1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "direct-io.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
39 #include "print-tree.h"
40
41 /*
42 * Unlock folio after btrfs_file_write() is done with it.
43 */
btrfs_drop_folio(struct btrfs_fs_info * fs_info,struct folio * folio,u64 pos,u64 copied)44 static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
45 u64 pos, u64 copied)
46 {
47 u64 block_start = round_down(pos, fs_info->sectorsize);
48 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
49
50 ASSERT(block_len <= U32_MAX);
51 /*
52 * Folio checked is some magic around finding folios that have been
53 * modified without going through btrfs_dirty_folio(). Clear it here.
54 * There should be no need to mark the pages accessed as
55 * prepare_one_folio() should have marked them accessed in
56 * prepare_one_folio() via find_or_create_page()
57 */
58 btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
59 folio_unlock(folio);
60 folio_put(folio);
61 }
62
63 /*
64 * After copy_folio_from_iter_atomic(), update the following things for delalloc:
65 * - Mark newly dirtied folio as DELALLOC in the io tree.
66 * Used to advise which range is to be written back.
67 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
68 * - Update inode size for past EOF write
69 */
btrfs_dirty_folio(struct btrfs_inode * inode,struct folio * folio,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)70 int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
71 size_t write_bytes, struct extent_state **cached, bool noreserve)
72 {
73 struct btrfs_fs_info *fs_info = inode->root->fs_info;
74 int ret = 0;
75 u64 num_bytes;
76 u64 start_pos;
77 u64 end_of_last_block;
78 u64 end_pos = pos + write_bytes;
79 loff_t isize = i_size_read(&inode->vfs_inode);
80 unsigned int extra_bits = 0;
81
82 if (write_bytes == 0)
83 return 0;
84
85 if (noreserve)
86 extra_bits |= EXTENT_NORESERVE;
87
88 start_pos = round_down(pos, fs_info->sectorsize);
89 num_bytes = round_up(write_bytes + pos - start_pos,
90 fs_info->sectorsize);
91 ASSERT(num_bytes <= U32_MAX);
92 ASSERT(folio_pos(folio) <= pos &&
93 folio_pos(folio) + folio_size(folio) >= pos + write_bytes);
94
95 end_of_last_block = start_pos + num_bytes - 1;
96
97 /*
98 * The pages may have already been dirty, clear out old accounting so
99 * we can set things up properly
100 */
101 btrfs_clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
102 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
103 cached);
104
105 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
106 extra_bits, cached);
107 if (ret)
108 return ret;
109
110 btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
111 btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
112 btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
113
114 /*
115 * we've only changed i_size in ram, and we haven't updated
116 * the disk i_size. There is no need to log the inode
117 * at this time.
118 */
119 if (end_pos > isize)
120 i_size_write(&inode->vfs_inode, end_pos);
121 return 0;
122 }
123
124 /*
125 * this is very complex, but the basic idea is to drop all extents
126 * in the range start - end. hint_block is filled in with a block number
127 * that would be a good hint to the block allocator for this file.
128 *
129 * If an extent intersects the range but is not entirely inside the range
130 * it is either truncated or split. Anything entirely inside the range
131 * is deleted from the tree.
132 *
133 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
134 * to deal with that. We set the field 'bytes_found' of the arguments structure
135 * with the number of allocated bytes found in the target range, so that the
136 * caller can update the inode's number of bytes in an atomic way when
137 * replacing extents in a range to avoid races with stat(2).
138 */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)139 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root, struct btrfs_inode *inode,
141 struct btrfs_drop_extents_args *args)
142 {
143 struct btrfs_fs_info *fs_info = root->fs_info;
144 struct extent_buffer *leaf;
145 struct btrfs_file_extent_item *fi;
146 struct btrfs_key key;
147 struct btrfs_key new_key;
148 u64 ino = btrfs_ino(inode);
149 u64 search_start = args->start;
150 u64 disk_bytenr = 0;
151 u64 num_bytes = 0;
152 u64 extent_offset = 0;
153 u64 extent_end = 0;
154 u64 last_end = args->start;
155 int del_nr = 0;
156 int del_slot = 0;
157 int extent_type;
158 int recow;
159 int ret;
160 int modify_tree = -1;
161 int update_refs;
162 int found = 0;
163 struct btrfs_path *path = args->path;
164
165 args->bytes_found = 0;
166 args->extent_inserted = false;
167
168 /* Must always have a path if ->replace_extent is true */
169 ASSERT(!(args->replace_extent && !args->path));
170
171 if (!path) {
172 path = btrfs_alloc_path();
173 if (!path) {
174 ret = -ENOMEM;
175 goto out;
176 }
177 }
178
179 if (args->drop_cache)
180 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
181
182 if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
183 modify_tree = 0;
184
185 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
186 while (1) {
187 recow = 0;
188 ret = btrfs_lookup_file_extent(trans, root, path, ino,
189 search_start, modify_tree);
190 if (ret < 0)
191 break;
192 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
193 leaf = path->nodes[0];
194 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
195 if (key.objectid == ino &&
196 key.type == BTRFS_EXTENT_DATA_KEY)
197 path->slots[0]--;
198 }
199 ret = 0;
200 next_slot:
201 leaf = path->nodes[0];
202 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
203 if (WARN_ON(del_nr > 0)) {
204 btrfs_print_leaf(leaf);
205 ret = -EINVAL;
206 break;
207 }
208 ret = btrfs_next_leaf(root, path);
209 if (ret < 0)
210 break;
211 if (ret > 0) {
212 ret = 0;
213 break;
214 }
215 leaf = path->nodes[0];
216 recow = 1;
217 }
218
219 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
220
221 if (key.objectid > ino)
222 break;
223 if (WARN_ON_ONCE(key.objectid < ino) ||
224 key.type < BTRFS_EXTENT_DATA_KEY) {
225 ASSERT(del_nr == 0);
226 path->slots[0]++;
227 goto next_slot;
228 }
229 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
230 break;
231
232 fi = btrfs_item_ptr(leaf, path->slots[0],
233 struct btrfs_file_extent_item);
234 extent_type = btrfs_file_extent_type(leaf, fi);
235
236 if (extent_type == BTRFS_FILE_EXTENT_REG ||
237 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
238 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
239 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
240 extent_offset = btrfs_file_extent_offset(leaf, fi);
241 extent_end = key.offset +
242 btrfs_file_extent_num_bytes(leaf, fi);
243 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
244 extent_end = key.offset +
245 btrfs_file_extent_ram_bytes(leaf, fi);
246 } else {
247 /* can't happen */
248 BUG();
249 }
250
251 /*
252 * Don't skip extent items representing 0 byte lengths. They
253 * used to be created (bug) if while punching holes we hit
254 * -ENOSPC condition. So if we find one here, just ensure we
255 * delete it, otherwise we would insert a new file extent item
256 * with the same key (offset) as that 0 bytes length file
257 * extent item in the call to setup_items_for_insert() later
258 * in this function.
259 */
260 if (extent_end == key.offset && extent_end >= search_start) {
261 last_end = extent_end;
262 goto delete_extent_item;
263 }
264
265 if (extent_end <= search_start) {
266 path->slots[0]++;
267 goto next_slot;
268 }
269
270 found = 1;
271 search_start = max(key.offset, args->start);
272 if (recow || !modify_tree) {
273 modify_tree = -1;
274 btrfs_release_path(path);
275 continue;
276 }
277
278 /*
279 * | - range to drop - |
280 * | -------- extent -------- |
281 */
282 if (args->start > key.offset && args->end < extent_end) {
283 if (WARN_ON(del_nr > 0)) {
284 btrfs_print_leaf(leaf);
285 ret = -EINVAL;
286 break;
287 }
288 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
289 ret = -EOPNOTSUPP;
290 break;
291 }
292
293 memcpy(&new_key, &key, sizeof(new_key));
294 new_key.offset = args->start;
295 ret = btrfs_duplicate_item(trans, root, path,
296 &new_key);
297 if (ret == -EAGAIN) {
298 btrfs_release_path(path);
299 continue;
300 }
301 if (ret < 0)
302 break;
303
304 leaf = path->nodes[0];
305 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
306 struct btrfs_file_extent_item);
307 btrfs_set_file_extent_num_bytes(leaf, fi,
308 args->start - key.offset);
309
310 fi = btrfs_item_ptr(leaf, path->slots[0],
311 struct btrfs_file_extent_item);
312
313 extent_offset += args->start - key.offset;
314 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
315 btrfs_set_file_extent_num_bytes(leaf, fi,
316 extent_end - args->start);
317
318 if (update_refs && disk_bytenr > 0) {
319 struct btrfs_ref ref = {
320 .action = BTRFS_ADD_DELAYED_REF,
321 .bytenr = disk_bytenr,
322 .num_bytes = num_bytes,
323 .parent = 0,
324 .owning_root = btrfs_root_id(root),
325 .ref_root = btrfs_root_id(root),
326 };
327 btrfs_init_data_ref(&ref, new_key.objectid,
328 args->start - extent_offset,
329 0, false);
330 ret = btrfs_inc_extent_ref(trans, &ref);
331 if (ret) {
332 btrfs_abort_transaction(trans, ret);
333 break;
334 }
335 }
336 key.offset = args->start;
337 }
338 /*
339 * From here on out we will have actually dropped something, so
340 * last_end can be updated.
341 */
342 last_end = extent_end;
343
344 /*
345 * | ---- range to drop ----- |
346 * | -------- extent -------- |
347 */
348 if (args->start <= key.offset && args->end < extent_end) {
349 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
350 ret = -EOPNOTSUPP;
351 break;
352 }
353
354 memcpy(&new_key, &key, sizeof(new_key));
355 new_key.offset = args->end;
356 btrfs_set_item_key_safe(trans, path, &new_key);
357
358 extent_offset += args->end - key.offset;
359 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
360 btrfs_set_file_extent_num_bytes(leaf, fi,
361 extent_end - args->end);
362 if (update_refs && disk_bytenr > 0)
363 args->bytes_found += args->end - key.offset;
364 break;
365 }
366
367 search_start = extent_end;
368 /*
369 * | ---- range to drop ----- |
370 * | -------- extent -------- |
371 */
372 if (args->start > key.offset && args->end >= extent_end) {
373 if (WARN_ON(del_nr > 0)) {
374 btrfs_print_leaf(leaf);
375 ret = -EINVAL;
376 break;
377 }
378 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
379 ret = -EOPNOTSUPP;
380 break;
381 }
382
383 btrfs_set_file_extent_num_bytes(leaf, fi,
384 args->start - key.offset);
385 if (update_refs && disk_bytenr > 0)
386 args->bytes_found += extent_end - args->start;
387 if (args->end == extent_end)
388 break;
389
390 path->slots[0]++;
391 goto next_slot;
392 }
393
394 /*
395 * | ---- range to drop ----- |
396 * | ------ extent ------ |
397 */
398 if (args->start <= key.offset && args->end >= extent_end) {
399 delete_extent_item:
400 if (del_nr == 0) {
401 del_slot = path->slots[0];
402 del_nr = 1;
403 } else {
404 if (WARN_ON(del_slot + del_nr != path->slots[0])) {
405 btrfs_print_leaf(leaf);
406 ret = -EINVAL;
407 break;
408 }
409 del_nr++;
410 }
411
412 if (update_refs &&
413 extent_type == BTRFS_FILE_EXTENT_INLINE) {
414 args->bytes_found += extent_end - key.offset;
415 extent_end = ALIGN(extent_end,
416 fs_info->sectorsize);
417 } else if (update_refs && disk_bytenr > 0) {
418 struct btrfs_ref ref = {
419 .action = BTRFS_DROP_DELAYED_REF,
420 .bytenr = disk_bytenr,
421 .num_bytes = num_bytes,
422 .parent = 0,
423 .owning_root = btrfs_root_id(root),
424 .ref_root = btrfs_root_id(root),
425 };
426 btrfs_init_data_ref(&ref, key.objectid,
427 key.offset - extent_offset,
428 0, false);
429 ret = btrfs_free_extent(trans, &ref);
430 if (ret) {
431 btrfs_abort_transaction(trans, ret);
432 break;
433 }
434 args->bytes_found += extent_end - key.offset;
435 }
436
437 if (args->end == extent_end)
438 break;
439
440 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
441 path->slots[0]++;
442 goto next_slot;
443 }
444
445 ret = btrfs_del_items(trans, root, path, del_slot,
446 del_nr);
447 if (ret) {
448 btrfs_abort_transaction(trans, ret);
449 break;
450 }
451
452 del_nr = 0;
453 del_slot = 0;
454
455 btrfs_release_path(path);
456 continue;
457 }
458
459 BUG();
460 }
461
462 if (!ret && del_nr > 0) {
463 /*
464 * Set path->slots[0] to first slot, so that after the delete
465 * if items are move off from our leaf to its immediate left or
466 * right neighbor leafs, we end up with a correct and adjusted
467 * path->slots[0] for our insertion (if args->replace_extent).
468 */
469 path->slots[0] = del_slot;
470 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
471 if (ret)
472 btrfs_abort_transaction(trans, ret);
473 }
474
475 leaf = path->nodes[0];
476 /*
477 * If btrfs_del_items() was called, it might have deleted a leaf, in
478 * which case it unlocked our path, so check path->locks[0] matches a
479 * write lock.
480 */
481 if (!ret && args->replace_extent &&
482 path->locks[0] == BTRFS_WRITE_LOCK &&
483 btrfs_leaf_free_space(leaf) >=
484 sizeof(struct btrfs_item) + args->extent_item_size) {
485
486 key.objectid = ino;
487 key.type = BTRFS_EXTENT_DATA_KEY;
488 key.offset = args->start;
489 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
490 struct btrfs_key slot_key;
491
492 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
493 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
494 path->slots[0]++;
495 }
496 btrfs_setup_item_for_insert(trans, root, path, &key,
497 args->extent_item_size);
498 args->extent_inserted = true;
499 }
500
501 if (!args->path)
502 btrfs_free_path(path);
503 else if (!args->extent_inserted)
504 btrfs_release_path(path);
505 out:
506 args->drop_end = found ? min(args->end, last_end) : args->end;
507
508 return ret;
509 }
510
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)511 static bool extent_mergeable(struct extent_buffer *leaf, int slot, u64 objectid,
512 u64 bytenr, u64 orig_offset, u64 *start, u64 *end)
513 {
514 struct btrfs_file_extent_item *fi;
515 struct btrfs_key key;
516 u64 extent_end;
517
518 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
519 return false;
520
521 btrfs_item_key_to_cpu(leaf, &key, slot);
522 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
523 return false;
524
525 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
526 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
527 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
528 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
529 btrfs_file_extent_compression(leaf, fi) ||
530 btrfs_file_extent_encryption(leaf, fi) ||
531 btrfs_file_extent_other_encoding(leaf, fi))
532 return false;
533
534 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
535 if ((*start && *start != key.offset) || (*end && *end != extent_end))
536 return false;
537
538 *start = key.offset;
539 *end = extent_end;
540 return true;
541 }
542
543 /*
544 * Mark extent in the range start - end as written.
