_TXRX32_RINGINFO_FUNC_MASK);
2342 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2343
2344 val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2345 BWI_TXRX32_CTRL_ENABLE;
2346 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2347
2348 return 0;
2349 }
2350
2351 static void
bwi_init_rxdesc_ring32(struct bwi_softc * sc,uint32_t ctrl_base,bus_addr_t paddr,int hdr_size,int ndesc)2352 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2353 bus_addr_t paddr, int hdr_size, int ndesc)
2354 {
2355 uint32_t val, addr_hi, addr_lo;
2356
2357 addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2358 addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2359
2360 val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2361 __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2362 BWI_TXRX32_RINGINFO_FUNC_MASK);
2363 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2364
2365 val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2366 __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2367 BWI_TXRX32_CTRL_ENABLE;
2368 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2369
2370 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2371 (ndesc - 1) * sizeof(struct bwi_desc32));
2372 }
2373
2374 static int
bwi_init_rx_ring32(struct bwi_softc * sc)2375 bwi_init_rx_ring32(struct bwi_softc *sc)
2376 {
2377 struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2378 int i, error;
2379
2380 sc->sc_rx_bdata.rbd_idx = 0;
2381
2382 for (i = 0; i < BWI_RX_NDESC; ++i) {
2383 error = bwi_newbuf(sc, i, 1);
2384 if (error) {
2385 device_printf(sc->sc_dev,
2386 "can't allocate %dth RX buffer\n", i);
2387 return error;
2388 }
2389 }
2390 bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2391 BUS_DMASYNC_PREWRITE);
2392
2393 bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2394 sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2395 return 0;
2396 }
2397
2398 static int
bwi_init_txstats32(struct bwi_softc * sc)2399 bwi_init_txstats32(struct bwi_softc *sc)
2400 {
2401 struct bwi_txstats_data *st = sc->sc_txstats;
2402 bus_addr_t stats_paddr;
2403 int i;
2404
2405 bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2406 bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2407
2408 st->stats_idx = 0;
2409
2410 stats_paddr = st->stats_paddr;
2411 for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2412 bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2413 stats_paddr, sizeof(struct bwi_txstats), 0);
2414 stats_paddr += sizeof(struct bwi_txstats);
2415 }
2416 bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2417 BUS_DMASYNC_PREWRITE);
2418
2419 bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2420 st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2421 return 0;
2422 }
2423
2424 static void
bwi_setup_rx_desc32(struct bwi_softc * sc,int buf_idx,bus_addr_t paddr,int buf_len)2425 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2426 int buf_len)
2427 {
2428 struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2429
2430 KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2431 bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2432 paddr, buf_len, 0);
2433 }
2434
2435 static void
bwi_setup_tx_desc32(struct bwi_softc * sc,struct bwi_ring_data * rd,int buf_idx,bus_addr_t paddr,int buf_len)2436 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2437 int buf_idx, bus_addr_t paddr, int buf_len)
2438 {
2439 KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2440 bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2441 paddr, buf_len, 1);
2442 }
2443
2444 static int
bwi_init_tx_ring64(struct bwi_softc * sc,int ring_idx)2445 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2446 {
2447 /* TODO:64 */
2448 return EOPNOTSUPP;
2449 }
2450
2451 static int
bwi_init_rx_ring64(struct bwi_softc * sc)2452 bwi_init_rx_ring64(struct bwi_softc *sc)
2453 {
2454 /* TODO:64 */
2455 return EOPNOTSUPP;
2456 }
2457
2458 static int
bwi_init_txstats64(struct bwi_softc * sc)2459 bwi_init_txstats64(struct bwi_softc *sc)
2460 {
2461 /* TODO:64 */
2462 return EOPNOTSUPP;
2463 }
2464
2465 static void
bwi_setup_rx_desc64(struct bwi_softc * sc,int buf_idx,bus_addr_t paddr,int buf_len)2466 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2467 int buf_len)
2468 {
2469 /* TODO:64 */
2470 }
2471
2472 static void
bwi_setup_tx_desc64(struct bwi_softc * sc,struct bwi_ring_data * rd,int buf_idx,bus_addr_t paddr,int buf_len)2473 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2474 int buf_idx, bus_addr_t paddr, int buf_len)
2475 {
2476 /* TODO:64 */
2477 }
2478
2479 static void
bwi_dma_buf_addr(void * arg,bus_dma_segment_t * seg,int nseg,bus_size_t mapsz __unused,int error)2480 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2481 bus_size_t mapsz __unused, int error)
2482 {
2483 if (!error) {
2484 KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2485 *((bus_addr_t *)arg) = seg->ds_addr;
2486 }
2487 }
2488
2489 static int
bwi_newbuf(struct bwi_softc * sc,int buf_idx,int init)2490 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2491 {
2492 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2493 struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2494 struct bwi_rxbuf_hdr *hdr;
2495 bus_dmamap_t map;
2496 bus_addr_t paddr;
2497 struct mbuf *m;
2498 int error;
2499
2500 KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2501
2502 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2503 if (m == NULL) {
2504 error = ENOBUFS;
2505
2506 /*
2507 * If the NIC is up and running, we need to:
2508 * - Clear RX buffer's header.
2509 * - Restore RX descriptor settings.
