1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 /*
38 * External virtual filesystem routines
39 */
40
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_watchdog.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/asan.h>
48 #include <sys/bio.h>
49 #include <sys/buf.h>
50 #include <sys/capsicum.h>
51 #include <sys/condvar.h>
52 #include <sys/conf.h>
53 #include <sys/counter.h>
54 #include <sys/dirent.h>
55 #include <sys/event.h>
56 #include <sys/eventhandler.h>
57 #include <sys/extattr.h>
58 #include <sys/file.h>
59 #include <sys/fcntl.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/sysctl.h>
81 #include <sys/syslog.h>
82 #include <sys/vmmeter.h>
83 #include <sys/vnode.h>
84 #include <sys/watchdog.h>
85
86 #include <machine/stdarg.h>
87
88 #include <security/mac/mac_framework.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99
100 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
101 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
102 #endif
103
104 #ifdef DDB
105 #include <ddb/ddb.h>
106 #endif
107
108 static void delmntque(struct vnode *vp);
109 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
110 int slpflag, int slptimeo);
111 static void syncer_shutdown(void *arg, int howto);
112 static int vtryrecycle(struct vnode *vp, bool isvnlru);
113 static void v_init_counters(struct vnode *);
114 static void vn_seqc_init(struct vnode *);
115 static void vn_seqc_write_end_free(struct vnode *vp);
116 static void vgonel(struct vnode *);
117 static bool vhold_recycle_free(struct vnode *);
118 static void vdropl_recycle(struct vnode *vp);
119 static void vdrop_recycle(struct vnode *vp);
120 static void vfs_knllock(void *arg);
121 static void vfs_knlunlock(void *arg);
122 static void vfs_knl_assert_lock(void *arg, int what);
123 static void destroy_vpollinfo(struct vpollinfo *vi);
124 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
125 daddr_t startlbn, daddr_t endlbn);
126 static void vnlru_recalc(void);
127
128 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129 "vnode configuration and statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131 "vnode configuration");
132 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133 "vnode statistics");
134 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
135 "vnode recycling");
136
137 /*
138 * Number of vnodes in existence. Increased whenever getnewvnode()
139 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
140 */
141 static u_long __exclusive_cache_line numvnodes;
142
143 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
144 "Number of vnodes in existence (legacy)");
145 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
146 "Number of vnodes in existence");
147
148 static counter_u64_t vnodes_created;
149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150 "Number of vnodes created by getnewvnode (legacy)");
151 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
152 "Number of vnodes created by getnewvnode");
153
154 /*
155 * Conversion tables for conversion from vnode types to inode formats
156 * and back.
157 */
158 __enum_uint8(vtype) iftovt_tab[16] = {
159 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
160 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
161 };
162 int vttoif_tab[10] = {
163 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
164 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
165 };
166
167 /*
168 * List of allocates vnodes in the system.
169 */
170 static TAILQ_HEAD(freelst, vnode) vnode_list;
171 static struct vnode *vnode_list_free_marker;
172 static struct vnode *vnode_list_reclaim_marker;
173
174 /*
175 * "Free" vnode target. Free vnodes are rarely completely free, but are
176 * just ones that are cheap to recycle. Usually they are for files which
177 * have been stat'd but not read; these usually have inode and namecache
178 * data attached to them. This target is the preferred minimum size of a
179 * sub-cache consisting mostly of such files. The system balances the size
180 * of this sub-cache with its complement to try to prevent either from
181 * thrashing while the other is relatively inactive. The targets express
182 * a preference for the best balance.
183 *
184 * "Above" this target there are 2 further targets (watermarks) related
185 * to recyling of free vnodes. In the best-operating case, the cache is
186 * exactly full, the free list has size between vlowat and vhiwat above the
187 * free target, and recycling from it and normal use maintains this state.
188 * Sometimes the free list is below vlowat or even empty, but this state
189 * is even better for immediate use provided the cache is not full.
190 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
191 * ones) to reach one of these states. The watermarks are currently hard-
192 * coded as 4% and 9% of the available space higher. These and the default
193 * of 25% for wantfreevnodes are too large if the memory size is large.
194 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
195 * whenever vnlru_proc() becomes active.
196 */
197 static long wantfreevnodes;
198 static long __exclusive_cache_line freevnodes;
199 static long freevnodes_old;
200
201 static u_long recycles_count;
202 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
203 "Number of vnodes recycled to meet vnode cache targets (legacy)");
204 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
205 &recycles_count, 0,
206 "Number of vnodes recycled to meet vnode cache targets");
207
208 static u_long recycles_free_count;
209 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
210 &recycles_free_count, 0,
211 "Number of free vnodes recycled to meet vnode cache targets (legacy)");
212 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
213 &recycles_free_count, 0,
214 "Number of free vnodes recycled to meet vnode cache targets");
215
216 static counter_u64_t direct_recycles_free_count;
217 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
218 &direct_recycles_free_count,
219 "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
220
221 static counter_u64_t vnode_skipped_requeues;
222 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
223 "Number of times LRU requeue was skipped due to lock contention");
224
225 static __read_mostly bool vnode_can_skip_requeue;
226 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
227 &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
228
229 static u_long deferred_inact;
230 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
231 &deferred_inact, 0, "Number of times inactive processing was deferred");
232
233 /* To keep more than one thread at a time from running vfs_getnewfsid */
234 static struct mtx mntid_mtx;
235
236 /*
237 * Lock for any access to the following:
238 * vnode_list
239 * numvnodes
240 * freevnodes
241 */
242 static struct mtx __exclusive_cache_line vnode_list_mtx;
243
244 /* Publicly exported FS */
245 struct nfs_public nfs_pub;
246
247 static uma_zone_t buf_trie_zone;
248 static smr_t buf_trie_smr;
249
250 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
251 static uma_zone_t vnode_zone;
252 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
253
254 __read_frequently smr_t vfs_smr;
255
256 /*
257 * The workitem queue.
258 *
259 * It is useful to delay writes of file data and filesystem metadata
260 * for tens of seconds so that quickly created and deleted files need
261 * not waste disk bandwidth being created and removed. To realize this,
262 * we append vnodes to a "workitem" queue. When running with a soft
263 * updates implementation, most pending metadata dependencies should
264 * not wait for more than a few seconds. Thus, mounted on block devices
265 * are delayed only about a half the time that file data is delayed.
266 * Similarly, directory updates are more critical, so are only delayed
267 * about a third the time that file data is delayed. Thus, there are
268 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
269 * one each second (driven off the filesystem syncer process). The
270 * syncer_delayno variable indicates the next queue that is to be processed.
271 * Items that need to be processed soon are placed in this queue:
272 *
273 * syncer_workitem_pending[syncer_delayno]
274 *
275 * A delay of fifteen seconds is done by placing the request fifteen
276 * entries later in the queue:
277 *
278 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
279 *
280 */
281 static int syncer_delayno;
282 static long syncer_mask;
283 LIST_HEAD(synclist, bufobj);
284 static struct synclist *syncer_workitem_pending;
285 /*
286 * The sync_mtx protects:
287 * bo->bo_synclist
288 * sync_vnode_count
289 * syncer_delayno
290 * syncer_state
291 * syncer_workitem_pending
292 * syncer_worklist_len
293 * rushjob
294 */
295 static struct mtx sync_mtx;
296 static struct cv sync_wakeup;
297
298 #define SYNCER_MAXDELAY 32
299 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
300 static int syncdelay = 30; /* max time to delay syncing data */
301 static int filedelay = 30; /* time to delay syncing files */
302 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
303 "Time to delay syncing files (in seconds)");
304 static int dirdelay = 29; /* time to delay syncing directories */
305 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
306 "Time to delay syncing directories (in seconds)");
307 static int metadelay = 28; /* time to delay syncing metadata */
308 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
309 "Time to delay syncing metadata (in seconds)");
310 static int rushjob; /* number of slots to run ASAP */
311 static int stat_rush_requests; /* number of times I/O speeded up */
312 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
313 "Number of times I/O speeded up (rush requests)");
314
315 #define VDBATCH_SIZE 8
316 struct vdbatch {
317 u_int index;
318 struct mtx lock;
319 struct vnode *tab[VDBATCH_SIZE];
320 };
321 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
322
323 static void vdbatch_dequeue(struct vnode *vp);
324
325 /*
326 * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown;
327 * we probably don't want to pause for the whole second each time.
328 */
329 #define SYNCER_SHUTDOWN_SPEEDUP 32
330 static int sync_vnode_count;
331 static int syncer_worklist_len;
332 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
333 syncer_state;
334
335 /* Target for maximum number of vnodes. */
336 u_long desiredvnodes;
337 static u_long gapvnodes; /* gap between wanted and desired */
338 static u_long vhiwat; /* enough extras after expansion */
339 static u_long vlowat; /* minimal extras before expansion */
340 static bool vstir; /* nonzero to stir non-free vnodes */
341 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */
342
343 static u_long vnlru_read_freevnodes(void);
344
345 /*
346 * Note that no attempt is made to sanitize these parameters.
347 */
348 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)349 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
350 {
351 u_long val;
352 int error;
353
354 val = desiredvnodes;
355 error = sysctl_handle_long(oidp, &val, 0, req);
356 if (error != 0 || req->newptr == NULL)
357 return (error);
358
359 if (val == desiredvnodes)
360 return (0);
361 mtx_lock(&vnode_list_mtx);
362 desiredvnodes = val;
363 wantfreevnodes = desiredvnodes / 4;
364 vnlru_recalc();
365 mtx_unlock(&vnode_list_mtx);
366 /*
367 * XXX There is no protection against multiple threads changing
368 * desiredvnodes at the same time. Locking above only helps vnlru and
369 * getnewvnode.
370 */
371 vfs_hash_changesize(desiredvnodes);
372 cache_changesize(desiredvnodes);
373 return (0);
374 }
375
376 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
377 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
378 "LU", "Target for maximum number of vnodes (legacy)");
379 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
380 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
381 "LU", "Target for maximum number of vnodes");
382
383 static int
sysctl_freevnodes(SYSCTL_HANDLER_ARGS)384 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
385 {
386 u_long rfreevnodes;
387
388 rfreevnodes = vnlru_read_freevnodes();
389 return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
390 }
391
392 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
393 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
394 "LU", "Number of \"free\" vnodes (legacy)");
395 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
396 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
397 "LU", "Number of \"free\" vnodes");
398
399 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)400 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
401 {
402 u_long val;
403 int error;
404
405 val = wantfreevnodes;
406 error = sysctl_handle_long(oidp, &val, 0, req);
407 if (error != 0 || req->newptr == NULL)
408 return (error);
409
410 if (val == wantfreevnodes)
411 return (0);
412 mtx_lock(&vnode_list_mtx);
413 wantfreevnodes = val;
414 vnlru_recalc();
415 mtx_unlock(&vnode_list_mtx);
416 return (0);
417 }
418
419 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
420 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
421 "LU", "Target for minimum number of \"free\" vnodes (legacy)");
422 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
423 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
424 "LU", "Target for minimum number of \"free\" vnodes");
425
426 static int vnlru_nowhere;
427 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
428 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
429
430 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)431 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
432 {
433 struct vnode *vp;
434 struct nameidata nd;
435 char *buf;
436 unsigned long ndflags;
437 int error;
438
439 if (req->newptr == NULL)
440 return (EINVAL);
441 if (req->newlen >= PATH_MAX)
442 return (E2BIG);
443
444 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
445 error = SYSCTL_IN(req, buf, req->newlen);
446 if (error != 0)
447 goto out;
448
449 buf[req->newlen] = '\0';
450
451 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
452 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
453 if ((error = namei(&nd)) != 0)
454 goto out;
455 vp = nd.ni_vp;
456
457 if (VN_IS_DOOMED(vp)) {
458 /*
459 * This vnode is being recycled. Return != 0 to let the caller
460 * know that the sysctl had no effect. Return EAGAIN because a
461 * subsequent call will likely succeed (since namei will create
462 * a new vnode if necessary)
463 */
464 error = EAGAIN;
465 goto putvnode;
466 }
467
468 vgone(vp);
469 putvnode:
470 vput(vp);
471 NDFREE_PNBUF(&nd);
472 out:
473 free(buf, M_TEMP);
474 return (error);
475 }
476
477 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)478 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
479 {
480 struct thread *td = curthread;
481 struct vnode *vp;
482 struct file *fp;
483 int error;
484 int fd;
485
486 if (req->newptr == NULL)
487 return (EBADF);
488
489 error = sysctl_handle_int(oidp, &fd, 0, req);
490 if (error != 0)
491 return (error);
492 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
493 if (error != 0)
494 return (error);
495 vp = fp->f_vnode;
496
497 error = vn_lock(vp, LK_EXCLUSIVE);
498 if (error != 0)
499 goto drop;
500
501 vgone(vp);
502 VOP_UNLOCK(vp);
503 drop:
504 fdrop(fp, td);
505 return (error);
506 }
507
508 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
509 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
510 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
511 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
512 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
513 sysctl_ftry_reclaim_vnode, "I",
514 "Try to reclaim a vnode by its file descriptor");
515
516 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
517 #define vnsz2log 8
518 #ifndef DEBUG_LOCKS
519 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
520 sizeof(struct vnode) < 1UL << (vnsz2log + 1),
521 "vnsz2log needs to be updated");
522 #endif
523
524 /*
525 * Support for the bufobj clean & dirty pctrie.
526 */
527 static void *
buf_trie_alloc(struct pctrie * ptree)528 buf_trie_alloc(struct pctrie *ptree)
529 {
530 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
531 }
532
533 static void
buf_trie_free(struct pctrie * ptree,void * node)534 buf_trie_free(struct pctrie *ptree, void *node)
535 {
536 uma_zfree_smr(buf_trie_zone, node);
537 }
538 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
539 buf_trie_smr);
540
541 /*
542 * Lookup the next element greater than or equal to lblkno, accounting for the
543 * fact that, for pctries, negative values are greater than nonnegative ones.
544 */
545 static struct buf *
buf_lookup_ge(struct bufv * bv,daddr_t lblkno)546 buf_lookup_ge(struct bufv *bv, daddr_t lblkno)
547 {
548 struct buf *bp;
549
550 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno);
551 if (bp == NULL && lblkno < 0)
552 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0);
553 if (bp != NULL && bp->b_lblkno < lblkno)
554 bp = NULL;
555 return (bp);
556 }
557
558 /*
559 * Insert bp, and find the next element smaller than bp, accounting for the fact
560 * that, for pctries, negative values are greater than nonnegative ones.
561 */
562 static int
buf_insert_lookup_le(struct bufv * bv,struct buf * bp,struct buf ** n)563 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n)
564 {
565 int error;
566
567 error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n);
568 if (error != EEXIST) {
569 if (*n == NULL && bp->b_lblkno >= 0)
570 *n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L);
571 if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno)
572 *n = NULL;
573 }
574 return (error);
575 }
576
577 /*
578 * Initialize the vnode management data structures.
579 *
580 * Reevaluate the following cap on the number of vnodes after the physical
581 * memory size exceeds 512GB. In the limit, as the physical memory size
582 * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
583 */
584 #ifndef MAXVNODES_MAX
585 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */
586 #endif
587
588 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
589
590 static struct vnode *
vn_alloc_marker(struct mount * mp)591 vn_alloc_marker(struct mount *mp)
592 {
593 struct vnode *vp;
594
595 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
596 vp->v_type = VMARKER;
597 vp->v_mount = mp;
598
599 return (vp);
600 }
601
602 static void
vn_free_marker(struct vnode * vp)603 vn_free_marker(struct vnode *vp)
604 {
605
606 MPASS(vp->v_type == VMARKER);
607 free(vp, M_VNODE_MARKER);
608 }
609
610 #ifdef KASAN
611 static int
vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)612 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
613 {
614 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
615 return (0);
616 }
617
618 static void
vnode_dtor(void * mem,int size,void * arg __unused)619 vnode_dtor(void *mem, int size, void *arg __unused)
620 {
621 size_t end1, end2, off1, off2;
622
623 _Static_assert(offsetof(struct vnode, v_vnodelist) <
624 offsetof(struct vnode, v_dbatchcpu),
625 "KASAN marks require updating");
626
627 off1 = offsetof(struct vnode, v_vnodelist);
628 off2 = offsetof(struct vnode, v_dbatchcpu);
629 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
630 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
631
632 /*
633 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
634 * after the vnode has been freed. Try to get some KASAN coverage by
635 * marking everything except those two fields as invalid. Because
636 * KASAN's tracking is not byte-granular, any preceding fields sharing
637 * the same 8-byte aligned word must also be marked valid.
638 */
639
640 /* Handle the area from the start until v_vnodelist... */
641 off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
642 kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
643
644 /* ... then the area between v_vnodelist and v_dbatchcpu ... */
645 off1 = roundup2(end1, KASAN_SHADOW_SCALE);
646 off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
647 if (off2 > off1)
648 kasan_mark((void *)((char *)mem + off1), off2 - off1,
649 off2 - off1, KASAN_UMA_FREED);
650
651 /* ... and finally the area from v_dbatchcpu to the end. */
652 off2 = roundup2(end2, KASAN_SHADOW_SCALE);
653 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
654 KASAN_UMA_FREED);
655 }
656 #endif /* KASAN */
657
658 /*
659 * Initialize a vnode as it first enters the zone.
660 */
661 static int
vnode_init(void * mem,int size,int flags)662 vnode_init(void *mem, int size, int flags)
663 {
664 struct vnode *vp;
665
666 vp = mem;
667 bzero(vp, size);
668 /*
669 * Setup locks.
670 */
671 vp->v_vnlock = &vp->v_lock;
672 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
673 /*
674 * By default, don't allow shared locks unless filesystems opt-in.
675 */
676 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
677 LK_NOSHARE | LK_IS_VNODE);
678 /*
679 * Initialize bufobj.
680 */
681 bufobj_init(&vp->v_bufobj, vp);
682 /*
683 * Initialize namecache.
684 */
685 cache_vnode_init(vp);
686 /*
687 * Initialize rangelocks.
688 */
689 rangelock_init(&vp->v_rl);
690
691 vp->v_dbatchcpu = NOCPU;
692
693 vp->v_state = VSTATE_DEAD;
694
695 /*
696 * Check vhold_recycle_free for an explanation.
697 */
698 vp->v_holdcnt = VHOLD_NO_SMR;
699 vp->v_type = VNON;
700 mtx_lock(&vnode_list_mtx);
701 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
702 mtx_unlock(&vnode_list_mtx);
703 return (0);
704 }
705
706 /*
707 * Free a vnode when it is cleared from the zone.
708 */
709 static void
vnode_fini(void * mem,int size)710 vnode_fini(void *mem, int size)
711 {
712 struct vnode *vp;
713 struct bufobj *bo;
714
715 vp = mem;
716 vdbatch_dequeue(vp);
717 mtx_lock(&vnode_list_mtx);
718 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
719 mtx_unlock(&vnode_list_mtx);
720 rangelock_destroy(&vp->v_rl);
721 lockdestroy(vp->v_vnlock);
722 mtx_destroy(&vp->v_interlock);
723 bo = &vp->v_bufobj;
724 rw_destroy(BO_LOCKPTR(bo));
725
726 kasan_mark(mem, size, size, 0);
727 }
728
729 /*
730 * Provide the size of NFS nclnode and NFS fh for calculation of the
731 * vnode memory consumption. The size is specified directly to
732 * eliminate dependency on NFS-private header.
733 *
734 * Other filesystems may use bigger or smaller (like UFS and ZFS)
735 * private inode data, but the NFS-based estimation is ample enough.
736 * Still, we care about differences in the size between 64- and 32-bit
737 * platforms.
738 *
739 * Namecache structure size is heuristically
740 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
741 */
742 #ifdef _LP64
743 #define NFS_NCLNODE_SZ (528 + 64)
744 #define NC_SZ 148
745 #else
746 #define NFS_NCLNODE_SZ (360 + 32)
747 #define NC_SZ 92
748 #endif
749
750 static void
vntblinit(void * dummy __unused)751 vntblinit(void *dummy __unused)
752 {
753 struct vdbatch *vd;
754 uma_ctor ctor;
755 uma_dtor dtor;
756 int cpu, physvnodes, virtvnodes;
757
758 /*
759 * Desiredvnodes is a function of the physical memory size and the
760 * kernel's heap size. Generally speaking, it scales with the
761 * physical memory size. The ratio of desiredvnodes to the physical
762 * memory size is 1:16 until desiredvnodes exceeds 98,304.
763 * Thereafter, the
764 * marginal ratio of desiredvnodes to the physical memory size is
765 * 1:64. However, desiredvnodes is limited by the kernel's heap
766 * size. The memory required by desiredvnodes vnodes and vm objects
767 * must not exceed 1/10th of the kernel's heap size.
768 */
769 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
770 3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
771 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
772 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
773 desiredvnodes = min(physvnodes, virtvnodes);
774 if (desiredvnodes > MAXVNODES_MAX) {
775 if (bootverbose)
776 printf("Reducing kern.maxvnodes %lu -> %lu\n",
777 desiredvnodes, MAXVNODES_MAX);
778 desiredvnodes = MAXVNODES_MAX;
779 }
780 wantfreevnodes = desiredvnodes / 4;
781 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
782 TAILQ_INIT(&vnode_list);
783 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
784 /*
785 * The lock is taken to appease WITNESS.
786 */
787 mtx_lock(&vnode_list_mtx);
788 vnlru_recalc();
789 mtx_unlock(&vnode_list_mtx);
790 vnode_list_free_marker = vn_alloc_marker(NULL);
791 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
792 vnode_list_reclaim_marker = vn_alloc_marker(NULL);
793 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
794
795 #ifdef KASAN
796 ctor = vnode_ctor;
797 dtor = vnode_dtor;
798 #else
799 ctor = NULL;
800 dtor = NULL;
801 #endif
802 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
803 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
804 uma_zone_set_smr(vnode_zone, vfs_smr);
805
806 /*
807 * Preallocate enough nodes to support one-per buf so that
808 * we can not fail an insert. reassignbuf() callers can not
809 * tolerate the insertion failure.
810 */
811 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
812 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
813 UMA_ZONE_NOFREE | UMA_ZONE_SMR);
814 buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
815 uma_prealloc(buf_trie_zone, nbuf);
816
817 vnodes_created = counter_u64_alloc(M_WAITOK);
818 direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
819 vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
820
821 /*
822 * Initialize the filesystem syncer.
823 */
824 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
825 &syncer_mask);
826 syncer_maxdelay = syncer_mask + 1;
827 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
828 cv_init(&sync_wakeup, "syncer");
829
830 CPU_FOREACH(cpu) {
831 vd = DPCPU_ID_PTR((cpu), vd);
832 bzero(vd, sizeof(*vd));
833 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
834 }
835 }
836 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
837
838 /*
839 * Mark a mount point as busy. Used to synchronize access and to delay
840 * unmounting. Eventually, mountlist_mtx is not released on failure.
841 *
842 * vfs_busy() is a custom lock, it can block the caller.
843 * vfs_busy() only sleeps if the unmount is active on the mount point.
844 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
845 * vnode belonging to mp.
846 *
847 * Lookup uses vfs_busy() to traverse mount points.
848 * root fs var fs
849 * / vnode lock A / vnode lock (/var) D
850 * /var vnode lock B /log vnode lock(/var/log) E
851 * vfs_busy lock C vfs_busy lock F
852 *
853 * Within each file system, the lock order is C->A->B and F->D->E.
854 *
855 * When traversing across mounts, the system follows that lock order:
856 *
857 * C->A->B
858 * |
859 * +->F->D->E
860 *
861 * The lookup() process for namei("/var") illustrates the process:
862 * 1. VOP_LOOKUP() obtains B while A is held
863 * 2. vfs_busy() obtains a shared lock on F while A and B are held
864 * 3. vput() releases lock on B
865 * 4. vput() releases lock on A
866 * 5. VFS_ROOT() obtains lock on D while shared lock on F is held
867 * 6. vfs_unbusy() releases shared lock on F
868 * 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
869 * Attempt to lock A (instead of vp_crossmp) while D is held would
870 * violate the global order, causing deadlocks.
871 *
872 * dounmount() locks B while F is drained. Note that for stacked
873 * filesystems, D and B in the example above may be the same lock,
874 * which introdues potential lock order reversal deadlock between
875 * dounmount() and step 5 above. These filesystems may avoid the LOR
876 * by setting VV_CROSSLOCK on the covered vnode so that lock B will
877 * remain held until after step 5.
878 */
879 int
vfs_busy(struct mount * mp,int flags)880 vfs_busy(struct mount *mp, int flags)
881 {
882 struct mount_pcpu *mpcpu;
883
884 MPASS((flags & ~MBF_MASK) == 0);
885 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
886
887 if (vfs_op_thread_enter(mp, mpcpu)) {
888 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
889 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
890 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
891 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
892 vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
893 vfs_op_thread_exit(mp, mpcpu);
894 if (flags & MBF_MNTLSTLOCK)
895 mtx_unlock(&mountlist_mtx);
896 return (0);
897 }
898
899 MNT_ILOCK(mp);
900 vfs_assert_mount_counters(mp);
901 MNT_REF(mp);
902 /*
903 * If mount point is currently being unmounted, sleep until the
904 * mount point fate is decided. If thread doing the unmounting fails,
905 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
906 * that this mount point has survived the unmount attempt and vfs_busy
907 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE
908 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
909 * about to be really destroyed. vfs_busy needs to release its
910 * reference on the mount point in this case and return with ENOENT,
911 * telling the caller the mount it tried to busy is no longer valid.
912 */
913 while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
914 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
915 ("%s: non-empty upper mount list with pending unmount",
916 __func__));
917 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
918 MNT_REL(mp);
919 MNT_IUNLOCK(mp);
920 CTR1(KTR_VFS, "%s: failed busying before sleeping",
921 __func__);
922 return (ENOENT);
923 }
924 if (flags & MBF_MNTLSTLOCK)
925 mtx_unlock(&mountlist_mtx);
926 mp->mnt_kern_flag |= MNTK_MWAIT;
927 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
928 if (flags & MBF_MNTLSTLOCK)
929 mtx_lock(&mountlist_mtx);
930 MNT_ILOCK(mp);
931 }
932 if (flags & MBF_MNTLSTLOCK)
933 mtx_unlock(&mountlist_mtx);
934 mp->mnt_lockref++;
935 MNT_IUNLOCK(mp);
936 return (0);
937 }
938
939 /*
940 * Free a busy filesystem.
941 */
942 void
vfs_unbusy(struct mount * mp)943 vfs_unbusy(struct mount *mp)
944 {
945 struct mount_pcpu *mpcpu;
946 int c;
947
948 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
949
950 if (vfs_op_thread_enter(mp, mpcpu)) {
951 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
952 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
953 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
954 vfs_op_thread_exit(mp, mpcpu);
955 return;
956 }
957
958 MNT_ILOCK(mp);
959 vfs_assert_mount_counters(mp);
960 MNT_REL(mp);
961 c = --mp->mnt_lockref;
962 if (mp->mnt_vfs_ops == 0) {
963 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
964 MNT_IUNLOCK(mp);
965 return;
966 }
967 if (c < 0)
968 vfs_dump_mount_counters(mp);
969 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
970 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
971 CTR1(KTR_VFS, "%s: waking up waiters", __func__);
972 mp->mnt_kern_flag &= ~MNTK_DRAINING;
973 wakeup(&mp->mnt_lockref);
974 }
975 MNT_IUNLOCK(mp);
976 }
977
978 /*
979 * Lookup a mount point by filesystem identifier.
980 */
981 struct mount *
vfs_getvfs(fsid_t * fsid)982 vfs_getvfs(fsid_t *fsid)
983 {
984 struct mount *mp;
985
986 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
987 mtx_lock(&mountlist_mtx);
988 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
989 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
990 vfs_ref(mp);
991 mtx_unlock(&mountlist_mtx);
992 return (mp);
993 }
994 }
995 mtx_unlock(&mountlist_mtx);
996 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
997 return ((struct mount *) 0);
998 }
999
1000 /*
1001 * Lookup a mount point by filesystem identifier, busying it before
1002 * returning.
