1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997,1998,2003 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_bus.h"
31 #include "opt_ddb.h"
32 #include "opt_iommu.h"
33
34 #include <sys/param.h>
35 #include <sys/conf.h>
36 #include <sys/domainset.h>
37 #include <sys/eventhandler.h>
38 #include <sys/jail.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/limits.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/priv.h>
46 #include <machine/bus.h>
47 #include <sys/random.h>
48 #include <sys/refcount.h>
49 #include <sys/rman.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/stdarg.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56 #include <sys/bus.h>
57 #include <sys/cpuset.h>
58 #ifdef INTRNG
59 #include <sys/intr.h>
60 #endif
61
62 #include <net/vnet.h>
63
64 #include <machine/cpu.h>
65
66 #include <vm/uma.h>
67 #include <vm/vm.h>
68
69 #include <dev/iommu/iommu.h>
70
71 #include <ddb/ddb.h>
72
73 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
74 NULL);
75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
76 NULL);
77
78 static bool disable_failed_devs = false;
79 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs,
80 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time");
81
82 /*
83 * Used to attach drivers to devclasses.
84 */
85 typedef struct driverlink *driverlink_t;
86 struct driverlink {
87 kobj_class_t driver;
88 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */
89 int pass;
90 int flags;
91 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */
92 TAILQ_ENTRY(driverlink) passlink;
93 };
94
95 /*
96 * Forward declarations
97 */
98 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
99 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
100 typedef TAILQ_HEAD(device_list, _device) device_list_t;
101
102 struct devclass {
103 TAILQ_ENTRY(devclass) link;
104 devclass_t parent; /* parent in devclass hierarchy */
105 driver_list_t drivers; /* bus devclasses store drivers for bus */
106 char *name;
107 device_t *devices; /* array of devices indexed by unit */
108 int maxunit; /* size of devices array */
109 int flags;
110 #define DC_HAS_CHILDREN 1
111
112 struct sysctl_ctx_list sysctl_ctx;
113 struct sysctl_oid *sysctl_tree;
114 };
115
116 struct device_prop_elm {
117 const char *name;
118 void *val;
119 void *dtr_ctx;
120 device_prop_dtr_t dtr;
121 LIST_ENTRY(device_prop_elm) link;
122 };
123
124 TASKQUEUE_DEFINE_THREAD(bus);
125
126 static void device_destroy_props(device_t dev);
127
128 /**
129 * @brief Implementation of _device.
130 *
131 * The structure is named "_device" instead of "device" to avoid type confusion
132 * caused by other subsystems defining a (struct device).
133 */
134 struct _device {
135 /*
136 * A device is a kernel object. The first field must be the
137 * current ops table for the object.
138 */
139 KOBJ_FIELDS;
140
141 /*
142 * Device hierarchy.
143 */
144 TAILQ_ENTRY(_device) link; /**< list of devices in parent */
145 TAILQ_ENTRY(_device) devlink; /**< global device list membership */
146 device_t parent; /**< parent of this device */
147 device_list_t children; /**< list of child devices */
148
149 /*
150 * Details of this device.
151 */
152 driver_t *driver; /**< current driver */
153 devclass_t devclass; /**< current device class */
154 int unit; /**< current unit number */
155 char* nameunit; /**< name+unit e.g. foodev0 */
156 char* desc; /**< driver specific description */
157 u_int busy; /**< count of calls to device_busy() */
158 device_state_t state; /**< current device state */
159 uint32_t devflags; /**< api level flags for device_get_flags() */
160 u_int flags; /**< internal device flags */
161 u_int order; /**< order from device_add_child_ordered() */
162 void *ivars; /**< instance variables */
163 void *softc; /**< current driver's variables */
164 LIST_HEAD(, device_prop_elm) props;
165
166 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */
167 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
168 };
169
170 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
171 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
172
173 EVENTHANDLER_LIST_DEFINE(device_attach);
174 EVENTHANDLER_LIST_DEFINE(device_detach);
175 EVENTHANDLER_LIST_DEFINE(device_nomatch);
176 EVENTHANDLER_LIST_DEFINE(dev_lookup);
177
178 static void devctl2_init(void);
179 static bool device_frozen;
180
181 #define DRIVERNAME(d) ((d)? d->name : "no driver")
182 #define DEVCLANAME(d) ((d)? d->name : "no devclass")
183
184 #ifdef BUS_DEBUG
185
186 static int bus_debug = 1;
187 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
188 "Bus debug level");
189 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
190 #define DEVICENAME(d) ((d)? device_get_name(d): "no device")
191
192 /**
193 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
194 * prevent syslog from deleting initial spaces
195 */
196 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0)
197
198 static void print_device_short(device_t dev, int indent);
199 static void print_device(device_t dev, int indent);
200 void print_device_tree_short(device_t dev, int indent);
201 void print_device_tree(device_t dev, int indent);
202 static void print_driver_short(driver_t *driver, int indent);
203 static void print_driver(driver_t *driver, int indent);
204 static void print_driver_list(driver_list_t drivers, int indent);
205 static void print_devclass_short(devclass_t dc, int indent);
206 static void print_devclass(devclass_t dc, int indent);
207 void print_devclass_list_short(void);
208 void print_devclass_list(void);
209
210 #else
211 /* Make the compiler ignore the function calls */
212 #define PDEBUG(a) /* nop */
213 #define DEVICENAME(d) /* nop */
214
215 #define print_device_short(d,i) /* nop */
216 #define print_device(d,i) /* nop */
217 #define print_device_tree_short(d,i) /* nop */
218 #define print_device_tree(d,i) /* nop */
219 #define print_driver_short(d,i) /* nop */
220 #define print_driver(d,i) /* nop */
221 #define print_driver_list(d,i) /* nop */
222 #define print_devclass_short(d,i) /* nop */
223 #define print_devclass(d,i) /* nop */
224 #define print_devclass_list_short() /* nop */
225 #define print_devclass_list() /* nop */
226 #endif
227
228 /*
229 * dev sysctl tree
230 */
231
232 enum {
233 DEVCLASS_SYSCTL_PARENT,
234 };
235
236 static int
devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)237 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
238 {
239 devclass_t dc = (devclass_t)arg1;
240 const char *value;
241
242 switch (arg2) {
243 case DEVCLASS_SYSCTL_PARENT:
244 value = dc->parent ? dc->parent->name : "";
245 break;
246 default:
247 return (EINVAL);
248 }
249 return (SYSCTL_OUT_STR(req, value));
250 }
251
252 static void
devclass_sysctl_init(devclass_t dc)253 devclass_sysctl_init(devclass_t dc)
254 {
255 if (dc->sysctl_tree != NULL)
256 return;
257 sysctl_ctx_init(&dc->sysctl_ctx);
258 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
259 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
260 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
261 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
262 OID_AUTO, "%parent",
263 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
264 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
265 "parent class");
266 }
267
268 enum {
269 DEVICE_SYSCTL_DESC,
270 DEVICE_SYSCTL_DRIVER,
271 DEVICE_SYSCTL_LOCATION,
272 DEVICE_SYSCTL_PNPINFO,
273 DEVICE_SYSCTL_PARENT,
274 DEVICE_SYSCTL_IOMMU,
275 };
276
277 static int
device_sysctl_handler(SYSCTL_HANDLER_ARGS)278 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
279 {
280 struct sbuf sb;
281 device_t dev = (device_t)arg1;
282 device_t iommu;
283 #ifdef IOMMU
284 device_t requester;
285 #endif
286 int error;
287 uint16_t rid;
288 const char *c;
289
290 sbuf_new_for_sysctl(&sb, NULL, 1024, req);
291 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
292 bus_topo_lock();
293 switch (arg2) {
294 case DEVICE_SYSCTL_DESC:
295 sbuf_cat(&sb, dev->desc ? dev->desc : "");
296 break;
297 case DEVICE_SYSCTL_DRIVER:
298 sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
299 break;
300 case DEVICE_SYSCTL_LOCATION:
301 bus_child_location(dev, &sb);
302 break;
303 case DEVICE_SYSCTL_PNPINFO:
304 bus_child_pnpinfo(dev, &sb);
305 break;
306 case DEVICE_SYSCTL_PARENT:
307 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
308 break;
309 case DEVICE_SYSCTL_IOMMU:
310 iommu = NULL;
311 error = device_get_prop(dev, DEV_PROP_NAME_IOMMU,
312 (void **)&iommu);
313 c = "";
314 if (error == 0 && iommu != NULL) {
315 sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu));
316 c = " ";
317 }
318 rid = 0;
319 #ifdef IOMMU
320 error = iommu_get_requester(dev, &requester, &rid);
321 /*
322 * Do not return requester error from sysctl, iommu
323 * unit might be assigned by other means.
324 */
325 #else
326 error = ENXIO;
327 #endif
328 if (error == 0)
329 sbuf_printf(&sb, "%srid=%#x", c, rid);
330 break;
331 default:
332 error = EINVAL;
333 goto out;
334 }
335 error = sbuf_finish(&sb);
336 out:
337 bus_topo_unlock();
338 sbuf_delete(&sb);
339 return (error);
340 }
341
342 static void
device_sysctl_init(device_t dev)343 device_sysctl_init(device_t dev)
344 {
345 devclass_t dc = dev->devclass;
346 int domain;
347
348 if (dev->sysctl_tree != NULL)
349 return;
350 devclass_sysctl_init(dc);
351 sysctl_ctx_init(&dev->sysctl_ctx);
352 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
353 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
354 dev->nameunit + strlen(dc->name),
355 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
356 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
357 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
358 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
359 "device description");
360 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
361 OID_AUTO, "%driver",
362 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
363 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
364 "device driver name");
365 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
366 OID_AUTO, "%location",
367 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
368 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
369 "device location relative to parent");
370 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
371 OID_AUTO, "%pnpinfo",
372 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
373 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
374 "device identification");
375 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
376 OID_AUTO, "%parent",
377 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
378 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
379 "parent device");
380 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
381 OID_AUTO, "%iommu",
382 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
383 dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A",
384 "iommu unit handling the device requests");
385 if (bus_get_domain(dev, &domain) == 0)
386 SYSCTL_ADD_INT(&dev->sysctl_ctx,
387 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
388 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
389 }
390
391 static void
device_sysctl_update(device_t dev)392 device_sysctl_update(device_t dev)
393 {
394 devclass_t dc = dev->devclass;
395
396 if (dev->sysctl_tree == NULL)
397 return;
398 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
399 }
400
401 static void
device_sysctl_fini(device_t dev)402 device_sysctl_fini(device_t dev)
403 {
404 if (dev->sysctl_tree == NULL)
405 return;
406 sysctl_ctx_free(&dev->sysctl_ctx);
407 dev->sysctl_tree = NULL;
408 }
409
410 static struct device_list bus_data_devices;
411 static int bus_data_generation = 1;
412
413 static kobj_method_t null_methods[] = {
414 KOBJMETHOD_END
415 };
416
417 DEFINE_CLASS(null, null_methods, 0);
418
419 void
bus_topo_assert(void)420 bus_topo_assert(void)
421 {
422
423 GIANT_REQUIRED;
424 }
425
426 struct mtx *
bus_topo_mtx(void)427 bus_topo_mtx(void)
428 {
429
430 return (&Giant);
431 }
432
433 void
bus_topo_lock(void)434 bus_topo_lock(void)
435 {
436
437 mtx_lock(bus_topo_mtx());
438 }
439
440 void
bus_topo_unlock(void)441 bus_topo_unlock(void)
442 {
443
444 mtx_unlock(bus_topo_mtx());
445 }
446
447 /*
448 * Bus pass implementation
449 */
450
451 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
452 static int bus_current_pass = BUS_PASS_ROOT;
453
454 /**
455 * @internal
456 * @brief Register the pass level of a new driver attachment
457 *
458 * Register a new driver attachment's pass level. If no driver
459 * attachment with the same pass level has been added, then @p new
460 * will be added to the global passes list.
461 *
462 * @param new the new driver attachment
463 */
464 static void
driver_register_pass(struct driverlink * new)465 driver_register_pass(struct driverlink *new)
466 {
467 struct driverlink *dl;
468
469 /* We only consider pass numbers during boot. */
470 if (bus_current_pass == BUS_PASS_DEFAULT)
471 return;
472
473 /*
474 * Walk the passes list. If we already know about this pass
475 * then there is nothing to do. If we don't, then insert this
476 * driver link into the list.
477 */
478 TAILQ_FOREACH(dl, &passes, passlink) {
479 if (dl->pass < new->pass)
480 continue;
481 if (dl->pass == new->pass)
482 return;
483 TAILQ_INSERT_BEFORE(dl, new, passlink);
484 return;
485 }
486 TAILQ_INSERT_TAIL(&passes, new, passlink);
487 }
488
489 /**
490 * @brief Retrieve the current bus pass
491 *
492 * Retrieves the current bus pass level. Call the BUS_NEW_PASS()
493 * method on the root bus to kick off a new device tree scan for each
494 * new pass level that has at least one driver.
495 */
496 int
bus_get_pass(void)497 bus_get_pass(void)
498 {
499
500 return (bus_current_pass);
501 }
502
503 /**
504 * @brief Raise the current bus pass
505 *
506 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS()
507 * method on the root bus to kick off a new device tree scan for each
508 * new pass level that has at least one driver.
509 */
510 static void
bus_set_pass(int pass)511 bus_set_pass(int pass)
512 {
513 struct driverlink *dl;
514
515 if (bus_current_pass > pass)
516 panic("Attempt to lower bus pass level");
517
518 TAILQ_FOREACH(dl, &passes, passlink) {
519 /* Skip pass values below the current pass level. */
520 if (dl->pass <= bus_current_pass)
521 continue;
522
523 /*
524 * Bail once we hit a driver with a pass level that is
525 * too high.
526 */
527 if (dl->pass > pass)
528 break;
529
530 /*
531 * Raise the pass level to the next level and rescan
532 * the tree.
533 */
534 bus_current_pass = dl->pass;
535 BUS_NEW_PASS(root_bus);
536 }
537
538 /*
539 * If there isn't a driver registered for the requested pass,
540 * then bus_current_pass might still be less than 'pass'. Set
541 * it to 'pass' in that case.
542 */
543 if (bus_current_pass < pass)
544 bus_current_pass = pass;
545 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
546 }
547
548 /*
549 * Devclass implementation
550 */
551
552 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
553
554 /**
555 * @internal
556 * @brief Find or create a device class
557 *
558 * If a device class with the name @p classname exists, return it,
559 * otherwise if @p create is non-zero create and return a new device
560 * class.
561 *
562 * If @p parentname is non-NULL, the parent of the devclass is set to
563 * the devclass of that name.
564 *
565 * @param classname the devclass name to find or create
566 * @param parentname the parent devclass name or @c NULL
567 * @param create non-zero to create a devclass
568 */
569 static devclass_t
devclass_find_internal(const char * classname,const char * parentname,int create)570 devclass_find_internal(const char *classname, const char *parentname,
571 int create)
572 {
573 devclass_t dc;
574
575 PDEBUG(("looking for %s", classname));
576 if (!classname)
577 return (NULL);
578
579 TAILQ_FOREACH(dc, &devclasses, link) {
580 if (!strcmp(dc->name, classname))
581 break;
582 }
583
584 if (create && !dc) {
585 PDEBUG(("creating %s", classname));
586 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
587 M_BUS, M_WAITOK | M_ZERO);
588 dc->parent = NULL;
589 dc->name = (char*) (dc + 1);
590 strcpy(dc->name, classname);
591 TAILQ_INIT(&dc->drivers);
592 TAILQ_INSERT_TAIL(&devclasses, dc, link);
593
594 bus_data_generation_update();
595 }
596
597 /*
598 * If a parent class is specified, then set that as our parent so
599 * that this devclass will support drivers for the parent class as
600 * well. If the parent class has the same name don't do this though
601 * as it creates a cycle that can trigger an infinite loop in
602 * device_probe_child() if a device exists for which there is no
603 * suitable driver.
604 */
605 if (parentname && dc && !dc->parent &&
606 strcmp(classname, parentname) != 0) {
607 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
608 dc->parent->flags |= DC_HAS_CHILDREN;
609 }
610
611 return (dc);
612 }
613
614 /**
615 * @brief Create a device class
616 *
617 * If a device class with the name @p classname exists, return it,
618 * otherwise create and return a new device class.
619 *
620 * @param classname the devclass name to find or create
621 */
622 devclass_t
devclass_create(const char * classname)623 devclass_create(const char *classname)
624 {
625 return (devclass_find_internal(classname, NULL, TRUE));
626 }
627
628 /**
629 * @brief Find a device class
630 *
631 * If a device class with the name @p classname exists, return it,
632 * otherwise return @c NULL.
633 *
634 * @param classname the devclass name to find
635 */
636 devclass_t
devclass_find(const char * classname)637 devclass_find(const char *classname)
638 {
639 return (devclass_find_internal(classname, NULL, FALSE));
640 }
641
642 /**
643 * @brief Register that a device driver has been added to a devclass
644 *
645 * Register that a device driver has been added to a devclass. This
646 * is called by devclass_add_driver to accomplish the recursive
647 * notification of all the children classes of dc, as well as dc.
648 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
649 * the devclass.
650 *
651 * We do a full search here of the devclass list at each iteration
652 * level to save storing children-lists in the devclass structure. If
653 * we ever move beyond a few dozen devices doing this, we may need to
654 * reevaluate...
655 *
656 * @param dc the devclass to edit
657 * @param driver the driver that was just added
658 */
659 static void
devclass_driver_added(devclass_t dc,driver_t * driver)660 devclass_driver_added(devclass_t dc, driver_t *driver)
661 {
662 devclass_t parent;
663 int i;
664
665 /*
666 * Call BUS_DRIVER_ADDED for any existing buses in this class.
667 */
668 for (i = 0; i < dc->maxunit; i++)
669 if (dc->devices[i] && device_is_attached(dc->devices[i]))
670 BUS_DRIVER_ADDED(dc->devices[i], driver);
671
672 /*
673 * Walk through the children classes. Since we only keep a
674 * single parent pointer around, we walk the entire list of
675 * devclasses looking for children. We set the
676 * DC_HAS_CHILDREN flag when a child devclass is created on
677 * the parent, so we only walk the list for those devclasses
678 * that have children.
679 */
680 if (!(dc->flags & DC_HAS_CHILDREN))
681 return;
682 parent = dc;
683 TAILQ_FOREACH(dc, &devclasses, link) {
684 if (dc->parent == parent)
685 devclass_driver_added(dc, driver);
686 }
687 }
688
689 static void
device_handle_nomatch(device_t dev)690 device_handle_nomatch(device_t dev)
691 {
692 BUS_PROBE_NOMATCH(dev->parent, dev);
693 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
694 dev->flags |= DF_DONENOMATCH;
695 }
696
697 /**
698 * @brief Add a device driver to a device class
699 *
700 * Add a device driver to a devclass. This is normally called
701 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
702 * all devices in the devclass will be called to allow them to attempt
703 * to re-probe any unmatched children.
704 *
705 * @param dc the devclass to edit
706 * @param driver the driver to register
707 */
708 int
devclass_add_driver(devclass_t dc,driver_t * driver,int pass,devclass_t * dcp)709 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
710 {
711 driverlink_t dl;
712 devclass_t child_dc;
713 const char *parentname;
714
715 PDEBUG(("%s", DRIVERNAME(driver)));
716
717 /* Don't allow invalid pass values. */
718 if (pass <= BUS_PASS_ROOT)
719 return (EINVAL);
720
721 dl = malloc(sizeof *dl, M_BUS, M_WAITOK|M_ZERO);
722
723 /*
724 * Compile the driver's methods. Also increase the reference count
725 * so that the class doesn't get freed when the last instance
726 * goes. This means we can safely use static methods and avoids a
727 * double-free in devclass_delete_driver.
728 */
729 kobj_class_compile((kobj_class_t) driver);
730
731 /*
732 * If the driver has any base classes, make the
733 * devclass inherit from the devclass of the driver's
734 * first base class. This will allow the system to
735 * search for drivers in both devclasses for children
736 * of a device using this driver.
737 */
738 if (driver->baseclasses)
739 parentname = driver->baseclasses[0]->name;
740 else
741 parentname = NULL;
742 child_dc = devclass_find_internal(driver->name, parentname, TRUE);
743 if (dcp != NULL)
744 *dcp = child_dc;
745
746 dl->driver = driver;
747 TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
748 driver->refs++; /* XXX: kobj_mtx */
749 dl->pass = pass;
750 driver_register_pass(dl);
751
752 if (device_frozen) {
753 dl->flags |= DL_DEFERRED_PROBE;
754 } else {
755 devclass_driver_added(dc, driver);
756 }
757 bus_data_generation_update();
758 return (0);
759 }
760
761 /**
762 * @brief Register that a device driver has been deleted from a devclass
763 *
764 * Register that a device driver has been removed from a devclass.
765 * This is called by devclass_delete_driver to accomplish the
766 * recursive notification of all the children classes of busclass, as
767 * well as busclass. Each layer will attempt to detach the driver
768 * from any devices that are children of the bus's devclass. The function
769 * will return an error if a device fails to detach.
770 *
771 * We do a full search here of the devclass list at each iteration
772 * level to save storing children-lists in the devclass structure. If
773 * we ever move beyond a few dozen devices doing this, we may need to
774 * reevaluate...
775 *
776 * @param busclass the devclass of the parent bus
777 * @param dc the devclass of the driver being deleted
778 * @param driver the driver being deleted
779 */
780 static int
devclass_driver_deleted(devclass_t busclass,devclass_t dc,driver_t * driver)781 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
782 {
783 devclass_t parent;
784 device_t dev;
785 int error, i;
786
787 /*
788 * Disassociate from any devices. We iterate through all the
789 * devices in the devclass of the driver and detach any which are
790 * using the driver and which have a parent in the devclass which
791 * we are deleting from.
792 *
793 * Note that since a driver can be in multiple devclasses, we
794 * should not detach devices which are not children of devices in
795 * the affected devclass.
796 *
797 * If we're frozen, we don't generate NOMATCH events. Mark to
798 * generate later.
799 */
800 for (i = 0; i < dc->maxunit; i++) {
801 if (dc->devices[i]) {
802 dev = dc->devices[i];
803 if (dev->driver == driver && dev->parent &&
804 dev->parent->devclass == busclass) {
805 if ((error = device_detach(dev)) != 0)
806 return (error);
807 if (device_frozen) {
808 dev->flags &= ~DF_DONENOMATCH;
809 dev->flags |= DF_NEEDNOMATCH;
810 } else {
811 device_handle_nomatch(dev);
812 }
813 }
814 }
815 }
816
817 /*
818 * Walk through the children classes. Since we only keep a
819 * single parent pointer around, we walk the entire list of
820 * devclasses looking for children. We set the
821 * DC_HAS_CHILDREN flag when a child devclass is created on
822 * the parent, so we only walk the list for those devclasses
823 * that have children.
824 */
825 if (!(busclass->flags & DC_HAS_CHILDREN))
826 return (0);
827 parent = busclass;
828 TAILQ_FOREACH(busclass, &devclasses, link) {
829 if (busclass->parent == parent) {
830 error = devclass_driver_deleted(busclass, dc, driver);
831 if (error)
832 return (error);
833 }
834 }
835 return (0);
836 }
837
838 /**
839 * @brief Delete a device driver from a device class
840 *
841 * Delete a device driver from a devclass. This is normally called
842 * automatically by DRIVER_MODULE().
843 *
844 * If the driver is currently attached to any devices,
845 * devclass_delete_driver() will first attempt to detach from each
846 * device. If one of the detach calls fails, the driver will not be
847 * deleted.