2510 */
2511 if (init)
2512 return error;
2513 else
2514 goto back;
2515 }
2516 m->m_len = m->m_pkthdr.len = MCLBYTES;
2517
2518 /*
2519 * Try to load RX buf into temporary DMA map
2520 */
2521 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2522 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2523 if (error) {
2524 m_freem(m);
2525
2526 /*
2527 * See the comment above
2528 */
2529 if (init)
2530 return error;
2531 else
2532 goto back;
2533 }
2534
2535 if (!init)
2536 bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2537 rxbuf->rb_mbuf = m;
2538 rxbuf->rb_paddr = paddr;
2539
2540 /*
2541 * Swap RX buf's DMA map with the loaded temporary one
2542 */
2543 map = rxbuf->rb_dmap;
2544 rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2545 rbd->rbd_tmp_dmap = map;
2546
2547 back:
2548 /*
2549 * Clear RX buf header
2550 */
2551 hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2552 bzero(hdr, sizeof(*hdr));
2553 bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2554
2555 /*
2556 * Setup RX buf descriptor
2557 */
2558 sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2559 rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2560 return error;
2561 }
2562
2563 static void
bwi_set_addr_filter(struct bwi_softc * sc,uint16_t addr_ofs,const uint8_t * addr)2564 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2565 const uint8_t *addr)
2566 {
2567 int i;
2568
2569 CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2570 BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2571
2572 for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2573 uint16_t addr_val;
2574
2575 addr_val = (uint16_t)addr[i * 2] |
2576 (((uint16_t)addr[(i * 2) + 1]) << 8);
2577 CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2578 }
2579 }
2580
2581 static int
bwi_rxeof(struct bwi_softc * sc,int end_idx)2582 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2583 {
2584 struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2585 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2586 struct ieee80211com *ic = &sc->sc_ic;
2587 int idx, rx_data = 0;
2588
2589 idx = rbd->rbd_idx;
2590 while (idx != end_idx) {
2591 struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2592 struct bwi_rxbuf_hdr *hdr;
2593 struct ieee80211_frame_min *wh;
2594 struct ieee80211_node *ni;
2595 struct mbuf *m;
2596 uint32_t plcp;
2597 uint16_t flags2;
2598 int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2599
2600 m = rb->rb_mbuf;
2601 bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2602 BUS_DMASYNC_POSTREAD);
2603
2604 if (bwi_newbuf(sc, idx, 0)) {
2605 counter_u64_add(ic->ic_ierrors, 1);
2606 goto next;
2607 }
2608
2609 hdr = mtod(m, struct bwi_rxbuf_hdr *);
2610 flags2 = le16toh(hdr->rxh_flags2);
2611
2612 hdr_extra = 0;
2613 if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2614 hdr_extra = 2;
2615 wh_ofs = hdr_extra + 6; /* XXX magic number */
2616
2617 buflen = le16toh(hdr->rxh_buflen);
2618 if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2619 device_printf(sc->sc_dev,
2620 "%s: zero length data, hdr_extra %d\n",
2621 __func__, hdr_extra);
2622 counter_u64_add(ic->ic_ierrors, 1);
2623 m_freem(m);
2624 goto next;
2625 }
2626
2627 bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2628 rssi = bwi_calc_rssi(sc, hdr);
2629 noise = bwi_calc_noise(sc);
2630
2631 m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2632 m_adj(m, sizeof(*hdr) + wh_ofs);
2633
2634 if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2635 rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2636 else
2637 rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2638
2639 /* RX radio tap */
2640 if (ieee80211_radiotap_active(ic))
2641 bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2642
2643 m_adj(m, -IEEE80211_CRC_LEN);
2644
2645 BWI_UNLOCK(sc);
2646
2647 wh = mtod(m, struct ieee80211_frame_min *);
2648 ni = ieee80211_find_rxnode(ic, wh);
2649 if (ni != NULL) {
2650 type = ieee80211_input(ni, m, rssi - noise, noise);
2651 ieee80211_free_node(ni);
2652 } else
2653 type = ieee80211_input_all(ic, m, rssi - noise, noise);
2654 if (type == IEEE80211_FC0_TYPE_DATA) {
2655 rx_data = 1;
2656 sc->sc_rx_rate = rate;
2657 }
2658
2659 BWI_LOCK(sc);
2660 next:
2661 idx = (idx + 1) % BWI_RX_NDESC;
2662
2663 if (sc->sc_flags & BWI_F_STOP) {
2664 /*
2665 * Take the fast lane, don't do
2666 * any damage to softc
2667 */
2668 return -1;
2669 }
2670 }
2671
2672 rbd->rbd_idx = idx;
2673 bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2674 BUS_DMASYNC_PREWRITE);
2675
2676 return rx_data;
2677 }
2678
2679 static int
bwi_rxeof32(struct bwi_softc * sc)2680 bwi_rxeof32(struct bwi_softc *sc)
2681 {
2682 uint32_t val, rx_ctrl;
2683 int end_idx, rx_data;
2684
2685 rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2686
2687 val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2688 end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2689 sizeof(struct bwi_desc32);
2690
2691 rx_data = bwi_rxeof(sc, end_idx);
2692 if (rx_data >= 0) {
2693 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2694 end_idx * sizeof(struct bwi_desc32));
2695 }
2696 return rx_data;
2697 }
2698
2699 static int
bwi_rxeof64(struct bwi_softc * sc)2700 bwi_rxeof64(struct bwi_softc *sc)
2701 {
2702 /* TODO:64 */
2703 return 0;
2704 }
2705
2706 static void
bwi_reset_rx_ring32(struct bwi_softc * sc,uint32_t rx_ctrl)2707 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2708 {
2709 int i;
2710
2711 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2712
2713 #define NRETRY 10
2714
2715 for (i = 0; i < NRETRY; ++i) {
2716 uint32_t status;
2717
2718 status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2719 if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2720 BWI_RX32_STATUS_STATE_DISABLED)
2721 break;
2722
2723 DELAY(1000);
2724 }
2725 if (i == NRETRY)
2726 device_printf(sc->sc_dev, "reset rx ring timedout\n");
2727
2728 #undef NRETRY
2729
2730 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2731 }
2732
2733 static void
bwi_free_txstats32(struct bwi_softc * sc)2734 bwi_free_txstats32(struct bwi_softc *sc)
2735 {
2736 bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2737 }
