xref: /linux/fs/btrfs/locking.h (revision feffde684ac29a3b7aec82d2df850fbdbdee55e4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_LOCKING_H
7 #define BTRFS_LOCKING_H
8 
9 #include <linux/atomic.h>
10 #include <linux/wait.h>
11 #include <linux/lockdep.h>
12 #include <linux/percpu_counter.h>
13 #include "extent_io.h"
14 
15 struct extent_buffer;
16 struct btrfs_path;
17 struct btrfs_root;
18 
19 #define BTRFS_WRITE_LOCK 1
20 #define BTRFS_READ_LOCK 2
21 
22 /*
23  * We are limited in number of subclasses by MAX_LOCKDEP_SUBCLASSES, which at
24  * the time of this patch is 8, which is how many we use.  Keep this in mind if
25  * you decide you want to add another subclass.
26  */
27 enum btrfs_lock_nesting {
28 	BTRFS_NESTING_NORMAL,
29 
30 	/*
31 	 * When we COW a block we are holding the lock on the original block,
32 	 * and since our lockdep maps are rootid+level, this confuses lockdep
33 	 * when we lock the newly allocated COW'd block.  Handle this by having
34 	 * a subclass for COW'ed blocks so that lockdep doesn't complain.
35 	 */
36 	BTRFS_NESTING_COW,
37 
38 	/*
39 	 * Oftentimes we need to lock adjacent nodes on the same level while
40 	 * still holding the lock on the original node we searched to, such as
41 	 * for searching forward or for split/balance.
42 	 *
43 	 * Because of this we need to indicate to lockdep that this is
44 	 * acceptable by having a different subclass for each of these
45 	 * operations.
46 	 */
47 	BTRFS_NESTING_LEFT,
48 	BTRFS_NESTING_RIGHT,
49 
50 	/*
51 	 * When splitting we will be holding a lock on the left/right node when
52 	 * we need to cow that node, thus we need a new set of subclasses for
53 	 * these two operations.
54 	 */
55 	BTRFS_NESTING_LEFT_COW,
56 	BTRFS_NESTING_RIGHT_COW,
57 
58 	/*
59 	 * When splitting we may push nodes to the left or right, but still use
60 	 * the subsequent nodes in our path, keeping our locks on those adjacent
61 	 * blocks.  Thus when we go to allocate a new split block we've already
62 	 * used up all of our available subclasses, so this subclass exists to
63 	 * handle this case where we need to allocate a new split block.
64 	 */
65 	BTRFS_NESTING_SPLIT,
66 
67 	/*
68 	 * When promoting a new block to a root we need to have a special
69 	 * subclass so we don't confuse lockdep, as it will appear that we are
70 	 * locking a higher level node before a lower level one.  Copying also
71 	 * has this problem as it appears we're locking the same block again
72 	 * when we make a snapshot of an existing root.
73 	 */
74 	BTRFS_NESTING_NEW_ROOT,
75 
76 	/*
77 	 * We are limited to MAX_LOCKDEP_SUBLCLASSES number of subclasses, so
78 	 * add this in here and add a static_assert to keep us from going over
79 	 * the limit.  As of this writing we're limited to 8, and we're
80 	 * definitely using 8, hence this check to keep us from messing up in
81 	 * the future.
82 	 */
83 	BTRFS_NESTING_MAX,
84 };
85 
86 enum btrfs_lockdep_trans_states {
87 	BTRFS_LOCKDEP_TRANS_COMMIT_PREP,
88 	BTRFS_LOCKDEP_TRANS_UNBLOCKED,
89 	BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED,
90 	BTRFS_LOCKDEP_TRANS_COMPLETED,
91 };
92 
93 /*
94  * Lockdep annotation for wait events.
95  *
96  * @owner:  The struct where the lockdep map is defined
97  * @lock:   The lockdep map corresponding to a wait event
98  *
99  * This macro is used to annotate a wait event. In this case a thread acquires
100  * the lockdep map as writer (exclusive lock) because it has to block until all
101  * the threads that hold the lock as readers signal the condition for the wait
102  * event and release their locks.
103  */
104 #define btrfs_might_wait_for_event(owner, lock)					\
105 	do {									\
106 		rwsem_acquire(&owner->lock##_map, 0, 0, _THIS_IP_);		\
107 		rwsem_release(&owner->lock##_map, _THIS_IP_);			\
108 	} while (0)
109 
110 /*
111  * Protection for the resource/condition of a wait event.
112  *
113  * @owner:  The struct where the lockdep map is defined
114  * @lock:   The lockdep map corresponding to a wait event
115  *
116  * Many threads can modify the condition for the wait event at the same time
117  * and signal the threads that block on the wait event. The threads that modify
118  * the condition and do the signaling acquire the lock as readers (shared
119  * lock).
120  */
121 #define btrfs_lockdep_acquire(owner, lock)					\
122 	rwsem_acquire_read(&owner->lock##_map, 0, 0, _THIS_IP_)
123 
124 /*
125  * Used after signaling the condition for a wait event to release the lockdep
126  * map held by a reader thread.
