1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997,1998,2003 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_bus.h"
31 #include "opt_ddb.h"
32 #include "opt_iommu.h"
33
34 #include <sys/param.h>
35 #include <sys/conf.h>
36 #include <sys/domainset.h>
37 #include <sys/eventhandler.h>
38 #include <sys/jail.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/limits.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/priv.h>
46 #include <machine/bus.h>
47 #include <sys/random.h>
48 #include <sys/refcount.h>
49 #include <sys/rman.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/cpuset.h>
56 #ifdef INTRNG
57 #include <sys/intr.h>
58 #endif
59
60 #include <net/vnet.h>
61
62 #include <machine/cpu.h>
63 #include <machine/stdarg.h>
64
65 #include <vm/uma.h>
66 #include <vm/vm.h>
67
68 #include <dev/iommu/iommu.h>
69
70 #include <ddb/ddb.h>
71
72 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
73 NULL);
74 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
75 NULL);
76
77 static bool disable_failed_devs = false;
78 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs,
79 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time");
80
81 /*
82 * Used to attach drivers to devclasses.
83 */
84 typedef struct driverlink *driverlink_t;
85 struct driverlink {
86 kobj_class_t driver;
87 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */
88 int pass;
89 int flags;
90 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */
91 TAILQ_ENTRY(driverlink) passlink;
92 };
93
94 /*
95 * Forward declarations
96 */
97 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
98 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
99 typedef TAILQ_HEAD(device_list, _device) device_list_t;
100
101 struct devclass {
102 TAILQ_ENTRY(devclass) link;
103 devclass_t parent; /* parent in devclass hierarchy */
104 driver_list_t drivers; /* bus devclasses store drivers for bus */
105 char *name;
106 device_t *devices; /* array of devices indexed by unit */
107 int maxunit; /* size of devices array */
108 int flags;
109 #define DC_HAS_CHILDREN 1
110
111 struct sysctl_ctx_list sysctl_ctx;
112 struct sysctl_oid *sysctl_tree;
113 };
114
115 struct device_prop_elm {
116 const char *name;
117 void *val;
118 void *dtr_ctx;
119 device_prop_dtr_t dtr;
120 LIST_ENTRY(device_prop_elm) link;
121 };
122
123 static void device_destroy_props(device_t dev);
124
125 /**
126 * @brief Implementation of _device.
127 *
128 * The structure is named "_device" instead of "device" to avoid type confusion
129 * caused by other subsystems defining a (struct device).
130 */
131 struct _device {
132 /*
133 * A device is a kernel object. The first field must be the
134 * current ops table for the object.
135 */
136 KOBJ_FIELDS;
137
138 /*
139 * Device hierarchy.
140 */
141 TAILQ_ENTRY(_device) link; /**< list of devices in parent */
142 TAILQ_ENTRY(_device) devlink; /**< global device list membership */
143 device_t parent; /**< parent of this device */
144 device_list_t children; /**< list of child devices */
145
146 /*
147 * Details of this device.
148 */
149 driver_t *driver; /**< current driver */
150 devclass_t devclass; /**< current device class */
151 int unit; /**< current unit number */
152 char* nameunit; /**< name+unit e.g. foodev0 */
153 char* desc; /**< driver specific description */
154 u_int busy; /**< count of calls to device_busy() */
155 device_state_t state; /**< current device state */
156 uint32_t devflags; /**< api level flags for device_get_flags() */
157 u_int flags; /**< internal device flags */
158 u_int order; /**< order from device_add_child_ordered() */
159 void *ivars; /**< instance variables */
160 void *softc; /**< current driver's variables */
161 LIST_HEAD(, device_prop_elm) props;
162
163 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */
164 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
165 };
166
167 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
168 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
169
170 EVENTHANDLER_LIST_DEFINE(device_attach);
171 EVENTHANDLER_LIST_DEFINE(device_detach);
172 EVENTHANDLER_LIST_DEFINE(device_nomatch);
173 EVENTHANDLER_LIST_DEFINE(dev_lookup);
174
175 static void devctl2_init(void);
176 static bool device_frozen;
177
178 #define DRIVERNAME(d) ((d)? d->name : "no driver")
179 #define DEVCLANAME(d) ((d)? d->name : "no devclass")
180
181 #ifdef BUS_DEBUG
182
183 static int bus_debug = 1;
184 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
185 "Bus debug level");
186 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
187 #define DEVICENAME(d) ((d)? device_get_name(d): "no device")
188
189 /**
190 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
191 * prevent syslog from deleting initial spaces
192 */
193 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0)
194
195 static void print_device_short(device_t dev, int indent);
196 static void print_device(device_t dev, int indent);
197 void print_device_tree_short(device_t dev, int indent);
198 void print_device_tree(device_t dev, int indent);
199 static void print_driver_short(driver_t *driver, int indent);
200 static void print_driver(driver_t *driver, int indent);
201 static void print_driver_list(driver_list_t drivers, int indent);
202 static void print_devclass_short(devclass_t dc, int indent);
203 static void print_devclass(devclass_t dc, int indent);
204 void print_devclass_list_short(void);
205 void print_devclass_list(void);
206
207 #else
208 /* Make the compiler ignore the function calls */
209 #define PDEBUG(a) /* nop */
210 #define DEVICENAME(d) /* nop */
211
212 #define print_device_short(d,i) /* nop */
213 #define print_device(d,i) /* nop */
214 #define print_device_tree_short(d,i) /* nop */
215 #define print_device_tree(d,i) /* nop */
216 #define print_driver_short(d,i) /* nop */
217 #define print_driver(d,i) /* nop */
218 #define print_driver_list(d,i) /* nop */
219 #define print_devclass_short(d,i) /* nop */
220 #define print_devclass(d,i) /* nop */
221 #define print_devclass_list_short() /* nop */
222 #define print_devclass_list() /* nop */
223 #endif
224
225 /*
226 * dev sysctl tree
227 */
228
229 enum {
230 DEVCLASS_SYSCTL_PARENT,
231 };
232
233 static int
devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)234 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
235 {
236 devclass_t dc = (devclass_t)arg1;
237 const char *value;
238
239 switch (arg2) {
240 case DEVCLASS_SYSCTL_PARENT:
241 value = dc->parent ? dc->parent->name : "";
242 break;
243 default:
244 return (EINVAL);
245 }
246 return (SYSCTL_OUT_STR(req, value));
247 }
248
249 static void
devclass_sysctl_init(devclass_t dc)250 devclass_sysctl_init(devclass_t dc)
251 {
252 if (dc->sysctl_tree != NULL)
253 return;
254 sysctl_ctx_init(&dc->sysctl_ctx);
255 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
256 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
257 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
258 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
259 OID_AUTO, "%parent",
260 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
261 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
262 "parent class");
263 }
264
265 enum {
266 DEVICE_SYSCTL_DESC,
267 DEVICE_SYSCTL_DRIVER,
268 DEVICE_SYSCTL_LOCATION,
269 DEVICE_SYSCTL_PNPINFO,
270 DEVICE_SYSCTL_PARENT,
271 DEVICE_SYSCTL_IOMMU,
272 };
273
274 static int
device_sysctl_handler(SYSCTL_HANDLER_ARGS)275 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
276 {
277 struct sbuf sb;
278 device_t dev = (device_t)arg1;
279 device_t iommu;
280 int error;
281 uint16_t rid;
282 const char *c;
283
284 sbuf_new_for_sysctl(&sb, NULL, 1024, req);
285 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
286 bus_topo_lock();
287 switch (arg2) {
288 case DEVICE_SYSCTL_DESC:
289 sbuf_cat(&sb, dev->desc ? dev->desc : "");
290 break;
291 case DEVICE_SYSCTL_DRIVER:
292 sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
293 break;
294 case DEVICE_SYSCTL_LOCATION:
295 bus_child_location(dev, &sb);
296 break;
297 case DEVICE_SYSCTL_PNPINFO:
298 bus_child_pnpinfo(dev, &sb);
299 break;
300 case DEVICE_SYSCTL_PARENT:
301 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
302 break;
303 case DEVICE_SYSCTL_IOMMU:
304 iommu = NULL;
305 error = device_get_prop(dev, DEV_PROP_NAME_IOMMU,
306 (void **)&iommu);
307 c = "";
308 if (error == 0 && iommu != NULL) {
309 sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu));
310 c = " ";
311 }
312 rid = 0;
313 #ifdef IOMMU
314 iommu_get_requester(dev, &rid);
315 #endif
316 if (rid != 0)
317 sbuf_printf(&sb, "%srid=%#x", c, rid);
318 break;
319 default:
320 error = EINVAL;
321 goto out;
322 }
323 error = sbuf_finish(&sb);
324 out:
325 bus_topo_unlock();
326 sbuf_delete(&sb);
327 return (error);
328 }
329
330 static void
device_sysctl_init(device_t dev)331 device_sysctl_init(device_t dev)
332 {
333 devclass_t dc = dev->devclass;
334 int domain;
335
336 if (dev->sysctl_tree != NULL)
337 return;
338 devclass_sysctl_init(dc);
339 sysctl_ctx_init(&dev->sysctl_ctx);
340 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
341 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
342 dev->nameunit + strlen(dc->name),
343 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
344 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
345 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
346 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
347 "device description");
348 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
349 OID_AUTO, "%driver",
350 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
351 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
352 "device driver name");
353 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
354 OID_AUTO, "%location",
355 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
356 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
357 "device location relative to parent");
358 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
359 OID_AUTO, "%pnpinfo",
360 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
361 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
362 "device identification");
363 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
364 OID_AUTO, "%parent",
365 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
366 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
367 "parent device");
368 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
369 OID_AUTO, "%iommu",
370 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
371 dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A",
372 "iommu unit handling the device requests");
373 if (bus_get_domain(dev, &domain) == 0)
374 SYSCTL_ADD_INT(&dev->sysctl_ctx,
375 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
376 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
377 }
378
379 static void
device_sysctl_update(device_t dev)380 device_sysctl_update(device_t dev)
381 {
382 devclass_t dc = dev->devclass;
383
384 if (dev->sysctl_tree == NULL)
385 return;
386 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
387 }
388
389 static void
device_sysctl_fini(device_t dev)390 device_sysctl_fini(device_t dev)
391 {
392 if (dev->sysctl_tree == NULL)
393 return;
394 sysctl_ctx_free(&dev->sysctl_ctx);
395 dev->sysctl_tree = NULL;
396 }
397
398 static struct device_list bus_data_devices;
399 static int bus_data_generation = 1;
400
401 static kobj_method_t null_methods[] = {
402 KOBJMETHOD_END
403 };
404
405 DEFINE_CLASS(null, null_methods, 0);
406
407 void
bus_topo_assert(void)408 bus_topo_assert(void)
409 {
410
411 GIANT_REQUIRED;
412 }
413
414 struct mtx *
bus_topo_mtx(void)415 bus_topo_mtx(void)
416 {
417
418 return (&Giant);
419 }
420
421 void
bus_topo_lock(void)422 bus_topo_lock(void)
423 {
424
425 mtx_lock(bus_topo_mtx());
426 }
427
428 void
bus_topo_unlock(void)429 bus_topo_unlock(void)
430 {
431
432 mtx_unlock(bus_topo_mtx());
433 }
434
435 /*
436 * Bus pass implementation
437 */
438
439 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
440 static int bus_current_pass = BUS_PASS_ROOT;
441
442 /**
443 * @internal
444 * @brief Register the pass level of a new driver attachment
445 *
446 * Register a new driver attachment's pass level. If no driver
447 * attachment with the same pass level has been added, then @p new
448 * will be added to the global passes list.
449 *
450 * @param new the new driver attachment
451 */
452 static void
driver_register_pass(struct driverlink * new)453 driver_register_pass(struct driverlink *new)
454 {
455 struct driverlink *dl;
456
457 /* We only consider pass numbers during boot. */
458 if (bus_current_pass == BUS_PASS_DEFAULT)
459 return;
460
461 /*
462 * Walk the passes list. If we already know about this pass
463 * then there is nothing to do. If we don't, then insert this
464 * driver link into the list.
465 */
466 TAILQ_FOREACH(dl, &passes, passlink) {
467 if (dl->pass < new->pass)
468 continue;
469 if (dl->pass == new->pass)
470 return;
471 TAILQ_INSERT_BEFORE(dl, new, passlink);
472 return;
473 }
474 TAILQ_INSERT_TAIL(&passes, new, passlink);
475 }
476
477 /**
478 * @brief Retrieve the current bus pass
479 *
480 * Retrieves the current bus pass level. Call the BUS_NEW_PASS()
481 * method on the root bus to kick off a new device tree scan for each
482 * new pass level that has at least one driver.
483 */
484 int
bus_get_pass(void)485 bus_get_pass(void)
486 {
487
488 return (bus_current_pass);
489 }
490
491 /**
492 * @brief Raise the current bus pass
493 *
494 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS()
495 * method on the root bus to kick off a new device tree scan for each
496 * new pass level that has at least one driver.
497 */
498 static void
bus_set_pass(int pass)499 bus_set_pass(int pass)
500 {
501 struct driverlink *dl;
502
503 if (bus_current_pass > pass)
504 panic("Attempt to lower bus pass level");
505
506 TAILQ_FOREACH(dl, &passes, passlink) {
507 /* Skip pass values below the current pass level. */
508 if (dl->pass <= bus_current_pass)
509 continue;
510
511 /*
512 * Bail once we hit a driver with a pass level that is
513 * too high.
514 */
515 if (dl->pass > pass)
516 break;
517
518 /*
519 * Raise the pass level to the next level and rescan
520 * the tree.
521 */
522 bus_current_pass = dl->pass;
523 BUS_NEW_PASS(root_bus);
524 }
525
526 /*
527 * If there isn't a driver registered for the requested pass,
528 * then bus_current_pass might still be less than 'pass'. Set
529 * it to 'pass' in that case.
530 */
531 if (bus_current_pass < pass)
532 bus_current_pass = pass;
533 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
534 }
535
536 /*
537 * Devclass implementation
538 */
539
540 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
541
542 /**
543 * @internal
544 * @brief Find or create a device class
545 *
546 * If a device class with the name @p classname exists, return it,
547 * otherwise if @p create is non-zero create and return a new device
548 * class.
549 *
550 * If @p parentname is non-NULL, the parent of the devclass is set to
551 * the devclass of that name.
552 *
553 * @param classname the devclass name to find or create
554 * @param parentname the parent devclass name or @c NULL
555 * @param create non-zero to create a devclass
556 */
557 static devclass_t
devclass_find_internal(const char * classname,const char * parentname,int create)558 devclass_find_internal(const char *classname, const char *parentname,
559 int create)
560 {
561 devclass_t dc;
562
563 PDEBUG(("looking for %s", classname));
564 if (!classname)
565 return (NULL);
566
567 TAILQ_FOREACH(dc, &devclasses, link) {
568 if (!strcmp(dc->name, classname))
569 break;
570 }
571
572 if (create && !dc) {
573 PDEBUG(("creating %s", classname));
574 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
575 M_BUS, M_NOWAIT | M_ZERO);
576 if (!dc)
577 return (NULL);
578 dc->parent = NULL;
579 dc->name = (char*) (dc + 1);
580 strcpy(dc->name, classname);
581 TAILQ_INIT(&dc->drivers);
582 TAILQ_INSERT_TAIL(&devclasses, dc, link);
583
584 bus_data_generation_update();
585 }
586
587 /*
588 * If a parent class is specified, then set that as our parent so
589 * that this devclass will support drivers for the parent class as
590 * well. If the parent class has the same name don't do this though
591 * as it creates a cycle that can trigger an infinite loop in
592 * device_probe_child() if a device exists for which there is no
593 * suitable driver.
594 */
595 if (parentname && dc && !dc->parent &&
596 strcmp(classname, parentname) != 0) {
597 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
598 dc->parent->flags |= DC_HAS_CHILDREN;
599 }
600
601 return (dc);
602 }
603
604 /**
605 * @brief Create a device class
606 *
607 * If a device class with the name @p classname exists, return it,
608 * otherwise create and return a new device class.
609 *
610 * @param classname the devclass name to find or create
611 */
612 devclass_t
devclass_create(const char * classname)613 devclass_create(const char *classname)
614 {
615 return (devclass_find_internal(classname, NULL, TRUE));
616 }
617
618 /**
619 * @brief Find a device class
620 *
621 * If a device class with the name @p classname exists, return it,
622 * otherwise return @c NULL.
623 *
624 * @param classname the devclass name to find
625 */
626 devclass_t
devclass_find(const char * classname)627 devclass_find(const char *classname)
628 {
629 return (devclass_find_internal(classname, NULL, FALSE));
630 }
631
632 /**
633 * @brief Register that a device driver has been added to a devclass
634 *
635 * Register that a device driver has been added to a devclass. This
636 * is called by devclass_add_driver to accomplish the recursive
637 * notification of all the children classes of dc, as well as dc.
638 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
639 * the devclass.
640 *
641 * We do a full search here of the devclass list at each iteration
642 * level to save storing children-lists in the devclass structure. If
643 * we ever move beyond a few dozen devices doing this, we may need to
644 * reevaluate...
645 *
646 * @param dc the devclass to edit
647 * @param driver the driver that was just added
648 */
649 static void
devclass_driver_added(devclass_t dc,driver_t * driver)650 devclass_driver_added(devclass_t dc, driver_t *driver)
651 {
652 devclass_t parent;
653 int i;
654
655 /*
656 * Call BUS_DRIVER_ADDED for any existing buses in this class.
657 */
658 for (i = 0; i < dc->maxunit; i++)
659 if (dc->devices[i] && device_is_attached(dc->devices[i]))
660 BUS_DRIVER_ADDED(dc->devices[i], driver);
661
662 /*
663 * Walk through the children classes. Since we only keep a
664 * single parent pointer around, we walk the entire list of
665 * devclasses looking for children. We set the
666 * DC_HAS_CHILDREN flag when a child devclass is created on
667 * the parent, so we only walk the list for those devclasses
668 * that have children.
669 */
670 if (!(dc->flags & DC_HAS_CHILDREN))
671 return;
672 parent = dc;
673 TAILQ_FOREACH(dc, &devclasses, link) {
674 if (dc->parent == parent)
675 devclass_driver_added(dc, driver);
676 }
677 }
678
679 static void
device_handle_nomatch(device_t dev)680 device_handle_nomatch(device_t dev)
681 {
682 BUS_PROBE_NOMATCH(dev->parent, dev);
683 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
684 dev->flags |= DF_DONENOMATCH;
685 }
686
687 /**
688 * @brief Add a device driver to a device class
689 *
690 * Add a device driver to a devclass. This is normally called
691 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
692 * all devices in the devclass will be called to allow them to attempt
693 * to re-probe any unmatched children.
694 *
695 * @param dc the devclass to edit
696 * @param driver the driver to register
697 */
698 int
devclass_add_driver(devclass_t dc,driver_t * driver,int pass,devclass_t * dcp)699 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
700 {
701 driverlink_t dl;
702 devclass_t child_dc;
703 const char *parentname;
704
705 PDEBUG(("%s", DRIVERNAME(driver)));
706
707 /* Don't allow invalid pass values. */
708 if (pass <= BUS_PASS_ROOT)
709 return (EINVAL);
710
711 dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
712 if (!dl)
713 return (ENOMEM);
714
715 /*
716 * Compile the driver's methods. Also increase the reference count
717 * so that the class doesn't get freed when the last instance
718 * goes. This means we can safely use static methods and avoids a
719 * double-free in devclass_delete_driver.
720 */
721 kobj_class_compile((kobj_class_t) driver);
722
723 /*
724 * If the driver has any base classes, make the
725 * devclass inherit from the devclass of the driver's
726 * first base class. This will allow the system to
727 * search for drivers in both devclasses for children
728 * of a device using this driver.
729 */
730 if (driver->baseclasses)
731 parentname = driver->baseclasses[0]->name;
732 else
733 parentname = NULL;
734 child_dc = devclass_find_internal(driver->name, parentname, TRUE);
735 if (dcp != NULL)
736 *dcp = child_dc;
737
738 dl->driver = driver;
739 TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
740 driver->refs++; /* XXX: kobj_mtx */
741 dl->pass = pass;
742 driver_register_pass(dl);
743
744 if (device_frozen) {
745 dl->flags |= DL_DEFERRED_PROBE;
746 } else {
747 devclass_driver_added(dc, driver);
748 }
749 bus_data_generation_update();
750 return (0);
751 }
752
753 /**
754 * @brief Register that a device driver has been deleted from a devclass
755 *
756 * Register that a device driver has been removed from a devclass.
757 * This is called by devclass_delete_driver to accomplish the
758 * recursive notification of all the children classes of busclass, as
759 * well as busclass. Each layer will attempt to detach the driver
760 * from any devices that are children of the bus's devclass. The function
761 * will return an error if a device fails to detach.
762 *
763 * We do a full search here of the devclass list at each iteration
764 * level to save storing children-lists in the devclass structure. If
765 * we ever move beyond a few dozen devices doing this, we may need to
766 * reevaluate...
767 *
768 * @param busclass the devclass of the parent bus
769 * @param dc the devclass of the driver being deleted
770 * @param driver the driver being deleted
771 */
772 static int
devclass_driver_deleted(devclass_t busclass,devclass_t dc,driver_t * driver)773 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
774 {
775 devclass_t parent;
776 device_t dev;
777 int error, i;
778
779 /*
780 * Disassociate from any devices. We iterate through all the
781 * devices in the devclass of the driver and detach any which are
782 * using the driver and which have a parent in the devclass which
783 * we are deleting from.
784 *
785 * Note that since a driver can be in multiple devclasses, we
786 * should not detach devices which are not children of devices in
787 * the affected devclass.
788 *
789 * If we're frozen, we don't generate NOMATCH events. Mark to
790 * generate later.
791 */
792 for (i = 0; i < dc->maxunit; i++) {
793 if (dc->devices[i]) {
794 dev = dc->devices[i];
795 if (dev->driver == driver && dev->parent &&
796 dev->parent->devclass == busclass) {
797 if ((error = device_detach(dev)) != 0)
798 return (error);
799 if (device_frozen) {
800 dev->flags &= ~DF_DONENOMATCH;
801 dev->flags |= DF_NEEDNOMATCH;
802 } else {
803 device_handle_nomatch(dev);
804 }
805 }
806 }
807 }
808
809 /*
810 * Walk through the children classes. Since we only keep a
811 * single parent pointer around, we walk the entire list of
812 * devclasses looking for children. We set the
813 * DC_HAS_CHILDREN flag when a child devclass is created on
814 * the parent, so we only walk the list for those devclasses
815 * that have children.
816 */
817 if (!(busclass->flags & DC_HAS_CHILDREN))
818 return (0);
819 parent = busclass;
820 TAILQ_FOREACH(busclass, &devclasses, link) {
821 if (busclass->parent == parent) {
822 error = devclass_driver_deleted(busclass, dc, driver);
823 if (error)
824 return (error);
825 }
826 }
827 return (0);
828 }
829
830 /**
831 * @brief Delete a device driver from a device class
832 *
833 * Delete a device driver from a devclass. This is normally called
834 * automatically by DRIVER_MODULE().
835 *
836 * If the driver is currently attached to any devices,
837 * devclass_delete_driver() will first attempt to detach from each
838 * device. If one of the detach calls fails, the driver will not be
839 * deleted.
840 *
841 * @param dc the devclass to edit
842 * @param driver the driver to unregister
843 */
844 int
devclass_delete_driver(devclass_t busclass,driver_t * driver)845 devclass_delete_driver(devclass_t busclass, driver_t *driver)
846 {
847 devclass_t dc = devclass_find(driver->name);
848 driverlink_t dl;
849 int error;
850
851 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
852
853 if (!dc)
854 return (0);
855
856 /*
857 * Find the link structure in the bus' list of drivers.