1003 *
1004 * To avoid congestion on mountlist_mtx, implement simple direct-mapped
1005 * cache for popular filesystem identifiers. The cache is lockess, using
1006 * the fact that struct mount's are never freed. In worst case we may
1007 * get pointer to unmounted or even different filesystem, so we have to
1008 * check what we got, and go slow way if so.
1009 */
1010 struct mount *
vfs_busyfs(fsid_t * fsid)1011 vfs_busyfs(fsid_t *fsid)
1012 {
1013 #define FSID_CACHE_SIZE 256
1014 typedef struct mount * volatile vmp_t;
1015 static vmp_t cache[FSID_CACHE_SIZE];
1016 struct mount *mp;
1017 int error;
1018 uint32_t hash;
1019
1020 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
1021 hash = fsid->val[0] ^ fsid->val[1];
1022 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
1023 mp = cache[hash];
1024 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
1025 goto slow;
1026 if (vfs_busy(mp, 0) != 0) {
1027 cache[hash] = NULL;
1028 goto slow;
1029 }
1030 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
1031 return (mp);
1032 else
1033 vfs_unbusy(mp);
1034
1035 slow:
1036 mtx_lock(&mountlist_mtx);
1037 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1038 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1039 error = vfs_busy(mp, MBF_MNTLSTLOCK);
1040 if (error) {
1041 cache[hash] = NULL;
1042 mtx_unlock(&mountlist_mtx);
1043 return (NULL);
1044 }
1045 cache[hash] = mp;
1046 return (mp);
1047 }
1048 }
1049 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1050 mtx_unlock(&mountlist_mtx);
1051 return ((struct mount *) 0);
1052 }
1053
1054 /*
1055 * Check if a user can access privileged mount options.
1056 */
1057 int
vfs_suser(struct mount * mp,struct thread * td)1058 vfs_suser(struct mount *mp, struct thread *td)
1059 {
1060 int error;
1061
1062 if (jailed(td->td_ucred)) {
1063 /*
1064 * If the jail of the calling thread lacks permission for
1065 * this type of file system, deny immediately.
1066 */
1067 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1068 return (EPERM);
1069
1070 /*
1071 * If the file system was mounted outside the jail of the
1072 * calling thread, deny immediately.
1073 */
1074 if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1075 return (EPERM);
1076 }
1077
1078 /*
1079 * If file system supports delegated administration, we don't check
1080 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1081 * by the file system itself.
1082 * If this is not the user that did original mount, we check for
1083 * the PRIV_VFS_MOUNT_OWNER privilege.
1084 */
1085 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1086 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1087 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1088 return (error);
1089 }
1090 return (0);
1091 }
1092
1093 /*
1094 * Get a new unique fsid. Try to make its val[0] unique, since this value
1095 * will be used to create fake device numbers for stat(). Also try (but
1096 * not so hard) make its val[0] unique mod 2^16, since some emulators only
1097 * support 16-bit device numbers. We end up with unique val[0]'s for the
1098 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1099 *
1100 * Keep in mind that several mounts may be running in parallel. Starting
1101 * the search one past where the previous search terminated is both a
1102 * micro-optimization and a defense against returning the same fsid to
1103 * different mounts.
1104 */
1105 void
vfs_getnewfsid(struct mount * mp)1106 vfs_getnewfsid(struct mount *mp)
1107 {
1108 static uint16_t mntid_base;
1109 struct mount *nmp;
1110 fsid_t tfsid;
1111 int mtype;
1112
1113 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1114 mtx_lock(&mntid_mtx);
1115 mtype = mp->mnt_vfc->vfc_typenum;
1116 tfsid.val[1] = mtype;
1117 mtype = (mtype & 0xFF) << 24;
1118 for (;;) {
1119 tfsid.val[0] = makedev(255,
1120 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1121 mntid_base++;
1122 if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1123 break;
1124 vfs_rel(nmp);
1125 }
1126 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1127 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1128 mtx_unlock(&mntid_mtx);
1129 }
1130
1131 /*
1132 * Knob to control the precision of file timestamps:
1133 *
1134 * 0 = seconds only; nanoseconds zeroed.
1135 * 1 = seconds and nanoseconds, accurate within 1/HZ.
1136 * 2 = seconds and nanoseconds, truncated to microseconds.
1137 * >=3 = seconds and nanoseconds, maximum precision.
1138 */
1139 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1140
1141 static int timestamp_precision = TSP_USEC;
1142 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1143 ×tamp_precision, 0, "File timestamp precision (0: seconds, "
1144 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1145 "3+: sec + ns (max. precision))");
1146
1147 /*
1148 * Get a current timestamp.
1149 */
1150 void
vfs_timestamp(struct timespec * tsp)1151 vfs_timestamp(struct timespec *tsp)
1152 {
1153 struct timeval tv;
1154
1155 switch (timestamp_precision) {
1156 case TSP_SEC:
1157 tsp->tv_sec = time_second;
1158 tsp->tv_nsec = 0;
1159 break;
1160 case TSP_HZ:
1161 getnanotime(tsp);
1162 break;
1163 case TSP_USEC:
1164 microtime(&tv);
1165 TIMEVAL_TO_TIMESPEC(&tv, tsp);
1166 break;
1167 case TSP_NSEC:
1168 default:
1169 nanotime(tsp);
1170 break;
1171 }
1172 }
1173
1174 /*
1175 * Set vnode attributes to VNOVAL
1176 */
1177 void
vattr_null(struct vattr * vap)1178 vattr_null(struct vattr *vap)
1179 {
1180
1181 vap->va_type = VNON;
1182 vap->va_size = VNOVAL;
1183 vap->va_bytes = VNOVAL;
1184 vap->va_mode = VNOVAL;
1185 vap->va_nlink = VNOVAL;
1186 vap->va_uid = VNOVAL;
1187 vap->va_gid = VNOVAL;
1188 vap->va_fsid = VNOVAL;
1189 vap->va_fileid = VNOVAL;
1190 vap->va_blocksize = VNOVAL;
1191 vap->va_rdev = VNOVAL;
1192 vap->va_atime.tv_sec = VNOVAL;
1193 vap->va_atime.tv_nsec = VNOVAL;
1194 vap->va_mtime.tv_sec = VNOVAL;
1195 vap->va_mtime.tv_nsec = VNOVAL;
1196 vap->va_ctime.tv_sec = VNOVAL;
1197 vap->va_ctime.tv_nsec = VNOVAL;
1198 vap->va_birthtime.tv_sec = VNOVAL;
1199 vap->va_birthtime.tv_nsec = VNOVAL;
1200 vap->va_flags = VNOVAL;
1201 vap->va_gen = VNOVAL;
1202 vap->va_vaflags = 0;
1203 }
1204
1205 /*
1206 * Try to reduce the total number of vnodes.
1207 *
1208 * This routine (and its user) are buggy in at least the following ways:
1209 * - all parameters were picked years ago when RAM sizes were significantly
1210 * smaller
1211 * - it can pick vnodes based on pages used by the vm object, but filesystems
1212 * like ZFS don't use it making the pick broken
1213 * - since ZFS has its own aging policy it gets partially combated by this one
1214 * - a dedicated method should be provided for filesystems to let them decide
1215 * whether the vnode should be recycled
1216 *
1217 * This routine is called when we have too many vnodes. It attempts
1218 * to free <count> vnodes and will potentially free vnodes that still
1219 * have VM backing store (VM backing store is typically the cause
1220 * of a vnode blowout so we want to do this). Therefore, this operation
1221 * is not considered cheap.
1222 *
1223 * A number of conditions may prevent a vnode from being reclaimed.
1224 * the buffer cache may have references on the vnode, a directory
1225 * vnode may still have references due to the namei cache representing
1226 * underlying files, or the vnode may be in active use. It is not
1227 * desirable to reuse such vnodes. These conditions may cause the
1228 * number of vnodes to reach some minimum value regardless of what
1229 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
1230 *
1231 * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1232 * entries if this argument is strue
1233 * @param trigger Only reclaim vnodes with fewer than this many resident
1234 * pages.
1235 * @param target How many vnodes to reclaim.
1236 * @return The number of vnodes that were reclaimed.
1237 */
1238 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1239 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1240 {
1241 struct vnode *vp, *mvp;
1242 struct mount *mp;
1243 struct vm_object *object;
1244 u_long done;
1245 bool retried;
1246
1247 mtx_assert(&vnode_list_mtx, MA_OWNED);
1248
1249 retried = false;
1250 done = 0;
1251
1252 mvp = vnode_list_reclaim_marker;
1253 restart:
1254 vp = mvp;
1255 while (done < target) {
1256 vp = TAILQ_NEXT(vp, v_vnodelist);
1257 if (__predict_false(vp == NULL))
1258 break;
1259
1260 if (__predict_false(vp->v_type == VMARKER))
1261 continue;
1262
1263 /*
1264 * If it's been deconstructed already, it's still
1265 * referenced, or it exceeds the trigger, skip it.
1266 * Also skip free vnodes. We are trying to make space
1267 * for more free vnodes, not reduce their count.
1268 */
1269 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1270 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1271 goto next_iter;
1272
1273 if (vp->v_type == VBAD || vp->v_type == VNON)
1274 goto next_iter;
1275
1276 object = atomic_load_ptr(&vp->v_object);
1277 if (object == NULL || object->resident_page_count > trigger) {
1278 goto next_iter;
1279 }
1280
1281 /*
1282 * Handle races against vnode allocation. Filesystems lock the
1283 * vnode some time after it gets returned from getnewvnode,
1284 * despite type and hold count being manipulated earlier.
1285 * Resorting to checking v_mount restores guarantees present
1286 * before the global list was reworked to contain all vnodes.
1287 */
1288 if (!VI_TRYLOCK(vp))
1289 goto next_iter;
1290 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1291 VI_UNLOCK(vp);
1292 goto next_iter;
1293 }
1294 if (vp->v_mount == NULL) {
1295 VI_UNLOCK(vp);
1296 goto next_iter;
1297 }
1298 vholdl(vp);
1299 VI_UNLOCK(vp);
1300 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1301 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1302 mtx_unlock(&vnode_list_mtx);
1303
1304 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1305 vdrop_recycle(vp);
1306 goto next_iter_unlocked;
1307 }
1308 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1309 vdrop_recycle(vp);
1310 vn_finished_write(mp);
1311 goto next_iter_unlocked;
1312 }
1313
1314 VI_LOCK(vp);
1315 if (vp->v_usecount > 0 ||
1316 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1317 (vp->v_object != NULL && vp->v_object->handle == vp &&
1318 vp->v_object->resident_page_count > trigger)) {
1319 VOP_UNLOCK(vp);
1320 vdropl_recycle(vp);
1321 vn_finished_write(mp);
1322 goto next_iter_unlocked;
1323 }
1324 recycles_count++;
1325 vgonel(vp);
1326 VOP_UNLOCK(vp);
1327 vdropl_recycle(vp);
1328 vn_finished_write(mp);
1329 done++;
1330 next_iter_unlocked:
1331 maybe_yield();
1332 mtx_lock(&vnode_list_mtx);
1333 goto restart;
1334 next_iter:
1335 MPASS(vp->v_type != VMARKER);
1336 if (!should_yield())
1337 continue;
1338 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1339 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1340 mtx_unlock(&vnode_list_mtx);
1341 kern_yield(PRI_USER);
1342 mtx_lock(&vnode_list_mtx);
1343 goto restart;
1344 }
1345 if (done == 0 && !retried) {
1346 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1347 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1348 retried = true;
1349 goto restart;
1350 }
1351 return (done);
1352 }
1353
1354 static int max_free_per_call = 10000;
1355 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1356 "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1357 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1358 &max_free_per_call, 0,
1359 "limit on vnode free requests per call to the vnlru_free routine");
1360
1361 /*
1362 * Attempt to recycle requested amount of free vnodes.
1363 */
1364 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp,bool isvnlru)1365 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1366 {
1367 struct vnode *vp;
1368 struct mount *mp;
1369 int ocount;
1370 bool retried;
1371
1372 mtx_assert(&vnode_list_mtx, MA_OWNED);
1373 if (count > max_free_per_call)
1374 count = max_free_per_call;
1375 if (count == 0) {
1376 mtx_unlock(&vnode_list_mtx);
1377 return (0);
1378 }
1379 ocount = count;
1380 retried = false;
1381 vp = mvp;
1382 for (;;) {
1383 vp = TAILQ_NEXT(vp, v_vnodelist);
1384 if (__predict_false(vp == NULL)) {
1385 /*
1386 * The free vnode marker can be past eligible vnodes:
1387 * 1. if vdbatch_process trylock failed
1388 * 2. if vtryrecycle failed
1389 *
1390 * If so, start the scan from scratch.
1391 */
1392 if (!retried && vnlru_read_freevnodes() > 0) {
1393 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1394 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1395 vp = mvp;
1396 retried = true;
1397 continue;
1398 }
1399
1400 /*
1401 * Give up
1402 */
1403 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1404 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1405 mtx_unlock(&vnode_list_mtx);
1406 break;
1407 }
1408 if (__predict_false(vp->v_type == VMARKER))
1409 continue;
1410 if (vp->v_holdcnt > 0)
1411 continue;
1412 /*
1413 * Don't recycle if our vnode is from different type
1414 * of mount point. Note that mp is type-safe, the
1415 * check does not reach unmapped address even if
1416 * vnode is reclaimed.
1417 */
1418 if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1419 mp->mnt_op != mnt_op) {
1420 continue;
1421 }
1422 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1423 continue;
1424 }
1425 if (!vhold_recycle_free(vp))
1426 continue;
1427 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1428 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1429 mtx_unlock(&vnode_list_mtx);
1430 /*
1431 * FIXME: ignores the return value, meaning it may be nothing
1432 * got recycled but it claims otherwise to the caller.
1433 *
1434 * Originally the value started being ignored in 2005 with
1435 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1436 *
1437 * Respecting the value can run into significant stalls if most
1438 * vnodes belong to one file system and it has writes
1439 * suspended. In presence of many threads and millions of
1440 * vnodes they keep contending on the vnode_list_mtx lock only
1441 * to find vnodes they can't recycle.
1442 *
1443 * The solution would be to pre-check if the vnode is likely to
1444 * be recycle-able, but it needs to happen with the
1445 * vnode_list_mtx lock held. This runs into a problem where
1446 * VOP_GETWRITEMOUNT (currently needed to find out about if
1447 * writes are frozen) can take locks which LOR against it.
1448 *
1449 * Check nullfs for one example (null_getwritemount).
1450 */
1451 vtryrecycle(vp, isvnlru);
1452 count--;
1453 if (count == 0) {
1454 break;
1455 }
1456 mtx_lock(&vnode_list_mtx);
1457 vp = mvp;
1458 }
1459 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1460 return (ocount - count);
1461 }
1462
1463 /*
1464 * XXX: returns without vnode_list_mtx locked!
1465 */
1466 static int
vnlru_free_locked_direct(int count)1467 vnlru_free_locked_direct(int count)
1468 {
1469 int ret;
1470
1471 mtx_assert(&vnode_list_mtx, MA_OWNED);
1472 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1473 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1474 return (ret);
1475 }
1476
1477 static int
vnlru_free_locked_vnlru(int count)1478 vnlru_free_locked_vnlru(int count)
1479 {
1480 int ret;
1481
1482 mtx_assert(&vnode_list_mtx, MA_OWNED);
1483 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1484 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1485 return (ret);
1486 }
1487
1488 static int
vnlru_free_vnlru(int count)1489 vnlru_free_vnlru(int count)
1490 {
1491
1492 mtx_lock(&vnode_list_mtx);
1493 return (vnlru_free_locked_vnlru(count));
1494 }
1495
1496 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1497 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1498 {
1499
1500 MPASS(mnt_op != NULL);
1501 MPASS(mvp != NULL);
1502 VNPASS(mvp->v_type == VMARKER, mvp);
1503 mtx_lock(&vnode_list_mtx);
1504 vnlru_free_impl(count, mnt_op, mvp, true);
1505 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1506 }
1507
1508 struct vnode *
vnlru_alloc_marker(void)1509 vnlru_alloc_marker(void)
1510 {
1511 struct vnode *mvp;
1512
1513 mvp = vn_alloc_marker(NULL);
1514 mtx_lock(&vnode_list_mtx);
1515 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1516 mtx_unlock(&vnode_list_mtx);
1517 return (mvp);
1518 }
1519
1520 void
vnlru_free_marker(struct vnode * mvp)1521 vnlru_free_marker(struct vnode *mvp)
1522 {
1523 mtx_lock(&vnode_list_mtx);
1524 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1525 mtx_unlock(&vnode_list_mtx);
1526 vn_free_marker(mvp);
1527 }
1528
1529 static void
vnlru_recalc(void)1530 vnlru_recalc(void)
1531 {
1532
1533 mtx_assert(&vnode_list_mtx, MA_OWNED);
1534 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1535 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1536 vlowat = vhiwat / 2;
1537 }
1538
1539 /*
1540 * Attempt to recycle vnodes in a context that is always safe to block.
1541 * Calling vlrurecycle() from the bowels of filesystem code has some
1542 * interesting deadlock problems.
1543 */
1544 static struct proc *vnlruproc;
1545 static int vnlruproc_sig;
1546 static u_long vnlruproc_kicks;
1547
1548 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1549 "Number of times vnlru awakened due to vnode shortage");
1550
1551 #define VNLRU_COUNT_SLOP 100
1552
1553 /*
1554 * The main freevnodes counter is only updated when a counter local to CPU
1555 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1556 * walked to compute a more accurate total.
1557 *
1558 * Note: the actual value at any given moment can still exceed slop, but it
1559 * should not be by significant margin in practice.
1560 */
1561 #define VNLRU_FREEVNODES_SLOP 126
1562
1563 static void __noinline
vfs_freevnodes_rollup(int8_t * lfreevnodes)1564 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1565 {
1566
1567 atomic_add_long(&freevnodes, *lfreevnodes);
1568 *lfreevnodes = 0;
1569 critical_exit();
1570 }
1571
1572 static __inline void
vfs_freevnodes_inc(void)1573 vfs_freevnodes_inc(void)
1574 {
1575 int8_t *lfreevnodes;
1576
1577 critical_enter();
1578 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1579 (*lfreevnodes)++;
1580 if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1581 vfs_freevnodes_rollup(lfreevnodes);
1582 else
1583 critical_exit();
1584 }
1585
1586 static __inline void
vfs_freevnodes_dec(void)1587 vfs_freevnodes_dec(void)
1588 {
1589 int8_t *lfreevnodes;
1590
1591 critical_enter();
1592 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1593 (*lfreevnodes)--;
1594 if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1595 vfs_freevnodes_rollup(lfreevnodes);
1596 else
1597 critical_exit();
1598 }
1599
1600 static u_long
vnlru_read_freevnodes(void)1601 vnlru_read_freevnodes(void)
1602 {
1603 long slop, rfreevnodes, rfreevnodes_old;
1604 int cpu;
1605
1606 rfreevnodes = atomic_load_long(&freevnodes);
1607 rfreevnodes_old = atomic_load_long(&freevnodes_old);
1608
1609 if (rfreevnodes > rfreevnodes_old)
1610 slop = rfreevnodes - rfreevnodes_old;
1611 else
1612 slop = rfreevnodes_old - rfreevnodes;
1613 if (slop < VNLRU_FREEVNODES_SLOP)
1614 return (rfreevnodes >= 0 ? rfreevnodes : 0);
1615 CPU_FOREACH(cpu) {
1616 rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1617 }
1618 atomic_store_long(&freevnodes_old, rfreevnodes);
1619 return (freevnodes_old >= 0 ? freevnodes_old : 0);
1620 }
1621
1622 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1623 vnlru_under(u_long rnumvnodes, u_long limit)
1624 {
1625 u_long rfreevnodes, space;
1626
1627 if (__predict_false(rnumvnodes > desiredvnodes))
1628 return (true);
1629
1630 space = desiredvnodes - rnumvnodes;
1631 if (space < limit) {
1632 rfreevnodes = vnlru_read_freevnodes();
1633 if (rfreevnodes > wantfreevnodes)
1634 space += rfreevnodes - wantfreevnodes;
1635 }
1636 return (space < limit);
1637 }
1638
1639 static void
vnlru_kick_locked(void)1640 vnlru_kick_locked(void)
1641 {
1642
1643 mtx_assert(&vnode_list_mtx, MA_OWNED);
1644 if (vnlruproc_sig == 0) {
1645 vnlruproc_sig = 1;
1646 vnlruproc_kicks++;
1647 wakeup(vnlruproc);
1648 }
1649 }
1650
1651 static void
vnlru_kick_cond(void)1652 vnlru_kick_cond(void)
1653 {
1654
1655 if (vnlru_read_freevnodes() > wantfreevnodes)
1656 return;
1657
1658 if (vnlruproc_sig)
1659 return;
1660 mtx_lock(&vnode_list_mtx);
1661 vnlru_kick_locked();
1662 mtx_unlock(&vnode_list_mtx);
1663 }
1664
1665 static void
vnlru_proc_sleep(void)1666 vnlru_proc_sleep(void)
1667 {
1668
1669 if (vnlruproc_sig) {
1670 vnlruproc_sig = 0;
1671 wakeup(&vnlruproc_sig);
1672 }
1673 msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1674 }
1675
1676 /*
1677 * A lighter version of the machinery below.
1678 *
1679 * Tries to reach goals only by recycling free vnodes and does not invoke
1680 * uma_reclaim(UMA_RECLAIM_DRAIN).
1681 *
1682 * This works around pathological behavior in vnlru in presence of tons of free
1683 * vnodes, but without having to rewrite the machinery at this time. Said
1684 * behavior boils down to continuously trying to reclaim all kinds of vnodes
1685 * (cycling through all levels of "force") when the count is transiently above
1686 * limit. This happens a lot when all vnodes are used up and vn_alloc
1687 * speculatively increments the counter.
1688 *
1689 * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1690 * 1 million files in total and 20 find(1) processes stating them in parallel
1691 * (one per each tree).
1692 *
1693 * On a kernel with only stock machinery this needs anywhere between 60 and 120
1694 * seconds to execute (time varies *wildly* between runs). With the workaround
1695 * it consistently stays around 20 seconds [it got further down with later
1696 * changes].
1697 *
1698 * That is to say the entire thing needs a fundamental redesign (most notably
1699 * to accommodate faster recycling), the above only tries to get it ouf the way.
1700 *
1701 * Return values are:
1702 * -1 -- fallback to regular vnlru loop
1703 * 0 -- do nothing, go to sleep
1704 * >0 -- recycle this many vnodes
1705 */
1706 static long
vnlru_proc_light_pick(void)1707 vnlru_proc_light_pick(void)
1708 {
1709 u_long rnumvnodes, rfreevnodes;
1710
1711 if (vstir || vnlruproc_sig == 1)
1712 return (-1);
1713
1714 rnumvnodes = atomic_load_long(&numvnodes);
1715 rfreevnodes = vnlru_read_freevnodes();
1716
1717 /*
1718 * vnode limit might have changed and now we may be at a significant
1719 * excess. Bail if we can't sort it out with free vnodes.
1720 *
1721 * Due to atomic updates the count can legitimately go above
1722 * the limit for a short period, don't bother doing anything in
1723 * that case.
1724 */
1725 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1726 if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1727 rfreevnodes <= wantfreevnodes) {
1728 return (-1);
1729 }
1730
1731 return (rnumvnodes - desiredvnodes);
1732 }
1733
1734 /*
1735 * Don't try to reach wantfreevnodes target if there are too few vnodes
1736 * to begin with.
1737 */
1738 if (rnumvnodes < wantfreevnodes) {
1739 return (0);
1740 }
1741
1742 if (rfreevnodes < wantfreevnodes) {
1743 return (-1);
1744 }
1745
1746 return (0);
1747 }
1748
1749 static bool
vnlru_proc_light(void)1750 vnlru_proc_light(void)
1751 {
1752 long freecount;
1753
1754 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1755
1756 freecount = vnlru_proc_light_pick();
1757 if (freecount == -1)
1758 return (false);
1759
1760 if (freecount != 0) {
1761 vnlru_free_vnlru(freecount);
1762 }
1763
1764 mtx_lock(&vnode_list_mtx);
1765 vnlru_proc_sleep();
1766 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1767 return (true);
1768 }
1769
1770 static u_long uma_reclaim_calls;
1771 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1772 &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1773
1774 static void
vnlru_proc(void)1775 vnlru_proc(void)
1776 {
1777 u_long rnumvnodes, rfreevnodes, target;
1778 unsigned long onumvnodes;
1779 int done, force, trigger, usevnodes;
1780 bool reclaim_nc_src, want_reread;
1781
1782 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1783 SHUTDOWN_PRI_FIRST);
1784
1785 force = 0;
1786 want_reread = false;
1787 for (;;) {
1788 kproc_suspend_check(vnlruproc);
1789
1790 if (force == 0 && vnlru_proc_light())
1791 continue;
1792
1793 mtx_lock(&vnode_list_mtx);
1794 rnumvnodes = atomic_load_long(&numvnodes);
1795
1796 if (want_reread) {
1797 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1798 want_reread = false;
1799 }
1800
1801 /*
1802 * If numvnodes is too large (due to desiredvnodes being
1803 * adjusted using its sysctl, or emergency growth), first
1804 * try to reduce it by discarding free vnodes.
1805 */
1806 if (rnumvnodes > desiredvnodes + 10) {
1807 vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1808 mtx_lock(&vnode_list_mtx);
1809 rnumvnodes = atomic_load_long(&numvnodes);
1810 }
1811 /*
1812 * Sleep if the vnode cache is in a good state. This is
1813 * when it is not over-full and has space for about a 4%
1814 * or 9% expansion (by growing its size or inexcessively
1815 * reducing free vnode count). Otherwise, try to reclaim
1816 * space for a 10% expansion.
1817 */
1818 if (vstir && force == 0) {
1819 force = 1;
1820 vstir = false;
1821 }
1822 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1823 vnlru_proc_sleep();
1824 continue;
1825 }
1826 rfreevnodes = vnlru_read_freevnodes();
1827
1828 onumvnodes = rnumvnodes;
1829 /*
1830 * Calculate parameters for recycling. These are the same
1831 * throughout the loop to give some semblance of fairness.
1832 * The trigger point is to avoid recycling vnodes with lots
1833 * of resident pages. We aren't trying to free memory; we
1834 * are trying to recycle or at least free vnodes.
1835 */
1836 if (rnumvnodes <= desiredvnodes)
1837 usevnodes = rnumvnodes - rfreevnodes;
1838 else
1839 usevnodes = rnumvnodes;
1840 if (usevnodes <= 0)
1841 usevnodes = 1;
1842 /*
1843 * The trigger value is chosen to give a conservatively
1844 * large value to ensure that it alone doesn't prevent
1845 * making progress. The value can easily be so large that
1846 * it is effectively infinite in some congested and
1847 * misconfigured cases, and this is necessary. Normally
1848 * it is about 8 to 100 (pages), which is quite large.
1849 */
1850 trigger = vm_cnt.v_page_count * 2 / usevnodes;
1851 if (force < 2)
1852 trigger = vsmalltrigger;
1853 reclaim_nc_src = force >= 3;
1854 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1855 target = target / 10 + 1;
1856 done = vlrureclaim(reclaim_nc_src, trigger, target);
1857 mtx_unlock(&vnode_list_mtx);
1858 /*
1859 * Total number of vnodes can transiently go slightly above the
1860 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1861 * this happens.
1862 */
1863 if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1864 numvnodes <= desiredvnodes) {
1865 uma_reclaim_calls++;
1866 uma_reclaim(UMA_RECLAIM_DRAIN);
1867 }
1868 if (done == 0) {
1869 if (force == 0 || force == 1) {
1870 force = 2;
1871 continue;
1872 }
1873 if (force == 2) {
1874 force = 3;
1875 continue;
1876 }
1877 want_reread = true;
1878 force = 0;
1879 vnlru_nowhere++;
1880 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1881 } else {
1882 want_reread = true;
1883 kern_yield(PRI_USER);
1884 }
1885 }
1886 }
1887
1888 static struct kproc_desc vnlru_kp = {
1889 "vnlru",
1890 vnlru_proc,
1891 &vnlruproc
1892 };
1893 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1894 &vnlru_kp);
1895
1896 /*
1897 * Routines having to do with the management of the vnode table.