2738
2739 static void
bwi_free_rx_ring32(struct bwi_softc * sc)2740 bwi_free_rx_ring32(struct bwi_softc *sc)
2741 {
2742 struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2743 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2744 int i;
2745
2746 bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2747
2748 for (i = 0; i < BWI_RX_NDESC; ++i) {
2749 struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2750
2751 if (rb->rb_mbuf != NULL) {
2752 bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2753 m_freem(rb->rb_mbuf);
2754 rb->rb_mbuf = NULL;
2755 }
2756 }
2757 }
2758
2759 static void
bwi_free_tx_ring32(struct bwi_softc * sc,int ring_idx)2760 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2761 {
2762 struct bwi_ring_data *rd;
2763 struct bwi_txbuf_data *tbd;
2764 uint32_t state, val;
2765 int i;
2766
2767 KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2768 rd = &sc->sc_tx_rdata[ring_idx];
2769 tbd = &sc->sc_tx_bdata[ring_idx];
2770
2771 #define NRETRY 10
2772
2773 for (i = 0; i < NRETRY; ++i) {
2774 val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2775 state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2776 if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2777 state == BWI_TX32_STATUS_STATE_IDLE ||
2778 state == BWI_TX32_STATUS_STATE_STOPPED)
2779 break;
2780
2781 DELAY(1000);
2782 }
2783 if (i == NRETRY) {
2784 device_printf(sc->sc_dev,
2785 "%s: wait for TX ring(%d) stable timed out\n",
2786 __func__, ring_idx);
2787 }
2788
2789 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2790 for (i = 0; i < NRETRY; ++i) {
2791 val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2792 state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2793 if (state == BWI_TX32_STATUS_STATE_DISABLED)
2794 break;
2795
2796 DELAY(1000);
2797 }
2798 if (i == NRETRY)
2799 device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2800 __func__, ring_idx);
2801
2802 #undef NRETRY
2803
2804 DELAY(1000);
2805
2806 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2807
2808 for (i = 0; i < BWI_TX_NDESC; ++i) {
2809 struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2810
2811 if (tb->tb_mbuf != NULL) {
2812 bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2813 m_freem(tb->tb_mbuf);
2814 tb->tb_mbuf = NULL;
2815 }
2816 if (tb->tb_ni != NULL) {
2817 ieee80211_free_node(tb->tb_ni);
2818 tb->tb_ni = NULL;
2819 }
2820 }
2821 }
2822
2823 static void
bwi_free_txstats64(struct bwi_softc * sc)2824 bwi_free_txstats64(struct bwi_softc *sc)
2825 {
2826 /* TODO:64 */
2827 }
2828
2829 static void
bwi_free_rx_ring64(struct bwi_softc * sc)2830 bwi_free_rx_ring64(struct bwi_softc *sc)
2831 {
2832 /* TODO:64 */
2833 }
2834
2835 static void
bwi_free_tx_ring64(struct bwi_softc * sc,int ring_idx)2836 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2837 {
2838 /* TODO:64 */
2839 }
2840
2841 /* XXX does not belong here */
2842 #define IEEE80211_OFDM_PLCP_RATE_MASK __BITS(3, 0)
2843 #define IEEE80211_OFDM_PLCP_LEN_MASK __BITS(16, 5)
2844
2845 static __inline void
bwi_ofdm_plcp_header(uint32_t * plcp0,int pkt_len,uint8_t rate)2846 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2847 {
2848 uint32_t plcp;
2849
2850 plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2851 IEEE80211_OFDM_PLCP_RATE_MASK) |
2852 __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2853 *plcp0 = htole32(plcp);
2854 }
2855
2856 static __inline void
bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr * plcp,int pkt_len,uint8_t rate)2857 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2858 uint8_t rate)
2859 {
2860 int len, service, pkt_bitlen;
2861
2862 pkt_bitlen = pkt_len * NBBY;
2863 len = howmany(pkt_bitlen * 2, rate);
2864
2865 service = IEEE80211_PLCP_SERVICE_LOCKED;
2866 if (rate == (11 * 2)) {
2867 int pkt_bitlen1;
2868
2869 /*
2870 * PLCP service field needs to be adjusted,
2871 * if TX rate is 11Mbytes/s
2872 */
2873 pkt_bitlen1 = len * 11;
2874 if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2875 service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2876 }
2877
2878 plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2879 plcp->i_service = service;
2880 plcp->i_length = htole16(len);
2881 /* NOTE: do NOT touch i_crc */
2882 }
2883
2884 static __inline void
bwi_plcp_header(const struct ieee80211_rate_table * rt,void * plcp,int pkt_len,uint8_t rate)2885 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2886 void *plcp, int pkt_len, uint8_t rate)
2887 {
2888 enum ieee80211_phytype modtype;
2889
2890 /*
2891 * Assume caller has zeroed 'plcp'
2892 */
2893 modtype = ieee80211_rate2phytype(rt, rate);
2894 if (modtype == IEEE80211_T_OFDM)
2895 bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2896 else if (modtype == IEEE80211_T_DS)
2897 bwi_ds_plcp_header(plcp, pkt_len, rate);
2898 else
2899 panic("unsupport modulation type %u\n", modtype);
2900 }
2901
2902 static int
bwi_encap(struct bwi_softc * sc,int idx,struct mbuf * m,struct ieee80211_node * ni)2903 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2904 struct ieee80211_node *ni)
2905 {
2906 struct ieee80211vap *vap = ni->ni_vap;
2907 struct ieee80211com *ic = &sc->sc_ic;
2908 struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2909 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2910 struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2911 struct bwi_mac *mac;
2912 struct bwi_txbuf_hdr *hdr;
2913 struct ieee80211_frame *wh;
2914 const struct ieee80211_txparam *tp = ni->ni_txparms;
2915 uint8_t rate, rate_fb;
2916 uint32_t mac_ctrl;
2917 uint16_t phy_ctrl;
2918 bus_addr_t paddr;
2919 int type, ismcast, pkt_len, error;
2920 #if 0
2921 const uint8_t *p;
2922 int i;
2923 #endif
2924
2925 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2926 ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2927 mac = (struct bwi_mac *)sc->sc_cur_regwin;
2928
2929 wh = mtod(m, struct ieee80211_frame *);
2930 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2931 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2932
2933 /* Get 802.11 frame len before prepending TX header */
