xref: /linux/fs/btrfs/btrfs_inode.h (revision fd71def6d9abc5ae362fb9995d46049b7b0ed391)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8 
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include <linux/spinlock.h>
12 #include <linux/mutex.h>
13 #include <linux/rwsem.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/compiler.h>
17 #include <linux/fscrypt.h>
18 #include <linux/lockdep.h>
19 #include <uapi/linux/btrfs_tree.h>
20 #include <trace/events/btrfs.h>
21 #include "block-rsv.h"
22 #include "extent_map.h"
23 #include "extent_io.h"
24 #include "extent-io-tree.h"
25 #include "ordered-data.h"
26 #include "delayed-inode.h"
27 
28 struct extent_state;
29 struct posix_acl;
30 struct iov_iter;
31 struct writeback_control;
32 struct btrfs_root;
33 struct btrfs_fs_info;
34 struct btrfs_trans_handle;
35 
36 /*
37  * Since we search a directory based on f_pos (struct dir_context::pos) we have
38  * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so
39  * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()).
40  */
41 #define BTRFS_DIR_START_INDEX 2
42 
43 /*
44  * ordered_data_close is set by truncate when a file that used
45  * to have good data has been truncated to zero.  When it is set
46  * the btrfs file release call will add this inode to the
47  * ordered operations list so that we make sure to flush out any
48  * new data the application may have written before commit.
49  */
50 enum {
51 	BTRFS_INODE_FLUSH_ON_CLOSE,
52 	BTRFS_INODE_DUMMY,
53 	BTRFS_INODE_IN_DEFRAG,
54 	BTRFS_INODE_HAS_ASYNC_EXTENT,
55 	 /*
56 	  * Always set under the VFS' inode lock, otherwise it can cause races
57 	  * during fsync (we start as a fast fsync and then end up in a full
58 	  * fsync racing with ordered extent completion).
59 	  */
60 	BTRFS_INODE_NEEDS_FULL_SYNC,
61 	BTRFS_INODE_COPY_EVERYTHING,
62 	BTRFS_INODE_HAS_PROPS,
63 	BTRFS_INODE_SNAPSHOT_FLUSH,
64 	/*
65 	 * Set and used when logging an inode and it serves to signal that an
66 	 * inode does not have xattrs, so subsequent fsyncs can avoid searching
67 	 * for xattrs to log. This bit must be cleared whenever a xattr is added
68 	 * to an inode.
69 	 */
70 	BTRFS_INODE_NO_XATTRS,
71 	/*
72 	 * Set when we are in a context where we need to start a transaction and
73 	 * have dirty pages with the respective file range locked. This is to
74 	 * ensure that when reserving space for the transaction, if we are low
75 	 * on available space and need to flush delalloc, we will not flush
76 	 * delalloc for this inode, because that could result in a deadlock (on
77 	 * the file range, inode's io_tree).
78 	 */
79 	BTRFS_INODE_NO_DELALLOC_FLUSH,
80 	/*
81 	 * Set when we are working on enabling verity for a file. Computing and
82 	 * writing the whole Merkle tree can take a while so we want to prevent
83 	 * races where two separate tasks attempt to simultaneously start verity
84 	 * on the same file.
85 	 */
86 	BTRFS_INODE_VERITY_IN_PROGRESS,
87 	/* Set when this inode is a free space inode. */
88 	BTRFS_INODE_FREE_SPACE_INODE,
89 	/* Set when there are no capabilities in XATTs for the inode. */
90 	BTRFS_INODE_NO_CAP_XATTR,
91 	/*
92 	 * Set if an error happened when doing a COW write before submitting a
93 	 * bio or during writeback. Used for both buffered writes and direct IO
94 	 * writes. This is to signal a fast fsync that it has to wait for
95 	 * ordered extents to complete and therefore not log extent maps that
96 	 * point to unwritten extents (when an ordered extent completes and it
97 	 * has the BTRFS_ORDERED_IOERR flag set, it drops extent maps in its
98 	 * range).
