xref: /freebsd/sys/dev/fxp/if_fxp.c (revision aa3860851b9f6a6002d135b1cac7736e0995eedc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1995, David Greenman
5  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/module.h>
50 #include <sys/mutex.h>
51 #include <sys/rman.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_arp.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/tcp.h>
70 #include <netinet/udp.h>
71 
72 #include <machine/bus.h>
73 #include <machine/in_cksum.h>
74 #include <machine/resource.h>
75 
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 
82 #include <dev/fxp/if_fxpreg.h>
83 #include <dev/fxp/if_fxpvar.h>
84 #include <dev/fxp/rcvbundl.h>
85 
86 MODULE_DEPEND(fxp, pci, 1, 1, 1);
87 MODULE_DEPEND(fxp, ether, 1, 1, 1);
88 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
89 #include "miibus_if.h"
90 
91 /*
92  * NOTE!  On !x86 we typically have an alignment constraint.  The
93  * card DMAs the packet immediately following the RFA.  However,
94  * the first thing in the packet is a 14-byte Ethernet header.
95  * This means that the packet is misaligned.  To compensate,
96  * we actually offset the RFA 2 bytes into the cluster.  This
97  * alignes the packet after the Ethernet header at a 32-bit
98  * boundary.  HOWEVER!  This means that the RFA is misaligned!
99  */
100 #define	RFA_ALIGNMENT_FUDGE	2
101 
102 /*
103  * Set initial transmit threshold at 64 (512 bytes). This is
104  * increased by 64 (512 bytes) at a time, to maximum of 192
105  * (1536 bytes), if an underrun occurs.
106  */
107 static int tx_threshold = 64;
108 
109 /*
110  * The configuration byte map has several undefined fields which
111  * must be one or must be zero.  Set up a template for these bits.
112  * The actual configuration is performed in fxp_init_body.
113  *
114  * See struct fxp_cb_config for the bit definitions.
115  */
116 static const u_char fxp_cb_config_template[] = {
117 	0x0, 0x0,		/* cb_status */
118 	0x0, 0x0,		/* cb_command */
119 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
120 	0x0,	/*  0 */
121 	0x0,	/*  1 */
122 	0x0,	/*  2 */
123 	0x0,	/*  3 */
124 	0x0,	/*  4 */
125 	0x0,	/*  5 */
126 	0x32,	/*  6 */
127 	0x0,	/*  7 */
128 	0x0,	/*  8 */
129 	0x0,	/*  9 */
130 	0x6,	/* 10 */
131 	0x0,	/* 11 */
132 	0x0,	/* 12 */
133 	0x0,	/* 13 */
134 	0xf2,	/* 14 */
135 	0x48,	/* 15 */
136 	0x0,	/* 16 */
137 	0x40,	/* 17 */
138 	0xf0,	/* 18 */
139 	0x0,	/* 19 */
140 	0x3f,	/* 20 */
141 	0x5,	/* 21 */
142 	0x0,	/* 22 */
143 	0x0,	/* 23 */
144 	0x0,	/* 24 */
145 	0x0,	/* 25 */
146 	0x0,	/* 26 */
147 	0x0,	/* 27 */
148 	0x0,	/* 28 */
149 	0x0,	/* 29 */
150 	0x0,	/* 30 */
151 	0x0	/* 31 */
152 };
153 
154 /*
155  * Claim various Intel PCI device identifiers for this driver.  The
156  * sub-vendor and sub-device field are extensively used to identify
157  * particular variants, but we don't currently differentiate between
158  * them.
159  */
160 static const struct fxp_ident fxp_ident_table[] = {
161     { 0x8086, 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
162     { 0x8086, 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
163     { 0x8086, 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
164     { 0x8086, 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
165     { 0x8086, 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
166     { 0x8086, 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
167     { 0x8086, 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168     { 0x8086, 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
169     { 0x8086, 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170     { 0x8086, 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
171     { 0x8086, 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
172     { 0x8086, 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173     { 0x8086, 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
174     { 0x8086, 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175     { 0x8086, 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
176     { 0x8086, 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
177     { 0x8086, 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
178     { 0x8086, 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
179     { 0x8086, 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
180     { 0x8086, 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
181     { 0x8086, 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
182     { 0x8086, 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
183     { 0x8086, 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
184     { 0x8086, 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
185     { 0x8086, 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
186     { 0x8086, 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
187     { 0x8086, 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
188     { 0x8086, 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
189     { 0x8086, 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
190     { 0x8086, 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
191     { 0x8086, 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
192     { 0x8086, 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
193     { 0x8086, 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
194     { 0x8086, 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
195     { 0x8086, 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
196     { 0x8086, 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
197     { 0x8086, 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
198     { 0x8086, 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
199     { 0x8086, 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
200     { 0x8086, 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
201     { 0x8086, 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
202     { 0x8086, 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
203     { 0x8086, 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
204     { 0x8086, 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
205     { 0x8086, 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
206     { 0,      0,	-1,	0, NULL },
207 };
208 
209 #ifdef FXP_IP_CSUM_WAR
210 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
211 #else
212 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
213 #endif
214 
215 static int		fxp_probe(device_t dev);
216 static int		fxp_attach(device_t dev);
217 static int		fxp_detach(device_t dev);
218 static int		fxp_shutdown(device_t dev);
219 static int		fxp_suspend(device_t dev);
220 static int		fxp_resume(device_t dev);
221 
222 static const struct fxp_ident *fxp_find_ident(device_t dev);
223 static void		fxp_intr(void *xsc);
224 static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
225 			    struct mbuf *m, uint16_t status, int pos);
226 static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
227 			    uint8_t statack, int count);
228 static void 		fxp_init(void *xsc);
229 static void 		fxp_init_body(struct fxp_softc *sc, int);
230 static void 		fxp_tick(void *xsc);
231 static void 		fxp_start(if_t ifp);
232 static void 		fxp_start_body(if_t ifp);
233 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
234 static void		fxp_txeof(struct fxp_softc *sc);
235 static void		fxp_stop(struct fxp_softc *sc);
236 static void 		fxp_release(struct fxp_softc *sc);
237 static int		fxp_ioctl(if_t ifp, u_long command,
238 			    caddr_t data);
239 static void 		fxp_watchdog(struct fxp_softc *sc);
240 static void		fxp_add_rfabuf(struct fxp_softc *sc,
241 			    struct fxp_rx *rxp);
242 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
243 			    struct fxp_rx *rxp);
244 static int		fxp_new_rfabuf(struct fxp_softc *sc,
245 			    struct fxp_rx *rxp);
246 static void		fxp_mc_addrs(struct fxp_softc *sc);
247 static void		fxp_mc_setup(struct fxp_softc *sc);
248 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
249 			    int autosize);
250 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
251 			    uint16_t data);
252 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
253 static void		fxp_load_eeprom(struct fxp_softc *sc);
254 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
255 			    int offset, int words);
256 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
257 			    int offset, int words);
258 static int		fxp_ifmedia_upd(if_t ifp);
259 static void		fxp_ifmedia_sts(if_t ifp,
260 			    struct ifmediareq *ifmr);
261 static int		fxp_serial_ifmedia_upd(if_t ifp);
262 static void		fxp_serial_ifmedia_sts(if_t ifp,
263 			    struct ifmediareq *ifmr);
264 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
265 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
266 			    int value);
267 static void		fxp_miibus_statchg(device_t dev);
268 static void		fxp_load_ucode(struct fxp_softc *sc);
269 static void		fxp_update_stats(struct fxp_softc *sc);
270 static void		fxp_sysctl_node(struct fxp_softc *sc);
271 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
272 			    int low, int high);
273 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
274 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
275 static void 		fxp_scb_wait(struct fxp_softc *sc);
276 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
277 static void		fxp_dma_wait(struct fxp_softc *sc,
278 			    volatile uint16_t *status, bus_dma_tag_t dmat,
279 			    bus_dmamap_t map);
280 
281 static device_method_t fxp_methods[] = {
282 	/* Device interface */
283 	DEVMETHOD(device_probe,		fxp_probe),
284 	DEVMETHOD(device_attach,	fxp_attach),
285 	DEVMETHOD(device_detach,	fxp_detach),
286 	DEVMETHOD(device_shutdown,	fxp_shutdown),
287 	DEVMETHOD(device_suspend,	fxp_suspend),
288 	DEVMETHOD(device_resume,	fxp_resume),
289 
290 	/* MII interface */
291 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
292 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
293 	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
294 
295 	DEVMETHOD_END
296 };
297 
298 static driver_t fxp_driver = {
299 	"fxp",
300 	fxp_methods,
301 	sizeof(struct fxp_softc),
302 };
303 
304 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, NULL, NULL, SI_ORDER_ANY);
305 MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table,
306     nitems(fxp_ident_table) - 1);
307 DRIVER_MODULE(miibus, fxp, miibus_driver, NULL, NULL);
308 
309 static struct resource_spec fxp_res_spec_mem[] = {
310 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
311 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
312 	{ -1, 0 }
313 };
314 
315 static struct resource_spec fxp_res_spec_io[] = {
316 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
317 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
318 	{ -1, 0 }
319 };
320 
321 /*
322  * Wait for the previous command to be accepted (but not necessarily
323  * completed).
324  */
325 static void
fxp_scb_wait(struct fxp_softc * sc)326 fxp_scb_wait(struct fxp_softc *sc)
327 {
328 	union {
329 		uint16_t w;
330 		uint8_t b[2];
331 	} flowctl;
332 	int i = 10000;
333 
334 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
335 		DELAY(2);
336 	if (i == 0) {
337 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
338 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
339 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
340 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
341 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
342 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
343 	}
344 }
345 
346 static void
fxp_scb_cmd(struct fxp_softc * sc,int cmd)347 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
348 {
349 
350 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
351 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
352 		fxp_scb_wait(sc);
353 	}
354 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
355 }
356 
357 static void
fxp_dma_wait(struct fxp_softc * sc,volatile uint16_t * status,bus_dma_tag_t dmat,bus_dmamap_t map)358 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
359     bus_dma_tag_t dmat, bus_dmamap_t map)
360 {
361 	int i;
362 
363 	for (i = 10000; i > 0; i--) {
364 		DELAY(2);
365 		bus_dmamap_sync(dmat, map,
366 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
367 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
368 			break;
369 	}
370 	if (i == 0)
371 		device_printf(sc->dev, "DMA timeout\n");
372 }
373 
374 static const struct fxp_ident *
fxp_find_ident(device_t dev)375 fxp_find_ident(device_t dev)
376 {
377 	uint16_t vendor;
378 	uint16_t device;
379 	uint8_t revid;
380 	const struct fxp_ident *ident;
381 
382 	vendor = pci_get_vendor(dev);
383 	device = pci_get_device(dev);
384 	revid = pci_get_revid(dev);
385 	for (ident = fxp_ident_table; ident->name != NULL; ident++) {
386 		if (ident->vendor == vendor && ident->device == device &&
387 		    (ident->revid == revid || ident->revid == -1)) {
388 			return (ident);
389 		}
390 	}
391 	return (NULL);
392 }
393 
394 /*
395  * Return identification string if this device is ours.
396  */
397 static int
fxp_probe(device_t dev)398 fxp_probe(device_t dev)
399 {
400 	const struct fxp_ident *ident;
401 
402 	ident = fxp_find_ident(dev);
403 	if (ident != NULL) {
404 		device_set_desc(dev, ident->name);
405 		return (BUS_PROBE_DEFAULT);
406 	}
407 	return (ENXIO);
408 }
409 
410 static void
fxp_dma_map_addr(void * arg,bus_dma_segment_t * segs,int nseg,int error)411 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
412 {
413 	uint32_t *addr;
414 
415 	if (error)
416 		return;
417 
418 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
419 	addr = arg;
420 	*addr = segs->ds_addr;
421 }
422 
423 static int
fxp_attach(device_t dev)424 fxp_attach(device_t dev)
425 {
426 	struct fxp_softc *sc;
427 	struct fxp_cb_tx *tcbp;
428 	struct fxp_tx *txp;
429 	struct fxp_rx *rxp;
430 	if_t ifp;
431 	uint32_t val;
432 	uint16_t data;
433 	u_char eaddr[ETHER_ADDR_LEN];
434 	int error, flags, i, pmc, prefer_iomap;
435 
436 	error = 0;
437 	sc = device_get_softc(dev);
438 	sc->dev = dev;
439 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
440 	    MTX_DEF);
441 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
442 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
443 	    fxp_serial_ifmedia_sts);
444 
445 	ifp = sc->ifp = if_gethandle(IFT_ETHER);
446 
447 	/*
448 	 * Enable bus mastering.