858 */
859 TAILQ_FOREACH(dl, &busclass->drivers, link) {
860 if (dl->driver == driver)
861 break;
862 }
863
864 if (!dl) {
865 PDEBUG(("%s not found in %s list", driver->name,
866 busclass->name));
867 return (ENOENT);
868 }
869
870 error = devclass_driver_deleted(busclass, dc, driver);
871 if (error != 0)
872 return (error);
873
874 TAILQ_REMOVE(&busclass->drivers, dl, link);
875 free(dl, M_BUS);
876
877 /* XXX: kobj_mtx */
878 driver->refs--;
879 if (driver->refs == 0)
880 kobj_class_free((kobj_class_t) driver);
881
882 bus_data_generation_update();
883 return (0);
884 }
885
886 /**
887 * @brief Quiesces a set of device drivers from a device class
888 *
889 * Quiesce a device driver from a devclass. This is normally called
890 * automatically by DRIVER_MODULE().
891 *
892 * If the driver is currently attached to any devices,
893 * devclass_quiesece_driver() will first attempt to quiesce each
894 * device.
895 *
896 * @param dc the devclass to edit
897 * @param driver the driver to unregister
898 */
899 static int
devclass_quiesce_driver(devclass_t busclass,driver_t * driver)900 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
901 {
902 devclass_t dc = devclass_find(driver->name);
903 driverlink_t dl;
904 device_t dev;
905 int i;
906 int error;
907
908 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
909
910 if (!dc)
911 return (0);
912
913 /*
914 * Find the link structure in the bus' list of drivers.
915 */
916 TAILQ_FOREACH(dl, &busclass->drivers, link) {
917 if (dl->driver == driver)
918 break;
919 }
920
921 if (!dl) {
922 PDEBUG(("%s not found in %s list", driver->name,
923 busclass->name));
924 return (ENOENT);
925 }
926
927 /*
928 * Quiesce all devices. We iterate through all the devices in
929 * the devclass of the driver and quiesce any which are using
930 * the driver and which have a parent in the devclass which we
931 * are quiescing.
932 *
933 * Note that since a driver can be in multiple devclasses, we
934 * should not quiesce devices which are not children of
935 * devices in the affected devclass.
936 */
937 for (i = 0; i < dc->maxunit; i++) {
938 if (dc->devices[i]) {
939 dev = dc->devices[i];
940 if (dev->driver == driver && dev->parent &&
941 dev->parent->devclass == busclass) {
942 if ((error = device_quiesce(dev)) != 0)
943 return (error);
944 }
945 }
946 }
947
948 return (0);
949 }
950
951 /**
952 * @internal
953 */
954 static driverlink_t
devclass_find_driver_internal(devclass_t dc,const char * classname)955 devclass_find_driver_internal(devclass_t dc, const char *classname)
956 {
957 driverlink_t dl;
958
959 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
960
961 TAILQ_FOREACH(dl, &dc->drivers, link) {
962 if (!strcmp(dl->driver->name, classname))
963 return (dl);
964 }
965
966 PDEBUG(("not found"));
967 return (NULL);
968 }
969
970 /**
971 * @brief Return the name of the devclass
972 */
973 const char *
devclass_get_name(devclass_t dc)974 devclass_get_name(devclass_t dc)
975 {
976 return (dc->name);
977 }
978
979 /**
980 * @brief Find a device given a unit number
981 *
982 * @param dc the devclass to search
983 * @param unit the unit number to search for
984 *
985 * @returns the device with the given unit number or @c
986 * NULL if there is no such device
987 */
988 device_t
devclass_get_device(devclass_t dc,int unit)989 devclass_get_device(devclass_t dc, int unit)
990 {
991 if (dc == NULL || unit < 0 || unit >= dc->maxunit)
992 return (NULL);
993 return (dc->devices[unit]);
994 }
995
996 /**
997 * @brief Find the softc field of a device given a unit number
998 *
999 * @param dc the devclass to search
1000 * @param unit the unit number to search for
1001 *
1002 * @returns the softc field of the device with the given
1003 * unit number or @c NULL if there is no such
1004 * device
1005 */
1006 void *
devclass_get_softc(devclass_t dc,int unit)1007 devclass_get_softc(devclass_t dc, int unit)
1008 {
1009 device_t dev;
1010
1011 dev = devclass_get_device(dc, unit);
1012 if (!dev)
1013 return (NULL);
1014
1015 return (device_get_softc(dev));
1016 }
1017
1018 /**
1019 * @brief Get a list of devices in the devclass
1020 *
1021 * An array containing a list of all the devices in the given devclass
1022 * is allocated and returned in @p *devlistp. The number of devices
1023 * in the array is returned in @p *devcountp. The caller should free
1024 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1025 *
1026 * @param dc the devclass to examine
1027 * @param devlistp points at location for array pointer return
1028 * value
1029 * @param devcountp points at location for array size return value
1030 *
1031 * @retval 0 success
1032 * @retval ENOMEM the array allocation failed
1033 */
1034 int
devclass_get_devices(devclass_t dc,device_t ** devlistp,int * devcountp)1035 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1036 {
1037 int count, i;
1038 device_t *list;
1039
1040 count = devclass_get_count(dc);
1041 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1042 if (!list)
1043 return (ENOMEM);
1044
1045 count = 0;
1046 for (i = 0; i < dc->maxunit; i++) {
1047 if (dc->devices[i]) {
1048 list[count] = dc->devices[i];
1049 count++;
1050 }
1051 }
1052
1053 *devlistp = list;
1054 *devcountp = count;
1055
1056 return (0);
1057 }
1058
1059 /**
1060 * @brief Get a list of drivers in the devclass
1061 *
1062 * An array containing a list of pointers to all the drivers in the
1063 * given devclass is allocated and returned in @p *listp. The number
1064 * of drivers in the array is returned in @p *countp. The caller should
1065 * free the array using @c free(p, M_TEMP).
1066 *
1067 * @param dc the devclass to examine
1068 * @param listp gives location for array pointer return value
1069 * @param countp gives location for number of array elements
1070 * return value
1071 *
1072 * @retval 0 success
1073 * @retval ENOMEM the array allocation failed
1074 */
1075 int
devclass_get_drivers(devclass_t dc,driver_t *** listp,int * countp)1076 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1077 {
1078 driverlink_t dl;
1079 driver_t **list;
1080 int count;
1081
1082 count = 0;
1083 TAILQ_FOREACH(dl, &dc->drivers, link)
1084 count++;
1085 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1086 if (list == NULL)
1087 return (ENOMEM);
1088
1089 count = 0;
1090 TAILQ_FOREACH(dl, &dc->drivers, link) {
1091 list[count] = dl->driver;
1092 count++;
1093 }
1094 *listp = list;
1095 *countp = count;
1096
1097 return (0);
1098 }
1099
1100 /**
1101 * @brief Get the number of devices in a devclass
1102 *
1103 * @param dc the devclass to examine
1104 */
1105 int
devclass_get_count(devclass_t dc)1106 devclass_get_count(devclass_t dc)
1107 {
1108 int count, i;
1109
1110 count = 0;
1111 for (i = 0; i < dc->maxunit; i++)
1112 if (dc->devices[i])
1113 count++;
1114 return (count);
1115 }
1116
1117 /**
1118 * @brief Get the maximum unit number used in a devclass
1119 *
1120 * Note that this is one greater than the highest currently-allocated unit. If
1121 * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has
1122 * been allocated yet.
1123 *
1124 * @param dc the devclass to examine
1125 */
1126 int
devclass_get_maxunit(devclass_t dc)1127 devclass_get_maxunit(devclass_t dc)
1128 {
1129 if (dc == NULL)
1130 return (-1);
1131 return (dc->maxunit);
1132 }
1133
1134 /**
1135 * @brief Find a free unit number in a devclass
1136 *
1137 * This function searches for the first unused unit number greater
1138 * that or equal to @p unit. Note: This can return INT_MAX which
1139 * may be rejected elsewhere.
1140 *
1141 * @param dc the devclass to examine
1142 * @param unit the first unit number to check
1143 */
1144 int
devclass_find_free_unit(devclass_t dc,int unit)1145 devclass_find_free_unit(devclass_t dc, int unit)
1146 {
1147 if (dc == NULL)
1148 return (unit);
1149 while (unit < dc->maxunit && dc->devices[unit] != NULL)
1150 unit++;
1151 return (unit);
1152 }
1153
1154 /**
1155 * @brief Set the parent of a devclass
1156 *
1157 * The parent class is normally initialised automatically by
1158 * DRIVER_MODULE().
1159 *
1160 * @param dc the devclass to edit
1161 * @param pdc the new parent devclass
1162 */
1163 void
devclass_set_parent(devclass_t dc,devclass_t pdc)1164 devclass_set_parent(devclass_t dc, devclass_t pdc)
1165 {
1166 dc->parent = pdc;
1167 }
1168
1169 /**
1170 * @brief Get the parent of a devclass
1171 *
1172 * @param dc the devclass to examine
1173 */
1174 devclass_t
devclass_get_parent(devclass_t dc)1175 devclass_get_parent(devclass_t dc)
1176 {
1177 return (dc->parent);
1178 }
1179
1180 struct sysctl_ctx_list *
devclass_get_sysctl_ctx(devclass_t dc)1181 devclass_get_sysctl_ctx(devclass_t dc)
1182 {
1183 return (&dc->sysctl_ctx);
1184 }
1185
1186 struct sysctl_oid *
devclass_get_sysctl_tree(devclass_t dc)1187 devclass_get_sysctl_tree(devclass_t dc)
1188 {
1189 return (dc->sysctl_tree);
1190 }
1191
1192 /**
1193 * @internal
1194 * @brief Allocate a unit number
1195 *
1196 * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any
1197 * will do). The allocated unit number is returned in @p *unitp.
1198 *
1199 * @param dc the devclass to allocate from
1200 * @param unitp points at the location for the allocated unit
1201 * number
1202 *
1203 * @retval 0 success
1204 * @retval EEXIST the requested unit number is already allocated
1205 * @retval ENOMEM memory allocation failure
1206 * @retval EINVAL unit is negative or we've run out of units
1207 */
1208 static int
devclass_alloc_unit(devclass_t dc,device_t dev,int * unitp)1209 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1210 {
1211 const char *s;
1212 int unit = *unitp;
1213
1214 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1215
1216 /* Ask the parent bus if it wants to wire this device. */
1217 if (unit == DEVICE_UNIT_ANY)
1218 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1219 &unit);
1220
1221 /* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */
1222 if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX)
1223 return (EINVAL);
1224
1225 /* If we were given a wired unit number, check for existing device */
1226 if (unit != DEVICE_UNIT_ANY) {
1227 if (unit < dc->maxunit && dc->devices[unit] != NULL) {
1228 if (bootverbose)
1229 printf("%s: %s%d already exists; skipping it\n",
1230 dc->name, dc->name, *unitp);
1231 return (EEXIST);
1232 }
1233 } else {
1234 /* Unwired device, find the next available slot for it */
1235 unit = 0;
1236 for (unit = 0; unit < INT_MAX; unit++) {
1237 /* If this device slot is already in use, skip it. */
1238 if (unit < dc->maxunit && dc->devices[unit] != NULL)
1239 continue;
1240
1241 /* If there is an "at" hint for a unit then skip it. */
1242 if (resource_string_value(dc->name, unit, "at", &s) ==
1243 0)
1244 continue;
1245
1246 break;
1247 }
1248 }
1249
1250 /*
1251 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as
1252 * too large. We constrain maxunit below to be <= INT_MAX. This means we
1253 * can treat unit and maxunit as normal integers with normal math
1254 * everywhere and we only have to flag INT_MAX as invalid.
1255 */
1256 if (unit == INT_MAX)
1257 return (EINVAL);
1258
1259 /*
1260 * We've selected a unit beyond the length of the table, so let's extend
1261 * the table to make room for all units up to and including this one.
1262 */
1263 if (unit >= dc->maxunit) {
1264 int newsize;
1265
1266 newsize = unit + 1;
1267 dc->devices = reallocf(dc->devices,
1268 newsize * sizeof(*dc->devices), M_BUS, M_WAITOK);
1269 memset(dc->devices + dc->maxunit, 0,
1270 sizeof(device_t) * (newsize - dc->maxunit));
1271 dc->maxunit = newsize;
1272 }
1273 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1274
1275 *unitp = unit;
1276 return (0);
1277 }
1278
1279 /**
1280 * @internal
1281 * @brief Add a device to a devclass
1282 *
1283 * A unit number is allocated for the device (using the device's
1284 * preferred unit number if any) and the device is registered in the
1285 * devclass. This allows the device to be looked up by its unit
1286 * number, e.g. by decoding a dev_t minor number.
1287 *
1288 * @param dc the devclass to add to
1289 * @param dev the device to add
1290 *
1291 * @retval 0 success
1292 * @retval EEXIST the requested unit number is already allocated
1293 * @retval ENOMEM memory allocation failure
1294 * @retval EINVAL Unit number invalid or too many units
1295 */
1296 static int
devclass_add_device(devclass_t dc,device_t dev)1297 devclass_add_device(devclass_t dc, device_t dev)
1298 {
1299 int buflen, error;
1300
1301 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1302
1303 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1304 if (buflen < 0)
1305 return (ENOMEM);
1306 dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1307 if (!dev->nameunit)
1308 return (ENOMEM);
1309
1310 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1311 free(dev->nameunit, M_BUS);
1312 dev->nameunit = NULL;
1313 return (error);
1314 }
1315 dc->devices[dev->unit] = dev;
1316 dev->devclass = dc;
1317 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1318
1319 return (0);
1320 }
1321
1322 /**
1323 * @internal
1324 * @brief Delete a device from a devclass
1325 *
1326 * The device is removed from the devclass's device list and its unit
1327 * number is freed.
1328
1329 * @param dc the devclass to delete from
1330 * @param dev the device to delete
1331 *
1332 * @retval 0 success
1333 */
1334 static int
devclass_delete_device(devclass_t dc,device_t dev)1335 devclass_delete_device(devclass_t dc, device_t dev)
1336 {
1337 if (!dc || !dev)
1338 return (0);
1339
1340 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1341
1342 if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1343 panic("devclass_delete_device: inconsistent device class");
1344 dc->devices[dev->unit] = NULL;
1345 if (dev->flags & DF_WILDCARD)
1346 dev->unit = DEVICE_UNIT_ANY;
1347 dev->devclass = NULL;
1348 free(dev->nameunit, M_BUS);
1349 dev->nameunit = NULL;
1350
1351 return (0);
1352 }
1353
1354 /**
1355 * @internal
1356 * @brief Make a new device and add it as a child of @p parent
1357 *
1358 * @param parent the parent of the new device
1359 * @param name the devclass name of the new device or @c NULL
1360 * to leave the devclass unspecified
1361 * @parem unit the unit number of the new device of @c DEVICE_UNIT_ANY
1362 * to leave the unit number unspecified
1363 *
1364 * @returns the new device
1365 */
1366 static device_t
make_device(device_t parent,const char * name,int unit)1367 make_device(device_t parent, const char *name, int unit)
1368 {
1369 device_t dev;
1370 devclass_t dc;
1371
1372 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1373
1374 if (name) {
1375 dc = devclass_find_internal(name, NULL, TRUE);
1376 if (!dc) {
1377 printf("make_device: can't find device class %s\n",
1378 name);
1379 return (NULL);
1380 }
1381 } else {
1382 dc = NULL;
1383 }
1384
1385 dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1386 if (!dev)
1387 return (NULL);
1388
1389 dev->parent = parent;
1390 TAILQ_INIT(&dev->children);
1391 kobj_init((kobj_t) dev, &null_class);
1392 dev->driver = NULL;
1393 dev->devclass = NULL;
1394 dev->unit = unit;
1395 dev->nameunit = NULL;
1396 dev->desc = NULL;
1397 dev->busy = 0;
1398 dev->devflags = 0;
1399 dev->flags = DF_ENABLED;
1400 dev->order = 0;
1401 if (unit == DEVICE_UNIT_ANY)
1402 dev->flags |= DF_WILDCARD;
1403 if (name) {
1404 dev->flags |= DF_FIXEDCLASS;
1405 if (devclass_add_device(dc, dev)) {
1406 kobj_delete((kobj_t) dev, M_BUS);
1407 return (NULL);
1408 }
1409 }
1410 if (parent != NULL && device_has_quiet_children(parent))
1411 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1412 dev->ivars = NULL;
1413 dev->softc = NULL;
1414 LIST_INIT(&dev->props);
1415
1416 dev->state = DS_NOTPRESENT;
1417
1418 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1419 bus_data_generation_update();
1420
1421 return (dev);
1422 }
1423
1424 /**
1425 * @internal
1426 * @brief Print a description of a device.
1427 */
1428 static int
device_print_child(device_t dev,device_t child)1429 device_print_child(device_t dev, device_t child)
1430 {
1431 int retval = 0;
1432
1433 if (device_is_alive(child))
1434 retval += BUS_PRINT_CHILD(dev, child);
1435 else
1436 retval += device_printf(child, " not found\n");
1437
1438 return (retval);
1439 }
1440
1441 /**
1442 * @brief Create a new device
1443 *
1444 * This creates a new device and adds it as a child of an existing
1445 * parent device. The new device will be added after the last existing
1446 * child with order zero.
1447 *
1448 * @param dev the device which will be the parent of the
1449 * new child device
1450 * @param name devclass name for new device or @c NULL if not
1451 * specified
1452 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not
1453 * specified
1454 *
1455 * @returns the new device
1456 */
1457 device_t
device_add_child(device_t dev,const char * name,int unit)1458 device_add_child(device_t dev, const char *name, int unit)
1459 {
1460 return (device_add_child_ordered(dev, 0, name, unit));
1461 }
1462
1463 /**
1464 * @brief Create a new device
1465 *
1466 * This creates a new device and adds it as a child of an existing
1467 * parent device. The new device will be added after the last existing
1468 * child with the same order.
1469 *
1470 * @param dev the device which will be the parent of the
1471 * new child device
1472 * @param order a value which is used to partially sort the
1473 * children of @p dev - devices created using
1474 * lower values of @p order appear first in @p
1475 * dev's list of children
1476 * @param name devclass name for new device or @c NULL if not
1477 * specified
1478 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not
1479 * specified
1480 *
1481 * @returns the new device
1482 */
1483 device_t
device_add_child_ordered(device_t dev,u_int order,const char * name,int unit)1484 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1485 {
1486 device_t child;
1487 device_t place;
1488
1489 PDEBUG(("%s at %s with order %u as unit %d",
1490 name, DEVICENAME(dev), order, unit));
1491 KASSERT(name != NULL || unit == DEVICE_UNIT_ANY,
1492 ("child device with wildcard name and specific unit number"));
1493
1494 child = make_device(dev, name, unit);
1495 if (child == NULL)
1496 return (child);
1497 child->order = order;
1498
1499 TAILQ_FOREACH(place, &dev->children, link) {
1500 if (place->order > order)
1501 break;
1502 }
1503
1504 if (place) {
1505 /*
1506 * The device 'place' is the first device whose order is
1507 * greater than the new child.
1508 */
1509 TAILQ_INSERT_BEFORE(place, child, link);
1510 } else {
1511 /*
1512 * The new child's order is greater or equal to the order of
1513 * any existing device. Add the child to the tail of the list.
1514 */
1515 TAILQ_INSERT_TAIL(&dev->children, child, link);
1516 }
1517
1518 bus_data_generation_update();
1519 return (child);
1520 }
1521
1522 /**
1523 * @brief Delete a device
1524 *
1525 * This function deletes a device along with all of its children. If
1526 * the device currently has a driver attached to it, the device is
1527 * detached first using device_detach().
1528 *
1529 * @param dev the parent device
1530 * @param child the device to delete
1531 *
1532 * @retval 0 success
1533 * @retval non-zero a unit error code describing the error
1534 */
1535 int
device_delete_child(device_t dev,device_t child)1536 device_delete_child(device_t dev, device_t child)
1537 {
1538 int error;
1539 device_t grandchild;
1540
1541 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1542
1543 /*
1544 * Detach child. Ideally this cleans up any grandchild
1545 * devices.
1546 */
1547 if ((error = device_detach(child)) != 0)
1548 return (error);
1549
1550 /* Delete any grandchildren left after detach. */
1551 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1552 error = device_delete_child(child, grandchild);
1553 if (error)
1554 return (error);
1555 }
1556
1557 device_destroy_props(dev);
1558 if (child->devclass)
1559 devclass_delete_device(child->devclass, child);
1560 if (child->parent)
1561 BUS_CHILD_DELETED(dev, child);
1562 TAILQ_REMOVE(&dev->children, child, link);
1563 TAILQ_REMOVE(&bus_data_devices, child, devlink);
1564 kobj_delete((kobj_t) child, M_BUS);
1565
1566 bus_data_generation_update();
1567 return (0);
1568 }
1569
1570 /**
1571 * @brief Delete all children devices of the given device, if any.
1572 *
1573 * This function deletes all children devices of the given device, if
1574 * any, using the device_delete_child() function for each device it
1575 * finds. If a child device cannot be deleted, this function will
1576 * return an error code.
1577 *
1578 * @param dev the parent device
1579 *
1580 * @retval 0 success
1581 * @retval non-zero a device would not detach
1582 */
1583 int
device_delete_children(device_t dev)1584 device_delete_children(device_t dev)
1585 {
1586 device_t child;
1587 int error;
1588
1589 PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1590
1591 error = 0;
1592
1593 while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1594 error = device_delete_child(dev, child);
1595 if (error) {
1596 PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1597 break;
1598 }
1599 }
1600 return (error);
1601 }
1602
1603 /**
1604 * @brief Find a device given a unit number
1605 *
1606 * This is similar to devclass_get_devices() but only searches for
1607 * devices which have @p dev as a parent.
1608 *
1609 * @param dev the parent device to search
1610 * @param unit the unit number to search for. If the unit is
1611 * @c DEVICE_UNIT_ANY, return the first child of @p dev
1612 * which has name @p classname (that is, the one with the
1613 * lowest unit.)
1614 *
1615 * @returns the device with the given unit number or @c
1616 * NULL if there is no such device
1617 */
1618 device_t
device_find_child(device_t dev,const char * classname,int unit)1619 device_find_child(device_t dev, const char *classname, int unit)
1620 {
1621 devclass_t dc;
1622 device_t child;
1623
1624 dc = devclass_find(classname);
1625 if (!dc)
1626 return (NULL);
1627
1628 if (unit != DEVICE_UNIT_ANY) {
1629 child = devclass_get_device(dc, unit);
1630 if (child && child->parent == dev)
1631 return (child);
1632 } else {
1633 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1634 child = devclass_get_device(dc, unit);
1635 if (child && child->parent == dev)
1636 return (child);
1637 }
1638 }
1639 return (NULL);
1640 }
1641
1642 /**
1643 * @internal
1644 */
1645 static driverlink_t
first_matching_driver(devclass_t dc,device_t dev)1646 first_matching_driver(devclass_t dc, device_t dev)
1647 {
1648 if (dev->devclass)
1649 return (devclass_find_driver_internal(dc, dev->devclass->name));
1650 return (TAILQ_FIRST(&dc->drivers));
1651 }
1652
1653 /**
1654 * @internal
1655 */
1656 static driverlink_t
next_matching_driver(devclass_t dc,device_t dev,driverlink_t last)1657 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1658 {
1659 if (dev->devclass) {
1660 driverlink_t dl;
1661 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1662 if (!strcmp(dev->devclass->name, dl->driver->name))
1663 return (dl);
1664 return (NULL);
1665 }
1666 return (TAILQ_NEXT(last, link));
1667 }
1668
1669 /**
1670 * @internal
1671 */
1672 int
device_probe_child(device_t dev,device_t child)1673 device_probe_child(device_t dev, device_t child)
1674 {
1675 devclass_t dc;
1676 driverlink_t best = NULL;
1677 driverlink_t dl;
1678 int result, pri = 0;
1679 /* We should preserve the devclass (or lack of) set by the bus. */
1680 int hasclass = (child->devclass != NULL);
1681
1682 bus_topo_assert();
1683
1684 dc = dev->devclass;
1685 if (!dc)
1686 panic("device_probe_child: parent device has no devclass");
1687
1688 /*
1689 * If the state is already probed, then return.
