1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2004 Poul-Henning Kamp
5 * Copyright (c) 1994,1997 John S. Dyson
6 * Copyright (c) 2013 The FreeBSD Foundation
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Konstantin Belousov
10 * under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /*
35 * this file contains a new buffer I/O scheme implementing a coherent
36 * VM object and buffer cache scheme. Pains have been taken to make
37 * sure that the performance degradation associated with schemes such
38 * as this is not realized.
39 *
40 * Author: John S. Dyson
41 * Significant help during the development and debugging phases
42 * had been provided by David Greenman, also of the FreeBSD core team.
43 *
44 * see man buf(9) for more info.
45 */
46
47 #define EXTERR_CATEGORY EXTERR_CAT_VFSBIO
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/asan.h>
51 #include <sys/bio.h>
52 #include <sys/bitset.h>
53 #include <sys/boottrace.h>
54 #include <sys/buf.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/devicestat.h>
58 #include <sys/eventhandler.h>
59 #include <sys/exterrvar.h>
60 #include <sys/fail.h>
61 #include <sys/ktr.h>
62 #include <sys/limits.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/memdesc.h>
66 #include <sys/mount.h>
67 #include <sys/mutex.h>
68 #include <sys/kernel.h>
69 #include <sys/kthread.h>
70 #include <sys/pctrie.h>
71 #include <sys/proc.h>
72 #include <sys/racct.h>
73 #include <sys/refcount.h>
74 #include <sys/resourcevar.h>
75 #include <sys/rwlock.h>
76 #include <sys/sched.h>
77 #include <sys/smp.h>
78 #include <sys/sysctl.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/vmem.h>
81 #include <sys/vmmeter.h>
82 #include <sys/vnode.h>
83 #include <sys/watchdog.h>
84 #include <geom/geom.h>
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_map.h>
94 #include <vm/swap_pager.h>
95
96 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
97
98 struct bio_ops bioops; /* I/O operation notification */
99
100 struct buf_ops buf_ops_bio = {
101 .bop_name = "buf_ops_bio",
102 .bop_write = bufwrite,
103 .bop_strategy = bufstrategy,
104 .bop_sync = bufsync,
105 .bop_bdflush = bufbdflush,
106 };
107
108 struct bufqueue {
109 struct mtx_padalign bq_lock;
110 TAILQ_HEAD(, buf) bq_queue;
111 uint8_t bq_index;
112 uint16_t bq_subqueue;
113 int bq_len;
114 } __aligned(CACHE_LINE_SIZE);
115
116 #define BQ_LOCKPTR(bq) (&(bq)->bq_lock)
117 #define BQ_LOCK(bq) mtx_lock(BQ_LOCKPTR((bq)))
118 #define BQ_UNLOCK(bq) mtx_unlock(BQ_LOCKPTR((bq)))
119 #define BQ_ASSERT_LOCKED(bq) mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
120
121 struct bufdomain {
122 struct bufqueue *bd_subq;
123 struct bufqueue bd_dirtyq;
124 struct bufqueue *bd_cleanq;
125 struct mtx_padalign bd_run_lock;
126 /* Constants */
127 long bd_maxbufspace;
128 long bd_hibufspace;
129 long bd_lobufspace;
130 long bd_bufspacethresh;
131 int bd_hifreebuffers;
132 int bd_lofreebuffers;
133 int bd_hidirtybuffers;
134 int bd_lodirtybuffers;
135 int bd_dirtybufthresh;
136 int bd_lim;
137 /* atomics */
138 int bd_wanted;
139 bool bd_shutdown;
140 int __aligned(CACHE_LINE_SIZE) bd_numdirtybuffers;
141 int __aligned(CACHE_LINE_SIZE) bd_running;
142 long __aligned(CACHE_LINE_SIZE) bd_bufspace;
143 int __aligned(CACHE_LINE_SIZE) bd_freebuffers;
144 } __aligned(CACHE_LINE_SIZE);
145
146 #define BD_LOCKPTR(bd) (&(bd)->bd_cleanq->bq_lock)
147 #define BD_LOCK(bd) mtx_lock(BD_LOCKPTR((bd)))
148 #define BD_UNLOCK(bd) mtx_unlock(BD_LOCKPTR((bd)))
149 #define BD_ASSERT_LOCKED(bd) mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
150 #define BD_RUN_LOCKPTR(bd) (&(bd)->bd_run_lock)
151 #define BD_RUN_LOCK(bd) mtx_lock(BD_RUN_LOCKPTR((bd)))
152 #define BD_RUN_UNLOCK(bd) mtx_unlock(BD_RUN_LOCKPTR((bd)))
153 #define BD_DOMAIN(bd) (bd - bdomain)
154
155 static char *buf; /* buffer header pool */
156 static struct buf *
nbufp(unsigned i)157 nbufp(unsigned i)
158 {
159 return ((struct buf *)(buf + (sizeof(struct buf) +
160 sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
161 }
162
163 caddr_t __read_mostly unmapped_buf;
164 #ifdef INVARIANTS
165 void *poisoned_buf = (void *)-1;
166 #endif
167
168 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
169 struct proc *bufdaemonproc;
170
171 static void vm_hold_free_pages(struct buf *bp, int newbsize);
172 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
173 vm_offset_t to);
174 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
175 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
176 vm_page_t m);
177 static void vfs_clean_pages_dirty_buf(struct buf *bp);
178 static void vfs_setdirty_range(struct buf *bp);
179 static void vfs_vmio_invalidate(struct buf *bp);
180 static void vfs_vmio_truncate(struct buf *bp, int npages);
181 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
182 static int vfs_bio_clcheck(struct vnode *vp, int size,
183 daddr_t lblkno, daddr_t blkno);
184 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
185 void (*)(struct buf *));
186 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
187 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
188 static void buf_daemon(void);
189 static __inline void bd_wakeup(void);
190 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
191 static void bufkva_reclaim(vmem_t *, int);
192 static void bufkva_free(struct buf *);
193 static int buf_import(void *, void **, int, int, int);
194 static void buf_release(void *, void **, int);
195 static void maxbcachebuf_adjust(void);
196 static inline struct bufdomain *bufdomain(struct buf *);
197 static void bq_remove(struct bufqueue *bq, struct buf *bp);
198 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
199 static int buf_recycle(struct bufdomain *, bool kva);
200 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
201 const char *lockname);
202 static void bd_init(struct bufdomain *bd);
203 static int bd_flushall(struct bufdomain *bd);
204 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
205 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
206
207 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
208 int vmiodirenable = TRUE;
209 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
210 "Use the VM system for directory writes");
211 static long runningbufspace;
212 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
213 "Amount of presently outstanding async buffer io");
214 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
215 NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
216 static counter_u64_t bufkvaspace;
217 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
218 "Kernel virtual memory used for buffers");
219 static long maxbufspace;
220 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
221 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
222 __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
223 "Maximum allowed value of bufspace (including metadata)");
224 static long bufmallocspace;
225 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
226 "Amount of malloced memory for buffers");
227 static long maxbufmallocspace;
228 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
229 0, "Maximum amount of malloced memory for buffers");
230 static long lobufspace;
231 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
232 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
233 __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
234 "Minimum amount of buffers we want to have");
235 long hibufspace;
236 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
237 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
238 __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
239 "Maximum allowed value of bufspace (excluding metadata)");
240 long bufspacethresh;
241 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
242 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
243 __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
244 "Bufspace consumed before waking the daemon to free some");
245 static counter_u64_t buffreekvacnt;
246 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
247 "Number of times we have freed the KVA space from some buffer");
248 static counter_u64_t bufdefragcnt;
249 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
250 "Number of times we have had to repeat buffer allocation to defragment");
251 static long lorunningspace;
252 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
253 CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
254 "Minimum preferred space used for in-progress I/O");
255 static long hirunningspace;
256 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
257 CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
258 "Maximum amount of space to use for in-progress I/O");
259 int dirtybufferflushes;
260 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
261 0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
262 int bdwriteskip;
263 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
264 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
265 int altbufferflushes;
266 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
267 &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
268 static int recursiveflushes;
269 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
270 &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
271 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
272 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
273 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
274 "Number of buffers that are dirty (has unwritten changes) at the moment");
275 static int lodirtybuffers;
276 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
277 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
278 __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
279 "How many buffers we want to have free before bufdaemon can sleep");
280 static int hidirtybuffers;
281 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
282 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
283 __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
284 "When the number of dirty buffers is considered severe");
285 int dirtybufthresh;
286 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
287 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
288 __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
289 "Number of bdwrite to bawrite conversions to clear dirty buffers");
290 static int numfreebuffers;
291 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
292 "Number of free buffers");
293 static int lofreebuffers;
294 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
295 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
296 __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
297 "Target number of free buffers");
298 static int hifreebuffers;
299 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
300 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
301 __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
302 "Threshold for clean buffer recycling");
303 static counter_u64_t getnewbufcalls;
304 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
305 &getnewbufcalls, "Number of calls to getnewbuf");
306 static counter_u64_t getnewbufrestarts;
307 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
308 &getnewbufrestarts,
309 "Number of times getnewbuf has had to restart a buffer acquisition");
310 static counter_u64_t mappingrestarts;
311 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
312 &mappingrestarts,
313 "Number of times getblk has had to restart a buffer mapping for "
314 "unmapped buffer");
315 static counter_u64_t numbufallocfails;
316 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
317 &numbufallocfails, "Number of times buffer allocations failed");
318 static int flushbufqtarget = 100;
319 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
320 "Amount of work to do in flushbufqueues when helping bufdaemon");
321 static counter_u64_t notbufdflushes;
322 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, ¬bufdflushes,
323 "Number of dirty buffer flushes done by the bufdaemon helpers");
324 static long barrierwrites;
325 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
326 &barrierwrites, 0, "Number of barrier writes");
327 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed,
328 CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
329 &unmapped_buf_allowed, 0,
330 "Permit the use of the unmapped i/o");
331 int maxbcachebuf = MAXBCACHEBUF;
332 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
333 "Maximum size of a buffer cache block");
334
335 /*
336 * This lock synchronizes access to bd_request.
337 */
338 static struct mtx_padalign __exclusive_cache_line bdlock;
339
340 /*
341 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
342 * waitrunningbufspace().
343 */
344 static struct mtx_padalign __exclusive_cache_line rbreqlock;
345
346 /*
347 * Lock that protects bdirtywait.
348 */
349 static struct mtx_padalign __exclusive_cache_line bdirtylock;
350
351 /*
352 * bufdaemon shutdown request and sleep channel.
353 */
354 static bool bd_shutdown;
355
356 /*
357 * Wakeup point for bufdaemon, as well as indicator of whether it is already
358 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it
359 * is idling.
360 */
361 static int bd_request;
362
363 /*
364 * Request for the buf daemon to write more buffers than is indicated by
365 * lodirtybuf. This may be necessary to push out excess dependencies or
366 * defragment the address space where a simple count of the number of dirty
367 * buffers is insufficient to characterize the demand for flushing them.
368 */
369 static int bd_speedupreq;
370
371 /*
372 * Synchronization (sleep/wakeup) variable for active buffer space requests.
373 * Set when wait starts, cleared prior to wakeup().
374 * Used in runningbufwakeup() and waitrunningbufspace().
375 */
376 static int runningbufreq;
377
378 /*
379 * Synchronization for bwillwrite() waiters.
380 */
381 static int bdirtywait;
382
383 /*
384 * Definitions for the buffer free lists.
385 */
386 #define QUEUE_NONE 0 /* on no queue */
387 #define QUEUE_EMPTY 1 /* empty buffer headers */
388 #define QUEUE_DIRTY 2 /* B_DELWRI buffers */
389 #define QUEUE_CLEAN 3 /* non-B_DELWRI buffers */
390 #define QUEUE_SENTINEL 4 /* not an queue index, but mark for sentinel */
391
392 /* Maximum number of buffer domains. */
393 #define BUF_DOMAINS 8
394
395 struct bufdomainset bdlodirty; /* Domains > lodirty */
396 struct bufdomainset bdhidirty; /* Domains > hidirty */
397
398 /* Configured number of clean queues. */
399 static int __read_mostly buf_domains;
400
401 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
402 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
403 struct bufqueue __exclusive_cache_line bqempty;
404
405 /*
406 * per-cpu empty buffer cache.
407 */
408 uma_zone_t buf_zone;
409
410 static int
sysctl_runningspace(SYSCTL_HANDLER_ARGS)411 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
412 {
413 long value;
414 int error;
415
416 value = *(long *)arg1;
417 error = sysctl_handle_long(oidp, &value, 0, req);
418 if (error != 0 || req->newptr == NULL)
419 return (error);
420 mtx_lock(&rbreqlock);
421 if (arg1 == &hirunningspace) {
422 if (value < lorunningspace)
423 error = EINVAL;
424 else
425 hirunningspace = value;
426 } else {
427 KASSERT(arg1 == &lorunningspace,
428 ("%s: unknown arg1", __func__));
429 if (value > hirunningspace)
430 error = EINVAL;
431 else
432 lorunningspace = value;
433 }
434 mtx_unlock(&rbreqlock);
435 return (error);
436 }
437
438 static int
sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)439 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
440 {
441 int error;
442 int value;
443 int i;
444
445 value = *(int *)arg1;
446 error = sysctl_handle_int(oidp, &value, 0, req);
447 if (error != 0 || req->newptr == NULL)
448 return (error);
449 *(int *)arg1 = value;
450 for (i = 0; i < buf_domains; i++)
451 *(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
452 value / buf_domains;
453
454 return (error);
455 }
456
457 static int
sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)458 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
459 {
460 long value;
461 int error;
462 int i;
463
464 value = *(long *)arg1;
465 error = sysctl_handle_long(oidp, &value, 0, req);
466 if (error != 0 || req->newptr == NULL)
467 return (error);
468 *(long *)arg1 = value;
469 for (i = 0; i < buf_domains; i++)
470 *(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
471 value / buf_domains;
472
473 return (error);
474 }
475
476 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
477 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
478 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)479 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
480 {
481 long lvalue;
482 int ivalue;
483 int i;
484
485 lvalue = 0;
486 for (i = 0; i < buf_domains; i++)
487 lvalue += bdomain[i].bd_bufspace;
488 if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
489 return (sysctl_handle_long(oidp, &lvalue, 0, req));
490 if (lvalue > INT_MAX)
491 /* On overflow, still write out a long to trigger ENOMEM. */
492 return (sysctl_handle_long(oidp, &lvalue, 0, req));
493 ivalue = lvalue;
494 return (sysctl_handle_int(oidp, &ivalue, 0, req));
495 }
496 #else
497 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)498 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
499 {
500 long lvalue;
501 int i;
502
503 lvalue = 0;
504 for (i = 0; i < buf_domains; i++)
505 lvalue += bdomain[i].bd_bufspace;
506 return (sysctl_handle_long(oidp, &lvalue, 0, req));
507 }
508 #endif
509
510 static int
sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)511 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
512 {
513 int value;
514 int i;
515
516 value = 0;
517 for (i = 0; i < buf_domains; i++)
518 value += bdomain[i].bd_numdirtybuffers;
519 return (sysctl_handle_int(oidp, &value, 0, req));
520 }
521
522 /*
523 * bdirtywakeup:
524 *
525 * Wakeup any bwillwrite() waiters.
526 */
527 static void
bdirtywakeup(void)528 bdirtywakeup(void)
529 {
530 mtx_lock(&bdirtylock);
531 if (bdirtywait) {
532 bdirtywait = 0;
533 wakeup(&bdirtywait);
534 }
535 mtx_unlock(&bdirtylock);
536 }
537
538 /*
539 * bd_clear:
540 *
541 * Clear a domain from the appropriate bitsets when dirtybuffers
542 * is decremented.
543 */
544 static void
bd_clear(struct bufdomain * bd)545 bd_clear(struct bufdomain *bd)
546 {
547
548 mtx_lock(&bdirtylock);
549 if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
550 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
551 if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
552 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
553 mtx_unlock(&bdirtylock);
554 }
555
556 /*
557 * bd_set:
558 *
559 * Set a domain in the appropriate bitsets when dirtybuffers
560 * is incremented.
561 */
562 static void
bd_set(struct bufdomain * bd)563 bd_set(struct bufdomain *bd)
564 {
565
566 mtx_lock(&bdirtylock);
567 if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
568 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
569 if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
570 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
571 mtx_unlock(&bdirtylock);
572 }
573
574 /*
575 * bdirtysub:
576 *
577 * Decrement the numdirtybuffers count by one and wakeup any
578 * threads blocked in bwillwrite().
579 */
580 static void
bdirtysub(struct buf * bp)581 bdirtysub(struct buf *bp)
582 {
583 struct bufdomain *bd;
584 int num;
585
586 bd = bufdomain(bp);
587 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
588 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
589 bdirtywakeup();
590 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
591 bd_clear(bd);
592 }
593
594 /*
595 * bdirtyadd:
596 *
597 * Increment the numdirtybuffers count by one and wakeup the buf
598 * daemon if needed.
599 */
600 static void
bdirtyadd(struct buf * bp)601 bdirtyadd(struct buf *bp)
602 {
603 struct bufdomain *bd;
604 int num;
605
606 /*
607 * Only do the wakeup once as we cross the boundary. The
608 * buf daemon will keep running until the condition clears.
609 */
610 bd = bufdomain(bp);
611 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
612 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
613 bd_wakeup();
614 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
615 bd_set(bd);
616 }
617
618 /*
619 * bufspace_daemon_wakeup:
620 *
621 * Wakeup the daemons responsible for freeing clean bufs.
622 */
623 static void
bufspace_daemon_wakeup(struct bufdomain * bd)624 bufspace_daemon_wakeup(struct bufdomain *bd)
625 {
626
627 /*
628 * avoid the lock if the daemon is running.
629 */
630 if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
631 BD_RUN_LOCK(bd);
632 atomic_store_int(&bd->bd_running, 1);
633 wakeup(&bd->bd_running);
634 BD_RUN_UNLOCK(bd);
635 }
636 }
637
638 /*
639 * bufspace_adjust:
640 *
641 * Adjust the reported bufspace for a KVA managed buffer, possibly
642 * waking any waiters.
643 */
644 static void
bufspace_adjust(struct buf * bp,int bufsize)645 bufspace_adjust(struct buf *bp, int bufsize)
646 {
647 struct bufdomain *bd;
648 long space;
649 int diff;
650
651 KASSERT((bp->b_flags & B_MALLOC) == 0,
652 ("bufspace_adjust: malloc buf %p", bp));
653 bd = bufdomain(bp);
654 diff = bufsize - bp->b_bufsize;
655 if (diff < 0) {
656 atomic_subtract_long(&bd->bd_bufspace, -diff);
657 } else if (diff > 0) {
658 space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
659 /* Wake up the daemon on the transition. */
660 if (space < bd->bd_bufspacethresh &&
661 space + diff >= bd->bd_bufspacethresh)
662 bufspace_daemon_wakeup(bd);
663 }
664 bp->b_bufsize = bufsize;
665 }
666
667 /*
668 * bufspace_reserve:
669 *
670 * Reserve bufspace before calling allocbuf(). metadata has a
671 * different space limit than data.
672 */
673 static int
bufspace_reserve(struct bufdomain * bd,int size,bool metadata)674 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
675 {
676 long limit, new;
677 long space;
678
679 if (metadata)
680 limit = bd->bd_maxbufspace;
681 else
682 limit = bd->bd_hibufspace;
683 space = atomic_fetchadd_long(&bd->bd_bufspace, size);
684 new = space + size;
685 if (new > limit) {
686 atomic_subtract_long(&bd->bd_bufspace, size);
687 return (ENOSPC);
688 }
689
690 /* Wake up the daemon on the transition. */
691 if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
692 bufspace_daemon_wakeup(bd);
693
694 return (0);
695 }
696
697 /*
698 * bufspace_release:
699 *
700 * Release reserved bufspace after bufspace_adjust() has consumed it.
701 */
702 static void
bufspace_release(struct bufdomain * bd,int size)703 bufspace_release(struct bufdomain *bd, int size)
704 {
705
706 atomic_subtract_long(&bd->bd_bufspace, size);
707 }
708
709 /*
710 * bufspace_wait:
711 *
712 * Wait for bufspace, acting as the buf daemon if a locked vnode is
713 * supplied. bd_wanted must be set prior to polling for space. The
714 * operation must be re-tried on return.
715 */
716 static void
bufspace_wait(struct bufdomain * bd,struct vnode * vp,int gbflags,int slpflag,int slptimeo)717 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
718 int slpflag, int slptimeo)
719 {
720 struct thread *td;
721 int error, fl, norunbuf;
722
723 if ((gbflags & GB_NOWAIT_BD) != 0)
724 return;
725
726 td = curthread;
727 BD_LOCK(bd);
728 while (bd->bd_wanted) {
729 if (vp != NULL && vp->v_type != VCHR &&
730 (td->td_pflags & TDP_BUFNEED) == 0) {
731 BD_UNLOCK(bd);
732 /*
733 * getblk() is called with a vnode locked, and
734 * some majority of the dirty buffers may as
735 * well belong to the vnode. Flushing the
736 * buffers there would make a progress that
737 * cannot be achieved by the buf_daemon, that
738 * cannot lock the vnode.
739 */
740 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
741 (td->td_pflags & TDP_NORUNNINGBUF);
742
743 /*
744 * Play bufdaemon. The getnewbuf() function
745 * may be called while the thread owns lock
746 * for another dirty buffer for the same
747 * vnode, which makes it impossible to use
748 * VOP_FSYNC() there, due to the buffer lock
749 * recursion.
750 */
751 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
752 fl = buf_flush(vp, bd, flushbufqtarget);
753 td->td_pflags &= norunbuf;
754 BD_LOCK(bd);
755 if (fl != 0)
756 continue;
757 if (bd->bd_wanted == 0)
758 break;
759 }
760 error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
761 PVFS | slpflag, "newbuf", slptimeo);
762 if (error != 0)
763 break;
764 }
765 BD_UNLOCK(bd);
766 }
767
768 static void
bufspace_daemon_shutdown(void * arg,int howto __unused)769 bufspace_daemon_shutdown(void *arg, int howto __unused)
770 {
771 struct bufdomain *bd = arg;
772 int error;
773
774 if (KERNEL_PANICKED())
775 return;
776
777 BD_RUN_LOCK(bd);
778 bd->bd_shutdown = true;
779 wakeup(&bd->bd_running);
780 error = msleep(&bd->bd_shutdown, BD_RUN_LOCKPTR(bd), 0,
781 "bufspace_shutdown", 60 * hz);
782 BD_RUN_UNLOCK(bd);
783 if (error != 0)
784 printf("bufspacedaemon wait error: %d\n", error);
785 }
786
787 /*
788 * bufspace_daemon:
789 *
790 * buffer space management daemon. Tries to maintain some marginal
791 * amount of free buffer space so that requesting processes neither
792 * block nor work to reclaim buffers.