545 *
546 * This changes extent type from 'pre-allocated' to 'regular'. If only
547 * part of extent is marked as written, the extent will be split into
548 * two or three.
549 */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)550 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
551 struct btrfs_inode *inode, u64 start, u64 end)
552 {
553 struct btrfs_root *root = inode->root;
554 struct extent_buffer *leaf;
555 BTRFS_PATH_AUTO_FREE(path);
556 struct btrfs_file_extent_item *fi;
557 struct btrfs_ref ref = { 0 };
558 struct btrfs_key key;
559 struct btrfs_key new_key;
560 u64 bytenr;
561 u64 num_bytes;
562 u64 extent_end;
563 u64 orig_offset;
564 u64 other_start;
565 u64 other_end;
566 u64 split;
567 int del_nr = 0;
568 int del_slot = 0;
569 int recow;
570 int ret = 0;
571 u64 ino = btrfs_ino(inode);
572
573 path = btrfs_alloc_path();
574 if (!path)
575 return -ENOMEM;
576 again:
577 recow = 0;
578 split = start;
579 key.objectid = ino;
580 key.type = BTRFS_EXTENT_DATA_KEY;
581 key.offset = split;
582
583 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
584 if (ret < 0)
585 goto out;
586 if (ret > 0 && path->slots[0] > 0)
587 path->slots[0]--;
588
589 leaf = path->nodes[0];
590 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
591 if (key.objectid != ino ||
592 key.type != BTRFS_EXTENT_DATA_KEY) {
593 ret = -EINVAL;
594 btrfs_abort_transaction(trans, ret);
595 goto out;
596 }
597 fi = btrfs_item_ptr(leaf, path->slots[0],
598 struct btrfs_file_extent_item);
599 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
600 ret = -EINVAL;
601 btrfs_abort_transaction(trans, ret);
602 goto out;
603 }
604 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
605 if (key.offset > start || extent_end < end) {
606 ret = -EINVAL;
607 btrfs_abort_transaction(trans, ret);
608 goto out;
609 }
610
611 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
612 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
613 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
614 memcpy(&new_key, &key, sizeof(new_key));
615
616 if (start == key.offset && end < extent_end) {
617 other_start = 0;
618 other_end = start;
619 if (extent_mergeable(leaf, path->slots[0] - 1,
620 ino, bytenr, orig_offset,
621 &other_start, &other_end)) {
622 new_key.offset = end;
623 btrfs_set_item_key_safe(trans, path, &new_key);
624 fi = btrfs_item_ptr(leaf, path->slots[0],
625 struct btrfs_file_extent_item);
626 btrfs_set_file_extent_generation(leaf, fi,
627 trans->transid);
628 btrfs_set_file_extent_num_bytes(leaf, fi,
629 extent_end - end);
630 btrfs_set_file_extent_offset(leaf, fi,
631 end - orig_offset);
632 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
633 struct btrfs_file_extent_item);
634 btrfs_set_file_extent_generation(leaf, fi,
635 trans->transid);
636 btrfs_set_file_extent_num_bytes(leaf, fi,
637 end - other_start);
638 goto out;
639 }
640 }
641
642 if (start > key.offset && end == extent_end) {
643 other_start = end;
644 other_end = 0;
645 if (extent_mergeable(leaf, path->slots[0] + 1,
646 ino, bytenr, orig_offset,
647 &other_start, &other_end)) {
648 fi = btrfs_item_ptr(leaf, path->slots[0],
649 struct btrfs_file_extent_item);
650 btrfs_set_file_extent_num_bytes(leaf, fi,
651 start - key.offset);
652 btrfs_set_file_extent_generation(leaf, fi,
653 trans->transid);
654 path->slots[0]++;
655 new_key.offset = start;
656 btrfs_set_item_key_safe(trans, path, &new_key);
657
658 fi = btrfs_item_ptr(leaf, path->slots[0],
659 struct btrfs_file_extent_item);
660 btrfs_set_file_extent_generation(leaf, fi,
661 trans->transid);
662 btrfs_set_file_extent_num_bytes(leaf, fi,
663 other_end - start);
664 btrfs_set_file_extent_offset(leaf, fi,
665 start - orig_offset);
666 goto out;
667 }
668 }
669
670 while (start > key.offset || end < extent_end) {
671 if (key.offset == start)
672 split = end;
673
674 new_key.offset = split;
675 ret = btrfs_duplicate_item(trans, root, path, &new_key);
676 if (ret == -EAGAIN) {
677 btrfs_release_path(path);
678 goto again;
679 }
680 if (ret < 0) {
681 btrfs_abort_transaction(trans, ret);
682 goto out;
683 }
684
685 leaf = path->nodes[0];
686 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
687 struct btrfs_file_extent_item);
688 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
689 btrfs_set_file_extent_num_bytes(leaf, fi,
690 split - key.offset);
691
692 fi = btrfs_item_ptr(leaf, path->slots[0],
693 struct btrfs_file_extent_item);
694
695 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
696 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
697 btrfs_set_file_extent_num_bytes(leaf, fi,
698 extent_end - split);
699
700 ref.action = BTRFS_ADD_DELAYED_REF;
701 ref.bytenr = bytenr;
702 ref.num_bytes = num_bytes;
703 ref.parent = 0;
704 ref.owning_root = btrfs_root_id(root);
705 ref.ref_root = btrfs_root_id(root);
706 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
707 ret = btrfs_inc_extent_ref(trans, &ref);
708 if (ret) {
709 btrfs_abort_transaction(trans, ret);
710 goto out;
711 }
712
713 if (split == start) {
714 key.offset = start;
715 } else {
716 if (start != key.offset) {
717 ret = -EINVAL;
718 btrfs_abort_transaction(trans, ret);
719 goto out;
720 }
721 path->slots[0]--;
722 extent_end = end;
723 }
724 recow = 1;
725 }
726
727 other_start = end;
728 other_end = 0;
729
730 ref.action = BTRFS_DROP_DELAYED_REF;
731 ref.bytenr = bytenr;
732 ref.num_bytes = num_bytes;
733 ref.parent = 0;
734 ref.owning_root = btrfs_root_id(root);
735 ref.ref_root = btrfs_root_id(root);
736 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
737 if (extent_mergeable(leaf, path->slots[0] + 1,
738 ino, bytenr, orig_offset,
739 &other_start, &other_end)) {
740 if (recow) {
741 btrfs_release_path(path);
742 goto again;
743 }
744 extent_end = other_end;
745 del_slot = path->slots[0] + 1;
746 del_nr++;
747 ret = btrfs_free_extent(trans, &ref);
748 if (ret) {
749 btrfs_abort_transaction(trans, ret);
750 goto out;
751 }
752 }
753 other_start = 0;
754 other_end = start;
755 if (extent_mergeable(leaf, path->slots[0] - 1,
756 ino, bytenr, orig_offset,
757 &other_start, &other_end)) {
758 if (recow) {
759 btrfs_release_path(path);
760 goto again;
761 }
762 key.offset = other_start;
763 del_slot = path->slots[0];
764 del_nr++;
765 ret = btrfs_free_extent(trans, &ref);
766 if (ret) {
767 btrfs_abort_transaction(trans, ret);
768 goto out;
769 }
770 }
771 if (del_nr == 0) {
772 fi = btrfs_item_ptr(leaf, path->slots[0],
773 struct btrfs_file_extent_item);
774 btrfs_set_file_extent_type(leaf, fi,
775 BTRFS_FILE_EXTENT_REG);
776 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
777 } else {
778 fi = btrfs_item_ptr(leaf, del_slot - 1,
779 struct btrfs_file_extent_item);
780 btrfs_set_file_extent_type(leaf, fi,
781 BTRFS_FILE_EXTENT_REG);
782 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
783 btrfs_set_file_extent_num_bytes(leaf, fi,
784 extent_end - key.offset);
785
786 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
787 if (ret < 0) {
788 btrfs_abort_transaction(trans, ret);
789 goto out;
790 }
791 }
792 out:
793 return ret;
794 }
795
796 /*
797 * On error return an unlocked folio and the error value
798 * On success return a locked folio and 0
799 */
prepare_uptodate_folio(struct inode * inode,struct folio * folio,u64 pos,u64 len)800 static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
801 u64 len)
802 {
803 u64 clamp_start = max_t(u64, pos, folio_pos(folio));
804 u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio));
805 const u32 blocksize = inode_to_fs_info(inode)->sectorsize;
806 int ret = 0;
807
808 if (folio_test_uptodate(folio))
809 return 0;
810
811 if (IS_ALIGNED(clamp_start, blocksize) &&
812 IS_ALIGNED(clamp_end, blocksize))
813 return 0;
814
815 ret = btrfs_read_folio(NULL, folio);
816 if (ret)
817 return ret;
818 folio_lock(folio);
819 if (!folio_test_uptodate(folio)) {
820 folio_unlock(folio);
821 return -EIO;
822 }
823
824 /*
825 * Since btrfs_read_folio() will unlock the folio before it returns,
826 * there is a window where btrfs_release_folio() can be called to
827 * release the page. Here we check both inode mapping and page
828 * private to make sure the page was not released.
829 *
830 * The private flag check is essential for subpage as we need to store
831 * extra bitmap using folio private.
832 */
833 if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
834 folio_unlock(folio);
835 return -EAGAIN;
836 }
837 return 0;
838 }
839
get_prepare_gfp_flags(struct inode * inode,bool nowait)840 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
841 {
842 gfp_t gfp;
843
844 gfp = btrfs_alloc_write_mask(inode->i_mapping);
845 if (nowait) {
846 gfp &= ~__GFP_DIRECT_RECLAIM;
847 gfp |= GFP_NOWAIT;
848 }
849
850 return gfp;
851 }
852
853 /*
854 * Get folio into the page cache and lock it.
855 */
prepare_one_folio(struct inode * inode,struct folio ** folio_ret,loff_t pos,size_t write_bytes,bool nowait)856 static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
857 loff_t pos, size_t write_bytes,
858 bool nowait)
859 {
860 unsigned long index = pos >> PAGE_SHIFT;
861 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
862 fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN) |
863 fgf_set_order(write_bytes);
864 struct folio *folio;
865 int ret = 0;
866
867 again:
868 folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
869 if (IS_ERR(folio))
870 return PTR_ERR(folio);
871
872 ret = set_folio_extent_mapped(folio);
873 if (ret < 0) {
874 folio_unlock(folio);
875 folio_put(folio);
876 return ret;
877 }
878 ret = prepare_uptodate_folio(inode, folio, pos, write_bytes);
879 if (ret) {
880 /* The folio is already unlocked. */
881 folio_put(folio);
882 if (!nowait && ret == -EAGAIN) {
883 ret = 0;
884 goto again;
885 }
886 return ret;
887 }
888 *folio_ret = folio;
889 return 0;
890 }
891
892 /*
893 * Locks the extent and properly waits for data=ordered extents to finish
894 * before allowing the folios to be modified if need.
895 *
896 * Return:
897 * 1 - the extent is locked
898 * 0 - the extent is not locked, and everything is OK
899 * -EAGAIN - need to prepare the folios again
900 */
901 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct folio * folio,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)902 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
903 loff_t pos, size_t write_bytes,
904 u64 *lockstart, u64 *lockend, bool nowait,
905 struct extent_state **cached_state)
906 {
907 struct btrfs_fs_info *fs_info = inode->root->fs_info;
908 u64 start_pos;
909 u64 last_pos;
910 int ret = 0;
911
912 start_pos = round_down(pos, fs_info->sectorsize);
913 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
914
915 if (start_pos < inode->vfs_inode.i_size) {
916 struct btrfs_ordered_extent *ordered;
917
918 if (nowait) {
919 if (!btrfs_try_lock_extent(&inode->io_tree, start_pos,
920 last_pos, cached_state)) {
921 folio_unlock(folio);
922 folio_put(folio);
923 return -EAGAIN;
924 }
925 } else {
926 btrfs_lock_extent(&inode->io_tree, start_pos, last_pos,
927 cached_state);
928 }
929
930 ordered = btrfs_lookup_ordered_range(inode, start_pos,
931 last_pos - start_pos + 1);
932 if (ordered &&
933 ordered->file_offset + ordered->num_bytes > start_pos &&
934 ordered->file_offset <= last_pos) {
935 btrfs_unlock_extent(&inode->io_tree, start_pos, last_pos,
936 cached_state);
937 folio_unlock(folio);
938 folio_put(folio);
939 btrfs_start_ordered_extent(ordered);
940 btrfs_put_ordered_extent(ordered);
941 return -EAGAIN;
942 }
943 if (ordered)
944 btrfs_put_ordered_extent(ordered);
945
946 *lockstart = start_pos;
947 *lockend = last_pos;
948 ret = 1;
949 }
950
951 /*
952 * We should be called after prepare_one_folio() which should have locked
953 * all pages in the range.
954 */
955 WARN_ON(!folio_test_locked(folio));
956
957 return ret;
958 }
959
960 /*
961 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
962 *
963 * @pos: File offset.
964 * @write_bytes: The length to write, will be updated to the nocow writeable
965 * range.
966 *
967 * This function will flush ordered extents in the range to ensure proper
968 * nocow checks.
969 *
970 * Return:
971 * > 0 If we can nocow, and updates @write_bytes.
972 * 0 If we can't do a nocow write.
973 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
974 * root is in progress.
975 * < 0 If an error happened.
976 *
977 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
978 */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)979 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
980 size_t *write_bytes, bool nowait)
981 {
982 struct btrfs_fs_info *fs_info = inode->root->fs_info;
983 struct btrfs_root *root = inode->root;
984 struct extent_state *cached_state = NULL;
985 u64 lockstart, lockend;
986 u64 num_bytes;
987 int ret;
988
989 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
990 return 0;
991
992 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
993 return -EAGAIN;
994
995 lockstart = round_down(pos, fs_info->sectorsize);
996 lockend = round_up(pos + *write_bytes,
997 fs_info->sectorsize) - 1;
998 num_bytes = lockend - lockstart + 1;
999
1000 if (nowait) {
1001 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1002 &cached_state)) {
1003 btrfs_drew_write_unlock(&root->snapshot_lock);
1004 return -EAGAIN;
1005 }
1006 } else {
1007 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1008 &cached_state);
1009 }
1010 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, nowait);
1011 if (ret <= 0)
1012 btrfs_drew_write_unlock(&root->snapshot_lock);
1013 else
1014 *write_bytes = min_t(size_t, *write_bytes ,
1015 num_bytes - pos + lockstart);
1016 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1017
1018 return ret;
1019 }
1020
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1021 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1022 {
1023 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1024 }
1025
btrfs_write_check(struct kiocb * iocb,size_t count)1026 int btrfs_write_check(struct kiocb *iocb, size_t count)
1027 {
1028 struct file *file = iocb->ki_filp;
1029 struct inode *inode = file_inode(file);
1030 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1031 loff_t pos = iocb->ki_pos;
1032 int ret;
1033 loff_t oldsize;
1034
1035 /*
1036 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1037 * prealloc flags, as without those flags we always have to COW. We will
1038 * later check if we can really COW into the target range (using
1039 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1040 */
1041 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1042 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1043 return -EAGAIN;
1044
1045 ret = file_remove_privs(file);
1046 if (ret)
1047 return ret;
1048
1049 /*
1050 * We reserve space for updating the inode when we reserve space for the
1051 * extent we are going to write, so we will enospc out there. We don't
1052 * need to start yet another transaction to update the inode as we will
1053 * update the inode when we finish writing whatever data we write.