2934 pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2935
2936 /*
2937 * Find TX rate
2938 */
2939 if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2940 rate = rate_fb = tp->mgmtrate;
2941 } else if (ismcast) {
2942 rate = rate_fb = tp->mcastrate;
2943 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2944 rate = rate_fb = tp->ucastrate;
2945 } else {
2946 ieee80211_ratectl_rate(ni, NULL, pkt_len);
2947 rate = ieee80211_node_get_txrate_dot11rate(ni);
2948 /* TODO: assign rate_fb the previous rate, if available */
2949 rate_fb = rate;
2950 }
2951 tb->tb_rate[0] = rate;
2952 tb->tb_rate[1] = rate_fb;
2953 sc->sc_tx_rate = rate;
2954
2955 /*
2956 * TX radio tap
2957 */
2958 if (ieee80211_radiotap_active_vap(vap)) {
2959 sc->sc_tx_th.wt_flags = 0;
2960 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2961 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2962 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2963 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2964 rate != (1 * 2)) {
2965 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2966 }
2967 sc->sc_tx_th.wt_rate = rate;
2968
2969 ieee80211_radiotap_tx(vap, m);
2970 }
2971
2972 /*
2973 * Setup the embedded TX header
2974 */
2975 M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
2976 if (m == NULL) {
2977 device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
2978 __func__);
2979 return ENOBUFS;
2980 }
2981 hdr = mtod(m, struct bwi_txbuf_hdr *);
2982
2983 bzero(hdr, sizeof(*hdr));
2984
2985 bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
2986 bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
2987
2988 if (!ismcast) {
2989 uint16_t dur;
2990
2991 dur = ieee80211_ack_duration(sc->sc_rates, rate,
2992 ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
2993
2994 hdr->txh_fb_duration = htole16(dur);
2995 }
2996
2997 hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
2998 __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
2999
3000 bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3001 bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3002
3003 phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3004 BWI_TXH_PHY_C_ANTMODE_MASK);
3005 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3006 phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3007 else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3008 phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3009
3010 mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3011 if (!ismcast)
3012 mac_ctrl |= BWI_TXH_MAC_C_ACK;
3013 if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3014 mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3015
3016 hdr->txh_mac_ctrl = htole32(mac_ctrl);
3017 hdr->txh_phy_ctrl = htole16(phy_ctrl);
3018
3019 /* Catch any further usage */
3020 hdr = NULL;
3021 wh = NULL;
3022
3023 /* DMA load */
3024 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3025 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3026 if (error && error != EFBIG) {
3027 device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3028 __func__, error);
3029 goto back;
3030 }
3031
3032 if (error) { /* error == EFBIG */
3033 struct mbuf *m_new;
3034
3035 m_new = m_defrag(m, M_NOWAIT);
3036 if (m_new == NULL) {
3037 device_printf(sc->sc_dev,
3038 "%s: can't defrag TX buffer\n", __func__);
3039 error = ENOBUFS;
3040 goto back;
3041 } else {
3042 m = m_new;
3043 }
3044
3045 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3046 bwi_dma_buf_addr, &paddr,
3047 BUS_DMA_NOWAIT);
3048 if (error) {
3049 device_printf(sc->sc_dev,
3050 "%s: can't load TX buffer (2) %d\n",
3051 __func__, error);
3052 goto back;
3053 }
3054 }
3055 error = 0;
3056
3057 bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3058
3059 tb->tb_mbuf = m;
3060 tb->tb_ni = ni;
3061
3062 #if 0
3063 p = mtod(m, const uint8_t *);
3064 for (i = 0; i < m->m_pkthdr.len; ++i) {
3065 if (i != 0 && i % 8 == 0)
3066 printf("\n");
3067 printf("%02x ", p[i]);
3068 }
3069 printf("\n");
3070 #endif
3071 DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3072 idx, pkt_len, m->m_pkthdr.len);
3073
3074 /* Setup TX descriptor */
3075 sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3076 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3077 BUS_DMASYNC_PREWRITE);
3078
3079 /* Kick start */
3080 sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3081
3082 back:
3083 if (error)
3084 m_freem(m);
3085 return error;
3086 }
3087
3088 static int
bwi_encap_raw(struct bwi_softc * sc,int idx,struct mbuf * m,struct ieee80211_node * ni,const struct ieee80211_bpf_params * params)3089 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3090 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3091 {
3092 struct ieee80211vap *vap = ni->ni_vap;
3093 struct ieee80211com *ic = ni->ni_ic;
3094 struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3095 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3096 struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3097 struct bwi_mac *mac;
3098 struct bwi_txbuf_hdr *hdr;
3099 struct ieee80211_frame *wh;
3100 uint8_t rate, rate_fb;
3101 uint32_t mac_ctrl;
3102 uint16_t phy_ctrl;
3103 bus_addr_t paddr;
3104 int ismcast, pkt_len, error;
3105
3106 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3107 ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3108 mac = (struct bwi_mac *)sc->sc_cur_regwin;
3109
3110 wh = mtod(m, struct ieee80211_frame *);
3111 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3112
3113 /* Get 802.11 frame len before prepending TX header */
3114 pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3115
3116 /*
3117 * Find TX rate
3118 */
3119 rate = params->ibp_rate0;
3120 if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3121 /* XXX fall back to mcast/mgmt rate? */
3122 m_freem(m);
3123 return EINVAL;
3124 }
3125 if (params->ibp_try1 != 0) {
3126 rate_fb = params->ibp_rate1;
3127 if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3128 /* XXX fall back to rate0? */
3129 m_freem(m);
3130 return EINVAL;
3131 }
3132 } else
3133 rate_fb = rate;
3134 tb->tb_rate[0] = rate;
3135 tb->tb_rate[1] = rate_fb;
3136 sc->sc_tx_rate = rate;