99 	 */
100 	BTRFS_INODE_COW_WRITE_ERROR,
101 	/*
102 	 * Indicate this is a directory that points to a subvolume for which
103 	 * there is no root reference item. That's a case like the following:
104 	 *
105 	 *   $ btrfs subvolume create /mnt/parent
106 	 *   $ btrfs subvolume create /mnt/parent/child
107 	 *   $ btrfs subvolume snapshot /mnt/parent /mnt/snap
108 	 *
109 	 * If subvolume "parent" is root 256, subvolume "child" is root 257 and
110 	 * snapshot "snap" is root 258, then there's no root reference item (key
111 	 * BTRFS_ROOT_REF_KEY in the root tree) for the subvolume "child"
112 	 * associated to root 258 (the snapshot) - there's only for the root
113 	 * of the "parent" subvolume (root 256). In the chunk root we have a
114 	 * (256 BTRFS_ROOT_REF_KEY 257) key but we don't have a
115 	 * (258 BTRFS_ROOT_REF_KEY 257) key - the sames goes for backrefs, we
116 	 * have a (257 BTRFS_ROOT_BACKREF_KEY 256) but we don't have a
117 	 * (257 BTRFS_ROOT_BACKREF_KEY 258) key.
118 	 *
119 	 * So when opening the "child" dentry from the snapshot's directory,
120 	 * we don't find a root ref item and we create a stub inode. This is
121 	 * done at new_simple_dir(), called from btrfs_lookup_dentry().
122 	 */
123 	BTRFS_INODE_ROOT_STUB,
124 };
125 
126 /* in memory btrfs inode */
127 struct btrfs_inode {
128 	/* which subvolume this inode belongs to */
129 	struct btrfs_root *root;
130 
131 #if BITS_PER_LONG == 32
132 	/*
133 	 * The objectid of the corresponding BTRFS_INODE_ITEM_KEY.
134 	 * On 64 bits platforms we can get it from vfs_inode.i_ino, which is an
135 	 * unsigned long and therefore 64 bits on such platforms.
136 	 */
137 	u64 objectid;
138 #endif
139 
140 	/* Cached value of inode property 'compression'. */
141 	u8 prop_compress;
142 
143 	/*
144 	 * Force compression on the file using the defrag ioctl, could be
145 	 * different from prop_compress and takes precedence if set.
146 	 */
147 	u8 defrag_compress;
148 	s8 defrag_compress_level;
149 
150 	/*
151 	 * Lock for counters and all fields used to determine if the inode is in
152 	 * the log or not (last_trans, last_sub_trans, last_log_commit,
153 	 * logged_trans), to access/update delalloc_bytes, new_delalloc_bytes,
154 	 * defrag_bytes, disk_i_size, outstanding_extents, csum_bytes and to
155 	 * update the VFS' inode number of bytes used.
156 	 * Also protects setting struct file::private_data.
157 	 */
158 	spinlock_t lock;
159 
160 	/* the extent_tree has caches of all the extent mappings to disk */
161 	struct extent_map_tree extent_tree;
162 
163 	/* the io_tree does range state (DIRTY, LOCKED etc) */
164 	struct extent_io_tree io_tree;
165 
166 	/*
167 	 * Keep track of where the inode has extent items mapped in order to
168 	 * make sure the i_size adjustments are accurate. Not required when the
169 	 * filesystem is NO_HOLES, the status can't be set while mounted as
170 	 * it's a mkfs-time feature.
171 	 */
172 	struct extent_io_tree *file_extent_tree;
173 
174 	/* held while logging the inode in tree-log.c */
175 	struct mutex log_mutex;
176 
177 	/*
178 	 * Counters to keep track of the number of extent item's we may use due
179 	 * to delalloc and such.  outstanding_extents is the number of extent
180 	 * items we think we'll end up using, and reserved_extents is the number
181 	 * of extent items we've reserved metadata for. Protected by 'lock'.
182 	 */
183 	unsigned outstanding_extents;
184 
185 	/* used to order data wrt metadata */
186 	spinlock_t ordered_tree_lock;
187 	struct rb_root ordered_tree;
188 	struct rb_node *ordered_tree_last;
189 
190 	/* list of all the delalloc inodes in the FS.  There are times we need
191 	 * to write all the delalloc pages to disk, and this list is used
192 	 * to walk them all.
193 	 */
194 	struct list_head delalloc_inodes;
195 
196 	unsigned long runtime_flags;
197 
198 	/* full 64 bit generation number, struct vfs_inode doesn't have a big
199 	 * enough field for this.