1054 */
1055 if (!IS_NOCMTIME(inode)) {
1056 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1057 inode_inc_iversion(inode);
1058 }
1059
1060 oldsize = i_size_read(inode);
1061 if (pos > oldsize) {
1062 /* Expand hole size to cover write data, preventing empty gap */
1063 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1064
1065 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1066 if (ret)
1067 return ret;
1068 }
1069
1070 return 0;
1071 }
1072
release_space(struct btrfs_inode * inode,struct extent_changeset * data_reserved,u64 start,u64 len,bool only_release_metadata)1073 static void release_space(struct btrfs_inode *inode, struct extent_changeset *data_reserved,
1074 u64 start, u64 len, bool only_release_metadata)
1075 {
1076 if (len == 0)
1077 return;
1078
1079 if (only_release_metadata) {
1080 btrfs_check_nocow_unlock(inode);
1081 btrfs_delalloc_release_metadata(inode, len, true);
1082 } else {
1083 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1084
1085 btrfs_delalloc_release_space(inode, data_reserved,
1086 round_down(start, fs_info->sectorsize),
1087 len, true);
1088 }
1089 }
1090
1091 /*
1092 * Reserve data and metadata space for this buffered write range.
1093 *
1094 * Return >0 for the number of bytes reserved, which is always block aligned.
1095 * Return <0 for error.
1096 */
reserve_space(struct btrfs_inode * inode,struct extent_changeset ** data_reserved,u64 start,size_t * len,bool nowait,bool * only_release_metadata)1097 static ssize_t reserve_space(struct btrfs_inode *inode,
1098 struct extent_changeset **data_reserved,
1099 u64 start, size_t *len, bool nowait,
1100 bool *only_release_metadata)
1101 {
1102 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1103 const unsigned int block_offset = (start & (fs_info->sectorsize - 1));
1104 size_t reserve_bytes;
1105 int ret;
1106
1107 ret = btrfs_check_data_free_space(inode, data_reserved, start, *len, nowait);
1108 if (ret < 0) {
1109 int can_nocow;
1110
1111 if (nowait && (ret == -ENOSPC || ret == -EAGAIN))
1112 return -EAGAIN;
1113
1114 /*
1115 * If we don't have to COW at the offset, reserve metadata only.
1116 * write_bytes may get smaller than requested here.
1117 */
1118 can_nocow = btrfs_check_nocow_lock(inode, start, len, nowait);
1119 if (can_nocow < 0)
1120 ret = can_nocow;
1121 if (can_nocow > 0)
1122 ret = 0;
1123 if (ret)
1124 return ret;
1125 *only_release_metadata = true;
1126 }
1127
1128 reserve_bytes = round_up(*len + block_offset, fs_info->sectorsize);
1129 WARN_ON(reserve_bytes == 0);
1130 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes,
1131 reserve_bytes, nowait);
1132 if (ret) {
1133 if (!*only_release_metadata)
1134 btrfs_free_reserved_data_space(inode, *data_reserved,
1135 start, *len);
1136 else
1137 btrfs_check_nocow_unlock(inode);
1138
1139 if (nowait && ret == -ENOSPC)
1140 ret = -EAGAIN;
1141 return ret;
1142 }
1143 return reserve_bytes;
1144 }
1145
1146 /* Shrink the reserved data and metadata space from @reserved_len to @new_len. */
shrink_reserved_space(struct btrfs_inode * inode,struct extent_changeset * data_reserved,u64 reserved_start,u64 reserved_len,u64 new_len,bool only_release_metadata)1147 static void shrink_reserved_space(struct btrfs_inode *inode,
1148 struct extent_changeset *data_reserved,
1149 u64 reserved_start, u64 reserved_len,
1150 u64 new_len, bool only_release_metadata)
1151 {
1152 const u64 diff = reserved_len - new_len;
1153
1154 ASSERT(new_len <= reserved_len);
1155 btrfs_delalloc_shrink_extents(inode, reserved_len, new_len);
1156 if (only_release_metadata)
1157 btrfs_delalloc_release_metadata(inode, diff, true);
1158 else
1159 btrfs_delalloc_release_space(inode, data_reserved,
1160 reserved_start + new_len, diff, true);
1161 }
1162
1163 /* Calculate the maximum amount of bytes we can write into one folio. */
calc_write_bytes(const struct btrfs_inode * inode,const struct iov_iter * iter,u64 start)1164 static size_t calc_write_bytes(const struct btrfs_inode *inode,
1165 const struct iov_iter *iter, u64 start)
1166 {
1167 const size_t max_folio_size = mapping_max_folio_size(inode->vfs_inode.i_mapping);
1168
1169 return min(max_folio_size - (start & (max_folio_size - 1)),
1170 iov_iter_count(iter));
1171 }
1172
1173 /*
1174 * Do the heavy-lifting work to copy one range into one folio of the page cache.
1175 *
1176 * Return > 0 in case we copied all bytes or just some of them.
1177 * Return 0 if no bytes were copied, in which case the caller should retry.
1178 * Return <0 on error.
1179 */
copy_one_range(struct btrfs_inode * inode,struct iov_iter * iter,struct extent_changeset ** data_reserved,u64 start,bool nowait)1180 static int copy_one_range(struct btrfs_inode *inode, struct iov_iter *iter,
1181 struct extent_changeset **data_reserved, u64 start,
1182 bool nowait)
1183 {
1184 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1185 struct extent_state *cached_state = NULL;
1186 size_t write_bytes = calc_write_bytes(inode, iter, start);
1187 size_t copied;
1188 const u64 reserved_start = round_down(start, fs_info->sectorsize);
1189 u64 reserved_len;
1190 struct folio *folio = NULL;
1191 int extents_locked;
1192 u64 lockstart;
1193 u64 lockend;
1194 bool only_release_metadata = false;
1195 const unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1196 int ret;
1197
1198 /*
1199 * Fault all pages before locking them in prepare_one_folio() to avoid
1200 * recursive lock.
1201 */
1202 if (unlikely(fault_in_iov_iter_readable(iter, write_bytes)))
1203 return -EFAULT;
1204 extent_changeset_release(*data_reserved);
1205 ret = reserve_space(inode, data_reserved, start, &write_bytes, nowait,
1206 &only_release_metadata);
1207 if (ret < 0)
1208 return ret;
1209 reserved_len = ret;
1210 /* Write range must be inside the reserved range. */
1211 ASSERT(reserved_start <= start);
1212 ASSERT(start + write_bytes <= reserved_start + reserved_len);
1213
1214 again:
1215 ret = balance_dirty_pages_ratelimited_flags(inode->vfs_inode.i_mapping,
1216 bdp_flags);
1217 if (ret) {
1218 btrfs_delalloc_release_extents(inode, reserved_len);
1219 release_space(inode, *data_reserved, reserved_start, reserved_len,
1220 only_release_metadata);
1221 return ret;
1222 }
1223
1224 ret = prepare_one_folio(&inode->vfs_inode, &folio, start, write_bytes, false);
1225 if (ret) {
1226 btrfs_delalloc_release_extents(inode, reserved_len);
1227 release_space(inode, *data_reserved, reserved_start, reserved_len,
1228 only_release_metadata);
1229 return ret;
1230 }
1231
1232 /*
1233 * The reserved range goes beyond the current folio, shrink the reserved
1234 * space to the folio boundary.
1235 */
1236 if (reserved_start + reserved_len > folio_pos(folio) + folio_size(folio)) {
1237 const u64 last_block = folio_pos(folio) + folio_size(folio);
1238
1239 shrink_reserved_space(inode, *data_reserved, reserved_start,
1240 reserved_len, last_block - reserved_start,
1241 only_release_metadata);
1242 write_bytes = last_block - start;
1243 reserved_len = last_block - reserved_start;
1244 }
1245
1246 extents_locked = lock_and_cleanup_extent_if_need(inode, folio, start,
1247 write_bytes, &lockstart,
1248 &lockend, nowait,
1249 &cached_state);
1250 if (extents_locked < 0) {
1251 if (!nowait && extents_locked == -EAGAIN)
1252 goto again;
1253
1254 btrfs_delalloc_release_extents(inode, reserved_len);
1255 release_space(inode, *data_reserved, reserved_start, reserved_len,
1256 only_release_metadata);
1257 ret = extents_locked;
1258 return ret;
1259 }
1260
1261 copied = copy_folio_from_iter_atomic(folio, offset_in_folio(folio, start),
1262 write_bytes, iter);
1263 flush_dcache_folio(folio);
1264
1265 if (unlikely(copied < write_bytes)) {
1266 u64 last_block;
1267
1268 /*
1269 * The original write range doesn't need an uptodate folio as
1270 * the range is block aligned. But now a short copy happened.
1271 * We cannot handle it without an uptodate folio.
1272 *
1273 * So just revert the range and we will retry.
1274 */
1275 if (!folio_test_uptodate(folio)) {
1276 iov_iter_revert(iter, copied);
1277 copied = 0;
1278 }
1279
1280 /* No copied bytes, unlock, release reserved space and exit. */
1281 if (copied == 0) {
1282 if (extents_locked)
1283 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend,
1284 &cached_state);
1285 else
1286 btrfs_free_extent_state(cached_state);
1287 btrfs_delalloc_release_extents(inode, reserved_len);
1288 release_space(inode, *data_reserved, reserved_start, reserved_len,
1289 only_release_metadata);
1290 btrfs_drop_folio(fs_info, folio, start, copied);
1291 return 0;
1292 }
1293
1294 /* Release the reserved space beyond the last block. */
1295 last_block = round_up(start + copied, fs_info->sectorsize);
1296
1297 shrink_reserved_space(inode, *data_reserved, reserved_start,
1298 reserved_len, last_block - reserved_start,
1299 only_release_metadata);
1300 reserved_len = last_block - reserved_start;
1301 }
1302
1303 ret = btrfs_dirty_folio(inode, folio, start, copied, &cached_state,
1304 only_release_metadata);
1305 /*
1306 * If we have not locked the extent range, because the range's start
1307 * offset is >= i_size, we might still have a non-NULL cached extent
1308 * state, acquired while marking the extent range as delalloc through
1309 * btrfs_dirty_page(). Therefore free any possible cached extent state
1310 * to avoid a memory leak.
1311 */
1312 if (extents_locked)
1313 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1314 else
1315 btrfs_free_extent_state(cached_state);
1316
1317 btrfs_delalloc_release_extents(inode, reserved_len);
1318 if (ret) {
1319 btrfs_drop_folio(fs_info, folio, start, copied);
1320 release_space(inode, *data_reserved, reserved_start, reserved_len,
1321 only_release_metadata);
1322 return ret;
1323 }
1324 if (only_release_metadata)
1325 btrfs_check_nocow_unlock(inode);
1326
1327 btrfs_drop_folio(fs_info, folio, start, copied);
1328 return copied;
1329 }
1330
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * iter)1331 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
1332 {
1333 struct file *file = iocb->ki_filp;
1334 loff_t pos;
1335 struct inode *inode = file_inode(file);
1336 struct extent_changeset *data_reserved = NULL;
1337 size_t num_written = 0;
1338 ssize_t ret;
1339 loff_t old_isize;
1340 unsigned int ilock_flags = 0;
1341 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1342
1343 if (nowait)
1344 ilock_flags |= BTRFS_ILOCK_TRY;
1345
1346 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1347 if (ret < 0)
1348 return ret;
1349
1350 /*
1351 * We can only trust the isize with inode lock held, or it can race with
1352 * other buffered writes and cause incorrect call of
1353 * pagecache_isize_extended() to overwrite existing data.
1354 */
1355 old_isize = i_size_read(inode);
1356
1357 ret = generic_write_checks(iocb, iter);
1358 if (ret <= 0)
1359 goto out;
1360
1361 ret = btrfs_write_check(iocb, ret);
1362 if (ret < 0)
1363 goto out;
1364
1365 pos = iocb->ki_pos;
1366 while (iov_iter_count(iter) > 0) {
1367 ret = copy_one_range(BTRFS_I(inode), iter, &data_reserved, pos, nowait);
1368 if (ret < 0)
1369 break;
1370 pos += ret;
1371 num_written += ret;
1372 cond_resched();
1373 }
1374
1375 extent_changeset_free(data_reserved);
1376 if (num_written > 0) {
1377 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1378 iocb->ki_pos += num_written;
1379 }
1380 out:
1381 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1382 return num_written ? num_written : ret;
1383 }
1384
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1385 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1386 const struct btrfs_ioctl_encoded_io_args *encoded)
1387 {
1388 struct file *file = iocb->ki_filp;
1389 struct inode *inode = file_inode(file);
1390 loff_t count;
1391 ssize_t ret;
1392
1393 btrfs_inode_lock(BTRFS_I(inode), 0);
1394 count = encoded->len;
1395 ret = generic_write_checks_count(iocb, &count);
1396 if (ret == 0 && count != encoded->len) {
1397 /*
1398 * The write got truncated by generic_write_checks_count(). We
1399 * can't do a partial encoded write.
1400 */
1401 ret = -EFBIG;
1402 }
1403 if (ret || encoded->len == 0)
1404 goto out;
1405
1406 ret = btrfs_write_check(iocb, encoded->len);
1407 if (ret < 0)
1408 goto out;
1409
1410 ret = btrfs_do_encoded_write(iocb, from, encoded);
1411 out:
1412 btrfs_inode_unlock(BTRFS_I(inode), 0);
1413 return ret;
1414 }
1415
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1416 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1417 const struct btrfs_ioctl_encoded_io_args *encoded)
1418 {
1419 struct file *file = iocb->ki_filp;
1420 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1421 ssize_t num_written, num_sync;
1422
1423 /*
1424 * If the fs flips readonly due to some impossible error, although we
1425 * have opened a file as writable, we have to stop this write operation
1426 * to ensure consistency.
1427 */
1428 if (BTRFS_FS_ERROR(inode->root->fs_info))
1429 return -EROFS;
1430
1431 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1432 return -EOPNOTSUPP;
1433
1434 if (encoded) {
1435 num_written = btrfs_encoded_write(iocb, from, encoded);
1436 num_sync = encoded->len;
1437 } else if (iocb->ki_flags & IOCB_DIRECT) {
1438 num_written = btrfs_direct_write(iocb, from);
1439 num_sync = num_written;
1440 } else {
1441 num_written = btrfs_buffered_write(iocb, from);
1442 num_sync = num_written;
1443 }
1444
1445 btrfs_set_inode_last_sub_trans(inode);
1446
1447 if (num_sync > 0) {
1448 num_sync = generic_write_sync(iocb, num_sync);
1449 if (num_sync < 0)
1450 num_written = num_sync;
1451 }
1452
1453 return num_written;
1454 }
1455
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1456 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1457 {
1458 return btrfs_do_write_iter(iocb, from, NULL);
1459 }
1460
btrfs_release_file(struct inode * inode,struct file * filp)1461 int btrfs_release_file(struct inode *inode, struct file *filp)
1462 {
1463 struct btrfs_file_private *private = filp->private_data;
1464
1465 if (private) {
1466 kfree(private->filldir_buf);
1467 btrfs_free_extent_state(private->llseek_cached_state);
1468 kfree(private);
1469 filp->private_data = NULL;
1470 }
1471
1472 /*
1473 * Set by setattr when we are about to truncate a file from a non-zero
1474 * size to a zero size. This tries to flush down new bytes that may
1475 * have been written if the application were using truncate to replace
1476 * a file in place.