449 	 */
450 	pci_enable_busmaster(dev);
451 
452 	/*
453 	 * Figure out which we should try first - memory mapping or i/o mapping?
454 	 * We default to memory mapping. Then we accept an override from the
455 	 * command line. Then we check to see which one is enabled.
456 	 */
457 	prefer_iomap = 0;
458 	resource_int_value(device_get_name(dev), device_get_unit(dev),
459 	    "prefer_iomap", &prefer_iomap);
460 	if (prefer_iomap)
461 		sc->fxp_spec = fxp_res_spec_io;
462 	else
463 		sc->fxp_spec = fxp_res_spec_mem;
464 
465 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
466 	if (error) {
467 		if (sc->fxp_spec == fxp_res_spec_mem)
468 			sc->fxp_spec = fxp_res_spec_io;
469 		else
470 			sc->fxp_spec = fxp_res_spec_mem;
471 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
472 	}
473 	if (error) {
474 		device_printf(dev, "could not allocate resources\n");
475 		error = ENXIO;
476 		goto fail;
477 	}
478 
479 	if (bootverbose) {
480 		device_printf(dev, "using %s space register mapping\n",
481 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
482 	}
483 
484 	/*
485 	 * Put CU/RU idle state and prepare full reset.
486 	 */
487 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
488 	DELAY(10);
489 	/* Full reset and disable interrupts. */
490 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
491 	DELAY(10);
492 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
493 
494 	/*
495 	 * Find out how large of an SEEPROM we have.
496 	 */
497 	fxp_autosize_eeprom(sc);
498 	fxp_load_eeprom(sc);
499 
500 	/*
501 	 * Find out the chip revision; lump all 82557 revs together.
502 	 */
503 	sc->ident = fxp_find_ident(dev);
504 	if (sc->ident->ich > 0) {
505 		/* Assume ICH controllers are 82559. */
506 		sc->revision = FXP_REV_82559_A0;
507 	} else {
508 		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
509 		if ((data >> 8) == 1)
510 			sc->revision = FXP_REV_82557;
511 		else
512 			sc->revision = pci_get_revid(dev);
513 	}
514 
515 	/*
516 	 * Check availability of WOL. 82559ER does not support WOL.
517 	 */
518 	if (sc->revision >= FXP_REV_82558_A4 &&
519 	    sc->revision != FXP_REV_82559S_A) {
520 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
521 		if ((data & 0x20) != 0 &&
522 		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
523 			sc->flags |= FXP_FLAG_WOLCAP;
524 	}
525 
526 	if (sc->revision == FXP_REV_82550_C) {
527 		/*
528 		 * 82550C with server extension requires microcode to
529 		 * receive fragmented UDP datagrams.  However if the
530 		 * microcode is used for client-only featured 82550C
531 		 * it locks up controller.
532 		 */
533 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
534 		if ((data & 0x0400) == 0)
535 			sc->flags |= FXP_FLAG_NO_UCODE;
536 	}
537 
538 	/* Receiver lock-up workaround detection. */
539 	if (sc->revision < FXP_REV_82558_A4) {
540 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
541 		if ((data & 0x03) != 0x03) {
542 			sc->flags |= FXP_FLAG_RXBUG;
543 			device_printf(dev, "Enabling Rx lock-up workaround\n");
544 		}
545 	}
546 
547 	/*
548 	 * Determine whether we must use the 503 serial interface.
549 	 */
550 	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
551 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
552 	    && (data & FXP_PHY_SERIAL_ONLY))
553 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
554 
555 	fxp_sysctl_node(sc);
556 	/*
557 	 * Enable workarounds for certain chip revision deficiencies.
558 	 *
559 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
560 	 * some systems based a normal 82559 design, have a defect where
561 	 * the chip can cause a PCI protocol violation if it receives
562 	 * a CU_RESUME command when it is entering the IDLE state.  The
563 	 * workaround is to disable Dynamic Standby Mode, so the chip never
564 	 * deasserts CLKRUN#, and always remains in an active state.
565 	 *
566 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
567 	 */
568 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
569 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
570 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
571 		if (data & 0x02) {			/* STB enable */
572 			uint16_t cksum;
573 			int i;
574 
575 			device_printf(dev,
576 			    "Disabling dynamic standby mode in EEPROM\n");
577 			data &= ~0x02;
578 			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
579 			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
580 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
581 			cksum = 0;
582 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
583 				cksum += sc->eeprom[i];
584 			i = (1 << sc->eeprom_size) - 1;
585 			cksum = 0xBABA - cksum;
586 			fxp_write_eeprom(sc, &cksum, i, 1);
587 			device_printf(dev,
588 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
589 			    i, sc->eeprom[i], cksum);
590 			sc->eeprom[i] = cksum;
591 			/*
592 			 * If the user elects to continue, try the software
593 			 * workaround, as it is better than nothing.
594 			 */
595 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
596 		}
597 	}
598 
599 	/*
600 	 * If we are not a 82557 chip, we can enable extended features.
601 	 */
602 	if (sc->revision != FXP_REV_82557) {
603 		/*
604 		 * If MWI is enabled in the PCI configuration, and there
605 		 * is a valid cacheline size (8 or 16 dwords), then tell
606 		 * the board to turn on MWI.
607 		 */
608 		val = pci_read_config(dev, PCIR_COMMAND, 2);
609 		if (val & PCIM_CMD_MWRICEN &&
610 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
611 			sc->flags |= FXP_FLAG_MWI_ENABLE;
612 
613 		/* turn on the extended TxCB feature */
614 		sc->flags |= FXP_FLAG_EXT_TXCB;
615 
616 		/* enable reception of long frames for VLAN */
617 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
618 	} else {
619 		/* a hack to get long VLAN frames on a 82557 */
620 		sc->flags |= FXP_FLAG_SAVE_BAD;
621 	}
622 
623 	/* For 82559 or later chips, Rx checksum offload is supported. */
624 	if (sc->revision >= FXP_REV_82559_A0) {
625 		/* 82559ER does not support Rx checksum offloading. */
626 		if (sc->ident->device != 0x1209)
627 			sc->flags |= FXP_FLAG_82559_RXCSUM;
628 	}
629 	/*
630 	 * Enable use of extended RFDs and TCBs for 82550
631 	 * and later chips. Note: we need extended TXCB support
632 	 * too, but that's already enabled by the code above.
633 	 * Be careful to do this only on the right devices.
634 	 */
635 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
636 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
637 	    || sc->revision == FXP_REV_82551_10) {
638 		sc->rfa_size = sizeof (struct fxp_rfa);
639 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
640 		sc->flags |= FXP_FLAG_EXT_RFA;
641 		/* Use extended RFA instead of 82559 checksum mode. */
642 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
643 	} else {
644 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
645 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
646 	}
647 
648 	/*
649 	 * Allocate DMA tags and DMA safe memory.
650 	 */
651 	sc->maxtxseg = FXP_NTXSEG;
652 	sc->maxsegsize = MCLBYTES;
653 	if (sc->flags & FXP_FLAG_EXT_RFA) {
654 		sc->maxtxseg--;
655 		sc->maxsegsize = FXP_TSO_SEGSIZE;
656 	}
657 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
658 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
659 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
660 	    sc->maxtxseg, sc->maxsegsize, 0, NULL, NULL, &sc->fxp_txmtag);
661 	if (error) {
662 		device_printf(dev, "could not create TX DMA tag\n");
663 		goto fail;
664 	}
665 
666 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
667 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
668 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->fxp_rxmtag);
669 	if (error) {
670 		device_printf(dev, "could not create RX DMA tag\n");
671 		goto fail;
672 	}
673 
674 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
675 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
676 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
677 	    NULL, NULL, &sc->fxp_stag);
678 	if (error) {
679 		device_printf(dev, "could not create stats DMA tag\n");
680 		goto fail;
681 	}
682 
683 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
684 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
685 	if (error) {
686 		device_printf(dev, "could not allocate stats DMA memory\n");
687 		goto fail;
688 	}
689 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
690 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
691 	    BUS_DMA_NOWAIT);
692 	if (error) {
693 		device_printf(dev, "could not load the stats DMA buffer\n");
694 		goto fail;
695 	}
696 
697 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
698 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
699 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, NULL, NULL, &sc->cbl_tag);
700 	if (error) {
701 		device_printf(dev, "could not create TxCB DMA tag\n");
702 		goto fail;
703 	}
704 
705 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
706 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
707 	if (error) {
708 		device_printf(dev, "could not allocate TxCB DMA memory\n");
709 		goto fail;
710 	}
711 
712 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
713 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
714 	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
715 	if (error) {
716 		device_printf(dev, "could not load TxCB DMA buffer\n");
717 		goto fail;
718 	}
719 
720 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
721 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
722 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
723 	    NULL, NULL, &sc->mcs_tag);
724 	if (error) {
725 		device_printf(dev,
726 		    "could not create multicast setup DMA tag\n");
727 		goto fail;
728 	}
729 
730 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
731 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
732 	if (error) {
733 		device_printf(dev,
734 		    "could not allocate multicast setup DMA memory\n");
735 		goto fail;
736 	}
737 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
738 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
739 	    BUS_DMA_NOWAIT);
740 	if (error) {
741 		device_printf(dev,
742 		    "can't load the multicast setup DMA buffer\n");
743 		goto fail;
744 	}
745 
746 	/*
747 	 * Pre-allocate the TX DMA maps and setup the pointers to
748 	 * the TX command blocks.
749 	 */
750 	txp = sc->fxp_desc.tx_list;
751 	tcbp = sc->fxp_desc.cbl_list;
752 	for (i = 0; i < FXP_NTXCB; i++) {
753 		txp[i].tx_cb = tcbp + i;
754 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
755 		if (error) {
756 			device_printf(dev, "can't create DMA map for TX\n");
757 			goto fail;
758 		}
759 	}
760 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
761 	if (error) {
762 		device_printf(dev, "can't create spare DMA map\n");
763 		goto fail;
764 	}
765 
766 	/*
767 	 * Pre-allocate our receive buffers.
768 	 */
769 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
770 	for (i = 0; i < FXP_NRFABUFS; i++) {
771 		rxp = &sc->fxp_desc.rx_list[i];
772 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
773 		if (error) {
774 			device_printf(dev, "can't create DMA map for RX\n");
775 			goto fail;
776 		}
777 		if (fxp_new_rfabuf(sc, rxp) != 0) {
778 			error = ENOMEM;
779 			goto fail;
780 		}
781 		fxp_add_rfabuf(sc, rxp);
782 	}
783 
784 	/*
785 	 * Read MAC address.
786 	 */
787 	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
788 	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
789 	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
790 	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
791 	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
792 	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
793 	if (bootverbose) {
794 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
795 		    pci_get_vendor(dev), pci_get_device(dev),
796 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
797 		    pci_get_revid(dev));
798 		device_printf(dev, "Dynamic Standby mode is %s\n",
799 		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
800 		    "disabled");
801 	}
802 
803 	/*
804 	 * If this is only a 10Mbps device, then there is no MII, and
805 	 * the PHY will use a serial interface instead.
806 	 *
807 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
808 	 * doesn't have a programming interface of any sort.  The
809 	 * media is sensed automatically based on how the link partner
810 	 * is configured.  This is, in essence, manual configuration.
811 	 */
812 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
813 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
814 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
815 	} else {
816 		/*
817 		 * i82557 wedge when isolating all of their PHYs.