200 	 */
201 	u64 generation;
202 
203 	/*
204 	 * ID of the transaction handle that last modified this inode.
205 	 * Protected by 'lock'.
206 	 */
207 	u64 last_trans;
208 
209 	/*
210 	 * ID of the transaction that last logged this inode.
211 	 * Protected by 'lock'.
212 	 */
213 	u64 logged_trans;
214 
215 	/*
216 	 * Log transaction ID when this inode was last modified.
217 	 * Protected by 'lock'.
218 	 */
219 	int last_sub_trans;
220 
221 	/* A local copy of root's last_log_commit. Protected by 'lock'. */
222 	int last_log_commit;
223 
224 	union {
225 		/*
226 		 * Total number of bytes pending delalloc, used by stat to
227 		 * calculate the real block usage of the file. This is used
228 		 * only for files. Protected by 'lock'.
229 		 */
230 		u64 delalloc_bytes;
231 		/*
232 		 * The lowest possible index of the next dir index key which
233 		 * points to an inode that needs to be logged.
234 		 * This is used only for directories.
235 		 * Use the helpers btrfs_get_first_dir_index_to_log() and
236 		 * btrfs_set_first_dir_index_to_log() to access this field.
237 		 */
238 		u64 first_dir_index_to_log;
239 	};
240 
241 	union {
242 		/*
243 		 * Total number of bytes pending delalloc that fall within a file
244 		 * range that is either a hole or beyond EOF (and no prealloc extent
245 		 * exists in the range). This is always <= delalloc_bytes and this
246 		 * is used only for files. Protected by 'lock'.
247 		 */
248 		u64 new_delalloc_bytes;
249 		/*
250 		 * The offset of the last dir index key that was logged.
251 		 * This is used only for directories.
252 		 */
253 		u64 last_dir_index_offset;
254 	};
255 
256 	union {
257 		/*
258 		 * Total number of bytes pending defrag, used by stat to check whether
259 		 * it needs COW. Protected by 'lock'.
260 		 * Used by inodes other than the data relocation inode.
261 		 */
262 		u64 defrag_bytes;
263 
264 		/*
265 		 * Logical address of the block group being relocated.
266 		 * Used only by the data relocation inode.
267 		 */
268 		u64 reloc_block_group_start;
269 	};
270 
271 	/*
272 	 * The size of the file stored in the metadata on disk.  data=ordered
273 	 * means the in-memory i_size might be larger than the size on disk
274 	 * because not all the blocks are written yet. Protected by 'lock'.
275 	 */
276 	u64 disk_i_size;
277 
278 	union {
279 		/*
280 		 * If this is a directory then index_cnt is the counter for the
281 		 * index number for new files that are created. For an empty
282 		 * directory, this must be initialized to BTRFS_DIR_START_INDEX.
283 		 */
284 		u64 index_cnt;
285 
286 		/*
287 		 * If this is not a directory, this is the number of bytes
288 		 * outstanding that are going to need csums. This is used in
289 		 * ENOSPC accounting. Protected by 'lock'.
290 		 */
291 		u64 csum_bytes;
292 	};
293 
294 	/* Cache the directory index number to speed the dir/file remove */
295 	u64 dir_index;
296 
297 	/* the fsync log has some corner cases that mean we have to check
298 	 * directories to see if any unlinks have been done before
299 	 * the directory was logged.  See tree-log.c for all the
300 	 * details
301 	 */
302 	u64 last_unlink_trans;
303 
304 	union {
305 		/*
306 		 * The id/generation of the last transaction where this inode
307 		 * was either the source or the destination of a clone/dedupe
308 		 * operation. Used when logging an inode to know if there are
309 		 * shared extents that need special care when logging checksum
310 		 * items, to avoid duplicate checksum items in a log (which can
311 		 * lead to a corruption where we end up with missing checksum
312 		 * ranges after log replay). Protected by the VFS inode lock.
313 		 * Used for regular files only.
314 		 */
315 		u64 last_reflink_trans;
316 
317 		/*
318 		 * In case this a root stub inode (BTRFS_INODE_ROOT_STUB flag set),
319 		 * the ID of that root.