1477 */
1478 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1479 &BTRFS_I(inode)->runtime_flags))
1480 filemap_flush(inode->i_mapping);
1481 return 0;
1482 }
1483
start_ordered_ops(struct btrfs_inode * inode,loff_t start,loff_t end)1484 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1485 {
1486 int ret;
1487 struct blk_plug plug;
1488
1489 /*
1490 * This is only called in fsync, which would do synchronous writes, so
1491 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1492 * multiple disks using raid profile, a large IO can be split to
1493 * several segments of stripe length (currently 64K).
1494 */
1495 blk_start_plug(&plug);
1496 ret = btrfs_fdatawrite_range(inode, start, end);
1497 blk_finish_plug(&plug);
1498
1499 return ret;
1500 }
1501
skip_inode_logging(const struct btrfs_log_ctx * ctx)1502 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1503 {
1504 struct btrfs_inode *inode = ctx->inode;
1505 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1506
1507 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1508 list_empty(&ctx->ordered_extents))
1509 return true;
1510
1511 /*
1512 * If we are doing a fast fsync we can not bail out if the inode's
1513 * last_trans is <= then the last committed transaction, because we only
1514 * update the last_trans of the inode during ordered extent completion,
1515 * and for a fast fsync we don't wait for that, we only wait for the
1516 * writeback to complete.
1517 */
1518 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1519 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1520 list_empty(&ctx->ordered_extents)))
1521 return true;
1522
1523 return false;
1524 }
1525
1526 /*
1527 * fsync call for both files and directories. This logs the inode into
1528 * the tree log instead of forcing full commits whenever possible.
1529 *
1530 * It needs to call filemap_fdatawait so that all ordered extent updates are
1531 * in the metadata btree are up to date for copying to the log.
1532 *
1533 * It drops the inode mutex before doing the tree log commit. This is an
1534 * important optimization for directories because holding the mutex prevents
1535 * new operations on the dir while we write to disk.
1536 */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1537 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1538 {
1539 struct dentry *dentry = file_dentry(file);
1540 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1541 struct btrfs_root *root = inode->root;
1542 struct btrfs_fs_info *fs_info = root->fs_info;
1543 struct btrfs_trans_handle *trans;
1544 struct btrfs_log_ctx ctx;
1545 int ret = 0, err;
1546 u64 len;
1547 bool full_sync;
1548 bool skip_ilock = false;
1549
1550 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1551 skip_ilock = true;
1552 current->journal_info = NULL;
1553 btrfs_assert_inode_locked(inode);
1554 }
1555
1556 trace_btrfs_sync_file(file, datasync);
1557
1558 btrfs_init_log_ctx(&ctx, inode);
1559
1560 /*
1561 * Always set the range to a full range, otherwise we can get into
1562 * several problems, from missing file extent items to represent holes
1563 * when not using the NO_HOLES feature, to log tree corruption due to
1564 * races between hole detection during logging and completion of ordered
1565 * extents outside the range, to missing checksums due to ordered extents
1566 * for which we flushed only a subset of their pages.
1567 */
1568 start = 0;
1569 end = LLONG_MAX;
1570 len = (u64)LLONG_MAX + 1;
1571
1572 /*
1573 * We write the dirty pages in the range and wait until they complete
1574 * out of the ->i_mutex. If so, we can flush the dirty pages by
1575 * multi-task, and make the performance up. See
1576 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1577 */
1578 ret = start_ordered_ops(inode, start, end);
1579 if (ret)
1580 goto out;
1581
1582 if (skip_ilock)
1583 down_write(&inode->i_mmap_lock);
1584 else
1585 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1586
1587 atomic_inc(&root->log_batch);
1588
1589 /*
1590 * Before we acquired the inode's lock and the mmap lock, someone may
1591 * have dirtied more pages in the target range. We need to make sure
1592 * that writeback for any such pages does not start while we are logging
1593 * the inode, because if it does, any of the following might happen when
1594 * we are not doing a full inode sync:
1595 *
1596 * 1) We log an extent after its writeback finishes but before its
1597 * checksums are added to the csum tree, leading to -EIO errors
1598 * when attempting to read the extent after a log replay.
1599 *
1600 * 2) We can end up logging an extent before its writeback finishes.
1601 * Therefore after the log replay we will have a file extent item
1602 * pointing to an unwritten extent (and no data checksums as well).
1603 *
1604 * So trigger writeback for any eventual new dirty pages and then we
1605 * wait for all ordered extents to complete below.
1606 */
1607 ret = start_ordered_ops(inode, start, end);
1608 if (ret) {
1609 if (skip_ilock)
1610 up_write(&inode->i_mmap_lock);
1611 else
1612 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1613 goto out;
1614 }
1615
1616 /*
1617 * Always check for the full sync flag while holding the inode's lock,
1618 * to avoid races with other tasks. The flag must be either set all the
1619 * time during logging or always off all the time while logging.
1620 * We check the flag here after starting delalloc above, because when
1621 * running delalloc the full sync flag may be set if we need to drop
1622 * extra extent map ranges due to temporary memory allocation failures.
1623 */
1624 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1625
1626 /*
1627 * We have to do this here to avoid the priority inversion of waiting on
1628 * IO of a lower priority task while holding a transaction open.
1629 *
1630 * For a full fsync we wait for the ordered extents to complete while
1631 * for a fast fsync we wait just for writeback to complete, and then
1632 * attach the ordered extents to the transaction so that a transaction
1633 * commit waits for their completion, to avoid data loss if we fsync,
1634 * the current transaction commits before the ordered extents complete
1635 * and a power failure happens right after that.
1636 *
1637 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1638 * logical address recorded in the ordered extent may change. We need
1639 * to wait for the IO to stabilize the logical address.
1640 */
1641 if (full_sync || btrfs_is_zoned(fs_info)) {
1642 ret = btrfs_wait_ordered_range(inode, start, len);
1643 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1644 } else {
1645 /*
1646 * Get our ordered extents as soon as possible to avoid doing
1647 * checksum lookups in the csum tree, and use instead the
1648 * checksums attached to the ordered extents.
1649 */
1650 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1651 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1652 if (ret)
1653 goto out_release_extents;
1654
1655 /*
1656 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1657 * starting and waiting for writeback, because for buffered IO
1658 * it may have been set during the end IO callback
1659 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1660 * case an error happened and we need to wait for ordered
1661 * extents to complete so that any extent maps that point to
1662 * unwritten locations are dropped and we don't log them.
1663 */
1664 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1665 ret = btrfs_wait_ordered_range(inode, start, len);
1666 }
1667
1668 if (ret)
1669 goto out_release_extents;
1670
1671 atomic_inc(&root->log_batch);
1672
1673 if (skip_inode_logging(&ctx)) {
1674 /*
1675 * We've had everything committed since the last time we were
1676 * modified so clear this flag in case it was set for whatever
1677 * reason, it's no longer relevant.
1678 */
1679 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1680 /*
1681 * An ordered extent might have started before and completed
1682 * already with io errors, in which case the inode was not
1683 * updated and we end up here. So check the inode's mapping
1684 * for any errors that might have happened since we last
1685 * checked called fsync.
1686 */
1687 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1688 goto out_release_extents;
1689 }
1690
1691 btrfs_init_log_ctx_scratch_eb(&ctx);
1692
1693 /*
1694 * We use start here because we will need to wait on the IO to complete
1695 * in btrfs_sync_log, which could require joining a transaction (for
1696 * example checking cross references in the nocow path). If we use join
1697 * here we could get into a situation where we're waiting on IO to
1698 * happen that is blocked on a transaction trying to commit. With start
1699 * we inc the extwriter counter, so we wait for all extwriters to exit
1700 * before we start blocking joiners. This comment is to keep somebody
1701 * from thinking they are super smart and changing this to
1702 * btrfs_join_transaction *cough*Josef*cough*.
1703 */
1704 trans = btrfs_start_transaction(root, 0);
1705 if (IS_ERR(trans)) {
1706 ret = PTR_ERR(trans);
1707 goto out_release_extents;
1708 }
1709 trans->in_fsync = true;
1710
1711 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1712 /*
1713 * Scratch eb no longer needed, release before syncing log or commit
1714 * transaction, to avoid holding unnecessary memory during such long
1715 * operations.
1716 */
1717 if (ctx.scratch_eb) {
1718 free_extent_buffer(ctx.scratch_eb);
1719 ctx.scratch_eb = NULL;
1720 }
1721 btrfs_release_log_ctx_extents(&ctx);
1722 if (ret < 0) {
1723 /* Fallthrough and commit/free transaction. */
1724 ret = BTRFS_LOG_FORCE_COMMIT;
1725 }
1726
1727 /* we've logged all the items and now have a consistent
1728 * version of the file in the log. It is possible that
1729 * someone will come in and modify the file, but that's
1730 * fine because the log is consistent on disk, and we
1731 * have references to all of the file's extents
1732 *
1733 * It is possible that someone will come in and log the
1734 * file again, but that will end up using the synchronization
1735 * inside btrfs_sync_log to keep things safe.
1736 */
1737 if (skip_ilock)
1738 up_write(&inode->i_mmap_lock);
1739 else
1740 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1741
1742 if (ret == BTRFS_NO_LOG_SYNC) {
1743 ret = btrfs_end_transaction(trans);
1744 goto out;
1745 }
1746
1747 /* We successfully logged the inode, attempt to sync the log. */
1748 if (!ret) {
1749 ret = btrfs_sync_log(trans, root, &ctx);
1750 if (!ret) {
1751 ret = btrfs_end_transaction(trans);
1752 goto out;
1753 }
1754 }
1755
1756 /*
1757 * At this point we need to commit the transaction because we had
1758 * btrfs_need_log_full_commit() or some other error.
1759 *
1760 * If we didn't do a full sync we have to stop the trans handle, wait on
1761 * the ordered extents, start it again and commit the transaction. If
1762 * we attempt to wait on the ordered extents here we could deadlock with
1763 * something like fallocate() that is holding the extent lock trying to
1764 * start a transaction while some other thread is trying to commit the
1765 * transaction while we (fsync) are currently holding the transaction
1766 * open.
1767 */
1768 if (!full_sync) {
1769 ret = btrfs_end_transaction(trans);
1770 if (ret)
1771 goto out;
1772 ret = btrfs_wait_ordered_range(inode, start, len);
1773 if (ret)
1774 goto out;
1775
1776 /*
1777 * This is safe to use here because we're only interested in
1778 * making sure the transaction that had the ordered extents is
1779 * committed. We aren't waiting on anything past this point,
1780 * we're purely getting the transaction and committing it.
1781 */
1782 trans = btrfs_attach_transaction_barrier(root);
1783 if (IS_ERR(trans)) {
1784 ret = PTR_ERR(trans);
1785
1786 /*
1787 * We committed the transaction and there's no currently
1788 * running transaction, this means everything we care
1789 * about made it to disk and we are done.
1790 */
1791 if (ret == -ENOENT)
1792 ret = 0;
1793 goto out;
1794 }
1795 }
1796
1797 ret = btrfs_commit_transaction(trans);
1798 out:
1799 free_extent_buffer(ctx.scratch_eb);
1800 ASSERT(list_empty(&ctx.list));
1801 ASSERT(list_empty(&ctx.conflict_inodes));
1802 err = file_check_and_advance_wb_err(file);
1803 if (!ret)
1804 ret = err;
1805 return ret > 0 ? -EIO : ret;
1806
1807 out_release_extents:
1808 btrfs_release_log_ctx_extents(&ctx);
1809 if (skip_ilock)
1810 up_write(&inode->i_mmap_lock);
1811 else
1812 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1813 goto out;
1814 }
1815
1816 /*
1817 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1818 * called from a page fault handler when a page is first dirtied. Hence we must
1819 * be careful to check for EOF conditions here. We set the page up correctly
1820 * for a written page which means we get ENOSPC checking when writing into
1821 * holes and correct delalloc and unwritten extent mapping on filesystems that
1822 * support these features.
1823 *
1824 * We are not allowed to take the i_mutex here so we have to play games to
1825 * protect against truncate races as the page could now be beyond EOF. Because
1826 * truncate_setsize() writes the inode size before removing pages, once we have
1827 * the page lock we can determine safely if the page is beyond EOF. If it is not
1828 * beyond EOF, then the page is guaranteed safe against truncation until we
1829 * unlock the page.
1830 */
btrfs_page_mkwrite(struct vm_fault * vmf)1831 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1832 {
1833 struct page *page = vmf->page;
1834 struct folio *folio = page_folio(page);
1835 struct inode *inode = file_inode(vmf->vma->vm_file);
1836 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1837 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1838 struct btrfs_ordered_extent *ordered;
1839 struct extent_state *cached_state = NULL;
1840 struct extent_changeset *data_reserved = NULL;
1841 unsigned long zero_start;
1842 loff_t size;
1843 size_t fsize = folio_size(folio);
1844 int ret;
1845 u64 reserved_space;
1846 u64 page_start;
1847 u64 page_end;
1848 u64 end;
1849
1850 reserved_space = fsize;
1851
1852 sb_start_pagefault(inode->i_sb);
1853 page_start = folio_pos(folio);
1854 page_end = page_start + folio_size(folio) - 1;
1855 end = page_end;
1856
1857 /*
1858 * Reserving delalloc space after obtaining the page lock can lead to
1859 * deadlock. For example, if a dirty page is locked by this function
1860 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1861 * dirty page write out, then the btrfs_writepages() function could
1862 * end up waiting indefinitely to get a lock on the page currently
1863 * being processed by btrfs_page_mkwrite() function.
1864 */
1865 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1866 page_start, reserved_space);
1867 if (ret < 0)
1868 goto out_noreserve;
1869
1870 ret = file_update_time(vmf->vma->vm_file);
1871 if (ret < 0)
1872 goto out;
1873 again:
1874 down_read(&BTRFS_I(inode)->i_mmap_lock);
1875 folio_lock(folio);
1876 size = i_size_read(inode);
1877
1878 if ((folio->mapping != inode->i_mapping) ||
1879 (page_start >= size)) {
1880 /* Page got truncated out from underneath us. */
1881 goto out_unlock;
1882 }
1883 folio_wait_writeback(folio);
1884
1885 btrfs_lock_extent(io_tree, page_start, page_end, &cached_state);
1886 ret = set_folio_extent_mapped(folio);
1887 if (ret < 0) {
1888 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1889 goto out_unlock;
1890 }
1891
1892 /*
1893 * We can't set the delalloc bits if there are pending ordered
1894 * extents. Drop our locks and wait for them to finish.