818 		 */
819 		flags = MIIF_NOISOLATE;
820 		if (sc->revision >= FXP_REV_82558_A4)
821 			flags |= MIIF_DOPAUSE;
822 		error = mii_attach(dev, &sc->miibus, ifp,
823 		    (ifm_change_cb_t)fxp_ifmedia_upd,
824 		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
825 		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
826 		if (error != 0) {
827 			device_printf(dev, "attaching PHYs failed\n");
828 			goto fail;
829 		}
830 	}
831 
832 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
833 	if_setdev(ifp, dev);
834 	if_setinitfn(ifp, fxp_init);
835 	if_setsoftc(ifp, sc);
836 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
837 	if_setioctlfn(ifp, fxp_ioctl);
838 	if_setstartfn(ifp, fxp_start);
839 
840 	if_setcapabilities(ifp, 0);
841 	if_setcapenable(ifp, 0);
842 
843 	/* Enable checksum offload/TSO for 82550 or better chips */
844 	if (sc->flags & FXP_FLAG_EXT_RFA) {
845 		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
846 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
847 		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
848 	}
849 
850 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
851 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
852 		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
853 	}
854 
855 	if (sc->flags & FXP_FLAG_WOLCAP) {
856 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
857 		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
858 	}
859 
860 #ifdef DEVICE_POLLING
861 	/* Inform the world we support polling. */
862 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
863 #endif
864 
865 	/*
866 	 * Attach the interface.
867 	 */
868 	ether_ifattach(ifp, eaddr);
869 
870 	/*
871 	 * Tell the upper layer(s) we support long frames.
872 	 * Must appear after the call to ether_ifattach() because
873 	 * ether_ifattach() sets ifi_hdrlen to the default value.
874 	 */
875 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
876 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
877 	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
878 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
879 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
880 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
881 		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
882 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
883 	}
884 
885 	/*
886 	 * Let the system queue as many packets as we have available
887 	 * TX descriptors.
888 	 */
889 	if_setsendqlen(ifp, FXP_NTXCB - 1);
890 	if_setsendqready(ifp);
891 
892 	/*
893 	 * Hook our interrupt after all initialization is complete.
894 	 */
895 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
896 			       NULL, fxp_intr, sc, &sc->ih);
897 	if (error) {
898 		device_printf(dev, "could not setup irq\n");
899 		ether_ifdetach(sc->ifp);
900 		goto fail;
901 	}
902 
903 	/*
904 	 * Configure hardware to reject magic frames otherwise
905 	 * system will hang on recipt of magic frames.
906 	 */
907 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
908 		FXP_LOCK(sc);
909 		/* Clear wakeup events. */
910 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
911 		fxp_init_body(sc, 0);
912 		fxp_stop(sc);
913 		FXP_UNLOCK(sc);
914 	}
915 
916 fail:
917 	if (error)
918 		fxp_release(sc);
919 	return (error);
920 }
921 
922 /*
923  * Release all resources.  The softc lock should not be held and the
924  * interrupt should already be torn down.
925  */
926 static void
fxp_release(struct fxp_softc * sc)927 fxp_release(struct fxp_softc *sc)
928 {
929 	struct fxp_rx *rxp;
930 	struct fxp_tx *txp;
931 	int i;
932 
933 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
934 	KASSERT(sc->ih == NULL,
935 	    ("fxp_release() called with intr handle still active"));
936 	if (sc->miibus)
937 		device_delete_child(sc->dev, sc->miibus);
938 	bus_generic_detach(sc->dev);
939 	ifmedia_removeall(&sc->sc_media);
940 	if (sc->fxp_desc.cbl_list) {
941 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
942 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
943 		    sc->cbl_map);
944 	}
945 	if (sc->fxp_stats) {
946 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
947 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
948 	}
949 	if (sc->mcsp) {
950 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
951 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
952 	}
953 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
954 	if (sc->fxp_rxmtag) {
955 		for (i = 0; i < FXP_NRFABUFS; i++) {
956 			rxp = &sc->fxp_desc.rx_list[i];
957 			if (rxp->rx_mbuf != NULL) {
958 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
959 				    BUS_DMASYNC_POSTREAD);
960 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
961 				m_freem(rxp->rx_mbuf);
962 			}
963 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
964 		}
965 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
966 		bus_dma_tag_destroy(sc->fxp_rxmtag);
967 	}
968 	if (sc->fxp_txmtag) {
969 		for (i = 0; i < FXP_NTXCB; i++) {
970 			txp = &sc->fxp_desc.tx_list[i];
971 			if (txp->tx_mbuf != NULL) {
972 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
973 				    BUS_DMASYNC_POSTWRITE);
974 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
975 				m_freem(txp->tx_mbuf);
976 			}
977 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
978 		}
979 		bus_dma_tag_destroy(sc->fxp_txmtag);
980 	}
981 	if (sc->fxp_stag)
982 		bus_dma_tag_destroy(sc->fxp_stag);
983 	if (sc->cbl_tag)
984 		bus_dma_tag_destroy(sc->cbl_tag);
985 	if (sc->mcs_tag)
986 		bus_dma_tag_destroy(sc->mcs_tag);
987 	if (sc->ifp)
988 		if_free(sc->ifp);
989 
990 	mtx_destroy(&sc->sc_mtx);
991 }
992 
993 /*
994  * Detach interface.
995  */
996 static int
fxp_detach(device_t dev)997 fxp_detach(device_t dev)
998 {
999 	struct fxp_softc *sc = device_get_softc(dev);
1000 
1001 #ifdef DEVICE_POLLING
1002 	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1003 		ether_poll_deregister(sc->ifp);
1004 #endif
1005 
1006 	FXP_LOCK(sc);
1007 	/*
1008 	 * Stop DMA and drop transmit queue, but disable interrupts first.
1009 	 */
1010 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1011 	fxp_stop(sc);
1012 	FXP_UNLOCK(sc);
1013 	callout_drain(&sc->stat_ch);
1014 
1015 	/*
1016 	 * Close down routes etc.
1017 	 */
1018 	ether_ifdetach(sc->ifp);
1019 
1020 	/*
1021 	 * Unhook interrupt before dropping lock. This is to prevent
1022 	 * races with fxp_intr().
1023 	 */
1024 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1025 	sc->ih = NULL;
1026 
1027 	/* Release our allocated resources. */
1028 	fxp_release(sc);
1029 	return (0);
1030 }
1031 
1032 /*
1033  * Device shutdown routine. Called at system shutdown after sync. The
1034  * main purpose of this routine is to shut off receiver DMA so that
1035  * kernel memory doesn't get clobbered during warmboot.
1036  */
1037 static int
fxp_shutdown(device_t dev)1038 fxp_shutdown(device_t dev)
1039 {
1040 
1041 	/*
1042 	 * Make sure that DMA is disabled prior to reboot. Not doing
1043 	 * do could allow DMA to corrupt kernel memory during the
1044 	 * reboot before the driver initializes.
1045 	 */
1046 	return (fxp_suspend(dev));
1047 }
1048 
1049 /*
1050  * Device suspend routine.  Stop the interface and save some PCI
1051  * settings in case the BIOS doesn't restore them properly on
1052  * resume.
1053  */
1054 static int
fxp_suspend(device_t dev)1055 fxp_suspend(device_t dev)
1056 {
1057 	struct fxp_softc *sc = device_get_softc(dev);
1058 	if_t ifp;
1059 	int pmc;
1060 	uint16_t pmstat;
1061 
1062 	FXP_LOCK(sc);
1063 
1064 	ifp = sc->ifp;
1065 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1066 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1067 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1068 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1069 			/* Request PME. */
1070 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1071 			sc->flags |= FXP_FLAG_WOL;
1072 			/* Reconfigure hardware to accept magic frames. */
1073 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1074 			fxp_init_body(sc, 0);
1075 		}
1076 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1077 	}
1078 	fxp_stop(sc);
1079 
1080 	sc->suspended = 1;
1081 
1082 	FXP_UNLOCK(sc);
1083 	return (0);
1084 }
1085 
1086 /*
1087  * Device resume routine. re-enable busmastering, and restart the interface if
1088  * appropriate.
1089  */
1090 static int
fxp_resume(device_t dev)1091 fxp_resume(device_t dev)
1092 {
1093 	struct fxp_softc *sc = device_get_softc(dev);
1094 	if_t ifp = sc->ifp;
1095 	int pmc;
1096 	uint16_t pmstat;
1097 
1098 	FXP_LOCK(sc);
1099 
1100 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1101 		sc->flags &= ~FXP_FLAG_WOL;
1102 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1103 		/* Disable PME and clear PME status. */
1104 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1105 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1106 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1107 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1108 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1109 	}
1110 
1111 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1112 	DELAY(10);
1113 
1114 	/* reinitialize interface if necessary */
1115 	if (if_getflags(ifp) & IFF_UP)
1116 		fxp_init_body(sc, 1);
1117 
1118 	sc->suspended = 0;
1119 
1120 	FXP_UNLOCK(sc);
1121 	return (0);
1122 }
1123 
1124 static void
fxp_eeprom_shiftin(struct fxp_softc * sc,int data,int length)1125 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1126 {
1127 	uint16_t reg;
1128 	int x;
1129 
1130 	/*
1131 	 * Shift in data.
1132 	 */
1133 	for (x = 1 << (length - 1); x; x >>= 1) {
1134 		if (data & x)
1135 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1136 		else
1137 			reg = FXP_EEPROM_EECS;
1138 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1139 		DELAY(1);
1140 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1141 		DELAY(1);
1142 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1143 		DELAY(1);
1144 	}
1145 }
1146 
1147 /*
1148  * Read from the serial EEPROM. Basically, you manually shift in
1149  * the read opcode (one bit at a time) and then shift in the address,
1150  * and then you shift out the data (all of this one bit at a time).
1151  * The word size is 16 bits, so you have to provide the address for
1152  * every 16 bits of data.
1153  */
1154 static uint16_t
fxp_eeprom_getword(struct fxp_softc * sc,int offset,int autosize)1155 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1156 {
1157 	uint16_t reg, data;
1158 	int x;
1159 
1160 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1161 	/*
1162 	 * Shift in read opcode.
1163 	 */
1164 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1165 	/*
1166 	 * Shift in address.
1167 	 */
1168 	data = 0;
1169 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1170 		if (offset & x)
1171 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1172 		else
1173 			reg = FXP_EEPROM_EECS;
1174 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1175 		DELAY(1);
1176 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1177 		DELAY(1);
1178 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1179 		DELAY(1);
1180 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1181 		data++;
1182 		if (autosize && reg == 0) {
1183 			sc->eeprom_size = data;
1184 			break;
1185 		}
1186 	}
1187 	/*
1188 	 * Shift out data.
1189 	 */
1190 	data = 0;
1191 	reg = FXP_EEPROM_EECS;
1192 	for (x = 1 << 15; x; x >>= 1) {
1193 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1194 		DELAY(1);
1195 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1196 			data |= x;
1197 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1198 		DELAY(1);
1199 	}
1200 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1201 	DELAY(1);
1202 
1203 	return (data);
1204 }
1205 
1206 static void
fxp_eeprom_putword(struct fxp_softc * sc,int offset,uint16_t data)1207 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1208 {
1209 	int i;
1210 
1211 	/*
1212 	 * Erase/write enable.
1213 	 */
1214 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1215 	fxp_eeprom_shiftin(sc, 0x4, 3);
1216 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1217 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1218 	DELAY(1);
1219 	/*
1220 	 * Shift in write opcode, address, data.
1221 	 */
1222 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1223 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1224 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1225 	fxp_eeprom_shiftin(sc, data, 16);
1226 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1227 	DELAY(1);
1228 	/*
1229 	 * Wait for EEPROM to finish up.
1230 	 */
1231 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1232 	DELAY(1);
1233 	for (i = 0; i < 1000; i++) {
1234 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1235 			break;
1236 		DELAY(50);
1237 	}
1238 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1239 	DELAY(1);
1240 	/*
1241 	 * Erase/write disable.
1242 	 */
1243 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1244 	fxp_eeprom_shiftin(sc, 0x4, 3);
1245 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1246 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1247 	DELAY(1);
1248 }
1249 
1250 /*
1251  * From NetBSD:
1252  *
1253  * Figure out EEPROM size.
1254  *
1255  * 559's can have either 64-word or 256-word EEPROMs, the 558
1256  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1257  * talks about the existence of 16 to 256 word EEPROMs.
1258  *
1259  * The only known sizes are 64 and 256, where the 256 version is used
1260  * by CardBus cards to store CIS information.
1261  *
1262  * The address is shifted in msb-to-lsb, and after the last
1263  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1264  * after which follows the actual data. We try to detect this zero, by
1265  * probing the data-out bit in the EEPROM control register just after
1266  * having shifted in a bit. If the bit is zero, we assume we've
1267  * shifted enough address bits. The data-out should be tri-state,
1268  * before this, which should translate to a logical one.