793 */
794 static void
bufspace_daemon(void * arg)795 bufspace_daemon(void *arg)
796 {
797 struct bufdomain *bd = arg;
798
799 EVENTHANDLER_REGISTER(shutdown_pre_sync, bufspace_daemon_shutdown, bd,
800 SHUTDOWN_PRI_LAST + 100);
801
802 BD_RUN_LOCK(bd);
803 while (!bd->bd_shutdown) {
804 BD_RUN_UNLOCK(bd);
805
806 /*
807 * Free buffers from the clean queue until we meet our
808 * targets.
809 *
810 * Theory of operation: The buffer cache is most efficient
811 * when some free buffer headers and space are always
812 * available to getnewbuf(). This daemon attempts to prevent
813 * the excessive blocking and synchronization associated
814 * with shortfall. It goes through three phases according
815 * demand:
816 *
817 * 1) The daemon wakes up voluntarily once per-second
818 * during idle periods when the counters are below
819 * the wakeup thresholds (bufspacethresh, lofreebuffers).
820 *
821 * 2) The daemon wakes up as we cross the thresholds
822 * ahead of any potential blocking. This may bounce
823 * slightly according to the rate of consumption and
824 * release.
825 *
826 * 3) The daemon and consumers are starved for working
827 * clean buffers. This is the 'bufspace' sleep below
828 * which will inefficiently trade bufs with bqrelse
829 * until we return to condition 2.
830 */
831 while (bd->bd_bufspace > bd->bd_lobufspace ||
832 bd->bd_freebuffers < bd->bd_hifreebuffers) {
833 if (buf_recycle(bd, false) != 0) {
834 if (bd_flushall(bd))
835 continue;
836 /*
837 * Speedup dirty if we've run out of clean
838 * buffers. This is possible in particular
839 * because softdep may held many bufs locked
840 * pending writes to other bufs which are
841 * marked for delayed write, exhausting
842 * clean space until they are written.
843 */
844 bd_speedup();
845 BD_LOCK(bd);
846 if (bd->bd_wanted) {
847 msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
848 PRIBIO|PDROP, "bufspace", hz/10);
849 } else
850 BD_UNLOCK(bd);
851 }
852 maybe_yield();
853 }
854
855 /*
856 * Re-check our limits and sleep. bd_running must be
857 * cleared prior to checking the limits to avoid missed
858 * wakeups. The waker will adjust one of bufspace or
859 * freebuffers prior to checking bd_running.
860 */
861 BD_RUN_LOCK(bd);
862 if (bd->bd_shutdown)
863 break;
864 atomic_store_int(&bd->bd_running, 0);
865 if (bd->bd_bufspace < bd->bd_bufspacethresh &&
866 bd->bd_freebuffers > bd->bd_lofreebuffers) {
867 msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd),
868 PRIBIO, "-", hz);
869 } else {
870 /* Avoid spurious wakeups while running. */
871 atomic_store_int(&bd->bd_running, 1);
872 }
873 }
874 wakeup(&bd->bd_shutdown);
875 BD_RUN_UNLOCK(bd);
876 kthread_exit();
877 }
878
879 /*
880 * bufmallocadjust:
881 *
882 * Adjust the reported bufspace for a malloc managed buffer, possibly
883 * waking any waiters.
884 */
885 static void
bufmallocadjust(struct buf * bp,int bufsize)886 bufmallocadjust(struct buf *bp, int bufsize)
887 {
888 int diff;
889
890 KASSERT((bp->b_flags & B_MALLOC) != 0,
891 ("bufmallocadjust: non-malloc buf %p", bp));
892 diff = bufsize - bp->b_bufsize;
893 if (diff < 0)
894 atomic_subtract_long(&bufmallocspace, -diff);
895 else
896 atomic_add_long(&bufmallocspace, diff);
897 bp->b_bufsize = bufsize;
898 }
899
900 /*
901 * runningwakeup:
902 *
903 * Wake up processes that are waiting on asynchronous writes to fall
904 * below lorunningspace.
905 */
906 static void
runningwakeup(void)907 runningwakeup(void)
908 {
909
910 mtx_lock(&rbreqlock);
911 if (runningbufreq) {
912 runningbufreq = 0;
913 wakeup(&runningbufreq);
914 }
915 mtx_unlock(&rbreqlock);
916 }
917
918 /*
919 * runningbufwakeup:
920 *
921 * Decrement the outstanding write count according.
922 */
923 void
runningbufwakeup(struct buf * bp)924 runningbufwakeup(struct buf *bp)
925 {
926 long space, bspace;
927
928 bspace = bp->b_runningbufspace;
929 if (bspace == 0)
930 return;
931 space = atomic_fetchadd_long(&runningbufspace, -bspace);
932 KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
933 space, bspace));
934 bp->b_runningbufspace = 0;
935 /*
936 * Only acquire the lock and wakeup on the transition from exceeding
937 * the threshold to falling below it.
938 */
939 if (space < lorunningspace)
940 return;
941 if (space - bspace > lorunningspace)
942 return;
943 runningwakeup();
944 }
945
946 long
runningbufclaim(struct buf * bp,int space)947 runningbufclaim(struct buf *bp, int space)
948 {
949 long old;
950
951 old = atomic_fetchadd_long(&runningbufspace, space);
952 bp->b_runningbufspace = space;
953 return (old);
954 }
955
956 /*
957 * waitrunningbufspace()
958 *
959 * runningbufspace is a measure of the amount of I/O currently
960 * running. This routine is used in async-write situations to
961 * prevent creating huge backups of pending writes to a device.
962 * Only asynchronous writes are governed by this function.
963 *
964 * This does NOT turn an async write into a sync write. It waits
965 * for earlier writes to complete and generally returns before the
966 * caller's write has reached the device.
967 */
968 void
waitrunningbufspace(void)969 waitrunningbufspace(void)
970 {
971
972 mtx_lock(&rbreqlock);
973 while (runningbufspace > hirunningspace) {
974 runningbufreq = 1;
975 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
976 }
977 mtx_unlock(&rbreqlock);
978 }
979
980 /*
981 * vfs_buf_test_cache:
982 *
983 * Called when a buffer is extended. This function clears the B_CACHE
984 * bit if the newly extended portion of the buffer does not contain
985 * valid data.
986 */
987 static __inline void
vfs_buf_test_cache(struct buf * bp,vm_ooffset_t foff,vm_offset_t off,vm_offset_t size,vm_page_t m)988 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
989 vm_offset_t size, vm_page_t m)
990 {
991
992 /*
993 * This function and its results are protected by higher level
994 * synchronization requiring vnode and buf locks to page in and
995 * validate pages.
996 */
997 if (bp->b_flags & B_CACHE) {
998 int base = (foff + off) & PAGE_MASK;
999 if (vm_page_is_valid(m, base, size) == 0)
1000 bp->b_flags &= ~B_CACHE;
1001 }
1002 }
1003
1004 /* Wake up the buffer daemon if necessary */
1005 static void
bd_wakeup(void)1006 bd_wakeup(void)
1007 {
1008
1009 mtx_lock(&bdlock);
1010 if (bd_request == 0) {
1011 bd_request = 1;
1012 wakeup(&bd_request);
1013 }
1014 mtx_unlock(&bdlock);
1015 }
1016
1017 /*
1018 * Adjust the maxbcachbuf tunable.
1019 */
1020 static void
maxbcachebuf_adjust(void)1021 maxbcachebuf_adjust(void)
1022 {
1023 int i;
1024
1025 /*
1026 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
1027 */
1028 i = 2;
1029 while (i * 2 <= maxbcachebuf)
1030 i *= 2;
1031 maxbcachebuf = i;
1032 if (maxbcachebuf < MAXBSIZE)
1033 maxbcachebuf = MAXBSIZE;
1034 if (maxbcachebuf > maxphys)
1035 maxbcachebuf = maxphys;
1036 if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1037 printf("maxbcachebuf=%d\n", maxbcachebuf);
1038 }
1039
1040 /*
1041 * bd_speedup - speedup the buffer cache flushing code
1042 */
1043 void
bd_speedup(void)1044 bd_speedup(void)
1045 {
1046 int needwake;
1047
1048 mtx_lock(&bdlock);
1049 needwake = 0;
1050 if (bd_speedupreq == 0 || bd_request == 0)
1051 needwake = 1;
1052 bd_speedupreq = 1;
1053 bd_request = 1;
1054 if (needwake)
1055 wakeup(&bd_request);
1056 mtx_unlock(&bdlock);
1057 }
1058
1059 #ifdef __i386__
1060 #define TRANSIENT_DENOM 5
1061 #else
1062 #define TRANSIENT_DENOM 10
1063 #endif
1064
1065 /*
1066 * Calculating buffer cache scaling values and reserve space for buffer
1067 * headers. This is called during low level kernel initialization and
1068 * may be called more then once. We CANNOT write to the memory area
1069 * being reserved at this time.
1070 */
1071 caddr_t
kern_vfs_bio_buffer_alloc(caddr_t v,long physmem_est)1072 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1073 {
1074 int tuned_nbuf;
1075 long maxbuf, maxbuf_sz, buf_sz, biotmap_sz;
1076
1077 /*
1078 * With KASAN or KMSAN enabled, the kernel map is shadowed. Account for
1079 * this when sizing maps based on the amount of physical memory
1080 * available.
1081 */
1082 #if defined(KASAN)
1083 physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
1084 (KASAN_SHADOW_SCALE + 1);
1085 #elif defined(KMSAN)
1086 physmem_est /= 3;
1087
1088 /*
1089 * KMSAN cannot reliably determine whether buffer data is initialized
1090 * unless it is updated through a KVA mapping.
1091 */
1092 unmapped_buf_allowed = 0;
1093 #endif
1094
1095 /*
1096 * physmem_est is in pages. Convert it to kilobytes (assumes
1097 * PAGE_SIZE is >= 1K)
1098 */
1099 physmem_est = physmem_est * (PAGE_SIZE / 1024);
1100
1101 maxbcachebuf_adjust();
1102 /*
1103 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1104 * For the first 64MB of ram nominally allocate sufficient buffers to
1105 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
1106 * buffers to cover 1/10 of our ram over 64MB. When auto-sizing
1107 * the buffer cache we limit the eventual kva reservation to
1108 * maxbcache bytes.
1109 *
1110 * factor represents the 1/4 x ram conversion.
1111 */
1112 if (nbuf == 0) {
1113 int factor = 4 * BKVASIZE / 1024;
1114
1115 nbuf = 50;
1116 if (physmem_est > 4096)
1117 nbuf += min((physmem_est - 4096) / factor,
1118 65536 / factor);
1119 if (physmem_est > 65536)
1120 nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1121 32 * 1024 * 1024 / (factor * 5));
1122
1123 if (maxbcache && nbuf > maxbcache / BKVASIZE)
1124 nbuf = maxbcache / BKVASIZE;
1125 tuned_nbuf = 1;
1126 } else
1127 tuned_nbuf = 0;
1128
1129 /* XXX Avoid unsigned long overflows later on with maxbufspace. */
1130 maxbuf = (LONG_MAX / 3) / BKVASIZE;
1131 if (nbuf > maxbuf) {
1132 if (!tuned_nbuf)
1133 printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1134 maxbuf);
1135 nbuf = maxbuf;
1136 }
1137
1138 /*
1139 * Ideal allocation size for the transient bio submap is 10%
1140 * of the maximal space buffer map. This roughly corresponds
1141 * to the amount of the buffer mapped for typical UFS load.
1142 *
1143 * Clip the buffer map to reserve space for the transient
1144 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1145 * maximum buffer map extent on the platform.
1146 *
1147 * The fall-back to the maxbuf in case of maxbcache unset,
1148 * allows to not trim the buffer KVA for the architectures
1149 * with ample KVA space.
1150 */
1151 if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1152 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1153 buf_sz = (long)nbuf * BKVASIZE;
1154 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1155 (TRANSIENT_DENOM - 1)) {
1156 /*
1157 * There is more KVA than memory. Do not
1158 * adjust buffer map size, and assign the rest
1159 * of maxbuf to transient map.
1160 */
1161 biotmap_sz = maxbuf_sz - buf_sz;
1162 } else {
1163 /*
1164 * Buffer map spans all KVA we could afford on
1165 * this platform. Give 10% (20% on i386) of
1166 * the buffer map to the transient bio map.
1167 */
1168 biotmap_sz = buf_sz / TRANSIENT_DENOM;
1169 buf_sz -= biotmap_sz;
1170 }
1171 if (biotmap_sz / INT_MAX > maxphys)
1172 bio_transient_maxcnt = INT_MAX;
1173 else
1174 bio_transient_maxcnt = biotmap_sz / maxphys;
1175 /*
1176 * Artificially limit to 1024 simultaneous in-flight I/Os
1177 * using the transient mapping.
1178 */
1179 if (bio_transient_maxcnt > 1024)
1180 bio_transient_maxcnt = 1024;
1181 if (tuned_nbuf)
1182 nbuf = buf_sz / BKVASIZE;
1183 }
1184
1185 if (nswbuf == 0) {
1186 /*
1187 * Pager buffers are allocated for short periods, so scale the
1188 * number of reserved buffers based on the number of CPUs rather
1189 * than amount of memory.
1190 */
1191 nswbuf = min(nbuf / 4, 32 * mp_ncpus);
1192 if (nswbuf < NSWBUF_MIN)
1193 nswbuf = NSWBUF_MIN;
1194 }
1195
1196 /*
1197 * Reserve space for the buffer cache buffers
1198 */
1199 buf = (char *)v;
1200 v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
1201 atop(maxbcachebuf)) * nbuf;
1202
1203 return (v);
1204 }
1205
1206 /*
1207 * Single global constant for BUF_WMESG, to avoid getting multiple
1208 * references.
1209 */
1210 static const char buf_wmesg[] = "bufwait";
1211
1212 /* Initialize the buffer subsystem. Called before use of any buffers. */
1213 void
bufinit(void)1214 bufinit(void)
1215 {
1216 struct buf *bp;
1217 int i;
1218
1219 TSENTER();
1220 KASSERT(maxbcachebuf >= MAXBSIZE,
1221 ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1222 MAXBSIZE));
1223 bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1224 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1225 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1226 mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1227
1228 unmapped_buf = (caddr_t)kva_alloc(maxphys);
1229 #ifdef INVARIANTS
1230 poisoned_buf = unmapped_buf;
1231 #endif
1232
1233 /* finally, initialize each buffer header and stick on empty q */
1234 for (i = 0; i < nbuf; i++) {
1235 bp = nbufp(i);
1236 bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
1237 bp->b_flags = B_INVAL;
1238 bp->b_rcred = NOCRED;
1239 bp->b_wcred = NOCRED;
1240 bp->b_qindex = QUEUE_NONE;
1241 bp->b_domain = -1;
1242 bp->b_subqueue = mp_maxid + 1;
1243 bp->b_xflags = 0;
1244 bp->b_data = bp->b_kvabase = unmapped_buf;
1245 LIST_INIT(&bp->b_dep);
1246 BUF_LOCKINIT(bp, buf_wmesg);
1247 bq_insert(&bqempty, bp, false);
1248 }
1249
1250 /*
1251 * maxbufspace is the absolute maximum amount of buffer space we are
1252 * allowed to reserve in KVM and in real terms. The absolute maximum
1253 * is nominally used by metadata. hibufspace is the nominal maximum
1254 * used by most other requests. The differential is required to
1255 * ensure that metadata deadlocks don't occur.
1256 *
1257 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
1258 * this may result in KVM fragmentation which is not handled optimally
1259 * by the system. XXX This is less true with vmem. We could use
1260 * PAGE_SIZE.
1261 */
1262 maxbufspace = (long)nbuf * BKVASIZE;
1263 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1264 lobufspace = (hibufspace / 20) * 19; /* 95% */
1265 bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1266
1267 /*
1268 * Note: The upper limit for hirunningspace was chosen arbitrarily and
1269 * may need further tuning. It corresponds to 128 outstanding write IO
1270 * requests, which fits with many RAID controllers' tagged queuing
1271 * limits.
1272 *
1273 * The lower 1 MiB limit is the historical upper limit for
1274 * hirunningspace.
1275 */
1276 hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1277 128 * maxphys), 1024 * 1024);
1278 lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1279
1280 /*
1281 * Limit the amount of malloc memory since it is wired permanently into
1282 * the kernel space. Even though this is accounted for in the buffer
1283 * allocation, we don't want the malloced region to grow uncontrolled.
1284 * The malloc scheme improves memory utilization significantly on
1285 * average (small) directories.
1286 */
1287 maxbufmallocspace = hibufspace / 20;
1288
1289 /*
1290 * Reduce the chance of a deadlock occurring by limiting the number
1291 * of delayed-write dirty buffers we allow to stack up.
1292 */
1293 hidirtybuffers = nbuf / 4 + 20;
1294 dirtybufthresh = hidirtybuffers * 9 / 10;
1295 /*
1296 * To support extreme low-memory systems, make sure hidirtybuffers
1297 * cannot eat up all available buffer space. This occurs when our
1298 * minimum cannot be met. We try to size hidirtybuffers to 3/4 our
1299 * buffer space assuming BKVASIZE'd buffers.
1300 */
1301 while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1302 hidirtybuffers >>= 1;
1303 }
1304 lodirtybuffers = hidirtybuffers / 2;
1305
1306 /*
1307 * lofreebuffers should be sufficient to avoid stalling waiting on
1308 * buf headers under heavy utilization. The bufs in per-cpu caches
1309 * are counted as free but will be unavailable to threads executing
1310 * on other cpus.
1311 *
1312 * hifreebuffers is the free target for the bufspace daemon. This
1313 * should be set appropriately to limit work per-iteration.
1314 */
1315 lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1316 hifreebuffers = (3 * lofreebuffers) / 2;
1317 numfreebuffers = nbuf;
1318
1319 /* Setup the kva and free list allocators. */
1320 vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1321 buf_zone = uma_zcache_create("buf free cache",
1322 sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
1323 NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1324
1325 /*
1326 * Size the clean queue according to the amount of buffer space.
1327 * One queue per-256mb up to the max. More queues gives better
1328 * concurrency but less accurate LRU.
1329 */
1330 buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1331 for (i = 0 ; i < buf_domains; i++) {
1332 struct bufdomain *bd;
1333
1334 bd = &bdomain[i];
1335 bd_init(bd);
1336 bd->bd_freebuffers = nbuf / buf_domains;
1337 bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1338 bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1339 bd->bd_bufspace = 0;
1340 bd->bd_maxbufspace = maxbufspace / buf_domains;
1341 bd->bd_hibufspace = hibufspace / buf_domains;
1342 bd->bd_lobufspace = lobufspace / buf_domains;
1343 bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1344 bd->bd_numdirtybuffers = 0;
1345 bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1346 bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1347 bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1348 /* Don't allow more than 2% of bufs in the per-cpu caches. */
1349 bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1350 }
1351 getnewbufcalls = counter_u64_alloc(M_WAITOK);
1352 getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1353 mappingrestarts = counter_u64_alloc(M_WAITOK);
1354 numbufallocfails = counter_u64_alloc(M_WAITOK);
1355 notbufdflushes = counter_u64_alloc(M_WAITOK);
1356 buffreekvacnt = counter_u64_alloc(M_WAITOK);
1357 bufdefragcnt = counter_u64_alloc(M_WAITOK);
1358 bufkvaspace = counter_u64_alloc(M_WAITOK);
1359 TSEXIT();
1360 }
1361
1362 #ifdef INVARIANTS
1363 static inline void
vfs_buf_check_mapped(struct buf * bp)1364 vfs_buf_check_mapped(struct buf *bp)
1365 {
1366
1367 KASSERT(bp->b_kvabase != unmapped_buf,
1368 ("mapped buf: b_kvabase was not updated %p", bp));
1369 KASSERT(bp->b_data != unmapped_buf,
1370 ("mapped buf: b_data was not updated %p", bp));
1371 KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1372 maxphys, ("b_data + b_offset unmapped %p", bp));
1373 }
1374
1375 static inline void
vfs_buf_check_unmapped(struct buf * bp)1376 vfs_buf_check_unmapped(struct buf *bp)
1377 {
1378
1379 KASSERT(bp->b_data == unmapped_buf,
1380 ("unmapped buf: corrupted b_data %p", bp));
1381 }
1382
1383 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1384 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1385 #else
1386 #define BUF_CHECK_MAPPED(bp) do {} while (0)
1387 #define BUF_CHECK_UNMAPPED(bp) do {} while (0)
1388 #endif
1389
1390 static int
isbufbusy(struct buf * bp)1391 isbufbusy(struct buf *bp)
1392 {
1393 if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1394 ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1395 return (1);
1396 return (0);
1397 }
1398
1399 /*
1400 * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1401 */
1402 void
bufshutdown(int show_busybufs)1403 bufshutdown(int show_busybufs)
1404 {
1405 static int first_buf_printf = 1;
1406 struct buf *bp;
1407 int i, iter, nbusy, pbusy;
1408 #ifndef PREEMPTION
1409 int subiter;
1410 #endif
1411
1412 /*
1413 * Sync filesystems for shutdown
1414 */
1415 wdog_kern_pat(WD_LASTVAL);
1416 kern_sync(curthread);
1417
1418 /*
1419 * With soft updates, some buffers that are
1420 * written will be remarked as dirty until other
1421 * buffers are written.
1422 */
1423 for (iter = pbusy = 0; iter < 20; iter++) {
1424 nbusy = 0;
1425 for (i = nbuf - 1; i >= 0; i--) {
1426 bp = nbufp(i);
1427 if (isbufbusy(bp))
1428 nbusy++;
1429 }
1430 if (nbusy == 0) {
1431 if (first_buf_printf)
1432 printf("All buffers synced.");
1433 break;
1434 }
1435 if (first_buf_printf) {
1436 printf("Syncing disks, buffers remaining... ");
1437 first_buf_printf = 0;
1438 }
1439 printf("%d ", nbusy);
1440 if (nbusy < pbusy)
1441 iter = 0;
1442 pbusy = nbusy;
1443
1444 wdog_kern_pat(WD_LASTVAL);
1445 kern_sync(curthread);
1446
1447 #ifdef PREEMPTION
1448 /*
1449 * Spin for a while to allow interrupt threads to run.
1450 */
1451 DELAY(50000 * iter);
1452 #else
1453 /*
1454 * Context switch several times to allow interrupt
1455 * threads to run.
1456 */
1457 for (subiter = 0; subiter < 50 * iter; subiter++) {
1458 sched_relinquish(curthread);
1459 DELAY(1000);
1460 }
1461 #endif
1462 }
1463 printf("\n");
1464 /*
1465 * Count only busy local buffers to prevent forcing
1466 * a fsck if we're just a client of a wedged NFS server
1467 */
1468 nbusy = 0;
1469 for (i = nbuf - 1; i >= 0; i--) {
1470 bp = nbufp(i);
1471 if (isbufbusy(bp)) {
1472 #if 0
1473 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */
1474 if (bp->b_dev == NULL) {
1475 TAILQ_REMOVE(&mountlist,
1476 bp->b_vp->v_mount, mnt_list);
1477 continue;
1478 }
1479 #endif
1480 nbusy++;
1481 if (show_busybufs > 0) {
1482 printf(
1483 "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1484 nbusy, bp, bp->b_vp, bp->b_flags,
1485 (intmax_t)bp->b_blkno,
1486 (intmax_t)bp->b_lblkno);
1487 BUF_LOCKPRINTINFO(bp);
1488 if (show_busybufs > 1)
1489 vn_printf(bp->b_vp,
1490 "vnode content: ");
1491 }
1492 }
1493 }
1494 if (nbusy) {
1495 /*
1496 * Failed to sync all blocks. Indicate this and don't
1497 * unmount filesystems (thus forcing an fsck on reboot).