3137
3138 /*
3139 * TX radio tap
3140 */
3141 if (ieee80211_radiotap_active_vap(vap)) {
3142 sc->sc_tx_th.wt_flags = 0;
3143 /* XXX IEEE80211_BPF_CRYPTO */
3144 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3145 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3146 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3147 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3148 sc->sc_tx_th.wt_rate = rate;
3149
3150 ieee80211_radiotap_tx(vap, m);
3151 }
3152
3153 /*
3154 * Setup the embedded TX header
3155 */
3156 M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3157 if (m == NULL) {
3158 device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3159 __func__);
3160 return ENOBUFS;
3161 }
3162 hdr = mtod(m, struct bwi_txbuf_hdr *);
3163
3164 bzero(hdr, sizeof(*hdr));
3165
3166 bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3167 bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3168
3169 mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3170 if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3171 uint16_t dur;
3172
3173 dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3174
3175 hdr->txh_fb_duration = htole16(dur);
3176 mac_ctrl |= BWI_TXH_MAC_C_ACK;
3177 }
3178
3179 hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3180 __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3181
3182 bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3183 bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3184
3185 phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3186 BWI_TXH_PHY_C_ANTMODE_MASK);
3187 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3188 phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3189 mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3190 } else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3191 phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3192
3193 hdr->txh_mac_ctrl = htole32(mac_ctrl);
3194 hdr->txh_phy_ctrl = htole16(phy_ctrl);
3195
3196 /* Catch any further usage */
3197 hdr = NULL;
3198 wh = NULL;
3199
3200 /* DMA load */
3201 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3202 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3203 if (error != 0) {
3204 struct mbuf *m_new;
3205
3206 if (error != EFBIG) {
3207 device_printf(sc->sc_dev,
3208 "%s: can't load TX buffer (1) %d\n",
3209 __func__, error);
3210 goto back;
3211 }
3212 m_new = m_defrag(m, M_NOWAIT);
3213 if (m_new == NULL) {
3214 device_printf(sc->sc_dev,
3215 "%s: can't defrag TX buffer\n", __func__);
3216 error = ENOBUFS;
3217 goto back;
3218 }
3219 m = m_new;
3220 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3221 bwi_dma_buf_addr, &paddr,
3222 BUS_DMA_NOWAIT);
3223 if (error) {
3224 device_printf(sc->sc_dev,
3225 "%s: can't load TX buffer (2) %d\n",
3226 __func__, error);
3227 goto back;
3228 }
3229 }
3230
3231 bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3232
3233 tb->tb_mbuf = m;
3234 tb->tb_ni = ni;
3235
3236 DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3237 idx, pkt_len, m->m_pkthdr.len);
3238
3239 /* Setup TX descriptor */
3240 sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3241 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3242 BUS_DMASYNC_PREWRITE);
3243
3244 /* Kick start */
3245 sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3246 back:
3247 if (error)
3248 m_freem(m);
3249 return error;
3250 }
3251
3252 static void
bwi_start_tx32(struct bwi_softc * sc,uint32_t tx_ctrl,int idx)3253 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3254 {
3255 idx = (idx + 1) % BWI_TX_NDESC;
3256 CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3257 idx * sizeof(struct bwi_desc32));
3258 }
3259
3260 static void
bwi_start_tx64(struct bwi_softc * sc,uint32_t tx_ctrl,int idx)3261 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3262 {
3263 /* TODO:64 */
3264 }
3265
3266 static void
bwi_txeof_status32(struct bwi_softc * sc)3267 bwi_txeof_status32(struct bwi_softc *sc)
3268 {
3269 uint32_t val, ctrl_base;
3270 int end_idx;
3271
3272 ctrl_base = sc->sc_txstats->stats_ctrl_base;
3273
3274 val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3275 end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3276 sizeof(struct bwi_desc32);
3277
3278 bwi_txeof_status(sc, end_idx);
3279
3280 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3281 end_idx * sizeof(struct bwi_desc32));
3282
3283 bwi_start_locked(sc);
3284 }
3285
3286 static void
bwi_txeof_status64(struct bwi_softc * sc)3287 bwi_txeof_status64(struct bwi_softc *sc)
3288 {
3289 /* TODO:64 */
3290 }
3291
3292 static void
_bwi_txeof(struct bwi_softc * sc,uint16_t tx_id,int acked,int data_txcnt)3293 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3294 {
3295 struct bwi_txbuf_data *tbd;
3296 struct bwi_txbuf *tb;
3297 int ring_idx, buf_idx;
3298 struct ieee80211_node *ni;
3299
3300 if (tx_id == 0) {
3301 device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3302 return;
3303 }
3304
3305 ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3306 buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3307
3308 KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3309 KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3310
3311 tbd = &sc->sc_tx_bdata[ring_idx];
3312 KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3313 tbd->tbd_used--;
3314
3315 tb = &tbd->tbd_buf[buf_idx];
3316 DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3317 "acked %d, data_txcnt %d, ni %p\n",
3318 buf_idx, acked, data_txcnt, tb->tb_ni);
3319
3320 bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3321
3322 if ((ni = tb->tb_ni) != NULL) {
3323 const struct bwi_txbuf_hdr *hdr =
3324 mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3325 struct ieee80211_ratectl_tx_status txs;
3326
3327 /* NB: update rate control only for unicast frames */
3328 if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3329 /*
3330 * Feed back 'acked and data_txcnt'. Note that the
3331 * generic AMRR code only understands one tx rate
3332 * and the estimator doesn't handle real retry counts
3333 * well so to avoid over-aggressive downshifting we
3334 * treat any number of retries as "1".