1269  */
1270 static void
fxp_autosize_eeprom(struct fxp_softc * sc)1271 fxp_autosize_eeprom(struct fxp_softc *sc)
1272 {
1273 
1274 	/* guess maximum size of 256 words */
1275 	sc->eeprom_size = 8;
1276 
1277 	/* autosize */
1278 	(void) fxp_eeprom_getword(sc, 0, 1);
1279 }
1280 
1281 static void
fxp_read_eeprom(struct fxp_softc * sc,u_short * data,int offset,int words)1282 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1283 {
1284 	int i;
1285 
1286 	for (i = 0; i < words; i++)
1287 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1288 }
1289 
1290 static void
fxp_write_eeprom(struct fxp_softc * sc,u_short * data,int offset,int words)1291 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1292 {
1293 	int i;
1294 
1295 	for (i = 0; i < words; i++)
1296 		fxp_eeprom_putword(sc, offset + i, data[i]);
1297 }
1298 
1299 static void
fxp_load_eeprom(struct fxp_softc * sc)1300 fxp_load_eeprom(struct fxp_softc *sc)
1301 {
1302 	int i;
1303 	uint16_t cksum;
1304 
1305 	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1306 	cksum = 0;
1307 	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1308 		cksum += sc->eeprom[i];
1309 	cksum = 0xBABA - cksum;
1310 	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1311 		device_printf(sc->dev,
1312 		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1313 		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1314 }
1315 
1316 /*
1317  * Grab the softc lock and call the real fxp_start_body() routine
1318  */
1319 static void
fxp_start(if_t ifp)1320 fxp_start(if_t ifp)
1321 {
1322 	struct fxp_softc *sc = if_getsoftc(ifp);
1323 
1324 	FXP_LOCK(sc);
1325 	fxp_start_body(ifp);
1326 	FXP_UNLOCK(sc);
1327 }
1328 
1329 /*
1330  * Start packet transmission on the interface.
1331  * This routine must be called with the softc lock held, and is an
1332  * internal entry point only.
1333  */
1334 static void
fxp_start_body(if_t ifp)1335 fxp_start_body(if_t ifp)
1336 {
1337 	struct fxp_softc *sc = if_getsoftc(ifp);
1338 	struct mbuf *mb_head;
1339 	int txqueued;
1340 
1341 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1342 
1343 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1344 	    IFF_DRV_RUNNING)
1345 		return;
1346 
1347 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1348 		fxp_txeof(sc);
1349 	/*
1350 	 * We're finished if there is nothing more to add to the list or if
1351 	 * we're all filled up with buffers to transmit.
1352 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1353 	 *       a NOP command when needed.
1354 	 */
1355 	txqueued = 0;
1356 	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1357 
1358 		/*
1359 		 * Grab a packet to transmit.
1360 		 */
1361 		mb_head = if_dequeue(ifp);
1362 		if (mb_head == NULL)
1363 			break;
1364 
1365 		if (fxp_encap(sc, &mb_head)) {
1366 			if (mb_head == NULL)
1367 				break;
1368 			if_sendq_prepend(ifp, mb_head);
1369 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1370 		}
1371 		txqueued++;
1372 		/*
1373 		 * Pass packet to bpf if there is a listener.
1374 		 */
1375 		bpf_mtap_if(ifp, mb_head);
1376 	}
1377 
1378 	/*
1379 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1380 	 * going again if suspended.
1381 	 */
1382 	if (txqueued > 0) {
1383 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1384 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1385 		fxp_scb_wait(sc);
1386 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1387 		/*
1388 		 * Set a 5 second timer just in case we don't hear
1389 		 * from the card again.
1390 		 */
1391 		sc->watchdog_timer = 5;
1392 	}
1393 }
1394 
1395 static int
fxp_encap(struct fxp_softc * sc,struct mbuf ** m_head)1396 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1397 {
1398 	struct mbuf *m;
1399 	struct fxp_tx *txp;
1400 	struct fxp_cb_tx *cbp;
1401 	struct tcphdr *tcp;
1402 	bus_dma_segment_t segs[FXP_NTXSEG];
1403 	int error, i, nseg, tcp_payload;
1404 
1405 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1406 
1407 	tcp_payload = 0;
1408 	tcp = NULL;
1409 	/*
1410 	 * Get pointer to next available tx desc.
1411 	 */
1412 	txp = sc->fxp_desc.tx_last->tx_next;
1413 
1414 	/*
1415 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1416 	 * Ethernet Controller Family Open Source Software
1417 	 * Developer Manual says:
1418 	 *   Using software parsing is only allowed with legal
1419 	 *   TCP/IP or UDP/IP packets.
1420 	 *   ...
1421 	 *   For all other datagrams, hardware parsing must
1422 	 *   be used.
1423 	 * Software parsing appears to truncate ICMP and
1424 	 * fragmented UDP packets that contain one to three
1425 	 * bytes in the second (and final) mbuf of the packet.
1426 	 */
1427 	if (sc->flags & FXP_FLAG_EXT_RFA)
1428 		txp->tx_cb->ipcb_ip_activation_high =
1429 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1430 
1431 	m = *m_head;
1432 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1433 		/*
1434 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1435 		 * contained in the first active transmit buffer.
1436 		 */
1437 		struct ether_header *eh;
1438 		struct ip *ip;
1439 		uint32_t ip_off, poff;
1440 
1441 		if (M_WRITABLE(*m_head) == 0) {
1442 			/* Get a writable copy. */
1443 			m = m_dup(*m_head, M_NOWAIT);
1444 			m_freem(*m_head);
1445 			if (m == NULL) {
1446 				*m_head = NULL;
1447 				return (ENOBUFS);
1448 			}
1449 			*m_head = m;
1450 		}
1451 		ip_off = sizeof(struct ether_header);
1452 		m = m_pullup(*m_head, ip_off);
1453 		if (m == NULL) {
1454 			*m_head = NULL;
1455 			return (ENOBUFS);
1456 		}
1457 		eh = mtod(m, struct ether_header *);
1458 		/* Check the existence of VLAN tag. */
1459 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1460 			ip_off = sizeof(struct ether_vlan_header);
1461 			m = m_pullup(m, ip_off);
1462 			if (m == NULL) {
1463 				*m_head = NULL;
1464 				return (ENOBUFS);
1465 			}
1466 		}
1467 		m = m_pullup(m, ip_off + sizeof(struct ip));
1468 		if (m == NULL) {
1469 			*m_head = NULL;
1470 			return (ENOBUFS);
1471 		}
1472 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1473 		poff = ip_off + (ip->ip_hl << 2);
1474 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1475 		if (m == NULL) {
1476 			*m_head = NULL;
1477 			return (ENOBUFS);
1478 		}
1479 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1480 		m = m_pullup(m, poff + (tcp->th_off << 2));
1481 		if (m == NULL) {
1482 			*m_head = NULL;
1483 			return (ENOBUFS);
1484 		}
1485 
1486 		/*
1487 		 * Since 82550/82551 doesn't modify IP length and pseudo
1488 		 * checksum in the first frame driver should compute it.
1489 		 */
1490 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1491 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1492 		ip->ip_sum = 0;
1493 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1494 		    (tcp->th_off << 2));
1495 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1496 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1497 		    m->m_pkthdr.tso_segsz));
1498 		/* Compute total TCP payload. */
1499 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1500 		tcp_payload -= tcp->th_off << 2;
1501 		*m_head = m;
1502 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1503 		/*
1504 		 * Deal with TCP/IP checksum offload. Note that
1505 		 * in order for TCP checksum offload to work,
1506 		 * the pseudo header checksum must have already
1507 		 * been computed and stored in the checksum field
1508 		 * in the TCP header. The stack should have
1509 		 * already done this for us.
1510 		 */
1511 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1512 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1513 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1514 
1515 #ifdef FXP_IP_CSUM_WAR
1516 		/*
1517 		 * XXX The 82550 chip appears to have trouble
1518 		 * dealing with IP header checksums in very small
1519 		 * datagrams, namely fragments from 1 to 3 bytes
1520 		 * in size. For example, say you want to transmit
1521 		 * a UDP packet of 1473 bytes. The packet will be
1522 		 * fragmented over two IP datagrams, the latter
1523 		 * containing only one byte of data. The 82550 will
1524 		 * botch the header checksum on the 1-byte fragment.
1525 		 * As long as the datagram contains 4 or more bytes
1526 		 * of data, you're ok.
1527 		 *
1528                  * The following code attempts to work around this
1529 		 * problem: if the datagram is less than 38 bytes
1530 		 * in size (14 bytes ether header, 20 bytes IP header,
1531 		 * plus 4 bytes of data), we punt and compute the IP
1532 		 * header checksum by hand. This workaround doesn't
1533 		 * work very well, however, since it can be fooled
1534 		 * by things like VLAN tags and IP options that make
1535 		 * the header sizes/offsets vary.
1536 		 */
1537 
1538 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1539 			if (m->m_pkthdr.len < 38) {
1540 				struct ip *ip;
1541 				m->m_data += ETHER_HDR_LEN;
1542 				ip = mtod(m, struct ip *);
1543 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1544 				m->m_data -= ETHER_HDR_LEN;
1545 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1546 			} else {
1547 				txp->tx_cb->ipcb_ip_activation_high =
1548 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1549 				txp->tx_cb->ipcb_ip_schedule |=
1550 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1551 			}
1552 		}
1553 #endif
1554 	}
1555 
1556 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1557 	    segs, &nseg, 0);
1558 	if (error == EFBIG) {
1559 		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1560 		if (m == NULL) {
1561 			m_freem(*m_head);
1562 			*m_head = NULL;
1563 			return (ENOMEM);
1564 		}
1565 		*m_head = m;
1566 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1567 		    *m_head, segs, &nseg, 0);
1568 		if (error != 0) {
1569 			m_freem(*m_head);
1570 			*m_head = NULL;
1571 			return (ENOMEM);
1572 		}
1573 	} else if (error != 0)
1574 		return (error);
1575 	if (nseg == 0) {
1576 		m_freem(*m_head);
1577 		*m_head = NULL;
1578 		return (EIO);
1579 	}
1580 
1581 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1582 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1583 
1584 	cbp = txp->tx_cb;
1585 	for (i = 0; i < nseg; i++) {
1586 		/*
1587 		 * If this is an 82550/82551, then we're using extended
1588 		 * TxCBs _and_ we're using checksum offload. This means
1589 		 * that the TxCB is really an IPCB. One major difference
1590 		 * between the two is that with plain extended TxCBs,
1591 		 * the bottom half of the TxCB contains two entries from
1592 		 * the TBD array, whereas IPCBs contain just one entry:
1593 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1594 		 * checksum offload control bits. So to make things work
1595 		 * right, we have to start filling in the TBD array
1596 		 * starting from a different place depending on whether
1597 		 * the chip is an 82550/82551 or not.
1598 		 */
1599 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1600 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1601 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1602 		} else {
1603 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1604 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1605 		}
1606 	}
1607 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1608 		/* Configure dynamic TBD for 82550/82551. */
1609 		cbp->tbd_number = 0xFF;
1610 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1611 	} else
1612 		cbp->tbd_number = nseg;
1613 	/* Configure TSO. */
1614 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1615 		cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1616 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1617 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1618 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1619 		    FXP_IPCB_TCP_PACKET |
1620 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1621 	}
1622 	/* Configure VLAN hardware tag insertion. */
1623 	if ((m->m_flags & M_VLANTAG) != 0) {
1624 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1625 		txp->tx_cb->ipcb_ip_activation_high |=
1626 		    FXP_IPCB_INSERTVLAN_ENABLE;
1627 	}
1628 
1629 	txp->tx_mbuf = m;
1630 	txp->tx_cb->cb_status = 0;
1631 	txp->tx_cb->byte_count = 0;
1632 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1633 		txp->tx_cb->cb_command =
1634 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1635 		    FXP_CB_COMMAND_S);
1636 	else
1637 		txp->tx_cb->cb_command =
1638 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1639 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1640 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1641 		txp->tx_cb->tx_threshold = tx_threshold;
1642 
1643 	/*
1644 	 * Advance the end of list forward.