1498 */
1499 BOOTTRACE("shutdown failed to sync buffers");
1500 printf("Giving up on %d buffers\n", nbusy);
1501 DELAY(5000000); /* 5 seconds */
1502 swapoff_all();
1503 } else {
1504 BOOTTRACE("shutdown sync complete");
1505 if (!first_buf_printf)
1506 printf("Final sync complete\n");
1507
1508 /*
1509 * Unmount filesystems and perform swapoff, to quiesce
1510 * the system as much as possible. In particular, no
1511 * I/O should be initiated from top levels since it
1512 * might be abruptly terminated by reset, or otherwise
1513 * erronously handled because other parts of the
1514 * system are disabled.
1515 *
1516 * Swapoff before unmount, because file-backed swap is
1517 * non-operational after unmount of the underlying
1518 * filesystem.
1519 */
1520 if (!KERNEL_PANICKED()) {
1521 swapoff_all();
1522 vfs_unmountall();
1523 BOOTTRACE("shutdown unmounted all filesystems");
1524 }
1525 }
1526 DELAY(100000); /* wait for console output to finish */
1527 }
1528
1529 static void
bpmap_qenter(struct buf * bp)1530 bpmap_qenter(struct buf *bp)
1531 {
1532
1533 BUF_CHECK_MAPPED(bp);
1534
1535 /*
1536 * bp->b_data is relative to bp->b_offset, but
1537 * bp->b_offset may be offset into the first page.
1538 */
1539 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1540 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1541 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1542 (vm_offset_t)(bp->b_offset & PAGE_MASK));
1543 }
1544
1545 static inline struct bufdomain *
bufdomain(struct buf * bp)1546 bufdomain(struct buf *bp)
1547 {
1548
1549 return (&bdomain[bp->b_domain]);
1550 }
1551
1552 static struct bufqueue *
bufqueue(struct buf * bp)1553 bufqueue(struct buf *bp)
1554 {
1555
1556 switch (bp->b_qindex) {
1557 case QUEUE_NONE:
1558 /* FALLTHROUGH */
1559 case QUEUE_SENTINEL:
1560 return (NULL);
1561 case QUEUE_EMPTY:
1562 return (&bqempty);
1563 case QUEUE_DIRTY:
1564 return (&bufdomain(bp)->bd_dirtyq);
1565 case QUEUE_CLEAN:
1566 return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1567 default:
1568 break;
1569 }
1570 panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1571 }
1572
1573 /*
1574 * Return the locked bufqueue that bp is a member of.
1575 */
1576 static struct bufqueue *
bufqueue_acquire(struct buf * bp)1577 bufqueue_acquire(struct buf *bp)
1578 {
1579 struct bufqueue *bq, *nbq;
1580
1581 /*
1582 * bp can be pushed from a per-cpu queue to the
1583 * cleanq while we're waiting on the lock. Retry
1584 * if the queues don't match.
1585 */
1586 bq = bufqueue(bp);
1587 BQ_LOCK(bq);
1588 for (;;) {
1589 nbq = bufqueue(bp);
1590 if (bq == nbq)
1591 break;
1592 BQ_UNLOCK(bq);
1593 BQ_LOCK(nbq);
1594 bq = nbq;
1595 }
1596 return (bq);
1597 }
1598
1599 /*
1600 * binsfree:
1601 *
1602 * Insert the buffer into the appropriate free list. Requires a
1603 * locked buffer on entry and buffer is unlocked before return.
1604 */
1605 static void
binsfree(struct buf * bp,int qindex)1606 binsfree(struct buf *bp, int qindex)
1607 {
1608 struct bufdomain *bd;
1609 struct bufqueue *bq;
1610
1611 KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1612 ("binsfree: Invalid qindex %d", qindex));
1613 BUF_ASSERT_XLOCKED(bp);
1614
1615 /*
1616 * Handle delayed bremfree() processing.
1617 */
1618 if (bp->b_flags & B_REMFREE) {
1619 if (bp->b_qindex == qindex) {
1620 bp->b_flags |= B_REUSE;
1621 bp->b_flags &= ~B_REMFREE;
1622 BUF_UNLOCK(bp);
1623 return;
1624 }
1625 bq = bufqueue_acquire(bp);
1626 bq_remove(bq, bp);
1627 BQ_UNLOCK(bq);
1628 }
1629 bd = bufdomain(bp);
1630 if (qindex == QUEUE_CLEAN) {
1631 if (bd->bd_lim != 0)
1632 bq = &bd->bd_subq[PCPU_GET(cpuid)];
1633 else
1634 bq = bd->bd_cleanq;
1635 } else
1636 bq = &bd->bd_dirtyq;
1637 bq_insert(bq, bp, true);
1638 }
1639
1640 /*
1641 * buf_free:
1642 *
1643 * Free a buffer to the buf zone once it no longer has valid contents.
1644 */
1645 static void
buf_free(struct buf * bp)1646 buf_free(struct buf *bp)
1647 {
1648
1649 if (bp->b_flags & B_REMFREE)
1650 bremfreef(bp);
1651 if (bp->b_vflags & BV_BKGRDINPROG)
1652 panic("losing buffer 1");
1653 if (bp->b_rcred != NOCRED) {
1654 crfree(bp->b_rcred);
1655 bp->b_rcred = NOCRED;
1656 }
1657 if (bp->b_wcred != NOCRED) {
1658 crfree(bp->b_wcred);
1659 bp->b_wcred = NOCRED;
1660 }
1661 if (!LIST_EMPTY(&bp->b_dep))
1662 buf_deallocate(bp);
1663 bufkva_free(bp);
1664 atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1665 MPASS((bp->b_flags & B_MAXPHYS) == 0);
1666 BUF_UNLOCK(bp);
1667 uma_zfree(buf_zone, bp);
1668 }
1669
1670 /*
1671 * buf_import:
1672 *
1673 * Import bufs into the uma cache from the buf list. The system still
1674 * expects a static array of bufs and much of the synchronization
1675 * around bufs assumes type stable storage. As a result, UMA is used
1676 * only as a per-cpu cache of bufs still maintained on a global list.
1677 */
1678 static int
buf_import(void * arg,void ** store,int cnt,int domain,int flags)1679 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1680 {
1681 struct buf *bp;
1682 int i;
1683
1684 BQ_LOCK(&bqempty);
1685 for (i = 0; i < cnt; i++) {
1686 bp = TAILQ_FIRST(&bqempty.bq_queue);
1687 if (bp == NULL)
1688 break;
1689 bq_remove(&bqempty, bp);
1690 store[i] = bp;
1691 }
1692 BQ_UNLOCK(&bqempty);
1693
1694 return (i);
1695 }
1696
1697 /*
1698 * buf_release:
1699 *
1700 * Release bufs from the uma cache back to the buffer queues.
1701 */
1702 static void
buf_release(void * arg,void ** store,int cnt)1703 buf_release(void *arg, void **store, int cnt)
1704 {
1705 struct bufqueue *bq;
1706 struct buf *bp;
1707 int i;
1708
1709 bq = &bqempty;
1710 BQ_LOCK(bq);
1711 for (i = 0; i < cnt; i++) {
1712 bp = store[i];
1713 /* Inline bq_insert() to batch locking. */
1714 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1715 bp->b_flags &= ~(B_AGE | B_REUSE);
1716 bq->bq_len++;
1717 bp->b_qindex = bq->bq_index;
1718 }
1719 BQ_UNLOCK(bq);
1720 }
1721
1722 /*
1723 * buf_alloc:
1724 *
1725 * Allocate an empty buffer header.
1726 */
1727 static struct buf *
buf_alloc(struct bufdomain * bd)1728 buf_alloc(struct bufdomain *bd)
1729 {
1730 struct buf *bp;
1731 int freebufs, error;
1732
1733 /*
1734 * We can only run out of bufs in the buf zone if the average buf
1735 * is less than BKVASIZE. In this case the actual wait/block will
1736 * come from buf_reycle() failing to flush one of these small bufs.
1737 */
1738 bp = NULL;
1739 freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1740 if (freebufs > 0)
1741 bp = uma_zalloc(buf_zone, M_NOWAIT);
1742 if (bp == NULL) {
1743 atomic_add_int(&bd->bd_freebuffers, 1);
1744 bufspace_daemon_wakeup(bd);
1745 counter_u64_add(numbufallocfails, 1);
1746 return (NULL);
1747 }
1748 /*
1749 * Wake-up the bufspace daemon on transition below threshold.
1750 */
1751 if (freebufs == bd->bd_lofreebuffers)
1752 bufspace_daemon_wakeup(bd);
1753
1754 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
1755 KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
1756 error));
1757 (void)error;
1758
1759 KASSERT(bp->b_vp == NULL,
1760 ("bp: %p still has vnode %p.", bp, bp->b_vp));
1761 KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1762 ("invalid buffer %p flags %#x", bp, bp->b_flags));
1763 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1764 ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1765 KASSERT(bp->b_npages == 0,
1766 ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1767 KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1768 KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1769 MPASS((bp->b_flags & B_MAXPHYS) == 0);
1770
1771 bp->b_domain = BD_DOMAIN(bd);
1772 bp->b_flags = 0;
1773 bp->b_ioflags = 0;
1774 bp->b_xflags = 0;
1775 bp->b_vflags = 0;
1776 bp->b_vp = NULL;
1777 bp->b_blkno = bp->b_lblkno = 0;
1778 bp->b_offset = NOOFFSET;
1779 bp->b_iodone = 0;
1780 bp->b_resid = 0;
1781 bp->b_bcount = 0;
1782 bp->b_npages = 0;
1783 bp->b_dirtyoff = bp->b_dirtyend = 0;
1784 bp->b_bufobj = NULL;
1785 bp->b_data = bp->b_kvabase = unmapped_buf;
1786 bp->b_fsprivate1 = NULL;
1787 bp->b_fsprivate2 = NULL;
1788 bp->b_fsprivate3 = NULL;
1789 exterr_clear(&bp->b_exterr);
1790 LIST_INIT(&bp->b_dep);
1791
1792 return (bp);
1793 }
1794
1795 /*
1796 * buf_recycle:
1797 *
1798 * Free a buffer from the given bufqueue. kva controls whether the
1799 * freed buf must own some kva resources. This is used for
1800 * defragmenting.
1801 */
1802 static int
buf_recycle(struct bufdomain * bd,bool kva)1803 buf_recycle(struct bufdomain *bd, bool kva)
1804 {
1805 struct bufqueue *bq;
1806 struct buf *bp, *nbp;
1807
1808 if (kva)
1809 counter_u64_add(bufdefragcnt, 1);
1810 nbp = NULL;
1811 bq = bd->bd_cleanq;
1812 BQ_LOCK(bq);
1813 KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1814 ("buf_recycle: Locks don't match"));
1815 nbp = TAILQ_FIRST(&bq->bq_queue);
1816
1817 /*
1818 * Run scan, possibly freeing data and/or kva mappings on the fly
1819 * depending.
1820 */
1821 while ((bp = nbp) != NULL) {
1822 /*
1823 * Calculate next bp (we can only use it if we do not
1824 * release the bqlock).
1825 */
1826 nbp = TAILQ_NEXT(bp, b_freelist);
1827
1828 /*
1829 * If we are defragging then we need a buffer with
1830 * some kva to reclaim.
1831 */
1832 if (kva && bp->b_kvasize == 0)
1833 continue;
1834
1835 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1836 continue;
1837
1838 /*
1839 * Implement a second chance algorithm for frequently
1840 * accessed buffers.
1841 */
1842 if ((bp->b_flags & B_REUSE) != 0) {
1843 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1844 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1845 bp->b_flags &= ~B_REUSE;
1846 BUF_UNLOCK(bp);
1847 continue;
1848 }
1849
1850 /*
1851 * Skip buffers with background writes in progress.
1852 */
1853 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1854 BUF_UNLOCK(bp);
1855 continue;
1856 }
1857
1858 KASSERT(bp->b_qindex == QUEUE_CLEAN,
1859 ("buf_recycle: inconsistent queue %d bp %p",
1860 bp->b_qindex, bp));
1861 KASSERT(bp->b_domain == BD_DOMAIN(bd),
1862 ("getnewbuf: queue domain %d doesn't match request %d",
1863 bp->b_domain, (int)BD_DOMAIN(bd)));
1864 /*
1865 * NOTE: nbp is now entirely invalid. We can only restart
1866 * the scan from this point on.
1867 */
1868 bq_remove(bq, bp);
1869 BQ_UNLOCK(bq);
1870
1871 /*
1872 * Requeue the background write buffer with error and
1873 * restart the scan.
1874 */
1875 if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1876 bqrelse(bp);
1877 BQ_LOCK(bq);
1878 nbp = TAILQ_FIRST(&bq->bq_queue);
1879 continue;
1880 }
1881 bp->b_flags |= B_INVAL;
1882 brelse(bp);
1883 return (0);
1884 }
1885 bd->bd_wanted = 1;
1886 BQ_UNLOCK(bq);
1887
1888 return (ENOBUFS);
1889 }
1890
1891 /*
1892 * bremfree:
1893 *
1894 * Mark the buffer for removal from the appropriate free list.
1895 *
1896 */
1897 void
bremfree(struct buf * bp)1898 bremfree(struct buf *bp)
1899 {
1900
1901 CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1902 KASSERT((bp->b_flags & B_REMFREE) == 0,
1903 ("bremfree: buffer %p already marked for delayed removal.", bp));
1904 KASSERT(bp->b_qindex != QUEUE_NONE,
1905 ("bremfree: buffer %p not on a queue.", bp));
1906 BUF_ASSERT_XLOCKED(bp);
1907
1908 bp->b_flags |= B_REMFREE;
1909 }
1910
1911 /*
1912 * bremfreef:
1913 *
1914 * Force an immediate removal from a free list. Used only in nfs when
1915 * it abuses the b_freelist pointer.
1916 */
1917 void
bremfreef(struct buf * bp)1918 bremfreef(struct buf *bp)
1919 {
1920 struct bufqueue *bq;
1921
1922 bq = bufqueue_acquire(bp);
1923 bq_remove(bq, bp);
1924 BQ_UNLOCK(bq);
1925 }
1926
1927 static void
bq_init(struct bufqueue * bq,int qindex,int subqueue,const char * lockname)1928 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1929 {
1930
1931 mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1932 TAILQ_INIT(&bq->bq_queue);
1933 bq->bq_len = 0;
1934 bq->bq_index = qindex;
1935 bq->bq_subqueue = subqueue;
1936 }
1937
1938 static void
bd_init(struct bufdomain * bd)1939 bd_init(struct bufdomain *bd)
1940 {
1941 int i;
1942
1943 /* Per-CPU clean buf queues, plus one global queue. */
1944 bd->bd_subq = mallocarray(mp_maxid + 2, sizeof(struct bufqueue),
1945 M_BIOBUF, M_WAITOK | M_ZERO);
1946 bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1947 bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1948 bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1949 for (i = 0; i <= mp_maxid; i++)
1950 bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1951 "bufq clean subqueue lock");
1952 mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1953 }
1954
1955 /*
1956 * bq_remove:
1957 *
1958 * Removes a buffer from the free list, must be called with the
1959 * correct qlock held.
1960 */
1961 static void
bq_remove(struct bufqueue * bq,struct buf * bp)1962 bq_remove(struct bufqueue *bq, struct buf *bp)
1963 {
1964
1965 CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1966 bp, bp->b_vp, bp->b_flags);
1967 KASSERT(bp->b_qindex != QUEUE_NONE,
1968 ("bq_remove: buffer %p not on a queue.", bp));
1969 KASSERT(bufqueue(bp) == bq,
1970 ("bq_remove: Remove buffer %p from wrong queue.", bp));
1971
1972 BQ_ASSERT_LOCKED(bq);
1973 if (bp->b_qindex != QUEUE_EMPTY) {
1974 BUF_ASSERT_XLOCKED(bp);
1975 }
1976 KASSERT(bq->bq_len >= 1,
1977 ("queue %d underflow", bp->b_qindex));
1978 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1979 bq->bq_len--;
1980 bp->b_qindex = QUEUE_NONE;
1981 bp->b_flags &= ~(B_REMFREE | B_REUSE);
1982 }
1983
1984 static void
bd_flush(struct bufdomain * bd,struct bufqueue * bq)1985 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1986 {
1987 struct buf *bp;
1988
1989 BQ_ASSERT_LOCKED(bq);
1990 if (bq != bd->bd_cleanq) {
1991 BD_LOCK(bd);
1992 while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1993 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1994 TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1995 b_freelist);
1996 bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1997 }
1998 bd->bd_cleanq->bq_len += bq->bq_len;
1999 bq->bq_len = 0;
2000 }
2001 if (bd->bd_wanted) {
2002 bd->bd_wanted = 0;
2003 wakeup(&bd->bd_wanted);
2004 }
2005 if (bq != bd->bd_cleanq)
2006 BD_UNLOCK(bd);
2007 }
2008
2009 static int
bd_flushall(struct bufdomain * bd)2010 bd_flushall(struct bufdomain *bd)
2011 {
2012 struct bufqueue *bq;
2013 int flushed;
2014 int i;
2015
2016 if (bd->bd_lim == 0)
2017 return (0);
2018 flushed = 0;
2019 for (i = 0; i <= mp_maxid; i++) {
2020 bq = &bd->bd_subq[i];
2021 if (bq->bq_len == 0)
2022 continue;
2023 BQ_LOCK(bq);
2024 bd_flush(bd, bq);
2025 BQ_UNLOCK(bq);
2026 flushed++;
2027 }
2028
2029 return (flushed);
2030 }
2031
2032 static void
bq_insert(struct bufqueue * bq,struct buf * bp,bool unlock)2033 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
2034 {
2035 struct bufdomain *bd;
2036
2037 if (bp->b_qindex != QUEUE_NONE)
2038 panic("bq_insert: free buffer %p onto another queue?", bp);
2039
2040 bd = bufdomain(bp);
2041 if (bp->b_flags & B_AGE) {
2042 /* Place this buf directly on the real queue. */
2043 if (bq->bq_index == QUEUE_CLEAN)
2044 bq = bd->bd_cleanq;
2045 BQ_LOCK(bq);
2046 TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
2047 } else {
2048 BQ_LOCK(bq);
2049 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
2050 }
2051 bp->b_flags &= ~(B_AGE | B_REUSE);
2052 bq->bq_len++;
2053 bp->b_qindex = bq->bq_index;
2054 bp->b_subqueue = bq->bq_subqueue;
2055
2056 /*
2057 * Unlock before we notify so that we don't wakeup a waiter that
2058 * fails a trylock on the buf and sleeps again.
2059 */
2060 if (unlock)
2061 BUF_UNLOCK(bp);
2062
2063 if (bp->b_qindex == QUEUE_CLEAN) {
2064 /*
2065 * Flush the per-cpu queue and notify any waiters.
2066 */
2067 if (bd->bd_wanted || (bq != bd->bd_cleanq &&
2068 bq->bq_len >= bd->bd_lim))
2069 bd_flush(bd, bq);
2070 }
2071 BQ_UNLOCK(bq);
2072 }
2073
2074 /*
2075 * bufkva_free:
2076 *
2077 * Free the kva allocation for a buffer.
2078 *
2079 */
2080 static void
bufkva_free(struct buf * bp)2081 bufkva_free(struct buf *bp)
2082 {
2083
2084 #ifdef INVARIANTS
2085 if (bp->b_kvasize == 0) {
2086 KASSERT(bp->b_kvabase == unmapped_buf &&
2087 bp->b_data == unmapped_buf,
2088 ("Leaked KVA space on %p", bp));
2089 } else if (buf_mapped(bp))
2090 BUF_CHECK_MAPPED(bp);
2091 else
2092 BUF_CHECK_UNMAPPED(bp);
2093 #endif
2094 if (bp->b_kvasize == 0)
2095 return;
2096
2097 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2098 counter_u64_add(bufkvaspace, -bp->b_kvasize);
2099 counter_u64_add(buffreekvacnt, 1);
2100 bp->b_data = bp->b_kvabase = unmapped_buf;
2101 bp->b_kvasize = 0;
2102 }
2103
2104 /*
2105 * bufkva_alloc:
2106 *
2107 * Allocate the buffer KVA and set b_kvasize and b_kvabase.
2108 */
2109 static int
bufkva_alloc(struct buf * bp,int maxsize,int gbflags)2110 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2111 {
2112 vm_offset_t addr;
2113 int error;
2114
2115 KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2116 ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2117 MPASS((bp->b_flags & B_MAXPHYS) == 0);
2118 KASSERT(maxsize <= maxbcachebuf,
2119 ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
2120
2121 bufkva_free(bp);
2122
2123 addr = 0;
2124 error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2125 if (error != 0) {
2126 /*
2127 * Buffer map is too fragmented. Request the caller
2128 * to defragment the map.
2129 */
2130 return (error);
2131 }
2132 bp->b_kvabase = (caddr_t)addr;
2133 bp->b_kvasize = maxsize;
2134 counter_u64_add(bufkvaspace, bp->b_kvasize);
2135 if ((gbflags & GB_UNMAPPED) != 0) {
2136 bp->b_data = unmapped_buf;
2137 BUF_CHECK_UNMAPPED(bp);
2138 } else {
2139 bp->b_data = bp->b_kvabase;
2140 BUF_CHECK_MAPPED(bp);
2141 }
2142 return (0);
2143 }
2144
2145 /*
2146 * bufkva_reclaim:
2147 *
2148 * Reclaim buffer kva by freeing buffers holding kva. This is a vmem
2149 * callback that fires to avoid returning failure.
2150 */
2151 static void
bufkva_reclaim(vmem_t * vmem,int flags)2152 bufkva_reclaim(vmem_t *vmem, int flags)
2153 {
2154 bool done;
2155 int q;
2156 int i;
2157
2158 done = false;
2159 for (i = 0; i < 5; i++) {
2160 for (q = 0; q < buf_domains; q++)
2161 if (buf_recycle(&bdomain[q], true) != 0)
2162 done = true;
2163 if (done)
2164 break;
2165 }
2166 return;
2167 }
2168
2169 /*
2170 * Attempt to initiate asynchronous I/O on read-ahead blocks. We must
2171 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2172 * the buffer is valid and we do not have to do anything.