127  */
128 #define btrfs_lockdep_release(owner, lock)					\
129 	rwsem_release(&owner->lock##_map, _THIS_IP_)
130 
131 /*
132  * Used to account for the fact that when doing io_uring encoded I/O, we can
133  * return to userspace with the inode lock still held.
134  */
135 #define btrfs_lockdep_inode_acquire(owner, lock)				\
136 	rwsem_acquire_read(&owner->vfs_inode.lock.dep_map, 0, 0, _THIS_IP_)
137 
138 #define btrfs_lockdep_inode_release(owner, lock)				\
139 	rwsem_release(&owner->vfs_inode.lock.dep_map, _THIS_IP_)
140 
141 /*
142  * Macros for the transaction states wait events, similar to the generic wait
143  * event macros.
144  */
145 #define btrfs_might_wait_for_state(owner, i)					\
146 	do {									\
147 		rwsem_acquire(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_); \
148 		rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_);	\
149 	} while (0)
150 
151 #define btrfs_trans_state_lockdep_acquire(owner, i)				\
152 	rwsem_acquire_read(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_)
153 
154 #define btrfs_trans_state_lockdep_release(owner, i)				\
155 	rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_)
156 
157 /* Initialization of the lockdep map */
158 #define btrfs_lockdep_init_map(owner, lock)					\
159 	do {									\
160 		static struct lock_class_key lock##_key;			\
161 		lockdep_init_map(&owner->lock##_map, #lock, &lock##_key, 0);	\
162 	} while (0)
163 
164 /* Initialization of the transaction states lockdep maps. */
165 #define btrfs_state_lockdep_init_map(owner, lock, state)			\
166 	do {									\
167 		static struct lock_class_key lock##_key;			\
168 		lockdep_init_map(&owner->btrfs_state_change_map[state], #lock,	\
169 				 &lock##_key, 0);				\
170 	} while (0)
171 
172 static_assert(BTRFS_NESTING_MAX <= MAX_LOCKDEP_SUBCLASSES,
173 	      "too many lock subclasses defined");
174 
175 void btrfs_tree_lock_nested(struct extent_buffer *eb, enum btrfs_lock_nesting nest);
176 
btrfs_tree_lock(struct extent_buffer * eb)177 static inline void btrfs_tree_lock(struct extent_buffer *eb)
178 {
179 	btrfs_tree_lock_nested(eb, BTRFS_NESTING_NORMAL);
180 }
181 
182 void btrfs_tree_unlock(struct extent_buffer *eb);
183 
184 void btrfs_tree_read_lock_nested(struct extent_buffer *eb, enum btrfs_lock_nesting nest);
185 
btrfs_tree_read_lock(struct extent_buffer * eb)186 static inline void btrfs_tree_read_lock(struct extent_buffer *eb)
187 {
188 	btrfs_tree_read_lock_nested(eb, BTRFS_NESTING_NORMAL);
189 }
190 
191 void btrfs_tree_read_unlock(struct extent_buffer *eb);
192 int btrfs_try_tree_read_lock(struct extent_buffer *eb);
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
194 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root);
195 struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root);
196 
197 #ifdef CONFIG_BTRFS_DEBUG
btrfs_assert_tree_write_locked(struct extent_buffer * eb)198 static inline void btrfs_assert_tree_write_locked(struct extent_buffer *eb)
199 {
200 	lockdep_assert_held_write(&eb->lock);
201 }
202 #else
btrfs_assert_tree_write_locked(struct extent_buffer * eb)203 static inline void btrfs_assert_tree_write_locked(struct extent_buffer *eb) { }
204 #endif
205 
206 void btrfs_unlock_up_safe(struct btrfs_path *path, int level);
207 
btrfs_tree_unlock_rw(struct extent_buffer * eb,int rw)208 static inline void btrfs_tree_unlock_rw(struct extent_buffer *eb, int rw)
209 {
210 	if (rw == BTRFS_WRITE_LOCK)
211 		btrfs_tree_unlock(eb);
212 	else if (rw == BTRFS_READ_LOCK)
213 		btrfs_tree_read_unlock(eb);
214 	else
215 		BUG();
216 }
217 
218 struct btrfs_drew_lock {
219 	atomic_t readers;
220 	atomic_t writers;
221 	wait_queue_head_t pending_writers;
222 	wait_queue_head_t pending_readers;
223 };
224 
225 void btrfs_drew_lock_init(struct btrfs_drew_lock *lock);
226 void btrfs_drew_write_lock(struct btrfs_drew_lock *lock);
227 bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock);
228 void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock);
229 void btrfs_drew_read_lock(struct btrfs_drew_lock *lock);
230 void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock);
231 
232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level);
234 void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb);
235 #else
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)236 static inline void btrfs_set_buffer_lockdep_class(u64 objectid,
237 					struct extent_buffer *eb, int level)
238 {
239 }
btrfs_maybe_reset_lockdep_class(struct btrfs_root * root,struct extent_buffer * eb)240 static inline void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root,
241 						   struct extent_buffer *eb)
242 {
243 }
244 #endif
245 
246 #endif
247