1690 */
1691 if (child->state == DS_ALIVE)
1692 return (0);
1693
1694 for (; dc; dc = dc->parent) {
1695 for (dl = first_matching_driver(dc, child);
1696 dl;
1697 dl = next_matching_driver(dc, child, dl)) {
1698 /* If this driver's pass is too high, then ignore it. */
1699 if (dl->pass > bus_current_pass)
1700 continue;
1701
1702 PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1703 result = device_set_driver(child, dl->driver);
1704 if (result == ENOMEM)
1705 return (result);
1706 else if (result != 0)
1707 continue;
1708 if (!hasclass) {
1709 if (device_set_devclass(child,
1710 dl->driver->name) != 0) {
1711 char const * devname =
1712 device_get_name(child);
1713 if (devname == NULL)
1714 devname = "(unknown)";
1715 printf("driver bug: Unable to set "
1716 "devclass (class: %s "
1717 "devname: %s)\n",
1718 dl->driver->name,
1719 devname);
1720 (void)device_set_driver(child, NULL);
1721 continue;
1722 }
1723 }
1724
1725 /* Fetch any flags for the device before probing. */
1726 resource_int_value(dl->driver->name, child->unit,
1727 "flags", &child->devflags);
1728
1729 result = DEVICE_PROBE(child);
1730
1731 /*
1732 * If probe returns 0, this is the driver that wins this
1733 * device.
1734 */
1735 if (result == 0) {
1736 best = dl;
1737 pri = 0;
1738 goto exact_match; /* C doesn't have break 2 */
1739 }
1740
1741 /* Reset flags and devclass before the next probe. */
1742 child->devflags = 0;
1743 if (!hasclass)
1744 (void)device_set_devclass(child, NULL);
1745
1746 /*
1747 * Reset DF_QUIET in case this driver doesn't
1748 * end up as the best driver.
1749 */
1750 device_verbose(child);
1751
1752 /*
1753 * Probes that return BUS_PROBE_NOWILDCARD or lower
1754 * only match on devices whose driver was explicitly
1755 * specified.
1756 */
1757 if (result <= BUS_PROBE_NOWILDCARD &&
1758 !(child->flags & DF_FIXEDCLASS)) {
1759 result = ENXIO;
1760 }
1761
1762 /*
1763 * The driver returned an error so it
1764 * certainly doesn't match.
1765 */
1766 if (result > 0) {
1767 (void)device_set_driver(child, NULL);
1768 continue;
1769 }
1770
1771 /*
1772 * A priority lower than SUCCESS, remember the
1773 * best matching driver. Initialise the value
1774 * of pri for the first match.
1775 */
1776 if (best == NULL || result > pri) {
1777 best = dl;
1778 pri = result;
1779 continue;
1780 }
1781 }
1782 }
1783
1784 if (best == NULL)
1785 return (ENXIO);
1786
1787 /*
1788 * If we found a driver, change state and initialise the devclass.
1789 * Set the winning driver, devclass, and flags.
1790 */
1791 result = device_set_driver(child, best->driver);
1792 if (result != 0)
1793 return (result);
1794 if (!child->devclass) {
1795 result = device_set_devclass(child, best->driver->name);
1796 if (result != 0) {
1797 (void)device_set_driver(child, NULL);
1798 return (result);
1799 }
1800 }
1801 resource_int_value(best->driver->name, child->unit,
1802 "flags", &child->devflags);
1803
1804 /*
1805 * A bit bogus. Call the probe method again to make sure that we have
1806 * the right description for the device.
1807 */
1808 result = DEVICE_PROBE(child);
1809 if (result > 0) {
1810 if (!hasclass)
1811 (void)device_set_devclass(child, NULL);
1812 (void)device_set_driver(child, NULL);
1813 return (result);
1814 }
1815
1816 exact_match:
1817 child->state = DS_ALIVE;
1818 bus_data_generation_update();
1819 return (0);
1820 }
1821
1822 /**
1823 * @brief Return the parent of a device
1824 */
1825 device_t
device_get_parent(device_t dev)1826 device_get_parent(device_t dev)
1827 {
1828 return (dev->parent);
1829 }
1830
1831 /**
1832 * @brief Get a list of children of a device
1833 *
1834 * An array containing a list of all the children of the given device
1835 * is allocated and returned in @p *devlistp. The number of devices
1836 * in the array is returned in @p *devcountp. The caller should free
1837 * the array using @c free(p, M_TEMP).
1838 *
1839 * @param dev the device to examine
1840 * @param devlistp points at location for array pointer return
1841 * value
1842 * @param devcountp points at location for array size return value
1843 *
1844 * @retval 0 success
1845 * @retval ENOMEM the array allocation failed
1846 */
1847 int
device_get_children(device_t dev,device_t ** devlistp,int * devcountp)1848 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1849 {
1850 int count;
1851 device_t child;
1852 device_t *list;
1853
1854 count = 0;
1855 TAILQ_FOREACH(child, &dev->children, link) {
1856 count++;
1857 }
1858 if (count == 0) {
1859 *devlistp = NULL;
1860 *devcountp = 0;
1861 return (0);
1862 }
1863
1864 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1865 if (!list)
1866 return (ENOMEM);
1867
1868 count = 0;
1869 TAILQ_FOREACH(child, &dev->children, link) {
1870 list[count] = child;
1871 count++;
1872 }
1873
1874 *devlistp = list;
1875 *devcountp = count;
1876
1877 return (0);
1878 }
1879
1880 /**
1881 * @brief Return the current driver for the device or @c NULL if there
1882 * is no driver currently attached
1883 */
1884 driver_t *
device_get_driver(device_t dev)1885 device_get_driver(device_t dev)
1886 {
1887 return (dev->driver);
1888 }
1889
1890 /**
1891 * @brief Return the current devclass for the device or @c NULL if
1892 * there is none.
1893 */
1894 devclass_t
device_get_devclass(device_t dev)1895 device_get_devclass(device_t dev)
1896 {
1897 return (dev->devclass);
1898 }
1899
1900 /**
1901 * @brief Return the name of the device's devclass or @c NULL if there
1902 * is none.
1903 */
1904 const char *
device_get_name(device_t dev)1905 device_get_name(device_t dev)
1906 {
1907 if (dev != NULL && dev->devclass)
1908 return (devclass_get_name(dev->devclass));
1909 return (NULL);
1910 }
1911
1912 /**
1913 * @brief Return a string containing the device's devclass name
1914 * followed by an ascii representation of the device's unit number
1915 * (e.g. @c "foo2").
1916 */
1917 const char *
device_get_nameunit(device_t dev)1918 device_get_nameunit(device_t dev)
1919 {
1920 return (dev->nameunit);
1921 }
1922
1923 /**
1924 * @brief Return the device's unit number.
1925 */
1926 int
device_get_unit(device_t dev)1927 device_get_unit(device_t dev)
1928 {
1929 return (dev->unit);
1930 }
1931
1932 /**
1933 * @brief Return the device's description string
1934 */
1935 const char *
device_get_desc(device_t dev)1936 device_get_desc(device_t dev)
1937 {
1938 return (dev->desc);
1939 }
1940
1941 /**
1942 * @brief Return the device's flags
1943 */
1944 uint32_t
device_get_flags(device_t dev)1945 device_get_flags(device_t dev)
1946 {
1947 return (dev->devflags);
1948 }
1949
1950 struct sysctl_ctx_list *
device_get_sysctl_ctx(device_t dev)1951 device_get_sysctl_ctx(device_t dev)
1952 {
1953 return (&dev->sysctl_ctx);
1954 }
1955
1956 struct sysctl_oid *
device_get_sysctl_tree(device_t dev)1957 device_get_sysctl_tree(device_t dev)
1958 {
1959 return (dev->sysctl_tree);
1960 }
1961
1962 /**
1963 * @brief Print the name of the device followed by a colon and a space
1964 *
1965 * @returns the number of characters printed
1966 */
1967 int
device_print_prettyname(device_t dev)1968 device_print_prettyname(device_t dev)
1969 {
1970 const char *name = device_get_name(dev);
1971
1972 if (name == NULL)
1973 return (printf("unknown: "));
1974 return (printf("%s%d: ", name, device_get_unit(dev)));
1975 }
1976
1977 /**
1978 * @brief Print the name of the device followed by a colon, a space
1979 * and the result of calling vprintf() with the value of @p fmt and
1980 * the following arguments.
1981 *
1982 * @returns the number of characters printed
1983 */
1984 int
device_printf(device_t dev,const char * fmt,...)1985 device_printf(device_t dev, const char * fmt, ...)
1986 {
1987 char buf[128];
1988 struct sbuf sb;
1989 const char *name;
1990 va_list ap;
1991 size_t retval;
1992
1993 retval = 0;
1994
1995 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1996 sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
1997
1998 name = device_get_name(dev);
1999
2000 if (name == NULL)
2001 sbuf_cat(&sb, "unknown: ");
2002 else
2003 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2004
2005 va_start(ap, fmt);
2006 sbuf_vprintf(&sb, fmt, ap);
2007 va_end(ap);
2008
2009 sbuf_finish(&sb);
2010 sbuf_delete(&sb);
2011
2012 return (retval);
2013 }
2014
2015 /**
2016 * @brief Print the name of the device followed by a colon, a space
2017 * and the result of calling log() with the value of @p fmt and
2018 * the following arguments.
2019 *
2020 * @returns the number of characters printed
2021 */
2022 int
device_log(device_t dev,int pri,const char * fmt,...)2023 device_log(device_t dev, int pri, const char * fmt, ...)
2024 {
2025 char buf[128];
2026 struct sbuf sb;
2027 const char *name;
2028 va_list ap;
2029 size_t retval;
2030
2031 retval = 0;
2032
2033 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2034
2035 name = device_get_name(dev);
2036
2037 if (name == NULL)
2038 sbuf_cat(&sb, "unknown: ");
2039 else
2040 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2041
2042 va_start(ap, fmt);
2043 sbuf_vprintf(&sb, fmt, ap);
2044 va_end(ap);
2045
2046 sbuf_finish(&sb);
2047
2048 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
2049 retval = sbuf_len(&sb);
2050
2051 sbuf_delete(&sb);
2052
2053 return (retval);
2054 }
2055
2056 /**
2057 * @internal
2058 */
2059 static void
device_set_desc_internal(device_t dev,const char * desc,bool allocated)2060 device_set_desc_internal(device_t dev, const char *desc, bool allocated)
2061 {
2062 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2063 free(dev->desc, M_BUS);
2064 dev->flags &= ~DF_DESCMALLOCED;
2065 dev->desc = NULL;
2066 }
2067
2068 if (allocated && desc)
2069 dev->flags |= DF_DESCMALLOCED;
2070 dev->desc = __DECONST(char *, desc);
2071
2072 bus_data_generation_update();
2073 }
2074
2075 /**
2076 * @brief Set the device's description
2077 *
2078 * The value of @c desc should be a string constant that will not
2079 * change (at least until the description is changed in a subsequent
2080 * call to device_set_desc() or device_set_desc_copy()).
2081 */
2082 void
device_set_desc(device_t dev,const char * desc)2083 device_set_desc(device_t dev, const char *desc)
2084 {
2085 device_set_desc_internal(dev, desc, false);
2086 }
2087
2088 /**
2089 * @brief Set the device's description
2090 *
2091 * A printf-like version of device_set_desc().
2092 */
2093 void
device_set_descf(device_t dev,const char * fmt,...)2094 device_set_descf(device_t dev, const char *fmt, ...)
2095 {
2096 va_list ap;
2097 char *buf = NULL;
2098
2099 va_start(ap, fmt);
2100 vasprintf(&buf, M_BUS, fmt, ap);
2101 va_end(ap);
2102 device_set_desc_internal(dev, buf, true);
2103 }
2104
2105 /**
2106 * @brief Set the device's description
2107 *
2108 * The string pointed to by @c desc is copied. Use this function if
2109 * the device description is generated, (e.g. with sprintf()).
2110 */
2111 void
device_set_desc_copy(device_t dev,const char * desc)2112 device_set_desc_copy(device_t dev, const char *desc)
2113 {
2114 char *buf;
2115
2116 buf = strdup_flags(desc, M_BUS, M_NOWAIT);
2117 device_set_desc_internal(dev, buf, true);
2118 }
2119
2120 /**
2121 * @brief Set the device's flags
2122 */
2123 void
device_set_flags(device_t dev,uint32_t flags)2124 device_set_flags(device_t dev, uint32_t flags)
2125 {
2126 dev->devflags = flags;
2127 }
2128
2129 /**
2130 * @brief Return the device's softc field
2131 *
2132 * The softc is allocated and zeroed when a driver is attached, based
2133 * on the size field of the driver.
2134 */
2135 void *
device_get_softc(device_t dev)2136 device_get_softc(device_t dev)
2137 {
2138 return (dev->softc);
2139 }
2140
2141 /**
2142 * @brief Set the device's softc field
2143 *
2144 * Most drivers do not need to use this since the softc is allocated
2145 * automatically when the driver is attached.
2146 */
2147 void
device_set_softc(device_t dev,void * softc)2148 device_set_softc(device_t dev, void *softc)
2149 {
2150 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2151 free(dev->softc, M_BUS_SC);
2152 dev->softc = softc;
2153 if (dev->softc)
2154 dev->flags |= DF_EXTERNALSOFTC;
2155 else
2156 dev->flags &= ~DF_EXTERNALSOFTC;
2157 }
2158
2159 /**
2160 * @brief Free claimed softc
2161 *
2162 * Most drivers do not need to use this since the softc is freed
2163 * automatically when the driver is detached.
2164 */
2165 void
device_free_softc(void * softc)2166 device_free_softc(void *softc)
2167 {
2168 free(softc, M_BUS_SC);
2169 }
2170
2171 /**
2172 * @brief Claim softc
2173 *
2174 * This function can be used to let the driver free the automatically
2175 * allocated softc using "device_free_softc()". This function is
2176 * useful when the driver is refcounting the softc and the softc
2177 * cannot be freed when the "device_detach" method is called.
2178 */
2179 void
device_claim_softc(device_t dev)2180 device_claim_softc(device_t dev)
2181 {
2182 if (dev->softc)
2183 dev->flags |= DF_EXTERNALSOFTC;
2184 else
2185 dev->flags &= ~DF_EXTERNALSOFTC;
2186 }
2187
2188 /**
2189 * @brief Get the device's ivars field
2190 *
2191 * The ivars field is used by the parent device to store per-device
2192 * state (e.g. the physical location of the device or a list of
2193 * resources).
2194 */
2195 void *
device_get_ivars(device_t dev)2196 device_get_ivars(device_t dev)
2197 {
2198 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2199 return (dev->ivars);
2200 }
2201
2202 /**
2203 * @brief Set the device's ivars field
2204 */
2205 void
device_set_ivars(device_t dev,void * ivars)2206 device_set_ivars(device_t dev, void * ivars)
2207 {
2208 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2209 dev->ivars = ivars;
2210 }
2211
2212 /**
2213 * @brief Return the device's state
2214 */
2215 device_state_t
device_get_state(device_t dev)2216 device_get_state(device_t dev)
2217 {
2218 return (dev->state);
2219 }
2220
2221 /**
2222 * @brief Set the DF_ENABLED flag for the device
2223 */
2224 void
device_enable(device_t dev)2225 device_enable(device_t dev)
2226 {
2227 dev->flags |= DF_ENABLED;
2228 }
2229
2230 /**
2231 * @brief Clear the DF_ENABLED flag for the device
2232 */
2233 void
device_disable(device_t dev)2234 device_disable(device_t dev)
2235 {
2236 dev->flags &= ~DF_ENABLED;
2237 }
2238
2239 /**
2240 * @brief Increment the busy counter for the device
2241 */
2242 void
device_busy(device_t dev)2243 device_busy(device_t dev)
2244 {
2245
2246 /*
2247 * Mark the device as busy, recursively up the tree if this busy count
2248 * goes 0->1.
2249 */
2250 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2251 device_busy(dev->parent);
2252 }
2253
2254 /**
2255 * @brief Decrement the busy counter for the device
2256 */
2257 void
device_unbusy(device_t dev)2258 device_unbusy(device_t dev)
2259 {
2260
2261 /*
2262 * Mark the device as unbsy, recursively if this is the last busy count.
2263 */
2264 if (refcount_release(&dev->busy) && dev->parent != NULL)
2265 device_unbusy(dev->parent);
2266 }
2267
2268 /**
2269 * @brief Set the DF_QUIET flag for the device
2270 */
2271 void
device_quiet(device_t dev)2272 device_quiet(device_t dev)
2273 {
2274 dev->flags |= DF_QUIET;
2275 }
2276
2277 /**
2278 * @brief Set the DF_QUIET_CHILDREN flag for the device
2279 */
2280 void
device_quiet_children(device_t dev)2281 device_quiet_children(device_t dev)
2282 {
2283 dev->flags |= DF_QUIET_CHILDREN;
2284 }
2285
2286 /**
2287 * @brief Clear the DF_QUIET flag for the device
2288 */
2289 void
device_verbose(device_t dev)2290 device_verbose(device_t dev)
2291 {
2292 dev->flags &= ~DF_QUIET;
2293 }
2294
2295 ssize_t
device_get_property(device_t dev,const char * prop,void * val,size_t sz,device_property_type_t type)2296 device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2297 device_property_type_t type)
2298 {
2299 device_t bus = device_get_parent(dev);
2300
2301 switch (type) {
2302 case DEVICE_PROP_ANY:
2303 case DEVICE_PROP_BUFFER:
2304 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */
2305 break;
2306 case DEVICE_PROP_UINT32:
2307 if (sz % 4 != 0)
2308 return (-1);
2309 break;
2310 case DEVICE_PROP_UINT64:
2311 if (sz % 8 != 0)
2312 return (-1);
2313 break;
2314 default:
2315 return (-1);
2316 }
2317
2318 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2319 }
2320
2321 bool
device_has_property(device_t dev,const char * prop)2322 device_has_property(device_t dev, const char *prop)
2323 {
2324 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2325 }
2326
2327 /**
2328 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2329 */
2330 int
device_has_quiet_children(device_t dev)2331 device_has_quiet_children(device_t dev)
2332 {
2333 return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2334 }
2335
2336 /**
2337 * @brief Return non-zero if the DF_QUIET flag is set on the device
2338 */
2339 int
device_is_quiet(device_t dev)2340 device_is_quiet(device_t dev)
2341 {
2342 return ((dev->flags & DF_QUIET) != 0);
2343 }
2344
2345 /**
2346 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2347 */
2348 int
device_is_enabled(device_t dev)2349 device_is_enabled(device_t dev)
2350 {
2351 return ((dev->flags & DF_ENABLED) != 0);
2352 }
2353
2354 /**
2355 * @brief Return non-zero if the device was successfully probed
2356 */
2357 int
device_is_alive(device_t dev)2358 device_is_alive(device_t dev)
2359 {
2360 return (dev->state >= DS_ALIVE);
2361 }
2362
2363 /**
2364 * @brief Return non-zero if the device currently has a driver
2365 * attached to it
2366 */
2367 int
device_is_attached(device_t dev)2368 device_is_attached(device_t dev)
2369 {
2370 return (dev->state >= DS_ATTACHED);
2371 }
2372
2373 /**
2374 * @brief Return non-zero if the device is currently suspended.
2375 */
2376 int
device_is_suspended(device_t dev)2377 device_is_suspended(device_t dev)
2378 {
2379 return ((dev->flags & DF_SUSPENDED) != 0);
2380 }
2381
2382 /**
2383 * @brief Set the devclass of a device
2384 * @see devclass_add_device().
2385 */
2386 int
device_set_devclass(device_t dev,const char * classname)2387 device_set_devclass(device_t dev, const char *classname)
2388 {
2389 devclass_t dc;
2390 int error;
2391
2392 if (!classname) {
2393 if (dev->devclass)
2394 devclass_delete_device(dev->devclass, dev);
2395 return (0);
2396 }
2397
2398 if (dev->devclass) {
2399 printf("device_set_devclass: device class already set\n");
2400 return (EINVAL);
2401 }
2402
2403 dc = devclass_find_internal(classname, NULL, TRUE);
2404 if (!dc)
2405 return (ENOMEM);
2406
2407 error = devclass_add_device(dc, dev);
2408
2409 bus_data_generation_update();
2410 return (error);
2411 }
2412
2413 /**
2414 * @brief Set the devclass of a device and mark the devclass fixed.
2415 * @see device_set_devclass()
2416 */
2417 int
device_set_devclass_fixed(device_t dev,const char * classname)2418 device_set_devclass_fixed(device_t dev, const char *classname)
2419 {
2420 int error;
2421
2422 if (classname == NULL)
2423 return (EINVAL);
2424
2425 error = device_set_devclass(dev, classname);
2426 if (error)
2427 return (error);
2428 dev->flags |= DF_FIXEDCLASS;
2429 return (0);
2430 }
2431
2432 /**
2433 * @brief Query the device to determine if it's of a fixed devclass
2434 * @see device_set_devclass_fixed()
2435 */
2436 bool
device_is_devclass_fixed(device_t dev)2437 device_is_devclass_fixed(device_t dev)
2438 {
2439 return ((dev->flags & DF_FIXEDCLASS) != 0);
2440 }
2441
2442 /**
2443 * @brief Set the driver of a device
2444 *
2445 * @retval 0 success
2446 * @retval EBUSY the device already has a driver attached
2447 * @retval ENOMEM a memory allocation failure occurred
2448 */
2449 int
device_set_driver(device_t dev,driver_t * driver)2450 device_set_driver(device_t dev, driver_t *driver)
2451 {
2452 int domain;
2453 struct domainset *policy;
2454
2455 if (dev->state >= DS_ATTACHED)
2456 return (EBUSY);
2457
2458 if (dev->driver == driver)
2459 return (0);
2460
2461 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2462 free(dev->softc, M_BUS_SC);
2463 dev->softc = NULL;
2464 }
2465 device_set_desc(dev, NULL);
2466 kobj_delete((kobj_t) dev, NULL);
2467 dev->driver = driver;
2468 if (driver) {
2469 kobj_init((kobj_t) dev, (kobj_class_t) driver);
2470 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2471 if (bus_get_domain(dev, &domain) == 0)
2472 policy = DOMAINSET_PREF(domain);
2473 else
2474 policy = DOMAINSET_RR();
2475 dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2476 policy, M_NOWAIT | M_ZERO);
2477 if (!dev->softc) {
2478 kobj_delete((kobj_t) dev, NULL);
2479 kobj_init((kobj_t) dev, &null_class);
2480 dev->driver = NULL;
2481 return (ENOMEM);
2482 }
2483 }
2484 } else {
2485 kobj_init((kobj_t) dev, &null_class);
2486 }
2487
2488 bus_data_generation_update();
2489 return (0);
2490 }
2491
2492 /**
2493 * @brief Probe a device, and return this status.