2173 */
2174 static void
breada(struct vnode * vp,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *))2175 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2176 struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2177 {
2178 struct buf *rabp;
2179 struct thread *td;
2180 int i;
2181
2182 td = curthread;
2183
2184 for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2185 if (inmem(vp, *rablkno))
2186 continue;
2187 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2188 if ((rabp->b_flags & B_CACHE) != 0) {
2189 brelse(rabp);
2190 continue;
2191 }
2192 #ifdef RACCT
2193 if (racct_enable) {
2194 PROC_LOCK(curproc);
2195 racct_add_buf(curproc, rabp, 0);
2196 PROC_UNLOCK(curproc);
2197 }
2198 #endif /* RACCT */
2199 td->td_ru.ru_inblock++;
2200 rabp->b_flags |= B_ASYNC;
2201 rabp->b_flags &= ~B_INVAL;
2202 if ((flags & GB_CKHASH) != 0) {
2203 rabp->b_flags |= B_CKHASH;
2204 rabp->b_ckhashcalc = ckhashfunc;
2205 }
2206 rabp->b_ioflags &= ~BIO_ERROR;
2207 rabp->b_iocmd = BIO_READ;
2208 if (rabp->b_rcred == NOCRED && cred != NOCRED)
2209 rabp->b_rcred = crhold(cred);
2210 vfs_busy_pages(rabp, 0);
2211 BUF_KERNPROC(rabp);
2212 rabp->b_iooffset = dbtob(rabp->b_blkno);
2213 bstrategy(rabp);
2214 }
2215 }
2216
2217 /*
2218 * Entry point for bread() and breadn() via #defines in sys/buf.h.
2219 *
2220 * Get a buffer with the specified data. Look in the cache first. We
2221 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
2222 * is set, the buffer is valid and we do not have to do anything, see
2223 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2224 *
2225 * Always return a NULL buffer pointer (in bpp) when returning an error.
2226 *
2227 * The blkno parameter is the logical block being requested. Normally
2228 * the mapping of logical block number to disk block address is done
2229 * by calling VOP_BMAP(). However, if the mapping is already known, the
2230 * disk block address can be passed using the dblkno parameter. If the
2231 * disk block address is not known, then the same value should be passed
2232 * for blkno and dblkno.
2233 */
2234 int
breadn_flags(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *),struct buf ** bpp)2235 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2236 daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2237 void (*ckhashfunc)(struct buf *), struct buf **bpp)
2238 {
2239 struct buf *bp;
2240 struct thread *td;
2241 int error, readwait, rv;
2242
2243 CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2244 td = curthread;
2245 /*
2246 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2247 * are specified.
2248 */
2249 error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2250 if (error != 0) {
2251 *bpp = NULL;
2252 return (error);
2253 }
2254 KASSERT(blkno == bp->b_lblkno,
2255 ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2256 (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2257 flags &= ~GB_NOSPARSE;
2258 *bpp = bp;
2259
2260 /*
2261 * If not found in cache, do some I/O
2262 */
2263 readwait = 0;
2264 if ((bp->b_flags & B_CACHE) == 0) {
2265 #ifdef RACCT
2266 if (racct_enable) {
2267 PROC_LOCK(td->td_proc);
2268 racct_add_buf(td->td_proc, bp, 0);
2269 PROC_UNLOCK(td->td_proc);
2270 }
2271 #endif /* RACCT */
2272 td->td_ru.ru_inblock++;
2273 bp->b_iocmd = BIO_READ;
2274 bp->b_flags &= ~B_INVAL;
2275 if ((flags & GB_CKHASH) != 0) {
2276 bp->b_flags |= B_CKHASH;
2277 bp->b_ckhashcalc = ckhashfunc;
2278 }
2279 if ((flags & GB_CVTENXIO) != 0)
2280 bp->b_xflags |= BX_CVTENXIO;
2281 bp->b_ioflags &= ~(BIO_ERROR | BIO_EXTERR);
2282 if (bp->b_rcred == NOCRED && cred != NOCRED)
2283 bp->b_rcred = crhold(cred);
2284 vfs_busy_pages(bp, 0);
2285 bp->b_iooffset = dbtob(bp->b_blkno);
2286 bstrategy(bp);
2287 ++readwait;
2288 }
2289
2290 /*
2291 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2292 */
2293 breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2294
2295 rv = 0;
2296 if (readwait) {
2297 rv = bufwait(bp);
2298 if (rv != 0) {
2299 brelse(bp);
2300 *bpp = NULL;
2301 }
2302 }
2303 return (rv);
2304 }
2305
2306 /*
2307 * Write, release buffer on completion. (Done by iodone
2308 * if async). Do not bother writing anything if the buffer
2309 * is invalid.
2310 *
2311 * Note that we set B_CACHE here, indicating that buffer is
2312 * fully valid and thus cacheable. This is true even of NFS
2313 * now so we set it generally. This could be set either here
2314 * or in biodone() since the I/O is synchronous. We put it
2315 * here.
2316 */
2317 int
bufwrite(struct buf * bp)2318 bufwrite(struct buf *bp)
2319 {
2320 struct vnode *vp;
2321 long space;
2322 int oldflags, retval;
2323 bool vp_md;
2324
2325 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2326 if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2327 bp->b_flags |= B_INVAL | B_RELBUF;
2328 bp->b_flags &= ~B_CACHE;
2329 brelse(bp);
2330 return (ENXIO);
2331 }
2332 if ((bp->b_flags & B_INVAL) != 0) {
2333 brelse(bp);
2334 return (0);
2335 }
2336
2337 if ((bp->b_flags & B_BARRIER) != 0)
2338 atomic_add_long(&barrierwrites, 1);
2339
2340 oldflags = bp->b_flags;
2341
2342 KASSERT((bp->b_vflags & BV_BKGRDINPROG) == 0,
2343 ("FFS background buffer should not get here %p", bp));
2344
2345 vp = bp->b_vp;
2346 vp_md = vp != NULL && (vp->v_vflag & VV_MD) != 0;
2347
2348 /*
2349 * Mark the buffer clean. Increment the bufobj write count
2350 * before bundirty() call, to prevent other thread from seeing
2351 * empty dirty list and zero counter for writes in progress,
2352 * falsely indicating that the bufobj is clean.
2353 */
2354 bufobj_wref(bp->b_bufobj);
2355 bundirty(bp);
2356
2357 bp->b_flags &= ~B_DONE;
2358 bp->b_ioflags &= ~(BIO_ERROR | BIO_EXTERR);
2359 bp->b_flags |= B_CACHE;
2360 bp->b_iocmd = BIO_WRITE;
2361
2362 vfs_busy_pages(bp, 1);
2363
2364 /*
2365 * Normal bwrites pipeline writes
2366 */
2367 space = runningbufclaim(bp, bp->b_bufsize);
2368
2369 #ifdef RACCT
2370 if (racct_enable) {
2371 PROC_LOCK(curproc);
2372 racct_add_buf(curproc, bp, 1);
2373 PROC_UNLOCK(curproc);
2374 }
2375 #endif /* RACCT */
2376 curthread->td_ru.ru_oublock++;
2377 if ((oldflags & B_ASYNC) != 0)
2378 BUF_KERNPROC(bp);
2379 bp->b_iooffset = dbtob(bp->b_blkno);
2380 buf_track(bp, __func__);
2381 bstrategy(bp);
2382
2383 if ((oldflags & B_ASYNC) == 0) {
2384 retval = bufwait(bp);
2385 brelse(bp);
2386 return (retval);
2387 } else if (space > hirunningspace) {
2388 /*
2389 * Don't allow the async write to saturate the I/O
2390 * system. We do not block here if it is the update
2391 * or syncer daemon trying to clean up as that can
2392 * lead to deadlock.
2393 */
2394 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2395 waitrunningbufspace();
2396 }
2397
2398 return (0);
2399 }
2400
2401 void
bufbdflush(struct bufobj * bo,struct buf * bp)2402 bufbdflush(struct bufobj *bo, struct buf *bp)
2403 {
2404 struct buf *nbp;
2405 struct bufdomain *bd;
2406
2407 bd = &bdomain[bo->bo_domain];
2408 if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
2409 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2410 altbufferflushes++;
2411 } else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
2412 BO_LOCK(bo);
2413 /*
2414 * Try to find a buffer to flush.
2415 */
2416 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2417 if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2418 BUF_LOCK(nbp,
2419 LK_EXCLUSIVE | LK_NOWAIT, NULL))
2420 continue;
2421 if (bp == nbp)
2422 panic("bdwrite: found ourselves");
2423 BO_UNLOCK(bo);
2424 /* Don't countdeps with the bo lock held. */
2425 if (buf_countdeps(nbp, 0)) {
2426 BO_LOCK(bo);
2427 BUF_UNLOCK(nbp);
2428 continue;
2429 }
2430 if (nbp->b_flags & B_CLUSTEROK) {
2431 vfs_bio_awrite(nbp);
2432 } else {
2433 bremfree(nbp);
2434 bawrite(nbp);
2435 }
2436 dirtybufferflushes++;
2437 break;
2438 }
2439 if (nbp == NULL)
2440 BO_UNLOCK(bo);
2441 }
2442 }
2443
2444 /*
2445 * Delayed write. (Buffer is marked dirty). Do not bother writing
2446 * anything if the buffer is marked invalid.
2447 *
2448 * Note that since the buffer must be completely valid, we can safely
2449 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
2450 * biodone() in order to prevent getblk from writing the buffer
2451 * out synchronously.
2452 */
2453 void
bdwrite(struct buf * bp)2454 bdwrite(struct buf *bp)
2455 {
2456 struct thread *td = curthread;
2457 struct vnode *vp;
2458 struct bufobj *bo;
2459
2460 CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2461 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2462 KASSERT((bp->b_flags & B_BARRIER) == 0,
2463 ("Barrier request in delayed write %p", bp));
2464
2465 if (bp->b_flags & B_INVAL) {
2466 brelse(bp);
2467 return;
2468 }
2469
2470 /*
2471 * If we have too many dirty buffers, don't create any more.
2472 * If we are wildly over our limit, then force a complete
2473 * cleanup. Otherwise, just keep the situation from getting
2474 * out of control. Note that we have to avoid a recursive
2475 * disaster and not try to clean up after our own cleanup!
2476 */
2477 vp = bp->b_vp;
2478 bo = bp->b_bufobj;
2479 if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2480 td->td_pflags |= TDP_INBDFLUSH;
2481 BO_BDFLUSH(bo, bp);
2482 td->td_pflags &= ~TDP_INBDFLUSH;
2483 } else
2484 recursiveflushes++;
2485
2486 bdirty(bp);
2487 /*
2488 * Set B_CACHE, indicating that the buffer is fully valid. This is
2489 * true even of NFS now.
2490 */
2491 bp->b_flags |= B_CACHE;
2492
2493 /*
2494 * This bmap keeps the system from needing to do the bmap later,
2495 * perhaps when the system is attempting to do a sync. Since it
2496 * is likely that the indirect block -- or whatever other datastructure
2497 * that the filesystem needs is still in memory now, it is a good
2498 * thing to do this. Note also, that if the pageout daemon is
2499 * requesting a sync -- there might not be enough memory to do
2500 * the bmap then... So, this is important to do.
2501 */
2502 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2503 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2504 }
2505
2506 buf_track(bp, __func__);
2507
2508 /*
2509 * Set the *dirty* buffer range based upon the VM system dirty
2510 * pages.
2511 *
2512 * Mark the buffer pages as clean. We need to do this here to
2513 * satisfy the vnode_pager and the pageout daemon, so that it
2514 * thinks that the pages have been "cleaned". Note that since
2515 * the pages are in a delayed write buffer -- the VFS layer
2516 * "will" see that the pages get written out on the next sync,
2517 * or perhaps the cluster will be completed.
2518 */
2519 vfs_clean_pages_dirty_buf(bp);
2520 bqrelse(bp);
2521
2522 /*
2523 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2524 * due to the softdep code.
2525 */
2526 }
2527
2528 /*
2529 * bdirty:
2530 *
2531 * Turn buffer into delayed write request. We must clear BIO_READ and
2532 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
2533 * itself to properly update it in the dirty/clean lists. We mark it
2534 * B_DONE to ensure that any asynchronization of the buffer properly
2535 * clears B_DONE ( else a panic will occur later ).
2536 *
2537 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2538 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
2539 * should only be called if the buffer is known-good.
2540 *
2541 * Since the buffer is not on a queue, we do not update the numfreebuffers
2542 * count.
2543 *
2544 * The buffer must be on QUEUE_NONE.
2545 */
2546 void
bdirty(struct buf * bp)2547 bdirty(struct buf *bp)
2548 {
2549
2550 CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2551 bp, bp->b_vp, bp->b_flags);
2552 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2553 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2554 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2555 bp->b_flags &= ~(B_RELBUF);
2556 bp->b_iocmd = BIO_WRITE;
2557
2558 if ((bp->b_flags & B_DELWRI) == 0) {
2559 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2560 reassignbuf(bp);
2561 bdirtyadd(bp);
2562 }
2563 }
2564
2565 /*
2566 * bundirty:
2567 *
2568 * Clear B_DELWRI for buffer.
2569 *
2570 * Since the buffer is not on a queue, we do not update the numfreebuffers
2571 * count.
2572 *
2573 * The buffer must be on QUEUE_NONE.
2574 */
2575
2576 void
bundirty(struct buf * bp)2577 bundirty(struct buf *bp)
2578 {
2579
2580 CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2581 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2582 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2583 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2584
2585 if (bp->b_flags & B_DELWRI) {
2586 bp->b_flags &= ~B_DELWRI;
2587 reassignbuf(bp);
2588 bdirtysub(bp);
2589 }
2590 /*
2591 * Since it is now being written, we can clear its deferred write flag.
2592 */
2593 bp->b_flags &= ~B_DEFERRED;
2594 }
2595
2596 /*
2597 * bawrite:
2598 *
2599 * Asynchronous write. Start output on a buffer, but do not wait for
2600 * it to complete. The buffer is released when the output completes.
2601 *
2602 * bwrite() ( or the VOP routine anyway ) is responsible for handling
2603 * B_INVAL buffers. Not us.
2604 */
2605 void
bawrite(struct buf * bp)2606 bawrite(struct buf *bp)
2607 {
2608
2609 bp->b_flags |= B_ASYNC;
2610 (void) bwrite(bp);
2611 }
2612
2613 /*
2614 * babarrierwrite:
2615 *
2616 * Asynchronous barrier write. Start output on a buffer, but do not
2617 * wait for it to complete. Place a write barrier after this write so
2618 * that this buffer and all buffers written before it are committed to
2619 * the disk before any buffers written after this write are committed
2620 * to the disk. The buffer is released when the output completes.
2621 */
2622 void
babarrierwrite(struct buf * bp)2623 babarrierwrite(struct buf *bp)
2624 {
2625
2626 bp->b_flags |= B_ASYNC | B_BARRIER;
2627 (void) bwrite(bp);
2628 }
2629
2630 /*
2631 * bbarrierwrite:
2632 *
2633 * Synchronous barrier write. Start output on a buffer and wait for
2634 * it to complete. Place a write barrier after this write so that
2635 * this buffer and all buffers written before it are committed to
2636 * the disk before any buffers written after this write are committed
2637 * to the disk. The buffer is released when the output completes.
2638 */
2639 int
bbarrierwrite(struct buf * bp)2640 bbarrierwrite(struct buf *bp)
2641 {
2642
2643 bp->b_flags |= B_BARRIER;
2644 return (bwrite(bp));
2645 }
2646
2647 /*
2648 * bwillwrite:
2649 *
2650 * Called prior to the locking of any vnodes when we are expecting to
2651 * write. We do not want to starve the buffer cache with too many
2652 * dirty buffers so we block here. By blocking prior to the locking
2653 * of any vnodes we attempt to avoid the situation where a locked vnode
2654 * prevents the various system daemons from flushing related buffers.
2655 */
2656 void
bwillwrite(void)2657 bwillwrite(void)
2658 {
2659
2660 if (buf_dirty_count_severe()) {
2661 mtx_lock(&bdirtylock);
2662 while (buf_dirty_count_severe()) {
2663 bdirtywait = 1;
2664 msleep(&bdirtywait, &bdirtylock, PVFS, "flswai", 0);
2665 }
2666 mtx_unlock(&bdirtylock);
2667 }
2668 }
2669
2670 /*
2671 * Return true if we have too many dirty buffers.
2672 */
2673 int
buf_dirty_count_severe(void)2674 buf_dirty_count_severe(void)
2675 {
2676
2677 return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2678 }
2679
2680 /*
2681 * brelse:
2682 *
2683 * Release a busy buffer and, if requested, free its resources. The
2684 * buffer will be stashed in the appropriate bufqueue[] allowing it
2685 * to be accessed later as a cache entity or reused for other purposes.
2686 */
2687 void
brelse(struct buf * bp)2688 brelse(struct buf *bp)
2689 {
2690 struct mount *v_mnt;
2691 int qindex;
2692
2693 /*
2694 * Many functions erroneously call brelse with a NULL bp under rare
2695 * error conditions. Simply return when called with a NULL bp.
2696 */
2697 if (bp == NULL)
2698 return;
2699 CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2700 bp, bp->b_vp, bp->b_flags);
2701 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2702 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2703 KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2704 ("brelse: non-VMIO buffer marked NOREUSE"));
2705
2706 if (BUF_LOCKRECURSED(bp)) {
2707 /*
2708 * Do not process, in particular, do not handle the
2709 * B_INVAL/B_RELBUF and do not release to free list.
2710 */
2711 BUF_UNLOCK(bp);
2712 return;
2713 }
2714
2715 if (bp->b_flags & B_MANAGED) {
2716 bqrelse(bp);
2717 return;
2718 }
2719
2720 if (LIST_EMPTY(&bp->b_dep)) {
2721 bp->b_flags &= ~B_IOSTARTED;
2722 } else {
2723 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2724 ("brelse: SU io not finished bp %p", bp));
2725 }
2726
2727 if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2728 BO_LOCK(bp->b_bufobj);
2729 bp->b_vflags &= ~BV_BKGRDERR;
2730 BO_UNLOCK(bp->b_bufobj);
2731 bdirty(bp);
2732 }
2733
2734 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2735 (bp->b_flags & B_INVALONERR)) {
2736 /*
2737 * Forced invalidation of dirty buffer contents, to be used
2738 * after a failed write in the rare case that the loss of the
2739 * contents is acceptable. The buffer is invalidated and
2740 * freed.
2741 */
2742 bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2743 bp->b_flags &= ~(B_ASYNC | B_CACHE);
2744 }
2745
2746 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2747 (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2748 !(bp->b_flags & B_INVAL)) {
2749 /*
2750 * Failed write, redirty. All errors except ENXIO (which
2751 * means the device is gone) are treated as being
2752 * transient.
2753 *
2754 * XXX Treating EIO as transient is not correct; the
2755 * contract with the local storage device drivers is that
2756 * they will only return EIO once the I/O is no longer
2757 * retriable. Network I/O also respects this through the
2758 * guarantees of TCP and/or the internal retries of NFS.
2759 * ENOMEM might be transient, but we also have no way of
2760 * knowing when its ok to retry/reschedule. In general,
2761 * this entire case should be made obsolete through better
2762 * error handling/recovery and resource scheduling.
2763 *
2764 * Do this also for buffers that failed with ENXIO, but have
2765 * non-empty dependencies - the soft updates code might need
2766 * to access the buffer to untangle them.
2767 *
2768 * Must clear BIO_ERROR to prevent pages from being scrapped.
2769 */
2770 bp->b_ioflags &= ~BIO_ERROR;
2771 bdirty(bp);
2772 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2773 (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2774 /*
2775 * Either a failed read I/O, or we were asked to free or not
2776 * cache the buffer, or we failed to write to a device that's
2777 * no longer present.
2778 */
2779 bp->b_flags |= B_INVAL;
2780 if (!LIST_EMPTY(&bp->b_dep))
2781 buf_deallocate(bp);
2782 if (bp->b_flags & B_DELWRI)
2783 bdirtysub(bp);
2784 bp->b_flags &= ~(B_DELWRI | B_CACHE);
2785 if ((bp->b_flags & B_VMIO) == 0) {
2786 allocbuf(bp, 0);
2787 if (bp->b_vp)
2788 brelvp(bp);
2789 }
2790 }
2791
2792 /*
2793 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_truncate()
2794 * is called with B_DELWRI set, the underlying pages may wind up
2795 * getting freed causing a previous write (bdwrite()) to get 'lost'
2796 * because pages associated with a B_DELWRI bp are marked clean.
2797 *
2798 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2799 * if B_DELWRI is set.
2800 */
2801 if (bp->b_flags & B_DELWRI)
2802 bp->b_flags &= ~B_RELBUF;
2803
2804 /*
2805 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
2806 * constituted, not even NFS buffers now. Two flags effect this. If
2807 * B_INVAL, the struct buf is invalidated but the VM object is kept
2808 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2809 *
2810 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2811 * invalidated. BIO_ERROR cannot be set for a failed write unless the
2812 * buffer is also B_INVAL because it hits the re-dirtying code above.
2813 *
2814 * Normally we can do this whether a buffer is B_DELWRI or not. If
2815 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2816 * the commit state and we cannot afford to lose the buffer. If the
2817 * buffer has a background write in progress, we need to keep it
2818 * around to prevent it from being reconstituted and starting a second
2819 * background write.
2820 */
2821
2822 v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2823
2824 if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2825 (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2826 (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2827 vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
2828 vfs_vmio_invalidate(bp);
2829 allocbuf(bp, 0);
2830 }
2831
2832 if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2833 (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2834 allocbuf(bp, 0);
2835 bp->b_flags &= ~B_NOREUSE;
2836 if (bp->b_vp != NULL)
2837 brelvp(bp);
2838 }
2839
2840 /*
2841 * If the buffer has junk contents signal it and eventually
2842 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2843 * doesn't find it.
2844 */
2845 if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2846 (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2847 bp->b_flags |= B_INVAL;
2848 if (bp->b_flags & B_INVAL) {
2849 if (bp->b_flags & B_DELWRI)
2850 bundirty(bp);
2851 if (bp->b_vp)
2852 brelvp(bp);
2853 }
2854
2855 buf_track(bp, __func__);
2856
2857 /* buffers with no memory */
2858 if (bp->b_bufsize == 0) {
2859 buf_free(bp);
2860 return;
2861 }
2862 /* buffers with junk contents */
2863 if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2864 (bp->b_ioflags & BIO_ERROR)) {
2865 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2866 if (bp->b_vflags & BV_BKGRDINPROG)
2867 panic("losing buffer 2");
2868 qindex = QUEUE_CLEAN;
2869 bp->b_flags |= B_AGE;
2870 /* remaining buffers */
2871 } else if (bp->b_flags & B_DELWRI)
2872 qindex = QUEUE_DIRTY;
2873 else
2874 qindex = QUEUE_CLEAN;
2875
2876 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2877 panic("brelse: not dirty");
2878
2879 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2880 bp->b_xflags &= ~(BX_CVTENXIO);
2881 /* binsfree unlocks bp. */
2882 binsfree(bp, qindex);
2883 }
2884
2885 /*
2886 * Release a buffer back to the appropriate queue but do not try to free
2887 * it. The buffer is expected to be used again soon.
2888 *
2889 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2890 * biodone() to requeue an async I/O on completion. It is also used when
2891 * known good buffers need to be requeued but we think we may need the data
2892 * again soon.
2893 *
2894 * XXX we should be able to leave the B_RELBUF hint set on completion.