320 		 */
321 		u64 ref_root_id;
322 	};
323 
324 	/* Backwards incompatible flags, lower half of inode_item::flags  */
325 	u32 flags;
326 	/* Read-only compatibility flags, upper half of inode_item::flags */
327 	u32 ro_flags;
328 
329 	struct btrfs_block_rsv block_rsv;
330 
331 	struct btrfs_delayed_node *delayed_node;
332 
333 	/* File creation time. */
334 	u64 i_otime_sec;
335 	u32 i_otime_nsec;
336 
337 	/* Hook into fs_info->delayed_iputs */
338 	struct list_head delayed_iput;
339 
340 	struct rw_semaphore i_mmap_lock;
341 	struct inode vfs_inode;
342 };
343 
btrfs_get_first_dir_index_to_log(const struct btrfs_inode * inode)344 static inline u64 btrfs_get_first_dir_index_to_log(const struct btrfs_inode *inode)
345 {
346 	return READ_ONCE(inode->first_dir_index_to_log);
347 }
348 
btrfs_set_first_dir_index_to_log(struct btrfs_inode * inode,u64 index)349 static inline void btrfs_set_first_dir_index_to_log(struct btrfs_inode *inode,
350 						    u64 index)
351 {
352 	WRITE_ONCE(inode->first_dir_index_to_log, index);
353 }
354 
355 /* Type checked and const-preserving VFS inode -> btrfs inode. */
356 #define BTRFS_I(_inode)								\
357 	_Generic(_inode,							\
358 		 struct inode *: container_of(_inode, struct btrfs_inode, vfs_inode),	\
359 		 const struct inode *: (const struct btrfs_inode *)container_of(	\
360 					_inode, const struct btrfs_inode, vfs_inode))
361 
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)362 static inline unsigned long btrfs_inode_hash(u64 objectid,
363 					     const struct btrfs_root *root)
364 {
365 	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
366 
367 #if BITS_PER_LONG == 32
368 	h = (h >> 32) ^ (h & 0xffffffff);
369 #endif
370 
371 	return (unsigned long)h;
372 }
373 
374 #if BITS_PER_LONG == 32
375 
376 /*
377  * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so
378  * we use the inode's location objectid which is a u64 to avoid truncation.
379  */
btrfs_ino(const struct btrfs_inode * inode)380 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
381 {
382 	u64 ino = inode->objectid;
383 
384 	if (test_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags))
385 		ino = inode->vfs_inode.i_ino;
386 	return ino;
387 }
388 
389 #else
390 
btrfs_ino(const struct btrfs_inode * inode)391 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
392 {
393 	return inode->vfs_inode.i_ino;
394 }
395 
396 #endif
397 
btrfs_get_inode_key(const struct btrfs_inode * inode,struct btrfs_key * key)398 static inline void btrfs_get_inode_key(const struct btrfs_inode *inode,
399 				       struct btrfs_key *key)
400 {
401 	key->objectid = btrfs_ino(inode);
402 	key->type = BTRFS_INODE_ITEM_KEY;
403 	key->offset = 0;
404 }
405 
btrfs_set_inode_number(struct btrfs_inode * inode,u64 ino)406 static inline void btrfs_set_inode_number(struct btrfs_inode *inode, u64 ino)
407 {
408 #if BITS_PER_LONG == 32
409 	inode->objectid = ino;
410 #endif
411 	inode->vfs_inode.i_ino = ino;
412 }
413 
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)414 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
415 {
416 	i_size_write(&inode->vfs_inode, size);
417 	inode->disk_i_size = size;
418 }
419 
btrfs_is_free_space_inode(const struct btrfs_inode * inode)420 static inline bool btrfs_is_free_space_inode(const struct btrfs_inode *inode)
421 {
422 	return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags);
423 }
424 
is_data_inode(const struct btrfs_inode * inode)425 static inline bool is_data_inode(const struct btrfs_inode *inode)
426 {
427 	return btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID;
428 }
429 
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)430 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
431 						 int mod)
432 {
433 	lockdep_assert_held(&inode->lock);
434 	inode->outstanding_extents += mod;
435 	if (btrfs_is_free_space_inode(inode))
436 		return;
437 	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
438 						  mod, inode->outstanding_extents);
439 }
440 
441 /*
442  * Called every time after doing a buffered, direct IO or memory mapped write.