2494 *
2495 * This function is the core of the device autoconfiguration
2496 * system. Its purpose is to select a suitable driver for a device and
2497 * then call that driver to initialise the hardware appropriately. The
2498 * driver is selected by calling the DEVICE_PROBE() method of a set of
2499 * candidate drivers and then choosing the driver which returned the
2500 * best value. This driver is then attached to the device using
2501 * device_attach().
2502 *
2503 * The set of suitable drivers is taken from the list of drivers in
2504 * the parent device's devclass. If the device was originally created
2505 * with a specific class name (see device_add_child()), only drivers
2506 * with that name are probed, otherwise all drivers in the devclass
2507 * are probed. If no drivers return successful probe values in the
2508 * parent devclass, the search continues in the parent of that
2509 * devclass (see devclass_get_parent()) if any.
2510 *
2511 * @param dev the device to initialise
2512 *
2513 * @retval 0 success
2514 * @retval ENXIO no driver was found
2515 * @retval ENOMEM memory allocation failure
2516 * @retval non-zero some other unix error code
2517 * @retval -1 Device already attached
2518 */
2519 int
device_probe(device_t dev)2520 device_probe(device_t dev)
2521 {
2522 int error;
2523
2524 bus_topo_assert();
2525
2526 if (dev->state >= DS_ALIVE)
2527 return (-1);
2528
2529 if (!(dev->flags & DF_ENABLED)) {
2530 if (bootverbose && device_get_name(dev) != NULL) {
2531 device_print_prettyname(dev);
2532 printf("not probed (disabled)\n");
2533 }
2534 return (-1);
2535 }
2536 if ((error = device_probe_child(dev->parent, dev)) != 0) {
2537 if (bus_current_pass == BUS_PASS_DEFAULT &&
2538 !(dev->flags & DF_DONENOMATCH)) {
2539 device_handle_nomatch(dev);
2540 }
2541 return (error);
2542 }
2543 return (0);
2544 }
2545
2546 /**
2547 * @brief Probe a device and attach a driver if possible
2548 *
2549 * calls device_probe() and attaches if that was successful.
2550 */
2551 int
device_probe_and_attach(device_t dev)2552 device_probe_and_attach(device_t dev)
2553 {
2554 int error;
2555
2556 bus_topo_assert();
2557
2558 error = device_probe(dev);
2559 if (error == -1)
2560 return (0);
2561 else if (error != 0)
2562 return (error);
2563
2564 return (device_attach(dev));
2565 }
2566
2567 /**
2568 * @brief Attach a device driver to a device
2569 *
2570 * This function is a wrapper around the DEVICE_ATTACH() driver
2571 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2572 * device's sysctl tree, optionally prints a description of the device
2573 * and queues a notification event for user-based device management
2574 * services.
2575 *
2576 * Normally this function is only called internally from
2577 * device_probe_and_attach().
2578 *
2579 * @param dev the device to initialise
2580 *
2581 * @retval 0 success
2582 * @retval ENXIO no driver was found
2583 * @retval ENOMEM memory allocation failure
2584 * @retval non-zero some other unix error code
2585 */
2586 int
device_attach(device_t dev)2587 device_attach(device_t dev)
2588 {
2589 uint64_t attachtime;
2590 uint16_t attachentropy;
2591 int error;
2592
2593 if (resource_disabled(dev->driver->name, dev->unit)) {
2594 /*
2595 * Mostly detach the device, but leave it attached to
2596 * the devclass to reserve the name and unit.
2597 */
2598 device_disable(dev);
2599 (void)device_set_driver(dev, NULL);
2600 dev->state = DS_NOTPRESENT;
2601 if (bootverbose)
2602 device_printf(dev, "disabled via hints entry\n");
2603 return (ENXIO);
2604 }
2605
2606 KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)),
2607 ("device_attach: curthread is not in default vnet"));
2608 CURVNET_SET_QUIET(TD_TO_VNET(curthread));
2609
2610 device_sysctl_init(dev);
2611 if (!device_is_quiet(dev))
2612 device_print_child(dev->parent, dev);
2613 attachtime = get_cyclecount();
2614 dev->state = DS_ATTACHING;
2615 if ((error = DEVICE_ATTACH(dev)) != 0) {
2616 printf("device_attach: %s%d attach returned %d\n",
2617 dev->driver->name, dev->unit, error);
2618 BUS_CHILD_DETACHED(dev->parent, dev);
2619 if (disable_failed_devs) {
2620 /*
2621 * When the user has asked to disable failed devices, we
2622 * directly disable the device, but leave it in the
2623 * attaching state. It will not try to probe/attach the
2624 * device further. This leaves the device numbering
2625 * intact for other similar devices in the system. It
2626 * can be removed from this state with devctl.
2627 */
2628 device_disable(dev);
2629 } else {
2630 /*
2631 * Otherwise, when attach fails, tear down the state
2632 * around that so we can retry when, for example, new
2633 * drivers are loaded.
2634 */
2635 if (!(dev->flags & DF_FIXEDCLASS))
2636 devclass_delete_device(dev->devclass, dev);
2637 (void)device_set_driver(dev, NULL);
2638 device_sysctl_fini(dev);
2639 KASSERT(dev->busy == 0, ("attach failed but busy"));
2640 dev->state = DS_NOTPRESENT;
2641 }
2642 CURVNET_RESTORE();
2643 return (error);
2644 }
2645 CURVNET_RESTORE();
2646 dev->flags |= DF_ATTACHED_ONCE;
2647 /*
2648 * We only need the low bits of this time, but ranges from tens to thousands
2649 * have been seen, so keep 2 bytes' worth.
2650 */
2651 attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2652 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2653 device_sysctl_update(dev);
2654 dev->state = DS_ATTACHED;
2655 dev->flags &= ~DF_DONENOMATCH;
2656 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2657 return (0);
2658 }
2659
2660 /**
2661 * @brief Detach a driver from a device
2662 *
2663 * This function is a wrapper around the DEVICE_DETACH() driver
2664 * method. If the call to DEVICE_DETACH() succeeds, it calls
2665 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2666 * notification event for user-based device management services and
2667 * cleans up the device's sysctl tree.
2668 *
2669 * @param dev the device to un-initialise
2670 *
2671 * @retval 0 success
2672 * @retval ENXIO no driver was found
2673 * @retval ENOMEM memory allocation failure
2674 * @retval non-zero some other unix error code
2675 */
2676 int
device_detach(device_t dev)2677 device_detach(device_t dev)
2678 {
2679 int error;
2680
2681 bus_topo_assert();
2682
2683 PDEBUG(("%s", DEVICENAME(dev)));
2684 if (dev->busy > 0)
2685 return (EBUSY);
2686 if (dev->state == DS_ATTACHING) {
2687 device_printf(dev, "device in attaching state! Deferring detach.\n");
2688 return (EBUSY);
2689 }
2690 if (dev->state != DS_ATTACHED)
2691 return (0);
2692
2693 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2694 if ((error = DEVICE_DETACH(dev)) != 0) {
2695 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2696 EVHDEV_DETACH_FAILED);
2697 return (error);
2698 } else {
2699 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2700 EVHDEV_DETACH_COMPLETE);
2701 }
2702 if (!device_is_quiet(dev))
2703 device_printf(dev, "detached\n");
2704 if (dev->parent)
2705 BUS_CHILD_DETACHED(dev->parent, dev);
2706
2707 if (!(dev->flags & DF_FIXEDCLASS))
2708 devclass_delete_device(dev->devclass, dev);
2709
2710 device_verbose(dev);
2711 dev->state = DS_NOTPRESENT;
2712 (void)device_set_driver(dev, NULL);
2713 device_sysctl_fini(dev);
2714
2715 return (0);
2716 }
2717
2718 /**
2719 * @brief Tells a driver to quiesce itself.
2720 *
2721 * This function is a wrapper around the DEVICE_QUIESCE() driver
2722 * method. If the call to DEVICE_QUIESCE() succeeds.
2723 *
2724 * @param dev the device to quiesce
2725 *
2726 * @retval 0 success
2727 * @retval ENXIO no driver was found
2728 * @retval ENOMEM memory allocation failure
2729 * @retval non-zero some other unix error code
2730 */
2731 int
device_quiesce(device_t dev)2732 device_quiesce(device_t dev)
2733 {
2734 PDEBUG(("%s", DEVICENAME(dev)));
2735 if (dev->busy > 0)
2736 return (EBUSY);
2737 if (dev->state != DS_ATTACHED)
2738 return (0);
2739
2740 return (DEVICE_QUIESCE(dev));
2741 }
2742
2743 /**
2744 * @brief Notify a device of system shutdown
2745 *
2746 * This function calls the DEVICE_SHUTDOWN() driver method if the
2747 * device currently has an attached driver.
2748 *
2749 * @returns the value returned by DEVICE_SHUTDOWN()
2750 */
2751 int
device_shutdown(device_t dev)2752 device_shutdown(device_t dev)
2753 {
2754 if (dev->state < DS_ATTACHED)
2755 return (0);
2756 return (DEVICE_SHUTDOWN(dev));
2757 }
2758
2759 /**
2760 * @brief Set the unit number of a device
2761 *
2762 * This function can be used to override the unit number used for a
2763 * device (e.g. to wire a device to a pre-configured unit number).
2764 */
2765 int
device_set_unit(device_t dev,int unit)2766 device_set_unit(device_t dev, int unit)
2767 {
2768 devclass_t dc;
2769 int err;
2770
2771 if (unit == dev->unit)
2772 return (0);
2773 dc = device_get_devclass(dev);
2774 if (unit < dc->maxunit && dc->devices[unit])
2775 return (EBUSY);
2776 err = devclass_delete_device(dc, dev);
2777 if (err)
2778 return (err);
2779 dev->unit = unit;
2780 err = devclass_add_device(dc, dev);
2781 if (err)
2782 return (err);
2783
2784 bus_data_generation_update();
2785 return (0);
2786 }
2787
2788 /*======================================*/
2789 /*
2790 * Some useful method implementations to make life easier for bus drivers.
2791 */
2792
2793 /**
2794 * @brief Initialize a resource mapping request
2795 *
2796 * This is the internal implementation of the public API
2797 * resource_init_map_request. Callers may be using a different layout
2798 * of struct resource_map_request than the kernel, so callers pass in
2799 * the size of the structure they are using to identify the structure
2800 * layout.
2801 */
2802 void
resource_init_map_request_impl(struct resource_map_request * args,size_t sz)2803 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2804 {
2805 bzero(args, sz);
2806 args->size = sz;
2807 args->memattr = VM_MEMATTR_DEVICE;
2808 }
2809
2810 /**
2811 * @brief Validate a resource mapping request
2812 *
2813 * Translate a device driver's mapping request (@p in) to a struct
2814 * resource_map_request using the current structure layout (@p out).
2815 * In addition, validate the offset and length from the mapping
2816 * request against the bounds of the resource @p r. If the offset or
2817 * length are invalid, fail with EINVAL. If the offset and length are
2818 * valid, the absolute starting address of the requested mapping is
2819 * returned in @p startp and the length of the requested mapping is
2820 * returned in @p lengthp.
2821 */
2822 int
resource_validate_map_request(struct resource * r,struct resource_map_request * in,struct resource_map_request * out,rman_res_t * startp,rman_res_t * lengthp)2823 resource_validate_map_request(struct resource *r,
2824 struct resource_map_request *in, struct resource_map_request *out,
2825 rman_res_t *startp, rman_res_t *lengthp)
2826 {
2827 rman_res_t end, length, start;
2828
2829 /*
2830 * This assumes that any callers of this function are compiled
2831 * into the kernel and use the same version of the structure
2832 * as this file.
2833 */
2834 MPASS(out->size == sizeof(struct resource_map_request));
2835
2836 if (in != NULL)
2837 bcopy(in, out, imin(in->size, out->size));
2838 start = rman_get_start(r) + out->offset;
2839 if (out->length == 0)
2840 length = rman_get_size(r);
2841 else
2842 length = out->length;
2843 end = start + length - 1;
2844 if (start > rman_get_end(r) || start < rman_get_start(r))
2845 return (EINVAL);
2846 if (end > rman_get_end(r) || end < start)
2847 return (EINVAL);
2848 *lengthp = length;
2849 *startp = start;
2850 return (0);
2851 }
2852
2853 /**
2854 * @brief Initialise a resource list.
2855 *
2856 * @param rl the resource list to initialise
2857 */
2858 void
resource_list_init(struct resource_list * rl)2859 resource_list_init(struct resource_list *rl)
2860 {
2861 STAILQ_INIT(rl);
2862 }
2863
2864 /**
2865 * @brief Reclaim memory used by a resource list.
2866 *
2867 * This function frees the memory for all resource entries on the list
2868 * (if any).
2869 *
2870 * @param rl the resource list to free
2871 */
2872 void
resource_list_free(struct resource_list * rl)2873 resource_list_free(struct resource_list *rl)
2874 {
2875 struct resource_list_entry *rle;
2876
2877 while ((rle = STAILQ_FIRST(rl)) != NULL) {
2878 if (rle->res)
2879 panic("resource_list_free: resource entry is busy");
2880 STAILQ_REMOVE_HEAD(rl, link);
2881 free(rle, M_BUS);
2882 }
2883 }
2884
2885 /**
2886 * @brief Add a resource entry.
2887 *
2888 * This function adds a resource entry using the given @p type, @p
2889 * start, @p end and @p count values. A rid value is chosen by
2890 * searching sequentially for the first unused rid starting at zero.
2891 *
2892 * @param rl the resource list to edit
2893 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2894 * @param start the start address of the resource
2895 * @param end the end address of the resource
2896 * @param count XXX end-start+1
2897 */
2898 int
resource_list_add_next(struct resource_list * rl,int type,rman_res_t start,rman_res_t end,rman_res_t count)2899 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2900 rman_res_t end, rman_res_t count)
2901 {
2902 int rid;
2903
2904 rid = 0;
2905 while (resource_list_find(rl, type, rid) != NULL)
2906 rid++;
2907 resource_list_add(rl, type, rid, start, end, count);
2908 return (rid);
2909 }
2910
2911 /**
2912 * @brief Add or modify a resource entry.
2913 *
2914 * If an existing entry exists with the same type and rid, it will be
2915 * modified using the given values of @p start, @p end and @p
2916 * count. If no entry exists, a new one will be created using the
2917 * given values. The resource list entry that matches is then returned.
2918 *
2919 * @param rl the resource list to edit
2920 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2921 * @param rid the resource identifier
2922 * @param start the start address of the resource
2923 * @param end the end address of the resource
2924 * @param count XXX end-start+1
2925 */
2926 struct resource_list_entry *
resource_list_add(struct resource_list * rl,int type,int rid,rman_res_t start,rman_res_t end,rman_res_t count)2927 resource_list_add(struct resource_list *rl, int type, int rid,
2928 rman_res_t start, rman_res_t end, rman_res_t count)
2929 {
2930 struct resource_list_entry *rle;
2931
2932 rle = resource_list_find(rl, type, rid);
2933 if (!rle) {
2934 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2935 M_NOWAIT);
2936 if (!rle)
2937 panic("resource_list_add: can't record entry");
2938 STAILQ_INSERT_TAIL(rl, rle, link);
2939 rle->type = type;
2940 rle->rid = rid;
2941 rle->res = NULL;
2942 rle->flags = 0;
2943 }
2944
2945 if (rle->res)
2946 panic("resource_list_add: resource entry is busy");
2947
2948 rle->start = start;
2949 rle->end = end;
2950 rle->count = count;
2951 return (rle);
2952 }
2953
2954 /**
2955 * @brief Determine if a resource entry is busy.
2956 *
2957 * Returns true if a resource entry is busy meaning that it has an
2958 * associated resource that is not an unallocated "reserved" resource.
2959 *
2960 * @param rl the resource list to search
2961 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2962 * @param rid the resource identifier
2963 *
2964 * @returns Non-zero if the entry is busy, zero otherwise.
2965 */
2966 int
resource_list_busy(struct resource_list * rl,int type,int rid)2967 resource_list_busy(struct resource_list *rl, int type, int rid)
2968 {
2969 struct resource_list_entry *rle;
2970
2971 rle = resource_list_find(rl, type, rid);
2972 if (rle == NULL || rle->res == NULL)
2973 return (0);
2974 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2975 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2976 ("reserved resource is active"));
2977 return (0);
2978 }
2979 return (1);
2980 }
2981
2982 /**
2983 * @brief Determine if a resource entry is reserved.
2984 *
2985 * Returns true if a resource entry is reserved meaning that it has an
2986 * associated "reserved" resource. The resource can either be
2987 * allocated or unallocated.
2988 *
2989 * @param rl the resource list to search
2990 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2991 * @param rid the resource identifier
2992 *
2993 * @returns Non-zero if the entry is reserved, zero otherwise.
2994 */
2995 int
resource_list_reserved(struct resource_list * rl,int type,int rid)2996 resource_list_reserved(struct resource_list *rl, int type, int rid)
2997 {
2998 struct resource_list_entry *rle;
2999
3000 rle = resource_list_find(rl, type, rid);
3001 if (rle != NULL && rle->flags & RLE_RESERVED)
3002 return (1);
3003 return (0);
3004 }
3005
3006 /**
3007 * @brief Find a resource entry by type and rid.
3008 *
3009 * @param rl the resource list to search
3010 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
3011 * @param rid the resource identifier
3012 *
3013 * @returns the resource entry pointer or NULL if there is no such
3014 * entry.
3015 */
3016 struct resource_list_entry *
resource_list_find(struct resource_list * rl,int type,int rid)3017 resource_list_find(struct resource_list *rl, int type, int rid)
3018 {
3019 struct resource_list_entry *rle;
3020
3021 STAILQ_FOREACH(rle, rl, link) {
3022 if (rle->type == type && rle->rid == rid)
3023 return (rle);
3024 }
3025 return (NULL);
3026 }
3027
3028 /**
3029 * @brief Delete a resource entry.
3030 *
3031 * @param rl the resource list to edit
3032 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
3033 * @param rid the resource identifier
3034 */
3035 void
resource_list_delete(struct resource_list * rl,int type,int rid)3036 resource_list_delete(struct resource_list *rl, int type, int rid)
3037 {
3038 struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3039
3040 if (rle) {
3041 if (rle->res != NULL)
3042 panic("resource_list_delete: resource has not been released");
3043 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3044 free(rle, M_BUS);
3045 }
3046 }
3047
3048 /**
3049 * @brief Allocate a reserved resource
3050 *
3051 * This can be used by buses to force the allocation of resources
3052 * that are always active in the system even if they are not allocated
3053 * by a driver (e.g. PCI BARs). This function is usually called when
3054 * adding a new child to the bus. The resource is allocated from the
3055 * parent bus when it is reserved. The resource list entry is marked
3056 * with RLE_RESERVED to note that it is a reserved resource.
3057 *
3058 * Subsequent attempts to allocate the resource with
3059 * resource_list_alloc() will succeed the first time and will set
3060 * RLE_ALLOCATED to note that it has been allocated. When a reserved
3061 * resource that has been allocated is released with
3062 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3063 * the actual resource remains allocated. The resource can be released to
3064 * the parent bus by calling resource_list_unreserve().
3065 *
3066 * @param rl the resource list to allocate from
3067 * @param bus the parent device of @p child
3068 * @param child the device for which the resource is being reserved
3069 * @param type the type of resource to allocate
3070 * @param rid a pointer to the resource identifier
3071 * @param start hint at the start of the resource range - pass
3072 * @c 0 for any start address
3073 * @param end hint at the end of the resource range - pass
3074 * @c ~0 for any end address
3075 * @param count hint at the size of range required - pass @c 1
3076 * for any size
3077 * @param flags any extra flags to control the resource
3078 * allocation - see @c RF_XXX flags in
3079 * <sys/rman.h> for details
3080 *
3081 * @returns the resource which was allocated or @c NULL if no
3082 * resource could be allocated
3083 */
3084 struct resource *
resource_list_reserve(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3085 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3086 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3087 {
3088 struct resource_list_entry *rle = NULL;
3089 int passthrough = (device_get_parent(child) != bus);
3090 struct resource *r;
3091
3092 if (passthrough)
3093 panic(
3094 "resource_list_reserve() should only be called for direct children");
3095 if (flags & RF_ACTIVE)
3096 panic(
3097 "resource_list_reserve() should only reserve inactive resources");
3098
3099 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3100 flags);
3101 if (r != NULL) {
3102 rle = resource_list_find(rl, type, *rid);
3103 rle->flags |= RLE_RESERVED;
3104 }
3105 return (r);
3106 }
3107
3108 /**
3109 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3110 *
3111 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3112 * and passing the allocation up to the parent of @p bus. This assumes
3113 * that the first entry of @c device_get_ivars(child) is a struct
3114 * resource_list. This also handles 'passthrough' allocations where a
3115 * child is a remote descendant of bus by passing the allocation up to
3116 * the parent of bus.
3117 *
3118 * Typically, a bus driver would store a list of child resources
3119 * somewhere in the child device's ivars (see device_get_ivars()) and
3120 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3121 * then call resource_list_alloc() to perform the allocation.
3122 *
3123 * @param rl the resource list to allocate from
3124 * @param bus the parent device of @p child
3125 * @param child the device which is requesting an allocation
3126 * @param type the type of resource to allocate
3127 * @param rid a pointer to the resource identifier
3128 * @param start hint at the start of the resource range - pass
3129 * @c 0 for any start address
3130 * @param end hint at the end of the resource range - pass
3131 * @c ~0 for any end address
3132 * @param count hint at the size of range required - pass @c 1
3133 * for any size
3134 * @param flags any extra flags to control the resource
3135 * allocation - see @c RF_XXX flags in
3136 * <sys/rman.h> for details
3137 *
3138 * @returns the resource which was allocated or @c NULL if no
3139 * resource could be allocated
3140 */
3141 struct resource *
resource_list_alloc(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3142 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3143 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3144 {
3145 struct resource_list_entry *rle = NULL;
3146 int passthrough = (device_get_parent(child) != bus);
3147 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3148
3149 if (passthrough) {
3150 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3151 type, rid, start, end, count, flags));
3152 }
3153
3154 rle = resource_list_find(rl, type, *rid);
3155
3156 if (!rle)
3157 return (NULL); /* no resource of that type/rid */
3158
3159 if (rle->res) {
3160 if (rle->flags & RLE_RESERVED) {
3161 if (rle->flags & RLE_ALLOCATED)
3162 return (NULL);
3163 if ((flags & RF_ACTIVE) &&
3164 bus_activate_resource(child, type, *rid,
3165 rle->res) != 0)
3166 return (NULL);
3167 rle->flags |= RLE_ALLOCATED;
3168 return (rle->res);
3169 }
3170 device_printf(bus,
3171 "resource entry %#x type %d for child %s is busy\n", *rid,
3172 type, device_get_nameunit(child));
3173 return (NULL);
3174 }
3175
3176 if (isdefault) {
3177 start = rle->start;
3178 count = ulmax(count, rle->count);
3179 end = ulmax(rle->end, start + count - 1);
3180 }
3181
3182 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3183 type, rid, start, end, count, flags);
3184
3185 /*
3186 * Record the new range.
3187 */
3188 if (rle->res) {
3189 rle->start = rman_get_start(rle->res);
3190 rle->end = rman_get_end(rle->res);
3191 rle->count = count;
3192 }
3193
3194 return (rle->res);
3195 }
3196
3197 /**
3198 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3199 *
3200 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3201 * used with resource_list_alloc().