848 *
849 * @param dc the devclass to edit
850 * @param driver the driver to unregister
851 */
852 int
devclass_delete_driver(devclass_t busclass,driver_t * driver)853 devclass_delete_driver(devclass_t busclass, driver_t *driver)
854 {
855 devclass_t dc = devclass_find(driver->name);
856 driverlink_t dl;
857 int error;
858
859 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
860
861 if (!dc)
862 return (0);
863
864 /*
865 * Find the link structure in the bus' list of drivers.
866 */
867 TAILQ_FOREACH(dl, &busclass->drivers, link) {
868 if (dl->driver == driver)
869 break;
870 }
871
872 if (!dl) {
873 PDEBUG(("%s not found in %s list", driver->name,
874 busclass->name));
875 return (ENOENT);
876 }
877
878 error = devclass_driver_deleted(busclass, dc, driver);
879 if (error != 0)
880 return (error);
881
882 TAILQ_REMOVE(&busclass->drivers, dl, link);
883 free(dl, M_BUS);
884
885 /* XXX: kobj_mtx */
886 driver->refs--;
887 if (driver->refs == 0)
888 kobj_class_free((kobj_class_t) driver);
889
890 bus_data_generation_update();
891 return (0);
892 }
893
894 /**
895 * @brief Quiesces a set of device drivers from a device class
896 *
897 * Quiesce a device driver from a devclass. This is normally called
898 * automatically by DRIVER_MODULE().
899 *
900 * If the driver is currently attached to any devices,
901 * devclass_quiesece_driver() will first attempt to quiesce each
902 * device.
903 *
904 * @param dc the devclass to edit
905 * @param driver the driver to unregister
906 */
907 static int
devclass_quiesce_driver(devclass_t busclass,driver_t * driver)908 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
909 {
910 devclass_t dc = devclass_find(driver->name);
911 driverlink_t dl;
912 device_t dev;
913 int i;
914 int error;
915
916 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
917
918 if (!dc)
919 return (0);
920
921 /*
922 * Find the link structure in the bus' list of drivers.
923 */
924 TAILQ_FOREACH(dl, &busclass->drivers, link) {
925 if (dl->driver == driver)
926 break;
927 }
928
929 if (!dl) {
930 PDEBUG(("%s not found in %s list", driver->name,
931 busclass->name));
932 return (ENOENT);
933 }
934
935 /*
936 * Quiesce all devices. We iterate through all the devices in
937 * the devclass of the driver and quiesce any which are using
938 * the driver and which have a parent in the devclass which we
939 * are quiescing.
940 *
941 * Note that since a driver can be in multiple devclasses, we
942 * should not quiesce devices which are not children of
943 * devices in the affected devclass.
944 */
945 for (i = 0; i < dc->maxunit; i++) {
946 if (dc->devices[i]) {
947 dev = dc->devices[i];
948 if (dev->driver == driver && dev->parent &&
949 dev->parent->devclass == busclass) {
950 if ((error = device_quiesce(dev)) != 0)
951 return (error);
952 }
953 }
954 }
955
956 return (0);
957 }
958
959 /**
960 * @internal
961 */
962 static driverlink_t
devclass_find_driver_internal(devclass_t dc,const char * classname)963 devclass_find_driver_internal(devclass_t dc, const char *classname)
964 {
965 driverlink_t dl;
966
967 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
968
969 TAILQ_FOREACH(dl, &dc->drivers, link) {
970 if (!strcmp(dl->driver->name, classname))
971 return (dl);
972 }
973
974 PDEBUG(("not found"));
975 return (NULL);
976 }
977
978 /**
979 * @brief Return the name of the devclass
980 */
981 const char *
devclass_get_name(devclass_t dc)982 devclass_get_name(devclass_t dc)
983 {
984 return (dc->name);
985 }
986
987 /**
988 * @brief Find a device given a unit number
989 *
990 * @param dc the devclass to search
991 * @param unit the unit number to search for
992 *
993 * @returns the device with the given unit number or @c
994 * NULL if there is no such device
995 */
996 device_t
devclass_get_device(devclass_t dc,int unit)997 devclass_get_device(devclass_t dc, int unit)
998 {
999 if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1000 return (NULL);
1001 return (dc->devices[unit]);
1002 }
1003
1004 /**
1005 * @brief Find the softc field of a device given a unit number
1006 *
1007 * @param dc the devclass to search
1008 * @param unit the unit number to search for
1009 *
1010 * @returns the softc field of the device with the given
1011 * unit number or @c NULL if there is no such
1012 * device
1013 */
1014 void *
devclass_get_softc(devclass_t dc,int unit)1015 devclass_get_softc(devclass_t dc, int unit)
1016 {
1017 device_t dev;
1018
1019 dev = devclass_get_device(dc, unit);
1020 if (!dev)
1021 return (NULL);
1022
1023 return (device_get_softc(dev));
1024 }
1025
1026 /**
1027 * @brief Get a list of devices in the devclass
1028 *
1029 * An array containing a list of all the devices in the given devclass
1030 * is allocated and returned in @p *devlistp. The number of devices
1031 * in the array is returned in @p *devcountp. The caller should free
1032 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1033 *
1034 * @param dc the devclass to examine
1035 * @param devlistp points at location for array pointer return
1036 * value
1037 * @param devcountp points at location for array size return value
1038 *
1039 * @retval 0 success
1040 * @retval ENOMEM the array allocation failed
1041 */
1042 int
devclass_get_devices(devclass_t dc,device_t ** devlistp,int * devcountp)1043 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1044 {
1045 int count, i;
1046 device_t *list;
1047
1048 count = devclass_get_count(dc);
1049 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1050 if (!list)
1051 return (ENOMEM);
1052
1053 count = 0;
1054 for (i = 0; i < dc->maxunit; i++) {
1055 if (dc->devices[i]) {
1056 list[count] = dc->devices[i];
1057 count++;
1058 }
1059 }
1060
1061 *devlistp = list;
1062 *devcountp = count;
1063
1064 return (0);
1065 }
1066
1067 /**
1068 * @brief Get a list of drivers in the devclass
1069 *
1070 * An array containing a list of pointers to all the drivers in the
1071 * given devclass is allocated and returned in @p *listp. The number
1072 * of drivers in the array is returned in @p *countp. The caller should
1073 * free the array using @c free(p, M_TEMP).
1074 *
1075 * @param dc the devclass to examine
1076 * @param listp gives location for array pointer return value
1077 * @param countp gives location for number of array elements
1078 * return value
1079 *
1080 * @retval 0 success
1081 * @retval ENOMEM the array allocation failed
1082 */
1083 int
devclass_get_drivers(devclass_t dc,driver_t *** listp,int * countp)1084 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1085 {
1086 driverlink_t dl;
1087 driver_t **list;
1088 int count;
1089
1090 count = 0;
1091 TAILQ_FOREACH(dl, &dc->drivers, link)
1092 count++;
1093 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1094 if (list == NULL)
1095 return (ENOMEM);
1096
1097 count = 0;
1098 TAILQ_FOREACH(dl, &dc->drivers, link) {
1099 list[count] = dl->driver;
1100 count++;
1101 }
1102 *listp = list;
1103 *countp = count;
1104
1105 return (0);
1106 }
1107
1108 /**
1109 * @brief Get the number of devices in a devclass
1110 *
1111 * @param dc the devclass to examine
1112 */
1113 int
devclass_get_count(devclass_t dc)1114 devclass_get_count(devclass_t dc)
1115 {
1116 int count, i;
1117
1118 count = 0;
1119 for (i = 0; i < dc->maxunit; i++)
1120 if (dc->devices[i])
1121 count++;
1122 return (count);
1123 }
1124
1125 /**
1126 * @brief Get the maximum unit number used in a devclass
1127 *
1128 * Note that this is one greater than the highest currently-allocated unit. If
1129 * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has
1130 * been allocated yet.
1131 *
1132 * @param dc the devclass to examine
1133 */
1134 int
devclass_get_maxunit(devclass_t dc)1135 devclass_get_maxunit(devclass_t dc)
1136 {
1137 if (dc == NULL)
1138 return (-1);
1139 return (dc->maxunit);
1140 }
1141
1142 /**
1143 * @brief Find a free unit number in a devclass
1144 *
1145 * This function searches for the first unused unit number greater
1146 * that or equal to @p unit. Note: This can return INT_MAX which
1147 * may be rejected elsewhere.
1148 *
1149 * @param dc the devclass to examine
1150 * @param unit the first unit number to check
1151 */
1152 int
devclass_find_free_unit(devclass_t dc,int unit)1153 devclass_find_free_unit(devclass_t dc, int unit)
1154 {
1155 if (dc == NULL)
1156 return (unit);
1157 while (unit < dc->maxunit && dc->devices[unit] != NULL)
1158 unit++;
1159 return (unit);
1160 }
1161
1162 /**
1163 * @brief Set the parent of a devclass
1164 *
1165 * The parent class is normally initialised automatically by
1166 * DRIVER_MODULE().
1167 *
1168 * @param dc the devclass to edit
1169 * @param pdc the new parent devclass
1170 */
1171 void
devclass_set_parent(devclass_t dc,devclass_t pdc)1172 devclass_set_parent(devclass_t dc, devclass_t pdc)
1173 {
1174 dc->parent = pdc;
1175 }
1176
1177 /**
1178 * @brief Get the parent of a devclass
1179 *
1180 * @param dc the devclass to examine
1181 */
1182 devclass_t
devclass_get_parent(devclass_t dc)1183 devclass_get_parent(devclass_t dc)
1184 {
1185 return (dc->parent);
1186 }
1187
1188 struct sysctl_ctx_list *
devclass_get_sysctl_ctx(devclass_t dc)1189 devclass_get_sysctl_ctx(devclass_t dc)
1190 {
1191 return (&dc->sysctl_ctx);
1192 }
1193
1194 struct sysctl_oid *
devclass_get_sysctl_tree(devclass_t dc)1195 devclass_get_sysctl_tree(devclass_t dc)
1196 {
1197 return (dc->sysctl_tree);
1198 }
1199
1200 /**
1201 * @internal
1202 * @brief Allocate a unit number
1203 *
1204 * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any
1205 * will do). The allocated unit number is returned in @p *unitp.
1206 *
1207 * @param dc the devclass to allocate from
1208 * @param unitp points at the location for the allocated unit
1209 * number
1210 *
1211 * @retval 0 success
1212 * @retval EEXIST the requested unit number is already allocated
1213 * @retval ENOMEM memory allocation failure
1214 * @retval EINVAL unit is negative or we've run out of units
1215 */
1216 static int
devclass_alloc_unit(devclass_t dc,device_t dev,int * unitp)1217 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1218 {
1219 const char *s;
1220 int unit = *unitp;
1221
1222 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1223
1224 /* Ask the parent bus if it wants to wire this device. */
1225 if (unit == DEVICE_UNIT_ANY)
1226 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1227 &unit);
1228
1229 /* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */
1230 if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX)
1231 return (EINVAL);
1232
1233 /* If we were given a wired unit number, check for existing device */
1234 if (unit != DEVICE_UNIT_ANY) {
1235 if (unit < dc->maxunit && dc->devices[unit] != NULL) {
1236 if (bootverbose)
1237 printf("%s: %s%d already exists; skipping it\n",
1238 dc->name, dc->name, *unitp);
1239 return (EEXIST);
1240 }
1241 } else {
1242 /* Unwired device, find the next available slot for it */
1243 unit = 0;
1244 for (unit = 0; unit < INT_MAX; unit++) {
1245 /* If this device slot is already in use, skip it. */
1246 if (unit < dc->maxunit && dc->devices[unit] != NULL)
1247 continue;
1248
1249 /* If there is an "at" hint for a unit then skip it. */
1250 if (resource_string_value(dc->name, unit, "at", &s) ==
1251 0)
1252 continue;
1253
1254 break;
1255 }
1256 }
1257
1258 /*
1259 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as
1260 * too large. We constrain maxunit below to be <= INT_MAX. This means we
1261 * can treat unit and maxunit as normal integers with normal math
1262 * everywhere and we only have to flag INT_MAX as invalid.
1263 */
1264 if (unit == INT_MAX)
1265 return (EINVAL);
1266
1267 /*
1268 * We've selected a unit beyond the length of the table, so let's extend
1269 * the table to make room for all units up to and including this one.
1270 */
1271 if (unit >= dc->maxunit) {
1272 int newsize;
1273
1274 newsize = unit + 1;
1275 dc->devices = reallocf(dc->devices,
1276 newsize * sizeof(*dc->devices), M_BUS, M_WAITOK);
1277 memset(dc->devices + dc->maxunit, 0,
1278 sizeof(device_t) * (newsize - dc->maxunit));
1279 dc->maxunit = newsize;
1280 }
1281 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1282
1283 *unitp = unit;
1284 return (0);
1285 }
1286
1287 /**
1288 * @internal
1289 * @brief Add a device to a devclass
1290 *
1291 * A unit number is allocated for the device (using the device's
1292 * preferred unit number if any) and the device is registered in the
1293 * devclass. This allows the device to be looked up by its unit
1294 * number, e.g. by decoding a dev_t minor number.
1295 *
1296 * @param dc the devclass to add to
1297 * @param dev the device to add
1298 *
1299 * @retval 0 success
1300 * @retval EEXIST the requested unit number is already allocated
1301 * @retval ENOMEM memory allocation failure
1302 * @retval EINVAL Unit number invalid or too many units
1303 */
1304 static int
devclass_add_device(devclass_t dc,device_t dev)1305 devclass_add_device(devclass_t dc, device_t dev)
1306 {
1307 int buflen, error;
1308
1309 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1310
1311 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1312 if (buflen < 0)
1313 return (ENOMEM);
1314 dev->nameunit = malloc(buflen, M_BUS, M_WAITOK|M_ZERO);
1315
1316 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1317 free(dev->nameunit, M_BUS);
1318 dev->nameunit = NULL;
1319 return (error);
1320 }
1321 dc->devices[dev->unit] = dev;
1322 dev->devclass = dc;
1323 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1324
1325 return (0);
1326 }
1327
1328 /**
1329 * @internal
1330 * @brief Delete a device from a devclass
1331 *
1332 * The device is removed from the devclass's device list and its unit
1333 * number is freed.
1334
1335 * @param dc the devclass to delete from
1336 * @param dev the device to delete
1337 *
1338 * @retval 0 success
1339 */
1340 static int
devclass_delete_device(devclass_t dc,device_t dev)1341 devclass_delete_device(devclass_t dc, device_t dev)
1342 {
1343 if (!dc || !dev)
1344 return (0);
1345
1346 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1347
1348 if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1349 panic("devclass_delete_device: inconsistent device class");
1350 dc->devices[dev->unit] = NULL;
1351 if (dev->flags & DF_WILDCARD)
1352 dev->unit = DEVICE_UNIT_ANY;
1353 dev->devclass = NULL;
1354 free(dev->nameunit, M_BUS);
1355 dev->nameunit = NULL;
1356
1357 return (0);
1358 }
1359
1360 /**
1361 * @internal
1362 * @brief Make a new device and add it as a child of @p parent
1363 *
1364 * @param parent the parent of the new device
1365 * @param name the devclass name of the new device or @c NULL
1366 * to leave the devclass unspecified
1367 * @parem unit the unit number of the new device of @c DEVICE_UNIT_ANY
1368 * to leave the unit number unspecified
1369 *
1370 * @returns the new device
1371 */
1372 static device_t
make_device(device_t parent,const char * name,int unit)1373 make_device(device_t parent, const char *name, int unit)
1374 {
1375 device_t dev;
1376 devclass_t dc;
1377
1378 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1379
1380 if (name) {
1381 dc = devclass_find_internal(name, NULL, TRUE);
1382 if (!dc) {
1383 printf("make_device: can't find device class %s\n",
1384 name);
1385 return (NULL);
1386 }
1387 } else {
1388 dc = NULL;
1389 }
1390
1391 dev = malloc(sizeof(*dev), M_BUS, M_WAITOK|M_ZERO);
1392 dev->parent = parent;
1393 TAILQ_INIT(&dev->children);
1394 kobj_init((kobj_t) dev, &null_class);
1395 dev->driver = NULL;
1396 dev->devclass = NULL;
1397 dev->unit = unit;
1398 dev->nameunit = NULL;
1399 dev->desc = NULL;
1400 dev->busy = 0;
1401 dev->devflags = 0;
1402 dev->flags = DF_ENABLED;
1403 dev->order = 0;
1404 if (unit == DEVICE_UNIT_ANY)
1405 dev->flags |= DF_WILDCARD;
1406 if (name) {
1407 dev->flags |= DF_FIXEDCLASS;
1408 if (devclass_add_device(dc, dev)) {
1409 kobj_delete((kobj_t) dev, M_BUS);
1410 return (NULL);
1411 }
1412 }
1413 if (parent != NULL && device_has_quiet_children(parent))
1414 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1415 dev->ivars = NULL;
1416 dev->softc = NULL;
1417 LIST_INIT(&dev->props);
1418
1419 dev->state = DS_NOTPRESENT;
1420
1421 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1422 bus_data_generation_update();
1423
1424 return (dev);
1425 }
1426
1427 /**
1428 * @internal
1429 * @brief Print a description of a device.
1430 */
1431 static int
device_print_child(device_t dev,device_t child)1432 device_print_child(device_t dev, device_t child)
1433 {
1434 int retval = 0;
1435
1436 if (device_is_alive(child))
1437 retval += BUS_PRINT_CHILD(dev, child);
1438 else
1439 retval += device_printf(child, " not found\n");
1440
1441 return (retval);
1442 }
1443
1444 /**
1445 * @brief Create a new device
1446 *
1447 * This creates a new device and adds it as a child of an existing
1448 * parent device. The new device will be added after the last existing
1449 * child with order zero.
1450 *
1451 * @param dev the device which will be the parent of the
1452 * new child device
1453 * @param name devclass name for new device or @c NULL if not
1454 * specified
1455 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not
1456 * specified
1457 *
1458 * @returns the new device
1459 */
1460 device_t
device_add_child(device_t dev,const char * name,int unit)1461 device_add_child(device_t dev, const char *name, int unit)
1462 {
1463 return (device_add_child_ordered(dev, 0, name, unit));
1464 }
1465
1466 /**
1467 * @brief Create a new device
1468 *
1469 * This creates a new device and adds it as a child of an existing
1470 * parent device. The new device will be added after the last existing
1471 * child with the same order.
1472 *
1473 * @param dev the device which will be the parent of the
1474 * new child device
1475 * @param order a value which is used to partially sort the
1476 * children of @p dev - devices created using
1477 * lower values of @p order appear first in @p
1478 * dev's list of children
1479 * @param name devclass name for new device or @c NULL if not
1480 * specified
1481 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not
1482 * specified
1483 *
1484 * @returns the new device
1485 */
1486 device_t
device_add_child_ordered(device_t dev,u_int order,const char * name,int unit)1487 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1488 {
1489 device_t child;
1490 device_t place;
1491
1492 PDEBUG(("%s at %s with order %u as unit %d",
1493 name, DEVICENAME(dev), order, unit));
1494 KASSERT(name != NULL || unit == DEVICE_UNIT_ANY,
1495 ("child device with wildcard name and specific unit number"));
1496
1497 child = make_device(dev, name, unit);
1498 if (child == NULL)
1499 return (child);
1500 child->order = order;
1501
1502 TAILQ_FOREACH(place, &dev->children, link) {
1503 if (place->order > order)
1504 break;
1505 }
1506
1507 if (place) {
1508 /*
1509 * The device 'place' is the first device whose order is
1510 * greater than the new child.
1511 */
1512 TAILQ_INSERT_BEFORE(place, child, link);
1513 } else {
1514 /*
1515 * The new child's order is greater or equal to the order of
1516 * any existing device. Add the child to the tail of the list.
1517 */
1518 TAILQ_INSERT_TAIL(&dev->children, child, link);
1519 }
1520
1521 bus_data_generation_update();
1522 return (child);
1523 }
1524
1525 /**
1526 * @brief Delete a device
1527 *
1528 * This function deletes a device along with all of its children. If
1529 * the device currently has a driver attached to it, the device is
1530 * detached first using device_detach().
1531 *
1532 * @param dev the parent device
1533 * @param child the device to delete
1534 *
1535 * @retval 0 success
1536 * @retval non-zero a unit error code describing the error
1537 */
1538 int
device_delete_child(device_t dev,device_t child)1539 device_delete_child(device_t dev, device_t child)
1540 {
1541 int error;
1542 device_t grandchild;
1543
1544 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1545
1546 /*
1547 * Detach child. Ideally this cleans up any grandchild
1548 * devices.
1549 */
1550 if ((error = device_detach(child)) != 0)
1551 return (error);
1552
1553 /* Delete any grandchildren left after detach. */
1554 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1555 error = device_delete_child(child, grandchild);
1556 if (error)
1557 return (error);
1558 }
1559
1560 device_destroy_props(dev);
1561 if (child->devclass)
1562 devclass_delete_device(child->devclass, child);
1563 if (child->parent)
1564 BUS_CHILD_DELETED(dev, child);
1565 TAILQ_REMOVE(&dev->children, child, link);
1566 TAILQ_REMOVE(&bus_data_devices, child, devlink);
1567 kobj_delete((kobj_t) child, M_BUS);
1568
1569 bus_data_generation_update();
1570 return (0);
1571 }
1572
1573 /**
1574 * @brief Delete all children devices of the given device, if any.
1575 *
1576 * This function deletes all children devices of the given device, if
1577 * any, using the device_delete_child() function for each device it
1578 * finds. If a child device cannot be deleted, this function will
1579 * return an error code.
1580 *
1581 * @param dev the parent device
1582 *
1583 * @retval 0 success
1584 * @retval non-zero a device would not detach
1585 */
1586 int
device_delete_children(device_t dev)1587 device_delete_children(device_t dev)
1588 {
1589 device_t child;
1590 int error;
1591
1592 PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1593
1594 error = 0;
1595
1596 while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1597 error = device_delete_child(dev, child);
1598 if (error) {
1599 PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1600 break;
1601 }
1602 }
1603 return (error);
1604 }
1605
1606 /**
1607 * @brief Find a device given a unit number
1608 *
1609 * This is similar to devclass_get_devices() but only searches for
1610 * devices which have @p dev as a parent.
1611 *
1612 * @param dev the parent device to search
1613 * @param unit the unit number to search for. If the unit is
1614 * @c DEVICE_UNIT_ANY, return the first child of @p dev
1615 * which has name @p classname (that is, the one with the
1616 * lowest unit.)
1617 *
1618 * @returns the device with the given unit number or @c
1619 * NULL if there is no such device
1620 */
1621 device_t
device_find_child(device_t dev,const char * classname,int unit)1622 device_find_child(device_t dev, const char *classname, int unit)
1623 {
1624 devclass_t dc;
1625 device_t child;
1626
1627 dc = devclass_find(classname);
1628 if (!dc)
1629 return (NULL);
1630
1631 if (unit != DEVICE_UNIT_ANY) {
1632 child = devclass_get_device(dc, unit);
1633 if (child && child->parent == dev)
1634 return (child);
1635 } else {
1636 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1637 child = devclass_get_device(dc, unit);
1638 if (child && child->parent == dev)
1639 return (child);
1640 }
1641 }
1642 return (NULL);
1643 }
1644
1645 /**
1646 * @internal
1647 */
1648 static driverlink_t
first_matching_driver(devclass_t dc,device_t dev)1649 first_matching_driver(devclass_t dc, device_t dev)
1650 {
1651 if (dev->devclass)
1652 return (devclass_find_driver_internal(dc, dev->devclass->name));
1653 return (TAILQ_FIRST(&dc->drivers));
1654 }
1655
1656 /**
1657 * @internal
1658 */
1659 static driverlink_t
next_matching_driver(devclass_t dc,device_t dev,driverlink_t last)1660 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1661 {
1662 if (dev->devclass) {
1663 driverlink_t dl;
1664 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1665 if (!strcmp(dev->devclass->name, dl->driver->name))
1666 return (dl);
1667 return (NULL);
1668 }
1669 return (TAILQ_NEXT(last, link));
1670 }
1671
1672 /**
1673 * @internal
1674 */
1675 int
device_probe_child(device_t dev,device_t child)1676 device_probe_child(device_t dev, device_t child)
1677 {
1678 devclass_t dc;
1679 driverlink_t best = NULL;
1680 driverlink_t dl;
1681 int result, pri = 0;
1682 /* We should preserve the devclass (or lack of) set by the bus. */
1683 int hasclass = (child->devclass != NULL);
1684
1685 bus_topo_assert();
1686
1687 dc = dev->devclass;
1688 if (!dc)
1689 panic("device_probe_child: parent device has no devclass");
1690
1691 /*
1692 * If the state is already probed, then return.