1898 */
1899
1900 /*
1901 * Try to recycle a freed vnode.
1902 */
1903 static int
vtryrecycle(struct vnode * vp,bool isvnlru)1904 vtryrecycle(struct vnode *vp, bool isvnlru)
1905 {
1906 struct mount *vnmp;
1907
1908 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1909 VNPASS(vp->v_holdcnt > 0, vp);
1910 /*
1911 * This vnode may found and locked via some other list, if so we
1912 * can't recycle it yet.
1913 */
1914 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1915 CTR2(KTR_VFS,
1916 "%s: impossible to recycle, vp %p lock is already held",
1917 __func__, vp);
1918 vdrop_recycle(vp);
1919 return (EWOULDBLOCK);
1920 }
1921 /*
1922 * Don't recycle if its filesystem is being suspended.
1923 */
1924 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1925 VOP_UNLOCK(vp);
1926 CTR2(KTR_VFS,
1927 "%s: impossible to recycle, cannot start the write for %p",
1928 __func__, vp);
1929 vdrop_recycle(vp);
1930 return (EBUSY);
1931 }
1932 /*
1933 * If we got this far, we need to acquire the interlock and see if
1934 * anyone picked up this vnode from another list. If not, we will
1935 * mark it with DOOMED via vgonel() so that anyone who does find it
1936 * will skip over it.
1937 */
1938 VI_LOCK(vp);
1939 if (vp->v_usecount) {
1940 VOP_UNLOCK(vp);
1941 vdropl_recycle(vp);
1942 vn_finished_write(vnmp);
1943 CTR2(KTR_VFS,
1944 "%s: impossible to recycle, %p is already referenced",
1945 __func__, vp);
1946 return (EBUSY);
1947 }
1948 if (!VN_IS_DOOMED(vp)) {
1949 if (isvnlru)
1950 recycles_free_count++;
1951 else
1952 counter_u64_add(direct_recycles_free_count, 1);
1953 vgonel(vp);
1954 }
1955 VOP_UNLOCK(vp);
1956 vdropl_recycle(vp);
1957 vn_finished_write(vnmp);
1958 return (0);
1959 }
1960
1961 /*
1962 * Allocate a new vnode.
1963 *
1964 * The operation never returns an error. Returning an error was disabled
1965 * in r145385 (dated 2005) with the following comment:
1966 *
1967 * XXX Not all VFS_VGET/ffs_vget callers check returns.
1968 *
1969 * Given the age of this commit (almost 15 years at the time of writing this
1970 * comment) restoring the ability to fail requires a significant audit of
1971 * all codepaths.
1972 *
1973 * The routine can try to free a vnode or stall for up to 1 second waiting for
1974 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1975 */
1976 static u_long vn_alloc_cyclecount;
1977 static u_long vn_alloc_sleeps;
1978
1979 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1980 "Number of times vnode allocation blocked waiting on vnlru");
1981
1982 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp,u_long rnumvnodes,bool bumped)1983 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1984 {
1985 u_long rfreevnodes;
1986
1987 if (bumped) {
1988 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1989 atomic_subtract_long(&numvnodes, 1);
1990 bumped = false;
1991 }
1992 }
1993
1994 mtx_lock(&vnode_list_mtx);
1995
1996 rfreevnodes = vnlru_read_freevnodes();
1997 if (vn_alloc_cyclecount++ >= rfreevnodes) {
1998 vn_alloc_cyclecount = 0;
1999 vstir = true;
2000 }
2001 /*
2002 * Grow the vnode cache if it will not be above its target max after
2003 * growing. Otherwise, if there is at least one free vnode, try to
2004 * reclaim 1 item from it before growing the cache (possibly above its
2005 * target max if the reclamation failed or is delayed).
2006 */
2007 if (vnlru_free_locked_direct(1) > 0)
2008 goto alloc;
2009 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2010 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2011 /*
2012 * Wait for space for a new vnode.
2013 */
2014 if (bumped) {
2015 atomic_subtract_long(&numvnodes, 1);
2016 bumped = false;
2017 }
2018 mtx_lock(&vnode_list_mtx);
2019 vnlru_kick_locked();
2020 vn_alloc_sleeps++;
2021 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
2022 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2023 vnlru_read_freevnodes() > 1)
2024 vnlru_free_locked_direct(1);
2025 else
2026 mtx_unlock(&vnode_list_mtx);
2027 }
2028 alloc:
2029 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2030 if (!bumped)
2031 atomic_add_long(&numvnodes, 1);
2032 vnlru_kick_cond();
2033 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2034 }
2035
2036 static struct vnode *
vn_alloc(struct mount * mp)2037 vn_alloc(struct mount *mp)
2038 {
2039 u_long rnumvnodes;
2040
2041 if (__predict_false(vn_alloc_cyclecount != 0))
2042 return (vn_alloc_hard(mp, 0, false));
2043 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2044 if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2045 return (vn_alloc_hard(mp, rnumvnodes, true));
2046 }
2047
2048 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2049 }
2050
2051 static void
vn_free(struct vnode * vp)2052 vn_free(struct vnode *vp)
2053 {
2054
2055 atomic_subtract_long(&numvnodes, 1);
2056 uma_zfree_smr(vnode_zone, vp);
2057 }
2058
2059 /*
2060 * Allocate a new vnode.
2061 */
2062 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)2063 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2064 struct vnode **vpp)
2065 {
2066 struct vnode *vp;
2067 struct thread *td;
2068 struct lock_object *lo;
2069
2070 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2071
2072 KASSERT(vops->registered,
2073 ("%s: not registered vector op %p\n", __func__, vops));
2074 cache_validate_vop_vector(mp, vops);
2075
2076 td = curthread;
2077 if (td->td_vp_reserved != NULL) {
2078 vp = td->td_vp_reserved;
2079 td->td_vp_reserved = NULL;
2080 } else {
2081 vp = vn_alloc(mp);
2082 }
2083 counter_u64_add(vnodes_created, 1);
2084
2085 vn_set_state(vp, VSTATE_UNINITIALIZED);
2086
2087 /*
2088 * Locks are given the generic name "vnode" when created.
2089 * Follow the historic practice of using the filesystem
2090 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2091 *
2092 * Locks live in a witness group keyed on their name. Thus,
2093 * when a lock is renamed, it must also move from the witness
2094 * group of its old name to the witness group of its new name.
2095 *
2096 * The change only needs to be made when the vnode moves
2097 * from one filesystem type to another. We ensure that each
2098 * filesystem use a single static name pointer for its tag so
2099 * that we can compare pointers rather than doing a strcmp().
2100 */
2101 lo = &vp->v_vnlock->lock_object;
2102 #ifdef WITNESS
2103 if (lo->lo_name != tag) {
2104 #endif
2105 lo->lo_name = tag;
2106 #ifdef WITNESS
2107 WITNESS_DESTROY(lo);
2108 WITNESS_INIT(lo, tag);
2109 }
2110 #endif
2111 /*
2112 * By default, don't allow shared locks unless filesystems opt-in.
2113 */
2114 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2115 /*
2116 * Finalize various vnode identity bits.
2117 */
2118 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2119 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2120 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2121 vp->v_type = VNON;
2122 vp->v_op = vops;
2123 vp->v_irflag = 0;
2124 v_init_counters(vp);
2125 vn_seqc_init(vp);
2126 vp->v_bufobj.bo_ops = &buf_ops_bio;
2127 #ifdef DIAGNOSTIC
2128 if (mp == NULL && vops != &dead_vnodeops)
2129 printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2130 #endif
2131 #ifdef MAC
2132 mac_vnode_init(vp);
2133 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2134 mac_vnode_associate_singlelabel(mp, vp);
2135 #endif
2136 if (mp != NULL) {
2137 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2138 }
2139
2140 /*
2141 * For the filesystems which do not use vfs_hash_insert(),
2142 * still initialize v_hash to have vfs_hash_index() useful.
2143 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2144 * its own hashing.
2145 */
2146 vp->v_hash = (uintptr_t)vp >> vnsz2log;
2147
2148 *vpp = vp;
2149 return (0);
2150 }
2151
2152 void
getnewvnode_reserve(void)2153 getnewvnode_reserve(void)
2154 {
2155 struct thread *td;
2156
2157 td = curthread;
2158 MPASS(td->td_vp_reserved == NULL);
2159 td->td_vp_reserved = vn_alloc(NULL);
2160 }
2161
2162 void
getnewvnode_drop_reserve(void)2163 getnewvnode_drop_reserve(void)
2164 {
2165 struct thread *td;
2166
2167 td = curthread;
2168 if (td->td_vp_reserved != NULL) {
2169 vn_free(td->td_vp_reserved);
2170 td->td_vp_reserved = NULL;
2171 }
2172 }
2173
2174 static void __noinline
freevnode(struct vnode * vp)2175 freevnode(struct vnode *vp)
2176 {
2177 struct bufobj *bo;
2178
2179 /*
2180 * The vnode has been marked for destruction, so free it.
2181 *
2182 * The vnode will be returned to the zone where it will
2183 * normally remain until it is needed for another vnode. We
2184 * need to cleanup (or verify that the cleanup has already
2185 * been done) any residual data left from its current use
2186 * so as not to contaminate the freshly allocated vnode.
2187 */
2188 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2189 /*
2190 * Paired with vgone.
2191 */
2192 vn_seqc_write_end_free(vp);
2193
2194 bo = &vp->v_bufobj;
2195 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2196 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2197 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2198 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2199 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2200 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2201 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2202 ("clean blk trie not empty"));
2203 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2204 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2205 ("dirty blk trie not empty"));
2206 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2207 ("Leaked inactivation"));
2208 VI_UNLOCK(vp);
2209 cache_assert_no_entries(vp);
2210
2211 #ifdef MAC
2212 mac_vnode_destroy(vp);
2213 #endif
2214 if (vp->v_pollinfo != NULL) {
2215 /*
2216 * Use LK_NOWAIT to shut up witness about the lock. We may get
2217 * here while having another vnode locked when trying to
2218 * satisfy a lookup and needing to recycle.
2219 */
2220 VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2221 destroy_vpollinfo(vp->v_pollinfo);
2222 VOP_UNLOCK(vp);
2223 vp->v_pollinfo = NULL;
2224 }
2225 vp->v_mountedhere = NULL;
2226 vp->v_unpcb = NULL;
2227 vp->v_rdev = NULL;
2228 vp->v_fifoinfo = NULL;
2229 vp->v_iflag = 0;
2230 vp->v_vflag = 0;
2231 bo->bo_flag = 0;
2232 vn_free(vp);
2233 }
2234
2235 /*
2236 * Delete from old mount point vnode list, if on one.
2237 */
2238 static void
delmntque(struct vnode * vp)2239 delmntque(struct vnode *vp)
2240 {
2241 struct mount *mp;
2242
2243 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2244
2245 mp = vp->v_mount;
2246 MNT_ILOCK(mp);
2247 VI_LOCK(vp);
2248 vp->v_mount = NULL;
2249 VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2250 ("bad mount point vnode list size"));
2251 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2252 mp->mnt_nvnodelistsize--;
2253 MNT_REL(mp);
2254 MNT_IUNLOCK(mp);
2255 /*
2256 * The caller expects the interlock to be still held.
2257 */
2258 ASSERT_VI_LOCKED(vp, __func__);
2259 }
2260
2261 static int
insmntque1_int(struct vnode * vp,struct mount * mp,bool dtr)2262 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2263 {
2264
2265 KASSERT(vp->v_mount == NULL,
2266 ("insmntque: vnode already on per mount vnode list"));
2267 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2268 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2269 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2270 } else {
2271 KASSERT(!dtr,
2272 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2273 __func__));
2274 }
2275
2276 /*
2277 * We acquire the vnode interlock early to ensure that the
2278 * vnode cannot be recycled by another process releasing a
2279 * holdcnt on it before we get it on both the vnode list
2280 * and the active vnode list. The mount mutex protects only
2281 * manipulation of the vnode list and the vnode freelist
2282 * mutex protects only manipulation of the active vnode list.
2283 * Hence the need to hold the vnode interlock throughout.
2284 */
2285 MNT_ILOCK(mp);
2286 VI_LOCK(vp);
2287 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2288 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2289 mp->mnt_nvnodelistsize == 0)) &&
2290 (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2291 VI_UNLOCK(vp);
2292 MNT_IUNLOCK(mp);
2293 if (dtr) {
2294 vp->v_data = NULL;
2295 vp->v_op = &dead_vnodeops;
2296 vgone(vp);
2297 vput(vp);
2298 }
2299 return (EBUSY);
2300 }
2301 vp->v_mount = mp;
2302 MNT_REF(mp);
2303 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2304 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2305 ("neg mount point vnode list size"));
2306 mp->mnt_nvnodelistsize++;
2307 VI_UNLOCK(vp);
2308 MNT_IUNLOCK(mp);
2309 return (0);
2310 }
2311
2312 /*
2313 * Insert into list of vnodes for the new mount point, if available.
2314 * insmntque() reclaims the vnode on insertion failure, insmntque1()
2315 * leaves handling of the vnode to the caller.
2316 */
2317 int
insmntque(struct vnode * vp,struct mount * mp)2318 insmntque(struct vnode *vp, struct mount *mp)
2319 {
2320 return (insmntque1_int(vp, mp, true));
2321 }
2322
2323 int
insmntque1(struct vnode * vp,struct mount * mp)2324 insmntque1(struct vnode *vp, struct mount *mp)
2325 {
2326 return (insmntque1_int(vp, mp, false));
2327 }
2328
2329 /*
2330 * Flush out and invalidate all buffers associated with a bufobj
2331 * Called with the underlying object locked.
2332 */
2333 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2334 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2335 {
2336 int error;
2337
2338 BO_LOCK(bo);
2339 if (flags & V_SAVE) {
2340 error = bufobj_wwait(bo, slpflag, slptimeo);
2341 if (error) {
2342 BO_UNLOCK(bo);
2343 return (error);
2344 }
2345 if (bo->bo_dirty.bv_cnt > 0) {
2346 BO_UNLOCK(bo);
2347 do {
2348 error = BO_SYNC(bo, MNT_WAIT);
2349 } while (error == ERELOOKUP);
2350 if (error != 0)
2351 return (error);
2352 BO_LOCK(bo);
2353 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2354 BO_UNLOCK(bo);
2355 return (EBUSY);
2356 }
2357 }
2358 }
2359 /*
2360 * If you alter this loop please notice that interlock is dropped and
2361 * reacquired in flushbuflist. Special care is needed to ensure that
2362 * no race conditions occur from this.
2363 */
2364 do {
2365 error = flushbuflist(&bo->bo_clean,
2366 flags, bo, slpflag, slptimeo);
2367 if (error == 0 && !(flags & V_CLEANONLY))
2368 error = flushbuflist(&bo->bo_dirty,
2369 flags, bo, slpflag, slptimeo);
2370 if (error != 0 && error != EAGAIN) {
2371 BO_UNLOCK(bo);
2372 return (error);
2373 }
2374 } while (error != 0);
2375
2376 /*
2377 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
2378 * have write I/O in-progress but if there is a VM object then the
2379 * VM object can also have read-I/O in-progress.
2380 */
2381 do {
2382 bufobj_wwait(bo, 0, 0);
2383 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2384 BO_UNLOCK(bo);
2385 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2386 BO_LOCK(bo);
2387 }
2388 } while (bo->bo_numoutput > 0);
2389 BO_UNLOCK(bo);
2390
2391 /*
2392 * Destroy the copy in the VM cache, too.
2393 */
2394 if (bo->bo_object != NULL &&
2395 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2396 VM_OBJECT_WLOCK(bo->bo_object);
2397 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2398 OBJPR_CLEANONLY : 0);
2399 VM_OBJECT_WUNLOCK(bo->bo_object);
2400 }
2401
2402 #ifdef INVARIANTS
2403 BO_LOCK(bo);
2404 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2405 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2406 bo->bo_clean.bv_cnt > 0))
2407 panic("vinvalbuf: flush failed");
2408 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2409 bo->bo_dirty.bv_cnt > 0)
2410 panic("vinvalbuf: flush dirty failed");
2411 BO_UNLOCK(bo);
2412 #endif
2413 return (0);
2414 }
2415
2416 /*
2417 * Flush out and invalidate all buffers associated with a vnode.
2418 * Called with the underlying object locked.
2419 */
2420 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2421 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2422 {
2423
2424 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2425 ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2426 if (vp->v_object != NULL && vp->v_object->handle != vp)
2427 return (0);
2428 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2429 }
2430
2431 /*
2432 * Flush out buffers on the specified list.
2433 *
2434 */
2435 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2436 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2437 int slptimeo)
2438 {
2439 struct buf *bp, *nbp;
2440 int retval, error;
2441 daddr_t lblkno;
2442 b_xflags_t xflags;
2443
2444 ASSERT_BO_WLOCKED(bo);
2445
2446 retval = 0;
2447 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2448 /*
2449 * If we are flushing both V_NORMAL and V_ALT buffers then
2450 * do not skip any buffers. If we are flushing only V_NORMAL
2451 * buffers then skip buffers marked as BX_ALTDATA. If we are
2452 * flushing only V_ALT buffers then skip buffers not marked
2453 * as BX_ALTDATA.
2454 */
2455 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2456 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2457 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2458 continue;
2459 }
2460 if (nbp != NULL) {
2461 lblkno = nbp->b_lblkno;
2462 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2463 }
2464 retval = EAGAIN;
2465 error = BUF_TIMELOCK(bp,
2466 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2467 "flushbuf", slpflag, slptimeo);
2468 if (error) {
2469 BO_LOCK(bo);
2470 return (error != ENOLCK ? error : EAGAIN);
2471 }
2472 KASSERT(bp->b_bufobj == bo,
2473 ("bp %p wrong b_bufobj %p should be %p",
2474 bp, bp->b_bufobj, bo));
2475 /*
2476 * XXX Since there are no node locks for NFS, I
2477 * believe there is a slight chance that a delayed
2478 * write will occur while sleeping just above, so
2479 * check for it.
2480 */
2481 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2482 (flags & V_SAVE)) {
2483 bremfree(bp);
2484 bp->b_flags |= B_ASYNC;
2485 bwrite(bp);
2486 BO_LOCK(bo);
2487 return (EAGAIN); /* XXX: why not loop ? */
2488 }
2489 bremfree(bp);
2490 bp->b_flags |= (B_INVAL | B_RELBUF);
2491 bp->b_flags &= ~B_ASYNC;
2492 brelse(bp);
2493 BO_LOCK(bo);
2494 if (nbp == NULL)
2495 break;
2496 nbp = gbincore(bo, lblkno);
2497 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2498 != xflags)
2499 break; /* nbp invalid */
2500 }
2501 return (retval);
2502 }
2503
2504 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2505 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2506 {
2507 struct buf *bp;
2508 int error;
2509 daddr_t lblkno;
2510
2511 ASSERT_BO_LOCKED(bo);
2512
2513 for (lblkno = startn;;) {
2514 again:
2515 bp = buf_lookup_ge(bufv, lblkno);
2516 if (bp == NULL || bp->b_lblkno >= endn)
2517 break;
2518 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2519 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2520 if (error != 0) {
2521 BO_RLOCK(bo);
2522 if (error == ENOLCK)
2523 goto again;
2524 return (error);
2525 }
2526 KASSERT(bp->b_bufobj == bo,
2527 ("bp %p wrong b_bufobj %p should be %p",
2528 bp, bp->b_bufobj, bo));
2529 lblkno = bp->b_lblkno + 1;
2530 if ((bp->b_flags & B_MANAGED) == 0)
2531 bremfree(bp);
2532 bp->b_flags |= B_RELBUF;
2533 /*
2534 * In the VMIO case, use the B_NOREUSE flag to hint that the
2535 * pages backing each buffer in the range are unlikely to be
2536 * reused. Dirty buffers will have the hint applied once
2537 * they've been written.
2538 */
2539 if ((bp->b_flags & B_VMIO) != 0)
2540 bp->b_flags |= B_NOREUSE;
2541 brelse(bp);
2542 BO_RLOCK(bo);
2543 }
2544 return (0);
2545 }
2546
2547 /*
2548 * Truncate a file's buffer and pages to a specified length. This
2549 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2550 * sync activity.
2551 */
2552 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2553 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2554 {
2555 struct buf *bp, *nbp;
2556 struct bufobj *bo;
2557 daddr_t startlbn;
2558
2559 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2560 vp, blksize, (uintmax_t)length);
2561
2562 /*
2563 * Round up to the *next* lbn.
2564 */
2565 startlbn = howmany(length, blksize);
2566
2567 ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2568
2569 bo = &vp->v_bufobj;
2570 restart_unlocked:
2571 BO_LOCK(bo);
2572
2573 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2574 ;
2575
2576 if (length > 0) {
2577 /*
2578 * Write out vnode metadata, e.g. indirect blocks.
2579 */
2580 restartsync:
2581 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2582 if (bp->b_lblkno >= 0)
2583 continue;
2584 /*
2585 * Since we hold the vnode lock this should only
2586 * fail if we're racing with the buf daemon.
2587 */
2588 if (BUF_LOCK(bp,
2589 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2590 BO_LOCKPTR(bo)) == ENOLCK)
2591 goto restart_unlocked;
2592
2593 VNASSERT((bp->b_flags & B_DELWRI), vp,
2594 ("buf(%p) on dirty queue without DELWRI", bp));
2595
2596 bremfree(bp);
2597 bawrite(bp);
2598 BO_LOCK(bo);
2599 goto restartsync;
2600 }
2601 }
2602
2603 bufobj_wwait(bo, 0, 0);
2604 BO_UNLOCK(bo);
2605 vnode_pager_setsize(vp, length);
2606
2607 return (0);
2608 }
2609
2610 /*
2611 * Invalidate the cached pages of a file's buffer within the range of block
2612 * numbers [startlbn, endlbn).
2613 */
2614 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2615 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2616 int blksize)
2617 {
2618 struct bufobj *bo;
2619 off_t start, end;
2620
2621 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2622
2623 start = blksize * startlbn;
2624 end = blksize * endlbn;
2625
2626 bo = &vp->v_bufobj;
2627 BO_LOCK(bo);
2628 MPASS(blksize == bo->bo_bsize);
2629
2630 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2631 ;
2632
2633 BO_UNLOCK(bo);
2634 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2635 }
2636
2637 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2638 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2639 daddr_t startlbn, daddr_t endlbn)
2640 {
2641 struct bufv *bv;
2642 struct buf *bp, *nbp;
2643 uint8_t anyfreed;
2644 bool clean;
2645
2646 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2647 ASSERT_BO_LOCKED(bo);
2648
2649 anyfreed = 1;
2650 clean = true;
2651 do {
2652 bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2653 bp = buf_lookup_ge(bv, startlbn);
2654 if (bp == NULL)
2655 continue;
2656 TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2657 if (bp->b_lblkno >= endlbn)
2658 break;
2659 if (BUF_LOCK(bp,
2660 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2661 BO_LOCKPTR(bo)) == ENOLCK) {
2662 BO_LOCK(bo);
2663 return (EAGAIN);
2664 }
2665
2666 bremfree(bp);
2667 bp->b_flags |= B_INVAL | B_RELBUF;
2668 bp->b_flags &= ~B_ASYNC;
2669 brelse(bp);
2670 anyfreed = 2;
2671
2672 BO_LOCK(bo);
2673 if (nbp != NULL &&
2674 (((nbp->b_xflags &
2675 (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2676 nbp->b_vp != vp ||
2677 (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2678 return (EAGAIN);
2679 }
2680 } while (clean = !clean, anyfreed-- > 0);
2681 return (0);
2682 }
2683
2684 static void
buf_vlist_remove(struct buf * bp)2685 buf_vlist_remove(struct buf *bp)
2686 {
2687 struct bufv *bv;
2688 b_xflags_t flags;
2689
2690 flags = bp->b_xflags;
2691
2692 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2693 ASSERT_BO_WLOCKED(bp->b_bufobj);
2694 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2695 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2696 ("%s: buffer %p has invalid queue state", __func__, bp));
2697
2698 if ((flags & BX_VNDIRTY) != 0)
2699 bv = &bp->b_bufobj->bo_dirty;
2700 else
2701 bv = &bp->b_bufobj->bo_clean;
2702 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2703 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2704 bv->bv_cnt--;
2705 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2706 }
2707
2708 /*
2709 * Add the buffer to the sorted clean or dirty block list. Return zero on
2710 * success, EEXIST if a buffer with this identity already exists, or another
2711 * error on allocation failure.
2712 */
2713 static inline int
buf_vlist_find_or_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2714 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2715 {
2716 struct bufv *bv;
2717 struct buf *n;
2718 int error;
2719
2720 ASSERT_BO_WLOCKED(bo);
2721 KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2722 ("buf_vlist_add: bo %p does not allow bufs", bo));
2723 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2724 ("dead bo %p", bo));
2725 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2726 ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2727
2728 if (xflags & BX_VNDIRTY)
2729 bv = &bo->bo_dirty;
2730 else
2731 bv = &bo->bo_clean;
2732
2733 error = buf_insert_lookup_le(bv, bp, &n);
2734 if (n == NULL) {
2735 KASSERT(error != EEXIST,
2736 ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2737 bp));
2738 } else {
2739 KASSERT(n->b_lblkno <= bp->b_lblkno,
2740 ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2741 bp, n));
2742 KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2743 ("buf_vlist_add: inconsistent result for existing buf: "
2744 "error %d bp %p n %p", error, bp, n));
2745 }
2746 if (error != 0)
2747 return (error);
2748
2749 /* Keep the list ordered. */
2750 if (n == NULL) {
2751 KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2752 bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2753 ("buf_vlist_add: queue order: "
2754 "%p should be before first %p",
2755 bp, TAILQ_FIRST(&bv->bv_hd)));
2756 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2757 } else {
2758 KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2759 bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2760 ("buf_vlist_add: queue order: "
2761 "%p should be before next %p",
2762 bp, TAILQ_NEXT(n, b_bobufs)));
2763 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2764 }
2765
2766 bv->bv_cnt++;
2767 return (0);
2768 }
2769
2770 /*
2771 * Add the buffer to the sorted clean or dirty block list.
2772 *
2773 * NOTE: xflags is passed as a constant, optimizing this inline function!
2774 */
2775 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2776 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2777 {
2778 int error;
2779
2780 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2781 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2782 bp->b_xflags |= xflags;
2783 error = buf_vlist_find_or_add(bp, bo, xflags);
2784 if (error)
2785 panic("buf_vlist_add: error=%d", error);
2786 }
2787
2788 /*
2789 * Look up a buffer using the buffer tries.
2790 */
2791 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2792 gbincore(struct bufobj *bo, daddr_t lblkno)
2793 {
2794 struct buf *bp;
2795
2796 ASSERT_BO_LOCKED(bo);
2797 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2798 if (bp != NULL)
2799 return (bp);
2800 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2801 }
2802
2803 /*
2804 * Look up a buf using the buffer tries, without the bufobj lock. This relies
2805 * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2806 * stability of the result. Like other lockless lookups, the found buf may
2807 * already be invalid by the time this function returns.
2808 */
2809 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2810 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2811 {
2812 struct buf *bp;
2813
2814 ASSERT_BO_UNLOCKED(bo);
2815 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2816 if (bp != NULL)
2817 return (bp);
2818 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2819 }
2820
2821 /*
2822 * Associate a buffer with a vnode.
2823 */
2824 int
bgetvp(struct vnode * vp,struct buf * bp)2825 bgetvp(struct vnode *vp, struct buf *bp)
2826 {
2827 struct bufobj *bo;
2828 int error;
2829
2830 bo = &vp->v_bufobj;
2831 ASSERT_BO_UNLOCKED(bo);
2832 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2833
2834 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2835 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2836 ("bgetvp: bp already attached! %p", bp));
2837
2838 /*
2839 * Add the buf to the vnode's clean list unless we lost a race and find
2840 * an existing buf in either dirty or clean.