3202 *
3203 * @param rl the resource list which was allocated from
3204 * @param bus the parent device of @p child
3205 * @param child the device which is requesting a release
3206 * @param res the resource to release
3207 *
3208 * @retval 0 success
3209 * @retval non-zero a standard unix error code indicating what
3210 * error condition prevented the operation
3211 */
3212 int
resource_list_release(struct resource_list * rl,device_t bus,device_t child,struct resource * res)3213 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3214 struct resource *res)
3215 {
3216 struct resource_list_entry *rle = NULL;
3217 int passthrough = (device_get_parent(child) != bus);
3218 int error;
3219
3220 if (passthrough) {
3221 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3222 res));
3223 }
3224
3225 rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res));
3226
3227 if (!rle)
3228 panic("resource_list_release: can't find resource");
3229 if (!rle->res)
3230 panic("resource_list_release: resource entry is not busy");
3231 if (rle->flags & RLE_RESERVED) {
3232 if (rle->flags & RLE_ALLOCATED) {
3233 if (rman_get_flags(res) & RF_ACTIVE) {
3234 error = bus_deactivate_resource(child, res);
3235 if (error)
3236 return (error);
3237 }
3238 rle->flags &= ~RLE_ALLOCATED;
3239 return (0);
3240 }
3241 return (EINVAL);
3242 }
3243
3244 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res);
3245 if (error)
3246 return (error);
3247
3248 rle->res = NULL;
3249 return (0);
3250 }
3251
3252 /**
3253 * @brief Release all active resources of a given type
3254 *
3255 * Release all active resources of a specified type. This is intended
3256 * to be used to cleanup resources leaked by a driver after detach or
3257 * a failed attach.
3258 *
3259 * @param rl the resource list which was allocated from
3260 * @param bus the parent device of @p child
3261 * @param child the device whose active resources are being released
3262 * @param type the type of resources to release
3263 *
3264 * @retval 0 success
3265 * @retval EBUSY at least one resource was active
3266 */
3267 int
resource_list_release_active(struct resource_list * rl,device_t bus,device_t child,int type)3268 resource_list_release_active(struct resource_list *rl, device_t bus,
3269 device_t child, int type)
3270 {
3271 struct resource_list_entry *rle;
3272 int error, retval;
3273
3274 retval = 0;
3275 STAILQ_FOREACH(rle, rl, link) {
3276 if (rle->type != type)
3277 continue;
3278 if (rle->res == NULL)
3279 continue;
3280 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3281 RLE_RESERVED)
3282 continue;
3283 retval = EBUSY;
3284 error = resource_list_release(rl, bus, child, rle->res);
3285 if (error != 0)
3286 device_printf(bus,
3287 "Failed to release active resource: %d\n", error);
3288 }
3289 return (retval);
3290 }
3291
3292 /**
3293 * @brief Fully release a reserved resource
3294 *
3295 * Fully releases a resource reserved via resource_list_reserve().
3296 *
3297 * @param rl the resource list which was allocated from
3298 * @param bus the parent device of @p child
3299 * @param child the device whose reserved resource is being released
3300 * @param type the type of resource to release
3301 * @param rid the resource identifier
3302 * @param res the resource to release
3303 *
3304 * @retval 0 success
3305 * @retval non-zero a standard unix error code indicating what
3306 * error condition prevented the operation
3307 */
3308 int
resource_list_unreserve(struct resource_list * rl,device_t bus,device_t child,int type,int rid)3309 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3310 int type, int rid)
3311 {
3312 struct resource_list_entry *rle = NULL;
3313 int passthrough = (device_get_parent(child) != bus);
3314
3315 if (passthrough)
3316 panic(
3317 "resource_list_unreserve() should only be called for direct children");
3318
3319 rle = resource_list_find(rl, type, rid);
3320
3321 if (!rle)
3322 panic("resource_list_unreserve: can't find resource");
3323 if (!(rle->flags & RLE_RESERVED))
3324 return (EINVAL);
3325 if (rle->flags & RLE_ALLOCATED)
3326 return (EBUSY);
3327 rle->flags &= ~RLE_RESERVED;
3328 return (resource_list_release(rl, bus, child, rle->res));
3329 }
3330
3331 /**
3332 * @brief Print a description of resources in a resource list
3333 *
3334 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3335 * The name is printed if at least one resource of the given type is available.
3336 * The format is used to print resource start and end.
3337 *
3338 * @param rl the resource list to print
3339 * @param name the name of @p type, e.g. @c "memory"
3340 * @param type type type of resource entry to print
3341 * @param format printf(9) format string to print resource
3342 * start and end values
3343 *
3344 * @returns the number of characters printed
3345 */
3346 int
resource_list_print_type(struct resource_list * rl,const char * name,int type,const char * format)3347 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3348 const char *format)
3349 {
3350 struct resource_list_entry *rle;
3351 int printed, retval;
3352
3353 printed = 0;
3354 retval = 0;
3355 /* Yes, this is kinda cheating */
3356 STAILQ_FOREACH(rle, rl, link) {
3357 if (rle->type == type) {
3358 if (printed == 0)
3359 retval += printf(" %s ", name);
3360 else
3361 retval += printf(",");
3362 printed++;
3363 retval += printf(format, rle->start);
3364 if (rle->count > 1) {
3365 retval += printf("-");
3366 retval += printf(format, rle->start +
3367 rle->count - 1);
3368 }
3369 }
3370 }
3371 return (retval);
3372 }
3373
3374 /**
3375 * @brief Releases all the resources in a list.
3376 *
3377 * @param rl The resource list to purge.
3378 *
3379 * @returns nothing
3380 */
3381 void
resource_list_purge(struct resource_list * rl)3382 resource_list_purge(struct resource_list *rl)
3383 {
3384 struct resource_list_entry *rle;
3385
3386 while ((rle = STAILQ_FIRST(rl)) != NULL) {
3387 if (rle->res)
3388 bus_release_resource(rman_get_device(rle->res),
3389 rle->type, rle->rid, rle->res);
3390 STAILQ_REMOVE_HEAD(rl, link);
3391 free(rle, M_BUS);
3392 }
3393 }
3394
3395 device_t
bus_generic_add_child(device_t dev,u_int order,const char * name,int unit)3396 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3397 {
3398 return (device_add_child_ordered(dev, order, name, unit));
3399 }
3400
3401 /**
3402 * @brief Helper function for implementing DEVICE_PROBE()
3403 *
3404 * This function can be used to help implement the DEVICE_PROBE() for
3405 * a bus (i.e. a device which has other devices attached to it). It
3406 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3407 * devclass.
3408 */
3409 int
bus_generic_probe(device_t dev)3410 bus_generic_probe(device_t dev)
3411 {
3412 bus_identify_children(dev);
3413 return (0);
3414 }
3415
3416 /**
3417 * @brief Ask drivers to add child devices of the given device.
3418 *
3419 * This function allows drivers for child devices of a bus to identify
3420 * child devices and add them as children of the given device. NB:
3421 * The driver for @param dev must implement the BUS_ADD_CHILD method.
3422 *
3423 * @param dev the parent device
3424 */
3425 void
bus_identify_children(device_t dev)3426 bus_identify_children(device_t dev)
3427 {
3428 devclass_t dc = dev->devclass;
3429 driverlink_t dl;
3430
3431 TAILQ_FOREACH(dl, &dc->drivers, link) {
3432 /*
3433 * If this driver's pass is too high, then ignore it.
3434 * For most drivers in the default pass, this will
3435 * never be true. For early-pass drivers they will
3436 * only call the identify routines of eligible drivers
3437 * when this routine is called. Drivers for later
3438 * passes should have their identify routines called
3439 * on early-pass buses during BUS_NEW_PASS().
3440 */
3441 if (dl->pass > bus_current_pass)
3442 continue;
3443 DEVICE_IDENTIFY(dl->driver, dev);
3444 }
3445 }
3446
3447 /**
3448 * @brief Helper function for implementing DEVICE_ATTACH()
3449 *
3450 * This function can be used to help implement the DEVICE_ATTACH() for
3451 * a bus. It calls device_probe_and_attach() for each of the device's
3452 * children.
3453 */
3454 int
bus_generic_attach(device_t dev)3455 bus_generic_attach(device_t dev)
3456 {
3457 bus_attach_children(dev);
3458 return (0);
3459 }
3460
3461 /**
3462 * @brief Probe and attach all children of the given device
3463 *
3464 * This function attempts to attach a device driver to each unattached
3465 * child of the given device using device_probe_and_attach(). If an
3466 * individual child fails to attach this function continues attaching
3467 * other children.
3468 *
3469 * @param dev the parent device
3470 */
3471 void
bus_attach_children(device_t dev)3472 bus_attach_children(device_t dev)
3473 {
3474 device_t child;
3475
3476 TAILQ_FOREACH(child, &dev->children, link) {
3477 device_probe_and_attach(child);
3478 }
3479 }
3480
3481 /**
3482 * @brief Helper function for delaying attaching children
3483 *
3484 * Many buses can't run transactions on the bus which children need to probe and
3485 * attach until after interrupts and/or timers are running. This function
3486 * delays their attach until interrupts and timers are enabled.
3487 */
3488 void
bus_delayed_attach_children(device_t dev)3489 bus_delayed_attach_children(device_t dev)
3490 {
3491 /* Probe and attach the bus children when interrupts are available */
3492 config_intrhook_oneshot((ich_func_t)bus_attach_children, dev);
3493 }
3494
3495 /**
3496 * @brief Helper function for implementing DEVICE_DETACH()
3497 *
3498 * This function can be used to help implement the DEVICE_DETACH() for
3499 * a bus. It calls device_detach() for each of the device's
3500 * children.
3501 */
3502 int
bus_generic_detach(device_t dev)3503 bus_generic_detach(device_t dev)
3504 {
3505 int error;
3506
3507 error = bus_detach_children(dev);
3508 if (error != 0)
3509 return (error);
3510
3511 return (0);
3512 }
3513
3514 /**
3515 * @brief Detach drivers from all children of a device
3516 *
3517 * This function attempts to detach a device driver from each attached
3518 * child of the given device using device_detach(). If an individual
3519 * child fails to detach this function stops and returns an error.
3520 * NB: Children that were successfully detached are not re-attached if
3521 * an error occurs.
3522 *
3523 * @param dev the parent device
3524 *
3525 * @retval 0 success
3526 * @retval non-zero a device would not detach
3527 */
3528 int
bus_detach_children(device_t dev)3529 bus_detach_children(device_t dev)
3530 {
3531 device_t child;
3532 int error;
3533
3534 /*
3535 * Detach children in the reverse order.
3536 * See bus_generic_suspend for details.
3537 */
3538 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3539 if ((error = device_detach(child)) != 0)
3540 return (error);
3541 }
3542
3543 return (0);
3544 }
3545
3546 /**
3547 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3548 *
3549 * This function can be used to help implement the DEVICE_SHUTDOWN()
3550 * for a bus. It calls device_shutdown() for each of the device's
3551 * children.
3552 */
3553 int
bus_generic_shutdown(device_t dev)3554 bus_generic_shutdown(device_t dev)
3555 {
3556 device_t child;
3557
3558 /*
3559 * Shut down children in the reverse order.
3560 * See bus_generic_suspend for details.
3561 */
3562 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3563 device_shutdown(child);
3564 }
3565
3566 return (0);
3567 }
3568
3569 /**
3570 * @brief Default function for suspending a child device.
3571 *
3572 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3573 */
3574 int
bus_generic_suspend_child(device_t dev,device_t child)3575 bus_generic_suspend_child(device_t dev, device_t child)
3576 {
3577 int error;
3578
3579 error = DEVICE_SUSPEND(child);
3580
3581 if (error == 0) {
3582 child->flags |= DF_SUSPENDED;
3583 } else {
3584 printf("DEVICE_SUSPEND(%s) failed: %d\n",
3585 device_get_nameunit(child), error);
3586 }
3587
3588 return (error);
3589 }
3590
3591 /**
3592 * @brief Default function for resuming a child device.
3593 *
3594 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3595 */
3596 int
bus_generic_resume_child(device_t dev,device_t child)3597 bus_generic_resume_child(device_t dev, device_t child)
3598 {
3599 DEVICE_RESUME(child);
3600 child->flags &= ~DF_SUSPENDED;
3601
3602 return (0);
3603 }
3604
3605 /**
3606 * @brief Helper function for implementing DEVICE_SUSPEND()
3607 *
3608 * This function can be used to help implement the DEVICE_SUSPEND()
3609 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3610 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3611 * operation is aborted and any devices which were suspended are
3612 * resumed immediately by calling their DEVICE_RESUME() methods.
3613 */
3614 int
bus_generic_suspend(device_t dev)3615 bus_generic_suspend(device_t dev)
3616 {
3617 int error;
3618 device_t child;
3619
3620 /*
3621 * Suspend children in the reverse order.
3622 * For most buses all children are equal, so the order does not matter.
3623 * Other buses, such as acpi, carefully order their child devices to
3624 * express implicit dependencies between them. For such buses it is
3625 * safer to bring down devices in the reverse order.
3626 */
3627 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3628 error = BUS_SUSPEND_CHILD(dev, child);
3629 if (error != 0) {
3630 child = TAILQ_NEXT(child, link);
3631 if (child != NULL) {
3632 TAILQ_FOREACH_FROM(child, &dev->children, link)
3633 BUS_RESUME_CHILD(dev, child);
3634 }
3635 return (error);
3636 }
3637 }
3638 return (0);
3639 }
3640
3641 /**
3642 * @brief Helper function for implementing DEVICE_RESUME()
3643 *
3644 * This function can be used to help implement the DEVICE_RESUME() for
3645 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3646 */
3647 int
bus_generic_resume(device_t dev)3648 bus_generic_resume(device_t dev)
3649 {
3650 device_t child;
3651
3652 TAILQ_FOREACH(child, &dev->children, link) {
3653 BUS_RESUME_CHILD(dev, child);
3654 /* if resume fails, there's nothing we can usefully do... */
3655 }
3656 return (0);
3657 }
3658
3659 /**
3660 * @brief Helper function for implementing BUS_RESET_POST
3661 *
3662 * Bus can use this function to implement common operations of
3663 * re-attaching or resuming the children after the bus itself was
3664 * reset, and after restoring bus-unique state of children.
3665 *
3666 * @param dev The bus
3667 * #param flags DEVF_RESET_*
3668 */
3669 int
bus_helper_reset_post(device_t dev,int flags)3670 bus_helper_reset_post(device_t dev, int flags)
3671 {
3672 device_t child;
3673 int error, error1;
3674
3675 error = 0;
3676 TAILQ_FOREACH(child, &dev->children,link) {
3677 BUS_RESET_POST(dev, child);
3678 error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3679 device_probe_and_attach(child) :
3680 BUS_RESUME_CHILD(dev, child);
3681 if (error == 0 && error1 != 0)
3682 error = error1;
3683 }
3684 return (error);
3685 }
3686
3687 static void
bus_helper_reset_prepare_rollback(device_t dev,device_t child,int flags)3688 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3689 {
3690 child = TAILQ_NEXT(child, link);
3691 if (child == NULL)
3692 return;
3693 TAILQ_FOREACH_FROM(child, &dev->children,link) {
3694 BUS_RESET_POST(dev, child);
3695 if ((flags & DEVF_RESET_DETACH) != 0)
3696 device_probe_and_attach(child);
3697 else
3698 BUS_RESUME_CHILD(dev, child);
3699 }
3700 }
3701
3702 /**
3703 * @brief Helper function for implementing BUS_RESET_PREPARE
3704 *
3705 * Bus can use this function to implement common operations of
3706 * detaching or suspending the children before the bus itself is
3707 * reset, and then save bus-unique state of children that must
3708 * persists around reset.
3709 *
3710 * @param dev The bus
3711 * #param flags DEVF_RESET_*
3712 */
3713 int
bus_helper_reset_prepare(device_t dev,int flags)3714 bus_helper_reset_prepare(device_t dev, int flags)
3715 {
3716 device_t child;
3717 int error;
3718
3719 if (dev->state != DS_ATTACHED)
3720 return (EBUSY);
3721
3722 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3723 if ((flags & DEVF_RESET_DETACH) != 0) {
3724 error = device_get_state(child) == DS_ATTACHED ?
3725 device_detach(child) : 0;
3726 } else {
3727 error = BUS_SUSPEND_CHILD(dev, child);
3728 }
3729 if (error == 0) {
3730 error = BUS_RESET_PREPARE(dev, child);
3731 if (error != 0) {
3732 if ((flags & DEVF_RESET_DETACH) != 0)
3733 device_probe_and_attach(child);
3734 else
3735 BUS_RESUME_CHILD(dev, child);
3736 }
3737 }
3738 if (error != 0) {
3739 bus_helper_reset_prepare_rollback(dev, child, flags);
3740 return (error);
3741 }
3742 }
3743 return (0);
3744 }
3745
3746 /**
3747 * @brief Helper function for implementing BUS_PRINT_CHILD().
3748 *
3749 * This function prints the first part of the ascii representation of
3750 * @p child, including its name, unit and description (if any - see
3751 * device_set_desc()).
3752 *
3753 * @returns the number of characters printed
3754 */
3755 int
bus_print_child_header(device_t dev,device_t child)3756 bus_print_child_header(device_t dev, device_t child)
3757 {
3758 int retval = 0;
3759
3760 if (device_get_desc(child)) {
3761 retval += device_printf(child, "<%s>", device_get_desc(child));
3762 } else {
3763 retval += printf("%s", device_get_nameunit(child));
3764 }
3765
3766 return (retval);
3767 }
3768
3769 /**
3770 * @brief Helper function for implementing BUS_PRINT_CHILD().
3771 *
3772 * This function prints the last part of the ascii representation of
3773 * @p child, which consists of the string @c " on " followed by the
3774 * name and unit of the @p dev.
3775 *
3776 * @returns the number of characters printed
3777 */
3778 int
bus_print_child_footer(device_t dev,device_t child)3779 bus_print_child_footer(device_t dev, device_t child)
3780 {
3781 return (printf(" on %s\n", device_get_nameunit(dev)));
3782 }
3783
3784 /**
3785 * @brief Helper function for implementing BUS_PRINT_CHILD().
3786 *
3787 * This function prints out the VM domain for the given device.
3788 *
3789 * @returns the number of characters printed
3790 */
3791 int
bus_print_child_domain(device_t dev,device_t child)3792 bus_print_child_domain(device_t dev, device_t child)
3793 {
3794 int domain;
3795
3796 /* No domain? Don't print anything */
3797 if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3798 return (0);
3799
3800 return (printf(" numa-domain %d", domain));
3801 }
3802
3803 /**
3804 * @brief Helper function for implementing BUS_PRINT_CHILD().
3805 *
3806 * This function simply calls bus_print_child_header() followed by
3807 * bus_print_child_footer().
3808 *
3809 * @returns the number of characters printed
3810 */
3811 int
bus_generic_print_child(device_t dev,device_t child)3812 bus_generic_print_child(device_t dev, device_t child)
3813 {
3814 int retval = 0;
3815
3816 retval += bus_print_child_header(dev, child);
3817 retval += bus_print_child_domain(dev, child);
3818 retval += bus_print_child_footer(dev, child);
3819
3820 return (retval);
3821 }
3822
3823 /**
3824 * @brief Stub function for implementing BUS_READ_IVAR().
3825 *
3826 * @returns ENOENT
3827 */
3828 int
bus_generic_read_ivar(device_t dev,device_t child,int index,uintptr_t * result)3829 bus_generic_read_ivar(device_t dev, device_t child, int index,
3830 uintptr_t * result)
3831 {
3832 return (ENOENT);
3833 }
3834
3835 /**
3836 * @brief Stub function for implementing BUS_WRITE_IVAR().
3837 *
3838 * @returns ENOENT
3839 */
3840 int
bus_generic_write_ivar(device_t dev,device_t child,int index,uintptr_t value)3841 bus_generic_write_ivar(device_t dev, device_t child, int index,
3842 uintptr_t value)
3843 {
3844 return (ENOENT);
3845 }
3846
3847 /**
3848 * @brief Helper function for implementing BUS_GET_PROPERTY().
3849 *
3850 * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3851 * until a non-default implementation is found.
3852 */
3853 ssize_t
bus_generic_get_property(device_t dev,device_t child,const char * propname,void * propvalue,size_t size,device_property_type_t type)3854 bus_generic_get_property(device_t dev, device_t child, const char *propname,
3855 void *propvalue, size_t size, device_property_type_t type)
3856 {
3857 if (device_get_parent(dev) != NULL)
3858 return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3859 propname, propvalue, size, type));
3860
3861 return (-1);
3862 }
3863
3864 /**
3865 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3866 *
3867 * @returns NULL
3868 */
3869 struct resource_list *
bus_generic_get_resource_list(device_t dev,device_t child)3870 bus_generic_get_resource_list(device_t dev, device_t child)
3871 {
3872 return (NULL);
3873 }
3874
3875 /**
3876 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3877 *
3878 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3879 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3880 * and then calls device_probe_and_attach() for each unattached child.
3881 */
3882 void
bus_generic_driver_added(device_t dev,driver_t * driver)3883 bus_generic_driver_added(device_t dev, driver_t *driver)
3884 {
3885 device_t child;
3886
3887 DEVICE_IDENTIFY(driver, dev);
3888 TAILQ_FOREACH(child, &dev->children, link) {
3889 if (child->state == DS_NOTPRESENT)
3890 device_probe_and_attach(child);
3891 }
3892 }
3893
3894 /**
3895 * @brief Helper function for implementing BUS_NEW_PASS().
3896 *
3897 * This implementing of BUS_NEW_PASS() first calls the identify
3898 * routines for any drivers that probe at the current pass. Then it
3899 * walks the list of devices for this bus. If a device is already
3900 * attached, then it calls BUS_NEW_PASS() on that device. If the
3901 * device is not already attached, it attempts to attach a driver to
3902 * it.
3903 */
3904 void
bus_generic_new_pass(device_t dev)3905 bus_generic_new_pass(device_t dev)
3906 {
3907 driverlink_t dl;
3908 devclass_t dc;
3909 device_t child;
3910
3911 dc = dev->devclass;
3912 TAILQ_FOREACH(dl, &dc->drivers, link) {
3913 if (dl->pass == bus_current_pass)
3914 DEVICE_IDENTIFY(dl->driver, dev);
3915 }
3916 TAILQ_FOREACH(child, &dev->children, link) {
3917 if (child->state >= DS_ATTACHED)
3918 BUS_NEW_PASS(child);
3919 else if (child->state == DS_NOTPRESENT)
3920 device_probe_and_attach(child);
3921 }
3922 }
3923
3924 /**
3925 * @brief Helper function for implementing BUS_SETUP_INTR().
3926 *
3927 * This simple implementation of BUS_SETUP_INTR() simply calls the
3928 * BUS_SETUP_INTR() method of the parent of @p dev.
3929 */
3930 int
bus_generic_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)3931 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3932 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3933 void **cookiep)
3934 {
3935 /* Propagate up the bus hierarchy until someone handles it. */
3936 if (dev->parent)
3937 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3938 filter, intr, arg, cookiep));
3939 return (EINVAL);
3940 }
3941
3942 /**
3943 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3944 *
3945 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3946 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3947 */
3948 int
bus_generic_teardown_intr(device_t dev,device_t child,struct resource * irq,void * cookie)3949 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3950 void *cookie)
3951 {
3952 /* Propagate up the bus hierarchy until someone handles it. */
3953 if (dev->parent)
3954 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3955 return (EINVAL);
3956 }
3957
3958 /**
3959 * @brief Helper function for implementing BUS_SUSPEND_INTR().