2895 */
2896 void
bqrelse(struct buf * bp)2897 bqrelse(struct buf *bp)
2898 {
2899 int qindex;
2900
2901 CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2902 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2903 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2904
2905 qindex = QUEUE_NONE;
2906 if (BUF_LOCKRECURSED(bp)) {
2907 /* do not release to free list */
2908 BUF_UNLOCK(bp);
2909 return;
2910 }
2911 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2912 bp->b_xflags &= ~(BX_CVTENXIO);
2913
2914 if (LIST_EMPTY(&bp->b_dep)) {
2915 bp->b_flags &= ~B_IOSTARTED;
2916 } else {
2917 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2918 ("bqrelse: SU io not finished bp %p", bp));
2919 }
2920
2921 if (bp->b_flags & B_MANAGED) {
2922 if (bp->b_flags & B_REMFREE)
2923 bremfreef(bp);
2924 goto out;
2925 }
2926
2927 /* buffers with stale but valid contents */
2928 if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2929 BV_BKGRDERR)) == BV_BKGRDERR) {
2930 BO_LOCK(bp->b_bufobj);
2931 bp->b_vflags &= ~BV_BKGRDERR;
2932 BO_UNLOCK(bp->b_bufobj);
2933 qindex = QUEUE_DIRTY;
2934 } else {
2935 if ((bp->b_flags & B_DELWRI) == 0 &&
2936 (bp->b_xflags & BX_VNDIRTY))
2937 panic("bqrelse: not dirty");
2938 if ((bp->b_flags & B_NOREUSE) != 0) {
2939 brelse(bp);
2940 return;
2941 }
2942 qindex = QUEUE_CLEAN;
2943 }
2944 buf_track(bp, __func__);
2945 /* binsfree unlocks bp. */
2946 binsfree(bp, qindex);
2947 return;
2948
2949 out:
2950 buf_track(bp, __func__);
2951 /* unlock */
2952 BUF_UNLOCK(bp);
2953 }
2954
2955 /*
2956 * Complete I/O to a VMIO backed page. Validate the pages as appropriate,
2957 * restore bogus pages.
2958 */
2959 static void
vfs_vmio_iodone(struct buf * bp)2960 vfs_vmio_iodone(struct buf *bp)
2961 {
2962 vm_ooffset_t foff;
2963 vm_page_t m;
2964 vm_object_t obj;
2965 struct vnode *vp __unused;
2966 int i, iosize, resid;
2967 bool bogus;
2968
2969 obj = bp->b_bufobj->bo_object;
2970 KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2971 ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2972 blockcount_read(&obj->paging_in_progress), bp->b_npages));
2973
2974 vp = bp->b_vp;
2975 VNPASS(vp->v_holdcnt > 0, vp);
2976 VNPASS(vp->v_object != NULL, vp);
2977
2978 foff = bp->b_offset;
2979 KASSERT(bp->b_offset != NOOFFSET,
2980 ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2981
2982 bogus = false;
2983 iosize = bp->b_bcount - bp->b_resid;
2984 for (i = 0; i < bp->b_npages; i++) {
2985 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2986 if (resid > iosize)
2987 resid = iosize;
2988
2989 /*
2990 * cleanup bogus pages, restoring the originals
2991 */
2992 m = bp->b_pages[i];
2993 if (m == bogus_page) {
2994 bogus = true;
2995 m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2996 if (m == NULL)
2997 panic("biodone: page disappeared!");
2998 bp->b_pages[i] = m;
2999 } else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
3000 /*
3001 * In the write case, the valid and clean bits are
3002 * already changed correctly ( see bdwrite() ), so we
3003 * only need to do this here in the read case.
3004 */
3005 KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
3006 resid)) == 0, ("vfs_vmio_iodone: page %p "
3007 "has unexpected dirty bits", m));
3008 vfs_page_set_valid(bp, foff, m);
3009 }
3010 KASSERT(OFF_TO_IDX(foff) == m->pindex,
3011 ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
3012 (intmax_t)foff, (uintmax_t)m->pindex));
3013
3014 vm_page_sunbusy(m);
3015 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3016 iosize -= resid;
3017 }
3018 vm_object_pip_wakeupn(obj, bp->b_npages);
3019 if (bogus && buf_mapped(bp)) {
3020 BUF_CHECK_MAPPED(bp);
3021 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3022 bp->b_pages, bp->b_npages);
3023 }
3024 }
3025
3026 /*
3027 * Perform page invalidation when a buffer is released. The fully invalid
3028 * pages will be reclaimed later in vfs_vmio_truncate().
3029 */
3030 static void
vfs_vmio_invalidate(struct buf * bp)3031 vfs_vmio_invalidate(struct buf *bp)
3032 {
3033 vm_object_t obj;
3034 vm_page_t m;
3035 int flags, i, resid, poffset, presid;
3036
3037 if (buf_mapped(bp)) {
3038 BUF_CHECK_MAPPED(bp);
3039 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
3040 } else
3041 BUF_CHECK_UNMAPPED(bp);
3042 /*
3043 * Get the base offset and length of the buffer. Note that
3044 * in the VMIO case if the buffer block size is not
3045 * page-aligned then b_data pointer may not be page-aligned.
3046 * But our b_pages[] array *IS* page aligned.
3047 *
3048 * block sizes less then DEV_BSIZE (usually 512) are not
3049 * supported due to the page granularity bits (m->valid,
3050 * m->dirty, etc...).
3051 *
3052 * See man buf(9) for more information
3053 */
3054 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3055 obj = bp->b_bufobj->bo_object;
3056 resid = bp->b_bufsize;
3057 poffset = bp->b_offset & PAGE_MASK;
3058 VM_OBJECT_WLOCK(obj);
3059 for (i = 0; i < bp->b_npages; i++) {
3060 m = bp->b_pages[i];
3061 if (m == bogus_page)
3062 panic("vfs_vmio_invalidate: Unexpected bogus page.");
3063 bp->b_pages[i] = NULL;
3064
3065 presid = resid > (PAGE_SIZE - poffset) ?
3066 (PAGE_SIZE - poffset) : resid;
3067 KASSERT(presid >= 0, ("brelse: extra page"));
3068 vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
3069 if (pmap_page_wired_mappings(m) == 0)
3070 vm_page_set_invalid(m, poffset, presid);
3071 vm_page_sunbusy(m);
3072 vm_page_release_locked(m, flags);
3073 resid -= presid;
3074 poffset = 0;
3075 }
3076 VM_OBJECT_WUNLOCK(obj);
3077 bp->b_npages = 0;
3078 }
3079
3080 /*
3081 * Page-granular truncation of an existing VMIO buffer.
3082 */
3083 static void
vfs_vmio_truncate(struct buf * bp,int desiredpages)3084 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3085 {
3086 vm_object_t obj;
3087 vm_page_t m;
3088 int flags, i;
3089
3090 if (bp->b_npages == desiredpages)
3091 return;
3092
3093 if (buf_mapped(bp)) {
3094 BUF_CHECK_MAPPED(bp);
3095 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3096 (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3097 } else
3098 BUF_CHECK_UNMAPPED(bp);
3099
3100 /*
3101 * The object lock is needed only if we will attempt to free pages.
3102 */
3103 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3104 if ((bp->b_flags & B_DIRECT) != 0) {
3105 flags |= VPR_TRYFREE;
3106 obj = bp->b_bufobj->bo_object;
3107 VM_OBJECT_WLOCK(obj);
3108 } else {
3109 obj = NULL;
3110 }
3111 for (i = desiredpages; i < bp->b_npages; i++) {
3112 m = bp->b_pages[i];
3113 KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3114 bp->b_pages[i] = NULL;
3115 if (obj != NULL)
3116 vm_page_release_locked(m, flags);
3117 else
3118 vm_page_release(m, flags);
3119 }
3120 if (obj != NULL)
3121 VM_OBJECT_WUNLOCK(obj);
3122 bp->b_npages = desiredpages;
3123 }
3124
3125 /*
3126 * Byte granular extension of VMIO buffers.
3127 */
3128 static void
vfs_vmio_extend(struct buf * bp,int desiredpages,int size)3129 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3130 {
3131 /*
3132 * We are growing the buffer, possibly in a
3133 * byte-granular fashion.
3134 */
3135 vm_object_t obj;
3136 vm_offset_t toff;
3137 vm_offset_t tinc;
3138 vm_page_t m;
3139
3140 /*
3141 * Step 1, bring in the VM pages from the object, allocating
3142 * them if necessary. We must clear B_CACHE if these pages
3143 * are not valid for the range covered by the buffer.
3144 */
3145 obj = bp->b_bufobj->bo_object;
3146 if (bp->b_npages < desiredpages) {
3147 KASSERT(desiredpages <= atop(maxbcachebuf),
3148 ("vfs_vmio_extend past maxbcachebuf %p %d %u",
3149 bp, desiredpages, maxbcachebuf));
3150
3151 /*
3152 * We must allocate system pages since blocking
3153 * here could interfere with paging I/O, no
3154 * matter which process we are.
3155 *
3156 * Only exclusive busy can be tested here.
3157 * Blocking on shared busy might lead to
3158 * deadlocks once allocbuf() is called after
3159 * pages are vfs_busy_pages().
3160 */
3161 (void)vm_page_grab_pages_unlocked(obj,
3162 OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3163 VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3164 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3165 &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3166 bp->b_npages = desiredpages;
3167 }
3168
3169 /*
3170 * Step 2. We've loaded the pages into the buffer,
3171 * we have to figure out if we can still have B_CACHE
3172 * set. Note that B_CACHE is set according to the
3173 * byte-granular range ( bcount and size ), not the
3174 * aligned range ( newbsize ).
3175 *
3176 * The VM test is against m->valid, which is DEV_BSIZE
3177 * aligned. Needless to say, the validity of the data
3178 * needs to also be DEV_BSIZE aligned. Note that this
3179 * fails with NFS if the server or some other client
3180 * extends the file's EOF. If our buffer is resized,
3181 * B_CACHE may remain set! XXX
3182 */
3183 toff = bp->b_bcount;
3184 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3185 while ((bp->b_flags & B_CACHE) && toff < size) {
3186 vm_pindex_t pi;
3187
3188 if (tinc > (size - toff))
3189 tinc = size - toff;
3190 pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3191 m = bp->b_pages[pi];
3192 vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3193 toff += tinc;
3194 tinc = PAGE_SIZE;
3195 }
3196
3197 /*
3198 * Step 3, fixup the KVA pmap.
3199 */
3200 if (buf_mapped(bp))
3201 bpmap_qenter(bp);
3202 else
3203 BUF_CHECK_UNMAPPED(bp);
3204 }
3205
3206 /*
3207 * Check to see if a block at a particular lbn is available for a clustered
3208 * write.
3209 */
3210 static int
vfs_bio_clcheck(struct vnode * vp,int size,daddr_t lblkno,daddr_t blkno)3211 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3212 {
3213 struct buf *bpa;
3214 int match;
3215
3216 match = 0;
3217
3218 /* If the buf isn't in core skip it */
3219 if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3220 return (0);
3221
3222 /* If the buf is busy we don't want to wait for it */
3223 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3224 return (0);
3225
3226 /* Only cluster with valid clusterable delayed write buffers */
3227 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3228 (B_DELWRI | B_CLUSTEROK))
3229 goto done;
3230
3231 if (bpa->b_bufsize != size)
3232 goto done;
3233
3234 /*
3235 * Check to see if it is in the expected place on disk and that the
3236 * block has been mapped.
3237 */
3238 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3239 match = 1;
3240 done:
3241 BUF_UNLOCK(bpa);
3242 return (match);
3243 }
3244
3245 /*
3246 * vfs_bio_awrite:
3247 *
3248 * Implement clustered async writes for clearing out B_DELWRI buffers.
3249 * This is much better then the old way of writing only one buffer at
3250 * a time. Note that we may not be presented with the buffers in the
3251 * correct order, so we search for the cluster in both directions.
3252 */
3253 int
vfs_bio_awrite(struct buf * bp)3254 vfs_bio_awrite(struct buf *bp)
3255 {
3256 struct bufobj *bo;
3257 int i;
3258 int j;
3259 daddr_t lblkno = bp->b_lblkno;
3260 struct vnode *vp = bp->b_vp;
3261 int ncl;
3262 int nwritten;
3263 int size;
3264 int maxcl;
3265 int gbflags;
3266
3267 bo = &vp->v_bufobj;
3268 gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3269 /*
3270 * right now we support clustered writing only to regular files. If
3271 * we find a clusterable block we could be in the middle of a cluster
3272 * rather then at the beginning.
3273 */
3274 if ((vp->v_type == VREG) &&
3275 (vp->v_mount != 0) && /* Only on nodes that have the size info */
3276 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3277 size = vp->v_mount->mnt_stat.f_iosize;
3278 maxcl = maxphys / size;
3279
3280 BO_RLOCK(bo);
3281 for (i = 1; i < maxcl; i++)
3282 if (vfs_bio_clcheck(vp, size, lblkno + i,
3283 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3284 break;
3285
3286 for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3287 if (vfs_bio_clcheck(vp, size, lblkno - j,
3288 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3289 break;
3290 BO_RUNLOCK(bo);
3291 --j;
3292 ncl = i + j;
3293 /*
3294 * this is a possible cluster write
3295 */
3296 if (ncl != 1) {
3297 BUF_UNLOCK(bp);
3298 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3299 gbflags);
3300 return (nwritten);
3301 }
3302 }
3303 bremfree(bp);
3304 bp->b_flags |= B_ASYNC;
3305 /*
3306 * default (old) behavior, writing out only one block
3307 *
3308 * XXX returns b_bufsize instead of b_bcount for nwritten?
3309 */
3310 nwritten = bp->b_bufsize;
3311 (void) bwrite(bp);
3312
3313 return (nwritten);
3314 }
3315
3316 /*
3317 * getnewbuf_kva:
3318 *
3319 * Allocate KVA for an empty buf header according to gbflags.
3320 */
3321 static int
getnewbuf_kva(struct buf * bp,int gbflags,int maxsize)3322 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3323 {
3324
3325 if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3326 /*
3327 * In order to keep fragmentation sane we only allocate kva
3328 * in BKVASIZE chunks. XXX with vmem we can do page size.
3329 */
3330 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3331
3332 if (maxsize != bp->b_kvasize &&
3333 bufkva_alloc(bp, maxsize, gbflags))
3334 return (ENOSPC);
3335 }
3336 return (0);
3337 }
3338
3339 /*
3340 * getnewbuf:
3341 *
3342 * Find and initialize a new buffer header, freeing up existing buffers
3343 * in the bufqueues as necessary. The new buffer is returned locked.
3344 *
3345 * We block if:
3346 * We have insufficient buffer headers
3347 * We have insufficient buffer space
3348 * buffer_arena is too fragmented ( space reservation fails )
3349 * If we have to flush dirty buffers ( but we try to avoid this )
3350 *
3351 * The caller is responsible for releasing the reserved bufspace after
3352 * allocbuf() is called.
3353 */
3354 static struct buf *
getnewbuf(struct vnode * vp,int slpflag,int slptimeo,int maxsize,int gbflags)3355 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3356 {
3357 struct bufdomain *bd;
3358 struct buf *bp;
3359 bool metadata, reserved;
3360
3361 bp = NULL;
3362 KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3363 ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3364 if (!unmapped_buf_allowed)
3365 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3366
3367 if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3368 vp->v_type == VCHR)
3369 metadata = true;
3370 else
3371 metadata = false;
3372 if (vp == NULL)
3373 bd = &bdomain[0];
3374 else
3375 bd = &bdomain[vp->v_bufobj.bo_domain];
3376
3377 counter_u64_add(getnewbufcalls, 1);
3378 reserved = false;
3379 do {
3380 if (reserved == false &&
3381 bufspace_reserve(bd, maxsize, metadata) != 0) {
3382 counter_u64_add(getnewbufrestarts, 1);
3383 continue;
3384 }
3385 reserved = true;
3386 if ((bp = buf_alloc(bd)) == NULL) {
3387 counter_u64_add(getnewbufrestarts, 1);
3388 continue;
3389 }
3390 if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3391 return (bp);
3392 break;
3393 } while (buf_recycle(bd, false) == 0);
3394
3395 if (reserved)
3396 bufspace_release(bd, maxsize);
3397 if (bp != NULL) {
3398 bp->b_flags |= B_INVAL;
3399 brelse(bp);
3400 }
3401 bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3402
3403 return (NULL);
3404 }
3405
3406 /*
3407 * buf_daemon:
3408 *
3409 * buffer flushing daemon. Buffers are normally flushed by the
3410 * update daemon but if it cannot keep up this process starts to
3411 * take the load in an attempt to prevent getnewbuf() from blocking.
3412 */
3413 static struct kproc_desc buf_kp = {
3414 "bufdaemon",
3415 buf_daemon,
3416 &bufdaemonproc
3417 };
3418 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3419
3420 static int
buf_flush(struct vnode * vp,struct bufdomain * bd,int target)3421 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3422 {
3423 int flushed;
3424
3425 flushed = flushbufqueues(vp, bd, target, 0);
3426 if (flushed == 0) {
3427 /*
3428 * Could not find any buffers without rollback
3429 * dependencies, so just write the first one
3430 * in the hopes of eventually making progress.
3431 */
3432 if (vp != NULL && target > 2)
3433 target /= 2;
3434 flushbufqueues(vp, bd, target, 1);
3435 }
3436 return (flushed);
3437 }
3438
3439 static void
buf_daemon_shutdown(void * arg __unused,int howto __unused)3440 buf_daemon_shutdown(void *arg __unused, int howto __unused)
3441 {
3442 int error;
3443
3444 if (KERNEL_PANICKED())
3445 return;
3446
3447 mtx_lock(&bdlock);
3448 bd_shutdown = true;
3449 wakeup(&bd_request);
3450 error = msleep(&bd_shutdown, &bdlock, 0, "buf_daemon_shutdown",
3451 60 * hz);
3452 mtx_unlock(&bdlock);
3453 if (error != 0)
3454 printf("bufdaemon wait error: %d\n", error);
3455 }
3456
3457 static void
buf_daemon(void)3458 buf_daemon(void)
3459 {
3460 struct bufdomain *bd;
3461 int speedupreq;
3462 int lodirty;
3463 int i;
3464
3465 /*
3466 * This process needs to be suspended prior to shutdown sync.
3467 */
3468 EVENTHANDLER_REGISTER(shutdown_pre_sync, buf_daemon_shutdown, NULL,
3469 SHUTDOWN_PRI_LAST + 100);
3470
3471 /*
3472 * Start the buf clean daemons as children threads.
3473 */
3474 for (i = 0 ; i < buf_domains; i++) {
3475 int error;
3476
3477 error = kthread_add((void (*)(void *))bufspace_daemon,
3478 &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3479 if (error)
3480 panic("error %d spawning bufspace daemon", error);
3481 }
3482
3483 /*
3484 * This process is allowed to take the buffer cache to the limit
3485 */
3486 curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3487 mtx_lock(&bdlock);
3488 while (!bd_shutdown) {
3489 bd_request = 0;
3490 mtx_unlock(&bdlock);
3491
3492 /*
3493 * Save speedupreq for this pass and reset to capture new
3494 * requests.
3495 */
3496 speedupreq = bd_speedupreq;
3497 bd_speedupreq = 0;
3498
3499 /*
3500 * Flush each domain sequentially according to its level and
3501 * the speedup request.
3502 */
3503 for (i = 0; i < buf_domains; i++) {
3504 bd = &bdomain[i];
3505 if (speedupreq)
3506 lodirty = bd->bd_numdirtybuffers / 2;
3507 else
3508 lodirty = bd->bd_lodirtybuffers;
3509 while (bd->bd_numdirtybuffers > lodirty) {
3510 if (buf_flush(NULL, bd,
3511 bd->bd_numdirtybuffers - lodirty) == 0)
3512 break;
3513 kern_yield(PRI_USER);
3514 }
3515 }
3516
3517 /*
3518 * Only clear bd_request if we have reached our low water
3519 * mark. The buf_daemon normally waits 1 second and
3520 * then incrementally flushes any dirty buffers that have
3521 * built up, within reason.
3522 *
3523 * If we were unable to hit our low water mark and couldn't
3524 * find any flushable buffers, we sleep for a short period
3525 * to avoid endless loops on unlockable buffers.
3526 */
3527 mtx_lock(&bdlock);
3528 if (bd_shutdown)
3529 break;
3530 if (BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3531 /*
3532 * We reached our low water mark, reset the
3533 * request and sleep until we are needed again.
3534 * The sleep is just so the suspend code works.
3535 */
3536 bd_request = 0;
3537 /*
3538 * Do an extra wakeup in case dirty threshold
3539 * changed via sysctl and the explicit transition
3540 * out of shortfall was missed.
3541 */
3542 bdirtywakeup();
3543 if (runningbufspace <= lorunningspace)
3544 runningwakeup();
3545 msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3546 } else {
3547 /*
3548 * We couldn't find any flushable dirty buffers but
3549 * still have too many dirty buffers, we
3550 * have to sleep and try again. (rare)
3551 */
3552 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3553 }
3554 }
3555 wakeup(&bd_shutdown);
3556 mtx_unlock(&bdlock);
3557 kthread_exit();
3558 }
3559
3560 /*
3561 * flushbufqueues:
3562 *
3563 * Try to flush a buffer in the dirty queue. We must be careful to
3564 * free up B_INVAL buffers instead of write them, which NFS is
3565 * particularly sensitive to.
3566 */
3567 static int flushwithdeps = 0;
3568 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3569 &flushwithdeps, 0,
3570 "Number of buffers flushed with dependencies that require rollbacks");
3571
3572 static int
flushbufqueues(struct vnode * lvp,struct bufdomain * bd,int target,int flushdeps)3573 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3574 int flushdeps)
3575 {
3576 struct bufqueue *bq;
3577 struct buf *sentinel;
3578 struct vnode *vp;
3579 struct mount *mp;
3580 struct buf *bp;
3581 int hasdeps;
3582 int flushed;
3583 int error;
3584 bool unlock;
3585
3586 flushed = 0;
3587 bq = &bd->bd_dirtyq;
3588 bp = NULL;
3589 sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3590 sentinel->b_qindex = QUEUE_SENTINEL;
3591 BQ_LOCK(bq);
3592 TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3593 BQ_UNLOCK(bq);
3594 while (flushed != target) {
3595 maybe_yield();
3596 BQ_LOCK(bq);
3597 bp = TAILQ_NEXT(sentinel, b_freelist);
3598 if (bp != NULL) {
3599 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3600 TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3601 b_freelist);
3602 } else {
3603 BQ_UNLOCK(bq);
3604 break;
3605 }
3606 /*
3607 * Skip sentinels inserted by other invocations of the
3608 * flushbufqueues(), taking care to not reorder them.
3609 *
3610 * Only flush the buffers that belong to the
3611 * vnode locked by the curthread.
3612 */
3613 if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3614 bp->b_vp != lvp)) {
3615 BQ_UNLOCK(bq);
3616 continue;
3617 }
3618 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3619 BQ_UNLOCK(bq);
3620 if (error != 0)
3621 continue;
3622
3623 /*
3624 * BKGRDINPROG can only be set with the buf and bufobj
3625 * locks both held. We tolerate a race to clear it here.