1645 	 */
1646 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1647 	sc->fxp_desc.tx_last = txp;
1648 
1649 	/*
1650 	 * Advance the beginning of the list forward if there are
1651 	 * no other packets queued (when nothing is queued, tx_first
1652 	 * sits on the last TxCB that was sent out).
1653 	 */
1654 	if (sc->tx_queued == 0)
1655 		sc->fxp_desc.tx_first = txp;
1656 
1657 	sc->tx_queued++;
1658 
1659 	return (0);
1660 }
1661 
1662 #ifdef DEVICE_POLLING
1663 static poll_handler_t fxp_poll;
1664 
1665 static int
fxp_poll(if_t ifp,enum poll_cmd cmd,int count)1666 fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1667 {
1668 	struct fxp_softc *sc = if_getsoftc(ifp);
1669 	uint8_t statack;
1670 	int rx_npkts = 0;
1671 
1672 	FXP_LOCK(sc);
1673 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1674 		FXP_UNLOCK(sc);
1675 		return (rx_npkts);
1676 	}
1677 
1678 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1679 	    FXP_SCB_STATACK_FR;
1680 	if (cmd == POLL_AND_CHECK_STATUS) {
1681 		uint8_t tmp;
1682 
1683 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1684 		if (tmp == 0xff || tmp == 0) {
1685 			FXP_UNLOCK(sc);
1686 			return (rx_npkts); /* nothing to do */
1687 		}
1688 		tmp &= ~statack;
1689 		/* ack what we can */
1690 		if (tmp != 0)
1691 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1692 		statack |= tmp;
1693 	}
1694 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1695 	FXP_UNLOCK(sc);
1696 	return (rx_npkts);
1697 }
1698 #endif /* DEVICE_POLLING */
1699 
1700 /*
1701  * Process interface interrupts.
1702  */
1703 static void
fxp_intr(void * xsc)1704 fxp_intr(void *xsc)
1705 {
1706 	struct fxp_softc *sc = xsc;
1707 	if_t ifp = sc->ifp;
1708 	uint8_t statack;
1709 
1710 	FXP_LOCK(sc);
1711 	if (sc->suspended) {
1712 		FXP_UNLOCK(sc);
1713 		return;
1714 	}
1715 
1716 #ifdef DEVICE_POLLING
1717 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1718 		FXP_UNLOCK(sc);
1719 		return;
1720 	}
1721 #endif
1722 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1723 		/*
1724 		 * It should not be possible to have all bits set; the
1725 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1726 		 * all bits are set, this may indicate that the card has
1727 		 * been physically ejected, so ignore it.
1728 		 */
1729 		if (statack == 0xff) {
1730 			FXP_UNLOCK(sc);
1731 			return;
1732 		}
1733 
1734 		/*
1735 		 * First ACK all the interrupts in this pass.
1736 		 */
1737 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1738 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1739 			fxp_intr_body(sc, ifp, statack, -1);
1740 	}
1741 	FXP_UNLOCK(sc);
1742 }
1743 
1744 static void
fxp_txeof(struct fxp_softc * sc)1745 fxp_txeof(struct fxp_softc *sc)
1746 {
1747 	if_t ifp;
1748 	struct fxp_tx *txp;
1749 
1750 	ifp = sc->ifp;
1751 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1752 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1753 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1754 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1755 	    txp = txp->tx_next) {
1756 		if (txp->tx_mbuf != NULL) {
1757 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1758 			    BUS_DMASYNC_POSTWRITE);
1759 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1760 			m_freem(txp->tx_mbuf);
1761 			txp->tx_mbuf = NULL;
1762 			/* clear this to reset csum offload bits */
1763 			txp->tx_cb->tbd[0].tb_addr = 0;
1764 		}
1765 		sc->tx_queued--;
1766 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1767 	}
1768 	sc->fxp_desc.tx_first = txp;
1769 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1770 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1771 	if (sc->tx_queued == 0)
1772 		sc->watchdog_timer = 0;
1773 }
1774 
1775 static void
fxp_rxcsum(struct fxp_softc * sc,if_t ifp,struct mbuf * m,uint16_t status,int pos)1776 fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1777     uint16_t status, int pos)
1778 {
1779 	struct ether_header *eh;
1780 	struct ip *ip;
1781 	struct udphdr *uh;
1782 	int32_t hlen, len, pktlen, temp32;
1783 	uint16_t csum, *opts;
1784 
1785 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1786 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1787 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1788 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1789 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1790 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1791 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1792 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1793 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1794 				    CSUM_PSEUDO_HDR;
1795 				m->m_pkthdr.csum_data = 0xffff;
1796 			}
1797 		}
1798 		return;
1799 	}
1800 
1801 	pktlen = m->m_pkthdr.len;
1802 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1803 		return;
1804 	eh = mtod(m, struct ether_header *);
1805 	if (eh->ether_type != htons(ETHERTYPE_IP))
1806 		return;
1807 	ip = (struct ip *)(eh + 1);
1808 	if (ip->ip_v != IPVERSION)
1809 		return;
1810 
1811 	hlen = ip->ip_hl << 2;
1812 	pktlen -= sizeof(struct ether_header);
1813 	if (hlen < sizeof(struct ip))
1814 		return;
1815 	if (ntohs(ip->ip_len) < hlen)
1816 		return;
1817 	if (ntohs(ip->ip_len) != pktlen)
1818 		return;
1819 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1820 		return;	/* can't handle fragmented packet */
1821 
1822 	switch (ip->ip_p) {
1823 	case IPPROTO_TCP:
1824 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1825 			return;
1826 		break;
1827 	case IPPROTO_UDP:
1828 		if (pktlen < (hlen + sizeof(struct udphdr)))
1829 			return;
1830 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1831 		if (uh->uh_sum == 0)
1832 			return; /* no checksum */
1833 		break;
1834 	default:
1835 		return;
1836 	}
1837 	/* Extract computed checksum. */
1838 	csum = be16dec(mtod(m, char *) + pos);
1839 	/* checksum fixup for IP options */
1840 	len = hlen - sizeof(struct ip);
1841 	if (len > 0) {
1842 		opts = (uint16_t *)(ip + 1);
1843 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1844 			temp32 = csum - *opts;
1845 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1846 			csum = temp32 & 65535;
1847 		}
1848 	}
1849 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1850 	m->m_pkthdr.csum_data = csum;
1851 }
1852 
1853 static int
fxp_intr_body(struct fxp_softc * sc,if_t ifp,uint8_t statack,int count)1854 fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1855     int count)
1856 {
1857 	struct mbuf *m;
1858 	struct fxp_rx *rxp;
1859 	struct fxp_rfa *rfa;
1860 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1861 	int rx_npkts;
1862 	uint16_t status;
1863 
1864 	rx_npkts = 0;
1865 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1866 
1867 	if (rnr)
1868 		sc->rnr++;
1869 #ifdef DEVICE_POLLING
1870 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1871 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1872 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1873 		rnr = 1;
1874 	}
1875 #endif
1876 
1877 	/*
1878 	 * Free any finished transmit mbuf chains.
1879 	 *
1880 	 * Handle the CNA event likt a CXTNO event. It used to
1881 	 * be that this event (control unit not ready) was not
1882 	 * encountered, but it is now with the SMPng modifications.
1883 	 * The exact sequence of events that occur when the interface
1884 	 * is brought up are different now, and if this event
1885 	 * goes unhandled, the configuration/rxfilter setup sequence
1886 	 * can stall for several seconds. The result is that no
1887 	 * packets go out onto the wire for about 5 to 10 seconds
1888 	 * after the interface is ifconfig'ed for the first time.
1889 	 */
1890 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1891 		fxp_txeof(sc);
1892 
1893 	/*
1894 	 * Try to start more packets transmitting.
1895 	 */
1896 	if (!if_sendq_empty(ifp))
1897 		fxp_start_body(ifp);
1898 
1899 	/*
1900 	 * Just return if nothing happened on the receive side.
1901 	 */
1902 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1903 		return (rx_npkts);
1904 
1905 	/*
1906 	 * Process receiver interrupts. If a no-resource (RNR)
1907 	 * condition exists, get whatever packets we can and
1908 	 * re-start the receiver.
1909 	 *
1910 	 * When using polling, we do not process the list to completion,
1911 	 * so when we get an RNR interrupt we must defer the restart
1912 	 * until we hit the last buffer with the C bit set.
1913 	 * If we run out of cycles and rfa_headm has the C bit set,
1914 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1915 	 * that the info will be used in the subsequent polling cycle.
1916 	 */
1917 	for (;;) {
1918 		rxp = sc->fxp_desc.rx_head;
1919 		m = rxp->rx_mbuf;
1920 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1921 		    RFA_ALIGNMENT_FUDGE);
1922 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1923 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1924 
1925 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1926 		if (count >= 0 && count-- == 0) {
1927 			if (rnr) {
1928 				/* Defer RNR processing until the next time. */
1929 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1930 				rnr = 0;
1931 			}
1932 			break;
1933 		}
1934 #endif /* DEVICE_POLLING */
1935 
1936 		status = le16toh(rfa->rfa_status);
1937 		if ((status & FXP_RFA_STATUS_C) == 0)
1938 			break;
1939 
1940 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1941 			rnr++;
1942 		/*
1943 		 * Advance head forward.
1944 		 */
1945 		sc->fxp_desc.rx_head = rxp->rx_next;
1946 
1947 		/*
1948 		 * Add a new buffer to the receive chain.
1949 		 * If this fails, the old buffer is recycled
1950 		 * instead.
1951 		 */
1952 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1953 			int total_len;
1954 
1955 			/*
1956 			 * Fetch packet length (the top 2 bits of
1957 			 * actual_size are flags set by the controller
1958 			 * upon completion), and drop the packet in case
1959 			 * of bogus length or CRC errors.
1960 			 */
1961 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1962 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1963 			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1964 				/* Adjust for appended checksum bytes. */
1965 				total_len -= 2;
1966 			}
1967 			if (total_len < (int)sizeof(struct ether_header) ||
1968 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1969 			    sc->rfa_size) ||
1970 			    status & (FXP_RFA_STATUS_CRC |
1971 			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1972 				m_freem(m);
1973 				fxp_add_rfabuf(sc, rxp);
1974 				continue;
1975 			}
1976 
1977 			m->m_pkthdr.len = m->m_len = total_len;
1978 			if_setrcvif(m, ifp);
1979 
1980                         /* Do IP checksum checking. */
1981 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1982 				fxp_rxcsum(sc, ifp, m, status, total_len);
1983 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1984 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1985 				m->m_pkthdr.ether_vtag =
1986 				    ntohs(rfa->rfax_vlan_id);
1987 				m->m_flags |= M_VLANTAG;
1988 			}
1989 			/*
1990 			 * Drop locks before calling if_input() since it
1991 			 * may re-enter fxp_start() in the netisr case.
1992 			 * This would result in a lock reversal.  Better
1993 			 * performance might be obtained by chaining all
1994 			 * packets received, dropping the lock, and then
1995 			 * calling if_input() on each one.
1996 			 */
1997 			FXP_UNLOCK(sc);
1998 			if_input(ifp, m);
1999 			FXP_LOCK(sc);
2000 			rx_npkts++;
2001 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2002 				return (rx_npkts);
2003 		} else {
2004 			/* Reuse RFA and loaded DMA map. */
2005 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2006 			fxp_discard_rfabuf(sc, rxp);
2007 		}
2008 		fxp_add_rfabuf(sc, rxp);
2009 	}
2010 	if (rnr) {
2011 		fxp_scb_wait(sc);
2012 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2013 		    sc->fxp_desc.rx_head->rx_addr);
2014 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2015 	}
2016 	return (rx_npkts);
2017 }
2018 
2019 static void
fxp_update_stats(struct fxp_softc * sc)2020 fxp_update_stats(struct fxp_softc *sc)
2021 {
2022 	if_t ifp = sc->ifp;
2023 	struct fxp_stats *sp = sc->fxp_stats;
2024 	struct fxp_hwstats *hsp;
2025 	uint32_t *status;
2026 
2027 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2028 
2029 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2030 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2031 	/* Update statistical counters. */
2032 	if (sc->revision >= FXP_REV_82559_A0)
2033 		status = &sp->completion_status;
2034 	else if (sc->revision >= FXP_REV_82558_A4)
2035 		status = (uint32_t *)&sp->tx_tco;
2036 	else
2037 		status = &sp->tx_pause;
2038 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2039 		hsp = &sc->fxp_hwstats;
2040 		hsp->tx_good += le32toh(sp->tx_good);
2041 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2042 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2043 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2044 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2045 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2046 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2047 		hsp->tx_multiple_collisions +=
2048 		    le32toh(sp->tx_multiple_collisions);
2049 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2050 		hsp->rx_good += le32toh(sp->rx_good);
2051 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2052 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2053 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2054 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2055 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2056 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2057 		hsp->tx_pause += le32toh(sp->tx_pause);
2058 		hsp->rx_pause += le32toh(sp->rx_pause);
2059 		hsp->rx_controls += le32toh(sp->rx_controls);
2060 		hsp->tx_tco += le16toh(sp->tx_tco);
2061 		hsp->rx_tco += le16toh(sp->rx_tco);
2062 
2063 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2064 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2065 		    le32toh(sp->tx_total_collisions));
2066 		if (sp->rx_good) {
2067 			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2068 			    le32toh(sp->rx_good));
2069 			sc->rx_idle_secs = 0;
2070 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2071 			/*
2072 			 * Receiver's been idle for another second.