3960 *
3961 * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3962 * BUS_SUSPEND_INTR() method of the parent of @p dev.
3963 */
3964 int
bus_generic_suspend_intr(device_t dev,device_t child,struct resource * irq)3965 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3966 {
3967 /* Propagate up the bus hierarchy until someone handles it. */
3968 if (dev->parent)
3969 return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3970 return (EINVAL);
3971 }
3972
3973 /**
3974 * @brief Helper function for implementing BUS_RESUME_INTR().
3975 *
3976 * This simple implementation of BUS_RESUME_INTR() simply calls the
3977 * BUS_RESUME_INTR() method of the parent of @p dev.
3978 */
3979 int
bus_generic_resume_intr(device_t dev,device_t child,struct resource * irq)3980 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3981 {
3982 /* Propagate up the bus hierarchy until someone handles it. */
3983 if (dev->parent)
3984 return (BUS_RESUME_INTR(dev->parent, child, irq));
3985 return (EINVAL);
3986 }
3987
3988 /**
3989 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3990 *
3991 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3992 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3993 */
3994 int
bus_generic_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)3995 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r,
3996 rman_res_t start, rman_res_t end)
3997 {
3998 /* Propagate up the bus hierarchy until someone handles it. */
3999 if (dev->parent)
4000 return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end));
4001 return (EINVAL);
4002 }
4003
4004 /*
4005 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
4006 *
4007 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
4008 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no
4009 * parent, no translation happens.
4010 */
4011 int
bus_generic_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)4012 bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
4013 rman_res_t *newstart)
4014 {
4015 if (dev->parent)
4016 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
4017 newstart));
4018 *newstart = start;
4019 return (0);
4020 }
4021
4022 /**
4023 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4024 *
4025 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4026 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4027 */
4028 struct resource *
bus_generic_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4029 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4030 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4031 {
4032 /* Propagate up the bus hierarchy until someone handles it. */
4033 if (dev->parent)
4034 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4035 start, end, count, flags));
4036 return (NULL);
4037 }
4038
4039 /**
4040 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4041 *
4042 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4043 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4044 */
4045 int
bus_generic_release_resource(device_t dev,device_t child,struct resource * r)4046 bus_generic_release_resource(device_t dev, device_t child, struct resource *r)
4047 {
4048 /* Propagate up the bus hierarchy until someone handles it. */
4049 if (dev->parent)
4050 return (BUS_RELEASE_RESOURCE(dev->parent, child, r));
4051 return (EINVAL);
4052 }
4053
4054 /**
4055 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4056 *
4057 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4058 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4059 */
4060 int
bus_generic_activate_resource(device_t dev,device_t child,struct resource * r)4061 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r)
4062 {
4063 /* Propagate up the bus hierarchy until someone handles it. */
4064 if (dev->parent)
4065 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r));
4066 return (EINVAL);
4067 }
4068
4069 /**
4070 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4071 *
4072 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4073 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4074 */
4075 int
bus_generic_deactivate_resource(device_t dev,device_t child,struct resource * r)4076 bus_generic_deactivate_resource(device_t dev, device_t child,
4077 struct resource *r)
4078 {
4079 /* Propagate up the bus hierarchy until someone handles it. */
4080 if (dev->parent)
4081 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r));
4082 return (EINVAL);
4083 }
4084
4085 /**
4086 * @brief Helper function for implementing BUS_MAP_RESOURCE().
4087 *
4088 * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4089 * BUS_MAP_RESOURCE() method of the parent of @p dev.
4090 */
4091 int
bus_generic_map_resource(device_t dev,device_t child,struct resource * r,struct resource_map_request * args,struct resource_map * map)4092 bus_generic_map_resource(device_t dev, device_t child, struct resource *r,
4093 struct resource_map_request *args, struct resource_map *map)
4094 {
4095 /* Propagate up the bus hierarchy until someone handles it. */
4096 if (dev->parent)
4097 return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map));
4098 return (EINVAL);
4099 }
4100
4101 /**
4102 * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4103 *
4104 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4105 * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4106 */
4107 int
bus_generic_unmap_resource(device_t dev,device_t child,struct resource * r,struct resource_map * map)4108 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r,
4109 struct resource_map *map)
4110 {
4111 /* Propagate up the bus hierarchy until someone handles it. */
4112 if (dev->parent)
4113 return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map));
4114 return (EINVAL);
4115 }
4116
4117 /**
4118 * @brief Helper function for implementing BUS_BIND_INTR().
4119 *
4120 * This simple implementation of BUS_BIND_INTR() simply calls the
4121 * BUS_BIND_INTR() method of the parent of @p dev.
4122 */
4123 int
bus_generic_bind_intr(device_t dev,device_t child,struct resource * irq,int cpu)4124 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4125 int cpu)
4126 {
4127 /* Propagate up the bus hierarchy until someone handles it. */
4128 if (dev->parent)
4129 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4130 return (EINVAL);
4131 }
4132
4133 /**
4134 * @brief Helper function for implementing BUS_CONFIG_INTR().
4135 *
4136 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4137 * BUS_CONFIG_INTR() method of the parent of @p dev.
4138 */
4139 int
bus_generic_config_intr(device_t dev,int irq,enum intr_trigger trig,enum intr_polarity pol)4140 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4141 enum intr_polarity pol)
4142 {
4143 /* Propagate up the bus hierarchy until someone handles it. */
4144 if (dev->parent)
4145 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4146 return (EINVAL);
4147 }
4148
4149 /**
4150 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4151 *
4152 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4153 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4154 */
4155 int
bus_generic_describe_intr(device_t dev,device_t child,struct resource * irq,void * cookie,const char * descr)4156 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4157 void *cookie, const char *descr)
4158 {
4159 /* Propagate up the bus hierarchy until someone handles it. */
4160 if (dev->parent)
4161 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4162 descr));
4163 return (EINVAL);
4164 }
4165
4166 /**
4167 * @brief Helper function for implementing BUS_GET_CPUS().
4168 *
4169 * This simple implementation of BUS_GET_CPUS() simply calls the
4170 * BUS_GET_CPUS() method of the parent of @p dev.
4171 */
4172 int
bus_generic_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)4173 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4174 size_t setsize, cpuset_t *cpuset)
4175 {
4176 /* Propagate up the bus hierarchy until someone handles it. */
4177 if (dev->parent != NULL)
4178 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4179 return (EINVAL);
4180 }
4181
4182 /**
4183 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4184 *
4185 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4186 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4187 */
4188 bus_dma_tag_t
bus_generic_get_dma_tag(device_t dev,device_t child)4189 bus_generic_get_dma_tag(device_t dev, device_t child)
4190 {
4191 /* Propagate up the bus hierarchy until someone handles it. */
4192 if (dev->parent != NULL)
4193 return (BUS_GET_DMA_TAG(dev->parent, child));
4194 return (NULL);
4195 }
4196
4197 /**
4198 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4199 *
4200 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4201 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4202 */
4203 bus_space_tag_t
bus_generic_get_bus_tag(device_t dev,device_t child)4204 bus_generic_get_bus_tag(device_t dev, device_t child)
4205 {
4206 /* Propagate up the bus hierarchy until someone handles it. */
4207 if (dev->parent != NULL)
4208 return (BUS_GET_BUS_TAG(dev->parent, child));
4209 return ((bus_space_tag_t)0);
4210 }
4211
4212 /**
4213 * @brief Helper function for implementing BUS_GET_RESOURCE().
4214 *
4215 * This implementation of BUS_GET_RESOURCE() uses the
4216 * resource_list_find() function to do most of the work. It calls
4217 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4218 * search.
4219 */
4220 int
bus_generic_rl_get_resource(device_t dev,device_t child,int type,int rid,rman_res_t * startp,rman_res_t * countp)4221 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4222 rman_res_t *startp, rman_res_t *countp)
4223 {
4224 struct resource_list * rl = NULL;
4225 struct resource_list_entry * rle = NULL;
4226
4227 rl = BUS_GET_RESOURCE_LIST(dev, child);
4228 if (!rl)
4229 return (EINVAL);
4230
4231 rle = resource_list_find(rl, type, rid);
4232 if (!rle)
4233 return (ENOENT);
4234
4235 if (startp)
4236 *startp = rle->start;
4237 if (countp)
4238 *countp = rle->count;
4239
4240 return (0);
4241 }
4242
4243 /**
4244 * @brief Helper function for implementing BUS_SET_RESOURCE().
4245 *
4246 * This implementation of BUS_SET_RESOURCE() uses the
4247 * resource_list_add() function to do most of the work. It calls
4248 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4249 * edit.
4250 */
4251 int
bus_generic_rl_set_resource(device_t dev,device_t child,int type,int rid,rman_res_t start,rman_res_t count)4252 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4253 rman_res_t start, rman_res_t count)
4254 {
4255 struct resource_list * rl = NULL;
4256
4257 rl = BUS_GET_RESOURCE_LIST(dev, child);
4258 if (!rl)
4259 return (EINVAL);
4260
4261 resource_list_add(rl, type, rid, start, (start + count - 1), count);
4262
4263 return (0);
4264 }
4265
4266 /**
4267 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4268 *
4269 * This implementation of BUS_DELETE_RESOURCE() uses the
4270 * resource_list_delete() function to do most of the work. It calls
4271 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4272 * edit.
4273 */
4274 void
bus_generic_rl_delete_resource(device_t dev,device_t child,int type,int rid)4275 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4276 {
4277 struct resource_list * rl = NULL;
4278
4279 rl = BUS_GET_RESOURCE_LIST(dev, child);
4280 if (!rl)
4281 return;
4282
4283 resource_list_delete(rl, type, rid);
4284
4285 return;
4286 }
4287
4288 /**
4289 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4290 *
4291 * This implementation of BUS_RELEASE_RESOURCE() uses the
4292 * resource_list_release() function to do most of the work. It calls
4293 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4294 */
4295 int
bus_generic_rl_release_resource(device_t dev,device_t child,struct resource * r)4296 bus_generic_rl_release_resource(device_t dev, device_t child,
4297 struct resource *r)
4298 {
4299 struct resource_list * rl = NULL;
4300
4301 if (device_get_parent(child) != dev)
4302 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r));
4303
4304 rl = BUS_GET_RESOURCE_LIST(dev, child);
4305 if (!rl)
4306 return (EINVAL);
4307
4308 return (resource_list_release(rl, dev, child, r));
4309 }
4310
4311 /**
4312 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4313 *
4314 * This implementation of BUS_ALLOC_RESOURCE() uses the
4315 * resource_list_alloc() function to do most of the work. It calls
4316 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4317 */
4318 struct resource *
bus_generic_rl_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4319 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4320 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4321 {
4322 struct resource_list * rl = NULL;
4323
4324 if (device_get_parent(child) != dev)
4325 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4326 type, rid, start, end, count, flags));
4327
4328 rl = BUS_GET_RESOURCE_LIST(dev, child);
4329 if (!rl)
4330 return (NULL);
4331
4332 return (resource_list_alloc(rl, dev, child, type, rid,
4333 start, end, count, flags));
4334 }
4335
4336 /**
4337 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4338 *
4339 * This implementation of BUS_ALLOC_RESOURCE() allocates a
4340 * resource from a resource manager. It uses BUS_GET_RMAN()
4341 * to obtain the resource manager.
4342 */
4343 struct resource *
bus_generic_rman_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4344 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type,
4345 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4346 {
4347 struct resource *r;
4348 struct rman *rm;
4349
4350 rm = BUS_GET_RMAN(dev, type, flags);
4351 if (rm == NULL)
4352 return (NULL);
4353
4354 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
4355 child);
4356 if (r == NULL)
4357 return (NULL);
4358 rman_set_rid(r, *rid);
4359 rman_set_type(r, type);
4360
4361 if (flags & RF_ACTIVE) {
4362 if (bus_activate_resource(child, type, *rid, r) != 0) {
4363 rman_release_resource(r);
4364 return (NULL);
4365 }
4366 }
4367
4368 return (r);
4369 }
4370
4371 /**
4372 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4373 *
4374 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only
4375 * if they were allocated from the resource manager returned by
4376 * BUS_GET_RMAN().
4377 */
4378 int
bus_generic_rman_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)4379 bus_generic_rman_adjust_resource(device_t dev, device_t child,
4380 struct resource *r, rman_res_t start, rman_res_t end)
4381 {
4382 struct rman *rm;
4383
4384 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4385 if (rm == NULL)
4386 return (ENXIO);
4387 if (!rman_is_region_manager(r, rm))
4388 return (EINVAL);
4389 return (rman_adjust_resource(r, start, end));
4390 }
4391
4392 /**
4393 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4394 *
4395 * This implementation of BUS_RELEASE_RESOURCE() releases resources
4396 * allocated by bus_generic_rman_alloc_resource.
4397 */
4398 int
bus_generic_rman_release_resource(device_t dev,device_t child,struct resource * r)4399 bus_generic_rman_release_resource(device_t dev, device_t child,
4400 struct resource *r)
4401 {
4402 #ifdef INVARIANTS
4403 struct rman *rm;
4404 #endif
4405 int error;
4406
4407 #ifdef INVARIANTS
4408 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4409 KASSERT(rman_is_region_manager(r, rm),
4410 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4411 #endif
4412
4413 if (rman_get_flags(r) & RF_ACTIVE) {
4414 error = bus_deactivate_resource(child, r);
4415 if (error != 0)
4416 return (error);
4417 }
4418 return (rman_release_resource(r));
4419 }
4420
4421 /**
4422 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4423 *
4424 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources
4425 * allocated by bus_generic_rman_alloc_resource.
4426 */
4427 int
bus_generic_rman_activate_resource(device_t dev,device_t child,struct resource * r)4428 bus_generic_rman_activate_resource(device_t dev, device_t child,
4429 struct resource *r)
4430 {
4431 struct resource_map map;
4432 #ifdef INVARIANTS
4433 struct rman *rm;
4434 #endif
4435 int error, type;
4436
4437 type = rman_get_type(r);
4438 #ifdef INVARIANTS
4439 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4440 KASSERT(rman_is_region_manager(r, rm),
4441 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4442 #endif
4443
4444 error = rman_activate_resource(r);
4445 if (error != 0)
4446 return (error);
4447
4448 switch (type) {
4449 case SYS_RES_IOPORT:
4450 case SYS_RES_MEMORY:
4451 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4452 error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map);
4453 if (error != 0)
4454 break;
4455
4456 rman_set_mapping(r, &map);
4457 }
4458 break;
4459 #ifdef INTRNG
4460 case SYS_RES_IRQ:
4461 error = intr_activate_irq(child, r);
4462 break;
4463 #endif
4464 }
4465 if (error != 0)
4466 rman_deactivate_resource(r);
4467 return (error);
4468 }
4469
4470 /**
4471 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4472 *
4473 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates
4474 * resources allocated by bus_generic_rman_alloc_resource.
4475 */
4476 int
bus_generic_rman_deactivate_resource(device_t dev,device_t child,struct resource * r)4477 bus_generic_rman_deactivate_resource(device_t dev, device_t child,
4478 struct resource *r)
4479 {
4480 struct resource_map map;
4481 #ifdef INVARIANTS
4482 struct rman *rm;
4483 #endif
4484 int error, type;
4485
4486 type = rman_get_type(r);
4487 #ifdef INVARIANTS
4488 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4489 KASSERT(rman_is_region_manager(r, rm),
4490 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4491 #endif
4492
4493 error = rman_deactivate_resource(r);
4494 if (error != 0)
4495 return (error);
4496
4497 switch (type) {
4498 case SYS_RES_IOPORT:
4499 case SYS_RES_MEMORY:
4500 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4501 rman_get_mapping(r, &map);
4502 BUS_UNMAP_RESOURCE(dev, child, r, &map);
4503 }
4504 break;
4505 #ifdef INTRNG
4506 case SYS_RES_IRQ:
4507 intr_deactivate_irq(child, r);
4508 break;
4509 #endif
4510 }
4511 return (0);
4512 }
4513
4514 /**
4515 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4516 *
4517 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4518 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4519 */
4520 int
bus_generic_child_present(device_t dev,device_t child)4521 bus_generic_child_present(device_t dev, device_t child)
4522 {
4523 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4524 }
4525
4526 /**
4527 * @brief Helper function for implementing BUS_GET_DOMAIN().
4528 *
4529 * This simple implementation of BUS_GET_DOMAIN() calls the
4530 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev
4531 * does not have a parent, the function fails with ENOENT.
4532 */
4533 int
bus_generic_get_domain(device_t dev,device_t child,int * domain)4534 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4535 {
4536 if (dev->parent)
4537 return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4538
4539 return (ENOENT);
4540 }
4541
4542 /**
4543 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4544 *
4545 * This function knows how to (a) pass the request up the tree if there's
4546 * a parent and (b) Knows how to supply a FreeBSD locator.
4547 *
4548 * @param bus bus in the walk up the tree
4549 * @param child leaf node to print information about
4550 * @param locator BUS_LOCATOR_xxx string for locator
4551 * @param sb Buffer to print information into
4552 */
4553 int
bus_generic_get_device_path(device_t bus,device_t child,const char * locator,struct sbuf * sb)4554 bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4555 struct sbuf *sb)
4556 {
4557 int rv = 0;
4558 device_t parent;
4559
4560 /*
4561 * We don't recurse on ACPI since either we know the handle for the
4562 * device or we don't. And if we're in the generic routine, we don't
4563 * have a ACPI override. All other locators build up a path by having
4564 * their parents create a path and then adding the path element for this
4565 * node. That's why we recurse with parent, bus rather than the typical
4566 * parent, child: each spot in the tree is independent of what our child
4567 * will do with this path.
4568 */
4569 parent = device_get_parent(bus);
4570 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4571 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4572 }
4573 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4574 if (rv == 0) {
4575 sbuf_printf(sb, "/%s", device_get_nameunit(child));
4576 }
4577 return (rv);
4578 }
4579 /*
4580 * Don't know what to do. So assume we do nothing. Not sure that's
4581 * the right thing, but keeps us from having a big list here.
4582 */
4583 return (0);
4584 }
4585
4586
4587 /**
4588 * @brief Helper function for implementing BUS_RESCAN().
4589 *
4590 * This null implementation of BUS_RESCAN() always fails to indicate
4591 * the bus does not support rescanning.
4592 */
4593 int
bus_null_rescan(device_t dev)4594 bus_null_rescan(device_t dev)
4595 {
4596 return (ENODEV);
4597 }
4598
4599 /*
4600 * Some convenience functions to make it easier for drivers to use the
4601 * resource-management functions. All these really do is hide the
4602 * indirection through the parent's method table, making for slightly
4603 * less-wordy code. In the future, it might make sense for this code
4604 * to maintain some sort of a list of resources allocated by each device.
4605 */
4606
4607 int
bus_alloc_resources(device_t dev,struct resource_spec * rs,struct resource ** res)4608 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4609 struct resource **res)
4610 {
4611 int i;
4612
4613 for (i = 0; rs[i].type != -1; i++)
4614 res[i] = NULL;
4615 for (i = 0; rs[i].type != -1; i++) {
4616 res[i] = bus_alloc_resource_any(dev,
4617 rs[i].type, &rs[i].rid, rs[i].flags);
4618 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4619 bus_release_resources(dev, rs, res);
4620 return (ENXIO);
4621 }
4622 }
4623 return (0);
4624 }
4625
4626 void
bus_release_resources(device_t dev,const struct resource_spec * rs,struct resource ** res)4627 bus_release_resources(device_t dev, const struct resource_spec *rs,
4628 struct resource **res)
4629 {
4630 int i;
4631
4632 for (i = 0; rs[i].type != -1; i++)
4633 if (res[i] != NULL) {
4634 bus_release_resource(
4635 dev, rs[i].type, rs[i].rid, res[i]);
4636 res[i] = NULL;
4637 }
4638 }
4639
4640 /**
4641 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4642 *
4643 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4644 * parent of @p dev.
4645 */
4646 struct resource *
bus_alloc_resource(device_t dev,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4647 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4648 rman_res_t end, rman_res_t count, u_int flags)
4649 {
4650 struct resource *res;
4651
4652 if (dev->parent == NULL)
4653 return (NULL);
4654 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4655 count, flags);
4656 return (res);
4657 }
4658
4659 /**
4660 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4661 *
4662 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4663 * parent of @p dev.
4664 */
4665 int
bus_adjust_resource(device_t dev,struct resource * r,rman_res_t start,rman_res_t end)4666 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start,
4667 rman_res_t end)
4668 {
4669 if (dev->parent == NULL)
4670 return (EINVAL);
4671 return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end));
4672 }
4673
4674 int
bus_adjust_resource_old(device_t dev,int type __unused,struct resource * r,rman_res_t start,rman_res_t end)4675 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r,
4676 rman_res_t start, rman_res_t end)
4677 {
4678 return (bus_adjust_resource(dev, r, start, end));
4679 }
4680
4681 /**
4682 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4683 *
4684 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4685 * parent of @p dev.
4686 */
4687 int
bus_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)4688 bus_translate_resource(device_t dev, int type, rman_res_t start,
4689 rman_res_t *newstart)
4690 {
4691 if (dev->parent == NULL)
4692 return (EINVAL);
4693 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4694 }
4695
4696 /**
4697 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4698 *
4699 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4700 * parent of @p dev.
4701 */
4702 int
bus_activate_resource(device_t dev,struct resource * r)4703 bus_activate_resource(device_t dev, struct resource *r)
4704 {
4705 if (dev->parent == NULL)
4706 return (EINVAL);
4707 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r));
4708 }
4709
4710 int
bus_activate_resource_old(device_t dev,int type,int rid,struct resource * r)4711 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r)
4712 {
4713 return (bus_activate_resource(dev, r));
4714 }
4715
4716 /**
4717 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4718 *
4719 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4720 * parent of @p dev.
4721 */
4722 int
bus_deactivate_resource(device_t dev,struct resource * r)4723 bus_deactivate_resource(device_t dev, struct resource *r)
4724 {
4725 if (dev->parent == NULL)
4726 return (EINVAL);
4727 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r));
4728 }
4729
4730 int
bus_deactivate_resource_old(device_t dev,int type,int rid,struct resource * r)4731 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r)
4732 {
4733 return (bus_deactivate_resource(dev, r));
4734 }
4735
4736 /**
4737 * @brief Wrapper function for BUS_MAP_RESOURCE().
4738 *
4739 * This function simply calls the BUS_MAP_RESOURCE() method of the
4740 * parent of @p dev.
4741 */
4742 int
bus_map_resource(device_t dev,struct resource * r,struct resource_map_request * args,struct resource_map * map)4743 bus_map_resource(device_t dev, struct resource *r,
4744 struct resource_map_request *args, struct resource_map *map)
4745 {
4746 if (dev->parent == NULL)
4747 return (EINVAL);
4748 return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map));
4749 }
4750
4751 int
bus_map_resource_old(device_t dev,int type,struct resource * r,struct resource_map_request * args,struct resource_map * map)4752 bus_map_resource_old(device_t dev, int type, struct resource *r,
4753 struct resource_map_request *args, struct resource_map *map)
4754 {
4755 return (bus_map_resource(dev, r, args, map));
4756 }
4757
4758 /**
4759 * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4760 *
4761 * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4762 * parent of @p dev.
4763 */
4764 int
bus_unmap_resource(device_t dev,struct resource * r,struct resource_map * map)4765 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map)
4766 {
4767 if (dev->parent == NULL)
4768 return (EINVAL);
4769 return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map));
4770 }
4771
4772 int
bus_unmap_resource_old(device_t dev,int type,struct resource * r,struct resource_map * map)4773 bus_unmap_resource_old(device_t dev, int type, struct resource *r,
4774 struct resource_map *map)
4775 {
4776 return (bus_unmap_resource(dev, r, map));
4777 }
4778
4779 /**
4780 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4781 *
4782 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4783 * parent of @p dev.