1693 */
1694 if (child->state == DS_ALIVE)
1695 return (0);
1696
1697 for (; dc; dc = dc->parent) {
1698 for (dl = first_matching_driver(dc, child);
1699 dl;
1700 dl = next_matching_driver(dc, child, dl)) {
1701 /* If this driver's pass is too high, then ignore it. */
1702 if (dl->pass > bus_current_pass)
1703 continue;
1704
1705 PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1706 result = device_set_driver(child, dl->driver);
1707 if (result == ENOMEM)
1708 return (result);
1709 else if (result != 0)
1710 continue;
1711 if (!hasclass) {
1712 if (device_set_devclass(child,
1713 dl->driver->name) != 0) {
1714 char const * devname =
1715 device_get_name(child);
1716 if (devname == NULL)
1717 devname = "(unknown)";
1718 printf("driver bug: Unable to set "
1719 "devclass (class: %s "
1720 "devname: %s)\n",
1721 dl->driver->name,
1722 devname);
1723 (void)device_set_driver(child, NULL);
1724 continue;
1725 }
1726 }
1727
1728 /* Fetch any flags for the device before probing. */
1729 resource_int_value(dl->driver->name, child->unit,
1730 "flags", &child->devflags);
1731
1732 result = DEVICE_PROBE(child);
1733
1734 /*
1735 * If probe returns 0, this is the driver that wins this
1736 * device.
1737 */
1738 if (result == 0) {
1739 best = dl;
1740 pri = 0;
1741 goto exact_match; /* C doesn't have break 2 */
1742 }
1743
1744 /* Reset flags and devclass before the next probe. */
1745 child->devflags = 0;
1746 if (!hasclass)
1747 (void)device_set_devclass(child, NULL);
1748
1749 /*
1750 * Reset DF_QUIET in case this driver doesn't
1751 * end up as the best driver.
1752 */
1753 device_verbose(child);
1754
1755 /*
1756 * Probes that return BUS_PROBE_NOWILDCARD or lower
1757 * only match on devices whose driver was explicitly
1758 * specified.
1759 */
1760 if (result <= BUS_PROBE_NOWILDCARD &&
1761 !(child->flags & DF_FIXEDCLASS)) {
1762 result = ENXIO;
1763 }
1764
1765 /*
1766 * The driver returned an error so it
1767 * certainly doesn't match.
1768 */
1769 if (result > 0) {
1770 (void)device_set_driver(child, NULL);
1771 continue;
1772 }
1773
1774 /*
1775 * A priority lower than SUCCESS, remember the
1776 * best matching driver. Initialise the value
1777 * of pri for the first match.
1778 */
1779 if (best == NULL || result > pri) {
1780 best = dl;
1781 pri = result;
1782 continue;
1783 }
1784 }
1785 }
1786
1787 if (best == NULL)
1788 return (ENXIO);
1789
1790 /*
1791 * If we found a driver, change state and initialise the devclass.
1792 * Set the winning driver, devclass, and flags.
1793 */
1794 result = device_set_driver(child, best->driver);
1795 if (result != 0)
1796 return (result);
1797 if (!child->devclass) {
1798 result = device_set_devclass(child, best->driver->name);
1799 if (result != 0) {
1800 (void)device_set_driver(child, NULL);
1801 return (result);
1802 }
1803 }
1804 resource_int_value(best->driver->name, child->unit,
1805 "flags", &child->devflags);
1806
1807 /*
1808 * A bit bogus. Call the probe method again to make sure that we have
1809 * the right description for the device.
1810 */
1811 result = DEVICE_PROBE(child);
1812 if (result > 0) {
1813 if (!hasclass)
1814 (void)device_set_devclass(child, NULL);
1815 (void)device_set_driver(child, NULL);
1816 return (result);
1817 }
1818
1819 exact_match:
1820 child->state = DS_ALIVE;
1821 bus_data_generation_update();
1822 return (0);
1823 }
1824
1825 /**
1826 * @brief Return the parent of a device
1827 */
1828 device_t
device_get_parent(device_t dev)1829 device_get_parent(device_t dev)
1830 {
1831 return (dev->parent);
1832 }
1833
1834 /**
1835 * @brief Get a list of children of a device
1836 *
1837 * An array containing a list of all the children of the given device
1838 * is allocated and returned in @p *devlistp. The number of devices
1839 * in the array is returned in @p *devcountp. The caller should free
1840 * the array using @c free(p, M_TEMP).
1841 *
1842 * @param dev the device to examine
1843 * @param devlistp points at location for array pointer return
1844 * value
1845 * @param devcountp points at location for array size return value
1846 *
1847 * @retval 0 success
1848 * @retval ENOMEM the array allocation failed
1849 */
1850 int
device_get_children(device_t dev,device_t ** devlistp,int * devcountp)1851 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1852 {
1853 int count;
1854 device_t child;
1855 device_t *list;
1856
1857 count = 0;
1858 TAILQ_FOREACH(child, &dev->children, link) {
1859 count++;
1860 }
1861 if (devlistp == NULL) {
1862 *devcountp = count;
1863 return (0);
1864 }
1865 if (count == 0) {
1866 *devlistp = NULL;
1867 *devcountp = 0;
1868 return (0);
1869 }
1870
1871 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1872 if (!list)
1873 return (ENOMEM);
1874
1875 count = 0;
1876 TAILQ_FOREACH(child, &dev->children, link) {
1877 list[count] = child;
1878 count++;
1879 }
1880
1881 *devlistp = list;
1882 *devcountp = count;
1883
1884 return (0);
1885 }
1886
1887 /**
1888 * @brief Check if a device has children
1889 *
1890 * @param dev the device to examine
1891 *
1892 * @rerval true the device has at least one child
1893 * @retval false the device has no children
1894 */
1895 bool
device_has_children(device_t dev)1896 device_has_children(device_t dev)
1897 {
1898 return (!TAILQ_EMPTY(&dev->children));
1899 }
1900
1901 /**
1902 * @brief Return the current driver for the device or @c NULL if there
1903 * is no driver currently attached
1904 */
1905 driver_t *
device_get_driver(device_t dev)1906 device_get_driver(device_t dev)
1907 {
1908 return (dev->driver);
1909 }
1910
1911 /**
1912 * @brief Return the current devclass for the device or @c NULL if
1913 * there is none.
1914 */
1915 devclass_t
device_get_devclass(device_t dev)1916 device_get_devclass(device_t dev)
1917 {
1918 return (dev->devclass);
1919 }
1920
1921 /**
1922 * @brief Return the name of the device's devclass or @c NULL if there
1923 * is none.
1924 */
1925 const char *
device_get_name(device_t dev)1926 device_get_name(device_t dev)
1927 {
1928 if (dev != NULL && dev->devclass)
1929 return (devclass_get_name(dev->devclass));
1930 return (NULL);
1931 }
1932
1933 /**
1934 * @brief Return a string containing the device's devclass name
1935 * followed by an ascii representation of the device's unit number
1936 * (e.g. @c "foo2").
1937 */
1938 const char *
device_get_nameunit(device_t dev)1939 device_get_nameunit(device_t dev)
1940 {
1941 return (dev->nameunit);
1942 }
1943
1944 /**
1945 * @brief Return the device's unit number.
1946 */
1947 int
device_get_unit(device_t dev)1948 device_get_unit(device_t dev)
1949 {
1950 return (dev->unit);
1951 }
1952
1953 /**
1954 * @brief Return the device's description string
1955 */
1956 const char *
device_get_desc(device_t dev)1957 device_get_desc(device_t dev)
1958 {
1959 return (dev->desc);
1960 }
1961
1962 /**
1963 * @brief Return the device's flags
1964 */
1965 uint32_t
device_get_flags(device_t dev)1966 device_get_flags(device_t dev)
1967 {
1968 return (dev->devflags);
1969 }
1970
1971 struct sysctl_ctx_list *
device_get_sysctl_ctx(device_t dev)1972 device_get_sysctl_ctx(device_t dev)
1973 {
1974 return (&dev->sysctl_ctx);
1975 }
1976
1977 struct sysctl_oid *
device_get_sysctl_tree(device_t dev)1978 device_get_sysctl_tree(device_t dev)
1979 {
1980 return (dev->sysctl_tree);
1981 }
1982
1983 /**
1984 * @brief Print the name of the device followed by a colon and a space
1985 *
1986 * @returns the number of characters printed
1987 */
1988 int
device_print_prettyname(device_t dev)1989 device_print_prettyname(device_t dev)
1990 {
1991 const char *name = device_get_name(dev);
1992
1993 if (name == NULL)
1994 return (printf("unknown: "));
1995 return (printf("%s%d: ", name, device_get_unit(dev)));
1996 }
1997
1998 /**
1999 * @brief Print the name of the device followed by a colon, a space
2000 * and the result of calling vprintf() with the value of @p fmt and
2001 * the following arguments.
2002 *
2003 * @returns the number of characters printed
2004 */
2005 int
device_printf(device_t dev,const char * fmt,...)2006 device_printf(device_t dev, const char * fmt, ...)
2007 {
2008 char buf[128];
2009 struct sbuf sb;
2010 const char *name;
2011 va_list ap;
2012 size_t retval;
2013
2014 retval = 0;
2015
2016 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2017 sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
2018
2019 name = device_get_name(dev);
2020
2021 if (name == NULL)
2022 sbuf_cat(&sb, "unknown: ");
2023 else
2024 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2025
2026 va_start(ap, fmt);
2027 sbuf_vprintf(&sb, fmt, ap);
2028 va_end(ap);
2029
2030 sbuf_finish(&sb);
2031 sbuf_delete(&sb);
2032
2033 return (retval);
2034 }
2035
2036 /**
2037 * @brief Print the name of the device followed by a colon, a space
2038 * and the result of calling log() with the value of @p fmt and
2039 * the following arguments.
2040 *
2041 * @returns the number of characters printed
2042 */
2043 int
device_log(device_t dev,int pri,const char * fmt,...)2044 device_log(device_t dev, int pri, const char * fmt, ...)
2045 {
2046 char buf[128];
2047 struct sbuf sb;
2048 const char *name;
2049 va_list ap;
2050 size_t retval;
2051
2052 retval = 0;
2053
2054 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2055
2056 name = device_get_name(dev);
2057
2058 if (name == NULL)
2059 sbuf_cat(&sb, "unknown: ");
2060 else
2061 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2062
2063 va_start(ap, fmt);
2064 sbuf_vprintf(&sb, fmt, ap);
2065 va_end(ap);
2066
2067 sbuf_finish(&sb);
2068
2069 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
2070 retval = sbuf_len(&sb);
2071
2072 sbuf_delete(&sb);
2073
2074 return (retval);
2075 }
2076
2077 /**
2078 * @internal
2079 */
2080 static void
device_set_desc_internal(device_t dev,const char * desc,bool allocated)2081 device_set_desc_internal(device_t dev, const char *desc, bool allocated)
2082 {
2083 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2084 free(dev->desc, M_BUS);
2085 dev->flags &= ~DF_DESCMALLOCED;
2086 dev->desc = NULL;
2087 }
2088
2089 if (allocated && desc)
2090 dev->flags |= DF_DESCMALLOCED;
2091 dev->desc = __DECONST(char *, desc);
2092
2093 bus_data_generation_update();
2094 }
2095
2096 /**
2097 * @brief Set the device's description
2098 *
2099 * The value of @c desc should be a string constant that will not
2100 * change (at least until the description is changed in a subsequent
2101 * call to device_set_desc() or device_set_desc_copy()).
2102 */
2103 void
device_set_desc(device_t dev,const char * desc)2104 device_set_desc(device_t dev, const char *desc)
2105 {
2106 device_set_desc_internal(dev, desc, false);
2107 }
2108
2109 /**
2110 * @brief Set the device's description
2111 *
2112 * A printf-like version of device_set_desc().
2113 */
2114 void
device_set_descf(device_t dev,const char * fmt,...)2115 device_set_descf(device_t dev, const char *fmt, ...)
2116 {
2117 va_list ap;
2118 char *buf = NULL;
2119
2120 va_start(ap, fmt);
2121 vasprintf(&buf, M_BUS, fmt, ap);
2122 va_end(ap);
2123 device_set_desc_internal(dev, buf, true);
2124 }
2125
2126 /**
2127 * @brief Set the device's description
2128 *
2129 * The string pointed to by @c desc is copied. Use this function if
2130 * the device description is generated, (e.g. with sprintf()).
2131 */
2132 void
device_set_desc_copy(device_t dev,const char * desc)2133 device_set_desc_copy(device_t dev, const char *desc)
2134 {
2135 char *buf;
2136
2137 buf = strdup_flags(desc, M_BUS, M_WAITOK);
2138 device_set_desc_internal(dev, buf, true);
2139 }
2140
2141 /**
2142 * @brief Set the device's flags
2143 */
2144 void
device_set_flags(device_t dev,uint32_t flags)2145 device_set_flags(device_t dev, uint32_t flags)
2146 {
2147 dev->devflags = flags;
2148 }
2149
2150 /**
2151 * @brief Return the device's softc field
2152 *
2153 * The softc is allocated and zeroed when a driver is attached, based
2154 * on the size field of the driver.
2155 */
2156 void *
device_get_softc(device_t dev)2157 device_get_softc(device_t dev)
2158 {
2159 return (dev->softc);
2160 }
2161
2162 /**
2163 * @brief Set the device's softc field
2164 *
2165 * Most drivers do not need to use this since the softc is allocated
2166 * automatically when the driver is attached.
2167 */
2168 void
device_set_softc(device_t dev,void * softc)2169 device_set_softc(device_t dev, void *softc)
2170 {
2171 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2172 free(dev->softc, M_BUS_SC);
2173 dev->softc = softc;
2174 if (dev->softc)
2175 dev->flags |= DF_EXTERNALSOFTC;
2176 else
2177 dev->flags &= ~DF_EXTERNALSOFTC;
2178 }
2179
2180 /**
2181 * @brief Free claimed softc
2182 *
2183 * Most drivers do not need to use this since the softc is freed
2184 * automatically when the driver is detached.
2185 */
2186 void
device_free_softc(void * softc)2187 device_free_softc(void *softc)
2188 {
2189 free(softc, M_BUS_SC);
2190 }
2191
2192 /**
2193 * @brief Claim softc
2194 *
2195 * This function can be used to let the driver free the automatically
2196 * allocated softc using "device_free_softc()". This function is
2197 * useful when the driver is refcounting the softc and the softc
2198 * cannot be freed when the "device_detach" method is called.
2199 */
2200 void
device_claim_softc(device_t dev)2201 device_claim_softc(device_t dev)
2202 {
2203 if (dev->softc)
2204 dev->flags |= DF_EXTERNALSOFTC;
2205 else
2206 dev->flags &= ~DF_EXTERNALSOFTC;
2207 }
2208
2209 /**
2210 * @brief Get the device's ivars field
2211 *
2212 * The ivars field is used by the parent device to store per-device
2213 * state (e.g. the physical location of the device or a list of
2214 * resources).
2215 */
2216 void *
device_get_ivars(device_t dev)2217 device_get_ivars(device_t dev)
2218 {
2219 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2220 return (dev->ivars);
2221 }
2222
2223 /**
2224 * @brief Set the device's ivars field
2225 */
2226 void
device_set_ivars(device_t dev,void * ivars)2227 device_set_ivars(device_t dev, void * ivars)
2228 {
2229 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2230 dev->ivars = ivars;
2231 }
2232
2233 /**
2234 * @brief Return the device's state
2235 */
2236 device_state_t
device_get_state(device_t dev)2237 device_get_state(device_t dev)
2238 {
2239 return (dev->state);
2240 }
2241
2242 /**
2243 * @brief Set the DF_ENABLED flag for the device
2244 */
2245 void
device_enable(device_t dev)2246 device_enable(device_t dev)
2247 {
2248 dev->flags |= DF_ENABLED;
2249 }
2250
2251 /**
2252 * @brief Clear the DF_ENABLED flag for the device
2253 */
2254 void
device_disable(device_t dev)2255 device_disable(device_t dev)
2256 {
2257 dev->flags &= ~DF_ENABLED;
2258 }
2259
2260 /**
2261 * @brief Increment the busy counter for the device
2262 */
2263 void
device_busy(device_t dev)2264 device_busy(device_t dev)
2265 {
2266
2267 /*
2268 * Mark the device as busy, recursively up the tree if this busy count
2269 * goes 0->1.
2270 */
2271 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2272 device_busy(dev->parent);
2273 }
2274
2275 /**
2276 * @brief Decrement the busy counter for the device
2277 */
2278 void
device_unbusy(device_t dev)2279 device_unbusy(device_t dev)
2280 {
2281
2282 /*
2283 * Mark the device as unbsy, recursively if this is the last busy count.
2284 */
2285 if (refcount_release(&dev->busy) && dev->parent != NULL)
2286 device_unbusy(dev->parent);
2287 }
2288
2289 /**
2290 * @brief Set the DF_QUIET flag for the device
2291 */
2292 void
device_quiet(device_t dev)2293 device_quiet(device_t dev)
2294 {
2295 dev->flags |= DF_QUIET;
2296 }
2297
2298 /**
2299 * @brief Set the DF_QUIET_CHILDREN flag for the device
2300 */
2301 void
device_quiet_children(device_t dev)2302 device_quiet_children(device_t dev)
2303 {
2304 dev->flags |= DF_QUIET_CHILDREN;
2305 }
2306
2307 /**
2308 * @brief Clear the DF_QUIET flag for the device
2309 */
2310 void
device_verbose(device_t dev)2311 device_verbose(device_t dev)
2312 {
2313 dev->flags &= ~DF_QUIET;
2314 }
2315
2316 ssize_t
device_get_property(device_t dev,const char * prop,void * val,size_t sz,device_property_type_t type)2317 device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2318 device_property_type_t type)
2319 {
2320 device_t bus = device_get_parent(dev);
2321
2322 switch (type) {
2323 case DEVICE_PROP_ANY:
2324 case DEVICE_PROP_BUFFER:
2325 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */
2326 break;
2327 case DEVICE_PROP_UINT32:
2328 if (sz % 4 != 0)
2329 return (-1);
2330 break;
2331 case DEVICE_PROP_UINT64:
2332 if (sz % 8 != 0)
2333 return (-1);
2334 break;
2335 default:
2336 return (-1);
2337 }
2338
2339 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2340 }
2341
2342 bool
device_has_property(device_t dev,const char * prop)2343 device_has_property(device_t dev, const char *prop)
2344 {
2345 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2346 }
2347
2348 /**
2349 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2350 */
2351 int
device_has_quiet_children(device_t dev)2352 device_has_quiet_children(device_t dev)
2353 {
2354 return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2355 }
2356
2357 /**
2358 * @brief Return non-zero if the DF_QUIET flag is set on the device
2359 */
2360 int
device_is_quiet(device_t dev)2361 device_is_quiet(device_t dev)
2362 {
2363 return ((dev->flags & DF_QUIET) != 0);
2364 }
2365
2366 /**
2367 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2368 */
2369 int
device_is_enabled(device_t dev)2370 device_is_enabled(device_t dev)
2371 {
2372 return ((dev->flags & DF_ENABLED) != 0);
2373 }
2374
2375 /**
2376 * @brief Return non-zero if the device was successfully probed
2377 */
2378 int
device_is_alive(device_t dev)2379 device_is_alive(device_t dev)
2380 {
2381 return (dev->state >= DS_ALIVE);
2382 }
2383
2384 /**
2385 * @brief Return non-zero if the device currently has a driver
2386 * attached to it
2387 */
2388 int
device_is_attached(device_t dev)2389 device_is_attached(device_t dev)
2390 {
2391 return (dev->state >= DS_ATTACHED);
2392 }
2393
2394 /**
2395 * @brief Return non-zero if the device is currently suspended.
2396 */
2397 int
device_is_suspended(device_t dev)2398 device_is_suspended(device_t dev)
2399 {
2400 return ((dev->flags & DF_SUSPENDED) != 0);
2401 }
2402
2403 /**
2404 * @brief Set the devclass of a device
2405 * @see devclass_add_device().
2406 */
2407 int
device_set_devclass(device_t dev,const char * classname)2408 device_set_devclass(device_t dev, const char *classname)
2409 {
2410 devclass_t dc;
2411 int error;
2412
2413 if (!classname) {
2414 if (dev->devclass)
2415 devclass_delete_device(dev->devclass, dev);
2416 return (0);
2417 }
2418
2419 if (dev->devclass) {
2420 printf("device_set_devclass: device class already set\n");
2421 return (EINVAL);
2422 }
2423
2424 dc = devclass_find_internal(classname, NULL, TRUE);
2425 if (!dc)
2426 return (ENOMEM);
2427
2428 error = devclass_add_device(dc, dev);
2429
2430 bus_data_generation_update();
2431 return (error);
2432 }
2433
2434 /**
2435 * @brief Set the devclass of a device and mark the devclass fixed.
2436 * @see device_set_devclass()
2437 */
2438 int
device_set_devclass_fixed(device_t dev,const char * classname)2439 device_set_devclass_fixed(device_t dev, const char *classname)
2440 {
2441 int error;
2442
2443 if (classname == NULL)
2444 return (EINVAL);
2445
2446 error = device_set_devclass(dev, classname);
2447 if (error)
2448 return (error);
2449 dev->flags |= DF_FIXEDCLASS;
2450 return (0);
2451 }
2452
2453 /**
2454 * @brief Query the device to determine if it's of a fixed devclass
2455 * @see device_set_devclass_fixed()
2456 */
2457 bool
device_is_devclass_fixed(device_t dev)2458 device_is_devclass_fixed(device_t dev)
2459 {
2460 return ((dev->flags & DF_FIXEDCLASS) != 0);
2461 }
2462
2463 /**
2464 * @brief Set the driver of a device
2465 *
2466 * @retval 0 success
2467 * @retval EBUSY the device already has a driver attached
2468 * @retval ENOMEM a memory allocation failure occurred
2469 */
2470 int
device_set_driver(device_t dev,driver_t * driver)2471 device_set_driver(device_t dev, driver_t *driver)
2472 {
2473 int domain;
2474 struct domainset *policy;
2475
2476 if (dev->state >= DS_ATTACHED)
2477 return (EBUSY);
2478
2479 if (dev->driver == driver)
2480 return (0);
2481
2482 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2483 free(dev->softc, M_BUS_SC);
2484 dev->softc = NULL;
2485 }
2486 device_set_desc(dev, NULL);
2487 kobj_delete((kobj_t) dev, NULL);
2488 dev->driver = driver;
2489 if (driver) {
2490 kobj_init((kobj_t) dev, (kobj_class_t) driver);
2491 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2492 if (bus_get_domain(dev, &domain) == 0)
2493 policy = DOMAINSET_PREF(domain);
2494 else
2495 policy = DOMAINSET_RR();
2496 dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2497 policy, M_WAITOK | M_ZERO);
2498 }
2499 } else {
2500 kobj_init((kobj_t) dev, &null_class);
2501 }
2502
2503 bus_data_generation_update();
2504 return (0);
2505 }
2506
2507 /**
2508 * @brief Probe a device, and return this status.