3626 */
3627 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3628 (bp->b_flags & B_DELWRI) == 0) {
3629 BUF_UNLOCK(bp);
3630 continue;
3631 }
3632 if (bp->b_flags & B_INVAL) {
3633 bremfreef(bp);
3634 brelse(bp);
3635 flushed++;
3636 continue;
3637 }
3638
3639 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3640 if (flushdeps == 0) {
3641 BUF_UNLOCK(bp);
3642 continue;
3643 }
3644 hasdeps = 1;
3645 } else
3646 hasdeps = 0;
3647 /*
3648 * We must hold the lock on a vnode before writing
3649 * one of its buffers. Otherwise we may confuse, or
3650 * in the case of a snapshot vnode, deadlock the
3651 * system.
3652 *
3653 * The lock order here is the reverse of the normal
3654 * of vnode followed by buf lock. This is ok because
3655 * the NOWAIT will prevent deadlock.
3656 */
3657 vp = bp->b_vp;
3658 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3659 BUF_UNLOCK(bp);
3660 continue;
3661 }
3662 if (lvp == NULL) {
3663 unlock = true;
3664 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3665 } else {
3666 ASSERT_VOP_LOCKED(vp, "getbuf");
3667 unlock = false;
3668 error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3669 vn_lock(vp, LK_TRYUPGRADE);
3670 }
3671 if (error == 0) {
3672 CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3673 bp, bp->b_vp, bp->b_flags);
3674 if (curproc == bufdaemonproc) {
3675 vfs_bio_awrite(bp);
3676 } else {
3677 bremfree(bp);
3678 bwrite(bp);
3679 counter_u64_add(notbufdflushes, 1);
3680 }
3681 vn_finished_write(mp);
3682 if (unlock)
3683 VOP_UNLOCK(vp);
3684 flushwithdeps += hasdeps;
3685 flushed++;
3686
3687 /*
3688 * Sleeping on runningbufspace while holding
3689 * vnode lock leads to deadlock.
3690 */
3691 if (curproc == bufdaemonproc &&
3692 runningbufspace > hirunningspace)
3693 waitrunningbufspace();
3694 continue;
3695 }
3696 vn_finished_write(mp);
3697 BUF_UNLOCK(bp);
3698 }
3699 BQ_LOCK(bq);
3700 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3701 BQ_UNLOCK(bq);
3702 free(sentinel, M_TEMP);
3703 return (flushed);
3704 }
3705
3706 /*
3707 * Check to see if a block is currently memory resident.
3708 */
3709 struct buf *
incore(struct bufobj * bo,daddr_t blkno)3710 incore(struct bufobj *bo, daddr_t blkno)
3711 {
3712 return (gbincore_unlocked(bo, blkno));
3713 }
3714
3715 /*
3716 * Returns true if no I/O is needed to access the
3717 * associated VM object. This is like incore except
3718 * it also hunts around in the VM system for the data.
3719 */
3720 bool
inmem(struct vnode * vp,daddr_t blkno)3721 inmem(struct vnode * vp, daddr_t blkno)
3722 {
3723 vm_object_t obj;
3724 vm_offset_t toff, tinc, size;
3725 vm_page_t m, n;
3726 vm_ooffset_t off;
3727 int valid;
3728
3729 ASSERT_VOP_LOCKED(vp, "inmem");
3730
3731 if (incore(&vp->v_bufobj, blkno))
3732 return (true);
3733 if (vp->v_mount == NULL)
3734 return (false);
3735 obj = vp->v_object;
3736 if (obj == NULL)
3737 return (false);
3738
3739 size = PAGE_SIZE;
3740 if (size > vp->v_mount->mnt_stat.f_iosize)
3741 size = vp->v_mount->mnt_stat.f_iosize;
3742 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3743
3744 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3745 m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3746 recheck:
3747 if (m == NULL)
3748 return (false);
3749
3750 tinc = size;
3751 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3752 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3753 /*
3754 * Consider page validity only if page mapping didn't change
3755 * during the check.
3756 */
3757 valid = vm_page_is_valid(m,
3758 (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
3759 n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3760 if (m != n) {
3761 m = n;
3762 goto recheck;
3763 }
3764 if (!valid)
3765 return (false);
3766 }
3767 return (true);
3768 }
3769
3770 /*
3771 * Set the dirty range for a buffer based on the status of the dirty
3772 * bits in the pages comprising the buffer. The range is limited
3773 * to the size of the buffer.
3774 *
3775 * Tell the VM system that the pages associated with this buffer
3776 * are clean. This is used for delayed writes where the data is
3777 * going to go to disk eventually without additional VM intevention.
3778 *
3779 * Note that while we only really need to clean through to b_bcount, we
3780 * just go ahead and clean through to b_bufsize.
3781 */
3782 static void
vfs_clean_pages_dirty_buf(struct buf * bp)3783 vfs_clean_pages_dirty_buf(struct buf *bp)
3784 {
3785 vm_ooffset_t foff, noff, eoff;
3786 vm_page_t m;
3787 int i;
3788
3789 if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3790 return;
3791
3792 foff = bp->b_offset;
3793 KASSERT(bp->b_offset != NOOFFSET,
3794 ("vfs_clean_pages_dirty_buf: no buffer offset"));
3795
3796 vfs_busy_pages_acquire(bp);
3797 vfs_setdirty_range(bp);
3798 for (i = 0; i < bp->b_npages; i++) {
3799 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3800 eoff = noff;
3801 if (eoff > bp->b_offset + bp->b_bufsize)
3802 eoff = bp->b_offset + bp->b_bufsize;
3803 m = bp->b_pages[i];
3804 vfs_page_set_validclean(bp, foff, m);
3805 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3806 foff = noff;
3807 }
3808 vfs_busy_pages_release(bp);
3809 }
3810
3811 static void
vfs_setdirty_range(struct buf * bp)3812 vfs_setdirty_range(struct buf *bp)
3813 {
3814 vm_offset_t boffset;
3815 vm_offset_t eoffset;
3816 int i;
3817
3818 /*
3819 * test the pages to see if they have been modified directly
3820 * by users through the VM system.
3821 */
3822 for (i = 0; i < bp->b_npages; i++)
3823 vm_page_test_dirty(bp->b_pages[i]);
3824
3825 /*
3826 * Calculate the encompassing dirty range, boffset and eoffset,
3827 * (eoffset - boffset) bytes.
3828 */
3829
3830 for (i = 0; i < bp->b_npages; i++) {
3831 if (bp->b_pages[i]->dirty)
3832 break;
3833 }
3834 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3835
3836 for (i = bp->b_npages - 1; i >= 0; --i) {
3837 if (bp->b_pages[i]->dirty) {
3838 break;
3839 }
3840 }
3841 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3842
3843 /*
3844 * Fit it to the buffer.
3845 */
3846
3847 if (eoffset > bp->b_bcount)
3848 eoffset = bp->b_bcount;
3849
3850 /*
3851 * If we have a good dirty range, merge with the existing
3852 * dirty range.
3853 */
3854
3855 if (boffset < eoffset) {
3856 if (bp->b_dirtyoff > boffset)
3857 bp->b_dirtyoff = boffset;
3858 if (bp->b_dirtyend < eoffset)
3859 bp->b_dirtyend = eoffset;
3860 }
3861 }
3862
3863 /*
3864 * Allocate the KVA mapping for an existing buffer.
3865 * If an unmapped buffer is provided but a mapped buffer is requested, take
3866 * also care to properly setup mappings between pages and KVA.
3867 */
3868 static void
bp_unmapped_get_kva(struct buf * bp,daddr_t blkno,int size,int gbflags)3869 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3870 {
3871 int bsize, maxsize, need_mapping, need_kva;
3872 off_t offset;
3873
3874 need_mapping = bp->b_data == unmapped_buf &&
3875 (gbflags & GB_UNMAPPED) == 0;
3876 need_kva = bp->b_kvabase == unmapped_buf &&
3877 bp->b_data == unmapped_buf &&
3878 (gbflags & GB_KVAALLOC) != 0;
3879 if (!need_mapping && !need_kva)
3880 return;
3881
3882 BUF_CHECK_UNMAPPED(bp);
3883
3884 if (need_mapping && bp->b_kvabase != unmapped_buf) {
3885 /*
3886 * Buffer is not mapped, but the KVA was already
3887 * reserved at the time of the instantiation. Use the
3888 * allocated space.
3889 */
3890 goto has_addr;
3891 }
3892
3893 /*
3894 * Calculate the amount of the address space we would reserve
3895 * if the buffer was mapped.
3896 */
3897 bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3898 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3899 offset = blkno * bsize;
3900 maxsize = size + (offset & PAGE_MASK);
3901 maxsize = imax(maxsize, bsize);
3902
3903 while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3904 if ((gbflags & GB_NOWAIT_BD) != 0) {
3905 /*
3906 * XXXKIB: defragmentation cannot
3907 * succeed, not sure what else to do.
3908 */
3909 panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3910 }
3911 counter_u64_add(mappingrestarts, 1);
3912 bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3913 }
3914 has_addr:
3915 if (need_mapping) {
3916 /* b_offset is handled by bpmap_qenter. */
3917 bp->b_data = bp->b_kvabase;
3918 BUF_CHECK_MAPPED(bp);
3919 bpmap_qenter(bp);
3920 }
3921 }
3922
3923 struct buf *
getblk(struct vnode * vp,daddr_t blkno,int size,int slpflag,int slptimeo,int flags)3924 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3925 int flags)
3926 {
3927 struct buf *bp;
3928 int error;
3929
3930 error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3931 if (error != 0)
3932 return (NULL);
3933 return (bp);
3934 }
3935
3936 /*
3937 * getblkx:
3938 *
3939 * Get a block given a specified block and offset into a file/device.
3940 * The buffers B_DONE bit will be cleared on return, making it almost
3941 * ready for an I/O initiation. B_INVAL may or may not be set on
3942 * return. The caller should clear B_INVAL prior to initiating a
3943 * READ.
3944 *
3945 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3946 * an existing buffer.
3947 *
3948 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
3949 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3950 * and then cleared based on the backing VM. If the previous buffer is
3951 * non-0-sized but invalid, B_CACHE will be cleared.
3952 *
3953 * If getblk() must create a new buffer, the new buffer is returned with
3954 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3955 * case it is returned with B_INVAL clear and B_CACHE set based on the
3956 * backing VM.
3957 *
3958 * getblk() also forces a bwrite() for any B_DELWRI buffer whose
3959 * B_CACHE bit is clear.
3960 *
3961 * What this means, basically, is that the caller should use B_CACHE to
3962 * determine whether the buffer is fully valid or not and should clear
3963 * B_INVAL prior to issuing a read. If the caller intends to validate
3964 * the buffer by loading its data area with something, the caller needs
3965 * to clear B_INVAL. If the caller does this without issuing an I/O,
3966 * the caller should set B_CACHE ( as an optimization ), else the caller
3967 * should issue the I/O and biodone() will set B_CACHE if the I/O was
3968 * a write attempt or if it was a successful read. If the caller
3969 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3970 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
3971 *
3972 * The blkno parameter is the logical block being requested. Normally
3973 * the mapping of logical block number to disk block address is done
3974 * by calling VOP_BMAP(). However, if the mapping is already known, the
3975 * disk block address can be passed using the dblkno parameter. If the
3976 * disk block address is not known, then the same value should be passed
3977 * for blkno and dblkno.
3978 */
3979 int
getblkx(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,int slpflag,int slptimeo,int flags,struct buf ** bpp)3980 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3981 int slptimeo, int flags, struct buf **bpp)
3982 {
3983 struct buf *bp;
3984 struct bufobj *bo;
3985 daddr_t d_blkno;
3986 int bsize, error, maxsize, vmio;
3987 off_t offset;
3988
3989 CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3990 KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3991 ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3992 if (vp->v_type != VCHR)
3993 ASSERT_VOP_LOCKED(vp, "getblk");
3994 if (size > maxbcachebuf) {
3995 printf("getblkx: size(%d) > maxbcachebuf(%d)\n", size,
3996 maxbcachebuf);
3997 return (EIO);
3998 }
3999 if (!unmapped_buf_allowed)
4000 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4001
4002 bo = &vp->v_bufobj;
4003 d_blkno = dblkno;
4004
4005 /* Attempt lockless lookup first. */
4006 bp = gbincore_unlocked(bo, blkno);
4007 if (bp == NULL) {
4008 /*
4009 * With GB_NOCREAT we must be sure about not finding the buffer
4010 * as it may have been reassigned during unlocked lookup.
4011 * If BO_NONSTERILE is still unset, no reassign has occurred.
4012 */
4013 if ((flags & GB_NOCREAT) != 0) {
4014 /* Ensure bo_flag is loaded after gbincore_unlocked. */
4015 atomic_thread_fence_acq();
4016 if ((bo->bo_flag & BO_NONSTERILE) == 0)
4017 return (EEXIST);
4018 goto loop;
4019 }
4020 goto newbuf_unlocked;
4021 }
4022
4023 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
4024 0);
4025 if (error != 0) {
4026 KASSERT(error == EBUSY,
4027 ("getblk: unexpected error %d from buf try-lock", error));
4028 /*
4029 * We failed a buf try-lock.
4030 *
4031 * With GB_LOCK_NOWAIT, just return, rather than taking the
4032 * bufobj interlock and trying again, since we would probably
4033 * fail again anyway. This is okay even if the buf's identity
4034 * changed and we contended on the wrong lock, as changing
4035 * identity itself requires the buf lock, and we could have
4036 * contended on the right lock.
4037 */
4038 if ((flags & GB_LOCK_NOWAIT) != 0)
4039 return (error);
4040 goto loop;
4041 }
4042
4043 /* Verify buf identify has not changed since lookup. */
4044 if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
4045 goto foundbuf_fastpath;
4046
4047 /* It changed, fallback to locked lookup. */
4048 BUF_UNLOCK_RAW(bp);
4049
4050 /* As above, with GB_LOCK_NOWAIT, just return. */
4051 if ((flags & GB_LOCK_NOWAIT) != 0)
4052 return (EBUSY);
4053
4054 loop:
4055 BO_RLOCK(bo);
4056 bp = gbincore(bo, blkno);
4057 if (bp != NULL) {
4058 int lockflags;
4059
4060 /*
4061 * Buffer is in-core. If the buffer is not busy nor managed,
4062 * it must be on a queue.
4063 */
4064 lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
4065 ((flags & GB_LOCK_NOWAIT) != 0 ? LK_NOWAIT : LK_SLEEPFAIL);
4066 #ifdef WITNESS
4067 lockflags |= (flags & GB_NOWITNESS) != 0 ? LK_NOWITNESS : 0;
4068 #endif
4069
4070 error = BUF_TIMELOCK(bp, lockflags,
4071 BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
4072
4073 /*
4074 * If we slept and got the lock we have to restart in case
4075 * the buffer changed identities.
4076 */
4077 if (error == ENOLCK)
4078 goto loop;
4079 /* We timed out or were interrupted. */
4080 else if (error != 0)
4081 return (error);
4082
4083 foundbuf_fastpath:
4084 /* If recursed, assume caller knows the rules. */
4085 if (BUF_LOCKRECURSED(bp))
4086 goto end;
4087
4088 /*
4089 * The buffer is locked. B_CACHE is cleared if the buffer is
4090 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set
4091 * and for a VMIO buffer B_CACHE is adjusted according to the
4092 * backing VM cache.
4093 */
4094 if (bp->b_flags & B_INVAL)
4095 bp->b_flags &= ~B_CACHE;
4096 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
4097 bp->b_flags |= B_CACHE;
4098 if (bp->b_flags & B_MANAGED)
4099 MPASS(bp->b_qindex == QUEUE_NONE);
4100 else
4101 bremfree(bp);
4102
4103 /*
4104 * check for size inconsistencies for non-VMIO case.
4105 */
4106 if (bp->b_bcount != size) {
4107 if ((bp->b_flags & B_VMIO) == 0 ||
4108 (size > bp->b_kvasize)) {
4109 if (bp->b_flags & B_DELWRI) {
4110 bp->b_flags |= B_NOCACHE;
4111 bwrite(bp);
4112 } else {
4113 if (LIST_EMPTY(&bp->b_dep)) {
4114 bp->b_flags |= B_RELBUF;
4115 brelse(bp);
4116 } else {
4117 bp->b_flags |= B_NOCACHE;
4118 bwrite(bp);
4119 }
4120 }
4121 goto loop;
4122 }
4123 }
4124
4125 /*
4126 * Handle the case of unmapped buffer which should
4127 * become mapped, or the buffer for which KVA
4128 * reservation is requested.
4129 */
4130 bp_unmapped_get_kva(bp, blkno, size, flags);
4131
4132 /*
4133 * If the size is inconsistent in the VMIO case, we can resize
4134 * the buffer. This might lead to B_CACHE getting set or
4135 * cleared. If the size has not changed, B_CACHE remains
4136 * unchanged from its previous state.
4137 */
4138 allocbuf(bp, size);
4139
4140 KASSERT(bp->b_offset != NOOFFSET,
4141 ("getblk: no buffer offset"));
4142
4143 /*
4144 * A buffer with B_DELWRI set and B_CACHE clear must
4145 * be committed before we can return the buffer in
4146 * order to prevent the caller from issuing a read
4147 * ( due to B_CACHE not being set ) and overwriting
4148 * it.
4149 *
4150 * Most callers, including NFS and FFS, need this to
4151 * operate properly either because they assume they
4152 * can issue a read if B_CACHE is not set, or because
4153 * ( for example ) an uncached B_DELWRI might loop due
4154 * to softupdates re-dirtying the buffer. In the latter
4155 * case, B_CACHE is set after the first write completes,
4156 * preventing further loops.
4157 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
4158 * above while extending the buffer, we cannot allow the
4159 * buffer to remain with B_CACHE set after the write
4160 * completes or it will represent a corrupt state. To
4161 * deal with this we set B_NOCACHE to scrap the buffer
4162 * after the write.
4163 *
4164 * We might be able to do something fancy, like setting
4165 * B_CACHE in bwrite() except if B_DELWRI is already set,
4166 * so the below call doesn't set B_CACHE, but that gets real
4167 * confusing. This is much easier.
4168 */
4169
4170 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4171 bp->b_flags |= B_NOCACHE;
4172 bwrite(bp);
4173 goto loop;
4174 }
4175 bp->b_flags &= ~B_DONE;
4176 } else {
4177 /*
4178 * Buffer is not in-core, create new buffer. The buffer
4179 * returned by getnewbuf() is locked. Note that the returned
4180 * buffer is also considered valid (not marked B_INVAL).
4181 */
4182 BO_RUNLOCK(bo);
4183 newbuf_unlocked:
4184 /*
4185 * If the user does not want us to create the buffer, bail out
4186 * here.
4187 */
4188 if (flags & GB_NOCREAT)
4189 return (EEXIST);
4190
4191 bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
4192 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4193 offset = blkno * bsize;
4194 vmio = vp->v_object != NULL;
4195 if (vmio) {
4196 maxsize = size + (offset & PAGE_MASK);
4197 if (maxsize > maxbcachebuf) {
4198 printf(
4199 "getblkx: maxsize(%d) > maxbcachebuf(%d)\n",
4200 maxsize, maxbcachebuf);
4201 return (EIO);
4202 }
4203 } else {
4204 maxsize = size;
4205 /* Do not allow non-VMIO notmapped buffers. */
4206 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4207 }
4208 maxsize = imax(maxsize, bsize);
4209 if ((flags & GB_NOSPARSE) != 0 && vmio &&
4210 !vn_isdisk(vp)) {
4211 error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4212 KASSERT(error != EOPNOTSUPP,
4213 ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4214 vp));
4215 if (error != 0)
4216 return (error);
4217 if (d_blkno == -1)
4218 return (EJUSTRETURN);
4219 }
4220
4221 bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4222 if (bp == NULL) {
4223 if (slpflag || slptimeo)
4224 return (ETIMEDOUT);
4225 /*
4226 * XXX This is here until the sleep path is diagnosed
4227 * enough to work under very low memory conditions.
4228 *
4229 * There's an issue on low memory, 4BSD+non-preempt
4230 * systems (eg MIPS routers with 32MB RAM) where buffer
4231 * exhaustion occurs without sleeping for buffer
4232 * reclaimation. This just sticks in a loop and
4233 * constantly attempts to allocate a buffer, which
4234 * hits exhaustion and tries to wakeup bufdaemon.
4235 * This never happens because we never yield.
4236 *
4237 * The real solution is to identify and fix these cases
4238 * so we aren't effectively busy-waiting in a loop
4239 * until the reclaimation path has cycles to run.
4240 */
4241 kern_yield(PRI_USER);
4242 goto loop;
4243 }
4244
4245 /*
4246 *
4247 * Insert the buffer into the hash, so that it can
4248 * be found by incore.
4249 *
4250 * We don't hold the bufobj interlock while allocating the new
4251 * buffer. Consequently, we can race on buffer creation. This
4252 * can be a problem whether the vnode is locked or not. If the
4253 * buffer is created out from under us, we have to throw away
4254 * the one we just created.
4255 */
4256 bp->b_lblkno = blkno;
4257 bp->b_blkno = d_blkno;
4258 bp->b_offset = offset;
4259 error = bgetvp(vp, bp);
4260 if (error != 0) {
4261 KASSERT(error == EEXIST,
4262 ("getblk: unexpected error %d from bgetvp",
4263 error));
4264 bp->b_flags |= B_INVAL;
4265 bufspace_release(bufdomain(bp), maxsize);
4266 brelse(bp);
4267 goto loop;
4268 }
4269
4270 /*
4271 * set B_VMIO bit. allocbuf() the buffer bigger. Since the
4272 * buffer size starts out as 0, B_CACHE will be set by
4273 * allocbuf() for the VMIO case prior to it testing the
4274 * backing store for validity.
4275 */
4276
4277 if (vmio) {
4278 bp->b_flags |= B_VMIO;
4279 KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4280 ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4281 bp, vp->v_object, bp->b_bufobj->bo_object));
4282 } else {
4283 bp->b_flags &= ~B_VMIO;
4284 KASSERT(bp->b_bufobj->bo_object == NULL,
4285 ("ARGH! has b_bufobj->bo_object %p %p\n",
4286 bp, bp->b_bufobj->bo_object));
4287 BUF_CHECK_MAPPED(bp);
4288 }
4289
4290 allocbuf(bp, size);
4291 bufspace_release(bufdomain(bp), maxsize);
4292 bp->b_flags &= ~B_DONE;
4293 }
4294 CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4295 end:
4296 buf_track(bp, __func__);
4297 KASSERT(bp->b_bufobj == bo,
4298 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4299 *bpp = bp;
4300 return (0);
4301 }
4302
4303 /*
4304 * Get an empty, disassociated buffer of given size. The buffer is initially
4305 * set to B_INVAL.
4306 */
4307 struct buf *
geteblk(int size,int flags)4308 geteblk(int size, int flags)
4309 {
4310 struct buf *bp;
4311 int maxsize;
4312
4313 maxsize = (size + BKVAMASK) & ~BKVAMASK;
4314 while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4315 if ((flags & GB_NOWAIT_BD) &&
4316 (curthread->td_pflags & TDP_BUFNEED) != 0)
4317 return (NULL);
4318 }
4319 allocbuf(bp, size);
4320 bufspace_release(bufdomain(bp), maxsize);
4321 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
4322 return (bp);
4323 }
4324
4325 /*
4326 * Truncate the backing store for a non-vmio buffer.