2841 */
2842 bp->b_vp = vp;
2843 bp->b_bufobj = bo;
2844 bp->b_xflags |= BX_VNCLEAN;
2845 error = EEXIST;
2846 BO_LOCK(bo);
2847 if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2848 error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2849 BO_UNLOCK(bo);
2850 if (__predict_true(error == 0)) {
2851 vhold(vp);
2852 return (0);
2853 }
2854 if (error != EEXIST)
2855 panic("bgetvp: buf_vlist_add error: %d", error);
2856 bp->b_vp = NULL;
2857 bp->b_bufobj = NULL;
2858 bp->b_xflags &= ~BX_VNCLEAN;
2859 return (error);
2860 }
2861
2862 /*
2863 * Disassociate a buffer from a vnode.
2864 */
2865 void
brelvp(struct buf * bp)2866 brelvp(struct buf *bp)
2867 {
2868 struct bufobj *bo;
2869 struct vnode *vp;
2870
2871 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2872 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2873
2874 /*
2875 * Delete from old vnode list, if on one.
2876 */
2877 vp = bp->b_vp; /* XXX */
2878 bo = bp->b_bufobj;
2879 BO_LOCK(bo);
2880 buf_vlist_remove(bp);
2881 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2882 bo->bo_flag &= ~BO_ONWORKLST;
2883 mtx_lock(&sync_mtx);
2884 LIST_REMOVE(bo, bo_synclist);
2885 syncer_worklist_len--;
2886 mtx_unlock(&sync_mtx);
2887 }
2888 bp->b_vp = NULL;
2889 bp->b_bufobj = NULL;
2890 BO_UNLOCK(bo);
2891 vdrop(vp);
2892 }
2893
2894 /*
2895 * Add an item to the syncer work queue.
2896 */
2897 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2898 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2899 {
2900 int slot;
2901
2902 ASSERT_BO_WLOCKED(bo);
2903
2904 mtx_lock(&sync_mtx);
2905 if (bo->bo_flag & BO_ONWORKLST)
2906 LIST_REMOVE(bo, bo_synclist);
2907 else {
2908 bo->bo_flag |= BO_ONWORKLST;
2909 syncer_worklist_len++;
2910 }
2911
2912 if (delay > syncer_maxdelay - 2)
2913 delay = syncer_maxdelay - 2;
2914 slot = (syncer_delayno + delay) & syncer_mask;
2915
2916 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2917 mtx_unlock(&sync_mtx);
2918 }
2919
2920 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2921 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2922 {
2923 int error, len;
2924
2925 mtx_lock(&sync_mtx);
2926 len = syncer_worklist_len - sync_vnode_count;
2927 mtx_unlock(&sync_mtx);
2928 error = SYSCTL_OUT(req, &len, sizeof(len));
2929 return (error);
2930 }
2931
2932 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2933 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2934 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2935
2936 static struct proc *updateproc;
2937 static void sched_sync(void);
2938 static struct kproc_desc up_kp = {
2939 "syncer",
2940 sched_sync,
2941 &updateproc
2942 };
2943 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2944
2945 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2946 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2947 {
2948 struct vnode *vp;
2949 struct mount *mp;
2950
2951 *bo = LIST_FIRST(slp);
2952 if (*bo == NULL)
2953 return (0);
2954 vp = bo2vnode(*bo);
2955 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2956 return (1);
2957 /*
2958 * We use vhold in case the vnode does not
2959 * successfully sync. vhold prevents the vnode from
2960 * going away when we unlock the sync_mtx so that
2961 * we can acquire the vnode interlock.
2962 */
2963 vholdl(vp);
2964 mtx_unlock(&sync_mtx);
2965 VI_UNLOCK(vp);
2966 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2967 vdrop(vp);
2968 mtx_lock(&sync_mtx);
2969 return (*bo == LIST_FIRST(slp));
2970 }
2971 MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2972 (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2973 ("suspended mp syncing vp %p", vp));
2974 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2975 (void) VOP_FSYNC(vp, MNT_LAZY, td);
2976 VOP_UNLOCK(vp);
2977 vn_finished_write(mp);
2978 BO_LOCK(*bo);
2979 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2980 /*
2981 * Put us back on the worklist. The worklist
2982 * routine will remove us from our current
2983 * position and then add us back in at a later
2984 * position.
2985 */
2986 vn_syncer_add_to_worklist(*bo, syncdelay);
2987 }
2988 BO_UNLOCK(*bo);
2989 vdrop(vp);
2990 mtx_lock(&sync_mtx);
2991 return (0);
2992 }
2993
2994 static int first_printf = 1;
2995
2996 /*
2997 * System filesystem synchronizer daemon.
2998 */
2999 static void
sched_sync(void)3000 sched_sync(void)
3001 {
3002 struct synclist *next, *slp;
3003 struct bufobj *bo;
3004 long starttime;
3005 struct thread *td = curthread;
3006 int last_work_seen;
3007 int net_worklist_len;
3008 int syncer_final_iter;
3009 int error;
3010
3011 last_work_seen = 0;
3012 syncer_final_iter = 0;
3013 syncer_state = SYNCER_RUNNING;
3014 starttime = time_uptime;
3015 td->td_pflags |= TDP_NORUNNINGBUF;
3016
3017 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3018 SHUTDOWN_PRI_LAST);
3019
3020 mtx_lock(&sync_mtx);
3021 for (;;) {
3022 if (syncer_state == SYNCER_FINAL_DELAY &&
3023 syncer_final_iter == 0) {
3024 mtx_unlock(&sync_mtx);
3025 kproc_suspend_check(td->td_proc);
3026 mtx_lock(&sync_mtx);
3027 }
3028 net_worklist_len = syncer_worklist_len - sync_vnode_count;
3029 if (syncer_state != SYNCER_RUNNING &&
3030 starttime != time_uptime) {
3031 if (first_printf) {
3032 printf("\nSyncing disks, vnodes remaining... ");
3033 first_printf = 0;
3034 }
3035 printf("%d ", net_worklist_len);
3036 }
3037 starttime = time_uptime;
3038
3039 /*
3040 * Push files whose dirty time has expired. Be careful
3041 * of interrupt race on slp queue.
3042 *
3043 * Skip over empty worklist slots when shutting down.
3044 */
3045 do {
3046 slp = &syncer_workitem_pending[syncer_delayno];
3047 syncer_delayno += 1;
3048 if (syncer_delayno == syncer_maxdelay)
3049 syncer_delayno = 0;
3050 next = &syncer_workitem_pending[syncer_delayno];
3051 /*
3052 * If the worklist has wrapped since the
3053 * it was emptied of all but syncer vnodes,
3054 * switch to the FINAL_DELAY state and run
3055 * for one more second.
3056 */
3057 if (syncer_state == SYNCER_SHUTTING_DOWN &&
3058 net_worklist_len == 0 &&
3059 last_work_seen == syncer_delayno) {
3060 syncer_state = SYNCER_FINAL_DELAY;
3061 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3062 }
3063 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3064 syncer_worklist_len > 0);
3065
3066 /*
3067 * Keep track of the last time there was anything
3068 * on the worklist other than syncer vnodes.
3069 * Return to the SHUTTING_DOWN state if any
3070 * new work appears.
3071 */
3072 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3073 last_work_seen = syncer_delayno;
3074 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3075 syncer_state = SYNCER_SHUTTING_DOWN;
3076 while (!LIST_EMPTY(slp)) {
3077 error = sync_vnode(slp, &bo, td);
3078 if (error == 1) {
3079 LIST_REMOVE(bo, bo_synclist);
3080 LIST_INSERT_HEAD(next, bo, bo_synclist);
3081 continue;
3082 }
3083
3084 if (first_printf == 0) {
3085 /*
3086 * Drop the sync mutex, because some watchdog
3087 * drivers need to sleep while patting
3088 */
3089 mtx_unlock(&sync_mtx);
3090 wdog_kern_pat(WD_LASTVAL);
3091 mtx_lock(&sync_mtx);
3092 }
3093 }
3094 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3095 syncer_final_iter--;
3096 /*
3097 * The variable rushjob allows the kernel to speed up the
3098 * processing of the filesystem syncer process. A rushjob
3099 * value of N tells the filesystem syncer to process the next
3100 * N seconds worth of work on its queue ASAP. Currently rushjob
3101 * is used by the soft update code to speed up the filesystem
3102 * syncer process when the incore state is getting so far
3103 * ahead of the disk that the kernel memory pool is being
3104 * threatened with exhaustion.
3105 */
3106 if (rushjob > 0) {
3107 rushjob -= 1;
3108 continue;
3109 }
3110 /*
3111 * Just sleep for a short period of time between
3112 * iterations when shutting down to allow some I/O
3113 * to happen.
3114 *
3115 * If it has taken us less than a second to process the
3116 * current work, then wait. Otherwise start right over
3117 * again. We can still lose time if any single round
3118 * takes more than two seconds, but it does not really
3119 * matter as we are just trying to generally pace the
3120 * filesystem activity.
3121 */
3122 if (syncer_state != SYNCER_RUNNING ||
3123 time_uptime == starttime) {
3124 thread_lock(td);
3125 sched_prio(td, PPAUSE);
3126 thread_unlock(td);
3127 }
3128 if (syncer_state != SYNCER_RUNNING)
3129 cv_timedwait(&sync_wakeup, &sync_mtx,
3130 hz / SYNCER_SHUTDOWN_SPEEDUP);
3131 else if (time_uptime == starttime)
3132 cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3133 }
3134 }
3135
3136 /*
3137 * Request the syncer daemon to speed up its work.
3138 * We never push it to speed up more than half of its
3139 * normal turn time, otherwise it could take over the cpu.
3140 */
3141 int
speedup_syncer(void)3142 speedup_syncer(void)
3143 {
3144 int ret = 0;
3145
3146 mtx_lock(&sync_mtx);
3147 if (rushjob < syncdelay / 2) {
3148 rushjob += 1;
3149 stat_rush_requests += 1;
3150 ret = 1;
3151 }
3152 mtx_unlock(&sync_mtx);
3153 cv_broadcast(&sync_wakeup);
3154 return (ret);
3155 }
3156
3157 /*
3158 * Tell the syncer to speed up its work and run though its work
3159 * list several times, then tell it to shut down.
3160 */
3161 static void
syncer_shutdown(void * arg,int howto)3162 syncer_shutdown(void *arg, int howto)
3163 {
3164
3165 if (howto & RB_NOSYNC)
3166 return;
3167 mtx_lock(&sync_mtx);
3168 syncer_state = SYNCER_SHUTTING_DOWN;
3169 rushjob = 0;
3170 mtx_unlock(&sync_mtx);
3171 cv_broadcast(&sync_wakeup);
3172 kproc_shutdown(arg, howto);
3173 }
3174
3175 void
syncer_suspend(void)3176 syncer_suspend(void)
3177 {
3178
3179 syncer_shutdown(updateproc, 0);
3180 }
3181
3182 void
syncer_resume(void)3183 syncer_resume(void)
3184 {
3185
3186 mtx_lock(&sync_mtx);
3187 first_printf = 1;
3188 syncer_state = SYNCER_RUNNING;
3189 mtx_unlock(&sync_mtx);
3190 cv_broadcast(&sync_wakeup);
3191 kproc_resume(updateproc);
3192 }
3193
3194 /*
3195 * Move the buffer between the clean and dirty lists of its vnode.
3196 */
3197 void
reassignbuf(struct buf * bp)3198 reassignbuf(struct buf *bp)
3199 {
3200 struct vnode *vp;
3201 struct bufobj *bo;
3202 int delay;
3203 #ifdef INVARIANTS
3204 struct bufv *bv;
3205 #endif
3206
3207 vp = bp->b_vp;
3208 bo = bp->b_bufobj;
3209
3210 KASSERT((bp->b_flags & B_PAGING) == 0,
3211 ("%s: cannot reassign paging buffer %p", __func__, bp));
3212
3213 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3214 bp, bp->b_vp, bp->b_flags);
3215
3216 BO_LOCK(bo);
3217 if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3218 /*
3219 * Coordinate with getblk's unlocked lookup. Make
3220 * BO_NONSTERILE visible before the first reassignbuf produces
3221 * any side effect. This could be outside the bo lock if we
3222 * used a separate atomic flag field.
3223 */
3224 bo->bo_flag |= BO_NONSTERILE;
3225 atomic_thread_fence_rel();
3226 }
3227 buf_vlist_remove(bp);
3228
3229 /*
3230 * If dirty, put on list of dirty buffers; otherwise insert onto list
3231 * of clean buffers.
3232 */
3233 if (bp->b_flags & B_DELWRI) {
3234 if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3235 switch (vp->v_type) {
3236 case VDIR:
3237 delay = dirdelay;
3238 break;
3239 case VCHR:
3240 delay = metadelay;
3241 break;
3242 default:
3243 delay = filedelay;
3244 }
3245 vn_syncer_add_to_worklist(bo, delay);
3246 }
3247 buf_vlist_add(bp, bo, BX_VNDIRTY);
3248 } else {
3249 buf_vlist_add(bp, bo, BX_VNCLEAN);
3250
3251 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3252 mtx_lock(&sync_mtx);
3253 LIST_REMOVE(bo, bo_synclist);
3254 syncer_worklist_len--;
3255 mtx_unlock(&sync_mtx);
3256 bo->bo_flag &= ~BO_ONWORKLST;
3257 }
3258 }
3259 #ifdef INVARIANTS
3260 bv = &bo->bo_clean;
3261 bp = TAILQ_FIRST(&bv->bv_hd);
3262 KASSERT(bp == NULL || bp->b_bufobj == bo,
3263 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3264 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3265 KASSERT(bp == NULL || bp->b_bufobj == bo,
3266 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3267 bv = &bo->bo_dirty;
3268 bp = TAILQ_FIRST(&bv->bv_hd);
3269 KASSERT(bp == NULL || bp->b_bufobj == bo,
3270 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3271 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3272 KASSERT(bp == NULL || bp->b_bufobj == bo,
3273 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3274 #endif
3275 BO_UNLOCK(bo);
3276 }
3277
3278 static void
v_init_counters(struct vnode * vp)3279 v_init_counters(struct vnode *vp)
3280 {
3281
3282 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3283 vp, ("%s called for an initialized vnode", __FUNCTION__));
3284 ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3285
3286 refcount_init(&vp->v_holdcnt, 1);
3287 refcount_init(&vp->v_usecount, 1);
3288 }
3289
3290 /*
3291 * Get a usecount on a vnode.
3292 *
3293 * vget and vget_finish may fail to lock the vnode if they lose a race against
3294 * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3295 *
3296 * Consumers which don't guarantee liveness of the vnode can use SMR to
3297 * try to get a reference. Note this operation can fail since the vnode
3298 * may be awaiting getting freed by the time they get to it.
3299 */
3300 enum vgetstate
vget_prep_smr(struct vnode * vp)3301 vget_prep_smr(struct vnode *vp)
3302 {
3303 enum vgetstate vs;
3304
3305 VFS_SMR_ASSERT_ENTERED();
3306
3307 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3308 vs = VGET_USECOUNT;
3309 } else {
3310 if (vhold_smr(vp))
3311 vs = VGET_HOLDCNT;
3312 else
3313 vs = VGET_NONE;
3314 }
3315 return (vs);
3316 }
3317
3318 enum vgetstate
vget_prep(struct vnode * vp)3319 vget_prep(struct vnode *vp)
3320 {
3321 enum vgetstate vs;
3322
3323 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3324 vs = VGET_USECOUNT;
3325 } else {
3326 vhold(vp);
3327 vs = VGET_HOLDCNT;
3328 }
3329 return (vs);
3330 }
3331
3332 void
vget_abort(struct vnode * vp,enum vgetstate vs)3333 vget_abort(struct vnode *vp, enum vgetstate vs)
3334 {
3335
3336 switch (vs) {
3337 case VGET_USECOUNT:
3338 vrele(vp);
3339 break;
3340 case VGET_HOLDCNT:
3341 vdrop(vp);
3342 break;
3343 default:
3344 __assert_unreachable();
3345 }
3346 }
3347
3348 int
vget(struct vnode * vp,int flags)3349 vget(struct vnode *vp, int flags)
3350 {
3351 enum vgetstate vs;
3352
3353 vs = vget_prep(vp);
3354 return (vget_finish(vp, flags, vs));
3355 }
3356
3357 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3358 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3359 {
3360 int error;
3361
3362 if ((flags & LK_INTERLOCK) != 0)
3363 ASSERT_VI_LOCKED(vp, __func__);
3364 else
3365 ASSERT_VI_UNLOCKED(vp, __func__);
3366 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3367 VNPASS(vp->v_holdcnt > 0, vp);
3368 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3369
3370 error = vn_lock(vp, flags);
3371 if (__predict_false(error != 0)) {
3372 vget_abort(vp, vs);
3373 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3374 vp);
3375 return (error);
3376 }
3377
3378 vget_finish_ref(vp, vs);
3379 return (0);
3380 }
3381
3382 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)3383 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3384 {
3385 int old;
3386
3387 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3388 VNPASS(vp->v_holdcnt > 0, vp);
3389 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3390
3391 if (vs == VGET_USECOUNT)
3392 return;
3393
3394 /*
3395 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3396 * the vnode around. Otherwise someone else lended their hold count and
3397 * we have to drop ours.
3398 */
3399 old = atomic_fetchadd_int(&vp->v_usecount, 1);
3400 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3401 if (old != 0) {
3402 #ifdef INVARIANTS
3403 old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3404 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3405 #else
3406 refcount_release(&vp->v_holdcnt);
3407 #endif
3408 }
3409 }
3410
3411 void
vref(struct vnode * vp)3412 vref(struct vnode *vp)
3413 {
3414 enum vgetstate vs;
3415
3416 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3417 vs = vget_prep(vp);
3418 vget_finish_ref(vp, vs);
3419 }
3420
3421 void
vrefact(struct vnode * vp)3422 vrefact(struct vnode *vp)
3423 {
3424 int old __diagused;
3425
3426 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3427 old = refcount_acquire(&vp->v_usecount);
3428 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3429 }
3430
3431 void
vlazy(struct vnode * vp)3432 vlazy(struct vnode *vp)
3433 {
3434 struct mount *mp;
3435
3436 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3437
3438 if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3439 return;
3440 /*
3441 * We may get here for inactive routines after the vnode got doomed.
3442 */
3443 if (VN_IS_DOOMED(vp))
3444 return;
3445 mp = vp->v_mount;
3446 mtx_lock(&mp->mnt_listmtx);
3447 if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3448 vp->v_mflag |= VMP_LAZYLIST;
3449 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3450 mp->mnt_lazyvnodelistsize++;
3451 }
3452 mtx_unlock(&mp->mnt_listmtx);
3453 }
3454
3455 static void
vunlazy(struct vnode * vp)3456 vunlazy(struct vnode *vp)
3457 {
3458 struct mount *mp;
3459
3460 ASSERT_VI_LOCKED(vp, __func__);
3461 VNPASS(!VN_IS_DOOMED(vp), vp);
3462
3463 mp = vp->v_mount;
3464 mtx_lock(&mp->mnt_listmtx);
3465 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3466 /*
3467 * Don't remove the vnode from the lazy list if another thread
3468 * has increased the hold count. It may have re-enqueued the
3469 * vnode to the lazy list and is now responsible for its
3470 * removal.
3471 */
3472 if (vp->v_holdcnt == 0) {
3473 vp->v_mflag &= ~VMP_LAZYLIST;
3474 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3475 mp->mnt_lazyvnodelistsize--;
3476 }
3477 mtx_unlock(&mp->mnt_listmtx);
3478 }
3479
3480 /*
3481 * This routine is only meant to be called from vgonel prior to dooming
3482 * the vnode.
3483 */
3484 static void
vunlazy_gone(struct vnode * vp)3485 vunlazy_gone(struct vnode *vp)
3486 {
3487 struct mount *mp;
3488
3489 ASSERT_VOP_ELOCKED(vp, __func__);
3490 ASSERT_VI_LOCKED(vp, __func__);
3491 VNPASS(!VN_IS_DOOMED(vp), vp);
3492
3493 if (vp->v_mflag & VMP_LAZYLIST) {
3494 mp = vp->v_mount;
3495 mtx_lock(&mp->mnt_listmtx);
3496 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3497 vp->v_mflag &= ~VMP_LAZYLIST;
3498 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3499 mp->mnt_lazyvnodelistsize--;
3500 mtx_unlock(&mp->mnt_listmtx);
3501 }
3502 }
3503
3504 static void
vdefer_inactive(struct vnode * vp)3505 vdefer_inactive(struct vnode *vp)
3506 {
3507
3508 ASSERT_VI_LOCKED(vp, __func__);
3509 VNPASS(vp->v_holdcnt > 0, vp);
3510 if (VN_IS_DOOMED(vp)) {
3511 vdropl(vp);
3512 return;
3513 }
3514 if (vp->v_iflag & VI_DEFINACT) {
3515 VNPASS(vp->v_holdcnt > 1, vp);
3516 vdropl(vp);
3517 return;
3518 }
3519 if (vp->v_usecount > 0) {
3520 vp->v_iflag &= ~VI_OWEINACT;
3521 vdropl(vp);
3522 return;
3523 }
3524 vlazy(vp);
3525 vp->v_iflag |= VI_DEFINACT;
3526 VI_UNLOCK(vp);
3527 atomic_add_long(&deferred_inact, 1);
3528 }
3529
3530 static void
vdefer_inactive_unlocked(struct vnode * vp)3531 vdefer_inactive_unlocked(struct vnode *vp)
3532 {
3533
3534 VI_LOCK(vp);
3535 if ((vp->v_iflag & VI_OWEINACT) == 0) {
3536 vdropl(vp);
3537 return;
3538 }
3539 vdefer_inactive(vp);
3540 }
3541
3542 enum vput_op { VRELE, VPUT, VUNREF };
3543
3544 /*
3545 * Handle ->v_usecount transitioning to 0.
3546 *
3547 * By releasing the last usecount we take ownership of the hold count which
3548 * provides liveness of the vnode, meaning we have to vdrop.
3549 *
3550 * For all vnodes we may need to perform inactive processing. It requires an
3551 * exclusive lock on the vnode, while it is legal to call here with only a
3552 * shared lock (or no locks). If locking the vnode in an expected manner fails,
3553 * inactive processing gets deferred to the syncer.
3554 *
3555 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3556 * on the lock being held all the way until VOP_INACTIVE. This in particular
3557 * happens with UFS which adds half-constructed vnodes to the hash, where they
3558 * can be found by other code.
3559 */
3560 static void
vput_final(struct vnode * vp,enum vput_op func)3561 vput_final(struct vnode *vp, enum vput_op func)
3562 {
3563 int error;
3564 bool want_unlock;
3565
3566 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3567 VNPASS(vp->v_holdcnt > 0, vp);
3568
3569 VI_LOCK(vp);
3570
3571 /*
3572 * By the time we got here someone else might have transitioned
3573 * the count back to > 0.
3574 */
3575 if (vp->v_usecount > 0)
3576 goto out;
3577
3578 /*
3579 * If the vnode is doomed vgone already performed inactive processing
3580 * (if needed).
3581 */
3582 if (VN_IS_DOOMED(vp))
3583 goto out;
3584
3585 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3586 goto out;
3587
3588 if (vp->v_iflag & VI_DOINGINACT)
3589 goto out;
3590
3591 /*
3592 * Locking operations here will drop the interlock and possibly the
3593 * vnode lock, opening a window where the vnode can get doomed all the
3594 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3595 * perform inactive.
3596 */
3597 vp->v_iflag |= VI_OWEINACT;
3598 want_unlock = false;
3599 error = 0;
3600 switch (func) {
3601 case VRELE:
3602 switch (VOP_ISLOCKED(vp)) {
3603 case LK_EXCLUSIVE:
3604 break;
3605 case LK_EXCLOTHER:
3606 case 0:
3607 want_unlock = true;
3608 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3609 VI_LOCK(vp);
3610 break;
3611 default:
3612 /*
3613 * The lock has at least one sharer, but we have no way
3614 * to conclude whether this is us. Play it safe and
3615 * defer processing.
3616 */
3617 error = EAGAIN;
3618 break;
3619 }
3620 break;
3621 case VPUT:
3622 want_unlock = true;
3623 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3624 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3625 LK_NOWAIT);
3626 VI_LOCK(vp);
3627 }
3628 break;
3629 case VUNREF:
3630 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3631 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3632 VI_LOCK(vp);
3633 }
3634 break;
3635 }
3636 if (error == 0) {
3637 if (func == VUNREF) {
3638 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3639 ("recursive vunref"));
3640 vp->v_vflag |= VV_UNREF;
3641 }
3642 for (;;) {
3643 error = vinactive(vp);
3644 if (want_unlock)
3645 VOP_UNLOCK(vp);
3646 if (error != ERELOOKUP || !want_unlock)
3647 break;
3648 VOP_LOCK(vp, LK_EXCLUSIVE);
3649 }
3650 if (func == VUNREF)
3651 vp->v_vflag &= ~VV_UNREF;
3652 vdropl(vp);
3653 } else {
3654 vdefer_inactive(vp);
3655 }
3656 return;
3657 out:
3658 if (func == VPUT)
3659 VOP_UNLOCK(vp);
3660 vdropl(vp);
3661 }
3662
3663 /*
3664 * Decrement ->v_usecount for a vnode.
3665 *
3666 * Releasing the last use count requires additional processing, see vput_final
3667 * above for details.
3668 *
3669 * Comment above each variant denotes lock state on entry and exit.
3670 */
3671
3672 /*
3673 * in: any
3674 * out: same as passed in
3675 */
3676 void
vrele(struct vnode * vp)3677 vrele(struct vnode *vp)
3678 {
3679
3680 ASSERT_VI_UNLOCKED(vp, __func__);
3681 if (!refcount_release(&vp->v_usecount))
3682 return;
3683 vput_final(vp, VRELE);
3684 }
3685
3686 /*
3687 * in: locked
3688 * out: unlocked
3689 */
3690 void
vput(struct vnode * vp)3691 vput(struct vnode *vp)
3692 {
3693
3694 ASSERT_VOP_LOCKED(vp, __func__);
3695 ASSERT_VI_UNLOCKED(vp, __func__);
3696 if (!refcount_release(&vp->v_usecount)) {
3697 VOP_UNLOCK(vp);
3698 return;
3699 }
3700 vput_final(vp, VPUT);
3701 }
3702
3703 /*
3704 * in: locked
3705 * out: locked
3706 */
3707 void
vunref(struct vnode * vp)3708 vunref(struct vnode *vp)
3709 {
3710
3711 ASSERT_VOP_LOCKED(vp, __func__);
3712 ASSERT_VI_UNLOCKED(vp, __func__);
3713 if (!refcount_release(&vp->v_usecount))
3714 return;
3715 vput_final(vp, VUNREF);
3716 }
3717
3718 void
vhold(struct vnode * vp)3719 vhold(struct vnode *vp)
3720 {
3721 int old;
3722
3723 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3724 old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3725 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3726 ("%s: wrong hold count %d", __func__, old));
3727 if (old == 0)
3728 vfs_freevnodes_dec();
3729 }
3730
3731 void
vholdnz(struct vnode * vp)3732 vholdnz(struct vnode *vp)
3733 {
3734
3735 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3736 #ifdef INVARIANTS
3737 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3738 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3739 ("%s: wrong hold count %d", __func__, old));
3740 #else
3741 atomic_add_int(&vp->v_holdcnt, 1);
3742 #endif
3743 }
3744
3745 /*
3746 * Grab a hold count unless the vnode is freed.
3747 *
3748 * Only use this routine if vfs smr is the only protection you have against
3749 * freeing the vnode.
3750 *
3751 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3752 * is not set. After the flag is set the vnode becomes immutable to anyone but
3753 * the thread which managed to set the flag.
3754 *
3755 * It may be tempting to replace the loop with:
3756 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3757 * if (count & VHOLD_NO_SMR) {
3758 * backpedal and error out;
3759 * }
3760 *
3761 * However, while this is more performant, it hinders debugging by eliminating
3762 * the previously mentioned invariant.