2509 *
2510 * This function is the core of the device autoconfiguration
2511 * system. Its purpose is to select a suitable driver for a device and
2512 * then call that driver to initialise the hardware appropriately. The
2513 * driver is selected by calling the DEVICE_PROBE() method of a set of
2514 * candidate drivers and then choosing the driver which returned the
2515 * best value. This driver is then attached to the device using
2516 * device_attach().
2517 *
2518 * The set of suitable drivers is taken from the list of drivers in
2519 * the parent device's devclass. If the device was originally created
2520 * with a specific class name (see device_add_child()), only drivers
2521 * with that name are probed, otherwise all drivers in the devclass
2522 * are probed. If no drivers return successful probe values in the
2523 * parent devclass, the search continues in the parent of that
2524 * devclass (see devclass_get_parent()) if any.
2525 *
2526 * @param dev the device to initialise
2527 *
2528 * @retval 0 success
2529 * @retval ENXIO no driver was found
2530 * @retval ENOMEM memory allocation failure
2531 * @retval non-zero some other unix error code
2532 * @retval -1 Device already attached
2533 */
2534 int
device_probe(device_t dev)2535 device_probe(device_t dev)
2536 {
2537 int error;
2538
2539 bus_topo_assert();
2540
2541 if (dev->state >= DS_ALIVE)
2542 return (-1);
2543
2544 if (!(dev->flags & DF_ENABLED)) {
2545 if (bootverbose && device_get_name(dev) != NULL) {
2546 device_print_prettyname(dev);
2547 printf("not probed (disabled)\n");
2548 }
2549 return (-1);
2550 }
2551 if ((error = device_probe_child(dev->parent, dev)) != 0) {
2552 if (bus_current_pass == BUS_PASS_DEFAULT &&
2553 !(dev->flags & DF_DONENOMATCH)) {
2554 device_handle_nomatch(dev);
2555 }
2556 return (error);
2557 }
2558 return (0);
2559 }
2560
2561 /**
2562 * @brief Probe a device and attach a driver if possible
2563 *
2564 * calls device_probe() and attaches if that was successful.
2565 */
2566 int
device_probe_and_attach(device_t dev)2567 device_probe_and_attach(device_t dev)
2568 {
2569 int error;
2570
2571 bus_topo_assert();
2572
2573 error = device_probe(dev);
2574 if (error == -1)
2575 return (0);
2576 else if (error != 0)
2577 return (error);
2578
2579 return (device_attach(dev));
2580 }
2581
2582 /**
2583 * @brief Attach a device driver to a device
2584 *
2585 * This function is a wrapper around the DEVICE_ATTACH() driver
2586 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2587 * device's sysctl tree, optionally prints a description of the device
2588 * and queues a notification event for user-based device management
2589 * services.
2590 *
2591 * Normally this function is only called internally from
2592 * device_probe_and_attach().
2593 *
2594 * @param dev the device to initialise
2595 *
2596 * @retval 0 success
2597 * @retval ENXIO no driver was found
2598 * @retval ENOMEM memory allocation failure
2599 * @retval non-zero some other unix error code
2600 */
2601 int
device_attach(device_t dev)2602 device_attach(device_t dev)
2603 {
2604 uint64_t attachtime;
2605 uint16_t attachentropy;
2606 int error;
2607
2608 if (resource_disabled(dev->driver->name, dev->unit)) {
2609 /*
2610 * Mostly detach the device, but leave it attached to
2611 * the devclass to reserve the name and unit.
2612 */
2613 device_disable(dev);
2614 (void)device_set_driver(dev, NULL);
2615 dev->state = DS_NOTPRESENT;
2616 if (bootverbose)
2617 device_printf(dev, "disabled via hints entry\n");
2618 return (ENXIO);
2619 }
2620
2621 KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)),
2622 ("device_attach: curthread is not in default vnet"));
2623 CURVNET_SET_QUIET(TD_TO_VNET(curthread));
2624
2625 device_sysctl_init(dev);
2626 if (!device_is_quiet(dev))
2627 device_print_child(dev->parent, dev);
2628 attachtime = get_cyclecount();
2629 dev->state = DS_ATTACHING;
2630 if ((error = DEVICE_ATTACH(dev)) != 0) {
2631 printf("device_attach: %s%d attach returned %d\n",
2632 dev->driver->name, dev->unit, error);
2633 BUS_CHILD_DETACHED(dev->parent, dev);
2634 if (disable_failed_devs) {
2635 /*
2636 * When the user has asked to disable failed devices, we
2637 * directly disable the device, but leave it in the
2638 * attaching state. It will not try to probe/attach the
2639 * device further. This leaves the device numbering
2640 * intact for other similar devices in the system. It
2641 * can be removed from this state with devctl.
2642 */
2643 device_disable(dev);
2644 } else {
2645 /*
2646 * Otherwise, when attach fails, tear down the state
2647 * around that so we can retry when, for example, new
2648 * drivers are loaded.
2649 */
2650 if (!(dev->flags & DF_FIXEDCLASS))
2651 devclass_delete_device(dev->devclass, dev);
2652 (void)device_set_driver(dev, NULL);
2653 device_sysctl_fini(dev);
2654 KASSERT(dev->busy == 0, ("attach failed but busy"));
2655 dev->state = DS_NOTPRESENT;
2656 }
2657 CURVNET_RESTORE();
2658 return (error);
2659 }
2660 CURVNET_RESTORE();
2661 dev->flags |= DF_ATTACHED_ONCE;
2662 /*
2663 * We only need the low bits of this time, but ranges from tens to thousands
2664 * have been seen, so keep 2 bytes' worth.
2665 */
2666 attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2667 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2668 device_sysctl_update(dev);
2669 dev->state = DS_ATTACHED;
2670 dev->flags &= ~DF_DONENOMATCH;
2671 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2672 return (0);
2673 }
2674
2675 /**
2676 * @brief Detach a driver from a device
2677 *
2678 * This function is a wrapper around the DEVICE_DETACH() driver
2679 * method. If the call to DEVICE_DETACH() succeeds, it calls
2680 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2681 * notification event for user-based device management services and
2682 * cleans up the device's sysctl tree.
2683 *
2684 * @param dev the device to un-initialise
2685 *
2686 * @retval 0 success
2687 * @retval ENXIO no driver was found
2688 * @retval ENOMEM memory allocation failure
2689 * @retval non-zero some other unix error code
2690 */
2691 int
device_detach(device_t dev)2692 device_detach(device_t dev)
2693 {
2694 int error;
2695
2696 bus_topo_assert();
2697
2698 PDEBUG(("%s", DEVICENAME(dev)));
2699 if (dev->busy > 0)
2700 return (EBUSY);
2701 if (dev->state == DS_ATTACHING) {
2702 device_printf(dev, "device in attaching state! Deferring detach.\n");
2703 return (EBUSY);
2704 }
2705 if (dev->state != DS_ATTACHED)
2706 return (0);
2707
2708 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2709 if ((error = DEVICE_DETACH(dev)) != 0) {
2710 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2711 EVHDEV_DETACH_FAILED);
2712 return (error);
2713 } else {
2714 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2715 EVHDEV_DETACH_COMPLETE);
2716 }
2717 if (!device_is_quiet(dev))
2718 device_printf(dev, "detached\n");
2719 if (dev->parent)
2720 BUS_CHILD_DETACHED(dev->parent, dev);
2721
2722 if (!(dev->flags & DF_FIXEDCLASS))
2723 devclass_delete_device(dev->devclass, dev);
2724
2725 device_verbose(dev);
2726 dev->state = DS_NOTPRESENT;
2727 (void)device_set_driver(dev, NULL);
2728 device_sysctl_fini(dev);
2729
2730 return (0);
2731 }
2732
2733 /**
2734 * @brief Tells a driver to quiesce itself.
2735 *
2736 * This function is a wrapper around the DEVICE_QUIESCE() driver
2737 * method. If the call to DEVICE_QUIESCE() succeeds.
2738 *
2739 * @param dev the device to quiesce
2740 *
2741 * @retval 0 success
2742 * @retval ENXIO no driver was found
2743 * @retval ENOMEM memory allocation failure
2744 * @retval non-zero some other unix error code
2745 */
2746 int
device_quiesce(device_t dev)2747 device_quiesce(device_t dev)
2748 {
2749 PDEBUG(("%s", DEVICENAME(dev)));
2750 if (dev->busy > 0)
2751 return (EBUSY);
2752 if (dev->state != DS_ATTACHED)
2753 return (0);
2754
2755 return (DEVICE_QUIESCE(dev));
2756 }
2757
2758 /**
2759 * @brief Notify a device of system shutdown
2760 *
2761 * This function calls the DEVICE_SHUTDOWN() driver method if the
2762 * device currently has an attached driver.
2763 *
2764 * @returns the value returned by DEVICE_SHUTDOWN()
2765 */
2766 int
device_shutdown(device_t dev)2767 device_shutdown(device_t dev)
2768 {
2769 if (dev->state < DS_ATTACHED)
2770 return (0);
2771 return (DEVICE_SHUTDOWN(dev));
2772 }
2773
2774 /**
2775 * @brief Set the unit number of a device
2776 *
2777 * This function can be used to override the unit number used for a
2778 * device (e.g. to wire a device to a pre-configured unit number).
2779 */
2780 int
device_set_unit(device_t dev,int unit)2781 device_set_unit(device_t dev, int unit)
2782 {
2783 devclass_t dc;
2784 int err;
2785
2786 if (unit == dev->unit)
2787 return (0);
2788 dc = device_get_devclass(dev);
2789 if (unit < dc->maxunit && dc->devices[unit])
2790 return (EBUSY);
2791 err = devclass_delete_device(dc, dev);
2792 if (err)
2793 return (err);
2794 dev->unit = unit;
2795 err = devclass_add_device(dc, dev);
2796 if (err)
2797 return (err);
2798
2799 bus_data_generation_update();
2800 return (0);
2801 }
2802
2803 /*======================================*/
2804 /*
2805 * Some useful method implementations to make life easier for bus drivers.
2806 */
2807
2808 /**
2809 * @brief Initialize a resource mapping request
2810 *
2811 * This is the internal implementation of the public API
2812 * resource_init_map_request. Callers may be using a different layout
2813 * of struct resource_map_request than the kernel, so callers pass in
2814 * the size of the structure they are using to identify the structure
2815 * layout.
2816 */
2817 void
resource_init_map_request_impl(struct resource_map_request * args,size_t sz)2818 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2819 {
2820 bzero(args, sz);
2821 args->size = sz;
2822 args->memattr = VM_MEMATTR_DEVICE;
2823 }
2824
2825 /**
2826 * @brief Validate a resource mapping request
2827 *
2828 * Translate a device driver's mapping request (@p in) to a struct
2829 * resource_map_request using the current structure layout (@p out).
2830 * In addition, validate the offset and length from the mapping
2831 * request against the bounds of the resource @p r. If the offset or
2832 * length are invalid, fail with EINVAL. If the offset and length are
2833 * valid, the absolute starting address of the requested mapping is
2834 * returned in @p startp and the length of the requested mapping is
2835 * returned in @p lengthp.
2836 */
2837 int
resource_validate_map_request(struct resource * r,struct resource_map_request * in,struct resource_map_request * out,rman_res_t * startp,rman_res_t * lengthp)2838 resource_validate_map_request(struct resource *r,
2839 struct resource_map_request *in, struct resource_map_request *out,
2840 rman_res_t *startp, rman_res_t *lengthp)
2841 {
2842 rman_res_t end, length, start;
2843
2844 /*
2845 * This assumes that any callers of this function are compiled
2846 * into the kernel and use the same version of the structure
2847 * as this file.
2848 */
2849 MPASS(out->size == sizeof(struct resource_map_request));
2850
2851 if (in != NULL)
2852 bcopy(in, out, imin(in->size, out->size));
2853 start = rman_get_start(r) + out->offset;
2854 if (out->length == 0)
2855 length = rman_get_size(r);
2856 else
2857 length = out->length;
2858 end = start + length - 1;
2859 if (start > rman_get_end(r) || start < rman_get_start(r))
2860 return (EINVAL);
2861 if (end > rman_get_end(r) || end < start)
2862 return (EINVAL);
2863 *lengthp = length;
2864 *startp = start;
2865 return (0);
2866 }
2867
2868 /**
2869 * @brief Initialise a resource list.
2870 *
2871 * @param rl the resource list to initialise
2872 */
2873 void
resource_list_init(struct resource_list * rl)2874 resource_list_init(struct resource_list *rl)
2875 {
2876 STAILQ_INIT(rl);
2877 }
2878
2879 /**
2880 * @brief Reclaim memory used by a resource list.
2881 *
2882 * This function frees the memory for all resource entries on the list
2883 * (if any).
2884 *
2885 * @param rl the resource list to free
2886 */
2887 void
resource_list_free(struct resource_list * rl)2888 resource_list_free(struct resource_list *rl)
2889 {
2890 struct resource_list_entry *rle;
2891
2892 while ((rle = STAILQ_FIRST(rl)) != NULL) {
2893 if (rle->res)
2894 panic("resource_list_free: resource entry is busy");
2895 STAILQ_REMOVE_HEAD(rl, link);
2896 free(rle, M_BUS);
2897 }
2898 }
2899
2900 /**
2901 * @brief Add a resource entry.
2902 *
2903 * This function adds a resource entry using the given @p type, @p
2904 * start, @p end and @p count values. A rid value is chosen by
2905 * searching sequentially for the first unused rid starting at zero.
2906 *
2907 * @param rl the resource list to edit
2908 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2909 * @param start the start address of the resource
2910 * @param end the end address of the resource
2911 * @param count XXX end-start+1
2912 */
2913 int
resource_list_add_next(struct resource_list * rl,int type,rman_res_t start,rman_res_t end,rman_res_t count)2914 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2915 rman_res_t end, rman_res_t count)
2916 {
2917 int rid;
2918
2919 rid = 0;
2920 while (resource_list_find(rl, type, rid) != NULL)
2921 rid++;
2922 resource_list_add(rl, type, rid, start, end, count);
2923 return (rid);
2924 }
2925
2926 /**
2927 * @brief Add or modify a resource entry.
2928 *
2929 * If an existing entry exists with the same type and rid, it will be
2930 * modified using the given values of @p start, @p end and @p
2931 * count. If no entry exists, a new one will be created using the
2932 * given values. The resource list entry that matches is then returned.
2933 *
2934 * @param rl the resource list to edit
2935 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2936 * @param rid the resource identifier
2937 * @param start the start address of the resource
2938 * @param end the end address of the resource
2939 * @param count XXX end-start+1
2940 */
2941 struct resource_list_entry *
resource_list_add(struct resource_list * rl,int type,int rid,rman_res_t start,rman_res_t end,rman_res_t count)2942 resource_list_add(struct resource_list *rl, int type, int rid,
2943 rman_res_t start, rman_res_t end, rman_res_t count)
2944 {
2945 struct resource_list_entry *rle;
2946
2947 rle = resource_list_find(rl, type, rid);
2948 if (!rle) {
2949 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2950 M_WAITOK);
2951 STAILQ_INSERT_TAIL(rl, rle, link);
2952 rle->type = type;
2953 rle->rid = rid;
2954 rle->res = NULL;
2955 rle->flags = 0;
2956 }
2957
2958 if (rle->res)
2959 panic("resource_list_add: resource entry is busy");
2960
2961 rle->start = start;
2962 rle->end = end;
2963 rle->count = count;
2964 return (rle);
2965 }
2966
2967 /**
2968 * @brief Determine if a resource entry is busy.
2969 *
2970 * Returns true if a resource entry is busy meaning that it has an
2971 * associated resource that is not an unallocated "reserved" resource.
2972 *
2973 * @param rl the resource list to search
2974 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2975 * @param rid the resource identifier
2976 *
2977 * @returns Non-zero if the entry is busy, zero otherwise.
2978 */
2979 int
resource_list_busy(struct resource_list * rl,int type,int rid)2980 resource_list_busy(struct resource_list *rl, int type, int rid)
2981 {
2982 struct resource_list_entry *rle;
2983
2984 rle = resource_list_find(rl, type, rid);
2985 if (rle == NULL || rle->res == NULL)
2986 return (0);
2987 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2988 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2989 ("reserved resource is active"));
2990 return (0);
2991 }
2992 return (1);
2993 }
2994
2995 /**
2996 * @brief Determine if a resource entry is reserved.
2997 *
2998 * Returns true if a resource entry is reserved meaning that it has an
2999 * associated "reserved" resource. The resource can either be
3000 * allocated or unallocated.
3001 *
3002 * @param rl the resource list to search
3003 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
3004 * @param rid the resource identifier
3005 *
3006 * @returns Non-zero if the entry is reserved, zero otherwise.
3007 */
3008 int
resource_list_reserved(struct resource_list * rl,int type,int rid)3009 resource_list_reserved(struct resource_list *rl, int type, int rid)
3010 {
3011 struct resource_list_entry *rle;
3012
3013 rle = resource_list_find(rl, type, rid);
3014 if (rle != NULL && rle->flags & RLE_RESERVED)
3015 return (1);
3016 return (0);
3017 }
3018
3019 /**
3020 * @brief Find a resource entry by type and rid.
3021 *
3022 * @param rl the resource list to search
3023 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
3024 * @param rid the resource identifier
3025 *
3026 * @returns the resource entry pointer or NULL if there is no such
3027 * entry.
3028 */
3029 struct resource_list_entry *
resource_list_find(struct resource_list * rl,int type,int rid)3030 resource_list_find(struct resource_list *rl, int type, int rid)
3031 {
3032 struct resource_list_entry *rle;
3033
3034 STAILQ_FOREACH(rle, rl, link) {
3035 if (rle->type == type && rle->rid == rid)
3036 return (rle);
3037 }
3038 return (NULL);
3039 }
3040
3041 /**
3042 * @brief Delete a resource entry.
3043 *
3044 * @param rl the resource list to edit
3045 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
3046 * @param rid the resource identifier
3047 */
3048 void
resource_list_delete(struct resource_list * rl,int type,int rid)3049 resource_list_delete(struct resource_list *rl, int type, int rid)
3050 {
3051 struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3052
3053 if (rle) {
3054 if (rle->res != NULL)
3055 panic("resource_list_delete: resource has not been released");
3056 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3057 free(rle, M_BUS);
3058 }
3059 }
3060
3061 /**
3062 * @brief Allocate a reserved resource
3063 *
3064 * This can be used by buses to force the allocation of resources
3065 * that are always active in the system even if they are not allocated
3066 * by a driver (e.g. PCI BARs). This function is usually called when
3067 * adding a new child to the bus. The resource is allocated from the
3068 * parent bus when it is reserved. The resource list entry is marked
3069 * with RLE_RESERVED to note that it is a reserved resource.
3070 *
3071 * Subsequent attempts to allocate the resource with
3072 * resource_list_alloc() will succeed the first time and will set
3073 * RLE_ALLOCATED to note that it has been allocated. When a reserved
3074 * resource that has been allocated is released with
3075 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3076 * the actual resource remains allocated. The resource can be released to
3077 * the parent bus by calling resource_list_unreserve().
3078 *
3079 * @param rl the resource list to allocate from
3080 * @param bus the parent device of @p child
3081 * @param child the device for which the resource is being reserved
3082 * @param type the type of resource to allocate
3083 * @param rid a pointer to the resource identifier
3084 * @param start hint at the start of the resource range - pass
3085 * @c 0 for any start address
3086 * @param end hint at the end of the resource range - pass
3087 * @c ~0 for any end address
3088 * @param count hint at the size of range required - pass @c 1
3089 * for any size
3090 * @param flags any extra flags to control the resource
3091 * allocation - see @c RF_XXX flags in
3092 * <sys/rman.h> for details
3093 *
3094 * @returns the resource which was allocated or @c NULL if no
3095 * resource could be allocated
3096 */
3097 struct resource *
resource_list_reserve(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3098 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3099 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3100 {
3101 struct resource_list_entry *rle = NULL;
3102 int passthrough = (device_get_parent(child) != bus);
3103 struct resource *r;
3104
3105 if (passthrough)
3106 panic(
3107 "resource_list_reserve() should only be called for direct children");
3108 if (flags & RF_ACTIVE)
3109 panic(
3110 "resource_list_reserve() should only reserve inactive resources");
3111
3112 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3113 flags);
3114 if (r != NULL) {
3115 rle = resource_list_find(rl, type, *rid);
3116 rle->flags |= RLE_RESERVED;
3117 }
3118 return (r);
3119 }
3120
3121 /**
3122 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3123 *
3124 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3125 * and passing the allocation up to the parent of @p bus. This assumes
3126 * that the first entry of @c device_get_ivars(child) is a struct
3127 * resource_list. This also handles 'passthrough' allocations where a
3128 * child is a remote descendant of bus by passing the allocation up to
3129 * the parent of bus.
3130 *
3131 * Typically, a bus driver would store a list of child resources
3132 * somewhere in the child device's ivars (see device_get_ivars()) and
3133 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3134 * then call resource_list_alloc() to perform the allocation.
3135 *
3136 * @param rl the resource list to allocate from
3137 * @param bus the parent device of @p child
3138 * @param child the device which is requesting an allocation
3139 * @param type the type of resource to allocate
3140 * @param rid a pointer to the resource identifier
3141 * @param start hint at the start of the resource range - pass
3142 * @c 0 for any start address
3143 * @param end hint at the end of the resource range - pass
3144 * @c ~0 for any end address
3145 * @param count hint at the size of range required - pass @c 1
3146 * for any size
3147 * @param flags any extra flags to control the resource
3148 * allocation - see @c RF_XXX flags in
3149 * <sys/rman.h> for details
3150 *
3151 * @returns the resource which was allocated or @c NULL if no
3152 * resource could be allocated
3153 */
3154 struct resource *
resource_list_alloc(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3155 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3156 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3157 {
3158 struct resource_list_entry *rle = NULL;
3159 int passthrough = (device_get_parent(child) != bus);
3160 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3161
3162 if (passthrough) {
3163 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3164 type, rid, start, end, count, flags));
3165 }
3166
3167 rle = resource_list_find(rl, type, *rid);
3168
3169 if (!rle)
3170 return (NULL); /* no resource of that type/rid */
3171
3172 if (rle->res) {
3173 if (rle->flags & RLE_RESERVED) {
3174 if (rle->flags & RLE_ALLOCATED)
3175 return (NULL);
3176 if ((flags & RF_ACTIVE) &&
3177 bus_activate_resource(child, type, *rid,
3178 rle->res) != 0)
3179 return (NULL);
3180 rle->flags |= RLE_ALLOCATED;
3181 return (rle->res);
3182 }
3183 device_printf(bus,
3184 "resource entry %#x type %d for child %s is busy\n", *rid,
3185 type, device_get_nameunit(child));
3186 return (NULL);
3187 }
3188
3189 if (isdefault) {
3190 start = rle->start;
3191 count = ulmax(count, rle->count);
3192 end = ulmax(rle->end, start + count - 1);
3193 }
3194
3195 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3196 type, rid, start, end, count, flags);
3197
3198 /*
3199 * Record the new range.
3200 */
3201 if (rle->res) {
3202 rle->start = rman_get_start(rle->res);
3203 rle->end = rman_get_end(rle->res);
3204 rle->count = count;
3205 }
3206
3207 return (rle->res);
3208 }
3209
3210 /**
3211 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3212 *
3213 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3214 * used with resource_list_alloc().