1895 */
1896 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, fsize);
1897 if (ordered) {
1898 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1899 folio_unlock(folio);
1900 up_read(&BTRFS_I(inode)->i_mmap_lock);
1901 btrfs_start_ordered_extent(ordered);
1902 btrfs_put_ordered_extent(ordered);
1903 goto again;
1904 }
1905
1906 if (folio_contains(folio, (size - 1) >> PAGE_SHIFT)) {
1907 reserved_space = round_up(size - page_start, fs_info->sectorsize);
1908 if (reserved_space < fsize) {
1909 end = page_start + reserved_space - 1;
1910 btrfs_delalloc_release_space(BTRFS_I(inode),
1911 data_reserved, end + 1,
1912 fsize - reserved_space, true);
1913 }
1914 }
1915
1916 /*
1917 * page_mkwrite gets called when the page is firstly dirtied after it's
1918 * faulted in, but write(2) could also dirty a page and set delalloc
1919 * bits, thus in this case for space account reason, we still need to
1920 * clear any delalloc bits within this page range since we have to
1921 * reserve data&meta space before lock_page() (see above comments).
1922 */
1923 btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
1924 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1925 EXTENT_DEFRAG, &cached_state);
1926
1927 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
1928 &cached_state);
1929 if (ret < 0) {
1930 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1931 goto out_unlock;
1932 }
1933
1934 /* Page is wholly or partially inside EOF. */
1935 if (page_start + folio_size(folio) > size)
1936 zero_start = offset_in_folio(folio, size);
1937 else
1938 zero_start = fsize;
1939
1940 if (zero_start != fsize)
1941 folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1942
1943 btrfs_folio_clear_checked(fs_info, folio, page_start, fsize);
1944 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1945 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1946
1947 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
1948
1949 btrfs_unlock_extent(io_tree, page_start, page_end, &cached_state);
1950 up_read(&BTRFS_I(inode)->i_mmap_lock);
1951
1952 btrfs_delalloc_release_extents(BTRFS_I(inode), fsize);
1953 sb_end_pagefault(inode->i_sb);
1954 extent_changeset_free(data_reserved);
1955 return VM_FAULT_LOCKED;
1956
1957 out_unlock:
1958 folio_unlock(folio);
1959 up_read(&BTRFS_I(inode)->i_mmap_lock);
1960 out:
1961 btrfs_delalloc_release_extents(BTRFS_I(inode), fsize);
1962 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
1963 reserved_space, true);
1964 extent_changeset_free(data_reserved);
1965 out_noreserve:
1966 sb_end_pagefault(inode->i_sb);
1967
1968 if (ret < 0)
1969 return vmf_error(ret);
1970
1971 /* Make the VM retry the fault. */
1972 return VM_FAULT_NOPAGE;
1973 }
1974
1975 static const struct vm_operations_struct btrfs_file_vm_ops = {
1976 .fault = filemap_fault,
1977 .map_pages = filemap_map_pages,
1978 .page_mkwrite = btrfs_page_mkwrite,
1979 };
1980
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)1981 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1982 {
1983 struct address_space *mapping = filp->f_mapping;
1984
1985 if (!mapping->a_ops->read_folio)
1986 return -ENOEXEC;
1987
1988 file_accessed(filp);
1989 vma->vm_ops = &btrfs_file_vm_ops;
1990
1991 return 0;
1992 }
1993
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)1994 static bool hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
1995 int slot, u64 start, u64 end)
1996 {
1997 struct btrfs_file_extent_item *fi;
1998 struct btrfs_key key;
1999
2000 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2001 return false;
2002
2003 btrfs_item_key_to_cpu(leaf, &key, slot);
2004 if (key.objectid != btrfs_ino(inode) ||
2005 key.type != BTRFS_EXTENT_DATA_KEY)
2006 return false;
2007
2008 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2009
2010 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2011 return false;
2012
2013 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2014 return false;
2015
2016 if (key.offset == end)
2017 return true;
2018 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2019 return true;
2020 return false;
2021 }
2022
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2023 static int fill_holes(struct btrfs_trans_handle *trans,
2024 struct btrfs_inode *inode,
2025 struct btrfs_path *path, u64 offset, u64 end)
2026 {
2027 struct btrfs_fs_info *fs_info = trans->fs_info;
2028 struct btrfs_root *root = inode->root;
2029 struct extent_buffer *leaf;
2030 struct btrfs_file_extent_item *fi;
2031 struct extent_map *hole_em;
2032 struct btrfs_key key;
2033 int ret;
2034
2035 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2036 goto out;
2037
2038 key.objectid = btrfs_ino(inode);
2039 key.type = BTRFS_EXTENT_DATA_KEY;
2040 key.offset = offset;
2041
2042 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2043 if (ret <= 0) {
2044 /*
2045 * We should have dropped this offset, so if we find it then
2046 * something has gone horribly wrong.
2047 */
2048 if (ret == 0)
2049 ret = -EINVAL;
2050 return ret;
2051 }
2052
2053 leaf = path->nodes[0];
2054 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2055 u64 num_bytes;
2056
2057 path->slots[0]--;
2058 fi = btrfs_item_ptr(leaf, path->slots[0],
2059 struct btrfs_file_extent_item);
2060 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2061 end - offset;
2062 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2063 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2064 btrfs_set_file_extent_offset(leaf, fi, 0);
2065 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2066 goto out;
2067 }
2068
2069 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2070 u64 num_bytes;
2071
2072 key.offset = offset;
2073 btrfs_set_item_key_safe(trans, path, &key);
2074 fi = btrfs_item_ptr(leaf, path->slots[0],
2075 struct btrfs_file_extent_item);
2076 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2077 offset;
2078 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2079 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2080 btrfs_set_file_extent_offset(leaf, fi, 0);
2081 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2082 goto out;
2083 }
2084 btrfs_release_path(path);
2085
2086 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2087 end - offset);
2088 if (ret)
2089 return ret;
2090
2091 out:
2092 btrfs_release_path(path);
2093
2094 hole_em = btrfs_alloc_extent_map();
2095 if (!hole_em) {
2096 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2097 btrfs_set_inode_full_sync(inode);
2098 } else {
2099 hole_em->start = offset;
2100 hole_em->len = end - offset;
2101 hole_em->ram_bytes = hole_em->len;
2102
2103 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2104 hole_em->disk_num_bytes = 0;
2105 hole_em->generation = trans->transid;
2106
2107 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2108 btrfs_free_extent_map(hole_em);
2109 if (ret)
2110 btrfs_set_inode_full_sync(inode);
2111 }
2112
2113 return 0;
2114 }
2115
2116 /*
2117 * Find a hole extent on given inode and change start/len to the end of hole
2118 * extent.(hole/vacuum extent whose em->start <= start &&
2119 * em->start + em->len > start)
2120 * When a hole extent is found, return 1 and modify start/len.
2121 */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2122 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2123 {
2124 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2125 struct extent_map *em;
2126 int ret = 0;
2127
2128 em = btrfs_get_extent(inode, NULL,
2129 round_down(*start, fs_info->sectorsize),
2130 round_up(*len, fs_info->sectorsize));
2131 if (IS_ERR(em))
2132 return PTR_ERR(em);
2133
2134 /* Hole or vacuum extent(only exists in no-hole mode) */
2135 if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2136 ret = 1;
2137 *len = em->start + em->len > *start + *len ?
2138 0 : *start + *len - em->start - em->len;
2139 *start = em->start + em->len;
2140 }
2141 btrfs_free_extent_map(em);
2142 return ret;
2143 }
2144
2145 /*
2146 * Check if there is no folio in the range.
2147 *
2148 * We cannot utilize filemap_range_has_page() in a filemap with large folios
2149 * as we can hit the following false positive:
2150 *
2151 * start end
2152 * | |
2153 * |//|//|//|//| | | | | | | | |//|//|
2154 * \ / \ /
2155 * Folio A Folio B
2156 *
2157 * That large folio A and B cover the start and end indexes.
2158 * In that case filemap_range_has_page() will always return true, but the above
2159 * case is fine for btrfs_punch_hole_lock_range() usage.
2160 *
2161 * So here we only ensure that no other folios is in the range, excluding the
2162 * head/tail large folio.
2163 */
check_range_has_page(struct inode * inode,u64 start,u64 end)2164 static bool check_range_has_page(struct inode *inode, u64 start, u64 end)
2165 {
2166 struct folio_batch fbatch;
2167 bool ret = false;
2168 /*
2169 * For subpage case, if the range is not at page boundary, we could
2170 * have pages at the leading/tailing part of the range.
2171 * This could lead to dead loop since filemap_range_has_page()
2172 * will always return true.
2173 * So here we need to do extra page alignment for
2174 * filemap_range_has_page().
2175 *
2176 * And do not decrease page_lockend right now, as it can be 0.
2177 */
2178 const u64 page_lockstart = round_up(start, PAGE_SIZE);
2179 const u64 page_lockend = round_down(end + 1, PAGE_SIZE);
2180 const pgoff_t start_index = page_lockstart >> PAGE_SHIFT;
2181 const pgoff_t end_index = (page_lockend - 1) >> PAGE_SHIFT;
2182 pgoff_t tmp = start_index;
2183 int found_folios;
2184
2185 /* The same page or adjacent pages. */
2186 if (page_lockend <= page_lockstart)
2187 return false;
2188
2189 folio_batch_init(&fbatch);
2190 found_folios = filemap_get_folios(inode->i_mapping, &tmp, end_index, &fbatch);
2191 for (int i = 0; i < found_folios; i++) {
2192 struct folio *folio = fbatch.folios[i];
2193
2194 /* A large folio begins before the start. Not a target. */
2195 if (folio->index < start_index)
2196 continue;
2197 /* A large folio extends beyond the end. Not a target. */
2198 if (folio->index + folio_nr_pages(folio) > end_index)
2199 continue;
2200 /* A folio doesn't cover the head/tail index. Found a target. */
2201 ret = true;
2202 break;
2203 }
2204 folio_batch_release(&fbatch);
2205 return ret;
2206 }
2207
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2208 static void btrfs_punch_hole_lock_range(struct inode *inode,
2209 const u64 lockstart, const u64 lockend,
2210 struct extent_state **cached_state)
2211 {
2212 while (1) {
2213 truncate_pagecache_range(inode, lockstart, lockend);
2214
2215 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2216 cached_state);
2217 /*
2218 * We can't have ordered extents in the range, nor dirty/writeback
2219 * pages, because we have locked the inode's VFS lock in exclusive
2220 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2221 * we have flushed all delalloc in the range and we have waited
2222 * for any ordered extents in the range to complete.
2223 * We can race with anyone reading pages from this range, so after
2224 * locking the range check if we have pages in the range, and if
2225 * we do, unlock the range and retry.
2226 */
2227 if (!check_range_has_page(inode, lockstart, lockend))
2228 break;
2229
2230 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2231 cached_state);
2232 }
2233
2234 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2235 }
2236
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2237 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2238 struct btrfs_inode *inode,
2239 struct btrfs_path *path,
2240 struct btrfs_replace_extent_info *extent_info,
2241 const u64 replace_len,
2242 const u64 bytes_to_drop)
2243 {
2244 struct btrfs_fs_info *fs_info = trans->fs_info;
2245 struct btrfs_root *root = inode->root;
2246 struct btrfs_file_extent_item *extent;
2247 struct extent_buffer *leaf;
2248 struct btrfs_key key;
2249 int slot;
2250 int ret;
2251
2252 if (replace_len == 0)
2253 return 0;
2254
2255 if (extent_info->disk_offset == 0 &&
2256 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2257 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2258 return 0;
2259 }
2260
2261 key.objectid = btrfs_ino(inode);
2262 key.type = BTRFS_EXTENT_DATA_KEY;
2263 key.offset = extent_info->file_offset;
2264 ret = btrfs_insert_empty_item(trans, root, path, &key,
2265 sizeof(struct btrfs_file_extent_item));
2266 if (ret)
2267 return ret;
2268 leaf = path->nodes[0];
2269 slot = path->slots[0];
2270 write_extent_buffer(leaf, extent_info->extent_buf,
2271 btrfs_item_ptr_offset(leaf, slot),
2272 sizeof(struct btrfs_file_extent_item));
2273 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2274 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2275 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2276 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2277 if (extent_info->is_new_extent)
2278 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2279 btrfs_release_path(path);
2280
2281 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2282 replace_len);
2283 if (ret)
2284 return ret;
2285
2286 /* If it's a hole, nothing more needs to be done. */
2287 if (extent_info->disk_offset == 0) {
2288 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2289 return 0;
2290 }
2291
2292 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2293
2294 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2295 key.objectid = extent_info->disk_offset;
2296 key.type = BTRFS_EXTENT_ITEM_KEY;
2297 key.offset = extent_info->disk_len;
2298 ret = btrfs_alloc_reserved_file_extent(trans, root,
2299 btrfs_ino(inode),
2300 extent_info->file_offset,
2301 extent_info->qgroup_reserved,
2302 &key);
2303 } else {
2304 struct btrfs_ref ref = {
2305 .action = BTRFS_ADD_DELAYED_REF,
2306 .bytenr = extent_info->disk_offset,
2307 .num_bytes = extent_info->disk_len,
2308 .owning_root = btrfs_root_id(root),
2309 .ref_root = btrfs_root_id(root),
2310 };
2311 u64 ref_offset;
2312
2313 ref_offset = extent_info->file_offset - extent_info->data_offset;
2314 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2315 ret = btrfs_inc_extent_ref(trans, &ref);
2316 }
2317
2318 extent_info->insertions++;
2319
2320 return ret;
2321 }
2322
2323 /*
2324 * The respective range must have been previously locked, as well as the inode.
2325 * The end offset is inclusive (last byte of the range).
2326 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2327 * the file range with an extent.
2328 * When not punching a hole, we don't want to end up in a state where we dropped
2329 * extents without inserting a new one, so we must abort the transaction to avoid
2330 * a corruption.