3763 */
3764 bool
vhold_smr(struct vnode * vp)3765 vhold_smr(struct vnode *vp)
3766 {
3767 int count;
3768
3769 VFS_SMR_ASSERT_ENTERED();
3770
3771 count = atomic_load_int(&vp->v_holdcnt);
3772 for (;;) {
3773 if (count & VHOLD_NO_SMR) {
3774 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3775 ("non-zero hold count with flags %d\n", count));
3776 return (false);
3777 }
3778 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3779 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3780 if (count == 0)
3781 vfs_freevnodes_dec();
3782 return (true);
3783 }
3784 }
3785 }
3786
3787 /*
3788 * Hold a free vnode for recycling.
3789 *
3790 * Note: vnode_init references this comment.
3791 *
3792 * Attempts to recycle only need the global vnode list lock and have no use for
3793 * SMR.
3794 *
3795 * However, vnodes get inserted into the global list before they get fully
3796 * initialized and stay there until UMA decides to free the memory. This in
3797 * particular means the target can be found before it becomes usable and after
3798 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3799 * VHOLD_NO_SMR.
3800 *
3801 * Note: the vnode may gain more references after we transition the count 0->1.
3802 */
3803 static bool
vhold_recycle_free(struct vnode * vp)3804 vhold_recycle_free(struct vnode *vp)
3805 {
3806 int count;
3807
3808 mtx_assert(&vnode_list_mtx, MA_OWNED);
3809
3810 count = atomic_load_int(&vp->v_holdcnt);
3811 for (;;) {
3812 if (count & VHOLD_NO_SMR) {
3813 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3814 ("non-zero hold count with flags %d\n", count));
3815 return (false);
3816 }
3817 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3818 if (count > 0) {
3819 return (false);
3820 }
3821 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3822 vfs_freevnodes_dec();
3823 return (true);
3824 }
3825 }
3826 }
3827
3828 static void __noinline
vdbatch_process(struct vdbatch * vd)3829 vdbatch_process(struct vdbatch *vd)
3830 {
3831 struct vnode *vp;
3832 int i;
3833
3834 mtx_assert(&vd->lock, MA_OWNED);
3835 MPASS(curthread->td_pinned > 0);
3836 MPASS(vd->index == VDBATCH_SIZE);
3837
3838 /*
3839 * Attempt to requeue the passed batch, but give up easily.
3840 *
3841 * Despite batching the mechanism is prone to transient *significant*
3842 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3843 * if multiple CPUs get here (one real-world example is highly parallel
3844 * do-nothing make , which will stat *tons* of vnodes). Since it is
3845 * quasi-LRU (read: not that great even if fully honoured) provide an
3846 * option to just dodge the problem. Parties which don't like it are
3847 * welcome to implement something better.
3848 */
3849 if (vnode_can_skip_requeue) {
3850 if (!mtx_trylock(&vnode_list_mtx)) {
3851 counter_u64_add(vnode_skipped_requeues, 1);
3852 critical_enter();
3853 for (i = 0; i < VDBATCH_SIZE; i++) {
3854 vp = vd->tab[i];
3855 vd->tab[i] = NULL;
3856 MPASS(vp->v_dbatchcpu != NOCPU);
3857 vp->v_dbatchcpu = NOCPU;
3858 }
3859 vd->index = 0;
3860 critical_exit();
3861 return;
3862
3863 }
3864 /* fallthrough to locked processing */
3865 } else {
3866 mtx_lock(&vnode_list_mtx);
3867 }
3868
3869 mtx_assert(&vnode_list_mtx, MA_OWNED);
3870 critical_enter();
3871 for (i = 0; i < VDBATCH_SIZE; i++) {
3872 vp = vd->tab[i];
3873 vd->tab[i] = NULL;
3874 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3875 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3876 MPASS(vp->v_dbatchcpu != NOCPU);
3877 vp->v_dbatchcpu = NOCPU;
3878 }
3879 mtx_unlock(&vnode_list_mtx);
3880 vd->index = 0;
3881 critical_exit();
3882 }
3883
3884 static void
vdbatch_enqueue(struct vnode * vp)3885 vdbatch_enqueue(struct vnode *vp)
3886 {
3887 struct vdbatch *vd;
3888
3889 ASSERT_VI_LOCKED(vp, __func__);
3890 VNPASS(!VN_IS_DOOMED(vp), vp);
3891
3892 if (vp->v_dbatchcpu != NOCPU) {
3893 VI_UNLOCK(vp);
3894 return;
3895 }
3896
3897 sched_pin();
3898 vd = DPCPU_PTR(vd);
3899 mtx_lock(&vd->lock);
3900 MPASS(vd->index < VDBATCH_SIZE);
3901 MPASS(vd->tab[vd->index] == NULL);
3902 /*
3903 * A hack: we depend on being pinned so that we know what to put in
3904 * ->v_dbatchcpu.
3905 */
3906 vp->v_dbatchcpu = curcpu;
3907 vd->tab[vd->index] = vp;
3908 vd->index++;
3909 VI_UNLOCK(vp);
3910 if (vd->index == VDBATCH_SIZE)
3911 vdbatch_process(vd);
3912 mtx_unlock(&vd->lock);
3913 sched_unpin();
3914 }
3915
3916 /*
3917 * This routine must only be called for vnodes which are about to be
3918 * deallocated. Supporting dequeue for arbitrary vndoes would require
3919 * validating that the locked batch matches.
3920 */
3921 static void
vdbatch_dequeue(struct vnode * vp)3922 vdbatch_dequeue(struct vnode *vp)
3923 {
3924 struct vdbatch *vd;
3925 int i;
3926 short cpu;
3927
3928 VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3929
3930 cpu = vp->v_dbatchcpu;
3931 if (cpu == NOCPU)
3932 return;
3933
3934 vd = DPCPU_ID_PTR(cpu, vd);
3935 mtx_lock(&vd->lock);
3936 for (i = 0; i < vd->index; i++) {
3937 if (vd->tab[i] != vp)
3938 continue;
3939 vp->v_dbatchcpu = NOCPU;
3940 vd->index--;
3941 vd->tab[i] = vd->tab[vd->index];
3942 vd->tab[vd->index] = NULL;
3943 break;
3944 }
3945 mtx_unlock(&vd->lock);
3946 /*
3947 * Either we dequeued the vnode above or the target CPU beat us to it.
3948 */
3949 MPASS(vp->v_dbatchcpu == NOCPU);
3950 }
3951
3952 /*
3953 * Drop the hold count of the vnode.
3954 *
3955 * It will only get freed if this is the last hold *and* it has been vgone'd.
3956 *
3957 * Because the vnode vm object keeps a hold reference on the vnode if
3958 * there is at least one resident non-cached page, the vnode cannot
3959 * leave the active list without the page cleanup done.
3960 */
3961 static void __noinline
vdropl_final(struct vnode * vp)3962 vdropl_final(struct vnode *vp)
3963 {
3964
3965 ASSERT_VI_LOCKED(vp, __func__);
3966 VNPASS(VN_IS_DOOMED(vp), vp);
3967 /*
3968 * Set the VHOLD_NO_SMR flag.
3969 *
3970 * We may be racing against vhold_smr. If they win we can just pretend
3971 * we never got this far, they will vdrop later.
3972 */
3973 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3974 vfs_freevnodes_inc();
3975 VI_UNLOCK(vp);
3976 /*
3977 * We lost the aforementioned race. Any subsequent access is
3978 * invalid as they might have managed to vdropl on their own.
3979 */
3980 return;
3981 }
3982 /*
3983 * Don't bump freevnodes as this one is going away.
3984 */
3985 freevnode(vp);
3986 }
3987
3988 void
vdrop(struct vnode * vp)3989 vdrop(struct vnode *vp)
3990 {
3991
3992 ASSERT_VI_UNLOCKED(vp, __func__);
3993 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3994 if (refcount_release_if_not_last(&vp->v_holdcnt))
3995 return;
3996 VI_LOCK(vp);
3997 vdropl(vp);
3998 }
3999
4000 static __always_inline void
vdropl_impl(struct vnode * vp,bool enqueue)4001 vdropl_impl(struct vnode *vp, bool enqueue)
4002 {
4003
4004 ASSERT_VI_LOCKED(vp, __func__);
4005 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4006 if (!refcount_release(&vp->v_holdcnt)) {
4007 VI_UNLOCK(vp);
4008 return;
4009 }
4010 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4011 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4012 if (VN_IS_DOOMED(vp)) {
4013 vdropl_final(vp);
4014 return;
4015 }
4016
4017 vfs_freevnodes_inc();
4018 if (vp->v_mflag & VMP_LAZYLIST) {
4019 vunlazy(vp);
4020 }
4021
4022 if (!enqueue) {
4023 VI_UNLOCK(vp);
4024 return;
4025 }
4026
4027 /*
4028 * Also unlocks the interlock. We can't assert on it as we
4029 * released our hold and by now the vnode might have been
4030 * freed.
4031 */
4032 vdbatch_enqueue(vp);
4033 }
4034
4035 void
vdropl(struct vnode * vp)4036 vdropl(struct vnode *vp)
4037 {
4038
4039 vdropl_impl(vp, true);
4040 }
4041
4042 /*
4043 * vdrop a vnode when recycling
4044 *
4045 * This is a special case routine only to be used when recycling, differs from
4046 * regular vdrop by not requeieing the vnode on LRU.
4047 *
4048 * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4049 * e.g., frozen writes on the filesystem), filling the batch and causing it to
4050 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4051 * loop which can last for as long as writes are frozen.
4052 */
4053 static void
vdropl_recycle(struct vnode * vp)4054 vdropl_recycle(struct vnode *vp)
4055 {
4056
4057 vdropl_impl(vp, false);
4058 }
4059
4060 static void
vdrop_recycle(struct vnode * vp)4061 vdrop_recycle(struct vnode *vp)
4062 {
4063
4064 VI_LOCK(vp);
4065 vdropl_recycle(vp);
4066 }
4067
4068 /*
4069 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4070 * flags. DOINGINACT prevents us from recursing in calls to vinactive.
4071 */
4072 static int
vinactivef(struct vnode * vp)4073 vinactivef(struct vnode *vp)
4074 {
4075 int error;
4076
4077 ASSERT_VOP_ELOCKED(vp, "vinactive");
4078 ASSERT_VI_LOCKED(vp, "vinactive");
4079 VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4080 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4081 vp->v_iflag |= VI_DOINGINACT;
4082 vp->v_iflag &= ~VI_OWEINACT;
4083 VI_UNLOCK(vp);
4084
4085 /*
4086 * Before moving off the active list, we must be sure that any
4087 * modified pages are converted into the vnode's dirty
4088 * buffers, since these will no longer be checked once the
4089 * vnode is on the inactive list.
4090 *
4091 * The write-out of the dirty pages is asynchronous. At the
4092 * point that VOP_INACTIVE() is called, there could still be
4093 * pending I/O and dirty pages in the object.
4094 */
4095 if ((vp->v_vflag & VV_NOSYNC) == 0)
4096 vnode_pager_clean_async(vp);
4097
4098 error = VOP_INACTIVE(vp);
4099 VI_LOCK(vp);
4100 VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4101 vp->v_iflag &= ~VI_DOINGINACT;
4102 return (error);
4103 }
4104
4105 int
vinactive(struct vnode * vp)4106 vinactive(struct vnode *vp)
4107 {
4108
4109 ASSERT_VOP_ELOCKED(vp, "vinactive");
4110 ASSERT_VI_LOCKED(vp, "vinactive");
4111 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4112
4113 if ((vp->v_iflag & VI_OWEINACT) == 0)
4114 return (0);
4115 if (vp->v_iflag & VI_DOINGINACT)
4116 return (0);
4117 if (vp->v_usecount > 0) {
4118 vp->v_iflag &= ~VI_OWEINACT;
4119 return (0);
4120 }
4121 return (vinactivef(vp));
4122 }
4123
4124 /*
4125 * Remove any vnodes in the vnode table belonging to mount point mp.
4126 *
4127 * If FORCECLOSE is not specified, there should not be any active ones,
4128 * return error if any are found (nb: this is a user error, not a
4129 * system error). If FORCECLOSE is specified, detach any active vnodes
4130 * that are found.
4131 *
4132 * If WRITECLOSE is set, only flush out regular file vnodes open for
4133 * writing.
4134 *
4135 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4136 *
4137 * `rootrefs' specifies the base reference count for the root vnode
4138 * of this filesystem. The root vnode is considered busy if its
4139 * v_usecount exceeds this value. On a successful return, vflush(, td)
4140 * will call vrele() on the root vnode exactly rootrefs times.
4141 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4142 * be zero.
4143 */
4144 #ifdef DIAGNOSTIC
4145 static int busyprt = 0; /* print out busy vnodes */
4146 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4147 #endif
4148
4149 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)4150 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4151 {
4152 struct vnode *vp, *mvp, *rootvp = NULL;
4153 struct vattr vattr;
4154 int busy = 0, error;
4155
4156 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4157 rootrefs, flags);
4158 if (rootrefs > 0) {
4159 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4160 ("vflush: bad args"));
4161 /*
4162 * Get the filesystem root vnode. We can vput() it
4163 * immediately, since with rootrefs > 0, it won't go away.
4164 */
4165 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4166 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4167 __func__, error);
4168 return (error);
4169 }
4170 vput(rootvp);
4171 }
4172 loop:
4173 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4174 vholdl(vp);
4175 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4176 if (error) {
4177 vdrop(vp);
4178 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4179 goto loop;
4180 }
4181 /*
4182 * Skip over a vnodes marked VV_SYSTEM.
4183 */
4184 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4185 VOP_UNLOCK(vp);
4186 vdrop(vp);
4187 continue;
4188 }
4189 /*
4190 * If WRITECLOSE is set, flush out unlinked but still open
4191 * files (even if open only for reading) and regular file
4192 * vnodes open for writing.
4193 */
4194 if (flags & WRITECLOSE) {
4195 vnode_pager_clean_async(vp);
4196 do {
4197 error = VOP_FSYNC(vp, MNT_WAIT, td);
4198 } while (error == ERELOOKUP);
4199 if (error != 0) {
4200 VOP_UNLOCK(vp);
4201 vdrop(vp);
4202 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4203 return (error);
4204 }
4205 error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4206 VI_LOCK(vp);
4207
4208 if ((vp->v_type == VNON ||
4209 (error == 0 && vattr.va_nlink > 0)) &&
4210 (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4211 VOP_UNLOCK(vp);
4212 vdropl(vp);
4213 continue;
4214 }
4215 } else
4216 VI_LOCK(vp);
4217 /*
4218 * With v_usecount == 0, all we need to do is clear out the
4219 * vnode data structures and we are done.
4220 *
4221 * If FORCECLOSE is set, forcibly close the vnode.
4222 */
4223 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4224 vgonel(vp);
4225 } else {
4226 busy++;
4227 #ifdef DIAGNOSTIC
4228 if (busyprt)
4229 vn_printf(vp, "vflush: busy vnode ");
4230 #endif
4231 }
4232 VOP_UNLOCK(vp);
4233 vdropl(vp);
4234 }
4235 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4236 /*
4237 * If just the root vnode is busy, and if its refcount
4238 * is equal to `rootrefs', then go ahead and kill it.
4239 */
4240 VI_LOCK(rootvp);
4241 KASSERT(busy > 0, ("vflush: not busy"));
4242 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4243 ("vflush: usecount %d < rootrefs %d",
4244 rootvp->v_usecount, rootrefs));
4245 if (busy == 1 && rootvp->v_usecount == rootrefs) {
4246 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4247 vgone(rootvp);
4248 VOP_UNLOCK(rootvp);
4249 busy = 0;
4250 } else
4251 VI_UNLOCK(rootvp);
4252 }
4253 if (busy) {
4254 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4255 busy);
4256 return (EBUSY);
4257 }
4258 for (; rootrefs > 0; rootrefs--)
4259 vrele(rootvp);
4260 return (0);
4261 }
4262
4263 /*
4264 * Recycle an unused vnode.
4265 */
4266 int
vrecycle(struct vnode * vp)4267 vrecycle(struct vnode *vp)
4268 {
4269 int recycled;
4270
4271 VI_LOCK(vp);
4272 recycled = vrecyclel(vp);
4273 VI_UNLOCK(vp);
4274 return (recycled);
4275 }
4276
4277 /*
4278 * vrecycle, with the vp interlock held.
4279 */
4280 int
vrecyclel(struct vnode * vp)4281 vrecyclel(struct vnode *vp)
4282 {
4283 int recycled;
4284
4285 ASSERT_VOP_ELOCKED(vp, __func__);
4286 ASSERT_VI_LOCKED(vp, __func__);
4287 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4288 recycled = 0;
4289 if (vp->v_usecount == 0) {
4290 recycled = 1;
4291 vgonel(vp);
4292 }
4293 return (recycled);
4294 }
4295
4296 /*
4297 * Eliminate all activity associated with a vnode
4298 * in preparation for reuse.
4299 */
4300 void
vgone(struct vnode * vp)4301 vgone(struct vnode *vp)
4302 {
4303 VI_LOCK(vp);
4304 vgonel(vp);
4305 VI_UNLOCK(vp);
4306 }
4307
4308 /*
4309 * Notify upper mounts about reclaimed or unlinked vnode.
4310 */
4311 void
vfs_notify_upper(struct vnode * vp,enum vfs_notify_upper_type event)4312 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4313 {
4314 struct mount *mp;
4315 struct mount_upper_node *ump;
4316
4317 mp = atomic_load_ptr(&vp->v_mount);
4318 if (mp == NULL)
4319 return;
4320 if (TAILQ_EMPTY(&mp->mnt_notify))
4321 return;
4322
4323 MNT_ILOCK(mp);
4324 mp->mnt_upper_pending++;
4325 KASSERT(mp->mnt_upper_pending > 0,
4326 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4327 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4328 MNT_IUNLOCK(mp);
4329 switch (event) {
4330 case VFS_NOTIFY_UPPER_RECLAIM:
4331 VFS_RECLAIM_LOWERVP(ump->mp, vp);
4332 break;
4333 case VFS_NOTIFY_UPPER_UNLINK:
4334 VFS_UNLINK_LOWERVP(ump->mp, vp);
4335 break;
4336 }
4337 MNT_ILOCK(mp);
4338 }
4339 mp->mnt_upper_pending--;
4340 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4341 mp->mnt_upper_pending == 0) {
4342 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4343 wakeup(&mp->mnt_uppers);
4344 }
4345 MNT_IUNLOCK(mp);
4346 }
4347
4348 /*
4349 * vgone, with the vp interlock held.
4350 */
4351 static void
vgonel(struct vnode * vp)4352 vgonel(struct vnode *vp)
4353 {
4354 struct thread *td;
4355 struct mount *mp;
4356 vm_object_t object;
4357 bool active, doinginact, oweinact;
4358
4359 ASSERT_VOP_ELOCKED(vp, "vgonel");
4360 ASSERT_VI_LOCKED(vp, "vgonel");
4361 VNASSERT(vp->v_holdcnt, vp,
4362 ("vgonel: vp %p has no reference.", vp));
4363 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4364 td = curthread;
4365
4366 /*
4367 * Don't vgonel if we're already doomed.
4368 */
4369 if (VN_IS_DOOMED(vp)) {
4370 VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4371 vn_get_state(vp) == VSTATE_DEAD, vp);
4372 return;
4373 }
4374 /*
4375 * Paired with freevnode.
4376 */
4377 vn_seqc_write_begin_locked(vp);
4378 vunlazy_gone(vp);
4379 vn_irflag_set_locked(vp, VIRF_DOOMED);
4380 vn_set_state(vp, VSTATE_DESTROYING);
4381
4382 /*
4383 * Check to see if the vnode is in use. If so, we have to
4384 * call VOP_CLOSE() and VOP_INACTIVE().
4385 *
4386 * It could be that VOP_INACTIVE() requested reclamation, in
4387 * which case we should avoid recursion, so check
4388 * VI_DOINGINACT. This is not precise but good enough.
4389 */
4390 active = vp->v_usecount > 0;
4391 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4392 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4393
4394 /*
4395 * If we need to do inactive VI_OWEINACT will be set.
4396 */
4397 if (vp->v_iflag & VI_DEFINACT) {
4398 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4399 vp->v_iflag &= ~VI_DEFINACT;
4400 vdropl(vp);
4401 } else {
4402 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4403 VI_UNLOCK(vp);
4404 }
4405 cache_purge_vgone(vp);
4406 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4407
4408 /*
4409 * If purging an active vnode, it must be closed and
4410 * deactivated before being reclaimed.
4411 */
4412 if (active)
4413 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4414 if (!doinginact) {
4415 do {
4416 if (oweinact || active) {
4417 VI_LOCK(vp);
4418 vinactivef(vp);
4419 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4420 VI_UNLOCK(vp);
4421 }
4422 } while (oweinact);
4423 }
4424 if (vp->v_type == VSOCK)
4425 vfs_unp_reclaim(vp);
4426
4427 /*
4428 * Clean out any buffers associated with the vnode.
4429 * If the flush fails, just toss the buffers.
4430 */
4431 mp = NULL;
4432 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4433 (void) vn_start_secondary_write(vp, &mp, V_WAIT);
4434 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4435 while (vinvalbuf(vp, 0, 0, 0) != 0)
4436 ;
4437 }
4438
4439 BO_LOCK(&vp->v_bufobj);
4440 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4441 vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4442 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4443 vp->v_bufobj.bo_clean.bv_cnt == 0,
4444 ("vp %p bufobj not invalidated", vp));
4445
4446 /*
4447 * For VMIO bufobj, BO_DEAD is set later, or in
4448 * vm_object_terminate() after the object's page queue is
4449 * flushed.
4450 */
4451 object = vp->v_bufobj.bo_object;
4452 if (object == NULL)
4453 vp->v_bufobj.bo_flag |= BO_DEAD;
4454 BO_UNLOCK(&vp->v_bufobj);
4455
4456 /*
4457 * Handle the VM part. Tmpfs handles v_object on its own (the
4458 * OBJT_VNODE check). Nullfs or other bypassing filesystems
4459 * should not touch the object borrowed from the lower vnode
4460 * (the handle check).
4461 */
4462 if (object != NULL && object->type == OBJT_VNODE &&
4463 object->handle == vp)
4464 vnode_destroy_vobject(vp);
4465
4466 /*
4467 * Reclaim the vnode.
4468 */
4469 if (VOP_RECLAIM(vp))
4470 panic("vgone: cannot reclaim");
4471 if (mp != NULL)
4472 vn_finished_secondary_write(mp);
4473 VNASSERT(vp->v_object == NULL, vp,
4474 ("vop_reclaim left v_object vp=%p", vp));
4475 /*
4476 * Clear the advisory locks and wake up waiting threads.
4477 */
4478 if (vp->v_lockf != NULL) {
4479 (void)VOP_ADVLOCKPURGE(vp);
4480 vp->v_lockf = NULL;
4481 }
4482 /*
4483 * Delete from old mount point vnode list.
4484 */
4485 if (vp->v_mount == NULL) {
4486 VI_LOCK(vp);
4487 } else {
4488 delmntque(vp);
4489 ASSERT_VI_LOCKED(vp, "vgonel 2");
4490 }
4491 /*
4492 * Done with purge, reset to the standard lock and invalidate
4493 * the vnode.
4494 */
4495 vp->v_vnlock = &vp->v_lock;
4496 vp->v_op = &dead_vnodeops;
4497 vp->v_type = VBAD;
4498 vn_set_state(vp, VSTATE_DEAD);
4499 }
4500
4501 /*
4502 * Print out a description of a vnode.
4503 */
4504 static const char *const vtypename[] = {
4505 [VNON] = "VNON",
4506 [VREG] = "VREG",
4507 [VDIR] = "VDIR",
4508 [VBLK] = "VBLK",
4509 [VCHR] = "VCHR",
4510 [VLNK] = "VLNK",
4511 [VSOCK] = "VSOCK",
4512 [VFIFO] = "VFIFO",
4513 [VBAD] = "VBAD",
4514 [VMARKER] = "VMARKER",
4515 };
4516 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4517 "vnode type name not added to vtypename");
4518
4519 static const char *const vstatename[] = {
4520 [VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4521 [VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4522 [VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4523 [VSTATE_DEAD] = "VSTATE_DEAD",
4524 };
4525 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4526 "vnode state name not added to vstatename");
4527
4528 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4529 "new hold count flag not added to vn_printf");
4530
4531 void
vn_printf(struct vnode * vp,const char * fmt,...)4532 vn_printf(struct vnode *vp, const char *fmt, ...)
4533 {
4534 va_list ap;
4535 char buf[256], buf2[16];
4536 u_long flags;
4537 u_int holdcnt;
4538 short irflag;
4539
4540 va_start(ap, fmt);
4541 vprintf(fmt, ap);
4542 va_end(ap);
4543 printf("%p: ", (void *)vp);
4544 printf("type %s state %s op %p\n", vtypename[vp->v_type],
4545 vstatename[vp->v_state], vp->v_op);
4546 holdcnt = atomic_load_int(&vp->v_holdcnt);
4547 printf(" usecount %d, writecount %d, refcount %d seqc users %d",
4548 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4549 vp->v_seqc_users);
4550 switch (vp->v_type) {
4551 case VDIR:
4552 printf(" mountedhere %p\n", vp->v_mountedhere);
4553 break;
4554 case VCHR:
4555 printf(" rdev %p\n", vp->v_rdev);
4556 break;
4557 case VSOCK:
4558 printf(" socket %p\n", vp->v_unpcb);
4559 break;
4560 case VFIFO:
4561 printf(" fifoinfo %p\n", vp->v_fifoinfo);
4562 break;
4563 default:
4564 printf("\n");
4565 break;
4566 }
4567 buf[0] = '\0';
4568 buf[1] = '\0';
4569 if (holdcnt & VHOLD_NO_SMR)
4570 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4571 printf(" hold count flags (%s)\n", buf + 1);
4572
4573 buf[0] = '\0';
4574 buf[1] = '\0';
4575 irflag = vn_irflag_read(vp);
4576 if (irflag & VIRF_DOOMED)
4577 strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4578 if (irflag & VIRF_PGREAD)
4579 strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4580 if (irflag & VIRF_MOUNTPOINT)
4581 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4582 if (irflag & VIRF_TEXT_REF)
4583 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4584 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4585 if (flags != 0) {
4586 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4587 strlcat(buf, buf2, sizeof(buf));
4588 }
4589 if (vp->v_vflag & VV_ROOT)
4590 strlcat(buf, "|VV_ROOT", sizeof(buf));
4591 if (vp->v_vflag & VV_ISTTY)
4592 strlcat(buf, "|VV_ISTTY", sizeof(buf));
4593 if (vp->v_vflag & VV_NOSYNC)
4594 strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4595 if (vp->v_vflag & VV_ETERNALDEV)
4596 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4597 if (vp->v_vflag & VV_CACHEDLABEL)
4598 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4599 if (vp->v_vflag & VV_VMSIZEVNLOCK)
4600 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4601 if (vp->v_vflag & VV_COPYONWRITE)
4602 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4603 if (vp->v_vflag & VV_SYSTEM)
4604 strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4605 if (vp->v_vflag & VV_PROCDEP)
4606 strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4607 if (vp->v_vflag & VV_DELETED)
4608 strlcat(buf, "|VV_DELETED", sizeof(buf));
4609 if (vp->v_vflag & VV_MD)
4610 strlcat(buf, "|VV_MD", sizeof(buf));
4611 if (vp->v_vflag & VV_FORCEINSMQ)
4612 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4613 if (vp->v_vflag & VV_READLINK)
4614 strlcat(buf, "|VV_READLINK", sizeof(buf));
4615 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4616 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4617 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4618 if (flags != 0) {
4619 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4620 strlcat(buf, buf2, sizeof(buf));
4621 }
4622 if (vp->v_iflag & VI_MOUNT)
4623 strlcat(buf, "|VI_MOUNT", sizeof(buf));
4624 if (vp->v_iflag & VI_DOINGINACT)
4625 strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4626 if (vp->v_iflag & VI_OWEINACT)
4627 strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4628 if (vp->v_iflag & VI_DEFINACT)
4629 strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4630 if (vp->v_iflag & VI_FOPENING)
4631 strlcat(buf, "|VI_FOPENING", sizeof(buf));
4632 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4633 VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4634 if (flags != 0) {
4635 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4636 strlcat(buf, buf2, sizeof(buf));
4637 }
4638 if (vp->v_mflag & VMP_LAZYLIST)
4639 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4640 flags = vp->v_mflag & ~(VMP_LAZYLIST);
4641 if (flags != 0) {
4642 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4643 strlcat(buf, buf2, sizeof(buf));
4644 }
4645 printf(" flags (%s)", buf + 1);
4646 if (mtx_owned(VI_MTX(vp)))
4647 printf(" VI_LOCKed");
4648 printf("\n");
4649 if (vp->v_object != NULL)
4650 printf(" v_object %p ref %d pages %d "
4651 "cleanbuf %d dirtybuf %d\n",
4652 vp->v_object, vp->v_object->ref_count,
4653 vp->v_object->resident_page_count,
4654 vp->v_bufobj.bo_clean.bv_cnt,
4655 vp->v_bufobj.bo_dirty.bv_cnt);
4656 printf(" ");
4657 lockmgr_printinfo(vp->v_vnlock);
4658 if (vp->v_data != NULL)
4659 VOP_PRINT(vp);
4660 }
4661
4662 #ifdef DDB
4663 /*
4664 * List all of the locked vnodes in the system.