3215 *
3216 * @param rl the resource list which was allocated from
3217 * @param bus the parent device of @p child
3218 * @param child the device which is requesting a release
3219 * @param res the resource to release
3220 *
3221 * @retval 0 success
3222 * @retval non-zero a standard unix error code indicating what
3223 * error condition prevented the operation
3224 */
3225 int
resource_list_release(struct resource_list * rl,device_t bus,device_t child,struct resource * res)3226 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3227 struct resource *res)
3228 {
3229 struct resource_list_entry *rle = NULL;
3230 int passthrough = (device_get_parent(child) != bus);
3231 int error;
3232
3233 if (passthrough) {
3234 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3235 res));
3236 }
3237
3238 rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res));
3239
3240 if (!rle)
3241 panic("resource_list_release: can't find resource");
3242 if (!rle->res)
3243 panic("resource_list_release: resource entry is not busy");
3244 if (rle->flags & RLE_RESERVED) {
3245 if (rle->flags & RLE_ALLOCATED) {
3246 if (rman_get_flags(res) & RF_ACTIVE) {
3247 error = bus_deactivate_resource(child, res);
3248 if (error)
3249 return (error);
3250 }
3251 rle->flags &= ~RLE_ALLOCATED;
3252 return (0);
3253 }
3254 return (EINVAL);
3255 }
3256
3257 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res);
3258 if (error)
3259 return (error);
3260
3261 rle->res = NULL;
3262 return (0);
3263 }
3264
3265 /**
3266 * @brief Release all active resources of a given type
3267 *
3268 * Release all active resources of a specified type. This is intended
3269 * to be used to cleanup resources leaked by a driver after detach or
3270 * a failed attach.
3271 *
3272 * @param rl the resource list which was allocated from
3273 * @param bus the parent device of @p child
3274 * @param child the device whose active resources are being released
3275 * @param type the type of resources to release
3276 *
3277 * @retval 0 success
3278 * @retval EBUSY at least one resource was active
3279 */
3280 int
resource_list_release_active(struct resource_list * rl,device_t bus,device_t child,int type)3281 resource_list_release_active(struct resource_list *rl, device_t bus,
3282 device_t child, int type)
3283 {
3284 struct resource_list_entry *rle;
3285 int error, retval;
3286
3287 retval = 0;
3288 STAILQ_FOREACH(rle, rl, link) {
3289 if (rle->type != type)
3290 continue;
3291 if (rle->res == NULL)
3292 continue;
3293 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3294 RLE_RESERVED)
3295 continue;
3296 retval = EBUSY;
3297 error = resource_list_release(rl, bus, child, rle->res);
3298 if (error != 0)
3299 device_printf(bus,
3300 "Failed to release active resource: %d\n", error);
3301 }
3302 return (retval);
3303 }
3304
3305 /**
3306 * @brief Fully release a reserved resource
3307 *
3308 * Fully releases a resource reserved via resource_list_reserve().
3309 *
3310 * @param rl the resource list which was allocated from
3311 * @param bus the parent device of @p child
3312 * @param child the device whose reserved resource is being released
3313 * @param type the type of resource to release
3314 * @param rid the resource identifier
3315 * @param res the resource to release
3316 *
3317 * @retval 0 success
3318 * @retval non-zero a standard unix error code indicating what
3319 * error condition prevented the operation
3320 */
3321 int
resource_list_unreserve(struct resource_list * rl,device_t bus,device_t child,int type,int rid)3322 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3323 int type, int rid)
3324 {
3325 struct resource_list_entry *rle = NULL;
3326 int passthrough = (device_get_parent(child) != bus);
3327
3328 if (passthrough)
3329 panic(
3330 "resource_list_unreserve() should only be called for direct children");
3331
3332 rle = resource_list_find(rl, type, rid);
3333
3334 if (!rle)
3335 panic("resource_list_unreserve: can't find resource");
3336 if (!(rle->flags & RLE_RESERVED))
3337 return (EINVAL);
3338 if (rle->flags & RLE_ALLOCATED)
3339 return (EBUSY);
3340 rle->flags &= ~RLE_RESERVED;
3341 return (resource_list_release(rl, bus, child, rle->res));
3342 }
3343
3344 /**
3345 * @brief Print a description of resources in a resource list
3346 *
3347 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3348 * The name is printed if at least one resource of the given type is available.
3349 * The format is used to print resource start and end.
3350 *
3351 * @param rl the resource list to print
3352 * @param name the name of @p type, e.g. @c "memory"
3353 * @param type type type of resource entry to print
3354 * @param format printf(9) format string to print resource
3355 * start and end values
3356 *
3357 * @returns the number of characters printed
3358 */
3359 int
resource_list_print_type(struct resource_list * rl,const char * name,int type,const char * format)3360 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3361 const char *format)
3362 {
3363 struct resource_list_entry *rle;
3364 int printed, retval;
3365
3366 printed = 0;
3367 retval = 0;
3368 /* Yes, this is kinda cheating */
3369 STAILQ_FOREACH(rle, rl, link) {
3370 if (rle->type == type) {
3371 if (printed == 0)
3372 retval += printf(" %s ", name);
3373 else
3374 retval += printf(",");
3375 printed++;
3376 retval += printf(format, rle->start);
3377 if (rle->count > 1) {
3378 retval += printf("-");
3379 retval += printf(format, rle->start +
3380 rle->count - 1);
3381 }
3382 }
3383 }
3384 return (retval);
3385 }
3386
3387 /**
3388 * @brief Releases all the resources in a list.
3389 *
3390 * @param rl The resource list to purge.
3391 *
3392 * @returns nothing
3393 */
3394 void
resource_list_purge(struct resource_list * rl)3395 resource_list_purge(struct resource_list *rl)
3396 {
3397 struct resource_list_entry *rle;
3398
3399 while ((rle = STAILQ_FIRST(rl)) != NULL) {
3400 if (rle->res)
3401 bus_release_resource(rman_get_device(rle->res),
3402 rle->type, rle->rid, rle->res);
3403 STAILQ_REMOVE_HEAD(rl, link);
3404 free(rle, M_BUS);
3405 }
3406 }
3407
3408 device_t
bus_generic_add_child(device_t dev,u_int order,const char * name,int unit)3409 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3410 {
3411 return (device_add_child_ordered(dev, order, name, unit));
3412 }
3413
3414 /**
3415 * @brief Helper function for implementing DEVICE_PROBE()
3416 *
3417 * This function can be used to help implement the DEVICE_PROBE() for
3418 * a bus (i.e. a device which has other devices attached to it). It
3419 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3420 * devclass.
3421 */
3422 int
bus_generic_probe(device_t dev)3423 bus_generic_probe(device_t dev)
3424 {
3425 bus_identify_children(dev);
3426 return (0);
3427 }
3428
3429 /**
3430 * @brief Ask drivers to add child devices of the given device.
3431 *
3432 * This function allows drivers for child devices of a bus to identify
3433 * child devices and add them as children of the given device. NB:
3434 * The driver for @param dev must implement the BUS_ADD_CHILD method.
3435 *
3436 * @param dev the parent device
3437 */
3438 void
bus_identify_children(device_t dev)3439 bus_identify_children(device_t dev)
3440 {
3441 devclass_t dc = dev->devclass;
3442 driverlink_t dl;
3443
3444 TAILQ_FOREACH(dl, &dc->drivers, link) {
3445 /*
3446 * If this driver's pass is too high, then ignore it.
3447 * For most drivers in the default pass, this will
3448 * never be true. For early-pass drivers they will
3449 * only call the identify routines of eligible drivers
3450 * when this routine is called. Drivers for later
3451 * passes should have their identify routines called
3452 * on early-pass buses during BUS_NEW_PASS().
3453 */
3454 if (dl->pass > bus_current_pass)
3455 continue;
3456 DEVICE_IDENTIFY(dl->driver, dev);
3457 }
3458 }
3459
3460 /**
3461 * @brief Helper function for implementing DEVICE_ATTACH()
3462 *
3463 * This function can be used to help implement the DEVICE_ATTACH() for
3464 * a bus. It calls device_probe_and_attach() for each of the device's
3465 * children.
3466 */
3467 int
bus_generic_attach(device_t dev)3468 bus_generic_attach(device_t dev)
3469 {
3470 bus_attach_children(dev);
3471 return (0);
3472 }
3473
3474 /**
3475 * @brief Probe and attach all children of the given device
3476 *
3477 * This function attempts to attach a device driver to each unattached
3478 * child of the given device using device_probe_and_attach(). If an
3479 * individual child fails to attach this function continues attaching
3480 * other children.
3481 *
3482 * @param dev the parent device
3483 */
3484 void
bus_attach_children(device_t dev)3485 bus_attach_children(device_t dev)
3486 {
3487 device_t child;
3488
3489 TAILQ_FOREACH(child, &dev->children, link) {
3490 device_probe_and_attach(child);
3491 }
3492 }
3493
3494 /**
3495 * @brief Helper function for delaying attaching children
3496 *
3497 * Many buses can't run transactions on the bus which children need to probe and
3498 * attach until after interrupts and/or timers are running. This function
3499 * delays their attach until interrupts and timers are enabled.
3500 */
3501 void
bus_delayed_attach_children(device_t dev)3502 bus_delayed_attach_children(device_t dev)
3503 {
3504 /* Probe and attach the bus children when interrupts are available */
3505 config_intrhook_oneshot((ich_func_t)bus_attach_children, dev);
3506 }
3507
3508 /**
3509 * @brief Helper function for implementing DEVICE_DETACH()
3510 *
3511 * This function can be used to help implement the DEVICE_DETACH() for
3512 * a bus. It detaches and deletes all children. If an individual
3513 * child fails to detach, this function stops and returns an error.
3514 *
3515 * @param dev the parent device
3516 *
3517 * @retval 0 success
3518 * @retval non-zero a device would not detach
3519 */
3520 int
bus_generic_detach(device_t dev)3521 bus_generic_detach(device_t dev)
3522 {
3523 int error;
3524
3525 error = bus_detach_children(dev);
3526 if (error != 0)
3527 return (error);
3528
3529 return (device_delete_children(dev));
3530 }
3531
3532 /**
3533 * @brief Detach drivers from all children of a device
3534 *
3535 * This function attempts to detach a device driver from each attached
3536 * child of the given device using device_detach(). If an individual
3537 * child fails to detach this function stops and returns an error.
3538 * NB: Children that were successfully detached are not re-attached if
3539 * an error occurs.
3540 *
3541 * @param dev the parent device
3542 *
3543 * @retval 0 success
3544 * @retval non-zero a device would not detach
3545 */
3546 int
bus_detach_children(device_t dev)3547 bus_detach_children(device_t dev)
3548 {
3549 device_t child;
3550 int error;
3551
3552 /*
3553 * Detach children in the reverse order.
3554 * See bus_generic_suspend for details.
3555 */
3556 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3557 if ((error = device_detach(child)) != 0)
3558 return (error);
3559 }
3560
3561 return (0);
3562 }
3563
3564 /**
3565 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3566 *
3567 * This function can be used to help implement the DEVICE_SHUTDOWN()
3568 * for a bus. It calls device_shutdown() for each of the device's
3569 * children.
3570 */
3571 int
bus_generic_shutdown(device_t dev)3572 bus_generic_shutdown(device_t dev)
3573 {
3574 device_t child;
3575
3576 /*
3577 * Shut down children in the reverse order.
3578 * See bus_generic_suspend for details.
3579 */
3580 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3581 device_shutdown(child);
3582 }
3583
3584 return (0);
3585 }
3586
3587 /**
3588 * @brief Default function for suspending a child device.
3589 *
3590 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3591 */
3592 int
bus_generic_suspend_child(device_t dev,device_t child)3593 bus_generic_suspend_child(device_t dev, device_t child)
3594 {
3595 int error;
3596
3597 error = DEVICE_SUSPEND(child);
3598
3599 if (error == 0) {
3600 child->flags |= DF_SUSPENDED;
3601 } else {
3602 printf("DEVICE_SUSPEND(%s) failed: %d\n",
3603 device_get_nameunit(child), error);
3604 }
3605
3606 return (error);
3607 }
3608
3609 /**
3610 * @brief Default function for resuming a child device.
3611 *
3612 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3613 */
3614 int
bus_generic_resume_child(device_t dev,device_t child)3615 bus_generic_resume_child(device_t dev, device_t child)
3616 {
3617 DEVICE_RESUME(child);
3618 child->flags &= ~DF_SUSPENDED;
3619
3620 return (0);
3621 }
3622
3623 /**
3624 * @brief Helper function for implementing DEVICE_SUSPEND()
3625 *
3626 * This function can be used to help implement the DEVICE_SUSPEND()
3627 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3628 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3629 * operation is aborted and any devices which were suspended are
3630 * resumed immediately by calling their DEVICE_RESUME() methods.
3631 */
3632 int
bus_generic_suspend(device_t dev)3633 bus_generic_suspend(device_t dev)
3634 {
3635 int error;
3636 device_t child;
3637
3638 /*
3639 * Suspend children in the reverse order.
3640 * For most buses all children are equal, so the order does not matter.
3641 * Other buses, such as acpi, carefully order their child devices to
3642 * express implicit dependencies between them. For such buses it is
3643 * safer to bring down devices in the reverse order.
3644 */
3645 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3646 error = BUS_SUSPEND_CHILD(dev, child);
3647 if (error != 0) {
3648 child = TAILQ_NEXT(child, link);
3649 if (child != NULL) {
3650 TAILQ_FOREACH_FROM(child, &dev->children, link)
3651 BUS_RESUME_CHILD(dev, child);
3652 }
3653 return (error);
3654 }
3655 }
3656 return (0);
3657 }
3658
3659 /**
3660 * @brief Helper function for implementing DEVICE_RESUME()
3661 *
3662 * This function can be used to help implement the DEVICE_RESUME() for
3663 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3664 */
3665 int
bus_generic_resume(device_t dev)3666 bus_generic_resume(device_t dev)
3667 {
3668 device_t child;
3669
3670 TAILQ_FOREACH(child, &dev->children, link) {
3671 BUS_RESUME_CHILD(dev, child);
3672 /* if resume fails, there's nothing we can usefully do... */
3673 }
3674 return (0);
3675 }
3676
3677 /**
3678 * @brief Helper function for implementing BUS_RESET_POST
3679 *
3680 * Bus can use this function to implement common operations of
3681 * re-attaching or resuming the children after the bus itself was
3682 * reset, and after restoring bus-unique state of children.
3683 *
3684 * @param dev The bus
3685 * #param flags DEVF_RESET_*
3686 */
3687 int
bus_helper_reset_post(device_t dev,int flags)3688 bus_helper_reset_post(device_t dev, int flags)
3689 {
3690 device_t child;
3691 int error, error1;
3692
3693 error = 0;
3694 TAILQ_FOREACH(child, &dev->children,link) {
3695 BUS_RESET_POST(dev, child);
3696 error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3697 device_probe_and_attach(child) :
3698 BUS_RESUME_CHILD(dev, child);
3699 if (error == 0 && error1 != 0)
3700 error = error1;
3701 }
3702 return (error);
3703 }
3704
3705 static void
bus_helper_reset_prepare_rollback(device_t dev,device_t child,int flags)3706 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3707 {
3708 child = TAILQ_NEXT(child, link);
3709 if (child == NULL)
3710 return;
3711 TAILQ_FOREACH_FROM(child, &dev->children,link) {
3712 BUS_RESET_POST(dev, child);
3713 if ((flags & DEVF_RESET_DETACH) != 0)
3714 device_probe_and_attach(child);
3715 else
3716 BUS_RESUME_CHILD(dev, child);
3717 }
3718 }
3719
3720 /**
3721 * @brief Helper function for implementing BUS_RESET_PREPARE
3722 *
3723 * Bus can use this function to implement common operations of
3724 * detaching or suspending the children before the bus itself is
3725 * reset, and then save bus-unique state of children that must
3726 * persists around reset.
3727 *
3728 * @param dev The bus
3729 * #param flags DEVF_RESET_*
3730 */
3731 int
bus_helper_reset_prepare(device_t dev,int flags)3732 bus_helper_reset_prepare(device_t dev, int flags)
3733 {
3734 device_t child;
3735 int error;
3736
3737 if (dev->state != DS_ATTACHED)
3738 return (EBUSY);
3739
3740 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3741 if ((flags & DEVF_RESET_DETACH) != 0) {
3742 error = device_get_state(child) == DS_ATTACHED ?
3743 device_detach(child) : 0;
3744 } else {
3745 error = BUS_SUSPEND_CHILD(dev, child);
3746 }
3747 if (error == 0) {
3748 error = BUS_RESET_PREPARE(dev, child);
3749 if (error != 0) {
3750 if ((flags & DEVF_RESET_DETACH) != 0)
3751 device_probe_and_attach(child);
3752 else
3753 BUS_RESUME_CHILD(dev, child);
3754 }
3755 }
3756 if (error != 0) {
3757 bus_helper_reset_prepare_rollback(dev, child, flags);
3758 return (error);
3759 }
3760 }
3761 return (0);
3762 }
3763
3764 /**
3765 * @brief Helper function for implementing BUS_PRINT_CHILD().
3766 *
3767 * This function prints the first part of the ascii representation of
3768 * @p child, including its name, unit and description (if any - see
3769 * device_set_desc()).
3770 *
3771 * @returns the number of characters printed
3772 */
3773 int
bus_print_child_header(device_t dev,device_t child)3774 bus_print_child_header(device_t dev, device_t child)
3775 {
3776 int retval = 0;
3777
3778 if (device_get_desc(child)) {
3779 retval += device_printf(child, "<%s>", device_get_desc(child));
3780 } else {
3781 retval += printf("%s", device_get_nameunit(child));
3782 }
3783
3784 return (retval);
3785 }
3786
3787 /**
3788 * @brief Helper function for implementing BUS_PRINT_CHILD().
3789 *
3790 * This function prints the last part of the ascii representation of
3791 * @p child, which consists of the string @c " on " followed by the
3792 * name and unit of the @p dev.
3793 *
3794 * @returns the number of characters printed
3795 */
3796 int
bus_print_child_footer(device_t dev,device_t child)3797 bus_print_child_footer(device_t dev, device_t child)
3798 {
3799 return (printf(" on %s\n", device_get_nameunit(dev)));
3800 }
3801
3802 /**
3803 * @brief Helper function for implementing BUS_PRINT_CHILD().
3804 *
3805 * This function prints out the VM domain for the given device.
3806 *
3807 * @returns the number of characters printed
3808 */
3809 int
bus_print_child_domain(device_t dev,device_t child)3810 bus_print_child_domain(device_t dev, device_t child)
3811 {
3812 int domain;
3813
3814 /* No domain? Don't print anything */
3815 if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3816 return (0);
3817
3818 return (printf(" numa-domain %d", domain));
3819 }
3820
3821 /**
3822 * @brief Helper function for implementing BUS_PRINT_CHILD().
3823 *
3824 * This function simply calls bus_print_child_header() followed by
3825 * bus_print_child_footer().
3826 *
3827 * @returns the number of characters printed
3828 */
3829 int
bus_generic_print_child(device_t dev,device_t child)3830 bus_generic_print_child(device_t dev, device_t child)
3831 {
3832 int retval = 0;
3833
3834 retval += bus_print_child_header(dev, child);
3835 retval += bus_print_child_domain(dev, child);
3836 retval += bus_print_child_footer(dev, child);
3837
3838 return (retval);
3839 }
3840
3841 /**
3842 * @brief Stub function for implementing BUS_READ_IVAR().
3843 *
3844 * @returns ENOENT
3845 */
3846 int
bus_generic_read_ivar(device_t dev,device_t child,int index,uintptr_t * result)3847 bus_generic_read_ivar(device_t dev, device_t child, int index,
3848 uintptr_t * result)
3849 {
3850 return (ENOENT);
3851 }
3852
3853 /**
3854 * @brief Stub function for implementing BUS_WRITE_IVAR().
3855 *
3856 * @returns ENOENT
3857 */
3858 int
bus_generic_write_ivar(device_t dev,device_t child,int index,uintptr_t value)3859 bus_generic_write_ivar(device_t dev, device_t child, int index,
3860 uintptr_t value)
3861 {
3862 return (ENOENT);
3863 }
3864
3865 /**
3866 * @brief Helper function for implementing BUS_GET_PROPERTY().
3867 *
3868 * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3869 * until a non-default implementation is found.
3870 */
3871 ssize_t
bus_generic_get_property(device_t dev,device_t child,const char * propname,void * propvalue,size_t size,device_property_type_t type)3872 bus_generic_get_property(device_t dev, device_t child, const char *propname,
3873 void *propvalue, size_t size, device_property_type_t type)
3874 {
3875 if (device_get_parent(dev) != NULL)
3876 return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3877 propname, propvalue, size, type));
3878
3879 return (-1);
3880 }
3881
3882 /**
3883 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3884 *
3885 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3886 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3887 * and then calls device_probe_and_attach() for each unattached child.
3888 */
3889 void
bus_generic_driver_added(device_t dev,driver_t * driver)3890 bus_generic_driver_added(device_t dev, driver_t *driver)
3891 {
3892 device_t child;
3893
3894 DEVICE_IDENTIFY(driver, dev);
3895 TAILQ_FOREACH(child, &dev->children, link) {
3896 if (child->state == DS_NOTPRESENT)
3897 device_probe_and_attach(child);
3898 }
3899 }
3900
3901 /**
3902 * @brief Helper function for implementing BUS_NEW_PASS().
3903 *
3904 * This implementing of BUS_NEW_PASS() first calls the identify
3905 * routines for any drivers that probe at the current pass. Then it
3906 * walks the list of devices for this bus. If a device is already
3907 * attached, then it calls BUS_NEW_PASS() on that device. If the
3908 * device is not already attached, it attempts to attach a driver to
3909 * it.
3910 */
3911 void
bus_generic_new_pass(device_t dev)3912 bus_generic_new_pass(device_t dev)
3913 {
3914 driverlink_t dl;
3915 devclass_t dc;
3916 device_t child;
3917
3918 dc = dev->devclass;
3919 TAILQ_FOREACH(dl, &dc->drivers, link) {
3920 if (dl->pass == bus_current_pass)
3921 DEVICE_IDENTIFY(dl->driver, dev);
3922 }
3923 TAILQ_FOREACH(child, &dev->children, link) {
3924 if (child->state >= DS_ATTACHED)
3925 BUS_NEW_PASS(child);
3926 else if (child->state == DS_NOTPRESENT)
3927 device_probe_and_attach(child);
3928 }
3929 }
3930
3931 /**
3932 * @brief Helper function for implementing BUS_SETUP_INTR().
3933 *
3934 * This simple implementation of BUS_SETUP_INTR() simply calls the
3935 * BUS_SETUP_INTR() method of the parent of @p dev.
3936 */
3937 int
bus_generic_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)3938 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3939 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3940 void **cookiep)
3941 {
3942 /* Propagate up the bus hierarchy until someone handles it. */
3943 if (dev->parent)
3944 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3945 filter, intr, arg, cookiep));
3946 return (EINVAL);
3947 }
3948
3949 /**
3950 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3951 *
3952 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3953 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3954 */
3955 int
bus_generic_teardown_intr(device_t dev,device_t child,struct resource * irq,void * cookie)3956 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3957 void *cookie)
3958 {
3959 /* Propagate up the bus hierarchy until someone handles it. */
3960 if (dev->parent)
3961 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3962 return (EINVAL);
3963 }
3964
3965 /**
3966 * @brief Helper function for implementing BUS_SUSPEND_INTR().
3967 *
3968 * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3969 * BUS_SUSPEND_INTR() method of the parent of @p dev.