4784 */
4785 int
bus_release_resource(device_t dev,struct resource * r)4786 bus_release_resource(device_t dev, struct resource *r)
4787 {
4788 int rv;
4789
4790 if (dev->parent == NULL)
4791 return (EINVAL);
4792 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r);
4793 return (rv);
4794 }
4795
4796 int
bus_release_resource_old(device_t dev,int type,int rid,struct resource * r)4797 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r)
4798 {
4799 return (bus_release_resource(dev, r));
4800 }
4801
4802 /**
4803 * @brief Wrapper function for BUS_SETUP_INTR().
4804 *
4805 * This function simply calls the BUS_SETUP_INTR() method of the
4806 * parent of @p dev.
4807 */
4808 int
bus_setup_intr(device_t dev,struct resource * r,int flags,driver_filter_t filter,driver_intr_t handler,void * arg,void ** cookiep)4809 bus_setup_intr(device_t dev, struct resource *r, int flags,
4810 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4811 {
4812 int error;
4813
4814 if (dev->parent == NULL)
4815 return (EINVAL);
4816 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4817 arg, cookiep);
4818 if (error != 0)
4819 return (error);
4820 if (handler != NULL && !(flags & INTR_MPSAFE))
4821 device_printf(dev, "[GIANT-LOCKED]\n");
4822 return (0);
4823 }
4824
4825 /**
4826 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4827 *
4828 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4829 * parent of @p dev.
4830 */
4831 int
bus_teardown_intr(device_t dev,struct resource * r,void * cookie)4832 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4833 {
4834 if (dev->parent == NULL)
4835 return (EINVAL);
4836 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4837 }
4838
4839 /**
4840 * @brief Wrapper function for BUS_SUSPEND_INTR().
4841 *
4842 * This function simply calls the BUS_SUSPEND_INTR() method of the
4843 * parent of @p dev.
4844 */
4845 int
bus_suspend_intr(device_t dev,struct resource * r)4846 bus_suspend_intr(device_t dev, struct resource *r)
4847 {
4848 if (dev->parent == NULL)
4849 return (EINVAL);
4850 return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4851 }
4852
4853 /**
4854 * @brief Wrapper function for BUS_RESUME_INTR().
4855 *
4856 * This function simply calls the BUS_RESUME_INTR() method of the
4857 * parent of @p dev.
4858 */
4859 int
bus_resume_intr(device_t dev,struct resource * r)4860 bus_resume_intr(device_t dev, struct resource *r)
4861 {
4862 if (dev->parent == NULL)
4863 return (EINVAL);
4864 return (BUS_RESUME_INTR(dev->parent, dev, r));
4865 }
4866
4867 /**
4868 * @brief Wrapper function for BUS_BIND_INTR().
4869 *
4870 * This function simply calls the BUS_BIND_INTR() method of the
4871 * parent of @p dev.
4872 */
4873 int
bus_bind_intr(device_t dev,struct resource * r,int cpu)4874 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4875 {
4876 if (dev->parent == NULL)
4877 return (EINVAL);
4878 return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4879 }
4880
4881 /**
4882 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4883 *
4884 * This function first formats the requested description into a
4885 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4886 * the parent of @p dev.
4887 */
4888 int
bus_describe_intr(device_t dev,struct resource * irq,void * cookie,const char * fmt,...)4889 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4890 const char *fmt, ...)
4891 {
4892 va_list ap;
4893 char descr[MAXCOMLEN + 1];
4894
4895 if (dev->parent == NULL)
4896 return (EINVAL);
4897 va_start(ap, fmt);
4898 vsnprintf(descr, sizeof(descr), fmt, ap);
4899 va_end(ap);
4900 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4901 }
4902
4903 /**
4904 * @brief Wrapper function for BUS_SET_RESOURCE().
4905 *
4906 * This function simply calls the BUS_SET_RESOURCE() method of the
4907 * parent of @p dev.
4908 */
4909 int
bus_set_resource(device_t dev,int type,int rid,rman_res_t start,rman_res_t count)4910 bus_set_resource(device_t dev, int type, int rid,
4911 rman_res_t start, rman_res_t count)
4912 {
4913 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4914 start, count));
4915 }
4916
4917 /**
4918 * @brief Wrapper function for BUS_GET_RESOURCE().
4919 *
4920 * This function simply calls the BUS_GET_RESOURCE() method of the
4921 * parent of @p dev.
4922 */
4923 int
bus_get_resource(device_t dev,int type,int rid,rman_res_t * startp,rman_res_t * countp)4924 bus_get_resource(device_t dev, int type, int rid,
4925 rman_res_t *startp, rman_res_t *countp)
4926 {
4927 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4928 startp, countp));
4929 }
4930
4931 /**
4932 * @brief Wrapper function for BUS_GET_RESOURCE().
4933 *
4934 * This function simply calls the BUS_GET_RESOURCE() method of the
4935 * parent of @p dev and returns the start value.
4936 */
4937 rman_res_t
bus_get_resource_start(device_t dev,int type,int rid)4938 bus_get_resource_start(device_t dev, int type, int rid)
4939 {
4940 rman_res_t start;
4941 rman_res_t count;
4942 int error;
4943
4944 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4945 &start, &count);
4946 if (error)
4947 return (0);
4948 return (start);
4949 }
4950
4951 /**
4952 * @brief Wrapper function for BUS_GET_RESOURCE().
4953 *
4954 * This function simply calls the BUS_GET_RESOURCE() method of the
4955 * parent of @p dev and returns the count value.
4956 */
4957 rman_res_t
bus_get_resource_count(device_t dev,int type,int rid)4958 bus_get_resource_count(device_t dev, int type, int rid)
4959 {
4960 rman_res_t start;
4961 rman_res_t count;
4962 int error;
4963
4964 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4965 &start, &count);
4966 if (error)
4967 return (0);
4968 return (count);
4969 }
4970
4971 /**
4972 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4973 *
4974 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4975 * parent of @p dev.
4976 */
4977 void
bus_delete_resource(device_t dev,int type,int rid)4978 bus_delete_resource(device_t dev, int type, int rid)
4979 {
4980 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4981 }
4982
4983 /**
4984 * @brief Wrapper function for BUS_CHILD_PRESENT().
4985 *
4986 * This function simply calls the BUS_CHILD_PRESENT() method of the
4987 * parent of @p dev.
4988 */
4989 int
bus_child_present(device_t child)4990 bus_child_present(device_t child)
4991 {
4992 return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4993 }
4994
4995 /**
4996 * @brief Wrapper function for BUS_CHILD_PNPINFO().
4997 *
4998 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
4999 * dev.
5000 */
5001 int
bus_child_pnpinfo(device_t child,struct sbuf * sb)5002 bus_child_pnpinfo(device_t child, struct sbuf *sb)
5003 {
5004 device_t parent;
5005
5006 parent = device_get_parent(child);
5007 if (parent == NULL)
5008 return (0);
5009 return (BUS_CHILD_PNPINFO(parent, child, sb));
5010 }
5011
5012 /**
5013 * @brief Generic implementation that does nothing for bus_child_pnpinfo
5014 *
5015 * This function has the right signature and returns 0 since the sbuf is passed
5016 * to us to append to.
5017 */
5018 int
bus_generic_child_pnpinfo(device_t dev,device_t child,struct sbuf * sb)5019 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
5020 {
5021 return (0);
5022 }
5023
5024 /**
5025 * @brief Wrapper function for BUS_CHILD_LOCATION().
5026 *
5027 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
5028 * @p dev.
5029 */
5030 int
bus_child_location(device_t child,struct sbuf * sb)5031 bus_child_location(device_t child, struct sbuf *sb)
5032 {
5033 device_t parent;
5034
5035 parent = device_get_parent(child);
5036 if (parent == NULL)
5037 return (0);
5038 return (BUS_CHILD_LOCATION(parent, child, sb));
5039 }
5040
5041 /**
5042 * @brief Generic implementation that does nothing for bus_child_location
5043 *
5044 * This function has the right signature and returns 0 since the sbuf is passed
5045 * to us to append to.
5046 */
5047 int
bus_generic_child_location(device_t dev,device_t child,struct sbuf * sb)5048 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
5049 {
5050 return (0);
5051 }
5052
5053 /**
5054 * @brief Wrapper function for BUS_GET_CPUS().
5055 *
5056 * This function simply calls the BUS_GET_CPUS() method of the
5057 * parent of @p dev.
5058 */
5059 int
bus_get_cpus(device_t dev,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5060 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
5061 {
5062 device_t parent;
5063
5064 parent = device_get_parent(dev);
5065 if (parent == NULL)
5066 return (EINVAL);
5067 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
5068 }
5069
5070 /**
5071 * @brief Wrapper function for BUS_GET_DMA_TAG().
5072 *
5073 * This function simply calls the BUS_GET_DMA_TAG() method of the
5074 * parent of @p dev.
5075 */
5076 bus_dma_tag_t
bus_get_dma_tag(device_t dev)5077 bus_get_dma_tag(device_t dev)
5078 {
5079 device_t parent;
5080
5081 parent = device_get_parent(dev);
5082 if (parent == NULL)
5083 return (NULL);
5084 return (BUS_GET_DMA_TAG(parent, dev));
5085 }
5086
5087 /**
5088 * @brief Wrapper function for BUS_GET_BUS_TAG().
5089 *
5090 * This function simply calls the BUS_GET_BUS_TAG() method of the
5091 * parent of @p dev.
5092 */
5093 bus_space_tag_t
bus_get_bus_tag(device_t dev)5094 bus_get_bus_tag(device_t dev)
5095 {
5096 device_t parent;
5097
5098 parent = device_get_parent(dev);
5099 if (parent == NULL)
5100 return ((bus_space_tag_t)0);
5101 return (BUS_GET_BUS_TAG(parent, dev));
5102 }
5103
5104 /**
5105 * @brief Wrapper function for BUS_GET_DOMAIN().
5106 *
5107 * This function simply calls the BUS_GET_DOMAIN() method of the
5108 * parent of @p dev.
5109 */
5110 int
bus_get_domain(device_t dev,int * domain)5111 bus_get_domain(device_t dev, int *domain)
5112 {
5113 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5114 }
5115
5116 /* Resume all devices and then notify userland that we're up again. */
5117 static int
root_resume(device_t dev)5118 root_resume(device_t dev)
5119 {
5120 int error;
5121
5122 error = bus_generic_resume(dev);
5123 if (error == 0) {
5124 devctl_notify("kernel", "power", "resume", NULL);
5125 }
5126 return (error);
5127 }
5128
5129 static int
root_print_child(device_t dev,device_t child)5130 root_print_child(device_t dev, device_t child)
5131 {
5132 int retval = 0;
5133
5134 retval += bus_print_child_header(dev, child);
5135 retval += printf("\n");
5136
5137 return (retval);
5138 }
5139
5140 static int
root_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)5141 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5142 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5143 {
5144 /*
5145 * If an interrupt mapping gets to here something bad has happened.
5146 */
5147 panic("root_setup_intr");
5148 }
5149
5150 /*
5151 * If we get here, assume that the device is permanent and really is
5152 * present in the system. Removable bus drivers are expected to intercept
5153 * this call long before it gets here. We return -1 so that drivers that
5154 * really care can check vs -1 or some ERRNO returned higher in the food
5155 * chain.
5156 */
5157 static int
root_child_present(device_t dev,device_t child)5158 root_child_present(device_t dev, device_t child)
5159 {
5160 return (-1);
5161 }
5162
5163 static int
root_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5164 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5165 cpuset_t *cpuset)
5166 {
5167 switch (op) {
5168 case INTR_CPUS:
5169 /* Default to returning the set of all CPUs. */
5170 if (setsize != sizeof(cpuset_t))
5171 return (EINVAL);
5172 *cpuset = all_cpus;
5173 return (0);
5174 default:
5175 return (EINVAL);
5176 }
5177 }
5178
5179 static kobj_method_t root_methods[] = {
5180 /* Device interface */
5181 KOBJMETHOD(device_shutdown, bus_generic_shutdown),
5182 KOBJMETHOD(device_suspend, bus_generic_suspend),
5183 KOBJMETHOD(device_resume, root_resume),
5184
5185 /* Bus interface */
5186 KOBJMETHOD(bus_print_child, root_print_child),
5187 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar),
5188 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar),
5189 KOBJMETHOD(bus_setup_intr, root_setup_intr),
5190 KOBJMETHOD(bus_child_present, root_child_present),
5191 KOBJMETHOD(bus_get_cpus, root_get_cpus),
5192
5193 KOBJMETHOD_END
5194 };
5195
5196 static driver_t root_driver = {
5197 "root",
5198 root_methods,
5199 1, /* no softc */
5200 };
5201
5202 device_t root_bus;
5203 devclass_t root_devclass;
5204
5205 static int
root_bus_module_handler(module_t mod,int what,void * arg)5206 root_bus_module_handler(module_t mod, int what, void* arg)
5207 {
5208 switch (what) {
5209 case MOD_LOAD:
5210 TAILQ_INIT(&bus_data_devices);
5211 kobj_class_compile((kobj_class_t) &root_driver);
5212 root_bus = make_device(NULL, "root", 0);
5213 root_bus->desc = "System root bus";
5214 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5215 root_bus->driver = &root_driver;
5216 root_bus->state = DS_ATTACHED;
5217 root_devclass = devclass_find_internal("root", NULL, FALSE);
5218 devctl2_init();
5219 return (0);
5220
5221 case MOD_SHUTDOWN:
5222 device_shutdown(root_bus);
5223 return (0);
5224 default:
5225 return (EOPNOTSUPP);
5226 }
5227
5228 return (0);
5229 }
5230
5231 static moduledata_t root_bus_mod = {
5232 "rootbus",
5233 root_bus_module_handler,
5234 NULL
5235 };
5236 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5237
5238 /**
5239 * @brief Automatically configure devices
5240 *
5241 * This function begins the autoconfiguration process by calling
5242 * device_probe_and_attach() for each child of the @c root0 device.
5243 */
5244 void
root_bus_configure(void)5245 root_bus_configure(void)
5246 {
5247 PDEBUG(("."));
5248
5249 /* Eventually this will be split up, but this is sufficient for now. */
5250 bus_set_pass(BUS_PASS_DEFAULT);
5251 }
5252
5253 /**
5254 * @brief Module handler for registering device drivers
5255 *
5256 * This module handler is used to automatically register device
5257 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5258 * devclass_add_driver() for the driver described by the
5259 * driver_module_data structure pointed to by @p arg
5260 */
5261 int
driver_module_handler(module_t mod,int what,void * arg)5262 driver_module_handler(module_t mod, int what, void *arg)
5263 {
5264 struct driver_module_data *dmd;
5265 devclass_t bus_devclass;
5266 kobj_class_t driver;
5267 int error, pass;
5268
5269 dmd = (struct driver_module_data *)arg;
5270 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5271 error = 0;
5272
5273 switch (what) {
5274 case MOD_LOAD:
5275 if (dmd->dmd_chainevh)
5276 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5277
5278 pass = dmd->dmd_pass;
5279 driver = dmd->dmd_driver;
5280 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5281 DRIVERNAME(driver), dmd->dmd_busname, pass));
5282 error = devclass_add_driver(bus_devclass, driver, pass,
5283 dmd->dmd_devclass);
5284 break;
5285
5286 case MOD_UNLOAD:
5287 PDEBUG(("Unloading module: driver %s from bus %s",
5288 DRIVERNAME(dmd->dmd_driver),
5289 dmd->dmd_busname));
5290 error = devclass_delete_driver(bus_devclass,
5291 dmd->dmd_driver);
5292
5293 if (!error && dmd->dmd_chainevh)
5294 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5295 break;
5296 case MOD_QUIESCE:
5297 PDEBUG(("Quiesce module: driver %s from bus %s",
5298 DRIVERNAME(dmd->dmd_driver),
5299 dmd->dmd_busname));
5300 error = devclass_quiesce_driver(bus_devclass,
5301 dmd->dmd_driver);
5302
5303 if (!error && dmd->dmd_chainevh)
5304 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5305 break;
5306 default:
5307 error = EOPNOTSUPP;
5308 break;
5309 }
5310
5311 return (error);
5312 }
5313
5314 /**
5315 * @brief Enumerate all hinted devices for this bus.
5316 *
5317 * Walks through the hints for this bus and calls the bus_hinted_child
5318 * routine for each one it fines. It searches first for the specific
5319 * bus that's being probed for hinted children (eg isa0), and then for
5320 * generic children (eg isa).
5321 *
5322 * @param dev bus device to enumerate
5323 */
5324 void
bus_enumerate_hinted_children(device_t bus)5325 bus_enumerate_hinted_children(device_t bus)
5326 {
5327 int i;
5328 const char *dname, *busname;
5329 int dunit;
5330
5331 /*
5332 * enumerate all devices on the specific bus
5333 */
5334 busname = device_get_nameunit(bus);
5335 i = 0;
5336 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5337 BUS_HINTED_CHILD(bus, dname, dunit);
5338
5339 /*
5340 * and all the generic ones.
5341 */
5342 busname = device_get_name(bus);
5343 i = 0;
5344 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5345 BUS_HINTED_CHILD(bus, dname, dunit);
5346 }
5347
5348 #ifdef BUS_DEBUG
5349
5350 /* the _short versions avoid iteration by not calling anything that prints
5351 * more than oneliners. I love oneliners.
5352 */
5353
5354 static void
print_device_short(device_t dev,int indent)5355 print_device_short(device_t dev, int indent)
5356 {
5357 if (!dev)
5358 return;
5359
5360 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5361 dev->unit, dev->desc,
5362 (dev->parent? "":"no "),
5363 (TAILQ_EMPTY(&dev->children)? "no ":""),
5364 (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5365 (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5366 (dev->flags&DF_WILDCARD? "wildcard,":""),
5367 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5368 (dev->flags&DF_SUSPENDED? "suspended,":""),
5369 (dev->ivars? "":"no "),
5370 (dev->softc? "":"no "),
5371 dev->busy));
5372 }
5373
5374 static void
print_device(device_t dev,int indent)5375 print_device(device_t dev, int indent)
5376 {
5377 if (!dev)
5378 return;
5379
5380 print_device_short(dev, indent);
5381
5382 indentprintf(("Parent:\n"));
5383 print_device_short(dev->parent, indent+1);
5384 indentprintf(("Driver:\n"));
5385 print_driver_short(dev->driver, indent+1);
5386 indentprintf(("Devclass:\n"));
5387 print_devclass_short(dev->devclass, indent+1);
5388 }
5389
5390 void
print_device_tree_short(device_t dev,int indent)5391 print_device_tree_short(device_t dev, int indent)
5392 /* print the device and all its children (indented) */
5393 {
5394 device_t child;
5395
5396 if (!dev)
5397 return;
5398
5399 print_device_short(dev, indent);
5400
5401 TAILQ_FOREACH(child, &dev->children, link) {
5402 print_device_tree_short(child, indent+1);
5403 }
5404 }
5405
5406 void
print_device_tree(device_t dev,int indent)5407 print_device_tree(device_t dev, int indent)
5408 /* print the device and all its children (indented) */
5409 {
5410 device_t child;
5411
5412 if (!dev)
5413 return;
5414
5415 print_device(dev, indent);
5416
5417 TAILQ_FOREACH(child, &dev->children, link) {
5418 print_device_tree(child, indent+1);
5419 }
5420 }
5421
5422 static void
print_driver_short(driver_t * driver,int indent)5423 print_driver_short(driver_t *driver, int indent)
5424 {
5425 if (!driver)
5426 return;
5427
5428 indentprintf(("driver %s: softc size = %zd\n",
5429 driver->name, driver->size));
5430 }
5431
5432 static void
print_driver(driver_t * driver,int indent)5433 print_driver(driver_t *driver, int indent)
5434 {
5435 if (!driver)
5436 return;
5437
5438 print_driver_short(driver, indent);
5439 }
5440
5441 static void
print_driver_list(driver_list_t drivers,int indent)5442 print_driver_list(driver_list_t drivers, int indent)
5443 {
5444 driverlink_t driver;
5445
5446 TAILQ_FOREACH(driver, &drivers, link) {
5447 print_driver(driver->driver, indent);
5448 }
5449 }
5450
5451 static void
print_devclass_short(devclass_t dc,int indent)5452 print_devclass_short(devclass_t dc, int indent)
5453 {
5454 if ( !dc )
5455 return;
5456
5457 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5458 }
5459
5460 static void
print_devclass(devclass_t dc,int indent)5461 print_devclass(devclass_t dc, int indent)
5462 {
5463 int i;
5464
5465 if ( !dc )
5466 return;
5467
5468 print_devclass_short(dc, indent);
5469 indentprintf(("Drivers:\n"));
5470 print_driver_list(dc->drivers, indent+1);
5471
5472 indentprintf(("Devices:\n"));
5473 for (i = 0; i < dc->maxunit; i++)
5474 if (dc->devices[i])
5475 print_device(dc->devices[i], indent+1);
5476 }
5477
5478 void
print_devclass_list_short(void)5479 print_devclass_list_short(void)
5480 {
5481 devclass_t dc;
5482
5483 printf("Short listing of devclasses, drivers & devices:\n");
5484 TAILQ_FOREACH(dc, &devclasses, link) {
5485 print_devclass_short(dc, 0);
5486 }
5487 }
5488
5489 void
print_devclass_list(void)5490 print_devclass_list(void)
5491 {
5492 devclass_t dc;
5493
5494 printf("Full listing of devclasses, drivers & devices:\n");
5495 TAILQ_FOREACH(dc, &devclasses, link) {
5496 print_devclass(dc, 0);
5497 }
5498 }
5499
5500 #endif
5501
5502 /*
5503 * User-space access to the device tree.
5504 *
5505 * We implement a small set of nodes:
5506 *
5507 * hw.bus Single integer read method to obtain the
5508 * current generation count.
5509 * hw.bus.devices Reads the entire device tree in flat space.
5510 * hw.bus.rman Resource manager interface
5511 *
5512 * We might like to add the ability to scan devclasses and/or drivers to
5513 * determine what else is currently loaded/available.
5514 */
5515
5516 static int
sysctl_bus_info(SYSCTL_HANDLER_ARGS)5517 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5518 {
5519 struct u_businfo ubus;
5520
5521 ubus.ub_version = BUS_USER_VERSION;
5522 ubus.ub_generation = bus_data_generation;
5523
5524 return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5525 }
5526 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5527 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5528 "bus-related data");
5529
5530 static int
sysctl_devices(SYSCTL_HANDLER_ARGS)5531 sysctl_devices(SYSCTL_HANDLER_ARGS)
5532 {
5533 struct sbuf sb;
5534 int *name = (int *)arg1;
5535 u_int namelen = arg2;
5536 int index;
5537 device_t dev;
5538 struct u_device *udev;
5539 int error;
5540
5541 if (namelen != 2)
5542 return (EINVAL);
5543
5544 if (bus_data_generation_check(name[0]))
5545 return (EINVAL);
5546
5547 index = name[1];
5548
5549 /*
5550 * Scan the list of devices, looking for the requested index.
5551 */
5552 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5553 if (index-- == 0)
5554 break;
5555 }
5556 if (dev == NULL)
5557 return (ENOENT);
5558
5559 /*
5560 * Populate the return item, careful not to overflow the buffer.