2073 			 */
2074 			sc->rx_idle_secs++;
2075 		}
2076 		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2077 		    le32toh(sp->rx_crc_errors) +
2078 		    le32toh(sp->rx_alignment_errors) +
2079 		    le32toh(sp->rx_rnr_errors) +
2080 		    le32toh(sp->rx_overrun_errors));
2081 		/*
2082 		 * If any transmit underruns occurred, bump up the transmit
2083 		 * threshold by another 512 bytes (64 * 8).
2084 		 */
2085 		if (sp->tx_underruns) {
2086 			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2087 			    le32toh(sp->tx_underruns));
2088 			if (tx_threshold < 192)
2089 				tx_threshold += 64;
2090 		}
2091 		*status = 0;
2092 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2093 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2094 	}
2095 }
2096 
2097 /*
2098  * Update packet in/out/collision statistics. The i82557 doesn't
2099  * allow you to access these counters without doing a fairly
2100  * expensive DMA to get _all_ of the statistics it maintains, so
2101  * we do this operation here only once per second. The statistics
2102  * counters in the kernel are updated from the previous dump-stats
2103  * DMA and then a new dump-stats DMA is started. The on-chip
2104  * counters are zeroed when the DMA completes. If we can't start
2105  * the DMA immediately, we don't wait - we just prepare to read
2106  * them again next time.
2107  */
2108 static void
fxp_tick(void * xsc)2109 fxp_tick(void *xsc)
2110 {
2111 	struct fxp_softc *sc = xsc;
2112 	if_t ifp = sc->ifp;
2113 
2114 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2115 
2116 	/* Update statistical counters. */
2117 	fxp_update_stats(sc);
2118 
2119 	/*
2120 	 * Release any xmit buffers that have completed DMA. This isn't
2121 	 * strictly necessary to do here, but it's advantagous for mbufs
2122 	 * with external storage to be released in a timely manner rather
2123 	 * than being defered for a potentially long time. This limits
2124 	 * the delay to a maximum of one second.
2125 	 */
2126 	fxp_txeof(sc);
2127 
2128 	/*
2129 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2130 	 * then assume the receiver has locked up and attempt to clear
2131 	 * the condition by reprogramming the multicast filter. This is
2132 	 * a work-around for a bug in the 82557 where the receiver locks
2133 	 * up if it gets certain types of garbage in the synchronization
2134 	 * bits prior to the packet header. This bug is supposed to only
2135 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2136 	 * mode as well (perhaps due to a 10/100 speed transition).
2137 	 */
2138 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2139 		sc->rx_idle_secs = 0;
2140 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2141 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2142 			fxp_init_body(sc, 1);
2143 		}
2144 		return;
2145 	}
2146 	/*
2147 	 * If there is no pending command, start another stats
2148 	 * dump. Otherwise punt for now.
2149 	 */
2150 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2151 		/*
2152 		 * Start another stats dump.
2153 		 */
2154 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2155 	}
2156 	if (sc->miibus != NULL)
2157 		mii_tick(device_get_softc(sc->miibus));
2158 
2159 	/*
2160 	 * Check that chip hasn't hung.
2161 	 */
2162 	fxp_watchdog(sc);
2163 
2164 	/*
2165 	 * Schedule another timeout one second from now.
2166 	 */
2167 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2168 }
2169 
2170 /*
2171  * Stop the interface. Cancels the statistics updater and resets
2172  * the interface.
2173  */
2174 static void
fxp_stop(struct fxp_softc * sc)2175 fxp_stop(struct fxp_softc *sc)
2176 {
2177 	if_t ifp = sc->ifp;
2178 	struct fxp_tx *txp;
2179 	int i;
2180 
2181 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2182 	sc->watchdog_timer = 0;
2183 
2184 	/*
2185 	 * Cancel stats updater.
2186 	 */
2187 	callout_stop(&sc->stat_ch);
2188 
2189 	/*
2190 	 * Preserve PCI configuration, configure, IA/multicast
2191 	 * setup and put RU and CU into idle state.
2192 	 */
2193 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2194 	DELAY(50);
2195 	/* Disable interrupts. */
2196 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2197 
2198 	fxp_update_stats(sc);
2199 
2200 	/*
2201 	 * Release any xmit buffers.
2202 	 */
2203 	txp = sc->fxp_desc.tx_list;
2204 	for (i = 0; i < FXP_NTXCB; i++) {
2205 		if (txp[i].tx_mbuf != NULL) {
2206 			bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2207 			    BUS_DMASYNC_POSTWRITE);
2208 			bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
2209 			m_freem(txp[i].tx_mbuf);
2210 			txp[i].tx_mbuf = NULL;
2211 			/* clear this to reset csum offload bits */
2212 			txp[i].tx_cb->tbd[0].tb_addr = 0;
2213 		}
2214 	}
2215 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2216 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2217 	sc->tx_queued = 0;
2218 }
2219 
2220 /*
2221  * Watchdog/transmission transmit timeout handler. Called when a
2222  * transmission is started on the interface, but no interrupt is
2223  * received before the timeout. This usually indicates that the
2224  * card has wedged for some reason.
2225  */
2226 static void
fxp_watchdog(struct fxp_softc * sc)2227 fxp_watchdog(struct fxp_softc *sc)
2228 {
2229 	if_t ifp = sc->ifp;
2230 
2231 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2232 
2233 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2234 		return;
2235 
2236 	device_printf(sc->dev, "device timeout\n");
2237 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2238 
2239 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2240 	fxp_init_body(sc, 1);
2241 }
2242 
2243 /*
2244  * Acquire locks and then call the real initialization function.  This
2245  * is necessary because ether_ioctl() calls if_init() and this would
2246  * result in mutex recursion if the mutex was held.
2247  */
2248 static void
fxp_init(void * xsc)2249 fxp_init(void *xsc)
2250 {
2251 	struct fxp_softc *sc = xsc;
2252 
2253 	FXP_LOCK(sc);
2254 	fxp_init_body(sc, 1);
2255 	FXP_UNLOCK(sc);
2256 }
2257 
2258 /*
2259  * Perform device initialization. This routine must be called with the
2260  * softc lock held.
2261  */
2262 static void
fxp_init_body(struct fxp_softc * sc,int setmedia)2263 fxp_init_body(struct fxp_softc *sc, int setmedia)
2264 {
2265 	if_t ifp = sc->ifp;
2266 	struct mii_data *mii;
2267 	struct fxp_cb_config *cbp;
2268 	struct fxp_cb_ias *cb_ias;
2269 	struct fxp_cb_tx *tcbp;
2270 	struct fxp_tx *txp;
2271 	int i, prm;
2272 
2273 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2274 
2275 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2276 		return;
2277 
2278 	/*
2279 	 * Cancel any pending I/O
2280 	 */
2281 	fxp_stop(sc);
2282 
2283 	/*
2284 	 * Issue software reset, which also unloads the microcode.
2285 	 */
2286 	sc->flags &= ~FXP_FLAG_UCODE;
2287 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2288 	DELAY(50);
2289 
2290 	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2291 
2292 	/*
2293 	 * Initialize base of CBL and RFA memory. Loading with zero
2294 	 * sets it up for regular linear addressing.
2295 	 */
2296 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2297 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2298 
2299 	fxp_scb_wait(sc);
2300 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2301 
2302 	/*
2303 	 * Initialize base of dump-stats buffer.
2304 	 */
2305 	fxp_scb_wait(sc);
2306 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2307 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2308 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2309 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2310 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2311 
2312 	/*
2313 	 * Attempt to load microcode if requested.
2314 	 * For ICH based controllers do not load microcode.
2315 	 */
2316 	if (sc->ident->ich == 0) {
2317 		if (if_getflags(ifp) & IFF_LINK0 &&
2318 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2319 			fxp_load_ucode(sc);
2320 	}
2321 
2322 	/*
2323 	 * Set IFF_ALLMULTI status. It's needed in configure action
2324 	 * command.
2325 	 */
2326 	fxp_mc_addrs(sc);
2327 
2328 	/*
2329 	 * We temporarily use memory that contains the TxCB list to
2330 	 * construct the config CB. The TxCB list memory is rebuilt
2331 	 * later.
2332 	 */
2333 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2334 
2335 	/*
2336 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2337 	 * zero and must be one bits in this structure and this is the easiest
2338 	 * way to initialize them all to proper values.
2339 	 */
2340 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2341 
2342 	cbp->cb_status =	0;
2343 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2344 	    FXP_CB_COMMAND_EL);
2345 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2346 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2347 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2348 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2349 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2350 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2351 	cbp->type_enable =	0;	/* actually reserved */
2352 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2353 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2354 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2355 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2356 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2357 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2358 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2359 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2360 	cbp->ci_int =		1;	/* interrupt on CU idle */
2361 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2362 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2363 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2364 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2365 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2366 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2367 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2368 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2369 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2370 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2371 	cbp->csma_dis =		0;	/* (don't) disable link */
2372 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2373 	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2374 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2375 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2376 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2377 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2378 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2379 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2380 	cbp->loopback =		0;	/* (don't) loopback */
2381 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2382 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2383 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2384 	cbp->promiscuous =	prm;	/* promiscuous mode */
2385 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2386 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2387 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2388 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2389 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2390 
2391 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2392 	cbp->padding =		1;	/* (do) pad short tx packets */
2393 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2394 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2395 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2396 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2397 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2398 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2399 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2400 	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2401 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2402 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2403 	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2404 
2405 	if (sc->revision == FXP_REV_82557) {
2406 		/*
2407 		 * The 82557 has no hardware flow control, the values
2408 		 * below are the defaults for the chip.
2409 		 */
2410 		cbp->fc_delay_lsb =	0;
2411 		cbp->fc_delay_msb =	0x40;
2412 		cbp->pri_fc_thresh =	3;
2413 		cbp->tx_fc_dis =	0;
2414 		cbp->rx_fc_restop =	0;
2415 		cbp->rx_fc_restart =	0;
2416 		cbp->fc_filter =	0;
2417 		cbp->pri_fc_loc =	1;
2418 	} else {
2419 		/* Set pause RX FIFO threshold to 1KB. */
2420 		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2421 		/* Set pause time. */
2422 		cbp->fc_delay_lsb =	0xff;
2423 		cbp->fc_delay_msb =	0xff;
2424 		cbp->pri_fc_thresh =	3;
2425 		mii = device_get_softc(sc->miibus);
2426 		if ((IFM_OPTIONS(mii->mii_media_active) &
2427 		    IFM_ETH_TXPAUSE) != 0)
2428 			/* enable transmit FC */
2429 			cbp->tx_fc_dis = 0;
2430 		else
2431 			/* disable transmit FC */
2432 			cbp->tx_fc_dis = 1;
2433 		if ((IFM_OPTIONS(mii->mii_media_active) &
2434 		    IFM_ETH_RXPAUSE) != 0) {
2435 			/* enable FC restart/restop frames */
2436 			cbp->rx_fc_restart = 1;
2437 			cbp->rx_fc_restop = 1;
2438 		} else {
2439 			/* disable FC restart/restop frames */
2440 			cbp->rx_fc_restart = 0;
2441 			cbp->rx_fc_restop = 0;
2442 		}
2443 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2444 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2445 	}
2446 
2447 	/* Enable 82558 and 82559 extended statistics functionality. */
2448 	if (sc->revision >= FXP_REV_82558_A4) {
2449 		if (sc->revision >= FXP_REV_82559_A0) {
2450 			/*
2451 			 * Extend configuration table size to 32
2452 			 * to include TCO configuration.