3970 */
3971 int
bus_generic_suspend_intr(device_t dev,device_t child,struct resource * irq)3972 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3973 {
3974 /* Propagate up the bus hierarchy until someone handles it. */
3975 if (dev->parent)
3976 return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3977 return (EINVAL);
3978 }
3979
3980 /**
3981 * @brief Helper function for implementing BUS_RESUME_INTR().
3982 *
3983 * This simple implementation of BUS_RESUME_INTR() simply calls the
3984 * BUS_RESUME_INTR() method of the parent of @p dev.
3985 */
3986 int
bus_generic_resume_intr(device_t dev,device_t child,struct resource * irq)3987 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3988 {
3989 /* Propagate up the bus hierarchy until someone handles it. */
3990 if (dev->parent)
3991 return (BUS_RESUME_INTR(dev->parent, child, irq));
3992 return (EINVAL);
3993 }
3994
3995 /**
3996 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3997 *
3998 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3999 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4000 */
4001 int
bus_generic_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)4002 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r,
4003 rman_res_t start, rman_res_t end)
4004 {
4005 /* Propagate up the bus hierarchy until someone handles it. */
4006 if (dev->parent)
4007 return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end));
4008 return (EINVAL);
4009 }
4010
4011 /*
4012 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
4013 *
4014 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
4015 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no
4016 * parent, no translation happens.
4017 */
4018 int
bus_generic_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)4019 bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
4020 rman_res_t *newstart)
4021 {
4022 if (dev->parent)
4023 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
4024 newstart));
4025 *newstart = start;
4026 return (0);
4027 }
4028
4029 /**
4030 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4031 *
4032 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4033 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4034 */
4035 struct resource *
bus_generic_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4036 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4037 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4038 {
4039 /* Propagate up the bus hierarchy until someone handles it. */
4040 if (dev->parent)
4041 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4042 start, end, count, flags));
4043 return (NULL);
4044 }
4045
4046 /**
4047 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4048 *
4049 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4050 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4051 */
4052 int
bus_generic_release_resource(device_t dev,device_t child,struct resource * r)4053 bus_generic_release_resource(device_t dev, device_t child, struct resource *r)
4054 {
4055 /* Propagate up the bus hierarchy until someone handles it. */
4056 if (dev->parent)
4057 return (BUS_RELEASE_RESOURCE(dev->parent, child, r));
4058 return (EINVAL);
4059 }
4060
4061 /**
4062 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4063 *
4064 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4065 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4066 */
4067 int
bus_generic_activate_resource(device_t dev,device_t child,struct resource * r)4068 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r)
4069 {
4070 /* Propagate up the bus hierarchy until someone handles it. */
4071 if (dev->parent)
4072 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r));
4073 return (EINVAL);
4074 }
4075
4076 /**
4077 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4078 *
4079 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4080 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4081 */
4082 int
bus_generic_deactivate_resource(device_t dev,device_t child,struct resource * r)4083 bus_generic_deactivate_resource(device_t dev, device_t child,
4084 struct resource *r)
4085 {
4086 /* Propagate up the bus hierarchy until someone handles it. */
4087 if (dev->parent)
4088 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r));
4089 return (EINVAL);
4090 }
4091
4092 /**
4093 * @brief Helper function for implementing BUS_MAP_RESOURCE().
4094 *
4095 * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4096 * BUS_MAP_RESOURCE() method of the parent of @p dev.
4097 */
4098 int
bus_generic_map_resource(device_t dev,device_t child,struct resource * r,struct resource_map_request * args,struct resource_map * map)4099 bus_generic_map_resource(device_t dev, device_t child, struct resource *r,
4100 struct resource_map_request *args, struct resource_map *map)
4101 {
4102 /* Propagate up the bus hierarchy until someone handles it. */
4103 if (dev->parent)
4104 return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map));
4105 return (EINVAL);
4106 }
4107
4108 /**
4109 * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4110 *
4111 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4112 * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4113 */
4114 int
bus_generic_unmap_resource(device_t dev,device_t child,struct resource * r,struct resource_map * map)4115 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r,
4116 struct resource_map *map)
4117 {
4118 /* Propagate up the bus hierarchy until someone handles it. */
4119 if (dev->parent)
4120 return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map));
4121 return (EINVAL);
4122 }
4123
4124 /**
4125 * @brief Helper function for implementing BUS_BIND_INTR().
4126 *
4127 * This simple implementation of BUS_BIND_INTR() simply calls the
4128 * BUS_BIND_INTR() method of the parent of @p dev.
4129 */
4130 int
bus_generic_bind_intr(device_t dev,device_t child,struct resource * irq,int cpu)4131 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4132 int cpu)
4133 {
4134 /* Propagate up the bus hierarchy until someone handles it. */
4135 if (dev->parent)
4136 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4137 return (EINVAL);
4138 }
4139
4140 /**
4141 * @brief Helper function for implementing BUS_CONFIG_INTR().
4142 *
4143 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4144 * BUS_CONFIG_INTR() method of the parent of @p dev.
4145 */
4146 int
bus_generic_config_intr(device_t dev,int irq,enum intr_trigger trig,enum intr_polarity pol)4147 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4148 enum intr_polarity pol)
4149 {
4150 /* Propagate up the bus hierarchy until someone handles it. */
4151 if (dev->parent)
4152 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4153 return (EINVAL);
4154 }
4155
4156 /**
4157 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4158 *
4159 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4160 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4161 */
4162 int
bus_generic_describe_intr(device_t dev,device_t child,struct resource * irq,void * cookie,const char * descr)4163 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4164 void *cookie, const char *descr)
4165 {
4166 /* Propagate up the bus hierarchy until someone handles it. */
4167 if (dev->parent)
4168 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4169 descr));
4170 return (EINVAL);
4171 }
4172
4173 /**
4174 * @brief Helper function for implementing BUS_GET_CPUS().
4175 *
4176 * This simple implementation of BUS_GET_CPUS() simply calls the
4177 * BUS_GET_CPUS() method of the parent of @p dev.
4178 */
4179 int
bus_generic_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)4180 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4181 size_t setsize, cpuset_t *cpuset)
4182 {
4183 /* Propagate up the bus hierarchy until someone handles it. */
4184 if (dev->parent != NULL)
4185 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4186 return (EINVAL);
4187 }
4188
4189 /**
4190 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4191 *
4192 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4193 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4194 */
4195 bus_dma_tag_t
bus_generic_get_dma_tag(device_t dev,device_t child)4196 bus_generic_get_dma_tag(device_t dev, device_t child)
4197 {
4198 /* Propagate up the bus hierarchy until someone handles it. */
4199 if (dev->parent != NULL)
4200 return (BUS_GET_DMA_TAG(dev->parent, child));
4201 return (NULL);
4202 }
4203
4204 /**
4205 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4206 *
4207 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4208 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4209 */
4210 bus_space_tag_t
bus_generic_get_bus_tag(device_t dev,device_t child)4211 bus_generic_get_bus_tag(device_t dev, device_t child)
4212 {
4213 /* Propagate up the bus hierarchy until someone handles it. */
4214 if (dev->parent != NULL)
4215 return (BUS_GET_BUS_TAG(dev->parent, child));
4216 return ((bus_space_tag_t)0);
4217 }
4218
4219 /**
4220 * @brief Helper function for implementing BUS_GET_RESOURCE().
4221 *
4222 * This implementation of BUS_GET_RESOURCE() uses the
4223 * resource_list_find() function to do most of the work. It calls
4224 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4225 * search.
4226 */
4227 int
bus_generic_rl_get_resource(device_t dev,device_t child,int type,int rid,rman_res_t * startp,rman_res_t * countp)4228 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4229 rman_res_t *startp, rman_res_t *countp)
4230 {
4231 struct resource_list * rl = NULL;
4232 struct resource_list_entry * rle = NULL;
4233
4234 rl = BUS_GET_RESOURCE_LIST(dev, child);
4235 if (!rl)
4236 return (EINVAL);
4237
4238 rle = resource_list_find(rl, type, rid);
4239 if (!rle)
4240 return (ENOENT);
4241
4242 if (startp)
4243 *startp = rle->start;
4244 if (countp)
4245 *countp = rle->count;
4246
4247 return (0);
4248 }
4249
4250 /**
4251 * @brief Helper function for implementing BUS_SET_RESOURCE().
4252 *
4253 * This implementation of BUS_SET_RESOURCE() uses the
4254 * resource_list_add() function to do most of the work. It calls
4255 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4256 * edit.
4257 */
4258 int
bus_generic_rl_set_resource(device_t dev,device_t child,int type,int rid,rman_res_t start,rman_res_t count)4259 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4260 rman_res_t start, rman_res_t count)
4261 {
4262 struct resource_list * rl = NULL;
4263
4264 rl = BUS_GET_RESOURCE_LIST(dev, child);
4265 if (!rl)
4266 return (EINVAL);
4267
4268 resource_list_add(rl, type, rid, start, (start + count - 1), count);
4269
4270 return (0);
4271 }
4272
4273 /**
4274 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4275 *
4276 * This implementation of BUS_DELETE_RESOURCE() uses the
4277 * resource_list_delete() function to do most of the work. It calls
4278 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4279 * edit.
4280 */
4281 void
bus_generic_rl_delete_resource(device_t dev,device_t child,int type,int rid)4282 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4283 {
4284 struct resource_list * rl = NULL;
4285
4286 rl = BUS_GET_RESOURCE_LIST(dev, child);
4287 if (!rl)
4288 return;
4289
4290 resource_list_delete(rl, type, rid);
4291
4292 return;
4293 }
4294
4295 /**
4296 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4297 *
4298 * This implementation of BUS_RELEASE_RESOURCE() uses the
4299 * resource_list_release() function to do most of the work. It calls
4300 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4301 */
4302 int
bus_generic_rl_release_resource(device_t dev,device_t child,struct resource * r)4303 bus_generic_rl_release_resource(device_t dev, device_t child,
4304 struct resource *r)
4305 {
4306 struct resource_list * rl = NULL;
4307
4308 if (device_get_parent(child) != dev)
4309 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r));
4310
4311 rl = BUS_GET_RESOURCE_LIST(dev, child);
4312 if (!rl)
4313 return (EINVAL);
4314
4315 return (resource_list_release(rl, dev, child, r));
4316 }
4317
4318 /**
4319 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4320 *
4321 * This implementation of BUS_ALLOC_RESOURCE() uses the
4322 * resource_list_alloc() function to do most of the work. It calls
4323 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4324 */
4325 struct resource *
bus_generic_rl_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4326 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4327 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4328 {
4329 struct resource_list * rl = NULL;
4330
4331 if (device_get_parent(child) != dev)
4332 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4333 type, rid, start, end, count, flags));
4334
4335 rl = BUS_GET_RESOURCE_LIST(dev, child);
4336 if (!rl)
4337 return (NULL);
4338
4339 return (resource_list_alloc(rl, dev, child, type, rid,
4340 start, end, count, flags));
4341 }
4342
4343 /**
4344 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4345 *
4346 * This implementation of BUS_ALLOC_RESOURCE() allocates a
4347 * resource from a resource manager. It uses BUS_GET_RMAN()
4348 * to obtain the resource manager.
4349 */
4350 struct resource *
bus_generic_rman_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4351 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type,
4352 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4353 {
4354 struct resource *r;
4355 struct rman *rm;
4356
4357 rm = BUS_GET_RMAN(dev, type, flags);
4358 if (rm == NULL)
4359 return (NULL);
4360
4361 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
4362 child);
4363 if (r == NULL)
4364 return (NULL);
4365 rman_set_rid(r, *rid);
4366 rman_set_type(r, type);
4367
4368 if (flags & RF_ACTIVE) {
4369 if (bus_activate_resource(child, type, *rid, r) != 0) {
4370 rman_release_resource(r);
4371 return (NULL);
4372 }
4373 }
4374
4375 return (r);
4376 }
4377
4378 /**
4379 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4380 *
4381 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only
4382 * if they were allocated from the resource manager returned by
4383 * BUS_GET_RMAN().
4384 */
4385 int
bus_generic_rman_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)4386 bus_generic_rman_adjust_resource(device_t dev, device_t child,
4387 struct resource *r, rman_res_t start, rman_res_t end)
4388 {
4389 struct rman *rm;
4390
4391 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4392 if (rm == NULL)
4393 return (ENXIO);
4394 if (!rman_is_region_manager(r, rm))
4395 return (EINVAL);
4396 return (rman_adjust_resource(r, start, end));
4397 }
4398
4399 /**
4400 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4401 *
4402 * This implementation of BUS_RELEASE_RESOURCE() releases resources
4403 * allocated by bus_generic_rman_alloc_resource.
4404 */
4405 int
bus_generic_rman_release_resource(device_t dev,device_t child,struct resource * r)4406 bus_generic_rman_release_resource(device_t dev, device_t child,
4407 struct resource *r)
4408 {
4409 #ifdef INVARIANTS
4410 struct rman *rm;
4411 #endif
4412 int error;
4413
4414 #ifdef INVARIANTS
4415 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4416 KASSERT(rman_is_region_manager(r, rm),
4417 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4418 #endif
4419
4420 if (rman_get_flags(r) & RF_ACTIVE) {
4421 error = bus_deactivate_resource(child, r);
4422 if (error != 0)
4423 return (error);
4424 }
4425 return (rman_release_resource(r));
4426 }
4427
4428 /**
4429 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4430 *
4431 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources
4432 * allocated by bus_generic_rman_alloc_resource.
4433 */
4434 int
bus_generic_rman_activate_resource(device_t dev,device_t child,struct resource * r)4435 bus_generic_rman_activate_resource(device_t dev, device_t child,
4436 struct resource *r)
4437 {
4438 struct resource_map map;
4439 #ifdef INVARIANTS
4440 struct rman *rm;
4441 #endif
4442 int error, type;
4443
4444 type = rman_get_type(r);
4445 #ifdef INVARIANTS
4446 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4447 KASSERT(rman_is_region_manager(r, rm),
4448 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4449 #endif
4450
4451 error = rman_activate_resource(r);
4452 if (error != 0)
4453 return (error);
4454
4455 switch (type) {
4456 case SYS_RES_IOPORT:
4457 case SYS_RES_MEMORY:
4458 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4459 error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map);
4460 if (error != 0)
4461 break;
4462
4463 rman_set_mapping(r, &map);
4464 }
4465 break;
4466 #ifdef INTRNG
4467 case SYS_RES_IRQ:
4468 error = intr_activate_irq(child, r);
4469 break;
4470 #endif
4471 }
4472 if (error != 0)
4473 rman_deactivate_resource(r);
4474 return (error);
4475 }
4476
4477 /**
4478 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4479 *
4480 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates
4481 * resources allocated by bus_generic_rman_alloc_resource.
4482 */
4483 int
bus_generic_rman_deactivate_resource(device_t dev,device_t child,struct resource * r)4484 bus_generic_rman_deactivate_resource(device_t dev, device_t child,
4485 struct resource *r)
4486 {
4487 struct resource_map map;
4488 #ifdef INVARIANTS
4489 struct rman *rm;
4490 #endif
4491 int error, type;
4492
4493 type = rman_get_type(r);
4494 #ifdef INVARIANTS
4495 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4496 KASSERT(rman_is_region_manager(r, rm),
4497 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4498 #endif
4499
4500 error = rman_deactivate_resource(r);
4501 if (error != 0)
4502 return (error);
4503
4504 switch (type) {
4505 case SYS_RES_IOPORT:
4506 case SYS_RES_MEMORY:
4507 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4508 rman_get_mapping(r, &map);
4509 BUS_UNMAP_RESOURCE(dev, child, r, &map);
4510 }
4511 break;
4512 #ifdef INTRNG
4513 case SYS_RES_IRQ:
4514 intr_deactivate_irq(child, r);
4515 break;
4516 #endif
4517 }
4518 return (0);
4519 }
4520
4521 /**
4522 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4523 *
4524 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4525 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4526 */
4527 int
bus_generic_child_present(device_t dev,device_t child)4528 bus_generic_child_present(device_t dev, device_t child)
4529 {
4530 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4531 }
4532
4533 /**
4534 * @brief Helper function for implementing BUS_GET_DOMAIN().
4535 *
4536 * This simple implementation of BUS_GET_DOMAIN() calls the
4537 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev
4538 * does not have a parent, the function fails with ENOENT.
4539 */
4540 int
bus_generic_get_domain(device_t dev,device_t child,int * domain)4541 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4542 {
4543 if (dev->parent)
4544 return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4545
4546 return (ENOENT);
4547 }
4548
4549 /**
4550 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4551 *
4552 * This function knows how to (a) pass the request up the tree if there's
4553 * a parent and (b) Knows how to supply a FreeBSD locator.
4554 *
4555 * @param bus bus in the walk up the tree
4556 * @param child leaf node to print information about
4557 * @param locator BUS_LOCATOR_xxx string for locator
4558 * @param sb Buffer to print information into
4559 */
4560 int
bus_generic_get_device_path(device_t bus,device_t child,const char * locator,struct sbuf * sb)4561 bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4562 struct sbuf *sb)
4563 {
4564 int rv = 0;
4565 device_t parent;
4566
4567 /*
4568 * We don't recurse on ACPI since either we know the handle for the
4569 * device or we don't. And if we're in the generic routine, we don't
4570 * have a ACPI override. All other locators build up a path by having
4571 * their parents create a path and then adding the path element for this
4572 * node. That's why we recurse with parent, bus rather than the typical
4573 * parent, child: each spot in the tree is independent of what our child
4574 * will do with this path.
4575 */
4576 parent = device_get_parent(bus);
4577 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4578 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4579 }
4580 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4581 if (rv == 0) {
4582 sbuf_printf(sb, "/%s", device_get_nameunit(child));
4583 }
4584 return (rv);
4585 }
4586 /*
4587 * Don't know what to do. So assume we do nothing. Not sure that's
4588 * the right thing, but keeps us from having a big list here.
4589 */
4590 return (0);
4591 }
4592
4593
4594 /**
4595 * @brief Helper function for implementing BUS_RESCAN().
4596 *
4597 * This null implementation of BUS_RESCAN() always fails to indicate
4598 * the bus does not support rescanning.
4599 */
4600 int
bus_null_rescan(device_t dev)4601 bus_null_rescan(device_t dev)
4602 {
4603 return (ENODEV);
4604 }
4605
4606 /*
4607 * Some convenience functions to make it easier for drivers to use the
4608 * resource-management functions. All these really do is hide the
4609 * indirection through the parent's method table, making for slightly
4610 * less-wordy code. In the future, it might make sense for this code
4611 * to maintain some sort of a list of resources allocated by each device.
4612 */
4613
4614 int
bus_alloc_resources(device_t dev,struct resource_spec * rs,struct resource ** res)4615 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4616 struct resource **res)
4617 {
4618 int i;
4619
4620 for (i = 0; rs[i].type != -1; i++)
4621 res[i] = NULL;
4622 for (i = 0; rs[i].type != -1; i++) {
4623 res[i] = bus_alloc_resource_any(dev,
4624 rs[i].type, &rs[i].rid, rs[i].flags);
4625 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4626 bus_release_resources(dev, rs, res);
4627 return (ENXIO);
4628 }
4629 }
4630 return (0);
4631 }
4632
4633 void
bus_release_resources(device_t dev,const struct resource_spec * rs,struct resource ** res)4634 bus_release_resources(device_t dev, const struct resource_spec *rs,
4635 struct resource **res)
4636 {
4637 int i;
4638
4639 for (i = 0; rs[i].type != -1; i++)
4640 if (res[i] != NULL) {
4641 bus_release_resource(
4642 dev, rs[i].type, rs[i].rid, res[i]);
4643 res[i] = NULL;
4644 }
4645 }
4646
4647 /**
4648 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4649 *
4650 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4651 * parent of @p dev.
4652 */
4653 struct resource *
4654 (bus_alloc_resource)(device_t dev, int type, int *rid, rman_res_t start,
4655 rman_res_t end, rman_res_t count, u_int flags)
4656 {
4657 struct resource *res;
4658
4659 if (dev->parent == NULL)
4660 return (NULL);
4661 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4662 count, flags);
4663 return (res);
4664 }
4665
4666 /**
4667 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4668 *
4669 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4670 * parent of @p dev.
4671 */
4672 int
bus_adjust_resource(device_t dev,struct resource * r,rman_res_t start,rman_res_t end)4673 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start,
4674 rman_res_t end)
4675 {
4676 if (dev->parent == NULL)
4677 return (EINVAL);
4678 return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end));
4679 }
4680
4681 int
bus_adjust_resource_old(device_t dev,int type __unused,struct resource * r,rman_res_t start,rman_res_t end)4682 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r,
4683 rman_res_t start, rman_res_t end)
4684 {
4685 return (bus_adjust_resource(dev, r, start, end));
4686 }
4687
4688 /**
4689 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4690 *
4691 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4692 * parent of @p dev.
4693 */
4694 int
bus_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)4695 bus_translate_resource(device_t dev, int type, rman_res_t start,
4696 rman_res_t *newstart)
4697 {
4698 if (dev->parent == NULL)
4699 return (EINVAL);
4700 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4701 }
4702
4703 /**
4704 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4705 *
4706 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4707 * parent of @p dev.
4708 */
4709 int
bus_activate_resource(device_t dev,struct resource * r)4710 bus_activate_resource(device_t dev, struct resource *r)
4711 {
4712 if (dev->parent == NULL)
4713 return (EINVAL);
4714 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r));
4715 }
4716
4717 int
bus_activate_resource_old(device_t dev,int type,int rid,struct resource * r)4718 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r)
4719 {
4720 return (bus_activate_resource(dev, r));
4721 }
4722
4723 /**
4724 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4725 *
4726 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4727 * parent of @p dev.
4728 */
4729 int
bus_deactivate_resource(device_t dev,struct resource * r)4730 bus_deactivate_resource(device_t dev, struct resource *r)
4731 {
4732 if (dev->parent == NULL)
4733 return (EINVAL);
4734 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r));
4735 }
4736
4737 int
bus_deactivate_resource_old(device_t dev,int type,int rid,struct resource * r)4738 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r)
4739 {
4740 return (bus_deactivate_resource(dev, r));
4741 }
4742
4743 /**
4744 * @brief Wrapper function for BUS_MAP_RESOURCE().
4745 *
4746 * This function simply calls the BUS_MAP_RESOURCE() method of the
4747 * parent of @p dev.
4748 */
4749 int
bus_map_resource(device_t dev,struct resource * r,struct resource_map_request * args,struct resource_map * map)4750 bus_map_resource(device_t dev, struct resource *r,
4751 struct resource_map_request *args, struct resource_map *map)
4752 {
4753 if (dev->parent == NULL)
4754 return (EINVAL);
4755 return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map));
4756 }
4757
4758 int
bus_map_resource_old(device_t dev,int type,struct resource * r,struct resource_map_request * args,struct resource_map * map)4759 bus_map_resource_old(device_t dev, int type, struct resource *r,
4760 struct resource_map_request *args, struct resource_map *map)
4761 {
4762 return (bus_map_resource(dev, r, args, map));
4763 }
4764
4765 /**
4766 * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4767 *
4768 * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4769 * parent of @p dev.
4770 */
4771 int
bus_unmap_resource(device_t dev,struct resource * r,struct resource_map * map)4772 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map)
4773 {
4774 if (dev->parent == NULL)
4775 return (EINVAL);
4776 return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map));
4777 }
4778
4779 int
bus_unmap_resource_old(device_t dev,int type,struct resource * r,struct resource_map * map)4780 bus_unmap_resource_old(device_t dev, int type, struct resource *r,
4781 struct resource_map *map)
4782 {
4783 return (bus_unmap_resource(dev, r, map));
4784 }
4785
4786 /**
4787 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4788 *
4789 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4790 * parent of @p dev.