4327 */
4328 static void
vfs_nonvmio_truncate(struct buf * bp,int newbsize)4329 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4330 {
4331
4332 if (bp->b_flags & B_MALLOC) {
4333 /*
4334 * malloced buffers are not shrunk
4335 */
4336 if (newbsize == 0) {
4337 bufmallocadjust(bp, 0);
4338 free(bp->b_data, M_BIOBUF);
4339 bp->b_data = bp->b_kvabase;
4340 bp->b_flags &= ~B_MALLOC;
4341 }
4342 return;
4343 }
4344 vm_hold_free_pages(bp, newbsize);
4345 bufspace_adjust(bp, newbsize);
4346 }
4347
4348 /*
4349 * Extend the backing for a non-VMIO buffer.
4350 */
4351 static void
vfs_nonvmio_extend(struct buf * bp,int newbsize)4352 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4353 {
4354 caddr_t origbuf;
4355 int origbufsize;
4356
4357 /*
4358 * We only use malloced memory on the first allocation.
4359 * and revert to page-allocated memory when the buffer
4360 * grows.
4361 *
4362 * There is a potential smp race here that could lead
4363 * to bufmallocspace slightly passing the max. It
4364 * is probably extremely rare and not worth worrying
4365 * over.
4366 */
4367 if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4368 bufmallocspace < maxbufmallocspace) {
4369 bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4370 bp->b_flags |= B_MALLOC;
4371 bufmallocadjust(bp, newbsize);
4372 return;
4373 }
4374
4375 /*
4376 * If the buffer is growing on its other-than-first
4377 * allocation then we revert to the page-allocation
4378 * scheme.
4379 */
4380 origbuf = NULL;
4381 origbufsize = 0;
4382 if (bp->b_flags & B_MALLOC) {
4383 origbuf = bp->b_data;
4384 origbufsize = bp->b_bufsize;
4385 bp->b_data = bp->b_kvabase;
4386 bufmallocadjust(bp, 0);
4387 bp->b_flags &= ~B_MALLOC;
4388 newbsize = round_page(newbsize);
4389 }
4390 vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4391 (vm_offset_t) bp->b_data + newbsize);
4392 if (origbuf != NULL) {
4393 bcopy(origbuf, bp->b_data, origbufsize);
4394 free(origbuf, M_BIOBUF);
4395 }
4396 bufspace_adjust(bp, newbsize);
4397 }
4398
4399 /*
4400 * This code constitutes the buffer memory from either anonymous system
4401 * memory (in the case of non-VMIO operations) or from an associated
4402 * VM object (in the case of VMIO operations). This code is able to
4403 * resize a buffer up or down.
4404 *
4405 * Note that this code is tricky, and has many complications to resolve
4406 * deadlock or inconsistent data situations. Tread lightly!!!
4407 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4408 * the caller. Calling this code willy nilly can result in the loss of data.
4409 *
4410 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
4411 * B_CACHE for the non-VMIO case.
4412 */
4413 int
allocbuf(struct buf * bp,int size)4414 allocbuf(struct buf *bp, int size)
4415 {
4416 int newbsize;
4417
4418 if (bp->b_bcount == size)
4419 return (1);
4420
4421 KASSERT(bp->b_kvasize == 0 || bp->b_kvasize >= size,
4422 ("allocbuf: buffer too small %p %#x %#x",
4423 bp, bp->b_kvasize, size));
4424
4425 newbsize = roundup2(size, DEV_BSIZE);
4426 if ((bp->b_flags & B_VMIO) == 0) {
4427 if ((bp->b_flags & B_MALLOC) == 0)
4428 newbsize = round_page(newbsize);
4429 /*
4430 * Just get anonymous memory from the kernel. Don't
4431 * mess with B_CACHE.
4432 */
4433 if (newbsize < bp->b_bufsize)
4434 vfs_nonvmio_truncate(bp, newbsize);
4435 else if (newbsize > bp->b_bufsize)
4436 vfs_nonvmio_extend(bp, newbsize);
4437 } else {
4438 int desiredpages;
4439
4440 desiredpages = size == 0 ? 0 :
4441 num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4442
4443 KASSERT((bp->b_flags & B_MALLOC) == 0,
4444 ("allocbuf: VMIO buffer can't be malloced %p", bp));
4445
4446 /*
4447 * Set B_CACHE initially if buffer is 0 length or will become
4448 * 0-length.
4449 */
4450 if (size == 0 || bp->b_bufsize == 0)
4451 bp->b_flags |= B_CACHE;
4452
4453 if (newbsize < bp->b_bufsize)
4454 vfs_vmio_truncate(bp, desiredpages);
4455 /* XXX This looks as if it should be newbsize > b_bufsize */
4456 else if (size > bp->b_bcount)
4457 vfs_vmio_extend(bp, desiredpages, size);
4458 bufspace_adjust(bp, newbsize);
4459 }
4460 bp->b_bcount = size; /* requested buffer size. */
4461 return (1);
4462 }
4463
4464 extern int inflight_transient_maps;
4465
4466 static struct bio_queue nondump_bios;
4467
4468 void
biodone(struct bio * bp)4469 biodone(struct bio *bp)
4470 {
4471 struct mtx *mtxp;
4472 void (*done)(struct bio *);
4473 vm_offset_t start, end;
4474
4475 biotrack(bp, __func__);
4476
4477 /*
4478 * Avoid completing I/O when dumping after a panic since that may
4479 * result in a deadlock in the filesystem or pager code. Note that
4480 * this doesn't affect dumps that were started manually since we aim
4481 * to keep the system usable after it has been resumed.
4482 */
4483 if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4484 TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4485 return;
4486 }
4487 if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4488 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4489 bp->bio_flags |= BIO_UNMAPPED;
4490 start = trunc_page((vm_offset_t)bp->bio_data);
4491 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4492 bp->bio_data = unmapped_buf;
4493 pmap_qremove(start, atop(end - start));
4494 vmem_free(transient_arena, start, end - start);
4495 atomic_add_int(&inflight_transient_maps, -1);
4496 }
4497 done = bp->bio_done;
4498 /*
4499 * The check for done == biodone is to allow biodone to be
4500 * used as a bio_done routine.
4501 */
4502 if (done == NULL || done == biodone) {
4503 mtxp = mtx_pool_find(mtxpool_sleep, bp);
4504 mtx_lock(mtxp);
4505 bp->bio_flags |= BIO_DONE;
4506 wakeup(bp);
4507 mtx_unlock(mtxp);
4508 } else
4509 done(bp);
4510 }
4511
4512 /*
4513 * Wait for a BIO to finish.
4514 */
4515 int
biowait(struct bio * bp,const char * wmesg)4516 biowait(struct bio *bp, const char *wmesg)
4517 {
4518 struct mtx *mtxp;
4519
4520 mtxp = mtx_pool_find(mtxpool_sleep, bp);
4521 mtx_lock(mtxp);
4522 while ((bp->bio_flags & BIO_DONE) == 0)
4523 msleep(bp, mtxp, PRIBIO, wmesg, 0);
4524 mtx_unlock(mtxp);
4525 if (bp->bio_error != 0) {
4526 if ((bp->bio_flags & BIO_EXTERR) != 0)
4527 return (exterr_set_from(&bp->bio_exterr));
4528 return (bp->bio_error);
4529 }
4530 if (!(bp->bio_flags & BIO_ERROR))
4531 return (0);
4532 return (EIO);
4533 }
4534
4535 void
biofinish(struct bio * bp,struct devstat * stat,int error)4536 biofinish(struct bio *bp, struct devstat *stat, int error)
4537 {
4538
4539 if (error) {
4540 bp->bio_error = error;
4541 bp->bio_flags |= BIO_ERROR;
4542 }
4543 if (stat != NULL)
4544 devstat_end_transaction_bio(stat, bp);
4545 biodone(bp);
4546 }
4547
4548 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4549 void
biotrack_buf(struct bio * bp,const char * location)4550 biotrack_buf(struct bio *bp, const char *location)
4551 {
4552
4553 buf_track(bp->bio_track_bp, location);
4554 }
4555 #endif
4556
4557 /*
4558 * bufwait:
4559 *
4560 * Wait for buffer I/O completion, returning error status. The buffer
4561 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR
4562 * error and cleared.
4563 */
4564 int
bufwait(struct buf * bp)4565 bufwait(struct buf *bp)
4566 {
4567 if (bp->b_iocmd == BIO_READ)
4568 bwait(bp, PRIBIO, "biord");
4569 else
4570 bwait(bp, PRIBIO, "biowr");
4571 if (bp->b_flags & B_EINTR) {
4572 bp->b_flags &= ~B_EINTR;
4573 return (EINTR);
4574 }
4575 if (bp->b_ioflags & BIO_ERROR) {
4576 if ((bp->b_ioflags & BIO_EXTERR) != 0)
4577 exterr_set_from(&bp->b_exterr);
4578 return (bp->b_error ? bp->b_error : EIO);
4579 } else {
4580 return (0);
4581 }
4582 }
4583
4584 /*
4585 * bufdone:
4586 *
4587 * Finish I/O on a buffer, optionally calling a completion function.
4588 * This is usually called from an interrupt so process blocking is
4589 * not allowed.
4590 *
4591 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4592 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
4593 * assuming B_INVAL is clear.
4594 *
4595 * For the VMIO case, we set B_CACHE if the op was a read and no
4596 * read error occurred, or if the op was a write. B_CACHE is never
4597 * set if the buffer is invalid or otherwise uncacheable.
4598 *
4599 * bufdone does not mess with B_INVAL, allowing the I/O routine or the
4600 * initiator to leave B_INVAL set to brelse the buffer out of existence
4601 * in the biodone routine.
4602 */
4603 void
bufdone(struct buf * bp)4604 bufdone(struct buf *bp)
4605 {
4606 struct bufobj *dropobj;
4607 void (*biodone)(struct buf *);
4608
4609 buf_track(bp, __func__);
4610 CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4611 dropobj = NULL;
4612
4613 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4614
4615 runningbufwakeup(bp);
4616 if (bp->b_iocmd == BIO_WRITE)
4617 dropobj = bp->b_bufobj;
4618 /* call optional completion function if requested */
4619 if (bp->b_iodone != NULL) {
4620 biodone = bp->b_iodone;
4621 bp->b_iodone = NULL;
4622 (*biodone) (bp);
4623 if (dropobj)
4624 bufobj_wdrop(dropobj);
4625 return;
4626 }
4627 if (bp->b_flags & B_VMIO) {
4628 /*
4629 * Set B_CACHE if the op was a normal read and no error
4630 * occurred. B_CACHE is set for writes in the b*write()
4631 * routines.
4632 */
4633 if (bp->b_iocmd == BIO_READ &&
4634 !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4635 !(bp->b_ioflags & BIO_ERROR))
4636 bp->b_flags |= B_CACHE;
4637 vfs_vmio_iodone(bp);
4638 }
4639 if (!LIST_EMPTY(&bp->b_dep))
4640 buf_complete(bp);
4641 if ((bp->b_flags & B_CKHASH) != 0) {
4642 KASSERT(bp->b_iocmd == BIO_READ,
4643 ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4644 KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4645 (*bp->b_ckhashcalc)(bp);
4646 }
4647 /*
4648 * For asynchronous completions, release the buffer now. The brelse
4649 * will do a wakeup there if necessary - so no need to do a wakeup
4650 * here in the async case. The sync case always needs to do a wakeup.
4651 */
4652 if (bp->b_flags & B_ASYNC) {
4653 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4654 (bp->b_ioflags & BIO_ERROR))
4655 brelse(bp);
4656 else
4657 bqrelse(bp);
4658 } else
4659 bdone(bp);
4660 if (dropobj)
4661 bufobj_wdrop(dropobj);
4662 }
4663
4664 /*
4665 * This routine is called in lieu of iodone in the case of
4666 * incomplete I/O. This keeps the busy status for pages
4667 * consistent.
4668 */
4669 void
vfs_unbusy_pages(struct buf * bp)4670 vfs_unbusy_pages(struct buf *bp)
4671 {
4672 int i;
4673 vm_object_t obj;
4674 vm_page_t m;
4675
4676 runningbufwakeup(bp);
4677 if (!(bp->b_flags & B_VMIO))
4678 return;
4679
4680 obj = bp->b_bufobj->bo_object;
4681 for (i = 0; i < bp->b_npages; i++) {
4682 m = bp->b_pages[i];
4683 if (m == bogus_page) {
4684 m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4685 if (!m)
4686 panic("vfs_unbusy_pages: page missing\n");
4687 bp->b_pages[i] = m;
4688 if (buf_mapped(bp)) {
4689 BUF_CHECK_MAPPED(bp);
4690 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4691 bp->b_pages, bp->b_npages);
4692 } else
4693 BUF_CHECK_UNMAPPED(bp);
4694 }
4695 vm_page_sunbusy(m);
4696 }
4697 vm_object_pip_wakeupn(obj, bp->b_npages);
4698 }
4699
4700 /*
4701 * vfs_page_set_valid:
4702 *
4703 * Set the valid bits in a page based on the supplied offset. The
4704 * range is restricted to the buffer's size.
4705 *
4706 * This routine is typically called after a read completes.
4707 */
4708 static void
vfs_page_set_valid(struct buf * bp,vm_ooffset_t off,vm_page_t m)4709 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4710 {
4711 vm_ooffset_t eoff;
4712
4713 /*
4714 * Compute the end offset, eoff, such that [off, eoff) does not span a
4715 * page boundary and eoff is not greater than the end of the buffer.
4716 * The end of the buffer, in this case, is our file EOF, not the
4717 * allocation size of the buffer.
4718 */
4719 eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4720 if (eoff > bp->b_offset + bp->b_bcount)
4721 eoff = bp->b_offset + bp->b_bcount;
4722
4723 /*
4724 * Set valid range. This is typically the entire buffer and thus the
4725 * entire page.
4726 */
4727 if (eoff > off)
4728 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4729 }
4730
4731 /*
4732 * vfs_page_set_validclean:
4733 *
4734 * Set the valid bits and clear the dirty bits in a page based on the
4735 * supplied offset. The range is restricted to the buffer's size.
4736 */
4737 static void
vfs_page_set_validclean(struct buf * bp,vm_ooffset_t off,vm_page_t m)4738 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4739 {
4740 vm_ooffset_t soff, eoff;
4741
4742 /*
4743 * Start and end offsets in buffer. eoff - soff may not cross a
4744 * page boundary or cross the end of the buffer. The end of the
4745 * buffer, in this case, is our file EOF, not the allocation size
4746 * of the buffer.
4747 */
4748 soff = off;
4749 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4750 if (eoff > bp->b_offset + bp->b_bcount)
4751 eoff = bp->b_offset + bp->b_bcount;
4752
4753 /*
4754 * Set valid range. This is typically the entire buffer and thus the
4755 * entire page.
4756 */
4757 if (eoff > soff) {
4758 vm_page_set_validclean(
4759 m,
4760 (vm_offset_t) (soff & PAGE_MASK),
4761 (vm_offset_t) (eoff - soff)
4762 );
4763 }
4764 }
4765
4766 /*
4767 * Acquire a shared busy on all pages in the buf.
4768 */
4769 void
vfs_busy_pages_acquire(struct buf * bp)4770 vfs_busy_pages_acquire(struct buf *bp)
4771 {
4772 int i;
4773
4774 for (i = 0; i < bp->b_npages; i++)
4775 vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4776 }
4777
4778 void
vfs_busy_pages_release(struct buf * bp)4779 vfs_busy_pages_release(struct buf *bp)
4780 {
4781 int i;
4782
4783 for (i = 0; i < bp->b_npages; i++)
4784 vm_page_sunbusy(bp->b_pages[i]);
4785 }
4786
4787 /*
4788 * This routine is called before a device strategy routine.
4789 * It is used to tell the VM system that paging I/O is in
4790 * progress, and treat the pages associated with the buffer
4791 * almost as being exclusive busy. Also the object paging_in_progress
4792 * flag is handled to make sure that the object doesn't become
4793 * inconsistent.
4794 *
4795 * Since I/O has not been initiated yet, certain buffer flags
4796 * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4797 * and should be ignored.
4798 */
4799 void
vfs_busy_pages(struct buf * bp,int clear_modify)4800 vfs_busy_pages(struct buf *bp, int clear_modify)
4801 {
4802 vm_object_t obj;
4803 vm_ooffset_t foff;
4804 vm_page_t m;
4805 int i;
4806 bool bogus;
4807
4808 if (!(bp->b_flags & B_VMIO))
4809 return;
4810
4811 obj = bp->b_bufobj->bo_object;
4812 foff = bp->b_offset;
4813 KASSERT(bp->b_offset != NOOFFSET,
4814 ("vfs_busy_pages: no buffer offset"));
4815 if ((bp->b_flags & B_CLUSTER) == 0) {
4816 vm_object_pip_add(obj, bp->b_npages);
4817 vfs_busy_pages_acquire(bp);
4818 }
4819 if (bp->b_bufsize != 0)
4820 vfs_setdirty_range(bp);
4821 bogus = false;
4822 for (i = 0; i < bp->b_npages; i++) {
4823 m = bp->b_pages[i];
4824 vm_page_assert_sbusied(m);
4825
4826 /*
4827 * When readying a buffer for a read ( i.e
4828 * clear_modify == 0 ), it is important to do
4829 * bogus_page replacement for valid pages in
4830 * partially instantiated buffers. Partially
4831 * instantiated buffers can, in turn, occur when
4832 * reconstituting a buffer from its VM backing store
4833 * base. We only have to do this if B_CACHE is
4834 * clear ( which causes the I/O to occur in the
4835 * first place ). The replacement prevents the read
4836 * I/O from overwriting potentially dirty VM-backed
4837 * pages. XXX bogus page replacement is, uh, bogus.
4838 * It may not work properly with small-block devices.
4839 * We need to find a better way.
4840 */
4841 if (clear_modify) {
4842 pmap_remove_write(m);
4843 vfs_page_set_validclean(bp, foff, m);
4844 } else if (vm_page_all_valid(m) &&
4845 (bp->b_flags & B_CACHE) == 0) {
4846 bp->b_pages[i] = bogus_page;
4847 bogus = true;
4848 }
4849 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4850 }
4851 if (bogus && buf_mapped(bp)) {
4852 BUF_CHECK_MAPPED(bp);
4853 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4854 bp->b_pages, bp->b_npages);
4855 }
4856 }
4857
4858 /*
4859 * vfs_bio_set_valid:
4860 *
4861 * Set the range within the buffer to valid. The range is
4862 * relative to the beginning of the buffer, b_offset. Note that
4863 * b_offset itself may be offset from the beginning of the first
4864 * page.
4865 */
4866 void
vfs_bio_set_valid(struct buf * bp,int base,int size)4867 vfs_bio_set_valid(struct buf *bp, int base, int size)
4868 {
4869 int i, n;
4870 vm_page_t m;
4871
4872 if (!(bp->b_flags & B_VMIO))
4873 return;
4874
4875 /*
4876 * Fixup base to be relative to beginning of first page.
4877 * Set initial n to be the maximum number of bytes in the
4878 * first page that can be validated.
4879 */
4880 base += (bp->b_offset & PAGE_MASK);
4881 n = PAGE_SIZE - (base & PAGE_MASK);
4882
4883 /*
4884 * Busy may not be strictly necessary here because the pages are
4885 * unlikely to be fully valid and the vnode lock will synchronize
4886 * their access via getpages. It is grabbed for consistency with
4887 * other page validation.
4888 */
4889 vfs_busy_pages_acquire(bp);
4890 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4891 m = bp->b_pages[i];
4892 if (n > size)
4893 n = size;
4894 vm_page_set_valid_range(m, base & PAGE_MASK, n);
4895 base += n;
4896 size -= n;
4897 n = PAGE_SIZE;
4898 }
4899 vfs_busy_pages_release(bp);
4900 }
4901
4902 /*
4903 * vfs_bio_clrbuf:
4904 *
4905 * If the specified buffer is a non-VMIO buffer, clear the entire
4906 * buffer. If the specified buffer is a VMIO buffer, clear and
4907 * validate only the previously invalid portions of the buffer.
4908 * This routine essentially fakes an I/O, so we need to clear
4909 * BIO_ERROR and B_INVAL.
4910 *
4911 * Note that while we only theoretically need to clear through b_bcount,
4912 * we go ahead and clear through b_bufsize.
4913 */
4914 void
vfs_bio_clrbuf(struct buf * bp)4915 vfs_bio_clrbuf(struct buf *bp)
4916 {
4917 int i, j, sa, ea, slide, zbits;
4918 vm_page_bits_t mask;
4919
4920 if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4921 clrbuf(bp);
4922 return;
4923 }
4924 bp->b_flags &= ~B_INVAL;
4925 bp->b_ioflags &= ~BIO_ERROR;
4926 vfs_busy_pages_acquire(bp);
4927 sa = bp->b_offset & PAGE_MASK;
4928 slide = 0;
4929 for (i = 0; i < bp->b_npages; i++, sa = 0) {
4930 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4931 ea = slide & PAGE_MASK;
4932 if (ea == 0)
4933 ea = PAGE_SIZE;
4934 if (bp->b_pages[i] == bogus_page)
4935 continue;
4936 j = sa / DEV_BSIZE;
4937 zbits = (sizeof(vm_page_bits_t) * NBBY) -
4938 (ea - sa) / DEV_BSIZE;
4939 mask = (VM_PAGE_BITS_ALL >> zbits) << j;
4940 if ((bp->b_pages[i]->valid & mask) == mask)
4941 continue;
4942 if ((bp->b_pages[i]->valid & mask) == 0)
4943 pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4944 else {
4945 for (; sa < ea; sa += DEV_BSIZE, j++) {
4946 if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4947 pmap_zero_page_area(bp->b_pages[i],
4948 sa, DEV_BSIZE);
4949 }
4950 }
4951 }
4952 vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4953 roundup2(ea - sa, DEV_BSIZE));
4954 }
4955 vfs_busy_pages_release(bp);
4956 bp->b_resid = 0;
4957 }
4958
4959 void
vfs_bio_bzero_buf(struct buf * bp,int base,int size)4960 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4961 {
4962 vm_page_t m;
4963 int i, n;
4964
4965 if (buf_mapped(bp)) {
4966 BUF_CHECK_MAPPED(bp);
4967 bzero(bp->b_data + base, size);
4968 } else {
4969 BUF_CHECK_UNMAPPED(bp);
4970 n = PAGE_SIZE - (base & PAGE_MASK);
4971 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4972 m = bp->b_pages[i];
4973 if (n > size)
4974 n = size;
4975 pmap_zero_page_area(m, base & PAGE_MASK, n);
4976 base += n;
4977 size -= n;
4978 n = PAGE_SIZE;
4979 }
4980 }
4981 }
4982
4983 /*
4984 * Update buffer flags based on I/O request parameters, optionally releasing the
4985 * buffer. If it's VMIO or direct I/O, the buffer pages are released to the VM,
4986 * where they may be placed on a page queue (VMIO) or freed immediately (direct
4987 * I/O). Otherwise the buffer is released to the cache.