443  *
444  * This is to ensure that if we write to a file that was previously fsynced in
445  * the current transaction, then try to fsync it again in the same transaction,
446  * we will know that there were changes in the file and that it needs to be
447  * logged.
448  */
btrfs_set_inode_last_sub_trans(struct btrfs_inode * inode)449 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
450 {
451 	spin_lock(&inode->lock);
452 	inode->last_sub_trans = inode->root->log_transid;
453 	spin_unlock(&inode->lock);
454 }
455 
456 /*
457  * Should be called while holding the inode's VFS lock in exclusive mode, or
458  * while holding the inode's mmap lock (struct btrfs_inode::i_mmap_lock) in
459  * either shared or exclusive mode, or in a context where no one else can access
460  * the inode concurrently (during inode creation or when loading an inode from
461  * disk).
462  */
btrfs_set_inode_full_sync(struct btrfs_inode * inode)463 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode)
464 {
465 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
466 	/*
467 	 * The inode may have been part of a reflink operation in the last
468 	 * transaction that modified it, and then a fsync has reset the
469 	 * last_reflink_trans to avoid subsequent fsyncs in the same
470 	 * transaction to do unnecessary work. So update last_reflink_trans
471 	 * to the last_trans value (we have to be pessimistic and assume a
472 	 * reflink happened).
473 	 *
474 	 * The ->last_trans is protected by the inode's spinlock and we can
475 	 * have a concurrent ordered extent completion update it. Also set
476 	 * last_reflink_trans to ->last_trans only if the former is less than
477 	 * the later, because we can be called in a context where
478 	 * last_reflink_trans was set to the current transaction generation
479 	 * while ->last_trans was not yet updated in the current transaction,
480 	 * and therefore has a lower value.
481 	 */
482 	spin_lock(&inode->lock);
483 	if (inode->last_reflink_trans < inode->last_trans)
484 		inode->last_reflink_trans = inode->last_trans;
485 	spin_unlock(&inode->lock);
486 }
487 
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)488 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
489 {
490 	bool ret = false;
491 
492 	spin_lock(&inode->lock);
493 	if (inode->logged_trans == generation &&
494 	    inode->last_sub_trans <= inode->last_log_commit &&
495 	    inode->last_sub_trans <= btrfs_get_root_last_log_commit(inode->root))
496 		ret = true;
497 	spin_unlock(&inode->lock);
498 	return ret;
499 }
500 
501 /*
502  * Check if the inode has flags compatible with compression
503  */
btrfs_inode_can_compress(const struct btrfs_inode * inode)504 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode)
505 {
506 	if (inode->flags & BTRFS_INODE_NODATACOW ||
507 	    inode->flags & BTRFS_INODE_NODATASUM)
508 		return false;
509 	return true;
510 }
511 
btrfs_assert_inode_locked(struct btrfs_inode * inode)512 static inline void btrfs_assert_inode_locked(struct btrfs_inode *inode)
513 {
514 	/* Immediately trigger a crash if the inode is not locked. */
515 	ASSERT(inode_is_locked(&inode->vfs_inode));
516 	/* Trigger a splat in dmesg if this task is not holding the lock. */
517 	lockdep_assert_held(&inode->vfs_inode.i_rwsem);
518 }
519 
btrfs_update_inode_mapping_flags(struct btrfs_inode * inode)520 static inline void btrfs_update_inode_mapping_flags(struct btrfs_inode *inode)
521 {
522 	if (inode->flags & BTRFS_INODE_NODATASUM)
523 		mapping_clear_stable_writes(inode->vfs_inode.i_mapping);
524 	else
525 		mapping_set_stable_writes(inode->vfs_inode.i_mapping);
526 }
527 
528 /* Array of bytes with variable length, hexadecimal format 0x1234 */
529 #define CSUM_FMT				"0x%*phN"
530 #define CSUM_FMT_VALUE(size, bytes)		size, bytes
531 
532 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
533 			    u32 pgoff, u8 *csum, const u8 * const csum_expected);
534 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
535 			u32 bio_offset, struct bio_vec *bv);
536 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len,
537 			      struct btrfs_file_extent *file_extent,
538 			      bool nowait);
539 
540 void btrfs_del_delalloc_inode(struct btrfs_inode *inode);
541 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
542 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
543 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
544 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
545 		       const struct fscrypt_str *name);
546 int btrfs_add_link(struct btrfs_trans_handle *trans,
547 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
548 		   const struct fscrypt_str *name, int add_backref, u64 index);
549 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry);
550 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
551 			 int front);