4791 */
4792 int
bus_release_resource(device_t dev,struct resource * r)4793 bus_release_resource(device_t dev, struct resource *r)
4794 {
4795 int rv;
4796
4797 if (dev->parent == NULL)
4798 return (EINVAL);
4799 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r);
4800 return (rv);
4801 }
4802
4803 int
bus_release_resource_old(device_t dev,int type,int rid,struct resource * r)4804 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r)
4805 {
4806 return (bus_release_resource(dev, r));
4807 }
4808
4809 /**
4810 * @brief Wrapper function for BUS_SETUP_INTR().
4811 *
4812 * This function simply calls the BUS_SETUP_INTR() method of the
4813 * parent of @p dev.
4814 */
4815 int
bus_setup_intr(device_t dev,struct resource * r,int flags,driver_filter_t filter,driver_intr_t handler,void * arg,void ** cookiep)4816 bus_setup_intr(device_t dev, struct resource *r, int flags,
4817 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4818 {
4819 int error;
4820
4821 if (dev->parent == NULL)
4822 return (EINVAL);
4823 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4824 arg, cookiep);
4825 if (error != 0)
4826 return (error);
4827 if (handler != NULL && !(flags & INTR_MPSAFE))
4828 device_printf(dev, "[GIANT-LOCKED]\n");
4829 return (0);
4830 }
4831
4832 /**
4833 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4834 *
4835 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4836 * parent of @p dev.
4837 */
4838 int
bus_teardown_intr(device_t dev,struct resource * r,void * cookie)4839 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4840 {
4841 if (dev->parent == NULL)
4842 return (EINVAL);
4843 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4844 }
4845
4846 /**
4847 * @brief Wrapper function for BUS_SUSPEND_INTR().
4848 *
4849 * This function simply calls the BUS_SUSPEND_INTR() method of the
4850 * parent of @p dev.
4851 */
4852 int
bus_suspend_intr(device_t dev,struct resource * r)4853 bus_suspend_intr(device_t dev, struct resource *r)
4854 {
4855 if (dev->parent == NULL)
4856 return (EINVAL);
4857 return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4858 }
4859
4860 /**
4861 * @brief Wrapper function for BUS_RESUME_INTR().
4862 *
4863 * This function simply calls the BUS_RESUME_INTR() method of the
4864 * parent of @p dev.
4865 */
4866 int
bus_resume_intr(device_t dev,struct resource * r)4867 bus_resume_intr(device_t dev, struct resource *r)
4868 {
4869 if (dev->parent == NULL)
4870 return (EINVAL);
4871 return (BUS_RESUME_INTR(dev->parent, dev, r));
4872 }
4873
4874 /**
4875 * @brief Wrapper function for BUS_BIND_INTR().
4876 *
4877 * This function simply calls the BUS_BIND_INTR() method of the
4878 * parent of @p dev.
4879 */
4880 int
bus_bind_intr(device_t dev,struct resource * r,int cpu)4881 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4882 {
4883 if (dev->parent == NULL)
4884 return (EINVAL);
4885 return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4886 }
4887
4888 /**
4889 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4890 *
4891 * This function first formats the requested description into a
4892 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4893 * the parent of @p dev.
4894 */
4895 int
bus_describe_intr(device_t dev,struct resource * irq,void * cookie,const char * fmt,...)4896 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4897 const char *fmt, ...)
4898 {
4899 va_list ap;
4900 char descr[MAXCOMLEN + 1];
4901
4902 if (dev->parent == NULL)
4903 return (EINVAL);
4904 va_start(ap, fmt);
4905 vsnprintf(descr, sizeof(descr), fmt, ap);
4906 va_end(ap);
4907 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4908 }
4909
4910 /**
4911 * @brief Wrapper function for BUS_SET_RESOURCE().
4912 *
4913 * This function simply calls the BUS_SET_RESOURCE() method of the
4914 * parent of @p dev.
4915 */
4916 int
bus_set_resource(device_t dev,int type,int rid,rman_res_t start,rman_res_t count)4917 bus_set_resource(device_t dev, int type, int rid,
4918 rman_res_t start, rman_res_t count)
4919 {
4920 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4921 start, count));
4922 }
4923
4924 /**
4925 * @brief Wrapper function for BUS_GET_RESOURCE().
4926 *
4927 * This function simply calls the BUS_GET_RESOURCE() method of the
4928 * parent of @p dev.
4929 */
4930 int
bus_get_resource(device_t dev,int type,int rid,rman_res_t * startp,rman_res_t * countp)4931 bus_get_resource(device_t dev, int type, int rid,
4932 rman_res_t *startp, rman_res_t *countp)
4933 {
4934 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4935 startp, countp));
4936 }
4937
4938 /**
4939 * @brief Wrapper function for BUS_GET_RESOURCE().
4940 *
4941 * This function simply calls the BUS_GET_RESOURCE() method of the
4942 * parent of @p dev and returns the start value.
4943 */
4944 rman_res_t
bus_get_resource_start(device_t dev,int type,int rid)4945 bus_get_resource_start(device_t dev, int type, int rid)
4946 {
4947 rman_res_t start;
4948 rman_res_t count;
4949 int error;
4950
4951 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4952 &start, &count);
4953 if (error)
4954 return (0);
4955 return (start);
4956 }
4957
4958 /**
4959 * @brief Wrapper function for BUS_GET_RESOURCE().
4960 *
4961 * This function simply calls the BUS_GET_RESOURCE() method of the
4962 * parent of @p dev and returns the count value.
4963 */
4964 rman_res_t
bus_get_resource_count(device_t dev,int type,int rid)4965 bus_get_resource_count(device_t dev, int type, int rid)
4966 {
4967 rman_res_t start;
4968 rman_res_t count;
4969 int error;
4970
4971 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4972 &start, &count);
4973 if (error)
4974 return (0);
4975 return (count);
4976 }
4977
4978 /**
4979 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4980 *
4981 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4982 * parent of @p dev.
4983 */
4984 void
bus_delete_resource(device_t dev,int type,int rid)4985 bus_delete_resource(device_t dev, int type, int rid)
4986 {
4987 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4988 }
4989
4990 /**
4991 * @brief Wrapper function for BUS_CHILD_PRESENT().
4992 *
4993 * This function simply calls the BUS_CHILD_PRESENT() method of the
4994 * parent of @p dev.
4995 */
4996 int
bus_child_present(device_t child)4997 bus_child_present(device_t child)
4998 {
4999 return (BUS_CHILD_PRESENT(device_get_parent(child), child));
5000 }
5001
5002 /**
5003 * @brief Wrapper function for BUS_CHILD_PNPINFO().
5004 *
5005 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
5006 * dev.
5007 */
5008 int
bus_child_pnpinfo(device_t child,struct sbuf * sb)5009 bus_child_pnpinfo(device_t child, struct sbuf *sb)
5010 {
5011 device_t parent;
5012
5013 parent = device_get_parent(child);
5014 if (parent == NULL)
5015 return (0);
5016 return (BUS_CHILD_PNPINFO(parent, child, sb));
5017 }
5018
5019 /**
5020 * @brief Generic implementation that does nothing for bus_child_pnpinfo
5021 *
5022 * This function has the right signature and returns 0 since the sbuf is passed
5023 * to us to append to.
5024 */
5025 int
bus_generic_child_pnpinfo(device_t dev,device_t child,struct sbuf * sb)5026 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
5027 {
5028 return (0);
5029 }
5030
5031 /**
5032 * @brief Wrapper function for BUS_CHILD_LOCATION().
5033 *
5034 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
5035 * @p dev.
5036 */
5037 int
bus_child_location(device_t child,struct sbuf * sb)5038 bus_child_location(device_t child, struct sbuf *sb)
5039 {
5040 device_t parent;
5041
5042 parent = device_get_parent(child);
5043 if (parent == NULL)
5044 return (0);
5045 return (BUS_CHILD_LOCATION(parent, child, sb));
5046 }
5047
5048 /**
5049 * @brief Generic implementation that does nothing for bus_child_location
5050 *
5051 * This function has the right signature and returns 0 since the sbuf is passed
5052 * to us to append to.
5053 */
5054 int
bus_generic_child_location(device_t dev,device_t child,struct sbuf * sb)5055 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
5056 {
5057 return (0);
5058 }
5059
5060 /**
5061 * @brief Wrapper function for BUS_GET_CPUS().
5062 *
5063 * This function simply calls the BUS_GET_CPUS() method of the
5064 * parent of @p dev.
5065 */
5066 int
bus_get_cpus(device_t dev,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5067 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
5068 {
5069 device_t parent;
5070
5071 parent = device_get_parent(dev);
5072 if (parent == NULL)
5073 return (EINVAL);
5074 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
5075 }
5076
5077 /**
5078 * @brief Wrapper function for BUS_GET_DMA_TAG().
5079 *
5080 * This function simply calls the BUS_GET_DMA_TAG() method of the
5081 * parent of @p dev.
5082 */
5083 bus_dma_tag_t
bus_get_dma_tag(device_t dev)5084 bus_get_dma_tag(device_t dev)
5085 {
5086 device_t parent;
5087
5088 parent = device_get_parent(dev);
5089 if (parent == NULL)
5090 return (NULL);
5091 return (BUS_GET_DMA_TAG(parent, dev));
5092 }
5093
5094 /**
5095 * @brief Wrapper function for BUS_GET_BUS_TAG().
5096 *
5097 * This function simply calls the BUS_GET_BUS_TAG() method of the
5098 * parent of @p dev.
5099 */
5100 bus_space_tag_t
bus_get_bus_tag(device_t dev)5101 bus_get_bus_tag(device_t dev)
5102 {
5103 device_t parent;
5104
5105 parent = device_get_parent(dev);
5106 if (parent == NULL)
5107 return ((bus_space_tag_t)0);
5108 return (BUS_GET_BUS_TAG(parent, dev));
5109 }
5110
5111 /**
5112 * @brief Wrapper function for BUS_GET_DOMAIN().
5113 *
5114 * This function simply calls the BUS_GET_DOMAIN() method of the
5115 * parent of @p dev.
5116 */
5117 int
bus_get_domain(device_t dev,int * domain)5118 bus_get_domain(device_t dev, int *domain)
5119 {
5120 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5121 }
5122
5123 /* Resume all devices and then notify userland that we're up again. */
5124 static int
root_resume(device_t dev)5125 root_resume(device_t dev)
5126 {
5127 int error;
5128
5129 error = bus_generic_resume(dev);
5130 if (error == 0) {
5131 devctl_notify("kernel", "power", "resume", NULL);
5132 }
5133 return (error);
5134 }
5135
5136 static int
root_print_child(device_t dev,device_t child)5137 root_print_child(device_t dev, device_t child)
5138 {
5139 int retval = 0;
5140
5141 retval += bus_print_child_header(dev, child);
5142 retval += printf("\n");
5143
5144 return (retval);
5145 }
5146
5147 static int
root_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)5148 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5149 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5150 {
5151 /*
5152 * If an interrupt mapping gets to here something bad has happened.
5153 */
5154 panic("root_setup_intr");
5155 }
5156
5157 /*
5158 * If we get here, assume that the device is permanent and really is
5159 * present in the system. Removable bus drivers are expected to intercept
5160 * this call long before it gets here. We return -1 so that drivers that
5161 * really care can check vs -1 or some ERRNO returned higher in the food
5162 * chain.
5163 */
5164 static int
root_child_present(device_t dev,device_t child)5165 root_child_present(device_t dev, device_t child)
5166 {
5167 return (-1);
5168 }
5169
5170 static int
root_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5171 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5172 cpuset_t *cpuset)
5173 {
5174 switch (op) {
5175 case INTR_CPUS:
5176 /* Default to returning the set of all CPUs. */
5177 if (setsize != sizeof(cpuset_t))
5178 return (EINVAL);
5179 *cpuset = all_cpus;
5180 return (0);
5181 default:
5182 return (EINVAL);
5183 }
5184 }
5185
5186 static kobj_method_t root_methods[] = {
5187 /* Device interface */
5188 KOBJMETHOD(device_shutdown, bus_generic_shutdown),
5189 KOBJMETHOD(device_suspend, bus_generic_suspend),
5190 KOBJMETHOD(device_resume, root_resume),
5191
5192 /* Bus interface */
5193 KOBJMETHOD(bus_print_child, root_print_child),
5194 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar),
5195 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar),
5196 KOBJMETHOD(bus_setup_intr, root_setup_intr),
5197 KOBJMETHOD(bus_child_present, root_child_present),
5198 KOBJMETHOD(bus_get_cpus, root_get_cpus),
5199
5200 KOBJMETHOD_END
5201 };
5202
5203 static driver_t root_driver = {
5204 "root",
5205 root_methods,
5206 1, /* no softc */
5207 };
5208
5209 device_t root_bus;
5210 devclass_t root_devclass;
5211
5212 static int
root_bus_module_handler(module_t mod,int what,void * arg)5213 root_bus_module_handler(module_t mod, int what, void* arg)
5214 {
5215 switch (what) {
5216 case MOD_LOAD:
5217 TAILQ_INIT(&bus_data_devices);
5218 kobj_class_compile((kobj_class_t) &root_driver);
5219 root_bus = make_device(NULL, "root", 0);
5220 root_bus->desc = "System root bus";
5221 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5222 root_bus->driver = &root_driver;
5223 root_bus->state = DS_ATTACHED;
5224 root_devclass = devclass_find_internal("root", NULL, FALSE);
5225 devctl2_init();
5226 return (0);
5227
5228 case MOD_SHUTDOWN:
5229 device_shutdown(root_bus);
5230 return (0);
5231 default:
5232 return (EOPNOTSUPP);
5233 }
5234
5235 return (0);
5236 }
5237
5238 static moduledata_t root_bus_mod = {
5239 "rootbus",
5240 root_bus_module_handler,
5241 NULL
5242 };
5243 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5244
5245 /**
5246 * @brief Automatically configure devices
5247 *
5248 * This function begins the autoconfiguration process by calling
5249 * device_probe_and_attach() for each child of the @c root0 device.
5250 */
5251 void
root_bus_configure(void)5252 root_bus_configure(void)
5253 {
5254 PDEBUG(("."));
5255
5256 /* Eventually this will be split up, but this is sufficient for now. */
5257 bus_set_pass(BUS_PASS_DEFAULT);
5258 }
5259
5260 /**
5261 * @brief Module handler for registering device drivers
5262 *
5263 * This module handler is used to automatically register device
5264 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5265 * devclass_add_driver() for the driver described by the
5266 * driver_module_data structure pointed to by @p arg
5267 */
5268 int
driver_module_handler(module_t mod,int what,void * arg)5269 driver_module_handler(module_t mod, int what, void *arg)
5270 {
5271 struct driver_module_data *dmd;
5272 devclass_t bus_devclass;
5273 kobj_class_t driver;
5274 int error, pass;
5275
5276 dmd = (struct driver_module_data *)arg;
5277 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5278 error = 0;
5279
5280 switch (what) {
5281 case MOD_LOAD:
5282 if (dmd->dmd_chainevh)
5283 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5284
5285 pass = dmd->dmd_pass;
5286 driver = dmd->dmd_driver;
5287 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5288 DRIVERNAME(driver), dmd->dmd_busname, pass));
5289 error = devclass_add_driver(bus_devclass, driver, pass,
5290 dmd->dmd_devclass);
5291 break;
5292
5293 case MOD_UNLOAD:
5294 PDEBUG(("Unloading module: driver %s from bus %s",
5295 DRIVERNAME(dmd->dmd_driver),
5296 dmd->dmd_busname));
5297 error = devclass_delete_driver(bus_devclass,
5298 dmd->dmd_driver);
5299
5300 if (!error && dmd->dmd_chainevh)
5301 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5302 break;
5303 case MOD_QUIESCE:
5304 PDEBUG(("Quiesce module: driver %s from bus %s",
5305 DRIVERNAME(dmd->dmd_driver),
5306 dmd->dmd_busname));
5307 error = devclass_quiesce_driver(bus_devclass,
5308 dmd->dmd_driver);
5309
5310 if (!error && dmd->dmd_chainevh)
5311 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5312 break;
5313 default:
5314 error = EOPNOTSUPP;
5315 break;
5316 }
5317
5318 return (error);
5319 }
5320
5321 /**
5322 * @brief Enumerate all hinted devices for this bus.
5323 *
5324 * Walks through the hints for this bus and calls the bus_hinted_child
5325 * routine for each one it fines. It searches first for the specific
5326 * bus that's being probed for hinted children (eg isa0), and then for
5327 * generic children (eg isa).
5328 *
5329 * @param dev bus device to enumerate
5330 */
5331 void
bus_enumerate_hinted_children(device_t bus)5332 bus_enumerate_hinted_children(device_t bus)
5333 {
5334 int i;
5335 const char *dname, *busname;
5336 int dunit;
5337
5338 /*
5339 * enumerate all devices on the specific bus
5340 */
5341 busname = device_get_nameunit(bus);
5342 i = 0;
5343 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5344 BUS_HINTED_CHILD(bus, dname, dunit);
5345
5346 /*
5347 * and all the generic ones.
5348 */
5349 busname = device_get_name(bus);
5350 i = 0;
5351 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5352 BUS_HINTED_CHILD(bus, dname, dunit);
5353 }
5354
5355 #ifdef BUS_DEBUG
5356
5357 /* the _short versions avoid iteration by not calling anything that prints
5358 * more than oneliners. I love oneliners.
5359 */
5360
5361 static void
print_device_short(device_t dev,int indent)5362 print_device_short(device_t dev, int indent)
5363 {
5364 if (!dev)
5365 return;
5366
5367 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5368 dev->unit, dev->desc,
5369 (dev->parent? "":"no "),
5370 (TAILQ_EMPTY(&dev->children)? "no ":""),
5371 (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5372 (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5373 (dev->flags&DF_WILDCARD? "wildcard,":""),
5374 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5375 (dev->flags&DF_SUSPENDED? "suspended,":""),
5376 (dev->ivars? "":"no "),
5377 (dev->softc? "":"no "),
5378 dev->busy));
5379 }
5380
5381 static void
print_device(device_t dev,int indent)5382 print_device(device_t dev, int indent)
5383 {
5384 if (!dev)
5385 return;
5386
5387 print_device_short(dev, indent);
5388
5389 indentprintf(("Parent:\n"));
5390 print_device_short(dev->parent, indent+1);
5391 indentprintf(("Driver:\n"));
5392 print_driver_short(dev->driver, indent+1);
5393 indentprintf(("Devclass:\n"));
5394 print_devclass_short(dev->devclass, indent+1);
5395 }
5396
5397 void
print_device_tree_short(device_t dev,int indent)5398 print_device_tree_short(device_t dev, int indent)
5399 /* print the device and all its children (indented) */
5400 {
5401 device_t child;
5402
5403 if (!dev)
5404 return;
5405
5406 print_device_short(dev, indent);
5407
5408 TAILQ_FOREACH(child, &dev->children, link) {
5409 print_device_tree_short(child, indent+1);
5410 }
5411 }
5412
5413 void
print_device_tree(device_t dev,int indent)5414 print_device_tree(device_t dev, int indent)
5415 /* print the device and all its children (indented) */
5416 {
5417 device_t child;
5418
5419 if (!dev)
5420 return;
5421
5422 print_device(dev, indent);
5423
5424 TAILQ_FOREACH(child, &dev->children, link) {
5425 print_device_tree(child, indent+1);
5426 }
5427 }
5428
5429 static void
print_driver_short(driver_t * driver,int indent)5430 print_driver_short(driver_t *driver, int indent)
5431 {
5432 if (!driver)
5433 return;
5434
5435 indentprintf(("driver %s: softc size = %zd\n",
5436 driver->name, driver->size));
5437 }
5438
5439 static void
print_driver(driver_t * driver,int indent)5440 print_driver(driver_t *driver, int indent)
5441 {
5442 if (!driver)
5443 return;
5444
5445 print_driver_short(driver, indent);
5446 }
5447
5448 static void
print_driver_list(driver_list_t drivers,int indent)5449 print_driver_list(driver_list_t drivers, int indent)
5450 {
5451 driverlink_t driver;
5452
5453 TAILQ_FOREACH(driver, &drivers, link) {
5454 print_driver(driver->driver, indent);
5455 }
5456 }
5457
5458 static void
print_devclass_short(devclass_t dc,int indent)5459 print_devclass_short(devclass_t dc, int indent)
5460 {
5461 if ( !dc )
5462 return;
5463
5464 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5465 }
5466
5467 static void
print_devclass(devclass_t dc,int indent)5468 print_devclass(devclass_t dc, int indent)
5469 {
5470 int i;
5471
5472 if ( !dc )
5473 return;
5474
5475 print_devclass_short(dc, indent);
5476 indentprintf(("Drivers:\n"));
5477 print_driver_list(dc->drivers, indent+1);
5478
5479 indentprintf(("Devices:\n"));
5480 for (i = 0; i < dc->maxunit; i++)
5481 if (dc->devices[i])
5482 print_device(dc->devices[i], indent+1);
5483 }
5484
5485 void
print_devclass_list_short(void)5486 print_devclass_list_short(void)
5487 {
5488 devclass_t dc;
5489
5490 printf("Short listing of devclasses, drivers & devices:\n");
5491 TAILQ_FOREACH(dc, &devclasses, link) {
5492 print_devclass_short(dc, 0);
5493 }
5494 }
5495
5496 void
print_devclass_list(void)5497 print_devclass_list(void)
5498 {
5499 devclass_t dc;
5500
5501 printf("Full listing of devclasses, drivers & devices:\n");
5502 TAILQ_FOREACH(dc, &devclasses, link) {
5503 print_devclass(dc, 0);
5504 }
5505 }
5506
5507 #endif
5508
5509 /*
5510 * User-space access to the device tree.
5511 *
5512 * We implement a small set of nodes:
5513 *
5514 * hw.bus Single integer read method to obtain the
5515 * current generation count.
5516 * hw.bus.devices Reads the entire device tree in flat space.
5517 * hw.bus.rman Resource manager interface
5518 *
5519 * We might like to add the ability to scan devclasses and/or drivers to
5520 * determine what else is currently loaded/available.
5521 */
5522
5523 static int
sysctl_bus_info(SYSCTL_HANDLER_ARGS)5524 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5525 {
5526 struct u_businfo ubus;
5527
5528 ubus.ub_version = BUS_USER_VERSION;
5529 ubus.ub_generation = bus_data_generation;
5530
5531 return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5532 }
5533 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5534 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5535 "bus-related data");
5536
5537 static int
sysctl_devices(SYSCTL_HANDLER_ARGS)5538 sysctl_devices(SYSCTL_HANDLER_ARGS)
5539 {
5540 struct sbuf sb;
5541 int *name = (int *)arg1;
5542 u_int namelen = arg2;
5543 int index;
5544 device_t dev;
5545 struct u_device *udev;
5546 int error;
5547
5548 if (namelen != 2)
5549 return (EINVAL);
5550
5551 if (bus_data_generation_check(name[0]))
5552 return (EINVAL);
5553
5554 index = name[1];
5555
5556 /*
5557 * Scan the list of devices, looking for the requested index.
5558 */
5559 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5560 if (index-- == 0)
5561 break;
5562 }
5563 if (dev == NULL)
5564 return (ENOENT);
5565
5566 /*
5567 * Populate the return item, careful not to overflow the buffer.