2331 */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2332 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2333 struct btrfs_path *path, const u64 start,
2334 const u64 end,
2335 struct btrfs_replace_extent_info *extent_info,
2336 struct btrfs_trans_handle **trans_out)
2337 {
2338 struct btrfs_drop_extents_args drop_args = { 0 };
2339 struct btrfs_root *root = inode->root;
2340 struct btrfs_fs_info *fs_info = root->fs_info;
2341 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2342 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2343 struct btrfs_trans_handle *trans = NULL;
2344 struct btrfs_block_rsv *rsv;
2345 unsigned int rsv_count;
2346 u64 cur_offset;
2347 u64 len = end - start;
2348 int ret = 0;
2349
2350 if (end <= start)
2351 return -EINVAL;
2352
2353 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2354 if (!rsv) {
2355 ret = -ENOMEM;
2356 goto out;
2357 }
2358 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2359 rsv->failfast = true;
2360
2361 /*
2362 * 1 - update the inode
2363 * 1 - removing the extents in the range
2364 * 1 - adding the hole extent if no_holes isn't set or if we are
2365 * replacing the range with a new extent
2366 */
2367 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2368 rsv_count = 3;
2369 else
2370 rsv_count = 2;
2371
2372 trans = btrfs_start_transaction(root, rsv_count);
2373 if (IS_ERR(trans)) {
2374 ret = PTR_ERR(trans);
2375 trans = NULL;
2376 goto out_free;
2377 }
2378
2379 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2380 min_size, false);
2381 if (WARN_ON(ret))
2382 goto out_trans;
2383 trans->block_rsv = rsv;
2384
2385 cur_offset = start;
2386 drop_args.path = path;
2387 drop_args.end = end + 1;
2388 drop_args.drop_cache = true;
2389 while (cur_offset < end) {
2390 drop_args.start = cur_offset;
2391 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2392 /* If we are punching a hole decrement the inode's byte count */
2393 if (!extent_info)
2394 btrfs_update_inode_bytes(inode, 0,
2395 drop_args.bytes_found);
2396 if (ret != -ENOSPC) {
2397 /*
2398 * The only time we don't want to abort is if we are
2399 * attempting to clone a partial inline extent, in which
2400 * case we'll get EOPNOTSUPP. However if we aren't
2401 * clone we need to abort no matter what, because if we
2402 * got EOPNOTSUPP via prealloc then we messed up and
2403 * need to abort.
2404 */
2405 if (ret &&
2406 (ret != -EOPNOTSUPP ||
2407 (extent_info && extent_info->is_new_extent)))
2408 btrfs_abort_transaction(trans, ret);
2409 break;
2410 }
2411
2412 trans->block_rsv = &fs_info->trans_block_rsv;
2413
2414 if (!extent_info && cur_offset < drop_args.drop_end &&
2415 cur_offset < ino_size) {
2416 ret = fill_holes(trans, inode, path, cur_offset,
2417 drop_args.drop_end);
2418 if (ret) {
2419 /*
2420 * If we failed then we didn't insert our hole
2421 * entries for the area we dropped, so now the
2422 * fs is corrupted, so we must abort the
2423 * transaction.
2424 */
2425 btrfs_abort_transaction(trans, ret);
2426 break;
2427 }
2428 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2429 /*
2430 * We are past the i_size here, but since we didn't
2431 * insert holes we need to clear the mapped area so we
2432 * know to not set disk_i_size in this area until a new
2433 * file extent is inserted here.
2434 */
2435 ret = btrfs_inode_clear_file_extent_range(inode,
2436 cur_offset,
2437 drop_args.drop_end - cur_offset);
2438 if (ret) {
2439 /*
2440 * We couldn't clear our area, so we could
2441 * presumably adjust up and corrupt the fs, so
2442 * we need to abort.
2443 */
2444 btrfs_abort_transaction(trans, ret);
2445 break;
2446 }
2447 }
2448
2449 if (extent_info &&
2450 drop_args.drop_end > extent_info->file_offset) {
2451 u64 replace_len = drop_args.drop_end -
2452 extent_info->file_offset;
2453
2454 ret = btrfs_insert_replace_extent(trans, inode, path,
2455 extent_info, replace_len,
2456 drop_args.bytes_found);
2457 if (ret) {
2458 btrfs_abort_transaction(trans, ret);
2459 break;
2460 }
2461 extent_info->data_len -= replace_len;
2462 extent_info->data_offset += replace_len;
2463 extent_info->file_offset += replace_len;
2464 }
2465
2466 /*
2467 * We are releasing our handle on the transaction, balance the
2468 * dirty pages of the btree inode and flush delayed items, and
2469 * then get a new transaction handle, which may now point to a
2470 * new transaction in case someone else may have committed the
2471 * transaction we used to replace/drop file extent items. So
2472 * bump the inode's iversion and update mtime and ctime except
2473 * if we are called from a dedupe context. This is because a
2474 * power failure/crash may happen after the transaction is
2475 * committed and before we finish replacing/dropping all the
2476 * file extent items we need.
2477 */
2478 inode_inc_iversion(&inode->vfs_inode);
2479
2480 if (!extent_info || extent_info->update_times)
2481 inode_set_mtime_to_ts(&inode->vfs_inode,
2482 inode_set_ctime_current(&inode->vfs_inode));
2483
2484 ret = btrfs_update_inode(trans, inode);
2485 if (ret)
2486 break;
2487
2488 btrfs_end_transaction(trans);
2489 btrfs_btree_balance_dirty(fs_info);
2490
2491 trans = btrfs_start_transaction(root, rsv_count);
2492 if (IS_ERR(trans)) {
2493 ret = PTR_ERR(trans);
2494 trans = NULL;
2495 break;
2496 }
2497
2498 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2499 rsv, min_size, false);
2500 if (WARN_ON(ret))
2501 break;
2502 trans->block_rsv = rsv;
2503
2504 cur_offset = drop_args.drop_end;
2505 len = end - cur_offset;
2506 if (!extent_info && len) {
2507 ret = find_first_non_hole(inode, &cur_offset, &len);
2508 if (unlikely(ret < 0))
2509 break;
2510 if (ret && !len) {
2511 ret = 0;
2512 break;
2513 }
2514 }
2515 }
2516
2517 /*
2518 * If we were cloning, force the next fsync to be a full one since we
2519 * we replaced (or just dropped in the case of cloning holes when
2520 * NO_HOLES is enabled) file extent items and did not setup new extent
2521 * maps for the replacement extents (or holes).
2522 */
2523 if (extent_info && !extent_info->is_new_extent)
2524 btrfs_set_inode_full_sync(inode);
2525
2526 if (ret)
2527 goto out_trans;
2528
2529 trans->block_rsv = &fs_info->trans_block_rsv;
2530 /*
2531 * If we are using the NO_HOLES feature we might have had already an
2532 * hole that overlaps a part of the region [lockstart, lockend] and
2533 * ends at (or beyond) lockend. Since we have no file extent items to
2534 * represent holes, drop_end can be less than lockend and so we must
2535 * make sure we have an extent map representing the existing hole (the
2536 * call to __btrfs_drop_extents() might have dropped the existing extent
2537 * map representing the existing hole), otherwise the fast fsync path
2538 * will not record the existence of the hole region
2539 * [existing_hole_start, lockend].
2540 */
2541 if (drop_args.drop_end <= end)
2542 drop_args.drop_end = end + 1;
2543 /*
2544 * Don't insert file hole extent item if it's for a range beyond eof
2545 * (because it's useless) or if it represents a 0 bytes range (when
2546 * cur_offset == drop_end).
2547 */
2548 if (!extent_info && cur_offset < ino_size &&
2549 cur_offset < drop_args.drop_end) {
2550 ret = fill_holes(trans, inode, path, cur_offset,
2551 drop_args.drop_end);
2552 if (ret) {
2553 /* Same comment as above. */
2554 btrfs_abort_transaction(trans, ret);
2555 goto out_trans;
2556 }
2557 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2558 /* See the comment in the loop above for the reasoning here. */
2559 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2560 drop_args.drop_end - cur_offset);
2561 if (ret) {
2562 btrfs_abort_transaction(trans, ret);
2563 goto out_trans;
2564 }
2565
2566 }
2567 if (extent_info) {
2568 ret = btrfs_insert_replace_extent(trans, inode, path,
2569 extent_info, extent_info->data_len,
2570 drop_args.bytes_found);
2571 if (ret) {
2572 btrfs_abort_transaction(trans, ret);
2573 goto out_trans;
2574 }
2575 }
2576
2577 out_trans:
2578 if (!trans)
2579 goto out_free;
2580
2581 trans->block_rsv = &fs_info->trans_block_rsv;
2582 if (ret)
2583 btrfs_end_transaction(trans);
2584 else
2585 *trans_out = trans;
2586 out_free:
2587 btrfs_free_block_rsv(fs_info, rsv);
2588 out:
2589 return ret;
2590 }
2591
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2592 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2593 {
2594 struct inode *inode = file_inode(file);
2595 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2596 struct btrfs_root *root = BTRFS_I(inode)->root;
2597 struct extent_state *cached_state = NULL;
2598 struct btrfs_path *path;
2599 struct btrfs_trans_handle *trans = NULL;
2600 u64 lockstart;
2601 u64 lockend;
2602 u64 tail_start;
2603 u64 tail_len;
2604 const u64 orig_start = offset;
2605 const u64 orig_end = offset + len - 1;
2606 int ret = 0;
2607 bool same_block;
2608 u64 ino_size;
2609 bool truncated_block = false;
2610 bool updated_inode = false;
2611
2612 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2613
2614 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2615 if (ret)
2616 goto out_only_mutex;
2617
2618 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2619 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2620 if (ret < 0)
2621 goto out_only_mutex;
2622 if (ret && !len) {
2623 /* Already in a large hole */
2624 ret = 0;
2625 goto out_only_mutex;
2626 }
2627
2628 ret = file_modified(file);
2629 if (ret)
2630 goto out_only_mutex;
2631
2632 lockstart = round_up(offset, fs_info->sectorsize);
2633 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2634 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2635 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2636 /*
2637 * Only do this if we are in the same block and we aren't doing the
2638 * entire block.
2639 */
2640 if (same_block && len < fs_info->sectorsize) {
2641 if (offset < ino_size) {
2642 truncated_block = true;
2643 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2644 orig_start, orig_end);
2645 } else {
2646 ret = 0;
2647 }
2648 goto out_only_mutex;
2649 }
2650
2651 /* zero back part of the first block */
2652 if (offset < ino_size) {
2653 truncated_block = true;
2654 ret = btrfs_truncate_block(BTRFS_I(inode), offset, orig_start, orig_end);
2655 if (ret) {
2656 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2657 return ret;
2658 }
2659 }
2660
2661 /* Check the aligned pages after the first unaligned page,
2662 * if offset != orig_start, which means the first unaligned page
2663 * including several following pages are already in holes,
2664 * the extra check can be skipped */
2665 if (offset == orig_start) {
2666 /* after truncate page, check hole again */
2667 len = offset + len - lockstart;
2668 offset = lockstart;
2669 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2670 if (ret < 0)
2671 goto out_only_mutex;
2672 if (ret && !len) {
2673 ret = 0;
2674 goto out_only_mutex;
2675 }
2676 lockstart = offset;
2677 }
2678
2679 /* Check the tail unaligned part is in a hole */
2680 tail_start = lockend + 1;
2681 tail_len = offset + len - tail_start;
2682 if (tail_len) {
2683 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2684 if (unlikely(ret < 0))
2685 goto out_only_mutex;
2686 if (!ret) {
2687 /* zero the front end of the last page */
2688 if (tail_start + tail_len < ino_size) {
2689 truncated_block = true;
2690 ret = btrfs_truncate_block(BTRFS_I(inode),
2691 tail_start + tail_len - 1,
2692 orig_start, orig_end);
2693 if (ret)
2694 goto out_only_mutex;
2695 }
2696 }
2697 }
2698
2699 if (lockend < lockstart) {
2700 ret = 0;
2701 goto out_only_mutex;
2702 }
2703
2704 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2705
2706 path = btrfs_alloc_path();
2707 if (!path) {
2708 ret = -ENOMEM;
2709 goto out;
2710 }
2711
2712 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2713 lockend, NULL, &trans);
2714 btrfs_free_path(path);
2715 if (ret)
2716 goto out;
2717
2718 ASSERT(trans != NULL);
2719 inode_inc_iversion(inode);
2720 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2721 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2722 updated_inode = true;
2723 btrfs_end_transaction(trans);
2724 btrfs_btree_balance_dirty(fs_info);
2725 out:
2726 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2727 &cached_state);
2728 out_only_mutex:
2729 if (!updated_inode && truncated_block && !ret) {
2730 /*
2731 * If we only end up zeroing part of a page, we still need to
2732 * update the inode item, so that all the time fields are
2733 * updated as well as the necessary btrfs inode in memory fields
2734 * for detecting, at fsync time, if the inode isn't yet in the
2735 * log tree or it's there but not up to date.
2736 */
2737 struct timespec64 now = inode_set_ctime_current(inode);
2738
2739 inode_inc_iversion(inode);
2740 inode_set_mtime_to_ts(inode, now);
2741 trans = btrfs_start_transaction(root, 1);
2742 if (IS_ERR(trans)) {
2743 ret = PTR_ERR(trans);
2744 } else {
2745 int ret2;
2746
2747 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2748 ret2 = btrfs_end_transaction(trans);
2749 if (!ret)
2750 ret = ret2;
2751 }
2752 }
2753 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2754 return ret;
2755 }
2756
2757 /* Helper structure to record which range is already reserved */
2758 struct falloc_range {
2759 struct list_head list;
2760 u64 start;
2761 u64 len;
2762 };
2763
2764 /*
2765 * Helper function to add falloc range
2766 *
2767 * Caller should have locked the larger range of extent containing
2768 * [start, len)
2769 */
add_falloc_range(struct list_head * head,u64 start,u64 len)2770 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2771 {
2772 struct falloc_range *range = NULL;
2773
2774 if (!list_empty(head)) {
2775 /*
2776 * As fallocate iterates by bytenr order, we only need to check
2777 * the last range.
2778 */
2779 range = list_last_entry(head, struct falloc_range, list);
2780 if (range->start + range->len == start) {
2781 range->len += len;
2782 return 0;
2783 }
2784 }
2785
2786 range = kmalloc(sizeof(*range), GFP_KERNEL);
2787 if (!range)
2788 return -ENOMEM;
2789 range->start = start;
2790 range->len = len;
2791 list_add_tail(&range->list, head);
2792 return 0;
2793 }
2794
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2795 static int btrfs_fallocate_update_isize(struct inode *inode,
2796 const u64 end,
2797 const int mode)
2798 {
2799 struct btrfs_trans_handle *trans;
2800 struct btrfs_root *root = BTRFS_I(inode)->root;
2801 int ret;
2802 int ret2;
2803
2804 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2805 return 0;
2806
2807 trans = btrfs_start_transaction(root, 1);
2808 if (IS_ERR(trans))
2809 return PTR_ERR(trans);
2810
2811 inode_set_ctime_current(inode);
2812 i_size_write(inode, end);
2813 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2814 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2815 ret2 = btrfs_end_transaction(trans);
2816
2817 return ret ? ret : ret2;
2818 }
2819
2820 enum {
2821 RANGE_BOUNDARY_WRITTEN_EXTENT,
2822 RANGE_BOUNDARY_PREALLOC_EXTENT,
2823 RANGE_BOUNDARY_HOLE,
2824 };
2825
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2826 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2827 u64 offset)
2828 {
2829 const u64 sectorsize = inode->root->fs_info->sectorsize;
2830 struct extent_map *em;
2831 int ret;
2832
2833 offset = round_down(offset, sectorsize);
2834 em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2835 if (IS_ERR(em))
2836 return PTR_ERR(em);
2837
2838 if (em->disk_bytenr == EXTENT_MAP_HOLE)
2839 ret = RANGE_BOUNDARY_HOLE;
2840 else if (em->flags & EXTENT_FLAG_PREALLOC)
2841 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2842 else
2843 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2844
2845 btrfs_free_extent_map(em);
2846 return ret;
2847 }
2848
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2849 static int btrfs_zero_range(struct inode *inode,
2850 loff_t offset,
2851 loff_t len,
2852 const int mode)
2853 {
2854 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2855 struct extent_map *em;
2856 struct extent_changeset *data_reserved = NULL;
2857 int ret;
2858 u64 alloc_hint = 0;
2859 const u64 sectorsize = fs_info->sectorsize;
2860 const u64 orig_start = offset;
2861 const u64 orig_end = offset + len - 1;
2862 u64 alloc_start = round_down(offset, sectorsize);
2863 u64 alloc_end = round_up(offset + len, sectorsize);
2864 u64 bytes_to_reserve = 0;
2865 bool space_reserved = false;
2866
2867 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2868 alloc_end - alloc_start);
2869 if (IS_ERR(em)) {
2870 ret = PTR_ERR(em);
2871 goto out;
2872 }
2873
2874 /*
2875 * Avoid hole punching and extent allocation for some cases. More cases
2876 * could be considered, but these are unlikely common and we keep things
2877 * as simple as possible for now. Also, intentionally, if the target
2878 * range contains one or more prealloc extents together with regular
2879 * extents and holes, we drop all the existing extents and allocate a
2880 * new prealloc extent, so that we get a larger contiguous disk extent.