552 
553 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
554 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
555 			       bool in_reclaim_context);
556 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
557 			      unsigned int extra_bits,
558 			      struct extent_state **cached_state);
559 
560 struct btrfs_new_inode_args {
561 	/* Input */
562 	struct inode *dir;
563 	struct dentry *dentry;
564 	struct inode *inode;
565 	bool orphan;
566 	bool subvol;
567 
568 	/* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */
569 	struct posix_acl *default_acl;
570 	struct posix_acl *acl;
571 	struct fscrypt_name fname;
572 };
573 
574 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
575 			    unsigned int *trans_num_items);
576 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
577 			   struct btrfs_new_inode_args *args);
578 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
579 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
580 				     struct inode *dir);
581  void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
582 			        u32 bits);
583 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
584 				 struct extent_state *state, u32 bits);
585 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
586 				 struct extent_state *other);
587 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
588 				 struct extent_state *orig, u64 split);
589 void btrfs_evict_inode(struct inode *inode);
590 struct inode *btrfs_alloc_inode(struct super_block *sb);
591 void btrfs_destroy_inode(struct inode *inode);
592 void btrfs_free_inode(struct inode *inode);
593 int btrfs_drop_inode(struct inode *inode);
594 int __init btrfs_init_cachep(void);
595 void __cold btrfs_destroy_cachep(void);
596 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
597 				    struct btrfs_path *path);
598 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root);
599 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
600 				    struct folio *folio, u64 start, u64 len);
601 int btrfs_update_inode(struct btrfs_trans_handle *trans,
602 		       struct btrfs_inode *inode);
603 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
604 				struct btrfs_inode *inode);
605 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode);
606 int btrfs_orphan_cleanup(struct btrfs_root *root);
607 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
608 void btrfs_add_delayed_iput(struct btrfs_inode *inode);
609 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
610 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
611 int btrfs_prealloc_file_range(struct inode *inode, int mode,
612 			      u64 start, u64 num_bytes, u64 min_size,
613 			      loff_t actual_len, u64 *alloc_hint);
614 int btrfs_prealloc_file_range_trans(struct inode *inode,
615 				    struct btrfs_trans_handle *trans, int mode,
616 				    u64 start, u64 num_bytes, u64 min_size,
617 				    loff_t actual_len, u64 *alloc_hint);
618 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
619 			     u64 start, u64 end, struct writeback_control *wbc);
620 int btrfs_writepage_cow_fixup(struct folio *folio);
621 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
622 					     int compress_type);
623 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
624 					  u64 disk_bytenr, u64 disk_io_size,
625 					  struct page **pages, void *uring_ctx);
626 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
627 			   struct btrfs_ioctl_encoded_io_args *encoded,
628 			   struct extent_state **cached_state,
629 			   u64 *disk_bytenr, u64 *disk_io_size);
630 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
631 				   u64 start, u64 lockend,
632 				   struct extent_state **cached_state,
633 				   u64 disk_bytenr, u64 disk_io_size,
634 				   size_t count, bool compressed, bool *unlocked);
635 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
636 			       const struct btrfs_ioctl_encoded_io_args *encoded);
637 
638 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino);
639 
640 extern const struct dentry_operations btrfs_dentry_operations;
641 
642 /* Inode locking type flags, by default the exclusive lock is taken. */
643 enum btrfs_ilock_type {
644 	ENUM_BIT(BTRFS_ILOCK_SHARED),
645 	ENUM_BIT(BTRFS_ILOCK_TRY),
646 	ENUM_BIT(BTRFS_ILOCK_MMAP),
647 };
648 
649 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags);
650 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags);
651 void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes,
652 			      const u64 del_bytes);
653 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
654 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
655 				     u64 num_bytes);
656 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
657 				      const struct btrfs_file_extent *file_extent,
658 				      int type);
659 
660 #endif
661