5568 */
5569 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5570 udev->dv_handle = (uintptr_t)dev;
5571 udev->dv_parent = (uintptr_t)dev->parent;
5572 udev->dv_devflags = dev->devflags;
5573 udev->dv_flags = dev->flags;
5574 udev->dv_state = dev->state;
5575 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5576 if (dev->nameunit != NULL)
5577 sbuf_cat(&sb, dev->nameunit);
5578 sbuf_putc(&sb, '\0');
5579 if (dev->desc != NULL)
5580 sbuf_cat(&sb, dev->desc);
5581 sbuf_putc(&sb, '\0');
5582 if (dev->driver != NULL)
5583 sbuf_cat(&sb, dev->driver->name);
5584 sbuf_putc(&sb, '\0');
5585 bus_child_pnpinfo(dev, &sb);
5586 sbuf_putc(&sb, '\0');
5587 bus_child_location(dev, &sb);
5588 sbuf_putc(&sb, '\0');
5589 error = sbuf_finish(&sb);
5590 if (error == 0)
5591 error = SYSCTL_OUT(req, udev, sizeof(*udev));
5592 sbuf_delete(&sb);
5593 free(udev, M_BUS);
5594 return (error);
5595 }
5596
5597 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5598 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5599 "system device tree");
5600
5601 int
bus_data_generation_check(int generation)5602 bus_data_generation_check(int generation)
5603 {
5604 if (generation != bus_data_generation)
5605 return (1);
5606
5607 /* XXX generate optimised lists here? */
5608 return (0);
5609 }
5610
5611 void
bus_data_generation_update(void)5612 bus_data_generation_update(void)
5613 {
5614 atomic_add_int(&bus_data_generation, 1);
5615 }
5616
5617 int
bus_free_resource(device_t dev,int type,struct resource * r)5618 bus_free_resource(device_t dev, int type, struct resource *r)
5619 {
5620 if (r == NULL)
5621 return (0);
5622 return (bus_release_resource(dev, type, rman_get_rid(r), r));
5623 }
5624
5625 device_t
device_lookup_by_name(const char * name)5626 device_lookup_by_name(const char *name)
5627 {
5628 device_t dev;
5629
5630 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5631 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5632 return (dev);
5633 }
5634 return (NULL);
5635 }
5636
5637 /*
5638 * /dev/devctl2 implementation. The existing /dev/devctl device has
5639 * implicit semantics on open, so it could not be reused for this.
5640 * Another option would be to call this /dev/bus?
5641 */
5642 static int
find_device(struct devreq * req,device_t * devp)5643 find_device(struct devreq *req, device_t *devp)
5644 {
5645 device_t dev;
5646
5647 /*
5648 * First, ensure that the name is nul terminated.
5649 */
5650 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5651 return (EINVAL);
5652
5653 /*
5654 * Second, try to find an attached device whose name matches
5655 * 'name'.
5656 */
5657 dev = device_lookup_by_name(req->dr_name);
5658 if (dev != NULL) {
5659 *devp = dev;
5660 return (0);
5661 }
5662
5663 /* Finally, give device enumerators a chance. */
5664 dev = NULL;
5665 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5666 if (dev == NULL)
5667 return (ENOENT);
5668 *devp = dev;
5669 return (0);
5670 }
5671
5672 static bool
driver_exists(device_t bus,const char * driver)5673 driver_exists(device_t bus, const char *driver)
5674 {
5675 devclass_t dc;
5676
5677 for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5678 if (devclass_find_driver_internal(dc, driver) != NULL)
5679 return (true);
5680 }
5681 return (false);
5682 }
5683
5684 static void
device_gen_nomatch(device_t dev)5685 device_gen_nomatch(device_t dev)
5686 {
5687 device_t child;
5688
5689 if (dev->flags & DF_NEEDNOMATCH &&
5690 dev->state == DS_NOTPRESENT) {
5691 device_handle_nomatch(dev);
5692 }
5693 dev->flags &= ~DF_NEEDNOMATCH;
5694 TAILQ_FOREACH(child, &dev->children, link) {
5695 device_gen_nomatch(child);
5696 }
5697 }
5698
5699 static void
device_do_deferred_actions(void)5700 device_do_deferred_actions(void)
5701 {
5702 devclass_t dc;
5703 driverlink_t dl;
5704
5705 /*
5706 * Walk through the devclasses to find all the drivers we've tagged as
5707 * deferred during the freeze and call the driver added routines. They
5708 * have already been added to the lists in the background, so the driver
5709 * added routines that trigger a probe will have all the right bidders
5710 * for the probe auction.
5711 */
5712 TAILQ_FOREACH(dc, &devclasses, link) {
5713 TAILQ_FOREACH(dl, &dc->drivers, link) {
5714 if (dl->flags & DL_DEFERRED_PROBE) {
5715 devclass_driver_added(dc, dl->driver);
5716 dl->flags &= ~DL_DEFERRED_PROBE;
5717 }
5718 }
5719 }
5720
5721 /*
5722 * We also defer no-match events during a freeze. Walk the tree and
5723 * generate all the pent-up events that are still relevant.
5724 */
5725 device_gen_nomatch(root_bus);
5726 bus_data_generation_update();
5727 }
5728
5729 static int
device_get_path(device_t dev,const char * locator,struct sbuf * sb)5730 device_get_path(device_t dev, const char *locator, struct sbuf *sb)
5731 {
5732 device_t parent;
5733 int error;
5734
5735 KASSERT(sb != NULL, ("sb is NULL"));
5736 parent = device_get_parent(dev);
5737 if (parent == NULL) {
5738 error = sbuf_putc(sb, '/');
5739 } else {
5740 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb);
5741 if (error == 0) {
5742 error = sbuf_error(sb);
5743 if (error == 0 && sbuf_len(sb) <= 1)
5744 error = EIO;
5745 }
5746 }
5747 sbuf_finish(sb);
5748 return (error);
5749 }
5750
5751 static int
devctl2_ioctl(struct cdev * cdev,u_long cmd,caddr_t data,int fflag,struct thread * td)5752 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5753 struct thread *td)
5754 {
5755 struct devreq *req;
5756 device_t dev;
5757 int error, old;
5758
5759 /* Locate the device to control. */
5760 bus_topo_lock();
5761 req = (struct devreq *)data;
5762 switch (cmd) {
5763 case DEV_ATTACH:
5764 case DEV_DETACH:
5765 case DEV_ENABLE:
5766 case DEV_DISABLE:
5767 case DEV_SUSPEND:
5768 case DEV_RESUME:
5769 case DEV_SET_DRIVER:
5770 case DEV_CLEAR_DRIVER:
5771 case DEV_RESCAN:
5772 case DEV_DELETE:
5773 case DEV_RESET:
5774 error = priv_check(td, PRIV_DRIVER);
5775 if (error == 0)
5776 error = find_device(req, &dev);
5777 break;
5778 case DEV_FREEZE:
5779 case DEV_THAW:
5780 error = priv_check(td, PRIV_DRIVER);
5781 break;
5782 case DEV_GET_PATH:
5783 error = find_device(req, &dev);
5784 break;
5785 default:
5786 error = ENOTTY;
5787 break;
5788 }
5789 if (error) {
5790 bus_topo_unlock();
5791 return (error);
5792 }
5793
5794 /* Perform the requested operation. */
5795 switch (cmd) {
5796 case DEV_ATTACH:
5797 if (device_is_attached(dev))
5798 error = EBUSY;
5799 else if (!device_is_enabled(dev))
5800 error = ENXIO;
5801 else
5802 error = device_probe_and_attach(dev);
5803 break;
5804 case DEV_DETACH:
5805 if (!device_is_attached(dev)) {
5806 error = ENXIO;
5807 break;
5808 }
5809 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5810 error = device_quiesce(dev);
5811 if (error)
5812 break;
5813 }
5814 error = device_detach(dev);
5815 break;
5816 case DEV_ENABLE:
5817 if (device_is_enabled(dev)) {
5818 error = EBUSY;
5819 break;
5820 }
5821
5822 /*
5823 * If the device has been probed but not attached (e.g.
5824 * when it has been disabled by a loader hint), just
5825 * attach the device rather than doing a full probe.
5826 */
5827 device_enable(dev);
5828 if (dev->devclass != NULL) {
5829 /*
5830 * If the device was disabled via a hint, clear
5831 * the hint.
5832 */
5833 if (resource_disabled(dev->devclass->name, dev->unit))
5834 resource_unset_value(dev->devclass->name,
5835 dev->unit, "disabled");
5836
5837 /* Allow any drivers to rebid. */
5838 if (!(dev->flags & DF_FIXEDCLASS))
5839 devclass_delete_device(dev->devclass, dev);
5840 }
5841 error = device_probe_and_attach(dev);
5842 break;
5843 case DEV_DISABLE:
5844 if (!device_is_enabled(dev)) {
5845 error = ENXIO;
5846 break;
5847 }
5848
5849 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5850 error = device_quiesce(dev);
5851 if (error)
5852 break;
5853 }
5854
5855 /*
5856 * Force DF_FIXEDCLASS on around detach to preserve
5857 * the existing name.
5858 */
5859 old = dev->flags;
5860 dev->flags |= DF_FIXEDCLASS;
5861 error = device_detach(dev);
5862 if (!(old & DF_FIXEDCLASS))
5863 dev->flags &= ~DF_FIXEDCLASS;
5864 if (error == 0)
5865 device_disable(dev);
5866 break;
5867 case DEV_SUSPEND:
5868 if (device_is_suspended(dev)) {
5869 error = EBUSY;
5870 break;
5871 }
5872 if (device_get_parent(dev) == NULL) {
5873 error = EINVAL;
5874 break;
5875 }
5876 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5877 break;
5878 case DEV_RESUME:
5879 if (!device_is_suspended(dev)) {
5880 error = EINVAL;
5881 break;
5882 }
5883 if (device_get_parent(dev) == NULL) {
5884 error = EINVAL;
5885 break;
5886 }
5887 error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5888 break;
5889 case DEV_SET_DRIVER: {
5890 devclass_t dc;
5891 char driver[128];
5892
5893 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5894 if (error)
5895 break;
5896 if (driver[0] == '\0') {
5897 error = EINVAL;
5898 break;
5899 }
5900 if (dev->devclass != NULL &&
5901 strcmp(driver, dev->devclass->name) == 0)
5902 /* XXX: Could possibly force DF_FIXEDCLASS on? */
5903 break;
5904
5905 /*
5906 * Scan drivers for this device's bus looking for at
5907 * least one matching driver.
5908 */
5909 if (dev->parent == NULL) {
5910 error = EINVAL;
5911 break;
5912 }
5913 if (!driver_exists(dev->parent, driver)) {
5914 error = ENOENT;
5915 break;
5916 }
5917 dc = devclass_create(driver);
5918 if (dc == NULL) {
5919 error = ENOMEM;
5920 break;
5921 }
5922
5923 /* Detach device if necessary. */
5924 if (device_is_attached(dev)) {
5925 if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5926 error = device_detach(dev);
5927 else
5928 error = EBUSY;
5929 if (error)
5930 break;
5931 }
5932
5933 /* Clear any previously-fixed device class and unit. */
5934 if (dev->flags & DF_FIXEDCLASS)
5935 devclass_delete_device(dev->devclass, dev);
5936 dev->flags |= DF_WILDCARD;
5937 dev->unit = DEVICE_UNIT_ANY;
5938
5939 /* Force the new device class. */
5940 error = devclass_add_device(dc, dev);
5941 if (error)
5942 break;
5943 dev->flags |= DF_FIXEDCLASS;
5944 error = device_probe_and_attach(dev);
5945 break;
5946 }
5947 case DEV_CLEAR_DRIVER:
5948 if (!(dev->flags & DF_FIXEDCLASS)) {
5949 error = 0;
5950 break;
5951 }
5952 if (device_is_attached(dev)) {
5953 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5954 error = device_detach(dev);
5955 else
5956 error = EBUSY;
5957 if (error)
5958 break;
5959 }
5960
5961 dev->flags &= ~DF_FIXEDCLASS;
5962 dev->flags |= DF_WILDCARD;
5963 devclass_delete_device(dev->devclass, dev);
5964 error = device_probe_and_attach(dev);
5965 break;
5966 case DEV_RESCAN:
5967 if (!device_is_attached(dev)) {
5968 error = ENXIO;
5969 break;
5970 }
5971 error = BUS_RESCAN(dev);
5972 break;
5973 case DEV_DELETE: {
5974 device_t parent;
5975
5976 parent = device_get_parent(dev);
5977 if (parent == NULL) {
5978 error = EINVAL;
5979 break;
5980 }
5981 if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5982 if (bus_child_present(dev) != 0) {
5983 error = EBUSY;
5984 break;
5985 }
5986 }
5987
5988 error = device_delete_child(parent, dev);
5989 break;
5990 }
5991 case DEV_FREEZE:
5992 if (device_frozen)
5993 error = EBUSY;
5994 else
5995 device_frozen = true;
5996 break;
5997 case DEV_THAW:
5998 if (!device_frozen)
5999 error = EBUSY;
6000 else {
6001 device_do_deferred_actions();
6002 device_frozen = false;
6003 }
6004 break;
6005 case DEV_RESET:
6006 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
6007 error = EINVAL;
6008 break;
6009 }
6010 if (device_get_parent(dev) == NULL) {
6011 error = EINVAL;
6012 break;
6013 }
6014 error = BUS_RESET_CHILD(device_get_parent(dev), dev,
6015 req->dr_flags);
6016 break;
6017 case DEV_GET_PATH: {
6018 struct sbuf *sb;
6019 char locator[64];
6020 ssize_t len;
6021
6022 error = copyinstr(req->dr_buffer.buffer, locator,
6023 sizeof(locator), NULL);
6024 if (error != 0)
6025 break;
6026 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6027 SBUF_INCLUDENUL /* | SBUF_WAITOK */);
6028 error = device_get_path(dev, locator, sb);
6029 if (error == 0) {
6030 len = sbuf_len(sb);
6031 if (req->dr_buffer.length < len) {
6032 error = ENAMETOOLONG;
6033 } else {
6034 error = copyout(sbuf_data(sb),
6035 req->dr_buffer.buffer, len);
6036 }
6037 req->dr_buffer.length = len;
6038 }
6039 sbuf_delete(sb);
6040 break;
6041 }
6042 }
6043 bus_topo_unlock();
6044 return (error);
6045 }
6046
6047 static struct cdevsw devctl2_cdevsw = {
6048 .d_version = D_VERSION,
6049 .d_ioctl = devctl2_ioctl,
6050 .d_name = "devctl2",
6051 };
6052
6053 static void
devctl2_init(void)6054 devctl2_init(void)
6055 {
6056 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
6057 UID_ROOT, GID_WHEEL, 0644, "devctl2");
6058 }
6059
6060 /*
6061 * For maintaining device 'at' location info to avoid recomputing it
6062 */
6063 struct device_location_node {
6064 const char *dln_locator;
6065 const char *dln_path;
6066 TAILQ_ENTRY(device_location_node) dln_link;
6067 };
6068 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
6069
6070 struct device_location_cache {
6071 device_location_list_t dlc_list;
6072 };
6073
6074
6075 /*
6076 * Location cache for wired devices.
6077 */
6078 device_location_cache_t *
dev_wired_cache_init(void)6079 dev_wired_cache_init(void)
6080 {
6081 device_location_cache_t *dcp;
6082
6083 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
6084 TAILQ_INIT(&dcp->dlc_list);
6085
6086 return (dcp);
6087 }
6088
6089 void
dev_wired_cache_fini(device_location_cache_t * dcp)6090 dev_wired_cache_fini(device_location_cache_t *dcp)
6091 {
6092 struct device_location_node *dln, *tdln;
6093
6094 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
6095 free(dln, M_BUS);
6096 }
6097 free(dcp, M_BUS);
6098 }
6099
6100 static struct device_location_node *
dev_wired_cache_lookup(device_location_cache_t * dcp,const char * locator)6101 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
6102 {
6103 struct device_location_node *dln;
6104
6105 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
6106 if (strcmp(locator, dln->dln_locator) == 0)
6107 return (dln);
6108 }
6109
6110 return (NULL);
6111 }
6112
6113 static struct device_location_node *
dev_wired_cache_add(device_location_cache_t * dcp,const char * locator,const char * path)6114 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
6115 {
6116 struct device_location_node *dln;
6117 size_t loclen, pathlen;
6118
6119 loclen = strlen(locator) + 1;
6120 pathlen = strlen(path) + 1;
6121 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO);
6122 dln->dln_locator = (char *)(dln + 1);
6123 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen);
6124 dln->dln_path = dln->dln_locator + loclen;
6125 memcpy(__DECONST(char *, dln->dln_path), path, pathlen);
6126 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
6127
6128 return (dln);
6129 }
6130
6131 bool
dev_wired_cache_match(device_location_cache_t * dcp,device_t dev,const char * at)6132 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev,
6133 const char *at)
6134 {
6135 struct sbuf *sb;
6136 const char *cp;
6137 char locator[32];
6138 int error, len;
6139 struct device_location_node *res;
6140
6141 cp = strchr(at, ':');
6142 if (cp == NULL)
6143 return (false);
6144 len = cp - at;
6145 if (len > sizeof(locator) - 1) /* Skip too long locator */
6146 return (false);
6147 memcpy(locator, at, len);
6148 locator[len] = '\0';
6149 cp++;
6150
6151 error = 0;
6152 /* maybe cache this inside device_t and look that up, but not yet */
6153 res = dev_wired_cache_lookup(dcp, locator);
6154 if (res == NULL) {
6155 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6156 SBUF_INCLUDENUL | SBUF_NOWAIT);
6157 if (sb != NULL) {
6158 error = device_get_path(dev, locator, sb);
6159 if (error == 0) {
6160 res = dev_wired_cache_add(dcp, locator,
6161 sbuf_data(sb));
6162 }
6163 sbuf_delete(sb);
6164 }
6165 }
6166 if (error != 0 || res == NULL || res->dln_path == NULL)
6167 return (false);
6168
6169 return (strcmp(res->dln_path, cp) == 0);
6170 }
6171
6172 static struct device_prop_elm *
device_prop_find(device_t dev,const char * name)6173 device_prop_find(device_t dev, const char *name)
6174 {
6175 struct device_prop_elm *e;
6176
6177 bus_topo_assert();
6178
6179 LIST_FOREACH(e, &dev->props, link) {
6180 if (strcmp(name, e->name) == 0)
6181 return (e);
6182 }
6183 return (NULL);
6184 }
6185
6186 int
device_set_prop(device_t dev,const char * name,void * val,device_prop_dtr_t dtr,void * dtr_ctx)6187 device_set_prop(device_t dev, const char *name, void *val,
6188 device_prop_dtr_t dtr, void *dtr_ctx)
6189 {
6190 struct device_prop_elm *e, *e1;
6191
6192 bus_topo_assert();
6193
6194 e = device_prop_find(dev, name);
6195 if (e != NULL)
6196 goto found;
6197
6198 e1 = malloc(sizeof(*e), M_BUS, M_WAITOK);
6199 e = device_prop_find(dev, name);
6200 if (e != NULL) {
6201 free(e1, M_BUS);
6202 goto found;
6203 }
6204
6205 e1->name = name;
6206 e1->val = val;
6207 e1->dtr = dtr;
6208 e1->dtr_ctx = dtr_ctx;
6209 LIST_INSERT_HEAD(&dev->props, e1, link);
6210 return (0);
6211
6212 found:
6213 LIST_REMOVE(e, link);
6214 if (e->dtr != NULL)
6215 e->dtr(dev, name, e->val, e->dtr_ctx);
6216 e->val = val;
6217 e->dtr = dtr;
6218 e->dtr_ctx = dtr_ctx;
6219 LIST_INSERT_HEAD(&dev->props, e, link);
6220 return (EEXIST);
6221 }
6222
6223 int
device_get_prop(device_t dev,const char * name,void ** valp)6224 device_get_prop(device_t dev, const char *name, void **valp)
6225 {
6226 struct device_prop_elm *e;
6227
6228 bus_topo_assert();
6229
6230 e = device_prop_find(dev, name);
6231 if (e == NULL)
6232 return (ENOENT);
6233 *valp = e->val;
6234 return (0);
6235 }
6236
6237 int
device_clear_prop(device_t dev,const char * name)6238 device_clear_prop(device_t dev, const char *name)
6239 {
6240 struct device_prop_elm *e;
6241
6242 bus_topo_assert();
6243
6244 e = device_prop_find(dev, name);
6245 if (e == NULL)
6246 return (ENOENT);
6247 LIST_REMOVE(e, link);
6248 if (e->dtr != NULL)
6249 e->dtr(dev, e->name, e->val, e->dtr_ctx);
6250 free(e, M_BUS);
6251 return (0);
6252 }
6253
6254 static void
device_destroy_props(device_t dev)6255 device_destroy_props(device_t dev)
6256 {
6257 struct device_prop_elm *e;
6258
6259 bus_topo_assert();
6260
6261 while ((e = LIST_FIRST(&dev->props)) != NULL) {
6262 LIST_REMOVE_HEAD(&dev->props, link);
6263 if (e->dtr != NULL)
6264 e->dtr(dev, e->name, e->val, e->dtr_ctx);
6265 free(e, M_BUS);
6266 }
6267 }
6268
6269 void
device_clear_prop_alldev(const char * name)6270 device_clear_prop_alldev(const char *name)
6271 {
6272 device_t dev;
6273
6274 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6275 device_clear_prop(dev, name);
6276 }
6277 }
6278
6279 /*
6280 * APIs to manage deprecation and obsolescence.
6281 */
6282 static int obsolete_panic = 0;
6283 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
6284 "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
6285 "2 = if deprecated)");
6286
6287 static void
gone_panic(int major,int running,const char * msg,...)6288 gone_panic(int major, int running, const char *msg, ...)
6289 {
6290 va_list ap;
6291
6292 switch (obsolete_panic)
6293 {
6294 case 0:
6295 return;
6296 case 1:
6297 if (running < major)
6298 return;
6299 /* FALLTHROUGH */
6300 default:
6301 va_start(ap, msg);
6302 vpanic(msg, ap);
6303 }
6304 }
6305
6306 void
_gone_in(int major,const char * msg,...)6307 _gone_in(int major, const char *msg, ...)
6308 {
6309 va_list ap;
6310
6311 va_start(ap, msg);
6312 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg, ap);
6313 vprintf(msg, ap);
6314 va_end(ap);
6315 if (P_OSREL_MAJOR(__FreeBSD_version) < major)
6316 printf("To be removed in FreeBSD %d\n", major);
6317 }
6318
6319 void
_gone_in_dev(device_t dev,int major,const char * msg,...)6320 _gone_in_dev(device_t dev, int major, const char *msg, ...)
6321 {
6322 va_list ap;
6323
6324 va_start(ap, msg);
6325 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg, ap);
6326 device_printf(dev, msg, ap);
6327 va_end(ap);
6328 if (P_OSREL_MAJOR(__FreeBSD_version) < major)
6329 device_printf(dev,
6330 "to be removed in FreeBSD %d\n", major);
6331 }
6332
6333 #ifdef DDB
DB_SHOW_COMMAND(device,db_show_device)6334 DB_SHOW_COMMAND(device, db_show_device)
6335 {
6336 device_t dev;
6337
6338 if (!have_addr)
6339 return;
6340
6341 dev = (device_t)addr;
6342
6343 db_printf("name: %s\n", device_get_nameunit(dev));
6344 db_printf(" driver: %s\n", DRIVERNAME(dev->driver));
6345 db_printf(" class: %s\n", DEVCLANAME(dev->devclass));
6346 db_printf(" addr: %p\n", dev);
6347 db_printf(" parent: %p\n", dev->parent);
6348 db_printf(" softc: %p\n", dev->softc);
6349 db_printf(" ivars: %p\n", dev->ivars);
6350 }
6351
DB_SHOW_ALL_COMMAND(devices,db_show_all_devices)6352 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6353 {
6354 device_t dev;
6355
6356 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6357 db_show_device((db_expr_t)dev, true, count, modif);
6358 }
6359 }
6360 #endif
6361