2453 			 */
2454 			cbp->byte_count = 32;
2455 			cbp->ext_stats_dis = 1;
2456 			/* Enable TCO stats. */
2457 			cbp->tno_int_or_tco_en = 1;
2458 			cbp->gamla_rx = 1;
2459 		} else
2460 			cbp->ext_stats_dis = 0;
2461 	}
2462 
2463 	/*
2464 	 * Start the config command/DMA.
2465 	 */
2466 	fxp_scb_wait(sc);
2467 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2468 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2469 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2470 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2471 	/* ...and wait for it to complete. */
2472 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2473 
2474 	/*
2475 	 * Now initialize the station address. Temporarily use the TxCB
2476 	 * memory area like we did above for the config CB.
2477 	 */
2478 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2479 	cb_ias->cb_status = 0;
2480 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2481 	cb_ias->link_addr = 0xffffffff;
2482 	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2483 
2484 	/*
2485 	 * Start the IAS (Individual Address Setup) command/DMA.
2486 	 */
2487 	fxp_scb_wait(sc);
2488 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2489 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2490 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2491 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2492 	/* ...and wait for it to complete. */
2493 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2494 
2495 	/*
2496 	 * Initialize the multicast address list.
2497 	 */
2498 	fxp_mc_setup(sc);
2499 
2500 	/*
2501 	 * Initialize transmit control block (TxCB) list.
2502 	 */
2503 	txp = sc->fxp_desc.tx_list;
2504 	tcbp = sc->fxp_desc.cbl_list;
2505 	bzero(tcbp, FXP_TXCB_SZ);
2506 	for (i = 0; i < FXP_NTXCB; i++) {
2507 		txp[i].tx_mbuf = NULL;
2508 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2509 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2510 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2511 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2512 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2513 			tcbp[i].tbd_array_addr =
2514 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2515 		else
2516 			tcbp[i].tbd_array_addr =
2517 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2518 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2519 	}
2520 	/*
2521 	 * Set the suspend flag on the first TxCB and start the control
2522 	 * unit. It will execute the NOP and then suspend.
2523 	 */
2524 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2525 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2526 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2527 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2528 	sc->tx_queued = 1;
2529 
2530 	fxp_scb_wait(sc);
2531 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2532 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2533 
2534 	/*
2535 	 * Initialize receiver buffer area - RFA.
2536 	 */
2537 	fxp_scb_wait(sc);
2538 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2539 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2540 
2541 	if (sc->miibus != NULL && setmedia != 0)
2542 		mii_mediachg(device_get_softc(sc->miibus));
2543 
2544 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2545 
2546 	/*
2547 	 * Enable interrupts.
2548 	 */
2549 #ifdef DEVICE_POLLING
2550 	/*
2551 	 * ... but only do that if we are not polling. And because (presumably)
2552 	 * the default is interrupts on, we need to disable them explicitly!
2553 	 */
2554 	if (if_getcapenable(ifp) & IFCAP_POLLING )
2555 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2556 	else
2557 #endif /* DEVICE_POLLING */
2558 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2559 
2560 	/*
2561 	 * Start stats updater.
2562 	 */
2563 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2564 }
2565 
2566 static int
fxp_serial_ifmedia_upd(if_t ifp)2567 fxp_serial_ifmedia_upd(if_t ifp)
2568 {
2569 
2570 	return (0);
2571 }
2572 
2573 static void
fxp_serial_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)2574 fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2575 {
2576 
2577 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2578 }
2579 
2580 /*
2581  * Change media according to request.
2582  */
2583 static int
fxp_ifmedia_upd(if_t ifp)2584 fxp_ifmedia_upd(if_t ifp)
2585 {
2586 	struct fxp_softc *sc = if_getsoftc(ifp);
2587 	struct mii_data *mii;
2588 	struct mii_softc	*miisc;
2589 
2590 	mii = device_get_softc(sc->miibus);
2591 	FXP_LOCK(sc);
2592 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2593 		PHY_RESET(miisc);
2594 	mii_mediachg(mii);
2595 	FXP_UNLOCK(sc);
2596 	return (0);
2597 }
2598 
2599 /*
2600  * Notify the world which media we're using.
2601  */
2602 static void
fxp_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)2603 fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2604 {
2605 	struct fxp_softc *sc = if_getsoftc(ifp);
2606 	struct mii_data *mii;
2607 
2608 	mii = device_get_softc(sc->miibus);
2609 	FXP_LOCK(sc);
2610 	mii_pollstat(mii);
2611 	ifmr->ifm_active = mii->mii_media_active;
2612 	ifmr->ifm_status = mii->mii_media_status;
2613 	FXP_UNLOCK(sc);
2614 }
2615 
2616 /*
2617  * Add a buffer to the end of the RFA buffer list.
2618  * Return 0 if successful, 1 for failure. A failure results in
2619  * reusing the RFA buffer.
2620  * The RFA struct is stuck at the beginning of mbuf cluster and the
2621  * data pointer is fixed up to point just past it.
2622  */
2623 static int
fxp_new_rfabuf(struct fxp_softc * sc,struct fxp_rx * rxp)2624 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2625 {
2626 	struct mbuf *m;
2627 	struct fxp_rfa *rfa;
2628 	bus_dmamap_t tmp_map;
2629 	int error;
2630 
2631 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2632 	if (m == NULL)
2633 		return (ENOBUFS);
2634 
2635 	/*
2636 	 * Move the data pointer up so that the incoming data packet
2637 	 * will be 32-bit aligned.
2638 	 */
2639 	m->m_data += RFA_ALIGNMENT_FUDGE;
2640 
2641 	/*
2642 	 * Get a pointer to the base of the mbuf cluster and move
2643 	 * data start past it.
2644 	 */
2645 	rfa = mtod(m, struct fxp_rfa *);
2646 	m->m_data += sc->rfa_size;
2647 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2648 
2649 	rfa->rfa_status = 0;
2650 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2651 	rfa->actual_size = 0;
2652 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2653 	    sc->rfa_size;
2654 
2655 	/*
2656 	 * Initialize the rest of the RFA.  Note that since the RFA
2657 	 * is misaligned, we cannot store values directly.  We're thus
2658 	 * using the le32enc() function which handles endianness and
2659 	 * is also alignment-safe.
2660 	 */
2661 	le32enc(&rfa->link_addr, 0xffffffff);
2662 	le32enc(&rfa->rbd_addr, 0xffffffff);
2663 
2664 	/* Map the RFA into DMA memory. */
2665 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2666 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2667 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2668 	if (error) {
2669 		m_freem(m);
2670 		return (error);
2671 	}
2672 
2673 	if (rxp->rx_mbuf != NULL)
2674 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2675 	tmp_map = sc->spare_map;
2676 	sc->spare_map = rxp->rx_map;
2677 	rxp->rx_map = tmp_map;
2678 	rxp->rx_mbuf = m;
2679 
2680 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2681 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2682 	return (0);
2683 }
2684 
2685 static void
fxp_add_rfabuf(struct fxp_softc * sc,struct fxp_rx * rxp)2686 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2687 {
2688 	struct fxp_rfa *p_rfa;
2689 	struct fxp_rx *p_rx;
2690 
2691 	/*
2692 	 * If there are other buffers already on the list, attach this
2693 	 * one to the end by fixing up the tail to point to this one.
2694 	 */
2695 	if (sc->fxp_desc.rx_head != NULL) {
2696 		p_rx = sc->fxp_desc.rx_tail;
2697 		p_rfa = (struct fxp_rfa *)
2698 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2699 		p_rx->rx_next = rxp;
2700 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2701 		p_rfa->rfa_control = 0;
2702 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2703 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2704 	} else {
2705 		rxp->rx_next = NULL;
2706 		sc->fxp_desc.rx_head = rxp;
2707 	}
2708 	sc->fxp_desc.rx_tail = rxp;
2709 }
2710 
2711 static void
fxp_discard_rfabuf(struct fxp_softc * sc,struct fxp_rx * rxp)2712 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2713 {
2714 	struct mbuf *m;
2715 	struct fxp_rfa *rfa;
2716 
2717 	m = rxp->rx_mbuf;
2718 	m->m_data = m->m_ext.ext_buf;
2719 	/*
2720 	 * Move the data pointer up so that the incoming data packet
2721 	 * will be 32-bit aligned.
2722 	 */
2723 	m->m_data += RFA_ALIGNMENT_FUDGE;
2724 
2725 	/*
2726 	 * Get a pointer to the base of the mbuf cluster and move
2727 	 * data start past it.
2728 	 */
2729 	rfa = mtod(m, struct fxp_rfa *);
2730 	m->m_data += sc->rfa_size;
2731 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2732 
2733 	rfa->rfa_status = 0;
2734 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2735 	rfa->actual_size = 0;
2736 
2737 	/*
2738 	 * Initialize the rest of the RFA.  Note that since the RFA
2739 	 * is misaligned, we cannot store values directly.  We're thus
2740 	 * using the le32enc() function which handles endianness and
2741 	 * is also alignment-safe.
2742 	 */
2743 	le32enc(&rfa->link_addr, 0xffffffff);
2744 	le32enc(&rfa->rbd_addr, 0xffffffff);
2745 
2746 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2747 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2748 }
2749 
2750 static int
fxp_miibus_readreg(device_t dev,int phy,int reg)2751 fxp_miibus_readreg(device_t dev, int phy, int reg)
2752 {
2753 	struct fxp_softc *sc = device_get_softc(dev);
2754 	int count = 10000;
2755 	int value;
2756 
2757 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2758 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2759 
2760 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2761 	    && count--)
2762 		DELAY(10);
2763 
2764 	if (count <= 0)
2765 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2766 
2767 	return (value & 0xffff);
2768 }
2769 
2770 static int
fxp_miibus_writereg(device_t dev,int phy,int reg,int value)2771 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2772 {
2773 	struct fxp_softc *sc = device_get_softc(dev);
2774 	int count = 10000;
2775 
2776 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2777 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2778 	    (value & 0xffff));
2779 
2780 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2781 	    count--)
2782 		DELAY(10);
2783 
2784 	if (count <= 0)
2785 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2786 	return (0);
2787 }
2788 
2789 static void
fxp_miibus_statchg(device_t dev)2790 fxp_miibus_statchg(device_t dev)
2791 {
2792 	struct fxp_softc *sc;
2793 	struct mii_data *mii;
2794 	if_t ifp;
2795 
2796 	sc = device_get_softc(dev);
2797 	mii = device_get_softc(sc->miibus);
2798 	ifp = sc->ifp;
2799 	if (mii == NULL || ifp == (void *)NULL ||
2800 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2801 	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2802 	    (IFM_AVALID | IFM_ACTIVE))
2803 		return;
2804 
2805 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2806 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2807 		sc->cu_resume_bug = 1;
2808 	else
2809 		sc->cu_resume_bug = 0;
2810 	/*
2811 	 * Call fxp_init_body in order to adjust the flow control settings.
2812 	 * Note that the 82557 doesn't support hardware flow control.
2813 	 */
2814 	if (sc->revision == FXP_REV_82557)
2815 		return;
2816 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2817 	fxp_init_body(sc, 0);
2818 }
2819 
2820 static int
fxp_ioctl(if_t ifp,u_long command,caddr_t data)2821 fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2822 {
2823 	struct fxp_softc *sc = if_getsoftc(ifp);
2824 	struct ifreq *ifr = (struct ifreq *)data;
2825 	struct mii_data *mii;
2826 	int flag, mask, error = 0, reinit;
2827 
2828 	switch (command) {
2829 	case SIOCSIFFLAGS:
2830 		FXP_LOCK(sc);
2831 		/*
2832 		 * If interface is marked up and not running, then start it.
2833 		 * If it is marked down and running, stop it.
2834 		 * XXX If it's up then re-initialize it. This is so flags
2835 		 * such as IFF_PROMISC are handled.