4665 * Called when debugging the kernel.
4666 */
DB_SHOW_COMMAND_FLAGS(lockedvnods,lockedvnodes,DB_CMD_MEMSAFE)4667 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4668 {
4669 struct mount *mp;
4670 struct vnode *vp;
4671
4672 /*
4673 * Note: because this is DDB, we can't obey the locking semantics
4674 * for these structures, which means we could catch an inconsistent
4675 * state and dereference a nasty pointer. Not much to be done
4676 * about that.
4677 */
4678 db_printf("Locked vnodes\n");
4679 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4680 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4681 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4682 vn_printf(vp, "vnode ");
4683 }
4684 }
4685 }
4686
4687 /*
4688 * Show details about the given vnode.
4689 */
DB_SHOW_COMMAND(vnode,db_show_vnode)4690 DB_SHOW_COMMAND(vnode, db_show_vnode)
4691 {
4692 struct vnode *vp;
4693
4694 if (!have_addr)
4695 return;
4696 vp = (struct vnode *)addr;
4697 vn_printf(vp, "vnode ");
4698 }
4699
4700 /*
4701 * Show details about the given mount point.
4702 */
DB_SHOW_COMMAND(mount,db_show_mount)4703 DB_SHOW_COMMAND(mount, db_show_mount)
4704 {
4705 struct mount *mp;
4706 struct vfsopt *opt;
4707 struct statfs *sp;
4708 struct vnode *vp;
4709 char buf[512];
4710 uint64_t mflags;
4711 u_int flags;
4712
4713 if (!have_addr) {
4714 /* No address given, print short info about all mount points. */
4715 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4716 db_printf("%p %s on %s (%s)\n", mp,
4717 mp->mnt_stat.f_mntfromname,
4718 mp->mnt_stat.f_mntonname,
4719 mp->mnt_stat.f_fstypename);
4720 if (db_pager_quit)
4721 break;
4722 }
4723 db_printf("\nMore info: show mount <addr>\n");
4724 return;
4725 }
4726
4727 mp = (struct mount *)addr;
4728 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4729 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4730
4731 buf[0] = '\0';
4732 mflags = mp->mnt_flag;
4733 #define MNT_FLAG(flag) do { \
4734 if (mflags & (flag)) { \
4735 if (buf[0] != '\0') \
4736 strlcat(buf, ", ", sizeof(buf)); \
4737 strlcat(buf, (#flag) + 4, sizeof(buf)); \
4738 mflags &= ~(flag); \
4739 } \
4740 } while (0)
4741 MNT_FLAG(MNT_RDONLY);
4742 MNT_FLAG(MNT_SYNCHRONOUS);
4743 MNT_FLAG(MNT_NOEXEC);
4744 MNT_FLAG(MNT_NOSUID);
4745 MNT_FLAG(MNT_NFS4ACLS);
4746 MNT_FLAG(MNT_UNION);
4747 MNT_FLAG(MNT_ASYNC);
4748 MNT_FLAG(MNT_SUIDDIR);
4749 MNT_FLAG(MNT_SOFTDEP);
4750 MNT_FLAG(MNT_NOSYMFOLLOW);
4751 MNT_FLAG(MNT_GJOURNAL);
4752 MNT_FLAG(MNT_MULTILABEL);
4753 MNT_FLAG(MNT_ACLS);
4754 MNT_FLAG(MNT_NOATIME);
4755 MNT_FLAG(MNT_NOCLUSTERR);
4756 MNT_FLAG(MNT_NOCLUSTERW);
4757 MNT_FLAG(MNT_SUJ);
4758 MNT_FLAG(MNT_EXRDONLY);
4759 MNT_FLAG(MNT_EXPORTED);
4760 MNT_FLAG(MNT_DEFEXPORTED);
4761 MNT_FLAG(MNT_EXPORTANON);
4762 MNT_FLAG(MNT_EXKERB);
4763 MNT_FLAG(MNT_EXPUBLIC);
4764 MNT_FLAG(MNT_LOCAL);
4765 MNT_FLAG(MNT_QUOTA);
4766 MNT_FLAG(MNT_ROOTFS);
4767 MNT_FLAG(MNT_USER);
4768 MNT_FLAG(MNT_IGNORE);
4769 MNT_FLAG(MNT_UPDATE);
4770 MNT_FLAG(MNT_DELEXPORT);
4771 MNT_FLAG(MNT_RELOAD);
4772 MNT_FLAG(MNT_FORCE);
4773 MNT_FLAG(MNT_SNAPSHOT);
4774 MNT_FLAG(MNT_BYFSID);
4775 #undef MNT_FLAG
4776 if (mflags != 0) {
4777 if (buf[0] != '\0')
4778 strlcat(buf, ", ", sizeof(buf));
4779 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4780 "0x%016jx", mflags);
4781 }
4782 db_printf(" mnt_flag = %s\n", buf);
4783
4784 buf[0] = '\0';
4785 flags = mp->mnt_kern_flag;
4786 #define MNT_KERN_FLAG(flag) do { \
4787 if (flags & (flag)) { \
4788 if (buf[0] != '\0') \
4789 strlcat(buf, ", ", sizeof(buf)); \
4790 strlcat(buf, (#flag) + 5, sizeof(buf)); \
4791 flags &= ~(flag); \
4792 } \
4793 } while (0)
4794 MNT_KERN_FLAG(MNTK_UNMOUNTF);
4795 MNT_KERN_FLAG(MNTK_ASYNC);
4796 MNT_KERN_FLAG(MNTK_SOFTDEP);
4797 MNT_KERN_FLAG(MNTK_NOMSYNC);
4798 MNT_KERN_FLAG(MNTK_DRAINING);
4799 MNT_KERN_FLAG(MNTK_REFEXPIRE);
4800 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4801 MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4802 MNT_KERN_FLAG(MNTK_NO_IOPF);
4803 MNT_KERN_FLAG(MNTK_RECURSE);
4804 MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4805 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4806 MNT_KERN_FLAG(MNTK_USES_BCACHE);
4807 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4808 MNT_KERN_FLAG(MNTK_FPLOOKUP);
4809 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4810 MNT_KERN_FLAG(MNTK_NOASYNC);
4811 MNT_KERN_FLAG(MNTK_UNMOUNT);
4812 MNT_KERN_FLAG(MNTK_MWAIT);
4813 MNT_KERN_FLAG(MNTK_SUSPEND);
4814 MNT_KERN_FLAG(MNTK_SUSPEND2);
4815 MNT_KERN_FLAG(MNTK_SUSPENDED);
4816 MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4817 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4818 #undef MNT_KERN_FLAG
4819 if (flags != 0) {
4820 if (buf[0] != '\0')
4821 strlcat(buf, ", ", sizeof(buf));
4822 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4823 "0x%08x", flags);
4824 }
4825 db_printf(" mnt_kern_flag = %s\n", buf);
4826
4827 db_printf(" mnt_opt = ");
4828 opt = TAILQ_FIRST(mp->mnt_opt);
4829 if (opt != NULL) {
4830 db_printf("%s", opt->name);
4831 opt = TAILQ_NEXT(opt, link);
4832 while (opt != NULL) {
4833 db_printf(", %s", opt->name);
4834 opt = TAILQ_NEXT(opt, link);
4835 }
4836 }
4837 db_printf("\n");
4838
4839 sp = &mp->mnt_stat;
4840 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx "
4841 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4842 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4843 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4844 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4845 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4846 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4847 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4848 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4849 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4850 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4851 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4852
4853 db_printf(" mnt_cred = { uid=%u ruid=%u",
4854 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4855 if (jailed(mp->mnt_cred))
4856 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4857 db_printf(" }\n");
4858 db_printf(" mnt_ref = %d (with %d in the struct)\n",
4859 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4860 db_printf(" mnt_gen = %d\n", mp->mnt_gen);
4861 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4862 db_printf(" mnt_lazyvnodelistsize = %d\n",
4863 mp->mnt_lazyvnodelistsize);
4864 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n",
4865 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4866 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4867 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed);
4868 db_printf(" mnt_lockref = %d (with %d in the struct)\n",
4869 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4870 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4871 db_printf(" mnt_secondary_accwrites = %d\n",
4872 mp->mnt_secondary_accwrites);
4873 db_printf(" mnt_gjprovider = %s\n",
4874 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4875 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4876
4877 db_printf("\n\nList of active vnodes\n");
4878 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4879 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4880 vn_printf(vp, "vnode ");
4881 if (db_pager_quit)
4882 break;
4883 }
4884 }
4885 db_printf("\n\nList of inactive vnodes\n");
4886 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4887 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4888 vn_printf(vp, "vnode ");
4889 if (db_pager_quit)
4890 break;
4891 }
4892 }
4893 }
4894 #endif /* DDB */
4895
4896 /*
4897 * Fill in a struct xvfsconf based on a struct vfsconf.
4898 */
4899 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4900 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4901 {
4902 struct xvfsconf xvfsp;
4903
4904 bzero(&xvfsp, sizeof(xvfsp));
4905 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4906 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4907 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4908 xvfsp.vfc_flags = vfsp->vfc_flags;
4909 /*
4910 * These are unused in userland, we keep them
4911 * to not break binary compatibility.
4912 */
4913 xvfsp.vfc_vfsops = NULL;
4914 xvfsp.vfc_next = NULL;
4915 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4916 }
4917
4918 #ifdef COMPAT_FREEBSD32
4919 struct xvfsconf32 {
4920 uint32_t vfc_vfsops;
4921 char vfc_name[MFSNAMELEN];
4922 int32_t vfc_typenum;
4923 int32_t vfc_refcount;
4924 int32_t vfc_flags;
4925 uint32_t vfc_next;
4926 };
4927
4928 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4929 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4930 {
4931 struct xvfsconf32 xvfsp;
4932
4933 bzero(&xvfsp, sizeof(xvfsp));
4934 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4935 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4936 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4937 xvfsp.vfc_flags = vfsp->vfc_flags;
4938 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4939 }
4940 #endif
4941
4942 /*
4943 * Top level filesystem related information gathering.
4944 */
4945 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4946 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4947 {
4948 struct vfsconf *vfsp;
4949 int error;
4950
4951 error = 0;
4952 vfsconf_slock();
4953 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4954 #ifdef COMPAT_FREEBSD32
4955 if (req->flags & SCTL_MASK32)
4956 error = vfsconf2x32(req, vfsp);
4957 else
4958 #endif
4959 error = vfsconf2x(req, vfsp);
4960 if (error)
4961 break;
4962 }
4963 vfsconf_sunlock();
4964 return (error);
4965 }
4966
4967 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4968 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4969 "S,xvfsconf", "List of all configured filesystems");
4970
4971 #ifndef BURN_BRIDGES
4972 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4973
4974 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)4975 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4976 {
4977 int *name = (int *)arg1 - 1; /* XXX */
4978 u_int namelen = arg2 + 1; /* XXX */
4979 struct vfsconf *vfsp;
4980
4981 log(LOG_WARNING, "userland calling deprecated sysctl, "
4982 "please rebuild world\n");
4983
4984 #if 1 || defined(COMPAT_PRELITE2)
4985 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4986 if (namelen == 1)
4987 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4988 #endif
4989
4990 switch (name[1]) {
4991 case VFS_MAXTYPENUM:
4992 if (namelen != 2)
4993 return (ENOTDIR);
4994 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4995 case VFS_CONF:
4996 if (namelen != 3)
4997 return (ENOTDIR); /* overloaded */
4998 vfsconf_slock();
4999 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5000 if (vfsp->vfc_typenum == name[2])
5001 break;
5002 }
5003 vfsconf_sunlock();
5004 if (vfsp == NULL)
5005 return (EOPNOTSUPP);
5006 #ifdef COMPAT_FREEBSD32
5007 if (req->flags & SCTL_MASK32)
5008 return (vfsconf2x32(req, vfsp));
5009 else
5010 #endif
5011 return (vfsconf2x(req, vfsp));
5012 }
5013 return (EOPNOTSUPP);
5014 }
5015
5016 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5017 CTLFLAG_MPSAFE, vfs_sysctl,
5018 "Generic filesystem");
5019
5020 #if 1 || defined(COMPAT_PRELITE2)
5021
5022 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)5023 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5024 {
5025 int error;
5026 struct vfsconf *vfsp;
5027 struct ovfsconf ovfs;
5028
5029 vfsconf_slock();
5030 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5031 bzero(&ovfs, sizeof(ovfs));
5032 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
5033 strcpy(ovfs.vfc_name, vfsp->vfc_name);
5034 ovfs.vfc_index = vfsp->vfc_typenum;
5035 ovfs.vfc_refcount = vfsp->vfc_refcount;
5036 ovfs.vfc_flags = vfsp->vfc_flags;
5037 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5038 if (error != 0) {
5039 vfsconf_sunlock();
5040 return (error);
5041 }
5042 }
5043 vfsconf_sunlock();
5044 return (0);
5045 }
5046
5047 #endif /* 1 || COMPAT_PRELITE2 */
5048 #endif /* !BURN_BRIDGES */
5049
5050 static void
unmount_or_warn(struct mount * mp)5051 unmount_or_warn(struct mount *mp)
5052 {
5053 int error;
5054
5055 error = dounmount(mp, MNT_FORCE, curthread);
5056 if (error != 0) {
5057 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5058 if (error == EBUSY)
5059 printf("BUSY)\n");
5060 else
5061 printf("%d)\n", error);
5062 }
5063 }
5064
5065 /*
5066 * Unmount all filesystems. The list is traversed in reverse order
5067 * of mounting to avoid dependencies.
5068 */
5069 void
vfs_unmountall(void)5070 vfs_unmountall(void)
5071 {
5072 struct mount *mp, *tmp;
5073
5074 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5075
5076 /*
5077 * Since this only runs when rebooting, it is not interlocked.
5078 */
5079 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5080 vfs_ref(mp);
5081
5082 /*
5083 * Forcibly unmounting "/dev" before "/" would prevent clean
5084 * unmount of the latter.
5085 */
5086 if (mp == rootdevmp)
5087 continue;
5088
5089 unmount_or_warn(mp);
5090 }
5091
5092 if (rootdevmp != NULL)
5093 unmount_or_warn(rootdevmp);
5094 }
5095
5096 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)5097 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5098 {
5099
5100 ASSERT_VI_LOCKED(vp, __func__);
5101 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5102 if ((vp->v_iflag & VI_OWEINACT) == 0) {
5103 vdropl(vp);
5104 return;
5105 }
5106 if (vn_lock(vp, lkflags) == 0) {
5107 VI_LOCK(vp);
5108 vinactive(vp);
5109 VOP_UNLOCK(vp);
5110 vdropl(vp);
5111 return;
5112 }
5113 vdefer_inactive_unlocked(vp);
5114 }
5115
5116 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)5117 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5118 {
5119
5120 return (vp->v_iflag & VI_DEFINACT);
5121 }
5122
5123 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)5124 vfs_periodic_inactive(struct mount *mp, int flags)
5125 {
5126 struct vnode *vp, *mvp;
5127 int lkflags;
5128
5129 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5130 if (flags != MNT_WAIT)
5131 lkflags |= LK_NOWAIT;
5132
5133 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5134 if ((vp->v_iflag & VI_DEFINACT) == 0) {
5135 VI_UNLOCK(vp);
5136 continue;
5137 }
5138 vp->v_iflag &= ~VI_DEFINACT;
5139 vfs_deferred_inactive(vp, lkflags);
5140 }
5141 }
5142
5143 static inline bool
vfs_want_msync(struct vnode * vp)5144 vfs_want_msync(struct vnode *vp)
5145 {
5146 struct vm_object *obj;
5147
5148 /*
5149 * This test may be performed without any locks held.
5150 * We rely on vm_object's type stability.
5151 */
5152 if (vp->v_vflag & VV_NOSYNC)
5153 return (false);
5154 obj = vp->v_object;
5155 return (obj != NULL && vm_object_mightbedirty(obj));
5156 }
5157
5158 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)5159 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5160 {
5161
5162 if (vp->v_vflag & VV_NOSYNC)
5163 return (false);
5164 if (vp->v_iflag & VI_DEFINACT)
5165 return (true);
5166 return (vfs_want_msync(vp));
5167 }
5168
5169 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)5170 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5171 {
5172 struct vnode *vp, *mvp;
5173 int lkflags;
5174 bool seen_defer;
5175
5176 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5177 if (flags != MNT_WAIT)
5178 lkflags |= LK_NOWAIT;
5179
5180 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5181 seen_defer = false;
5182 if (vp->v_iflag & VI_DEFINACT) {
5183 vp->v_iflag &= ~VI_DEFINACT;
5184 seen_defer = true;
5185 }
5186 if (!vfs_want_msync(vp)) {
5187 if (seen_defer)
5188 vfs_deferred_inactive(vp, lkflags);
5189 else
5190 VI_UNLOCK(vp);
5191 continue;
5192 }
5193 if (vget(vp, lkflags) == 0) {
5194 if ((vp->v_vflag & VV_NOSYNC) == 0) {
5195 if (flags == MNT_WAIT)
5196 vnode_pager_clean_sync(vp);
5197 else
5198 vnode_pager_clean_async(vp);
5199 }
5200 vput(vp);
5201 if (seen_defer)
5202 vdrop(vp);
5203 } else {
5204 if (seen_defer)
5205 vdefer_inactive_unlocked(vp);
5206 }
5207 }
5208 }
5209
5210 void
vfs_periodic(struct mount * mp,int flags)5211 vfs_periodic(struct mount *mp, int flags)
5212 {
5213
5214 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5215
5216 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5217 vfs_periodic_inactive(mp, flags);
5218 else
5219 vfs_periodic_msync_inactive(mp, flags);
5220 }
5221
5222 static void
destroy_vpollinfo_free(struct vpollinfo * vi)5223 destroy_vpollinfo_free(struct vpollinfo *vi)
5224 {
5225
5226 knlist_destroy(&vi->vpi_selinfo.si_note);
5227 mtx_destroy(&vi->vpi_lock);
5228 free(vi, M_VNODEPOLL);
5229 }
5230
5231 static void
destroy_vpollinfo(struct vpollinfo * vi)5232 destroy_vpollinfo(struct vpollinfo *vi)
5233 {
5234
5235 knlist_clear(&vi->vpi_selinfo.si_note, 1);
5236 seldrain(&vi->vpi_selinfo);
5237 destroy_vpollinfo_free(vi);
5238 }
5239
5240 /*
5241 * Initialize per-vnode helper structure to hold poll-related state.
5242 */
5243 void
v_addpollinfo(struct vnode * vp)5244 v_addpollinfo(struct vnode *vp)
5245 {
5246 struct vpollinfo *vi;
5247
5248 if (vp->v_pollinfo != NULL)
5249 return;
5250 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5251 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5252 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5253 vfs_knlunlock, vfs_knl_assert_lock);
5254 VI_LOCK(vp);
5255 if (vp->v_pollinfo != NULL) {
5256 VI_UNLOCK(vp);
5257 destroy_vpollinfo_free(vi);
5258 return;
5259 }
5260 vp->v_pollinfo = vi;
5261 VI_UNLOCK(vp);
5262 }
5263
5264 /*
5265 * Record a process's interest in events which might happen to
5266 * a vnode. Because poll uses the historic select-style interface
5267 * internally, this routine serves as both the ``check for any
5268 * pending events'' and the ``record my interest in future events''
5269 * functions. (These are done together, while the lock is held,
5270 * to avoid race conditions.)
5271 */
5272 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)5273 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5274 {
5275
5276 v_addpollinfo(vp);
5277 mtx_lock(&vp->v_pollinfo->vpi_lock);
5278 if (vp->v_pollinfo->vpi_revents & events) {
5279 /*
5280 * This leaves events we are not interested
5281 * in available for the other process which
5282 * which presumably had requested them
5283 * (otherwise they would never have been
5284 * recorded).
5285 */
5286 events &= vp->v_pollinfo->vpi_revents;
5287 vp->v_pollinfo->vpi_revents &= ~events;
5288
5289 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5290 return (events);
5291 }
5292 vp->v_pollinfo->vpi_events |= events;
5293 selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5294 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5295 return (0);
5296 }
5297
5298 /*
5299 * Routine to create and manage a filesystem syncer vnode.
5300 */
5301 #define sync_close ((int (*)(struct vop_close_args *))nullop)
5302 static int sync_fsync(struct vop_fsync_args *);
5303 static int sync_inactive(struct vop_inactive_args *);
5304 static int sync_reclaim(struct vop_reclaim_args *);
5305
5306 static struct vop_vector sync_vnodeops = {
5307 .vop_bypass = VOP_EOPNOTSUPP,
5308 .vop_close = sync_close,
5309 .vop_fsync = sync_fsync,
5310 .vop_getwritemount = vop_stdgetwritemount,
5311 .vop_inactive = sync_inactive,
5312 .vop_need_inactive = vop_stdneed_inactive,
5313 .vop_reclaim = sync_reclaim,
5314 .vop_lock1 = vop_stdlock,
5315 .vop_unlock = vop_stdunlock,
5316 .vop_islocked = vop_stdislocked,
5317 .vop_fplookup_vexec = VOP_EAGAIN,
5318 .vop_fplookup_symlink = VOP_EAGAIN,
5319 };
5320 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5321
5322 /*
5323 * Create a new filesystem syncer vnode for the specified mount point.
5324 */
5325 void
vfs_allocate_syncvnode(struct mount * mp)5326 vfs_allocate_syncvnode(struct mount *mp)
5327 {
5328 struct vnode *vp;
5329 struct bufobj *bo;
5330 static long start, incr, next;
5331 int error;
5332
5333 /* Allocate a new vnode */
5334 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5335 if (error != 0)
5336 panic("vfs_allocate_syncvnode: getnewvnode() failed");
5337 vp->v_type = VNON;
5338 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5339 vp->v_vflag |= VV_FORCEINSMQ;
5340 error = insmntque1(vp, mp);
5341 if (error != 0)
5342 panic("vfs_allocate_syncvnode: insmntque() failed");
5343 vp->v_vflag &= ~VV_FORCEINSMQ;
5344 vn_set_state(vp, VSTATE_CONSTRUCTED);
5345 VOP_UNLOCK(vp);
5346 /*
5347 * Place the vnode onto the syncer worklist. We attempt to
5348 * scatter them about on the list so that they will go off
5349 * at evenly distributed times even if all the filesystems
5350 * are mounted at once.
5351 */
5352 next += incr;
5353 if (next == 0 || next > syncer_maxdelay) {
5354 start /= 2;
5355 incr /= 2;
5356 if (start == 0) {
5357 start = syncer_maxdelay / 2;
5358 incr = syncer_maxdelay;
5359 }
5360 next = start;
5361 }
5362 bo = &vp->v_bufobj;
5363 BO_LOCK(bo);
5364 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5365 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5366 mtx_lock(&sync_mtx);
5367 sync_vnode_count++;
5368 if (mp->mnt_syncer == NULL) {
5369 mp->mnt_syncer = vp;
5370 vp = NULL;
5371 }
5372 mtx_unlock(&sync_mtx);
5373 BO_UNLOCK(bo);
5374 if (vp != NULL) {
5375 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5376 vgone(vp);
5377 vput(vp);
5378 }
5379 }
5380
5381 void
vfs_deallocate_syncvnode(struct mount * mp)5382 vfs_deallocate_syncvnode(struct mount *mp)
5383 {
5384 struct vnode *vp;
5385
5386 mtx_lock(&sync_mtx);
5387 vp = mp->mnt_syncer;
5388 if (vp != NULL)
5389 mp->mnt_syncer = NULL;
5390 mtx_unlock(&sync_mtx);
5391 if (vp != NULL)
5392 vrele(vp);
5393 }
5394
5395 /*
5396 * Do a lazy sync of the filesystem.
5397 */
5398 static int
sync_fsync(struct vop_fsync_args * ap)5399 sync_fsync(struct vop_fsync_args *ap)
5400 {
5401 struct vnode *syncvp = ap->a_vp;
5402 struct mount *mp = syncvp->v_mount;
5403 int error, save;
5404 struct bufobj *bo;
5405
5406 /*
5407 * We only need to do something if this is a lazy evaluation.
5408 */
5409 if (ap->a_waitfor != MNT_LAZY)
5410 return (0);
5411
5412 /*
5413 * Move ourselves to the back of the sync list.
5414 */
5415 bo = &syncvp->v_bufobj;
5416 BO_LOCK(bo);
5417 vn_syncer_add_to_worklist(bo, syncdelay);
5418 BO_UNLOCK(bo);
5419
5420 /*
5421 * Walk the list of vnodes pushing all that are dirty and
5422 * not already on the sync list.
5423 */
5424 if (vfs_busy(mp, MBF_NOWAIT) != 0)
5425 return (0);
5426 VOP_UNLOCK(syncvp);
5427 save = curthread_pflags_set(TDP_SYNCIO);
5428 /*
5429 * The filesystem at hand may be idle with free vnodes stored in the
5430 * batch. Return them instead of letting them stay there indefinitely.
5431 */
5432 vfs_periodic(mp, MNT_NOWAIT);
5433 error = VFS_SYNC(mp, MNT_LAZY);
5434 curthread_pflags_restore(save);
5435 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5436 vfs_unbusy(mp);
5437 return (error);
5438 }
5439
5440 /*
5441 * The syncer vnode is no referenced.
5442 */
5443 static int
sync_inactive(struct vop_inactive_args * ap)5444 sync_inactive(struct vop_inactive_args *ap)
5445 {
5446
5447 vgone(ap->a_vp);
5448 return (0);
5449 }
5450
5451 /*
5452 * The syncer vnode is no longer needed and is being decommissioned.
5453 *
5454 * Modifications to the worklist must be protected by sync_mtx.
5455 */
5456 static int
sync_reclaim(struct vop_reclaim_args * ap)5457 sync_reclaim(struct vop_reclaim_args *ap)
5458 {
5459 struct vnode *vp = ap->a_vp;
5460 struct bufobj *bo;
5461
5462 bo = &vp->v_bufobj;
5463 BO_LOCK(bo);
5464 mtx_lock(&sync_mtx);
5465 if (vp->v_mount->mnt_syncer == vp)
5466 vp->v_mount->mnt_syncer = NULL;
5467 if (bo->bo_flag & BO_ONWORKLST) {
5468 LIST_REMOVE(bo, bo_synclist);
5469 syncer_worklist_len--;
5470 sync_vnode_count--;
5471 bo->bo_flag &= ~BO_ONWORKLST;
5472 }
5473 mtx_unlock(&sync_mtx);
5474 BO_UNLOCK(bo);
5475
5476 return (0);
5477 }
5478
5479 int
vn_need_pageq_flush(struct vnode * vp)5480 vn_need_pageq_flush(struct vnode *vp)
5481 {
5482 struct vm_object *obj;
5483
5484 obj = vp->v_object;
5485 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5486 vm_object_mightbedirty(obj));
5487 }
5488
5489 /*
5490 * Check if vnode represents a disk device
5491 */
5492 bool
vn_isdisk_error(struct vnode * vp,int * errp)5493 vn_isdisk_error(struct vnode *vp, int *errp)
5494 {
5495 int error;
5496
5497 if (vp->v_type != VCHR) {
5498 error = ENOTBLK;
5499 goto out;
5500 }
5501 error = 0;
5502 dev_lock();
5503 if (vp->v_rdev == NULL)
5504 error = ENXIO;
5505 else if (vp->v_rdev->si_devsw == NULL)
5506 error = ENXIO;
5507 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5508 error = ENOTBLK;
5509 dev_unlock();
5510 out:
5511 *errp = error;
5512 return (error == 0);
5513 }
5514
5515 bool
vn_isdisk(struct vnode * vp)5516 vn_isdisk(struct vnode *vp)
5517 {
5518 int error;
5519
5520 return (vn_isdisk_error(vp, &error));
5521 }
5522
5523 /*
5524 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5525 * the comment above cache_fplookup for details.