3335 */
3336 txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY;
3337 txs.long_retries = acked;
3338 if (data_txcnt > 1)
3339 txs.status = IEEE80211_RATECTL_TX_SUCCESS;
3340 else {
3341 txs.status =
3342 IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3343 }
3344 ieee80211_ratectl_tx_complete(ni, &txs);
3345 }
3346 ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3347 tb->tb_ni = NULL;
3348 } else
3349 m_freem(tb->tb_mbuf);
3350 tb->tb_mbuf = NULL;
3351
3352 if (tbd->tbd_used == 0)
3353 sc->sc_tx_timer = 0;
3354 }
3355
3356 static void
bwi_txeof_status(struct bwi_softc * sc,int end_idx)3357 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3358 {
3359 struct bwi_txstats_data *st = sc->sc_txstats;
3360 int idx;
3361
3362 bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3363
3364 idx = st->stats_idx;
3365 while (idx != end_idx) {
3366 const struct bwi_txstats *stats = &st->stats[idx];
3367
3368 if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3369 int data_txcnt;
3370
3371 data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3372 BWI_TXS_TXCNT_DATA);
3373 _bwi_txeof(sc, le16toh(stats->txs_id),
3374 stats->txs_flags & BWI_TXS_F_ACKED,
3375 data_txcnt);
3376 }
3377 idx = (idx + 1) % BWI_TXSTATS_NDESC;
3378 }
3379 st->stats_idx = idx;
3380 }
3381
3382 static void
bwi_txeof(struct bwi_softc * sc)3383 bwi_txeof(struct bwi_softc *sc)
3384 {
3385
3386 for (;;) {
3387 uint32_t tx_status0, tx_status1 __unused;
3388 uint16_t tx_id;
3389 int data_txcnt;
3390
3391 tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3392 if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3393 break;
3394 tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3395
3396 tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3397 data_txcnt = __SHIFTOUT(tx_status0,
3398 BWI_TXSTATUS0_DATA_TXCNT_MASK);
3399
3400 if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3401 continue;
3402
3403 _bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3404 data_txcnt);
3405 }
3406
3407 bwi_start_locked(sc);
3408 }
3409
3410 static int
bwi_bbp_power_on(struct bwi_softc * sc,enum bwi_clock_mode clk_mode)3411 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3412 {
3413 bwi_power_on(sc, 1);
3414 return bwi_set_clock_mode(sc, clk_mode);
3415 }
3416
3417 static void
bwi_bbp_power_off(struct bwi_softc * sc)3418 bwi_bbp_power_off(struct bwi_softc *sc)
3419 {
3420 bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3421 bwi_power_off(sc, 1);
3422 }
3423
3424 static int
bwi_get_pwron_delay(struct bwi_softc * sc)3425 bwi_get_pwron_delay(struct bwi_softc *sc)
3426 {
3427 struct bwi_regwin *com, *old;
3428 struct bwi_clock_freq freq;
3429 uint32_t val;
3430 int error;
3431
3432 com = &sc->sc_com_regwin;
3433 KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3434
3435 if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3436 return 0;
3437
3438 error = bwi_regwin_switch(sc, com, &old);
3439 if (error)
3440 return error;
3441
3442 bwi_get_clock_freq(sc, &freq);
3443
3444 val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3445 sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3446 DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3447
3448 return bwi_regwin_switch(sc, old, NULL);
3449 }
3450
3451 static int
bwi_bus_attach(struct bwi_softc * sc)3452 bwi_bus_attach(struct bwi_softc *sc)
3453 {
3454 struct bwi_regwin *bus, *old;
3455 int error;
3456
3457 bus = &sc->sc_bus_regwin;
3458
3459 error = bwi_regwin_switch(sc, bus, &old);
3460 if (error)
3461 return error;
3462
3463 if (!bwi_regwin_is_enabled(sc, bus))
3464 bwi_regwin_enable(sc, bus, 0);
3465
3466 /* Disable interripts */
3467 CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3468
3469 return bwi_regwin_switch(sc, old, NULL);
3470 }
3471
3472 static const char *
bwi_regwin_name(const struct bwi_regwin * rw)3473 bwi_regwin_name(const struct bwi_regwin *rw)
3474 {
3475 switch (rw->rw_type) {
3476 case BWI_REGWIN_T_COM:
3477 return "COM";
3478 case BWI_REGWIN_T_BUSPCI:
3479 return "PCI";
3480 case BWI_REGWIN_T_MAC:
3481 return "MAC";
3482 case BWI_REGWIN_T_BUSPCIE:
3483 return "PCIE";
3484 }
3485 panic("unknown regwin type 0x%04x\n", rw->rw_type);
3486 return NULL;
3487 }
3488
3489 static uint32_t
bwi_regwin_disable_bits(struct bwi_softc * sc)3490 bwi_regwin_disable_bits(struct bwi_softc *sc)
3491 {
3492 uint32_t busrev;
3493
3494 /* XXX cache this */
3495 busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3496 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3497 "bus rev %u\n", busrev);
3498
3499 if (busrev == BWI_BUSREV_0)
3500 return BWI_STATE_LO_DISABLE1;
3501 else if (busrev == BWI_BUSREV_1)
3502 return BWI_STATE_LO_DISABLE2;
3503 else
3504 return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3505 }
3506
3507 int
bwi_regwin_is_enabled(struct bwi_softc * sc,struct bwi_regwin * rw)3508 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3509 {
3510 uint32_t val, disable_bits;
3511
3512 disable_bits = bwi_regwin_disable_bits(sc);
3513 val = CSR_READ_4(sc, BWI_STATE_LO);
3514
3515 if ((val & (BWI_STATE_LO_CLOCK |
3516 BWI_STATE_LO_RESET |
3517 disable_bits)) == BWI_STATE_LO_CLOCK) {
3518 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3519 bwi_regwin_name(rw));
3520 return 1;
3521 } else {
3522 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3523 bwi_regwin_name(rw));
3524 return 0;
3525 }
3526 }
3527
3528 void
bwi_regwin_disable(struct bwi_softc * sc,struct bwi_regwin * rw,uint32_t flags)3529 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3530 {
3531 uint32_t state_lo, disable_bits;
3532 int i;
3533
3534 state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3535
3536 /*
3537 * If current regwin is in 'reset' state, it was already disabled.