5561 */
5562 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5563 udev->dv_handle = (uintptr_t)dev;
5564 udev->dv_parent = (uintptr_t)dev->parent;
5565 udev->dv_devflags = dev->devflags;
5566 udev->dv_flags = dev->flags;
5567 udev->dv_state = dev->state;
5568 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5569 if (dev->nameunit != NULL)
5570 sbuf_cat(&sb, dev->nameunit);
5571 sbuf_putc(&sb, '\0');
5572 if (dev->desc != NULL)
5573 sbuf_cat(&sb, dev->desc);
5574 sbuf_putc(&sb, '\0');
5575 if (dev->driver != NULL)
5576 sbuf_cat(&sb, dev->driver->name);
5577 sbuf_putc(&sb, '\0');
5578 bus_child_pnpinfo(dev, &sb);
5579 sbuf_putc(&sb, '\0');
5580 bus_child_location(dev, &sb);
5581 sbuf_putc(&sb, '\0');
5582 error = sbuf_finish(&sb);
5583 if (error == 0)
5584 error = SYSCTL_OUT(req, udev, sizeof(*udev));
5585 sbuf_delete(&sb);
5586 free(udev, M_BUS);
5587 return (error);
5588 }
5589
5590 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5591 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5592 "system device tree");
5593
5594 int
bus_data_generation_check(int generation)5595 bus_data_generation_check(int generation)
5596 {
5597 if (generation != bus_data_generation)
5598 return (1);
5599
5600 /* XXX generate optimised lists here? */
5601 return (0);
5602 }
5603
5604 void
bus_data_generation_update(void)5605 bus_data_generation_update(void)
5606 {
5607 atomic_add_int(&bus_data_generation, 1);
5608 }
5609
5610 int
bus_free_resource(device_t dev,int type,struct resource * r)5611 bus_free_resource(device_t dev, int type, struct resource *r)
5612 {
5613 if (r == NULL)
5614 return (0);
5615 return (bus_release_resource(dev, type, rman_get_rid(r), r));
5616 }
5617
5618 device_t
device_lookup_by_name(const char * name)5619 device_lookup_by_name(const char *name)
5620 {
5621 device_t dev;
5622
5623 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5624 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5625 return (dev);
5626 }
5627 return (NULL);
5628 }
5629
5630 /*
5631 * /dev/devctl2 implementation. The existing /dev/devctl device has
5632 * implicit semantics on open, so it could not be reused for this.
5633 * Another option would be to call this /dev/bus?
5634 */
5635 static int
find_device(struct devreq * req,device_t * devp)5636 find_device(struct devreq *req, device_t *devp)
5637 {
5638 device_t dev;
5639
5640 /*
5641 * First, ensure that the name is nul terminated.
5642 */
5643 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5644 return (EINVAL);
5645
5646 /*
5647 * Second, try to find an attached device whose name matches
5648 * 'name'.
5649 */
5650 dev = device_lookup_by_name(req->dr_name);
5651 if (dev != NULL) {
5652 *devp = dev;
5653 return (0);
5654 }
5655
5656 /* Finally, give device enumerators a chance. */
5657 dev = NULL;
5658 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5659 if (dev == NULL)
5660 return (ENOENT);
5661 *devp = dev;
5662 return (0);
5663 }
5664
5665 static bool
driver_exists(device_t bus,const char * driver)5666 driver_exists(device_t bus, const char *driver)
5667 {
5668 devclass_t dc;
5669
5670 for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5671 if (devclass_find_driver_internal(dc, driver) != NULL)
5672 return (true);
5673 }
5674 return (false);
5675 }
5676
5677 static void
device_gen_nomatch(device_t dev)5678 device_gen_nomatch(device_t dev)
5679 {
5680 device_t child;
5681
5682 if (dev->flags & DF_NEEDNOMATCH &&
5683 dev->state == DS_NOTPRESENT) {
5684 device_handle_nomatch(dev);
5685 }
5686 dev->flags &= ~DF_NEEDNOMATCH;
5687 TAILQ_FOREACH(child, &dev->children, link) {
5688 device_gen_nomatch(child);
5689 }
5690 }
5691
5692 static void
device_do_deferred_actions(void)5693 device_do_deferred_actions(void)
5694 {
5695 devclass_t dc;
5696 driverlink_t dl;
5697
5698 /*
5699 * Walk through the devclasses to find all the drivers we've tagged as
5700 * deferred during the freeze and call the driver added routines. They
5701 * have already been added to the lists in the background, so the driver
5702 * added routines that trigger a probe will have all the right bidders
5703 * for the probe auction.
5704 */
5705 TAILQ_FOREACH(dc, &devclasses, link) {
5706 TAILQ_FOREACH(dl, &dc->drivers, link) {
5707 if (dl->flags & DL_DEFERRED_PROBE) {
5708 devclass_driver_added(dc, dl->driver);
5709 dl->flags &= ~DL_DEFERRED_PROBE;
5710 }
5711 }
5712 }
5713
5714 /*
5715 * We also defer no-match events during a freeze. Walk the tree and
5716 * generate all the pent-up events that are still relevant.
5717 */
5718 device_gen_nomatch(root_bus);
5719 bus_data_generation_update();
5720 }
5721
5722 static int
device_get_path(device_t dev,const char * locator,struct sbuf * sb)5723 device_get_path(device_t dev, const char *locator, struct sbuf *sb)
5724 {
5725 device_t parent;
5726 int error;
5727
5728 KASSERT(sb != NULL, ("sb is NULL"));
5729 parent = device_get_parent(dev);
5730 if (parent == NULL) {
5731 error = sbuf_putc(sb, '/');
5732 } else {
5733 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb);
5734 if (error == 0) {
5735 error = sbuf_error(sb);
5736 if (error == 0 && sbuf_len(sb) <= 1)
5737 error = EIO;
5738 }
5739 }
5740 sbuf_finish(sb);
5741 return (error);
5742 }
5743
5744 static int
devctl2_ioctl(struct cdev * cdev,u_long cmd,caddr_t data,int fflag,struct thread * td)5745 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5746 struct thread *td)
5747 {
5748 struct devreq *req;
5749 device_t dev;
5750 int error, old;
5751
5752 /* Locate the device to control. */
5753 bus_topo_lock();
5754 req = (struct devreq *)data;
5755 switch (cmd) {
5756 case DEV_ATTACH:
5757 case DEV_DETACH:
5758 case DEV_ENABLE:
5759 case DEV_DISABLE:
5760 case DEV_SUSPEND:
5761 case DEV_RESUME:
5762 case DEV_SET_DRIVER:
5763 case DEV_CLEAR_DRIVER:
5764 case DEV_RESCAN:
5765 case DEV_DELETE:
5766 case DEV_RESET:
5767 error = priv_check(td, PRIV_DRIVER);
5768 if (error == 0)
5769 error = find_device(req, &dev);
5770 break;
5771 case DEV_FREEZE:
5772 case DEV_THAW:
5773 error = priv_check(td, PRIV_DRIVER);
5774 break;
5775 case DEV_GET_PATH:
5776 error = find_device(req, &dev);
5777 break;
5778 default:
5779 error = ENOTTY;
5780 break;
5781 }
5782 if (error) {
5783 bus_topo_unlock();
5784 return (error);
5785 }
5786
5787 /* Perform the requested operation. */
5788 switch (cmd) {
5789 case DEV_ATTACH:
5790 if (device_is_attached(dev))
5791 error = EBUSY;
5792 else if (!device_is_enabled(dev))
5793 error = ENXIO;
5794 else
5795 error = device_probe_and_attach(dev);
5796 break;
5797 case DEV_DETACH:
5798 if (!device_is_attached(dev)) {
5799 error = ENXIO;
5800 break;
5801 }
5802 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5803 error = device_quiesce(dev);
5804 if (error)
5805 break;
5806 }
5807 error = device_detach(dev);
5808 break;
5809 case DEV_ENABLE:
5810 if (device_is_enabled(dev)) {
5811 error = EBUSY;
5812 break;
5813 }
5814
5815 /*
5816 * If the device has been probed but not attached (e.g.
5817 * when it has been disabled by a loader hint), just
5818 * attach the device rather than doing a full probe.
5819 */
5820 device_enable(dev);
5821 if (dev->devclass != NULL) {
5822 /*
5823 * If the device was disabled via a hint, clear
5824 * the hint.
5825 */
5826 if (resource_disabled(dev->devclass->name, dev->unit))
5827 resource_unset_value(dev->devclass->name,
5828 dev->unit, "disabled");
5829
5830 /* Allow any drivers to rebid. */
5831 if (!(dev->flags & DF_FIXEDCLASS))
5832 devclass_delete_device(dev->devclass, dev);
5833 }
5834 error = device_probe_and_attach(dev);
5835 break;
5836 case DEV_DISABLE:
5837 if (!device_is_enabled(dev)) {
5838 error = ENXIO;
5839 break;
5840 }
5841
5842 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5843 error = device_quiesce(dev);
5844 if (error)
5845 break;
5846 }
5847
5848 /*
5849 * Force DF_FIXEDCLASS on around detach to preserve
5850 * the existing name.
5851 */
5852 old = dev->flags;
5853 dev->flags |= DF_FIXEDCLASS;
5854 error = device_detach(dev);
5855 if (!(old & DF_FIXEDCLASS))
5856 dev->flags &= ~DF_FIXEDCLASS;
5857 if (error == 0)
5858 device_disable(dev);
5859 break;
5860 case DEV_SUSPEND:
5861 if (device_is_suspended(dev)) {
5862 error = EBUSY;
5863 break;
5864 }
5865 if (device_get_parent(dev) == NULL) {
5866 error = EINVAL;
5867 break;
5868 }
5869 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5870 break;
5871 case DEV_RESUME:
5872 if (!device_is_suspended(dev)) {
5873 error = EINVAL;
5874 break;
5875 }
5876 if (device_get_parent(dev) == NULL) {
5877 error = EINVAL;
5878 break;
5879 }
5880 error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5881 break;
5882 case DEV_SET_DRIVER: {
5883 devclass_t dc;
5884 char driver[128];
5885
5886 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5887 if (error)
5888 break;
5889 if (driver[0] == '\0') {
5890 error = EINVAL;
5891 break;
5892 }
5893 if (dev->devclass != NULL &&
5894 strcmp(driver, dev->devclass->name) == 0)
5895 /* XXX: Could possibly force DF_FIXEDCLASS on? */
5896 break;
5897
5898 /*
5899 * Scan drivers for this device's bus looking for at
5900 * least one matching driver.
5901 */
5902 if (dev->parent == NULL) {
5903 error = EINVAL;
5904 break;
5905 }
5906 if (!driver_exists(dev->parent, driver)) {
5907 error = ENOENT;
5908 break;
5909 }
5910 dc = devclass_create(driver);
5911 if (dc == NULL) {
5912 error = ENOMEM;
5913 break;
5914 }
5915
5916 /* Detach device if necessary. */
5917 if (device_is_attached(dev)) {
5918 if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5919 error = device_detach(dev);
5920 else
5921 error = EBUSY;
5922 if (error)
5923 break;
5924 }
5925
5926 /* Clear any previously-fixed device class and unit. */
5927 if (dev->flags & DF_FIXEDCLASS)
5928 devclass_delete_device(dev->devclass, dev);
5929 dev->flags |= DF_WILDCARD;
5930 dev->unit = DEVICE_UNIT_ANY;
5931
5932 /* Force the new device class. */
5933 error = devclass_add_device(dc, dev);
5934 if (error)
5935 break;
5936 dev->flags |= DF_FIXEDCLASS;
5937 error = device_probe_and_attach(dev);
5938 break;
5939 }
5940 case DEV_CLEAR_DRIVER:
5941 if (!(dev->flags & DF_FIXEDCLASS)) {
5942 error = 0;
5943 break;
5944 }
5945 if (device_is_attached(dev)) {
5946 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5947 error = device_detach(dev);
5948 else
5949 error = EBUSY;
5950 if (error)
5951 break;
5952 }
5953
5954 dev->flags &= ~DF_FIXEDCLASS;
5955 dev->flags |= DF_WILDCARD;
5956 devclass_delete_device(dev->devclass, dev);
5957 error = device_probe_and_attach(dev);
5958 break;
5959 case DEV_RESCAN:
5960 if (!device_is_attached(dev)) {
5961 error = ENXIO;
5962 break;
5963 }
5964 error = BUS_RESCAN(dev);
5965 break;
5966 case DEV_DELETE: {
5967 device_t parent;
5968
5969 parent = device_get_parent(dev);
5970 if (parent == NULL) {
5971 error = EINVAL;
5972 break;
5973 }
5974 if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5975 if (bus_child_present(dev) != 0) {
5976 error = EBUSY;
5977 break;
5978 }
5979 }
5980
5981 error = device_delete_child(parent, dev);
5982 break;
5983 }
5984 case DEV_FREEZE:
5985 if (device_frozen)
5986 error = EBUSY;
5987 else
5988 device_frozen = true;
5989 break;
5990 case DEV_THAW:
5991 if (!device_frozen)
5992 error = EBUSY;
5993 else {
5994 device_do_deferred_actions();
5995 device_frozen = false;
5996 }
5997 break;
5998 case DEV_RESET:
5999 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
6000 error = EINVAL;
6001 break;
6002 }
6003 if (device_get_parent(dev) == NULL) {
6004 error = EINVAL;
6005 break;
6006 }
6007 error = BUS_RESET_CHILD(device_get_parent(dev), dev,
6008 req->dr_flags);
6009 break;
6010 case DEV_GET_PATH: {
6011 struct sbuf *sb;
6012 char locator[64];
6013 ssize_t len;
6014
6015 error = copyinstr(req->dr_buffer.buffer, locator,
6016 sizeof(locator), NULL);
6017 if (error != 0)
6018 break;
6019 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6020 SBUF_INCLUDENUL /* | SBUF_WAITOK */);
6021 error = device_get_path(dev, locator, sb);
6022 if (error == 0) {
6023 len = sbuf_len(sb);
6024 if (req->dr_buffer.length < len) {
6025 error = ENAMETOOLONG;
6026 } else {
6027 error = copyout(sbuf_data(sb),
6028 req->dr_buffer.buffer, len);
6029 }
6030 req->dr_buffer.length = len;
6031 }
6032 sbuf_delete(sb);
6033 break;
6034 }
6035 }
6036 bus_topo_unlock();
6037 return (error);
6038 }
6039
6040 static struct cdevsw devctl2_cdevsw = {
6041 .d_version = D_VERSION,
6042 .d_ioctl = devctl2_ioctl,
6043 .d_name = "devctl2",
6044 };
6045
6046 static void
devctl2_init(void)6047 devctl2_init(void)
6048 {
6049 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
6050 UID_ROOT, GID_WHEEL, 0644, "devctl2");
6051 }
6052
6053 /*
6054 * For maintaining device 'at' location info to avoid recomputing it
6055 */
6056 struct device_location_node {
6057 const char *dln_locator;
6058 const char *dln_path;
6059 TAILQ_ENTRY(device_location_node) dln_link;
6060 };
6061 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
6062
6063 struct device_location_cache {
6064 device_location_list_t dlc_list;
6065 };
6066
6067
6068 /*
6069 * Location cache for wired devices.
6070 */
6071 device_location_cache_t *
dev_wired_cache_init(void)6072 dev_wired_cache_init(void)
6073 {
6074 device_location_cache_t *dcp;
6075
6076 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
6077 TAILQ_INIT(&dcp->dlc_list);
6078
6079 return (dcp);
6080 }
6081
6082 void
dev_wired_cache_fini(device_location_cache_t * dcp)6083 dev_wired_cache_fini(device_location_cache_t *dcp)
6084 {
6085 struct device_location_node *dln, *tdln;
6086
6087 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
6088 free(dln, M_BUS);
6089 }
6090 free(dcp, M_BUS);
6091 }
6092
6093 static struct device_location_node *
dev_wired_cache_lookup(device_location_cache_t * dcp,const char * locator)6094 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
6095 {
6096 struct device_location_node *dln;
6097
6098 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
6099 if (strcmp(locator, dln->dln_locator) == 0)
6100 return (dln);
6101 }
6102
6103 return (NULL);
6104 }
6105
6106 static struct device_location_node *
dev_wired_cache_add(device_location_cache_t * dcp,const char * locator,const char * path)6107 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
6108 {
6109 struct device_location_node *dln;
6110 size_t loclen, pathlen;
6111
6112 loclen = strlen(locator) + 1;
6113 pathlen = strlen(path) + 1;
6114 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO);
6115 dln->dln_locator = (char *)(dln + 1);
6116 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen);
6117 dln->dln_path = dln->dln_locator + loclen;
6118 memcpy(__DECONST(char *, dln->dln_path), path, pathlen);
6119 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
6120
6121 return (dln);
6122 }
6123
6124 bool
dev_wired_cache_match(device_location_cache_t * dcp,device_t dev,const char * at)6125 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev,
6126 const char *at)
6127 {
6128 struct sbuf *sb;
6129 const char *cp;
6130 char locator[32];
6131 int error, len;
6132 struct device_location_node *res;
6133
6134 cp = strchr(at, ':');
6135 if (cp == NULL)
6136 return (false);
6137 len = cp - at;
6138 if (len > sizeof(locator) - 1) /* Skip too long locator */
6139 return (false);
6140 memcpy(locator, at, len);
6141 locator[len] = '\0';
6142 cp++;
6143
6144 error = 0;
6145 /* maybe cache this inside device_t and look that up, but not yet */
6146 res = dev_wired_cache_lookup(dcp, locator);
6147 if (res == NULL) {
6148 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6149 SBUF_INCLUDENUL | SBUF_NOWAIT);
6150 if (sb != NULL) {
6151 error = device_get_path(dev, locator, sb);
6152 if (error == 0) {
6153 res = dev_wired_cache_add(dcp, locator,
6154 sbuf_data(sb));
6155 }
6156 sbuf_delete(sb);
6157 }
6158 }
6159 if (error != 0 || res == NULL || res->dln_path == NULL)
6160 return (false);
6161
6162 return (strcmp(res->dln_path, cp) == 0);
6163 }
6164
6165 static struct device_prop_elm *
device_prop_find(device_t dev,const char * name)6166 device_prop_find(device_t dev, const char *name)
6167 {
6168 struct device_prop_elm *e;
6169
6170 bus_topo_assert();
6171
6172 LIST_FOREACH(e, &dev->props, link) {
6173 if (strcmp(name, e->name) == 0)
6174 return (e);
6175 }
6176 return (NULL);
6177 }
6178
6179 int
device_set_prop(device_t dev,const char * name,void * val,device_prop_dtr_t dtr,void * dtr_ctx)6180 device_set_prop(device_t dev, const char *name, void *val,
6181 device_prop_dtr_t dtr, void *dtr_ctx)
6182 {
6183 struct device_prop_elm *e, *e1;
6184
6185 bus_topo_assert();
6186
6187 e = device_prop_find(dev, name);
6188 if (e != NULL)
6189 goto found;
6190
6191 e1 = malloc(sizeof(*e), M_BUS, M_WAITOK);
6192 e = device_prop_find(dev, name);
6193 if (e != NULL) {
6194 free(e1, M_BUS);
6195 goto found;
6196 }
6197
6198 e1->name = name;
6199 e1->val = val;
6200 e1->dtr = dtr;
6201 e1->dtr_ctx = dtr_ctx;
6202 LIST_INSERT_HEAD(&dev->props, e1, link);
6203 return (0);
6204
6205 found:
6206 LIST_REMOVE(e, link);
6207 if (e->dtr != NULL)
6208 e->dtr(dev, name, e->val, e->dtr_ctx);
6209 e->val = val;
6210 e->dtr = dtr;
6211 e->dtr_ctx = dtr_ctx;
6212 LIST_INSERT_HEAD(&dev->props, e, link);
6213 return (EEXIST);
6214 }
6215
6216 int
device_get_prop(device_t dev,const char * name,void ** valp)6217 device_get_prop(device_t dev, const char *name, void **valp)
6218 {
6219 struct device_prop_elm *e;
6220
6221 bus_topo_assert();
6222
6223 e = device_prop_find(dev, name);
6224 if (e == NULL)
6225 return (ENOENT);
6226 *valp = e->val;
6227 return (0);
6228 }
6229
6230 int
device_clear_prop(device_t dev,const char * name)6231 device_clear_prop(device_t dev, const char *name)
6232 {
6233 struct device_prop_elm *e;
6234
6235 bus_topo_assert();
6236
6237 e = device_prop_find(dev, name);
6238 if (e == NULL)
6239 return (ENOENT);
6240 LIST_REMOVE(e, link);
6241 if (e->dtr != NULL)
6242 e->dtr(dev, e->name, e->val, e->dtr_ctx);
6243 free(e, M_BUS);
6244 return (0);
6245 }
6246
6247 static void
device_destroy_props(device_t dev)6248 device_destroy_props(device_t dev)
6249 {
6250 struct device_prop_elm *e;
6251
6252 bus_topo_assert();
6253
6254 while ((e = LIST_FIRST(&dev->props)) != NULL) {
6255 LIST_REMOVE_HEAD(&dev->props, link);
6256 if (e->dtr != NULL)
6257 e->dtr(dev, e->name, e->val, e->dtr_ctx);
6258 free(e, M_BUS);
6259 }
6260 }
6261
6262 void
device_clear_prop_alldev(const char * name)6263 device_clear_prop_alldev(const char *name)
6264 {
6265 device_t dev;
6266
6267 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6268 device_clear_prop(dev, name);
6269 }
6270 }
6271
6272 /*
6273 * APIs to manage deprecation and obsolescence.
6274 */
6275 static int obsolete_panic = 0;
6276 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
6277 "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
6278 "2 = if deprecated)");
6279
6280 static void
gone_panic(int major,int running,const char * msg)6281 gone_panic(int major, int running, const char *msg)
6282 {
6283 switch (obsolete_panic)
6284 {
6285 case 0:
6286 return;
6287 case 1:
6288 if (running < major)
6289 return;
6290 /* FALLTHROUGH */
6291 default:
6292 panic("%s", msg);
6293 }
6294 }
6295
6296 void
_gone_in(int major,const char * msg)6297 _gone_in(int major, const char *msg)
6298 {
6299 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6300 if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6301 printf("Obsolete code will be removed soon: %s\n", msg);
6302 else
6303 printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
6304 major, msg);
6305 }
6306
6307 void
_gone_in_dev(device_t dev,int major,const char * msg)6308 _gone_in_dev(device_t dev, int major, const char *msg)
6309 {
6310 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6311 if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6312 device_printf(dev,
6313 "Obsolete code will be removed soon: %s\n", msg);
6314 else
6315 device_printf(dev,
6316 "Deprecated code (to be removed in FreeBSD %d): %s\n",
6317 major, msg);
6318 }
6319
6320 #ifdef DDB
DB_SHOW_COMMAND(device,db_show_device)6321 DB_SHOW_COMMAND(device, db_show_device)
6322 {
6323 device_t dev;
6324
6325 if (!have_addr)
6326 return;
6327
6328 dev = (device_t)addr;
6329
6330 db_printf("name: %s\n", device_get_nameunit(dev));
6331 db_printf(" driver: %s\n", DRIVERNAME(dev->driver));
6332 db_printf(" class: %s\n", DEVCLANAME(dev->devclass));
6333 db_printf(" addr: %p\n", dev);
6334 db_printf(" parent: %p\n", dev->parent);
6335 db_printf(" softc: %p\n", dev->softc);
6336 db_printf(" ivars: %p\n", dev->ivars);
6337 }
6338
DB_SHOW_ALL_COMMAND(devices,db_show_all_devices)6339 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6340 {
6341 device_t dev;
6342
6343 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6344 db_show_device((db_expr_t)dev, true, count, modif);
6345 }
6346 }
6347 #endif
6348