5526 */
5527 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5528 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5529 {
5530 int error;
5531
5532 VFS_SMR_ASSERT_ENTERED();
5533
5534 /* Check the owner. */
5535 if (cred->cr_uid == file_uid) {
5536 if (file_mode & S_IXUSR)
5537 return (0);
5538 goto out_error;
5539 }
5540
5541 /* Otherwise, check the groups (first match) */
5542 if (groupmember(file_gid, cred)) {
5543 if (file_mode & S_IXGRP)
5544 return (0);
5545 goto out_error;
5546 }
5547
5548 /* Otherwise, check everyone else. */
5549 if (file_mode & S_IXOTH)
5550 return (0);
5551 out_error:
5552 /*
5553 * Permission check failed, but it is possible denial will get overwritten
5554 * (e.g., when root is traversing through a 700 directory owned by someone
5555 * else).
5556 *
5557 * vaccess() calls priv_check_cred which in turn can descent into MAC
5558 * modules overriding this result. It's quite unclear what semantics
5559 * are allowed for them to operate, thus for safety we don't call them
5560 * from within the SMR section. This also means if any such modules
5561 * are present, we have to let the regular lookup decide.
5562 */
5563 error = priv_check_cred_vfs_lookup_nomac(cred);
5564 switch (error) {
5565 case 0:
5566 return (0);
5567 case EAGAIN:
5568 /*
5569 * MAC modules present.
5570 */
5571 return (EAGAIN);
5572 case EPERM:
5573 return (EACCES);
5574 default:
5575 return (error);
5576 }
5577 }
5578
5579 /*
5580 * Common filesystem object access control check routine. Accepts a
5581 * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5582 * Returns 0 on success, or an errno on failure.
5583 */
5584 int
vaccess(__enum_uint8 (vtype)type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5585 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5586 accmode_t accmode, struct ucred *cred)
5587 {
5588 accmode_t dac_granted;
5589 accmode_t priv_granted;
5590
5591 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5592 ("invalid bit in accmode"));
5593 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5594 ("VAPPEND without VWRITE"));
5595
5596 /*
5597 * Look for a normal, non-privileged way to access the file/directory
5598 * as requested. If it exists, go with that.
5599 */
5600
5601 dac_granted = 0;
5602
5603 /* Check the owner. */
5604 if (cred->cr_uid == file_uid) {
5605 dac_granted |= VADMIN;
5606 if (file_mode & S_IXUSR)
5607 dac_granted |= VEXEC;
5608 if (file_mode & S_IRUSR)
5609 dac_granted |= VREAD;
5610 if (file_mode & S_IWUSR)
5611 dac_granted |= (VWRITE | VAPPEND);
5612
5613 if ((accmode & dac_granted) == accmode)
5614 return (0);
5615
5616 goto privcheck;
5617 }
5618
5619 /* Otherwise, check the groups (first match) */
5620 if (groupmember(file_gid, cred)) {
5621 if (file_mode & S_IXGRP)
5622 dac_granted |= VEXEC;
5623 if (file_mode & S_IRGRP)
5624 dac_granted |= VREAD;
5625 if (file_mode & S_IWGRP)
5626 dac_granted |= (VWRITE | VAPPEND);
5627
5628 if ((accmode & dac_granted) == accmode)
5629 return (0);
5630
5631 goto privcheck;
5632 }
5633
5634 /* Otherwise, check everyone else. */
5635 if (file_mode & S_IXOTH)
5636 dac_granted |= VEXEC;
5637 if (file_mode & S_IROTH)
5638 dac_granted |= VREAD;
5639 if (file_mode & S_IWOTH)
5640 dac_granted |= (VWRITE | VAPPEND);
5641 if ((accmode & dac_granted) == accmode)
5642 return (0);
5643
5644 privcheck:
5645 /*
5646 * Build a privilege mask to determine if the set of privileges
5647 * satisfies the requirements when combined with the granted mask
5648 * from above. For each privilege, if the privilege is required,
5649 * bitwise or the request type onto the priv_granted mask.
5650 */
5651 priv_granted = 0;
5652
5653 if (type == VDIR) {
5654 /*
5655 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5656 * requests, instead of PRIV_VFS_EXEC.
5657 */
5658 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5659 !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5660 priv_granted |= VEXEC;
5661 } else {
5662 /*
5663 * Ensure that at least one execute bit is on. Otherwise,
5664 * a privileged user will always succeed, and we don't want
5665 * this to happen unless the file really is executable.
5666 */
5667 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5668 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5669 !priv_check_cred(cred, PRIV_VFS_EXEC))
5670 priv_granted |= VEXEC;
5671 }
5672
5673 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5674 !priv_check_cred(cred, PRIV_VFS_READ))
5675 priv_granted |= VREAD;
5676
5677 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5678 !priv_check_cred(cred, PRIV_VFS_WRITE))
5679 priv_granted |= (VWRITE | VAPPEND);
5680
5681 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5682 !priv_check_cred(cred, PRIV_VFS_ADMIN))
5683 priv_granted |= VADMIN;
5684
5685 if ((accmode & (priv_granted | dac_granted)) == accmode) {
5686 return (0);
5687 }
5688
5689 return ((accmode & VADMIN) ? EPERM : EACCES);
5690 }
5691
5692 /*
5693 * Credential check based on process requesting service, and per-attribute
5694 * permissions.
5695 */
5696 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5697 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5698 struct thread *td, accmode_t accmode)
5699 {
5700
5701 /*
5702 * Kernel-invoked always succeeds.
5703 */
5704 if (cred == NOCRED)
5705 return (0);
5706
5707 /*
5708 * Do not allow privileged processes in jail to directly manipulate
5709 * system attributes.
5710 */
5711 switch (attrnamespace) {
5712 case EXTATTR_NAMESPACE_SYSTEM:
5713 /* Potentially should be: return (EPERM); */
5714 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5715 case EXTATTR_NAMESPACE_USER:
5716 return (VOP_ACCESS(vp, accmode, cred, td));
5717 default:
5718 return (EPERM);
5719 }
5720 }
5721
5722 #ifdef DEBUG_VFS_LOCKS
5723 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */
5724 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5725 "Drop into debugger on lock violation");
5726
5727 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */
5728 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5729 0, "Check for interlock across VOPs");
5730
5731 int vfs_badlock_print = 1; /* Print lock violations. */
5732 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5733 0, "Print lock violations");
5734
5735 int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */
5736 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5737 0, "Print vnode details on lock violations");
5738
5739 #ifdef KDB
5740 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */
5741 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5742 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5743 #endif
5744
5745 static void
vfs_badlock(const char * msg,const char * str,struct vnode * vp)5746 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5747 {
5748
5749 #ifdef KDB
5750 if (vfs_badlock_backtrace)
5751 kdb_backtrace();
5752 #endif
5753 if (vfs_badlock_vnode)
5754 vn_printf(vp, "vnode ");
5755 if (vfs_badlock_print)
5756 printf("%s: %p %s\n", str, (void *)vp, msg);
5757 if (vfs_badlock_ddb)
5758 kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5759 }
5760
5761 void
assert_vi_locked(struct vnode * vp,const char * str)5762 assert_vi_locked(struct vnode *vp, const char *str)
5763 {
5764
5765 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5766 vfs_badlock("interlock is not locked but should be", str, vp);
5767 }
5768
5769 void
assert_vi_unlocked(struct vnode * vp,const char * str)5770 assert_vi_unlocked(struct vnode *vp, const char *str)
5771 {
5772
5773 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5774 vfs_badlock("interlock is locked but should not be", str, vp);
5775 }
5776
5777 void
assert_vop_locked(struct vnode * vp,const char * str)5778 assert_vop_locked(struct vnode *vp, const char *str)
5779 {
5780 if (KERNEL_PANICKED() || vp == NULL)
5781 return;
5782
5783 #ifdef WITNESS
5784 if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5785 witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5786 #else
5787 int locked = VOP_ISLOCKED(vp);
5788 if (locked == 0 || locked == LK_EXCLOTHER)
5789 #endif
5790 vfs_badlock("is not locked but should be", str, vp);
5791 }
5792
5793 void
assert_vop_unlocked(struct vnode * vp,const char * str)5794 assert_vop_unlocked(struct vnode *vp, const char *str)
5795 {
5796 if (KERNEL_PANICKED() || vp == NULL)
5797 return;
5798
5799 #ifdef WITNESS
5800 if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5801 witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5802 #else
5803 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5804 #endif
5805 vfs_badlock("is locked but should not be", str, vp);
5806 }
5807
5808 void
assert_vop_elocked(struct vnode * vp,const char * str)5809 assert_vop_elocked(struct vnode *vp, const char *str)
5810 {
5811 if (KERNEL_PANICKED() || vp == NULL)
5812 return;
5813
5814 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5815 vfs_badlock("is not exclusive locked but should be", str, vp);
5816 }
5817 #endif /* DEBUG_VFS_LOCKS */
5818
5819 void
vop_rename_fail(struct vop_rename_args * ap)5820 vop_rename_fail(struct vop_rename_args *ap)
5821 {
5822
5823 if (ap->a_tvp != NULL)
5824 vput(ap->a_tvp);
5825 if (ap->a_tdvp == ap->a_tvp)
5826 vrele(ap->a_tdvp);
5827 else
5828 vput(ap->a_tdvp);
5829 vrele(ap->a_fdvp);
5830 vrele(ap->a_fvp);
5831 }
5832
5833 void
vop_rename_pre(void * ap)5834 vop_rename_pre(void *ap)
5835 {
5836 struct vop_rename_args *a = ap;
5837
5838 #ifdef DEBUG_VFS_LOCKS
5839 if (a->a_tvp)
5840 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5841 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5842 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5843 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5844
5845 /* Check the source (from). */
5846 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5847 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5848 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5849 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5850 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5851
5852 /* Check the target. */
5853 if (a->a_tvp)
5854 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5855 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5856 #endif
5857 /*
5858 * It may be tempting to add vn_seqc_write_begin/end calls here and
5859 * in vop_rename_post but that's not going to work out since some
5860 * filesystems relookup vnodes mid-rename. This is probably a bug.
5861 *
5862 * For now filesystems are expected to do the relevant calls after they
5863 * decide what vnodes to operate on.
5864 */
5865 if (a->a_tdvp != a->a_fdvp)
5866 vhold(a->a_fdvp);
5867 if (a->a_tvp != a->a_fvp)
5868 vhold(a->a_fvp);
5869 vhold(a->a_tdvp);
5870 if (a->a_tvp)
5871 vhold(a->a_tvp);
5872 }
5873
5874 #ifdef DEBUG_VFS_LOCKS
5875 void
vop_fplookup_vexec_debugpre(void * ap __unused)5876 vop_fplookup_vexec_debugpre(void *ap __unused)
5877 {
5878
5879 VFS_SMR_ASSERT_ENTERED();
5880 }
5881
5882 void
vop_fplookup_vexec_debugpost(void * ap,int rc)5883 vop_fplookup_vexec_debugpost(void *ap, int rc)
5884 {
5885 struct vop_fplookup_vexec_args *a;
5886 struct vnode *vp;
5887
5888 a = ap;
5889 vp = a->a_vp;
5890
5891 VFS_SMR_ASSERT_ENTERED();
5892 if (rc == EOPNOTSUPP)
5893 VNPASS(VN_IS_DOOMED(vp), vp);
5894 }
5895
5896 void
vop_fplookup_symlink_debugpre(void * ap __unused)5897 vop_fplookup_symlink_debugpre(void *ap __unused)
5898 {
5899
5900 VFS_SMR_ASSERT_ENTERED();
5901 }
5902
5903 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5904 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5905 {
5906
5907 VFS_SMR_ASSERT_ENTERED();
5908 }
5909
5910 static void
vop_fsync_debugprepost(struct vnode * vp,const char * name)5911 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5912 {
5913 if (vp->v_type == VCHR)
5914 ;
5915 /*
5916 * The shared vs. exclusive locking policy for fsync()
5917 * is actually determined by vp's write mount as indicated
5918 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5919 * may not be the same as vp->v_mount. However, if the
5920 * underlying filesystem which really handles the fsync()
5921 * supports shared locking, the stacked filesystem must also
5922 * be prepared for its VOP_FSYNC() operation to be called
5923 * with only a shared lock. On the other hand, if the
5924 * stacked filesystem claims support for shared write
5925 * locking but the underlying filesystem does not, and the
5926 * caller incorrectly uses a shared lock, this condition
5927 * should still be caught when the stacked filesystem
5928 * invokes VOP_FSYNC() on the underlying filesystem.
5929 */
5930 else if (MNT_SHARED_WRITES(vp->v_mount))
5931 ASSERT_VOP_LOCKED(vp, name);
5932 else
5933 ASSERT_VOP_ELOCKED(vp, name);
5934 }
5935
5936 void
vop_fsync_debugpre(void * a)5937 vop_fsync_debugpre(void *a)
5938 {
5939 struct vop_fsync_args *ap;
5940
5941 ap = a;
5942 vop_fsync_debugprepost(ap->a_vp, "fsync");
5943 }
5944
5945 void
vop_fsync_debugpost(void * a,int rc __unused)5946 vop_fsync_debugpost(void *a, int rc __unused)
5947 {
5948 struct vop_fsync_args *ap;
5949
5950 ap = a;
5951 vop_fsync_debugprepost(ap->a_vp, "fsync");
5952 }
5953
5954 void
vop_fdatasync_debugpre(void * a)5955 vop_fdatasync_debugpre(void *a)
5956 {
5957 struct vop_fdatasync_args *ap;
5958
5959 ap = a;
5960 vop_fsync_debugprepost(ap->a_vp, "fsync");
5961 }
5962
5963 void
vop_fdatasync_debugpost(void * a,int rc __unused)5964 vop_fdatasync_debugpost(void *a, int rc __unused)
5965 {
5966 struct vop_fdatasync_args *ap;
5967
5968 ap = a;
5969 vop_fsync_debugprepost(ap->a_vp, "fsync");
5970 }
5971
5972 void
vop_strategy_debugpre(void * ap)5973 vop_strategy_debugpre(void *ap)
5974 {
5975 struct vop_strategy_args *a;
5976 struct buf *bp;
5977
5978 a = ap;
5979 bp = a->a_bp;
5980
5981 /*
5982 * Cluster ops lock their component buffers but not the IO container.
5983 */
5984 if ((bp->b_flags & B_CLUSTER) != 0)
5985 return;
5986
5987 if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5988 if (vfs_badlock_print)
5989 printf(
5990 "VOP_STRATEGY: bp is not locked but should be\n");
5991 if (vfs_badlock_ddb)
5992 kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5993 }
5994 }
5995
5996 void
vop_lock_debugpre(void * ap)5997 vop_lock_debugpre(void *ap)
5998 {
5999 struct vop_lock1_args *a = ap;
6000
6001 if ((a->a_flags & LK_INTERLOCK) == 0)
6002 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6003 else
6004 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
6005 }
6006
6007 void
vop_lock_debugpost(void * ap,int rc)6008 vop_lock_debugpost(void *ap, int rc)
6009 {
6010 struct vop_lock1_args *a = ap;
6011
6012 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6013 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
6014 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
6015 }
6016
6017 void
vop_unlock_debugpre(void * ap)6018 vop_unlock_debugpre(void *ap)
6019 {
6020 struct vop_unlock_args *a = ap;
6021 struct vnode *vp = a->a_vp;
6022
6023 VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6024 ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6025 }
6026
6027 void
vop_need_inactive_debugpre(void * ap)6028 vop_need_inactive_debugpre(void *ap)
6029 {
6030 struct vop_need_inactive_args *a = ap;
6031
6032 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6033 }
6034
6035 void
vop_need_inactive_debugpost(void * ap,int rc)6036 vop_need_inactive_debugpost(void *ap, int rc)
6037 {
6038 struct vop_need_inactive_args *a = ap;
6039
6040 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6041 }
6042 #endif
6043
6044 void
vop_create_pre(void * ap)6045 vop_create_pre(void *ap)
6046 {
6047 struct vop_create_args *a;
6048 struct vnode *dvp;
6049
6050 a = ap;
6051 dvp = a->a_dvp;
6052 vn_seqc_write_begin(dvp);
6053 }
6054
6055 void
vop_create_post(void * ap,int rc)6056 vop_create_post(void *ap, int rc)
6057 {
6058 struct vop_create_args *a;
6059 struct vnode *dvp;
6060
6061 a = ap;
6062 dvp = a->a_dvp;
6063 vn_seqc_write_end(dvp);
6064 if (!rc)
6065 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6066 }
6067
6068 void
vop_whiteout_pre(void * ap)6069 vop_whiteout_pre(void *ap)
6070 {
6071 struct vop_whiteout_args *a;
6072 struct vnode *dvp;
6073
6074 a = ap;
6075 dvp = a->a_dvp;
6076 vn_seqc_write_begin(dvp);
6077 }
6078
6079 void
vop_whiteout_post(void * ap,int rc)6080 vop_whiteout_post(void *ap, int rc)
6081 {
6082 struct vop_whiteout_args *a;
6083 struct vnode *dvp;
6084
6085 a = ap;
6086 dvp = a->a_dvp;
6087 vn_seqc_write_end(dvp);
6088 }
6089
6090 void
vop_deleteextattr_pre(void * ap)6091 vop_deleteextattr_pre(void *ap)
6092 {
6093 struct vop_deleteextattr_args *a;
6094 struct vnode *vp;
6095
6096 a = ap;
6097 vp = a->a_vp;
6098 vn_seqc_write_begin(vp);
6099 }
6100
6101 void
vop_deleteextattr_post(void * ap,int rc)6102 vop_deleteextattr_post(void *ap, int rc)
6103 {
6104 struct vop_deleteextattr_args *a;
6105 struct vnode *vp;
6106
6107 a = ap;
6108 vp = a->a_vp;
6109 vn_seqc_write_end(vp);
6110 if (!rc)
6111 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6112 }
6113
6114 void
vop_link_pre(void * ap)6115 vop_link_pre(void *ap)
6116 {
6117 struct vop_link_args *a;
6118 struct vnode *vp, *tdvp;
6119
6120 a = ap;
6121 vp = a->a_vp;
6122 tdvp = a->a_tdvp;
6123 vn_seqc_write_begin(vp);
6124 vn_seqc_write_begin(tdvp);
6125 }
6126
6127 void
vop_link_post(void * ap,int rc)6128 vop_link_post(void *ap, int rc)
6129 {
6130 struct vop_link_args *a;
6131 struct vnode *vp, *tdvp;
6132
6133 a = ap;
6134 vp = a->a_vp;
6135 tdvp = a->a_tdvp;
6136 vn_seqc_write_end(vp);
6137 vn_seqc_write_end(tdvp);
6138 if (!rc) {
6139 VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6140 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6141 }
6142 }
6143
6144 void
vop_mkdir_pre(void * ap)6145 vop_mkdir_pre(void *ap)
6146 {
6147 struct vop_mkdir_args *a;
6148 struct vnode *dvp;
6149
6150 a = ap;
6151 dvp = a->a_dvp;
6152 vn_seqc_write_begin(dvp);
6153 }
6154
6155 void
vop_mkdir_post(void * ap,int rc)6156 vop_mkdir_post(void *ap, int rc)
6157 {
6158 struct vop_mkdir_args *a;
6159 struct vnode *dvp;
6160
6161 a = ap;
6162 dvp = a->a_dvp;
6163 vn_seqc_write_end(dvp);
6164 if (!rc)
6165 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6166 }
6167
6168 #ifdef DEBUG_VFS_LOCKS
6169 void
vop_mkdir_debugpost(void * ap,int rc)6170 vop_mkdir_debugpost(void *ap, int rc)
6171 {
6172 struct vop_mkdir_args *a;
6173
6174 a = ap;
6175 if (!rc)
6176 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6177 }
6178 #endif
6179
6180 void
vop_mknod_pre(void * ap)6181 vop_mknod_pre(void *ap)
6182 {
6183 struct vop_mknod_args *a;
6184 struct vnode *dvp;
6185
6186 a = ap;
6187 dvp = a->a_dvp;
6188 vn_seqc_write_begin(dvp);
6189 }
6190
6191 void
vop_mknod_post(void * ap,int rc)6192 vop_mknod_post(void *ap, int rc)
6193 {
6194 struct vop_mknod_args *a;
6195 struct vnode *dvp;
6196
6197 a = ap;
6198 dvp = a->a_dvp;
6199 vn_seqc_write_end(dvp);
6200 if (!rc)
6201 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6202 }
6203
6204 void
vop_reclaim_post(void * ap,int rc)6205 vop_reclaim_post(void *ap, int rc)
6206 {
6207 struct vop_reclaim_args *a;
6208 struct vnode *vp;
6209
6210 a = ap;
6211 vp = a->a_vp;
6212 ASSERT_VOP_IN_SEQC(vp);
6213 if (!rc)
6214 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6215 }
6216
6217 void
vop_remove_pre(void * ap)6218 vop_remove_pre(void *ap)
6219 {
6220 struct vop_remove_args *a;
6221 struct vnode *dvp, *vp;
6222
6223 a = ap;
6224 dvp = a->a_dvp;
6225 vp = a->a_vp;
6226 vn_seqc_write_begin(dvp);
6227 vn_seqc_write_begin(vp);
6228 }
6229
6230 void
vop_remove_post(void * ap,int rc)6231 vop_remove_post(void *ap, int rc)
6232 {
6233 struct vop_remove_args *a;
6234 struct vnode *dvp, *vp;
6235
6236 a = ap;
6237 dvp = a->a_dvp;
6238 vp = a->a_vp;
6239 vn_seqc_write_end(dvp);
6240 vn_seqc_write_end(vp);
6241 if (!rc) {
6242 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6243 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6244 }
6245 }
6246
6247 void
vop_rename_post(void * ap,int rc)6248 vop_rename_post(void *ap, int rc)
6249 {
6250 struct vop_rename_args *a = ap;
6251 long hint;
6252
6253 if (!rc) {
6254 hint = NOTE_WRITE;
6255 if (a->a_fdvp == a->a_tdvp) {
6256 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6257 hint |= NOTE_LINK;
6258 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6259 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6260 } else {
6261 hint |= NOTE_EXTEND;
6262 if (a->a_fvp->v_type == VDIR)
6263 hint |= NOTE_LINK;
6264 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6265
6266 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6267 a->a_tvp->v_type == VDIR)
6268 hint &= ~NOTE_LINK;
6269 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6270 }
6271
6272 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6273 if (a->a_tvp)
6274 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6275 }
6276 if (a->a_tdvp != a->a_fdvp)
6277 vdrop(a->a_fdvp);
6278 if (a->a_tvp != a->a_fvp)
6279 vdrop(a->a_fvp);
6280 vdrop(a->a_tdvp);
6281 if (a->a_tvp)
6282 vdrop(a->a_tvp);
6283 }
6284
6285 void
vop_rmdir_pre(void * ap)6286 vop_rmdir_pre(void *ap)
6287 {
6288 struct vop_rmdir_args *a;
6289 struct vnode *dvp, *vp;
6290
6291 a = ap;
6292 dvp = a->a_dvp;
6293 vp = a->a_vp;
6294 vn_seqc_write_begin(dvp);
6295 vn_seqc_write_begin(vp);
6296 }
6297
6298 void
vop_rmdir_post(void * ap,int rc)6299 vop_rmdir_post(void *ap, int rc)
6300 {
6301 struct vop_rmdir_args *a;
6302 struct vnode *dvp, *vp;
6303
6304 a = ap;
6305 dvp = a->a_dvp;
6306 vp = a->a_vp;
6307 vn_seqc_write_end(dvp);
6308 vn_seqc_write_end(vp);
6309 if (!rc) {
6310 vp->v_vflag |= VV_UNLINKED;
6311 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6312 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6313 }
6314 }
6315
6316 void
vop_setattr_pre(void * ap)6317 vop_setattr_pre(void *ap)
6318 {
6319 struct vop_setattr_args *a;
6320 struct vnode *vp;
6321
6322 a = ap;
6323 vp = a->a_vp;
6324 vn_seqc_write_begin(vp);
6325 }
6326
6327 void
vop_setattr_post(void * ap,int rc)6328 vop_setattr_post(void *ap, int rc)
6329 {
6330 struct vop_setattr_args *a;
6331 struct vnode *vp;
6332
6333 a = ap;
6334 vp = a->a_vp;
6335 vn_seqc_write_end(vp);
6336 if (!rc)
6337 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6338 }
6339
6340 void
vop_setacl_pre(void * ap)6341 vop_setacl_pre(void *ap)
6342 {
6343 struct vop_setacl_args *a;
6344 struct vnode *vp;
6345
6346 a = ap;
6347 vp = a->a_vp;
6348 vn_seqc_write_begin(vp);
6349 }
6350
6351 void
vop_setacl_post(void * ap,int rc __unused)6352 vop_setacl_post(void *ap, int rc __unused)
6353 {
6354 struct vop_setacl_args *a;
6355 struct vnode *vp;
6356
6357 a = ap;
6358 vp = a->a_vp;
6359 vn_seqc_write_end(vp);
6360 }
6361
6362 void
vop_setextattr_pre(void * ap)6363 vop_setextattr_pre(void *ap)
6364 {
6365 struct vop_setextattr_args *a;
6366 struct vnode *vp;
6367
6368 a = ap;
6369 vp = a->a_vp;
6370 vn_seqc_write_begin(vp);
6371 }
6372
6373 void
vop_setextattr_post(void * ap,int rc)6374 vop_setextattr_post(void *ap, int rc)
6375 {
6376 struct vop_setextattr_args *a;
6377 struct vnode *vp;
6378
6379 a = ap;
6380 vp = a->a_vp;
6381 vn_seqc_write_end(vp);
6382 if (!rc)
6383 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6384 }
6385
6386 void
vop_symlink_pre(void * ap)6387 vop_symlink_pre(void *ap)
6388 {
6389 struct vop_symlink_args *a;
6390 struct vnode *dvp;
6391
6392 a = ap;
6393 dvp = a->a_dvp;
6394 vn_seqc_write_begin(dvp);
6395 }
6396
6397 void
vop_symlink_post(void * ap,int rc)6398 vop_symlink_post(void *ap, int rc)
6399 {
6400 struct vop_symlink_args *a;
6401 struct vnode *dvp;
6402
6403 a = ap;
6404 dvp = a->a_dvp;
6405 vn_seqc_write_end(dvp);
6406 if (!rc)
6407 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6408 }
6409
6410 void
vop_open_post(void * ap,int rc)6411 vop_open_post(void *ap, int rc)
6412 {
6413 struct vop_open_args *a = ap;
6414
6415 if (!rc)
6416 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6417 }
6418
6419 void
vop_close_post(void * ap,int rc)6420 vop_close_post(void *ap, int rc)
6421 {
6422 struct vop_close_args *a = ap;
6423
6424 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6425 !VN_IS_DOOMED(a->a_vp))) {
6426 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6427 NOTE_CLOSE_WRITE : NOTE_CLOSE);
6428 }
6429 }
6430
6431 void
vop_read_post(void * ap,int rc)6432 vop_read_post(void *ap, int rc)
6433 {
6434 struct vop_read_args *a = ap;
6435
6436 if (!rc)
6437 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6438 }
6439
6440 void
vop_read_pgcache_post(void * ap,int rc)6441 vop_read_pgcache_post(void *ap, int rc)
6442 {
6443 struct vop_read_pgcache_args *a = ap;
6444
6445 if (!rc)
6446 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6447 }
6448
6449 void
vop_readdir_post(void * ap,int rc)6450 vop_readdir_post(void *ap, int rc)
6451 {
6452 struct vop_readdir_args *a = ap;
6453
6454 if (!rc)
6455 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6456 }
6457
6458 static struct knlist fs_knlist;
6459
6460 static void
vfs_event_init(void * arg)6461 vfs_event_init(void *arg)
6462 {
6463 knlist_init_mtx(&fs_knlist, NULL);
6464 }
6465 /* XXX - correct order? */
6466 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6467
6468 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6469 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6470 {
6471
6472 KNOTE_UNLOCKED(&fs_knlist, event);
6473 }
6474
6475 static int filt_fsattach(struct knote *kn);
6476 static void filt_fsdetach(struct knote *kn);
6477 static int filt_fsevent(struct knote *kn, long hint);
6478
6479 const struct filterops fs_filtops = {
6480 .f_isfd = 0,
6481 .f_attach = filt_fsattach,
6482 .f_detach = filt_fsdetach,
6483 .f_event = filt_fsevent
6484 };
6485
6486 static int
filt_fsattach(struct knote * kn)6487 filt_fsattach(struct knote *kn)
6488 {
6489
6490 kn->kn_flags |= EV_CLEAR;
6491 knlist_add(&fs_knlist, kn, 0);
6492 return (0);
6493 }
6494
6495 static void
filt_fsdetach(struct knote * kn)6496 filt_fsdetach(struct knote *kn)
6497 {
6498
6499 knlist_remove(&fs_knlist, kn, 0);
6500 }
6501
6502 static int
filt_fsevent(struct knote * kn,long hint)6503 filt_fsevent(struct knote *kn, long hint)
6504 {
6505
6506 kn->kn_fflags |= kn->kn_sfflags & hint;
6507
6508 return (kn->kn_fflags != 0);
6509 }
6510
6511 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6512 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6513 {
6514 struct vfsidctl vc;
6515 int error;
6516 struct mount *mp;
6517
6518 error = SYSCTL_IN(req, &vc, sizeof(vc));
6519 if (error)
6520 return (error);
6521 if (vc.vc_vers != VFS_CTL_VERS1)
6522 return (EINVAL);
6523 mp = vfs_getvfs(&vc.vc_fsid);
6524 if (mp == NULL)
6525 return (ENOENT);
6526 /* ensure that a specific sysctl goes to the right filesystem. */
6527 if (strcmp(vc.vc_fstypename, "*") != 0 &&
6528 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6529 vfs_rel(mp);
6530 return (EINVAL);
6531 }
6532 VCTLTOREQ(&vc, req);
6533 error = VFS_SYSCTL(mp, vc.vc_op, req);
6534 vfs_rel(mp);
6535 return (error);
6536 }
6537
6538 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6539 NULL, 0, sysctl_vfs_ctl, "",
6540 "Sysctl by fsid");
6541
6542 /*
6543 * Function to initialize a va_filerev field sensibly.