2881 */
2882 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2883 const u64 em_end = em->start + em->len;
2884
2885 if (em_end >= offset + len) {
2886 /*
2887 * The whole range is already a prealloc extent,
2888 * do nothing except updating the inode's i_size if
2889 * needed.
2890 */
2891 btrfs_free_extent_map(em);
2892 ret = btrfs_fallocate_update_isize(inode, offset + len,
2893 mode);
2894 goto out;
2895 }
2896 /*
2897 * Part of the range is already a prealloc extent, so operate
2898 * only on the remaining part of the range.
2899 */
2900 alloc_start = em_end;
2901 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2902 len = offset + len - alloc_start;
2903 offset = alloc_start;
2904 alloc_hint = btrfs_extent_map_block_start(em) + em->len;
2905 }
2906 btrfs_free_extent_map(em);
2907
2908 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2909 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2910 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2911 if (IS_ERR(em)) {
2912 ret = PTR_ERR(em);
2913 goto out;
2914 }
2915
2916 if (em->flags & EXTENT_FLAG_PREALLOC) {
2917 btrfs_free_extent_map(em);
2918 ret = btrfs_fallocate_update_isize(inode, offset + len,
2919 mode);
2920 goto out;
2921 }
2922 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2923 btrfs_free_extent_map(em);
2924 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2925 orig_start, orig_end);
2926 if (!ret)
2927 ret = btrfs_fallocate_update_isize(inode,
2928 offset + len,
2929 mode);
2930 return ret;
2931 }
2932 btrfs_free_extent_map(em);
2933 alloc_start = round_down(offset, sectorsize);
2934 alloc_end = alloc_start + sectorsize;
2935 goto reserve_space;
2936 }
2937
2938 alloc_start = round_up(offset, sectorsize);
2939 alloc_end = round_down(offset + len, sectorsize);
2940
2941 /*
2942 * For unaligned ranges, check the pages at the boundaries, they might
2943 * map to an extent, in which case we need to partially zero them, or
2944 * they might map to a hole, in which case we need our allocation range
2945 * to cover them.
2946 */
2947 if (!IS_ALIGNED(offset, sectorsize)) {
2948 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2949 offset);
2950 if (ret < 0)
2951 goto out;
2952 if (ret == RANGE_BOUNDARY_HOLE) {
2953 alloc_start = round_down(offset, sectorsize);
2954 ret = 0;
2955 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2956 ret = btrfs_truncate_block(BTRFS_I(inode), offset,
2957 orig_start, orig_end);
2958 if (ret)
2959 goto out;
2960 } else {
2961 ret = 0;
2962 }
2963 }
2964
2965 if (!IS_ALIGNED(offset + len, sectorsize)) {
2966 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2967 offset + len);
2968 if (ret < 0)
2969 goto out;
2970 if (ret == RANGE_BOUNDARY_HOLE) {
2971 alloc_end = round_up(offset + len, sectorsize);
2972 ret = 0;
2973 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2974 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len - 1,
2975 orig_start, orig_end);
2976 if (ret)
2977 goto out;
2978 } else {
2979 ret = 0;
2980 }
2981 }
2982
2983 reserve_space:
2984 if (alloc_start < alloc_end) {
2985 struct extent_state *cached_state = NULL;
2986 const u64 lockstart = alloc_start;
2987 const u64 lockend = alloc_end - 1;
2988
2989 bytes_to_reserve = alloc_end - alloc_start;
2990 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2991 bytes_to_reserve);
2992 if (ret < 0)
2993 goto out;
2994 space_reserved = true;
2995 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2996 &cached_state);
2997 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2998 alloc_start, bytes_to_reserve);
2999 if (ret) {
3000 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3001 lockend, &cached_state);
3002 goto out;
3003 }
3004 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3005 alloc_end - alloc_start,
3006 fs_info->sectorsize,
3007 offset + len, &alloc_hint);
3008 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3009 &cached_state);
3010 /* btrfs_prealloc_file_range releases reserved space on error */
3011 if (ret) {
3012 space_reserved = false;
3013 goto out;
3014 }
3015 }
3016 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3017 out:
3018 if (ret && space_reserved)
3019 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3020 alloc_start, bytes_to_reserve);
3021 extent_changeset_free(data_reserved);
3022
3023 return ret;
3024 }
3025
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3026 static long btrfs_fallocate(struct file *file, int mode,
3027 loff_t offset, loff_t len)
3028 {
3029 struct inode *inode = file_inode(file);
3030 struct extent_state *cached_state = NULL;
3031 struct extent_changeset *data_reserved = NULL;
3032 struct falloc_range *range;
3033 struct falloc_range *tmp;
3034 LIST_HEAD(reserve_list);
3035 u64 cur_offset;
3036 u64 last_byte;
3037 u64 alloc_start;
3038 u64 alloc_end;
3039 u64 alloc_hint = 0;
3040 u64 locked_end;
3041 u64 actual_end = 0;
3042 u64 data_space_needed = 0;
3043 u64 data_space_reserved = 0;
3044 u64 qgroup_reserved = 0;
3045 struct extent_map *em;
3046 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3047 int ret;
3048
3049 /* Do not allow fallocate in ZONED mode */
3050 if (btrfs_is_zoned(inode_to_fs_info(inode)))
3051 return -EOPNOTSUPP;
3052
3053 alloc_start = round_down(offset, blocksize);
3054 alloc_end = round_up(offset + len, blocksize);
3055 cur_offset = alloc_start;
3056
3057 /* Make sure we aren't being give some crap mode */
3058 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3059 FALLOC_FL_ZERO_RANGE))
3060 return -EOPNOTSUPP;
3061
3062 if (mode & FALLOC_FL_PUNCH_HOLE)
3063 return btrfs_punch_hole(file, offset, len);
3064
3065 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3066
3067 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3068 ret = inode_newsize_ok(inode, offset + len);
3069 if (ret)
3070 goto out;
3071 }
3072
3073 ret = file_modified(file);
3074 if (ret)
3075 goto out;
3076
3077 /*
3078 * TODO: Move these two operations after we have checked
3079 * accurate reserved space, or fallocate can still fail but
3080 * with page truncated or size expanded.
3081 *
3082 * But that's a minor problem and won't do much harm BTW.
3083 */
3084 if (alloc_start > inode->i_size) {
3085 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3086 alloc_start);
3087 if (ret)
3088 goto out;
3089 } else if (offset + len > inode->i_size) {
3090 /*
3091 * If we are fallocating from the end of the file onward we
3092 * need to zero out the end of the block if i_size lands in the
3093 * middle of a block.
3094 */
3095 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size,
3096 inode->i_size, (u64)-1);
3097 if (ret)
3098 goto out;
3099 }
3100
3101 /*
3102 * We have locked the inode at the VFS level (in exclusive mode) and we
3103 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3104 * locking the file range, flush all dealloc in the range and wait for
3105 * all ordered extents in the range to complete. After this we can lock
3106 * the file range and, due to the previous locking we did, we know there
3107 * can't be more delalloc or ordered extents in the range.
3108 */
3109 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3110 alloc_end - alloc_start);
3111 if (ret)
3112 goto out;
3113
3114 if (mode & FALLOC_FL_ZERO_RANGE) {
3115 ret = btrfs_zero_range(inode, offset, len, mode);
3116 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3117 return ret;
3118 }
3119
3120 locked_end = alloc_end - 1;
3121 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3122 &cached_state);
3123
3124 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3125
3126 /* First, check if we exceed the qgroup limit */
3127 while (cur_offset < alloc_end) {
3128 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3129 alloc_end - cur_offset);
3130 if (IS_ERR(em)) {
3131 ret = PTR_ERR(em);
3132 break;
3133 }
3134 last_byte = min(btrfs_extent_map_end(em), alloc_end);
3135 actual_end = min_t(u64, btrfs_extent_map_end(em), offset + len);
3136 last_byte = ALIGN(last_byte, blocksize);
3137 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3138 (cur_offset >= inode->i_size &&
3139 !(em->flags & EXTENT_FLAG_PREALLOC))) {
3140 const u64 range_len = last_byte - cur_offset;
3141
3142 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3143 if (ret < 0) {
3144 btrfs_free_extent_map(em);
3145 break;
3146 }
3147 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3148 &data_reserved, cur_offset, range_len);
3149 if (ret < 0) {
3150 btrfs_free_extent_map(em);
3151 break;
3152 }
3153 qgroup_reserved += range_len;
3154 data_space_needed += range_len;
3155 }
3156 btrfs_free_extent_map(em);
3157 cur_offset = last_byte;
3158 }
3159
3160 if (!ret && data_space_needed > 0) {
3161 /*
3162 * We are safe to reserve space here as we can't have delalloc
3163 * in the range, see above.
3164 */
3165 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3166 data_space_needed);
3167 if (!ret)
3168 data_space_reserved = data_space_needed;
3169 }
3170
3171 /*
3172 * If ret is still 0, means we're OK to fallocate.
3173 * Or just cleanup the list and exit.
3174 */
3175 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3176 if (!ret) {
3177 ret = btrfs_prealloc_file_range(inode, mode,
3178 range->start,
3179 range->len, blocksize,
3180 offset + len, &alloc_hint);
3181 /*
3182 * btrfs_prealloc_file_range() releases space even
3183 * if it returns an error.
3184 */
3185 data_space_reserved -= range->len;
3186 qgroup_reserved -= range->len;
3187 } else if (data_space_reserved > 0) {
3188 btrfs_free_reserved_data_space(BTRFS_I(inode),
3189 data_reserved, range->start,
3190 range->len);
3191 data_space_reserved -= range->len;
3192 qgroup_reserved -= range->len;
3193 } else if (qgroup_reserved > 0) {
3194 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3195 range->start, range->len, NULL);
3196 qgroup_reserved -= range->len;
3197 }
3198 list_del(&range->list);
3199 kfree(range);
3200 }
3201 if (ret < 0)
3202 goto out_unlock;
3203
3204 /*
3205 * We didn't need to allocate any more space, but we still extended the
3206 * size of the file so we need to update i_size and the inode item.
3207 */
3208 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3209 out_unlock:
3210 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3211 &cached_state);
3212 out:
3213 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3214 extent_changeset_free(data_reserved);
3215 return ret;
3216 }
3217
3218 /*
3219 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3220 * that has unflushed and/or flushing delalloc. There might be other adjacent
3221 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3222 * looping while it gets adjacent subranges, and merging them together.
3223 */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3224 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3225 struct extent_state **cached_state,
3226 bool *search_io_tree,
3227 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3228 {
3229 u64 len = end + 1 - start;
3230 u64 delalloc_len = 0;
3231 struct btrfs_ordered_extent *oe;
3232 u64 oe_start;
3233 u64 oe_end;
3234
3235 /*
3236 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3237 * means we have delalloc (dirty pages) for which writeback has not
3238 * started yet.
3239 */
3240 if (*search_io_tree) {
3241 spin_lock(&inode->lock);
3242 if (inode->delalloc_bytes > 0) {
3243 spin_unlock(&inode->lock);
3244 *delalloc_start_ret = start;
3245 delalloc_len = btrfs_count_range_bits(&inode->io_tree,
3246 delalloc_start_ret, end,
3247 len, EXTENT_DELALLOC, 1,
3248 cached_state);
3249 } else {
3250 spin_unlock(&inode->lock);
3251 }
3252 }
3253
3254 if (delalloc_len > 0) {
3255 /*
3256 * If delalloc was found then *delalloc_start_ret has a sector size
3257 * aligned value (rounded down).
3258 */
3259 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3260
3261 if (*delalloc_start_ret == start) {
3262 /* Delalloc for the whole range, nothing more to do. */
3263 if (*delalloc_end_ret == end)
3264 return true;
3265 /* Else trim our search range for ordered extents. */
3266 start = *delalloc_end_ret + 1;
3267 len = end + 1 - start;
3268 }
3269 } else {
3270 /* No delalloc, future calls don't need to search again. */
3271 *search_io_tree = false;
3272 }
3273
3274 /*
3275 * Now also check if there's any ordered extent in the range.
3276 * We do this because:
3277 *
3278 * 1) When delalloc is flushed, the file range is locked, we clear the
3279 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3280 * an ordered extent for the write. So we might just have been called
3281 * after delalloc is flushed and before the ordered extent completes
3282 * and inserts the new file extent item in the subvolume's btree;
3283 *
3284 * 2) We may have an ordered extent created by flushing delalloc for a
3285 * subrange that starts before the subrange we found marked with
3286 * EXTENT_DELALLOC in the io tree.
3287 *
3288 * We could also use the extent map tree to find such delalloc that is
3289 * being flushed, but using the ordered extents tree is more efficient
3290 * because it's usually much smaller as ordered extents are removed from
3291 * the tree once they complete. With the extent maps, we mau have them
3292 * in the extent map tree for a very long time, and they were either
3293 * created by previous writes or loaded by read operations.
3294 */
3295 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3296 if (!oe)
3297 return (delalloc_len > 0);
3298
3299 /* The ordered extent may span beyond our search range. */
3300 oe_start = max(oe->file_offset, start);
3301 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3302
3303 btrfs_put_ordered_extent(oe);
3304
3305 /* Don't have unflushed delalloc, return the ordered extent range. */
3306 if (delalloc_len == 0) {
3307 *delalloc_start_ret = oe_start;
3308 *delalloc_end_ret = oe_end;
3309 return true;
3310 }
3311
3312 /*
3313 * We have both unflushed delalloc (io_tree) and an ordered extent.
3314 * If the ranges are adjacent returned a combined range, otherwise
3315 * return the leftmost range.