3538 */
3539 if (state_lo & BWI_STATE_LO_RESET) {
3540 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3541 "%s was already disabled\n", bwi_regwin_name(rw));
3542 return;
3543 }
3544
3545 disable_bits = bwi_regwin_disable_bits(sc);
3546
3547 /*
3548 * Disable normal clock
3549 */
3550 state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3551 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3552
3553 /*
3554 * Wait until normal clock is disabled
3555 */
3556 #define NRETRY 1000
3557 for (i = 0; i < NRETRY; ++i) {
3558 state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3559 if (state_lo & disable_bits)
3560 break;
3561 DELAY(10);
3562 }
3563 if (i == NRETRY) {
3564 device_printf(sc->sc_dev, "%s disable clock timeout\n",
3565 bwi_regwin_name(rw));
3566 }
3567
3568 for (i = 0; i < NRETRY; ++i) {
3569 uint32_t state_hi;
3570
3571 state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3572 if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3573 break;
3574 DELAY(10);
3575 }
3576 if (i == NRETRY) {
3577 device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3578 bwi_regwin_name(rw));
3579 }
3580 #undef NRETRY
3581
3582 /*
3583 * Reset and disable regwin with gated clock
3584 */
3585 state_lo = BWI_STATE_LO_RESET | disable_bits |
3586 BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3587 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3588 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3589
3590 /* Flush pending bus write */
3591 CSR_READ_4(sc, BWI_STATE_LO);
3592 DELAY(1);
3593
3594 /* Reset and disable regwin */
3595 state_lo = BWI_STATE_LO_RESET | disable_bits |
3596 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3597 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3598
3599 /* Flush pending bus write */
3600 CSR_READ_4(sc, BWI_STATE_LO);
3601 DELAY(1);
3602 }
3603
3604 void
bwi_regwin_enable(struct bwi_softc * sc,struct bwi_regwin * rw,uint32_t flags)3605 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3606 {
3607 uint32_t state_lo, state_hi, imstate;
3608
3609 bwi_regwin_disable(sc, rw, flags);
3610
3611 /* Reset regwin with gated clock */
3612 state_lo = BWI_STATE_LO_RESET |
3613 BWI_STATE_LO_CLOCK |
3614 BWI_STATE_LO_GATED_CLOCK |
3615 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3616 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3617
3618 /* Flush pending bus write */
3619 CSR_READ_4(sc, BWI_STATE_LO);
3620 DELAY(1);
3621
3622 state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3623 if (state_hi & BWI_STATE_HI_SERROR)
3624 CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3625
3626 imstate = CSR_READ_4(sc, BWI_IMSTATE);
3627 if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3628 imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3629 CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3630 }
3631
3632 /* Enable regwin with gated clock */
3633 state_lo = BWI_STATE_LO_CLOCK |
3634 BWI_STATE_LO_GATED_CLOCK |
3635 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3636 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3637
3638 /* Flush pending bus write */
3639 CSR_READ_4(sc, BWI_STATE_LO);
3640 DELAY(1);
3641
3642 /* Enable regwin with normal clock */
3643 state_lo = BWI_STATE_LO_CLOCK |
3644 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3645 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3646
3647 /* Flush pending bus write */
3648 CSR_READ_4(sc, BWI_STATE_LO);
3649 DELAY(1);
3650 }
3651
3652 static void
bwi_set_bssid(struct bwi_softc * sc,const uint8_t * bssid)3653 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3654 {
3655 struct bwi_mac *mac;
3656 struct bwi_myaddr_bssid buf;
3657 const uint8_t *p;
3658 uint32_t val;
3659 int n, i;
3660
3661 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3662 ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3663 mac = (struct bwi_mac *)sc->sc_cur_regwin;
3664
3665 bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3666
3667 bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3668 bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3669
3670 n = sizeof(buf) / sizeof(val);
3671 p = (const uint8_t *)&buf;
3672 for (i = 0; i < n; ++i) {
3673 int j;
3674
3675 val = 0;
3676 for (j = 0; j < sizeof(val); ++j)
3677 val |= ((uint32_t)(*p++)) << (j * 8);
3678
3679 TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3680 }
3681 }
3682
3683 static void
bwi_updateslot(struct ieee80211com * ic)3684 bwi_updateslot(struct ieee80211com *ic)
3685 {
3686 struct bwi_softc *sc = ic->ic_softc;
3687 struct bwi_mac *mac;
3688
3689 BWI_LOCK(sc);
3690 if (sc->sc_flags & BWI_F_RUNNING) {
3691 DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3692
3693 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3694 ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3695 mac = (struct bwi_mac *)sc->sc_cur_regwin;
3696
3697 bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3698 }
3699 BWI_UNLOCK(sc);
3700 }
3701
3702 static void
bwi_calibrate(void * xsc)3703 bwi_calibrate(void *xsc)
3704 {
3705 struct bwi_softc *sc = xsc;
3706 struct bwi_mac *mac;
3707
3708 BWI_ASSERT_LOCKED(sc);
3709
3710 KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3711 ("opmode %d", sc->sc_ic.ic_opmode));
3712
3713 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3714 ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3715 mac = (struct bwi_mac *)sc->sc_cur_regwin;
3716
3717 bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3718 sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3719
3720 /* XXX 15 seconds */
3721 callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3722 }
3723
3724 static int
bwi_calc_rssi(struct bwi_softc * sc,const struct bwi_rxbuf_hdr * hdr)3725 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3726 {
3727 struct bwi_mac *mac;
3728
3729 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3730 ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3731 mac = (struct bwi_mac *)sc->sc_cur_regwin;
3732
3733 return bwi_rf_calc_rssi(mac, hdr);
3734 }
3735
3736 static int
bwi_calc_noise(struct bwi_softc * sc)3737 bwi_calc_noise(struct bwi_softc *sc)
3738 {
3739 struct bwi_mac *mac;
3740
3741 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3742 ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3743 mac = (struct bwi_mac *)sc->sc_cur_regwin;
3744
3745 return bwi_rf_calc_noise(mac);
3746 }
3747
3748 static __inline uint8_t
bwi_plcp2rate(const uint32_t plcp0,enum ieee80211_phytype type)3749 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3750 {
3751 uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3752 return (ieee80211_plcp2rate(plcp, type));
3753 }
3754
3755 static void
bwi_rx_radiotap(struct bwi_softc * sc,struct mbuf * m,struct bwi_rxbuf_hdr * hdr,const void * plcp,int rate,int rssi,int noise)3756 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3757 struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3758 {