6544 * XXX: Wouldn't a random number make a lot more sense ??
6545 */
6546 u_quad_t
init_va_filerev(void)6547 init_va_filerev(void)
6548 {
6549 struct bintime bt;
6550
6551 getbinuptime(&bt);
6552 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6553 }
6554
6555 static int filt_vfsread(struct knote *kn, long hint);
6556 static int filt_vfswrite(struct knote *kn, long hint);
6557 static int filt_vfsvnode(struct knote *kn, long hint);
6558 static void filt_vfsdetach(struct knote *kn);
6559 static const struct filterops vfsread_filtops = {
6560 .f_isfd = 1,
6561 .f_detach = filt_vfsdetach,
6562 .f_event = filt_vfsread
6563 };
6564 static const struct filterops vfswrite_filtops = {
6565 .f_isfd = 1,
6566 .f_detach = filt_vfsdetach,
6567 .f_event = filt_vfswrite
6568 };
6569 static const struct filterops vfsvnode_filtops = {
6570 .f_isfd = 1,
6571 .f_detach = filt_vfsdetach,
6572 .f_event = filt_vfsvnode
6573 };
6574
6575 static void
vfs_knllock(void * arg)6576 vfs_knllock(void *arg)
6577 {
6578 struct vnode *vp = arg;
6579
6580 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6581 }
6582
6583 static void
vfs_knlunlock(void * arg)6584 vfs_knlunlock(void *arg)
6585 {
6586 struct vnode *vp = arg;
6587
6588 VOP_UNLOCK(vp);
6589 }
6590
6591 static void
vfs_knl_assert_lock(void * arg,int what)6592 vfs_knl_assert_lock(void *arg, int what)
6593 {
6594 #ifdef DEBUG_VFS_LOCKS
6595 struct vnode *vp = arg;
6596
6597 if (what == LA_LOCKED)
6598 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6599 else
6600 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6601 #endif
6602 }
6603
6604 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6605 vfs_kqfilter(struct vop_kqfilter_args *ap)
6606 {
6607 struct vnode *vp = ap->a_vp;
6608 struct knote *kn = ap->a_kn;
6609 struct knlist *knl;
6610
6611 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6612 kn->kn_filter != EVFILT_WRITE),
6613 ("READ/WRITE filter on a FIFO leaked through"));
6614 switch (kn->kn_filter) {
6615 case EVFILT_READ:
6616 kn->kn_fop = &vfsread_filtops;
6617 break;
6618 case EVFILT_WRITE:
6619 kn->kn_fop = &vfswrite_filtops;
6620 break;
6621 case EVFILT_VNODE:
6622 kn->kn_fop = &vfsvnode_filtops;
6623 break;
6624 default:
6625 return (EINVAL);
6626 }
6627
6628 kn->kn_hook = (caddr_t)vp;
6629
6630 v_addpollinfo(vp);
6631 if (vp->v_pollinfo == NULL)
6632 return (ENOMEM);
6633 knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6634 vhold(vp);
6635 knlist_add(knl, kn, 0);
6636
6637 return (0);
6638 }
6639
6640 /*
6641 * Detach knote from vnode
6642 */
6643 static void
filt_vfsdetach(struct knote * kn)6644 filt_vfsdetach(struct knote *kn)
6645 {
6646 struct vnode *vp = (struct vnode *)kn->kn_hook;
6647
6648 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6649 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6650 vdrop(vp);
6651 }
6652
6653 /*ARGSUSED*/
6654 static int
filt_vfsread(struct knote * kn,long hint)6655 filt_vfsread(struct knote *kn, long hint)
6656 {
6657 struct vnode *vp = (struct vnode *)kn->kn_hook;
6658 off_t size;
6659 int res;
6660
6661 /*
6662 * filesystem is gone, so set the EOF flag and schedule
6663 * the knote for deletion.
6664 */
6665 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6666 VI_LOCK(vp);
6667 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6668 VI_UNLOCK(vp);
6669 return (1);
6670 }
6671
6672 if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6673 return (0);
6674
6675 VI_LOCK(vp);
6676 kn->kn_data = size - kn->kn_fp->f_offset;
6677 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6678 VI_UNLOCK(vp);
6679 return (res);
6680 }
6681
6682 /*ARGSUSED*/
6683 static int
filt_vfswrite(struct knote * kn,long hint)6684 filt_vfswrite(struct knote *kn, long hint)
6685 {
6686 struct vnode *vp = (struct vnode *)kn->kn_hook;
6687
6688 VI_LOCK(vp);
6689
6690 /*
6691 * filesystem is gone, so set the EOF flag and schedule
6692 * the knote for deletion.
6693 */
6694 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6695 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6696
6697 kn->kn_data = 0;
6698 VI_UNLOCK(vp);
6699 return (1);
6700 }
6701
6702 static int
filt_vfsvnode(struct knote * kn,long hint)6703 filt_vfsvnode(struct knote *kn, long hint)
6704 {
6705 struct vnode *vp = (struct vnode *)kn->kn_hook;
6706 int res;
6707
6708 VI_LOCK(vp);
6709 if (kn->kn_sfflags & hint)
6710 kn->kn_fflags |= hint;
6711 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6712 kn->kn_flags |= EV_EOF;
6713 VI_UNLOCK(vp);
6714 return (1);
6715 }
6716 res = (kn->kn_fflags != 0);
6717 VI_UNLOCK(vp);
6718 return (res);
6719 }
6720
6721 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6722 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6723 {
6724 int error;
6725
6726 if (dp->d_reclen > ap->a_uio->uio_resid)
6727 return (ENAMETOOLONG);
6728 error = uiomove(dp, dp->d_reclen, ap->a_uio);
6729 if (error) {
6730 if (ap->a_ncookies != NULL) {
6731 if (ap->a_cookies != NULL)
6732 free(ap->a_cookies, M_TEMP);
6733 ap->a_cookies = NULL;
6734 *ap->a_ncookies = 0;
6735 }
6736 return (error);
6737 }
6738 if (ap->a_ncookies == NULL)
6739 return (0);
6740
6741 KASSERT(ap->a_cookies,
6742 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6743
6744 *ap->a_cookies = realloc(*ap->a_cookies,
6745 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6746 (*ap->a_cookies)[*ap->a_ncookies] = off;
6747 *ap->a_ncookies += 1;
6748 return (0);
6749 }
6750
6751 /*
6752 * The purpose of this routine is to remove granularity from accmode_t,
6753 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6754 * VADMIN and VAPPEND.
6755 *
6756 * If it returns 0, the caller is supposed to continue with the usual
6757 * access checks using 'accmode' as modified by this routine. If it
6758 * returns nonzero value, the caller is supposed to return that value
6759 * as errno.
6760 *
6761 * Note that after this routine runs, accmode may be zero.
6762 */
6763 int
vfs_unixify_accmode(accmode_t * accmode)6764 vfs_unixify_accmode(accmode_t *accmode)
6765 {
6766 /*
6767 * There is no way to specify explicit "deny" rule using
6768 * file mode or POSIX.1e ACLs.
6769 */
6770 if (*accmode & VEXPLICIT_DENY) {
6771 *accmode = 0;
6772 return (0);
6773 }
6774
6775 /*
6776 * None of these can be translated into usual access bits.
6777 * Also, the common case for NFSv4 ACLs is to not contain
6778 * either of these bits. Caller should check for VWRITE
6779 * on the containing directory instead.
6780 */
6781 if (*accmode & (VDELETE_CHILD | VDELETE))
6782 return (EPERM);
6783
6784 if (*accmode & VADMIN_PERMS) {
6785 *accmode &= ~VADMIN_PERMS;
6786 *accmode |= VADMIN;
6787 }
6788
6789 /*
6790 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6791 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6792 */
6793 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6794
6795 return (0);
6796 }
6797
6798 /*
6799 * Clear out a doomed vnode (if any) and replace it with a new one as long
6800 * as the fs is not being unmounted. Return the root vnode to the caller.
6801 */
6802 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6803 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6804 {
6805 struct vnode *vp;
6806 int error;
6807
6808 restart:
6809 if (mp->mnt_rootvnode != NULL) {
6810 MNT_ILOCK(mp);
6811 vp = mp->mnt_rootvnode;
6812 if (vp != NULL) {
6813 if (!VN_IS_DOOMED(vp)) {
6814 vrefact(vp);
6815 MNT_IUNLOCK(mp);
6816 error = vn_lock(vp, flags);
6817 if (error == 0) {
6818 *vpp = vp;
6819 return (0);
6820 }
6821 vrele(vp);
6822 goto restart;
6823 }
6824 /*
6825 * Clear the old one.
6826 */
6827 mp->mnt_rootvnode = NULL;
6828 }
6829 MNT_IUNLOCK(mp);
6830 if (vp != NULL) {
6831 vfs_op_barrier_wait(mp);
6832 vrele(vp);
6833 }
6834 }
6835 error = VFS_CACHEDROOT(mp, flags, vpp);
6836 if (error != 0)
6837 return (error);
6838 if (mp->mnt_vfs_ops == 0) {
6839 MNT_ILOCK(mp);
6840 if (mp->mnt_vfs_ops != 0) {
6841 MNT_IUNLOCK(mp);
6842 return (0);
6843 }
6844 if (mp->mnt_rootvnode == NULL) {
6845 vrefact(*vpp);
6846 mp->mnt_rootvnode = *vpp;
6847 } else {
6848 if (mp->mnt_rootvnode != *vpp) {
6849 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6850 panic("%s: mismatch between vnode returned "
6851 " by VFS_CACHEDROOT and the one cached "
6852 " (%p != %p)",
6853 __func__, *vpp, mp->mnt_rootvnode);
6854 }
6855 }
6856 }
6857 MNT_IUNLOCK(mp);
6858 }
6859 return (0);
6860 }
6861
6862 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6863 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6864 {
6865 struct mount_pcpu *mpcpu;
6866 struct vnode *vp;
6867 int error;
6868
6869 if (!vfs_op_thread_enter(mp, mpcpu))
6870 return (vfs_cache_root_fallback(mp, flags, vpp));
6871 vp = atomic_load_ptr(&mp->mnt_rootvnode);
6872 if (vp == NULL || VN_IS_DOOMED(vp)) {
6873 vfs_op_thread_exit(mp, mpcpu);
6874 return (vfs_cache_root_fallback(mp, flags, vpp));
6875 }
6876 vrefact(vp);
6877 vfs_op_thread_exit(mp, mpcpu);
6878 error = vn_lock(vp, flags);
6879 if (error != 0) {
6880 vrele(vp);
6881 return (vfs_cache_root_fallback(mp, flags, vpp));
6882 }
6883 *vpp = vp;
6884 return (0);
6885 }
6886
6887 struct vnode *
vfs_cache_root_clear(struct mount * mp)6888 vfs_cache_root_clear(struct mount *mp)
6889 {
6890 struct vnode *vp;
6891
6892 /*
6893 * ops > 0 guarantees there is nobody who can see this vnode
6894 */
6895 MPASS(mp->mnt_vfs_ops > 0);
6896 vp = mp->mnt_rootvnode;
6897 if (vp != NULL)
6898 vn_seqc_write_begin(vp);
6899 mp->mnt_rootvnode = NULL;
6900 return (vp);
6901 }
6902
6903 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)6904 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6905 {
6906
6907 MPASS(mp->mnt_vfs_ops > 0);
6908 vrefact(vp);
6909 mp->mnt_rootvnode = vp;
6910 }
6911
6912 /*
6913 * These are helper functions for filesystems to traverse all
6914 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6915 *
6916 * This interface replaces MNT_VNODE_FOREACH.
6917 */
6918
6919 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)6920 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6921 {
6922 struct vnode *vp;
6923
6924 maybe_yield();
6925 MNT_ILOCK(mp);
6926 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6927 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6928 vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6929 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6930 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6931 continue;
6932 VI_LOCK(vp);
6933 if (VN_IS_DOOMED(vp)) {
6934 VI_UNLOCK(vp);
6935 continue;
6936 }
6937 break;
6938 }
6939 if (vp == NULL) {
6940 __mnt_vnode_markerfree_all(mvp, mp);
6941 /* MNT_IUNLOCK(mp); -- done in above function */
6942 mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6943 return (NULL);
6944 }
6945 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6946 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6947 MNT_IUNLOCK(mp);
6948 return (vp);
6949 }
6950
6951 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)6952 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6953 {
6954 struct vnode *vp;
6955
6956 *mvp = vn_alloc_marker(mp);
6957 MNT_ILOCK(mp);
6958 MNT_REF(mp);
6959
6960 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6961 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6962 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6963 continue;
6964 VI_LOCK(vp);
6965 if (VN_IS_DOOMED(vp)) {
6966 VI_UNLOCK(vp);
6967 continue;
6968 }
6969 break;
6970 }
6971 if (vp == NULL) {
6972 MNT_REL(mp);
6973 MNT_IUNLOCK(mp);
6974 vn_free_marker(*mvp);
6975 *mvp = NULL;
6976 return (NULL);
6977 }
6978 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6979 MNT_IUNLOCK(mp);
6980 return (vp);
6981 }
6982
6983 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)6984 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6985 {
6986
6987 if (*mvp == NULL) {
6988 MNT_IUNLOCK(mp);
6989 return;
6990 }
6991
6992 mtx_assert(MNT_MTX(mp), MA_OWNED);
6993
6994 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6995 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6996 MNT_REL(mp);
6997 MNT_IUNLOCK(mp);
6998 vn_free_marker(*mvp);
6999 *mvp = NULL;
7000 }
7001
7002 /*
7003 * These are helper functions for filesystems to traverse their
7004 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7005 */
7006 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7007 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7008 {
7009
7010 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7011
7012 MNT_ILOCK(mp);
7013 MNT_REL(mp);
7014 MNT_IUNLOCK(mp);
7015 vn_free_marker(*mvp);
7016 *mvp = NULL;
7017 }
7018
7019 /*
7020 * Relock the mp mount vnode list lock with the vp vnode interlock in the
7021 * conventional lock order during mnt_vnode_next_lazy iteration.
7022 *
7023 * On entry, the mount vnode list lock is held and the vnode interlock is not.
7024 * The list lock is dropped and reacquired. On success, both locks are held.
7025 * On failure, the mount vnode list lock is held but the vnode interlock is
7026 * not, and the procedure may have yielded.
7027 */
7028 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)7029 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7030 struct vnode *vp)
7031 {
7032
7033 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7034 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7035 ("%s: bad marker", __func__));
7036 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7037 ("%s: inappropriate vnode", __func__));
7038 ASSERT_VI_UNLOCKED(vp, __func__);
7039 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7040
7041 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7042 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7043
7044 /*
7045 * Note we may be racing against vdrop which transitioned the hold
7046 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7047 * if we are the only user after we get the interlock we will just
7048 * vdrop.
7049 */
7050 vhold(vp);
7051 mtx_unlock(&mp->mnt_listmtx);
7052 VI_LOCK(vp);
7053 if (VN_IS_DOOMED(vp)) {
7054 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7055 goto out_lost;
7056 }
7057 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7058 /*
7059 * There is nothing to do if we are the last user.
7060 */
7061 if (!refcount_release_if_not_last(&vp->v_holdcnt))
7062 goto out_lost;
7063 mtx_lock(&mp->mnt_listmtx);
7064 return (true);
7065 out_lost:
7066 vdropl(vp);
7067 maybe_yield();
7068 mtx_lock(&mp->mnt_listmtx);
7069 return (false);
7070 }
7071
7072 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7073 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7074 void *cbarg)
7075 {
7076 struct vnode *vp;
7077
7078 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7079 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7080 restart:
7081 vp = TAILQ_NEXT(*mvp, v_lazylist);
7082 while (vp != NULL) {
7083 if (vp->v_type == VMARKER) {
7084 vp = TAILQ_NEXT(vp, v_lazylist);
7085 continue;
7086 }
7087 /*
7088 * See if we want to process the vnode. Note we may encounter a
7089 * long string of vnodes we don't care about and hog the list
7090 * as a result. Check for it and requeue the marker.
7091 */
7092 VNPASS(!VN_IS_DOOMED(vp), vp);
7093 if (!cb(vp, cbarg)) {
7094 if (!should_yield()) {
7095 vp = TAILQ_NEXT(vp, v_lazylist);
7096 continue;
7097 }
7098 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7099 v_lazylist);
7100 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7101 v_lazylist);
7102 mtx_unlock(&mp->mnt_listmtx);
7103 kern_yield(PRI_USER);
7104 mtx_lock(&mp->mnt_listmtx);
7105 goto restart;
7106 }
7107 /*
7108 * Try-lock because this is the wrong lock order.
7109 */
7110 if (!VI_TRYLOCK(vp) &&
7111 !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7112 goto restart;
7113 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7114 KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7115 ("alien vnode on the lazy list %p %p", vp, mp));
7116 VNPASS(vp->v_mount == mp, vp);
7117 VNPASS(!VN_IS_DOOMED(vp), vp);
7118 break;
7119 }
7120 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7121
7122 /* Check if we are done */
7123 if (vp == NULL) {
7124 mtx_unlock(&mp->mnt_listmtx);
7125 mnt_vnode_markerfree_lazy(mvp, mp);
7126 return (NULL);
7127 }
7128 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7129 mtx_unlock(&mp->mnt_listmtx);
7130 ASSERT_VI_LOCKED(vp, "lazy iter");
7131 return (vp);
7132 }
7133
7134 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7135 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7136 void *cbarg)
7137 {
7138
7139 maybe_yield();
7140 mtx_lock(&mp->mnt_listmtx);
7141 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7142 }
7143
7144 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7145 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7146 void *cbarg)
7147 {
7148 struct vnode *vp;
7149
7150 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7151 return (NULL);
7152
7153 *mvp = vn_alloc_marker(mp);
7154 MNT_ILOCK(mp);
7155 MNT_REF(mp);
7156 MNT_IUNLOCK(mp);
7157
7158 mtx_lock(&mp->mnt_listmtx);
7159 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7160 if (vp == NULL) {
7161 mtx_unlock(&mp->mnt_listmtx);
7162 mnt_vnode_markerfree_lazy(mvp, mp);
7163 return (NULL);
7164 }
7165 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7166 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7167 }
7168
7169 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7170 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7171 {
7172
7173 if (*mvp == NULL)
7174 return;
7175
7176 mtx_lock(&mp->mnt_listmtx);
7177 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7178 mtx_unlock(&mp->mnt_listmtx);
7179 mnt_vnode_markerfree_lazy(mvp, mp);
7180 }
7181
7182 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)7183 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7184 {
7185
7186 if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7187 cnp->cn_flags &= ~NOEXECCHECK;
7188 return (0);
7189 }
7190
7191 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7192 }
7193
7194 /*
7195 * Do not use this variant unless you have means other than the hold count
7196 * to prevent the vnode from getting freed.
7197 */
7198 void
vn_seqc_write_begin_locked(struct vnode * vp)7199 vn_seqc_write_begin_locked(struct vnode *vp)
7200 {
7201
7202 ASSERT_VI_LOCKED(vp, __func__);
7203 VNPASS(vp->v_holdcnt > 0, vp);
7204 VNPASS(vp->v_seqc_users >= 0, vp);
7205 vp->v_seqc_users++;
7206 if (vp->v_seqc_users == 1)
7207 seqc_sleepable_write_begin(&vp->v_seqc);
7208 }
7209
7210 void
vn_seqc_write_begin(struct vnode * vp)7211 vn_seqc_write_begin(struct vnode *vp)
7212 {
7213
7214 VI_LOCK(vp);
7215 vn_seqc_write_begin_locked(vp);
7216 VI_UNLOCK(vp);
7217 }
7218
7219 void
vn_seqc_write_end_locked(struct vnode * vp)7220 vn_seqc_write_end_locked(struct vnode *vp)
7221 {
7222
7223 ASSERT_VI_LOCKED(vp, __func__);
7224 VNPASS(vp->v_seqc_users > 0, vp);
7225 vp->v_seqc_users--;
7226 if (vp->v_seqc_users == 0)
7227 seqc_sleepable_write_end(&vp->v_seqc);
7228 }
7229
7230 void
vn_seqc_write_end(struct vnode * vp)7231 vn_seqc_write_end(struct vnode *vp)
7232 {
7233
7234 VI_LOCK(vp);
7235 vn_seqc_write_end_locked(vp);
7236 VI_UNLOCK(vp);
7237 }
7238
7239 /*
7240 * Special case handling for allocating and freeing vnodes.
7241 *
7242 * The counter remains unchanged on free so that a doomed vnode will
7243 * keep testing as in modify as long as it is accessible with SMR.
7244 */
7245 static void
vn_seqc_init(struct vnode * vp)7246 vn_seqc_init(struct vnode *vp)
7247 {
7248
7249 vp->v_seqc = 0;
7250 vp->v_seqc_users = 0;
7251 }
7252
7253 static void
vn_seqc_write_end_free(struct vnode * vp)7254 vn_seqc_write_end_free(struct vnode *vp)
7255 {
7256
7257 VNPASS(seqc_in_modify(vp->v_seqc), vp);
7258 VNPASS(vp->v_seqc_users == 1, vp);
7259 }
7260
7261 void
vn_irflag_set_locked(struct vnode * vp,short toset)7262 vn_irflag_set_locked(struct vnode *vp, short toset)
7263 {
7264 short flags;
7265
7266 ASSERT_VI_LOCKED(vp, __func__);
7267 flags = vn_irflag_read(vp);
7268 VNASSERT((flags & toset) == 0, vp,
7269 ("%s: some of the passed flags already set (have %d, passed %d)\n",
7270 __func__, flags, toset));
7271 atomic_store_short(&vp->v_irflag, flags | toset);
7272 }
7273
7274 void
vn_irflag_set(struct vnode * vp,short toset)7275 vn_irflag_set(struct vnode *vp, short toset)
7276 {
7277
7278 VI_LOCK(vp);
7279 vn_irflag_set_locked(vp, toset);
7280 VI_UNLOCK(vp);
7281 }
7282
7283 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)7284 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7285 {
7286 short flags;
7287
7288 ASSERT_VI_LOCKED(vp, __func__);
7289 flags = vn_irflag_read(vp);
7290 atomic_store_short(&vp->v_irflag, flags | toset);
7291 }
7292
7293 void
vn_irflag_set_cond(struct vnode * vp,short toset)7294 vn_irflag_set_cond(struct vnode *vp, short toset)
7295 {
7296
7297 VI_LOCK(vp);
7298 vn_irflag_set_cond_locked(vp, toset);
7299 VI_UNLOCK(vp);
7300 }
7301
7302 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)7303 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7304 {
7305 short flags;
7306
7307 ASSERT_VI_LOCKED(vp, __func__);
7308 flags = vn_irflag_read(vp);
7309 VNASSERT((flags & tounset) == tounset, vp,
7310 ("%s: some of the passed flags not set (have %d, passed %d)\n",
7311 __func__, flags, tounset));
7312 atomic_store_short(&vp->v_irflag, flags & ~tounset);
7313 }
7314
7315 void
vn_irflag_unset(struct vnode * vp,short tounset)7316 vn_irflag_unset(struct vnode *vp, short tounset)
7317 {
7318
7319 VI_LOCK(vp);
7320 vn_irflag_unset_locked(vp, tounset);
7321 VI_UNLOCK(vp);
7322 }
7323
7324 int
vn_getsize_locked(struct vnode * vp,off_t * size,struct ucred * cred)7325 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7326 {
7327 struct vattr vattr;
7328 int error;
7329
7330 ASSERT_VOP_LOCKED(vp, __func__);
7331 error = VOP_GETATTR(vp, &vattr, cred);
7332 if (__predict_true(error == 0)) {
7333 if (vattr.va_size <= OFF_MAX)
7334 *size = vattr.va_size;
7335 else
7336 error = EFBIG;
7337 }
7338 return (error);
7339 }
7340
7341 int
vn_getsize(struct vnode * vp,off_t * size,struct ucred * cred)7342 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7343 {
7344 int error;
7345
7346 VOP_LOCK(vp, LK_SHARED);
7347 error = vn_getsize_locked(vp, size, cred);
7348 VOP_UNLOCK(vp);
7349 return (error);
7350 }
7351
7352 #ifdef INVARIANTS
7353 void
vn_set_state_validate(struct vnode * vp,__enum_uint8 (vstate)state)7354 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7355 {
7356
7357 switch (vp->v_state) {
7358 case VSTATE_UNINITIALIZED:
7359 switch (state) {
7360 case VSTATE_CONSTRUCTED:
7361 case VSTATE_DESTROYING:
7362 return;
7363 default:
7364 break;
7365 }
7366 break;
7367 case VSTATE_CONSTRUCTED:
7368 ASSERT_VOP_ELOCKED(vp, __func__);
7369 switch (state) {
7370 case VSTATE_DESTROYING:
7371 return;
7372 default:
7373 break;
7374 }
7375 break;
7376 case VSTATE_DESTROYING:
7377 ASSERT_VOP_ELOCKED(vp, __func__);
7378 switch (state) {
7379 case VSTATE_DEAD:
7380 return;
7381 default:
7382 break;
7383 }
7384 break;
7385 case VSTATE_DEAD:
7386 switch (state) {
7387 case VSTATE_UNINITIALIZED:
7388 return;
7389 default:
7390 break;
7391 }
7392 break;
7393 }
7394
7395 vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7396 panic("invalid state transition %d -> %d\n", vp->v_state, state);
7397 }
7398 #endif
7399