4988 */
4989 static void
b_io_dismiss(struct buf * bp,int ioflag,bool release)4990 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4991 {
4992
4993 KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4994 ("buf %p non-VMIO noreuse", bp));
4995
4996 if ((ioflag & IO_DIRECT) != 0)
4997 bp->b_flags |= B_DIRECT;
4998 if ((ioflag & IO_EXT) != 0)
4999 bp->b_xflags |= BX_ALTDATA;
5000 if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
5001 bp->b_flags |= B_RELBUF;
5002 if ((ioflag & IO_NOREUSE) != 0)
5003 bp->b_flags |= B_NOREUSE;
5004 if (release)
5005 brelse(bp);
5006 } else if (release)
5007 bqrelse(bp);
5008 }
5009
5010 void
vfs_bio_brelse(struct buf * bp,int ioflag)5011 vfs_bio_brelse(struct buf *bp, int ioflag)
5012 {
5013
5014 b_io_dismiss(bp, ioflag, true);
5015 }
5016
5017 void
vfs_bio_set_flags(struct buf * bp,int ioflag)5018 vfs_bio_set_flags(struct buf *bp, int ioflag)
5019 {
5020
5021 b_io_dismiss(bp, ioflag, false);
5022 }
5023
5024 /*
5025 * vm_hold_load_pages and vm_hold_free_pages get pages into
5026 * a buffers address space. The pages are anonymous and are
5027 * not associated with a file object.
5028 */
5029 static void
vm_hold_load_pages(struct buf * bp,vm_offset_t from,vm_offset_t to)5030 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
5031 {
5032 vm_offset_t pg;
5033 vm_page_t p;
5034 int index;
5035
5036 BUF_CHECK_MAPPED(bp);
5037
5038 to = round_page(to);
5039 from = round_page(from);
5040 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
5041 MPASS((bp->b_flags & B_MAXPHYS) == 0);
5042 KASSERT(to - from <= maxbcachebuf,
5043 ("vm_hold_load_pages too large %p %#jx %#jx %u",
5044 bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
5045
5046 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
5047 /*
5048 * note: must allocate system pages since blocking here
5049 * could interfere with paging I/O, no matter which
5050 * process we are.
5051 */
5052 p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
5053 VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
5054 pmap_qenter(pg, &p, 1);
5055 bp->b_pages[index] = p;
5056 }
5057 bp->b_npages = index;
5058 }
5059
5060 /* Return pages associated with this buf to the vm system */
5061 static void
vm_hold_free_pages(struct buf * bp,int newbsize)5062 vm_hold_free_pages(struct buf *bp, int newbsize)
5063 {
5064 vm_offset_t from;
5065 vm_page_t p;
5066 int index, newnpages;
5067
5068 BUF_CHECK_MAPPED(bp);
5069
5070 from = round_page((vm_offset_t)bp->b_data + newbsize);
5071 newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
5072 if (bp->b_npages > newnpages)
5073 pmap_qremove(from, bp->b_npages - newnpages);
5074 for (index = newnpages; index < bp->b_npages; index++) {
5075 p = bp->b_pages[index];
5076 bp->b_pages[index] = NULL;
5077 vm_page_unwire_noq(p);
5078 vm_page_free(p);
5079 }
5080 bp->b_npages = newnpages;
5081 }
5082
5083 /*
5084 * Map an IO request into kernel virtual address space.
5085 *
5086 * All requests are (re)mapped into kernel VA space.
5087 * Notice that we use b_bufsize for the size of the buffer
5088 * to be mapped. b_bcount might be modified by the driver.
5089 *
5090 * Note that even if the caller determines that the address space should
5091 * be valid, a race or a smaller-file mapped into a larger space may
5092 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
5093 * check the return value.
5094 *
5095 * This function only works with pager buffers.
5096 */
5097 int
vmapbuf(struct buf * bp,void * uaddr,size_t len,int mapbuf)5098 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
5099 {
5100 vm_prot_t prot;
5101 int pidx;
5102
5103 MPASS((bp->b_flags & B_MAXPHYS) != 0);
5104 prot = VM_PROT_READ;
5105 if (bp->b_iocmd == BIO_READ)
5106 prot |= VM_PROT_WRITE; /* Less backwards than it looks */
5107 pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
5108 (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
5109 if (pidx < 0)
5110 return (-1);
5111 bp->b_bufsize = len;
5112 bp->b_npages = pidx;
5113 bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
5114 if (mapbuf || !unmapped_buf_allowed) {
5115 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
5116 bp->b_data = bp->b_kvabase + bp->b_offset;
5117 } else
5118 bp->b_data = unmapped_buf;
5119 return (0);
5120 }
5121
5122 /*
5123 * Free the io map PTEs associated with this IO operation.
5124 * We also invalidate the TLB entries and restore the original b_addr.
5125 *
5126 * This function only works with pager buffers.
5127 */
5128 void
vunmapbuf(struct buf * bp)5129 vunmapbuf(struct buf *bp)
5130 {
5131 int npages;
5132
5133 npages = bp->b_npages;
5134 if (buf_mapped(bp))
5135 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
5136 vm_page_unhold_pages(bp->b_pages, npages);
5137
5138 bp->b_data = unmapped_buf;
5139 }
5140
5141 void
bdone(struct buf * bp)5142 bdone(struct buf *bp)
5143 {
5144 struct mtx *mtxp;
5145
5146 mtxp = mtx_pool_find(mtxpool_sleep, bp);
5147 mtx_lock(mtxp);
5148 bp->b_flags |= B_DONE;
5149 wakeup(bp);
5150 mtx_unlock(mtxp);
5151 }
5152
5153 void
bwait(struct buf * bp,u_char pri,const char * wchan)5154 bwait(struct buf *bp, u_char pri, const char *wchan)
5155 {
5156 struct mtx *mtxp;
5157
5158 mtxp = mtx_pool_find(mtxpool_sleep, bp);
5159 mtx_lock(mtxp);
5160 while ((bp->b_flags & B_DONE) == 0)
5161 msleep(bp, mtxp, pri, wchan, 0);
5162 mtx_unlock(mtxp);
5163 }
5164
5165 int
bufsync(struct bufobj * bo,int waitfor)5166 bufsync(struct bufobj *bo, int waitfor)
5167 {
5168
5169 return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5170 }
5171
5172 void
bufstrategy(struct bufobj * bo,struct buf * bp)5173 bufstrategy(struct bufobj *bo, struct buf *bp)
5174 {
5175 int i __unused;
5176 struct vnode *vp;
5177
5178 vp = bp->b_vp;
5179 KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5180 KASSERT(!VN_ISDEV(vp),
5181 ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5182 i = VOP_STRATEGY(vp, bp);
5183 KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5184 }
5185
5186 /*
5187 * Initialize a struct bufobj before use. Memory is assumed zero filled.
5188 */
5189 void
bufobj_init(struct bufobj * bo,void * private)5190 bufobj_init(struct bufobj *bo, void *private)
5191 {
5192 static volatile int bufobj_cleanq;
5193
5194 bo->bo_domain =
5195 atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5196 rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5197 bo->bo_private = private;
5198 TAILQ_INIT(&bo->bo_clean.bv_hd);
5199 pctrie_init(&bo->bo_clean.bv_root);
5200 TAILQ_INIT(&bo->bo_dirty.bv_hd);
5201 pctrie_init(&bo->bo_dirty.bv_root);
5202 }
5203
5204 void
bufobj_wrefl(struct bufobj * bo)5205 bufobj_wrefl(struct bufobj *bo)
5206 {
5207
5208 KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5209 ASSERT_BO_WLOCKED(bo);
5210 bo->bo_numoutput++;
5211 }
5212
5213 void
bufobj_wref(struct bufobj * bo)5214 bufobj_wref(struct bufobj *bo)
5215 {
5216
5217 KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5218 BO_LOCK(bo);
5219 bo->bo_numoutput++;
5220 BO_UNLOCK(bo);
5221 }
5222
5223 void
bufobj_wdrop(struct bufobj * bo)5224 bufobj_wdrop(struct bufobj *bo)
5225 {
5226
5227 KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5228 BO_LOCK(bo);
5229 KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5230 if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5231 bo->bo_flag &= ~BO_WWAIT;
5232 wakeup(&bo->bo_numoutput);
5233 }
5234 BO_UNLOCK(bo);
5235 }
5236
5237 int
bufobj_wwait(struct bufobj * bo,int slpflag,int timeo)5238 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5239 {
5240 int error;
5241
5242 KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5243 ASSERT_BO_WLOCKED(bo);
5244 error = 0;
5245 while (bo->bo_numoutput) {
5246 bo->bo_flag |= BO_WWAIT;
5247 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5248 slpflag | PRIBIO, "bo_wwait", timeo);
5249 if (error)
5250 break;
5251 }
5252 return (error);
5253 }
5254
5255 /*
5256 * Set bio_data or bio_ma for struct bio from the struct buf.
5257 */
5258 void
bdata2bio(struct buf * bp,struct bio * bip)5259 bdata2bio(struct buf *bp, struct bio *bip)
5260 {
5261
5262 if (!buf_mapped(bp)) {
5263 KASSERT(unmapped_buf_allowed, ("unmapped"));
5264 bip->bio_ma = bp->b_pages;
5265 bip->bio_ma_n = bp->b_npages;
5266 bip->bio_data = unmapped_buf;
5267 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5268 bip->bio_flags |= BIO_UNMAPPED;
5269 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5270 PAGE_SIZE == bp->b_npages,
5271 ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5272 (long long)bip->bio_length, bip->bio_ma_n));
5273 } else {
5274 bip->bio_data = bp->b_data;
5275 bip->bio_ma = NULL;
5276 }
5277 }
5278
5279 struct memdesc
memdesc_bio(struct bio * bio)5280 memdesc_bio(struct bio *bio)
5281 {
5282 if ((bio->bio_flags & BIO_VLIST) != 0)
5283 return (memdesc_vlist((struct bus_dma_segment *)bio->bio_data,
5284 bio->bio_ma_n));
5285
5286 if ((bio->bio_flags & BIO_UNMAPPED) != 0)
5287 return (memdesc_vmpages(bio->bio_ma, bio->bio_bcount,
5288 bio->bio_ma_offset));
5289
5290 return (memdesc_vaddr(bio->bio_data, bio->bio_bcount));
5291 }
5292
5293 static int buf_pager_relbuf;
5294 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5295 &buf_pager_relbuf, 0,
5296 "Make buffer pager release buffers after reading");
5297
5298 /*
5299 * The buffer pager. It uses buffer reads to validate pages.
5300 *
5301 * In contrast to the generic local pager from vm/vnode_pager.c, this
5302 * pager correctly and easily handles volumes where the underlying
5303 * device block size is greater than the machine page size. The
5304 * buffer cache transparently extends the requested page run to be
5305 * aligned at the block boundary, and does the necessary bogus page
5306 * replacements in the addends to avoid obliterating already valid
5307 * pages.
5308 *
5309 * The only non-trivial issue is that the exclusive busy state for
5310 * pages, which is assumed by the vm_pager_getpages() interface, is
5311 * incompatible with the VMIO buffer cache's desire to share-busy the
5312 * pages. This function performs a trivial downgrade of the pages'
5313 * state before reading buffers, and a less trivial upgrade from the
5314 * shared-busy to excl-busy state after the read.
5315 */
5316 int
vfs_bio_getpages(struct vnode * vp,vm_page_t * ma,int count,int * rbehind,int * rahead,vbg_get_lblkno_t get_lblkno,vbg_get_blksize_t get_blksize)5317 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5318 int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5319 vbg_get_blksize_t get_blksize)
5320 {
5321 vm_page_t m;
5322 vm_object_t object;
5323 struct buf *bp;
5324 struct mount *mp;
5325 daddr_t lbn, lbnp;
5326 vm_ooffset_t la, lb, poff, poffe;
5327 long bo_bs, bsize;
5328 int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5329 bool redo, lpart;
5330
5331 object = vp->v_object;
5332 mp = vp->v_mount;
5333 error = 0;
5334 la = IDX_TO_OFF(ma[count - 1]->pindex);
5335 if (la >= object->un_pager.vnp.vnp_size)
5336 return (VM_PAGER_BAD);
5337
5338 /*
5339 * Change the meaning of la from where the last requested page starts
5340 * to where it ends, because that's the end of the requested region
5341 * and the start of the potential read-ahead region.
5342 */
5343 la += PAGE_SIZE;
5344 lpart = la > object->un_pager.vnp.vnp_size;
5345 error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
5346 &bo_bs);
5347 if (error != 0)
5348 return (VM_PAGER_ERROR);
5349
5350 /*
5351 * Calculate read-ahead, behind and total pages.
5352 */
5353 pgsin = count;
5354 lb = IDX_TO_OFF(ma[0]->pindex);
5355 pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5356 pgsin += pgsin_b;
5357 if (rbehind != NULL)
5358 *rbehind = pgsin_b;
5359 pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5360 if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5361 pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5362 PAGE_SIZE) - la);
5363 pgsin += pgsin_a;
5364 if (rahead != NULL)
5365 *rahead = pgsin_a;
5366 VM_CNT_INC(v_vnodein);
5367 VM_CNT_ADD(v_vnodepgsin, pgsin);
5368
5369 br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5370 != 0) ? GB_UNMAPPED : 0;
5371 again:
5372 for (i = 0; i < count; i++) {
5373 if (ma[i] != bogus_page)
5374 vm_page_busy_downgrade(ma[i]);
5375 }
5376
5377 lbnp = -1;
5378 for (i = 0; i < count; i++) {
5379 m = ma[i];
5380 if (m == bogus_page)
5381 continue;
5382
5383 /*
5384 * Pages are shared busy and the object lock is not
5385 * owned, which together allow for the pages'
5386 * invalidation. The racy test for validity avoids
5387 * useless creation of the buffer for the most typical
5388 * case when invalidation is not used in redo or for
5389 * parallel read. The shared->excl upgrade loop at
5390 * the end of the function catches the race in a
5391 * reliable way (protected by the object lock).
5392 */
5393 if (vm_page_all_valid(m))
5394 continue;
5395
5396 poff = IDX_TO_OFF(m->pindex);
5397 poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5398 for (; poff < poffe; poff += bsize) {
5399 lbn = get_lblkno(vp, poff);
5400 if (lbn == lbnp)
5401 goto next_page;
5402 lbnp = lbn;
5403
5404 error = get_blksize(vp, lbn, &bsize);
5405 if (error == 0)
5406 error = bread_gb(vp, lbn, bsize,
5407 curthread->td_ucred, br_flags, &bp);
5408 if (error != 0)
5409 goto end_pages;
5410 if (bp->b_rcred == curthread->td_ucred) {
5411 crfree(bp->b_rcred);
5412 bp->b_rcred = NOCRED;
5413 }
5414 if (LIST_EMPTY(&bp->b_dep)) {
5415 /*
5416 * Invalidation clears m->valid, but
5417 * may leave B_CACHE flag if the
5418 * buffer existed at the invalidation
5419 * time. In this case, recycle the
5420 * buffer to do real read on next
5421 * bread() after redo.
5422 *
5423 * Otherwise B_RELBUF is not strictly
5424 * necessary, enable to reduce buf
5425 * cache pressure.
5426 */
5427 if (buf_pager_relbuf ||
5428 !vm_page_all_valid(m))
5429 bp->b_flags |= B_RELBUF;
5430
5431 bp->b_flags &= ~B_NOCACHE;
5432 brelse(bp);
5433 } else {
5434 bqrelse(bp);
5435 }
5436 }
5437 KASSERT(1 /* racy, enable for debugging */ ||
5438 vm_page_all_valid(m) || i == count - 1,
5439 ("buf %d %p invalid", i, m));
5440 if (i == count - 1 && lpart) {
5441 if (!vm_page_none_valid(m) &&
5442 !vm_page_all_valid(m))
5443 vm_page_zero_invalid(m, TRUE);
5444 }
5445 next_page:;
5446 }
5447 end_pages:
5448
5449 redo = false;
5450 for (i = 0; i < count; i++) {
5451 if (ma[i] == bogus_page)
5452 continue;
5453 if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5454 vm_page_sunbusy(ma[i]);
5455 ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5456 VM_ALLOC_NORMAL);
5457 }
5458
5459 /*
5460 * Since the pages were only sbusy while neither the
5461 * buffer nor the object lock was held by us, or
5462 * reallocated while vm_page_grab() slept for busy
5463 * relinguish, they could have been invalidated.
5464 * Recheck the valid bits and re-read as needed.
5465 *
5466 * Note that the last page is made fully valid in the
5467 * read loop, and partial validity for the page at
5468 * index count - 1 could mean that the page was
5469 * invalidated or removed, so we must restart for
5470 * safety as well.
5471 */
5472 if (!vm_page_all_valid(ma[i]))
5473 redo = true;
5474 }
5475 if (redo && error == 0)
5476 goto again;
5477 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5478 }
5479
5480 #include "opt_ddb.h"
5481 #ifdef DDB
5482 #include <ddb/ddb.h>
5483
5484 /* DDB command to show buffer data */
DB_SHOW_COMMAND(buffer,db_show_buffer)5485 DB_SHOW_COMMAND(buffer, db_show_buffer)
5486 {
5487 /* get args */
5488 struct buf *bp = (struct buf *)addr;
5489 #ifdef FULL_BUF_TRACKING
5490 uint32_t i, j;
5491 #endif
5492
5493 if (!have_addr) {
5494 db_printf("usage: show buffer <addr>\n");
5495 return;
5496 }
5497
5498 db_printf("buf at %p\n", bp);
5499 db_printf("b_flags = 0x%b, b_xflags = 0x%b\n",
5500 (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5501 (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5502 db_printf("b_vflags = 0x%b, b_ioflags = 0x%b\n",
5503 (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5504 (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5505 db_printf(
5506 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5507 "b_bufobj = %p, b_data = %p\n"
5508 "b_blkno = %jd, b_lblkno = %jd, b_vp = %p, b_dep = %p\n",
5509 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5510 bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5511 (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5512 db_printf("b_kvabase = %p, b_kvasize = %d\n",
5513 bp->b_kvabase, bp->b_kvasize);
5514 if (bp->b_npages) {
5515 int i;
5516 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5517 for (i = 0; i < bp->b_npages; i++) {
5518 vm_page_t m;
5519 m = bp->b_pages[i];
5520 if (m != NULL)
5521 db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5522 (u_long)m->pindex,
5523 (u_long)VM_PAGE_TO_PHYS(m));
5524 else
5525 db_printf("( ??? )");
5526 if ((i + 1) < bp->b_npages)
5527 db_printf(",");
5528 }
5529 db_printf("\n");
5530 }
5531 BUF_LOCKPRINTINFO(bp);
5532 if ((bp->b_ioflags & BIO_EXTERR) != 0)
5533 exterr_db_print(&bp->b_exterr);
5534 #if defined(FULL_BUF_TRACKING)
5535 db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5536
5537 i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5538 for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5539 if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5540 continue;
5541 db_printf(" %2u: %s\n", j,
5542 bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5543 }
5544 #elif defined(BUF_TRACKING)
5545 db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5546 #endif
5547 }
5548
DB_SHOW_COMMAND_FLAGS(bufqueues,bufqueues,DB_CMD_MEMSAFE)5549 DB_SHOW_COMMAND_FLAGS(bufqueues, bufqueues, DB_CMD_MEMSAFE)
5550 {
5551 struct bufdomain *bd;
5552 struct buf *bp;
5553 long total;
5554 int i, j, cnt;
5555
5556 db_printf("bqempty: %d\n", bqempty.bq_len);
5557
5558 for (i = 0; i < buf_domains; i++) {
5559 bd = &bdomain[i];
5560 db_printf("Buf domain %d\n", i);
5561 db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5562 db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5563 db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5564 db_printf("\n");
5565 db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5566 db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5567 db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5568 db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5569 db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5570 db_printf("\n");
5571 db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5572 db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5573 db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5574 db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5575 db_printf("\n");
5576 total = 0;
5577 TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5578 total += bp->b_bufsize;
5579 db_printf("\tcleanq count\t%d (%ld)\n",
5580 bd->bd_cleanq->bq_len, total);
5581 total = 0;
5582 TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5583 total += bp->b_bufsize;
5584 db_printf("\tdirtyq count\t%d (%ld)\n",
5585 bd->bd_dirtyq.bq_len, total);
5586 db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5587 db_printf("\tlim\t\t%d\n", bd->bd_lim);
5588 db_printf("\tCPU ");
5589 for (j = 0; j <= mp_maxid; j++)
5590 db_printf("%d, ", bd->bd_subq[j].bq_len);
5591 db_printf("\n");
5592 cnt = 0;
5593 total = 0;
5594 for (j = 0; j < nbuf; j++) {
5595 bp = nbufp(j);
5596 if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
5597 cnt++;
5598 total += bp->b_bufsize;
5599 }
5600 }
5601 db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5602 cnt = 0;
5603 total = 0;
5604 for (j = 0; j < nbuf; j++) {
5605 bp = nbufp(j);
5606 if (bp->b_domain == i) {
5607 cnt++;
5608 total += bp->b_bufsize;
5609 }
5610 }
5611 db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5612 }
5613 }
5614
DB_SHOW_COMMAND_FLAGS(lockedbufs,lockedbufs,DB_CMD_MEMSAFE)5615 DB_SHOW_COMMAND_FLAGS(lockedbufs, lockedbufs, DB_CMD_MEMSAFE)
5616 {
5617 struct buf *bp;
5618 int i;
5619
5620 for (i = 0; i < nbuf; i++) {
5621 bp = nbufp(i);
5622 if (BUF_ISLOCKED(bp)) {
5623 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5624 db_printf("\n");
5625 if (db_pager_quit)
5626 break;
5627 }
5628 }
5629 }
5630
DB_SHOW_COMMAND(vnodebufs,db_show_vnodebufs)5631 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5632 {
5633 struct vnode *vp;
5634 struct buf *bp;
5635
5636 if (!have_addr) {
5637 db_printf("usage: show vnodebufs <addr>\n");
5638 return;
5639 }
5640 vp = (struct vnode *)addr;
5641 db_printf("Clean buffers:\n");
5642 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5643 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5644 db_printf("\n");
5645 }
5646 db_printf("Dirty buffers:\n");
5647 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5648 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5649 db_printf("\n");
5650 }
5651 }
5652
DB_COMMAND_FLAGS(countfreebufs,db_coundfreebufs,DB_CMD_MEMSAFE)5653 DB_COMMAND_FLAGS(countfreebufs, db_coundfreebufs, DB_CMD_MEMSAFE)
5654 {
5655 struct buf *bp;
5656 int i, used = 0, nfree = 0;
5657
5658 if (have_addr) {
5659 db_printf("usage: countfreebufs\n");
5660 return;
5661 }
5662
5663 for (i = 0; i < nbuf; i++) {
5664 bp = nbufp(i);
5665 if (bp->b_qindex == QUEUE_EMPTY)
5666 nfree++;
5667 else
5668 used++;
5669 }
5670
5671 db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5672 nfree + used);
5673 db_printf("numfreebuffers is %d\n", numfreebuffers);
5674 }
5675 #endif /* DDB */
5676