3759 const struct ieee80211_frame_min *wh;
3760
3761 sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3762 if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3763 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3764
3765 wh = mtod(m, const struct ieee80211_frame_min *);
3766 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3767 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3768
3769 sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */
3770 sc->sc_rx_th.wr_rate = rate;
3771 sc->sc_rx_th.wr_antsignal = rssi;
3772 sc->sc_rx_th.wr_antnoise = noise;
3773 }
3774
3775 static void
bwi_led_attach(struct bwi_softc * sc)3776 bwi_led_attach(struct bwi_softc *sc)
3777 {
3778 const uint8_t *led_act = NULL;
3779 uint16_t gpio, val[BWI_LED_MAX];
3780 int i;
3781
3782 for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
3783 if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3784 led_act = bwi_vendor_led_act[i].led_act;
3785 break;
3786 }
3787 }
3788 if (led_act == NULL)
3789 led_act = bwi_default_led_act;
3790
3791 gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3792 val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3793 val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3794
3795 gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3796 val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3797 val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3798
3799 for (i = 0; i < BWI_LED_MAX; ++i) {
3800 struct bwi_led *led = &sc->sc_leds[i];
3801
3802 if (val[i] == 0xff) {
3803 led->l_act = led_act[i];
3804 } else {
3805 if (val[i] & BWI_LED_ACT_LOW)
3806 led->l_flags |= BWI_LED_F_ACTLOW;
3807 led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3808 }
3809 led->l_mask = (1 << i);
3810
3811 if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3812 led->l_act == BWI_LED_ACT_BLINK_POLL ||
3813 led->l_act == BWI_LED_ACT_BLINK) {
3814 led->l_flags |= BWI_LED_F_BLINK;
3815 if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3816 led->l_flags |= BWI_LED_F_POLLABLE;
3817 else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3818 led->l_flags |= BWI_LED_F_SLOW;
3819
3820 if (sc->sc_blink_led == NULL) {
3821 sc->sc_blink_led = led;
3822 if (led->l_flags & BWI_LED_F_SLOW)
3823 BWI_LED_SLOWDOWN(sc->sc_led_idle);
3824 }
3825 }
3826
3827 DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3828 "%dth led, act %d, lowact %d\n", i,
3829 led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3830 }
3831 callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3832 }
3833
3834 static __inline uint16_t
bwi_led_onoff(const struct bwi_led * led,uint16_t val,int on)3835 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3836 {
3837 if (led->l_flags & BWI_LED_F_ACTLOW)
3838 on = !on;
3839 if (on)
3840 val |= led->l_mask;
3841 else
3842 val &= ~led->l_mask;
3843 return val;
3844 }
3845
3846 static void
bwi_led_newstate(struct bwi_softc * sc,enum ieee80211_state nstate)3847 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3848 {
3849 struct ieee80211com *ic = &sc->sc_ic;
3850 uint16_t val;
3851 int i;
3852
3853 if (nstate == IEEE80211_S_INIT) {
3854 callout_stop(&sc->sc_led_blink_ch);
3855 sc->sc_led_blinking = 0;
3856 }
3857
3858 if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3859 return;
3860
3861 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3862 for (i = 0; i < BWI_LED_MAX; ++i) {
3863 struct bwi_led *led = &sc->sc_leds[i];
3864 int on;
3865
3866 if (led->l_act == BWI_LED_ACT_UNKN ||
3867 led->l_act == BWI_LED_ACT_NULL)
3868 continue;
3869
3870 if ((led->l_flags & BWI_LED_F_BLINK) &&
3871 nstate != IEEE80211_S_INIT)
3872 continue;
3873
3874 switch (led->l_act) {
3875 case BWI_LED_ACT_ON: /* Always on */
3876 on = 1;
3877 break;
3878 case BWI_LED_ACT_OFF: /* Always off */
3879 case BWI_LED_ACT_5GHZ: /* TODO: 11A */
3880 on = 0;
3881 break;
3882 default:
3883 on = 1;
3884 switch (nstate) {
3885 case IEEE80211_S_INIT:
3886 on = 0;
3887 break;
3888 case IEEE80211_S_RUN:
3889 if (led->l_act == BWI_LED_ACT_11G &&
3890 ic->ic_curmode != IEEE80211_MODE_11G)
3891 on = 0;
3892 break;
3893 default:
3894 if (led->l_act == BWI_LED_ACT_ASSOC)
3895 on = 0;
3896 break;
3897 }
3898 break;
3899 }
3900
3901 val = bwi_led_onoff(led, val, on);
3902 }
3903 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3904 }
3905 static void
bwi_led_event(struct bwi_softc * sc,int event)3906 bwi_led_event(struct bwi_softc *sc, int event)
3907 {
3908 struct bwi_led *led = sc->sc_blink_led;
3909 int rate;
3910
3911 if (event == BWI_LED_EVENT_POLL) {
3912 if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3913 return;
3914 if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3915 return;
3916 }
3917
3918 sc->sc_led_ticks = ticks;
3919 if (sc->sc_led_blinking)
3920 return;
3921
3922 switch (event) {
3923 case BWI_LED_EVENT_RX:
3924 rate = sc->sc_rx_rate;
3925 break;
3926 case BWI_LED_EVENT_TX:
3927 rate = sc->sc_tx_rate;
3928 break;
3929 case BWI_LED_EVENT_POLL:
3930 rate = 0;
3931 break;
3932 default:
3933 panic("unknown LED event %d\n", event);
3934 break;
3935 }
3936 bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3937 bwi_led_duration[rate].off_dur);
3938 }
3939
3940 static void
bwi_led_blink_start(struct bwi_softc * sc,int on_dur,int off_dur)3941 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3942 {
3943 struct bwi_led *led = sc->sc_blink_led;
3944 uint16_t val;
3945
3946 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3947 val = bwi_led_onoff(led, val, 1);
3948 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3949
3950 if (led->l_flags & BWI_LED_F_SLOW) {
3951 BWI_LED_SLOWDOWN(on_dur);
3952 BWI_LED_SLOWDOWN(off_dur);
3953 }
3954
3955 sc->sc_led_blinking = 1;
3956 sc->sc_led_blink_offdur = off_dur;
3957
3958 callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3959 }
3960
3961 static void
bwi_led_blink_next(void * xsc)3962 bwi_led_blink_next(void *xsc)
3963 {
3964 struct bwi_softc *sc = xsc;
3965 uint16_t val;
3966
3967 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3968 val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3969 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3970
3971 callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
3972 bwi_led_blink_end, sc);
3973 }
3974
3975 static void
bwi_led_blink_end(void * xsc)3976 bwi_led_blink_end(void *xsc)
3977 {
3978 struct bwi_softc *sc = xsc;
3979 sc->sc_led_blinking = 0;
3980 }
3981
3982 static void
bwi_restart(void * xsc,int pending)3983 bwi_restart(void *xsc, int pending)
3984 {
3985 struct bwi_softc *sc = xsc;
3986
3987 device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
3988 BWI_LOCK(sc);
3989 bwi_init_statechg(sc, 0);
3990 #if 0
3991 bwi_start_locked(sc);
3992 #endif
3993 BWI_UNLOCK(sc);
3994 }
3995