2836 		 */
2837 		if (if_getflags(ifp) & IFF_UP) {
2838 			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2839 			    ((if_getflags(ifp) ^ sc->if_flags) &
2840 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2841 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2842 				fxp_init_body(sc, 0);
2843 			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2844 				fxp_init_body(sc, 1);
2845 		} else {
2846 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2847 				fxp_stop(sc);
2848 		}
2849 		sc->if_flags = if_getflags(ifp);
2850 		FXP_UNLOCK(sc);
2851 		break;
2852 
2853 	case SIOCADDMULTI:
2854 	case SIOCDELMULTI:
2855 		FXP_LOCK(sc);
2856 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2857 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2858 			fxp_init_body(sc, 0);
2859 		}
2860 		FXP_UNLOCK(sc);
2861 		break;
2862 
2863 	case SIOCSIFMEDIA:
2864 	case SIOCGIFMEDIA:
2865 		if (sc->miibus != NULL) {
2866 			mii = device_get_softc(sc->miibus);
2867                         error = ifmedia_ioctl(ifp, ifr,
2868                             &mii->mii_media, command);
2869 		} else {
2870                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2871 		}
2872 		break;
2873 
2874 	case SIOCSIFCAP:
2875 		reinit = 0;
2876 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2877 #ifdef DEVICE_POLLING
2878 		if (mask & IFCAP_POLLING) {
2879 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2880 				error = ether_poll_register(fxp_poll, ifp);
2881 				if (error)
2882 					return(error);
2883 				FXP_LOCK(sc);
2884 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2885 				    FXP_SCB_INTR_DISABLE);
2886 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2887 				FXP_UNLOCK(sc);
2888 			} else {
2889 				error = ether_poll_deregister(ifp);
2890 				/* Enable interrupts in any case */
2891 				FXP_LOCK(sc);
2892 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2893 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2894 				FXP_UNLOCK(sc);
2895 			}
2896 		}
2897 #endif
2898 		FXP_LOCK(sc);
2899 		if ((mask & IFCAP_TXCSUM) != 0 &&
2900 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2901 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2902 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2903 				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2904 			else
2905 				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2906 		}
2907 		if ((mask & IFCAP_RXCSUM) != 0 &&
2908 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2909 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2910 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2911 				reinit++;
2912 		}
2913 		if ((mask & IFCAP_TSO4) != 0 &&
2914 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2915 			if_togglecapenable(ifp, IFCAP_TSO4);
2916 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2917 				if_sethwassistbits(ifp, CSUM_TSO, 0);
2918 			else
2919 				if_sethwassistbits(ifp, 0, CSUM_TSO);
2920 		}
2921 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2922 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2923 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2924 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2925 		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2926 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2927 			if (sc->revision != FXP_REV_82557)
2928 				flag = FXP_FLAG_LONG_PKT_EN;
2929 			else /* a hack to get long frames on the old chip */
2930 				flag = FXP_FLAG_SAVE_BAD;
2931 			sc->flags ^= flag;
2932 			if (if_getflags(ifp) & IFF_UP)
2933 				reinit++;
2934 		}
2935 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2936 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2937 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2938 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2939 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2940 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2941 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2942 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2943 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2944 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2945 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2946 				    IFCAP_VLAN_HWCSUM);
2947 			reinit++;
2948 		}
2949 		if (reinit > 0 &&
2950 		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2951 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2952 			fxp_init_body(sc, 0);
2953 		}
2954 		FXP_UNLOCK(sc);
2955 		if_vlancap(ifp);
2956 		break;
2957 
2958 	default:
2959 		error = ether_ioctl(ifp, command, data);
2960 	}
2961 	return (error);
2962 }
2963 
2964 static u_int
fxp_setup_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)2965 fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2966 {
2967 	struct fxp_softc *sc = arg;
2968 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2969 
2970 	if (mcsp->mc_cnt < MAXMCADDR)
2971 		bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN],
2972 		    ETHER_ADDR_LEN);
2973 	mcsp->mc_cnt++;
2974 	return (1);
2975 }
2976 
2977 /*
2978  * Fill in the multicast address list and return number of entries.
2979  */
2980 static void
fxp_mc_addrs(struct fxp_softc * sc)2981 fxp_mc_addrs(struct fxp_softc *sc)
2982 {
2983 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2984 	if_t ifp = sc->ifp;
2985 
2986 	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
2987 		mcsp->mc_cnt = 0;
2988 		if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc);
2989 		if (mcsp->mc_cnt >= MAXMCADDR) {
2990 			if_setflagbits(ifp, IFF_ALLMULTI, 0);
2991 			mcsp->mc_cnt = 0;
2992 		}
2993 	}
2994 	mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN);
2995 }
2996 
2997 /*
2998  * Program the multicast filter.
2999  *
3000  * We have an artificial restriction that the multicast setup command
3001  * must be the first command in the chain, so we take steps to ensure
3002  * this. By requiring this, it allows us to keep up the performance of
3003  * the pre-initialized command ring (esp. link pointers) by not actually
3004  * inserting the mcsetup command in the ring - i.e. its link pointer
3005  * points to the TxCB ring, but the mcsetup descriptor itself is not part
3006  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3007  * lead into the regular TxCB ring when it completes.
3008  */
3009 static void
fxp_mc_setup(struct fxp_softc * sc)3010 fxp_mc_setup(struct fxp_softc *sc)
3011 {
3012 	struct fxp_cb_mcs *mcsp;
3013 	int count;
3014 
3015 	FXP_LOCK_ASSERT(sc, MA_OWNED);
3016 
3017 	mcsp = sc->mcsp;
3018 	mcsp->cb_status = 0;
3019 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3020 	mcsp->link_addr = 0xffffffff;
3021 	fxp_mc_addrs(sc);
3022 
3023 	/*
3024 	 * Wait until command unit is idle. This should never be the
3025 	 * case when nothing is queued, but make sure anyway.
3026 	 */
3027 	count = 100;
3028 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3029 	    FXP_SCB_CUS_IDLE && --count)
3030 		DELAY(10);
3031 	if (count == 0) {
3032 		device_printf(sc->dev, "command queue timeout\n");
3033 		return;
3034 	}
3035 
3036 	/*
3037 	 * Start the multicast setup command.
3038 	 */
3039 	fxp_scb_wait(sc);
3040 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3041 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3042 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3043 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3044 	/* ...and wait for it to complete. */
3045 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3046 }
3047 
3048 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3049 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3050 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3051 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3052 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3053 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3054 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3055 
3056 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3057 
3058 static const struct ucode {
3059 	uint32_t	revision;
3060 	uint32_t	*ucode;
3061 	int		length;
3062 	u_short		int_delay_offset;
3063 	u_short		bundle_max_offset;
3064 } ucode_table[] = {
3065 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3066 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3067 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3068 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3069 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3070 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3071 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3072 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3073 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3074 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3075 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3076 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3077 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3078 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3079 	{ 0, NULL, 0, 0, 0 }
3080 };
3081 
3082 static void
fxp_load_ucode(struct fxp_softc * sc)3083 fxp_load_ucode(struct fxp_softc *sc)
3084 {
3085 	const struct ucode *uc;
3086 	struct fxp_cb_ucode *cbp;
3087 	int i;
3088 
3089 	if (sc->flags & FXP_FLAG_NO_UCODE)
3090 		return;
3091 
3092 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3093 		if (sc->revision == uc->revision)
3094 			break;
3095 	if (uc->ucode == NULL)
3096 		return;
3097 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3098 	cbp->cb_status = 0;
3099 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3100 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3101 	for (i = 0; i < uc->length; i++)
3102 		cbp->ucode[i] = htole32(uc->ucode[i]);
3103 	if (uc->int_delay_offset)
3104 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3105 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3106 	if (uc->bundle_max_offset)
3107 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3108 		    htole16(sc->tunable_bundle_max);
3109 	/*
3110 	 * Download the ucode to the chip.
3111 	 */
3112 	fxp_scb_wait(sc);
3113 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3114 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3115 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3116 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3117 	/* ...and wait for it to complete. */
3118 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3119 	device_printf(sc->dev,
3120 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3121 	    sc->tunable_int_delay,
3122 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3123 	sc->flags |= FXP_FLAG_UCODE;
3124 	bzero(cbp, FXP_TXCB_SZ);
3125 }
3126 
3127 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3128 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3129 
3130 static void
fxp_sysctl_node(struct fxp_softc * sc)3131 fxp_sysctl_node(struct fxp_softc *sc)
3132 {
3133 	struct sysctl_ctx_list *ctx;
3134 	struct sysctl_oid_list *child, *parent;
3135 	struct sysctl_oid *tree;
3136 	struct fxp_hwstats *hsp;
3137 
3138 	ctx = device_get_sysctl_ctx(sc->dev);
3139 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3140 
3141 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_delay",
3142 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3143 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3144 	    "FXP driver receive interrupt microcode bundling delay");
3145 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "bundle_max",
3146 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3147 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3148 	    "FXP driver receive interrupt microcode bundle size limit");
3149 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3150 	    "FXP RNR events");
3151 
3152 	/*
3153 	 * Pull in device tunables.
3154 	 */
3155 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3156 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3157 	(void) resource_int_value(device_get_name(sc->dev),
3158 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3159 	(void) resource_int_value(device_get_name(sc->dev),
3160 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3161 	sc->rnr = 0;
3162 
3163 	hsp = &sc->fxp_hwstats;
3164 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
3165 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "FXP statistics");
3166 	parent = SYSCTL_CHILDREN(tree);
3167 
3168 	/* Rx MAC statistics. */
3169 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
3170 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
3171 	child = SYSCTL_CHILDREN(tree);
3172 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3173 	    &hsp->rx_good, "Good frames");
3174 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3175 	    &hsp->rx_crc_errors, "CRC errors");
3176 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3177 	    &hsp->rx_alignment_errors, "Alignment errors");
3178 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3179 	    &hsp->rx_rnr_errors, "RNR errors");
3180 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3181 	    &hsp->rx_overrun_errors, "Overrun errors");
3182 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3183 	    &hsp->rx_cdt_errors, "Collision detect errors");
3184 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3185 	    &hsp->rx_shortframes, "Short frame errors");
3186 	if (sc->revision >= FXP_REV_82558_A4) {
3187 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3188 		    &hsp->rx_pause, "Pause frames");
3189 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3190 		    &hsp->rx_controls, "Unsupported control frames");
3191 	}
3192 	if (sc->revision >= FXP_REV_82559_A0)
3193 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3194 		    &hsp->rx_tco, "TCO frames");
3195 
3196 	/* Tx MAC statistics. */
3197 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
3198 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
3199 	child = SYSCTL_CHILDREN(tree);
3200 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3201 	    &hsp->tx_good, "Good frames");
3202 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3203 	    &hsp->tx_maxcols, "Maximum collisions errors");
3204 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3205 	    &hsp->tx_latecols, "Late collisions errors");
3206 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3207 	    &hsp->tx_underruns, "Underrun errors");
3208 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3209 	    &hsp->tx_lostcrs, "Lost carrier sense");
3210 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3211 	    &hsp->tx_deffered, "Deferred");
3212 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3213 	    &hsp->tx_single_collisions, "Single collisions");
3214 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3215 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3216 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3217 	    &hsp->tx_total_collisions, "Total collisions");
3218 	if (sc->revision >= FXP_REV_82558_A4)
3219 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3220 		    &hsp->tx_pause, "Pause frames");
3221 	if (sc->revision >= FXP_REV_82559_A0)
3222 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3223 		    &hsp->tx_tco, "TCO frames");
3224 }
3225 
3226 #undef FXP_SYSCTL_STAT_ADD
3227 
3228 static int
sysctl_int_range(SYSCTL_HANDLER_ARGS,int low,int high)3229 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3230 {
3231 	int error, value;
3232 
3233 	value = *(int *)arg1;
3234 	error = sysctl_handle_int(oidp, &value, 0, req);
3235 	if (error || !req->newptr)
3236 		return (error);
3237 	if (value < low || value > high)
3238 		return (EINVAL);
3239 	*(int *)arg1 = value;
3240 	return (0);
3241 }
3242 
3243 /*
3244  * Interrupt delay is expressed in microseconds, a multiplier is used
3245  * to convert this to the appropriate clock ticks before using.
3246  */
3247 static int
sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)3248 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3249 {
3250 
3251 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3252 }
3253 
3254 static int
sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)3255 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3256 {
3257 
3258 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3259 }
3260