3316 */
3317 if (oe_start < *delalloc_start_ret) {
3318 if (oe_end < *delalloc_start_ret)
3319 *delalloc_end_ret = oe_end;
3320 *delalloc_start_ret = oe_start;
3321 } else if (*delalloc_end_ret + 1 == oe_start) {
3322 *delalloc_end_ret = oe_end;
3323 }
3324
3325 return true;
3326 }
3327
3328 /*
3329 * Check if there's delalloc in a given range.
3330 *
3331 * @inode: The inode.
3332 * @start: The start offset of the range. It does not need to be
3333 * sector size aligned.
3334 * @end: The end offset (inclusive value) of the search range.
3335 * It does not need to be sector size aligned.
3336 * @cached_state: Extent state record used for speeding up delalloc
3337 * searches in the inode's io_tree. Can be NULL.
3338 * @delalloc_start_ret: Output argument, set to the start offset of the
3339 * subrange found with delalloc (may not be sector size
3340 * aligned).
3341 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3342 * of the subrange found with delalloc.
3343 *
3344 * Returns true if a subrange with delalloc is found within the given range, and
3345 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3346 * end offsets of the subrange.
3347 */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3348 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3349 struct extent_state **cached_state,
3350 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3351 {
3352 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3353 u64 prev_delalloc_end = 0;
3354 bool search_io_tree = true;
3355 bool ret = false;
3356
3357 while (cur_offset <= end) {
3358 u64 delalloc_start;
3359 u64 delalloc_end;
3360 bool delalloc;
3361
3362 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3363 cached_state, &search_io_tree,
3364 &delalloc_start,
3365 &delalloc_end);
3366 if (!delalloc)
3367 break;
3368
3369 if (prev_delalloc_end == 0) {
3370 /* First subrange found. */
3371 *delalloc_start_ret = max(delalloc_start, start);
3372 *delalloc_end_ret = delalloc_end;
3373 ret = true;
3374 } else if (delalloc_start == prev_delalloc_end + 1) {
3375 /* Subrange adjacent to the previous one, merge them. */
3376 *delalloc_end_ret = delalloc_end;
3377 } else {
3378 /* Subrange not adjacent to the previous one, exit. */
3379 break;
3380 }
3381
3382 prev_delalloc_end = delalloc_end;
3383 cur_offset = delalloc_end + 1;
3384 cond_resched();
3385 }
3386
3387 return ret;
3388 }
3389
3390 /*
3391 * Check if there's a hole or delalloc range in a range representing a hole (or
3392 * prealloc extent) found in the inode's subvolume btree.
3393 *
3394 * @inode: The inode.
3395 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3396 * @start: Start offset of the hole region. It does not need to be sector
3397 * size aligned.
3398 * @end: End offset (inclusive value) of the hole region. It does not
3399 * need to be sector size aligned.
3400 * @start_ret: Return parameter, used to set the start of the subrange in the
3401 * hole that matches the search criteria (seek mode), if such
3402 * subrange is found (return value of the function is true).
3403 * The value returned here may not be sector size aligned.
3404 *
3405 * Returns true if a subrange matching the given seek mode is found, and if one
3406 * is found, it updates @start_ret with the start of the subrange.
3407 */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3408 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3409 struct extent_state **cached_state,
3410 u64 start, u64 end, u64 *start_ret)
3411 {
3412 u64 delalloc_start;
3413 u64 delalloc_end;
3414 bool delalloc;
3415
3416 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3417 &delalloc_start, &delalloc_end);
3418 if (delalloc && whence == SEEK_DATA) {
3419 *start_ret = delalloc_start;
3420 return true;
3421 }
3422
3423 if (delalloc && whence == SEEK_HOLE) {
3424 /*
3425 * We found delalloc but it starts after out start offset. So we
3426 * have a hole between our start offset and the delalloc start.
3427 */
3428 if (start < delalloc_start) {
3429 *start_ret = start;
3430 return true;
3431 }
3432 /*
3433 * Delalloc range starts at our start offset.
3434 * If the delalloc range's length is smaller than our range,
3435 * then it means we have a hole that starts where the delalloc
3436 * subrange ends.
3437 */
3438 if (delalloc_end < end) {
3439 *start_ret = delalloc_end + 1;
3440 return true;
3441 }
3442
3443 /* There's delalloc for the whole range. */
3444 return false;
3445 }
3446
3447 if (!delalloc && whence == SEEK_HOLE) {
3448 *start_ret = start;
3449 return true;
3450 }
3451
3452 /*
3453 * No delalloc in the range and we are seeking for data. The caller has
3454 * to iterate to the next extent item in the subvolume btree.
3455 */
3456 return false;
3457 }
3458
find_desired_extent(struct file * file,loff_t offset,int whence)3459 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3460 {
3461 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3462 struct btrfs_file_private *private;
3463 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3464 struct extent_state *cached_state = NULL;
3465 struct extent_state **delalloc_cached_state;
3466 const loff_t i_size = i_size_read(&inode->vfs_inode);
3467 const u64 ino = btrfs_ino(inode);
3468 struct btrfs_root *root = inode->root;
3469 struct btrfs_path *path;
3470 struct btrfs_key key;
3471 u64 last_extent_end;
3472 u64 lockstart;
3473 u64 lockend;
3474 u64 start;
3475 int ret;
3476 bool found = false;
3477
3478 if (i_size == 0 || offset >= i_size)
3479 return -ENXIO;
3480
3481 /*
3482 * Quick path. If the inode has no prealloc extents and its number of
3483 * bytes used matches its i_size, then it can not have holes.
3484 */
3485 if (whence == SEEK_HOLE &&
3486 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3487 inode_get_bytes(&inode->vfs_inode) == i_size)
3488 return i_size;
3489
3490 spin_lock(&inode->lock);
3491 private = file->private_data;
3492 spin_unlock(&inode->lock);
3493
3494 if (private && private->owner_task != current) {
3495 /*
3496 * Not allocated by us, don't use it as its cached state is used
3497 * by the task that allocated it and we don't want neither to
3498 * mess with it nor get incorrect results because it reflects an
3499 * invalid state for the current task.
3500 */
3501 private = NULL;
3502 } else if (!private) {
3503 private = kzalloc(sizeof(*private), GFP_KERNEL);
3504 /*
3505 * No worries if memory allocation failed.
3506 * The private structure is used only for speeding up multiple
3507 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3508 * so everything will still be correct.
3509 */
3510 if (private) {
3511 bool free = false;
3512
3513 private->owner_task = current;
3514
3515 spin_lock(&inode->lock);
3516 if (file->private_data)
3517 free = true;
3518 else
3519 file->private_data = private;
3520 spin_unlock(&inode->lock);
3521
3522 if (free) {
3523 kfree(private);
3524 private = NULL;
3525 }
3526 }
3527 }
3528
3529 if (private)
3530 delalloc_cached_state = &private->llseek_cached_state;
3531 else
3532 delalloc_cached_state = NULL;
3533
3534 /*
3535 * offset can be negative, in this case we start finding DATA/HOLE from
3536 * the very start of the file.
3537 */
3538 start = max_t(loff_t, 0, offset);
3539
3540 lockstart = round_down(start, fs_info->sectorsize);
3541 lockend = round_up(i_size, fs_info->sectorsize);
3542 if (lockend <= lockstart)
3543 lockend = lockstart + fs_info->sectorsize;
3544 lockend--;
3545
3546 path = btrfs_alloc_path();
3547 if (!path)
3548 return -ENOMEM;
3549 path->reada = READA_FORWARD;
3550
3551 key.objectid = ino;
3552 key.type = BTRFS_EXTENT_DATA_KEY;
3553 key.offset = start;
3554
3555 last_extent_end = lockstart;
3556
3557 btrfs_lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3558
3559 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3560 if (ret < 0) {
3561 goto out;
3562 } else if (ret > 0 && path->slots[0] > 0) {
3563 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3564 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3565 path->slots[0]--;
3566 }
3567
3568 while (start < i_size) {
3569 struct extent_buffer *leaf = path->nodes[0];
3570 struct btrfs_file_extent_item *extent;
3571 u64 extent_end;
3572 u8 type;
3573
3574 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3575 ret = btrfs_next_leaf(root, path);
3576 if (ret < 0)
3577 goto out;
3578 else if (ret > 0)
3579 break;
3580
3581 leaf = path->nodes[0];
3582 }
3583
3584 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3585 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3586 break;
3587
3588 extent_end = btrfs_file_extent_end(path);
3589
3590 /*
3591 * In the first iteration we may have a slot that points to an
3592 * extent that ends before our start offset, so skip it.
3593 */
3594 if (extent_end <= start) {
3595 path->slots[0]++;
3596 continue;
3597 }
3598
3599 /* We have an implicit hole, NO_HOLES feature is likely set. */
3600 if (last_extent_end < key.offset) {
3601 u64 search_start = last_extent_end;
3602 u64 found_start;
3603
3604 /*
3605 * First iteration, @start matches @offset and it's
3606 * within the hole.
3607 */
3608 if (start == offset)
3609 search_start = offset;
3610
3611 found = find_desired_extent_in_hole(inode, whence,
3612 delalloc_cached_state,
3613 search_start,
3614 key.offset - 1,
3615 &found_start);
3616 if (found) {
3617 start = found_start;
3618 break;
3619 }
3620 /*
3621 * Didn't find data or a hole (due to delalloc) in the
3622 * implicit hole range, so need to analyze the extent.
3623 */
3624 }
3625
3626 extent = btrfs_item_ptr(leaf, path->slots[0],
3627 struct btrfs_file_extent_item);
3628 type = btrfs_file_extent_type(leaf, extent);
3629
3630 /*
3631 * Can't access the extent's disk_bytenr field if this is an
3632 * inline extent, since at that offset, it's where the extent
3633 * data starts.
3634 */
3635 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3636 (type == BTRFS_FILE_EXTENT_REG &&
3637 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3638 /*
3639 * Explicit hole or prealloc extent, search for delalloc.
3640 * A prealloc extent is treated like a hole.
3641 */
3642 u64 search_start = key.offset;
3643 u64 found_start;
3644
3645 /*
3646 * First iteration, @start matches @offset and it's
3647 * within the hole.
3648 */
3649 if (start == offset)
3650 search_start = offset;
3651
3652 found = find_desired_extent_in_hole(inode, whence,
3653 delalloc_cached_state,
3654 search_start,
3655 extent_end - 1,
3656 &found_start);
3657 if (found) {
3658 start = found_start;
3659 break;
3660 }
3661 /*
3662 * Didn't find data or a hole (due to delalloc) in the
3663 * implicit hole range, so need to analyze the next
3664 * extent item.
3665 */
3666 } else {
3667 /*
3668 * Found a regular or inline extent.
3669 * If we are seeking for data, adjust the start offset
3670 * and stop, we're done.
3671 */
3672 if (whence == SEEK_DATA) {
3673 start = max_t(u64, key.offset, offset);
3674 found = true;
3675 break;
3676 }
3677 /*
3678 * Else, we are seeking for a hole, check the next file
3679 * extent item.
3680 */
3681 }
3682
3683 start = extent_end;
3684 last_extent_end = extent_end;
3685 path->slots[0]++;
3686 if (fatal_signal_pending(current)) {
3687 ret = -EINTR;
3688 goto out;
3689 }
3690 cond_resched();
3691 }
3692
3693 /* We have an implicit hole from the last extent found up to i_size. */
3694 if (!found && start < i_size) {
3695 found = find_desired_extent_in_hole(inode, whence,
3696 delalloc_cached_state, start,
3697 i_size - 1, &start);
3698 if (!found)
3699 start = i_size;
3700 }
3701
3702 out:
3703 btrfs_unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3704 btrfs_free_path(path);
3705
3706 if (ret < 0)
3707 return ret;
3708
3709 if (whence == SEEK_DATA && start >= i_size)
3710 return -ENXIO;
3711
3712 return min_t(loff_t, start, i_size);
3713 }
3714
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3715 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3716 {
3717 struct inode *inode = file->f_mapping->host;
3718
3719 switch (whence) {
3720 default:
3721 return generic_file_llseek(file, offset, whence);
3722 case SEEK_DATA:
3723 case SEEK_HOLE:
3724 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3725 offset = find_desired_extent(file, offset, whence);
3726 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3727 break;
3728 }
3729
3730 if (offset < 0)
3731 return offset;
3732
3733 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3734 }
3735
btrfs_file_open(struct inode * inode,struct file * filp)3736 static int btrfs_file_open(struct inode *inode, struct file *filp)
3737 {
3738 int ret;
3739
3740 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3741
3742 ret = fsverity_file_open(inode, filp);
3743 if (ret)
3744 return ret;
3745 return generic_file_open(inode, filp);
3746 }
3747
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3748 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3749 {
3750 ssize_t ret = 0;
3751
3752 if (iocb->ki_flags & IOCB_DIRECT) {
3753 ret = btrfs_direct_read(iocb, to);
3754 if (ret < 0 || !iov_iter_count(to) ||
3755 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3756 return ret;
3757 }
3758
3759 return filemap_read(iocb, to, ret);
3760 }
3761
3762 const struct file_operations btrfs_file_operations = {
3763 .llseek = btrfs_file_llseek,
3764 .read_iter = btrfs_file_read_iter,
3765 .splice_read = filemap_splice_read,
3766 .write_iter = btrfs_file_write_iter,
3767 .splice_write = iter_file_splice_write,
3768 .mmap = btrfs_file_mmap,
3769 .open = btrfs_file_open,
3770 .release = btrfs_release_file,
3771 .get_unmapped_area = thp_get_unmapped_area,
3772 .fsync = btrfs_sync_file,
3773 .fallocate = btrfs_fallocate,
3774 .unlocked_ioctl = btrfs_ioctl,
3775 #ifdef CONFIG_COMPAT
3776 .compat_ioctl = btrfs_compat_ioctl,
3777 #endif
3778 .remap_file_range = btrfs_remap_file_range,
3779 .uring_cmd = btrfs_uring_cmd,
3780 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3781 };
3782
btrfs_fdatawrite_range(struct btrfs_inode * inode,loff_t start,loff_t end)3783 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3784 {
3785 struct address_space *mapping = inode->vfs_inode.i_mapping;
3786 int ret;
3787
3788 /*
3789 * So with compression we will find and lock a dirty page and clear the
3790 * first one as dirty, setup an async extent, and immediately return
3791 * with the entire range locked but with nobody actually marked with
3792 * writeback. So we can't just filemap_write_and_wait_range() and
3793 * expect it to work since it will just kick off a thread to do the
3794 * actual work. So we need to call filemap_fdatawrite_range _again_
3795 * since it will wait on the page lock, which won't be unlocked until
3796 * after the pages have been marked as writeback and so we're good to go
3797 * from there. We have to do this otherwise we'll miss the ordered
3798 * extents and that results in badness. Please Josef, do not think you
3799 * know better and pull this out at some point in the future, it is
3800 * right and you are wrong.
3801 */
3802 ret = filemap_fdatawrite_range(mapping, start, end);
3803 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3804 ret = filemap_fdatawrite_range(mapping, start, end);
3805
3806 return ret;
3807 }
3808