1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22
23 #define BTRFS_DELAYED_WRITEBACK 512
24 #define BTRFS_DELAYED_BACKGROUND 128
25 #define BTRFS_DELAYED_BATCH 16
26
27 static struct kmem_cache *delayed_node_cache;
28
btrfs_delayed_inode_init(void)29 int __init btrfs_delayed_inode_init(void)
30 {
31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 if (!delayed_node_cache)
33 return -ENOMEM;
34 return 0;
35 }
36
btrfs_delayed_inode_exit(void)37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 kmem_cache_destroy(delayed_node_cache);
40 }
41
btrfs_init_delayed_root(struct btrfs_delayed_root * delayed_root)42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 atomic_set(&delayed_root->items, 0);
45 atomic_set(&delayed_root->items_seq, 0);
46 delayed_root->nodes = 0;
47 spin_lock_init(&delayed_root->lock);
48 init_waitqueue_head(&delayed_root->wait);
49 INIT_LIST_HEAD(&delayed_root->node_list);
50 INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)53 static inline void btrfs_init_delayed_node(
54 struct btrfs_delayed_node *delayed_node,
55 struct btrfs_root *root, u64 inode_id)
56 {
57 delayed_node->root = root;
58 delayed_node->inode_id = inode_id;
59 refcount_set(&delayed_node->refs, 0);
60 delayed_node->ins_root = RB_ROOT_CACHED;
61 delayed_node->del_root = RB_ROOT_CACHED;
62 mutex_init(&delayed_node->mutex);
63 INIT_LIST_HEAD(&delayed_node->n_list);
64 INIT_LIST_HEAD(&delayed_node->p_list);
65 }
66
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
69 {
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
73
74 node = READ_ONCE(btrfs_inode->delayed_node);
75 if (node) {
76 refcount_inc(&node->refs);
77 return node;
78 }
79
80 xa_lock(&root->delayed_nodes);
81 node = xa_load(&root->delayed_nodes, ino);
82
83 if (node) {
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 xa_unlock(&root->delayed_nodes);
88 return node;
89 }
90
91 /*
92 * It's possible that we're racing into the middle of removing
93 * this node from the xarray. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the xarray at all; our release
96 * function is in the process of removing it.
97 *
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
102 *
103 * If this node is properly in the xarray, we want to bump the
104 * refcount twice, once for the inode and once for this get
105 * operation.
106 */
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
110 } else {
111 node = NULL;
112 }
113
114 xa_unlock(&root->delayed_nodes);
115 return node;
116 }
117 xa_unlock(&root->delayed_nodes);
118
119 return NULL;
120 }
121
122 /*
123 * Look up an existing delayed node associated with @btrfs_inode or create a new
124 * one and insert it to the delayed nodes of the root.
125 *
126 * Return the delayed node, or error pointer on failure.
127 */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)128 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
129 struct btrfs_inode *btrfs_inode)
130 {
131 struct btrfs_delayed_node *node;
132 struct btrfs_root *root = btrfs_inode->root;
133 u64 ino = btrfs_ino(btrfs_inode);
134 int ret;
135 void *ptr;
136
137 again:
138 node = btrfs_get_delayed_node(btrfs_inode);
139 if (node)
140 return node;
141
142 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
143 if (!node)
144 return ERR_PTR(-ENOMEM);
145 btrfs_init_delayed_node(node, root, ino);
146
147 /* Cached in the inode and can be accessed. */
148 refcount_set(&node->refs, 2);
149
150 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
151 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
152 if (ret == -ENOMEM) {
153 kmem_cache_free(delayed_node_cache, node);
154 return ERR_PTR(-ENOMEM);
155 }
156 xa_lock(&root->delayed_nodes);
157 ptr = xa_load(&root->delayed_nodes, ino);
158 if (ptr) {
159 /* Somebody inserted it, go back and read it. */
160 xa_unlock(&root->delayed_nodes);
161 kmem_cache_free(delayed_node_cache, node);
162 node = NULL;
163 goto again;
164 }
165 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
166 ASSERT(xa_err(ptr) != -EINVAL);
167 ASSERT(xa_err(ptr) != -ENOMEM);
168 ASSERT(ptr == NULL);
169 btrfs_inode->delayed_node = node;
170 xa_unlock(&root->delayed_nodes);
171
172 return node;
173 }
174
175 /*
176 * Call it when holding delayed_node->mutex
177 *
178 * If mod = 1, add this node into the prepared list.
179 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)180 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
181 struct btrfs_delayed_node *node,
182 int mod)
183 {
184 spin_lock(&root->lock);
185 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
186 if (!list_empty(&node->p_list))
187 list_move_tail(&node->p_list, &root->prepare_list);
188 else if (mod)
189 list_add_tail(&node->p_list, &root->prepare_list);
190 } else {
191 list_add_tail(&node->n_list, &root->node_list);
192 list_add_tail(&node->p_list, &root->prepare_list);
193 refcount_inc(&node->refs); /* inserted into list */
194 root->nodes++;
195 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
196 }
197 spin_unlock(&root->lock);
198 }
199
200 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)201 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
202 struct btrfs_delayed_node *node)
203 {
204 spin_lock(&root->lock);
205 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
206 root->nodes--;
207 refcount_dec(&node->refs); /* not in the list */
208 list_del_init(&node->n_list);
209 if (!list_empty(&node->p_list))
210 list_del_init(&node->p_list);
211 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
212 }
213 spin_unlock(&root->lock);
214 }
215
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)216 static struct btrfs_delayed_node *btrfs_first_delayed_node(
217 struct btrfs_delayed_root *delayed_root)
218 {
219 struct btrfs_delayed_node *node;
220
221 spin_lock(&delayed_root->lock);
222 node = list_first_entry_or_null(&delayed_root->node_list,
223 struct btrfs_delayed_node, n_list);
224 if (node)
225 refcount_inc(&node->refs);
226 spin_unlock(&delayed_root->lock);
227
228 return node;
229 }
230
btrfs_next_delayed_node(struct btrfs_delayed_node * node)231 static struct btrfs_delayed_node *btrfs_next_delayed_node(
232 struct btrfs_delayed_node *node)
233 {
234 struct btrfs_delayed_root *delayed_root;
235 struct list_head *p;
236 struct btrfs_delayed_node *next = NULL;
237
238 delayed_root = node->root->fs_info->delayed_root;
239 spin_lock(&delayed_root->lock);
240 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
241 /* not in the list */
242 if (list_empty(&delayed_root->node_list))
243 goto out;
244 p = delayed_root->node_list.next;
245 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
246 goto out;
247 else
248 p = node->n_list.next;
249
250 next = list_entry(p, struct btrfs_delayed_node, n_list);
251 refcount_inc(&next->refs);
252 out:
253 spin_unlock(&delayed_root->lock);
254
255 return next;
256 }
257
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)258 static void __btrfs_release_delayed_node(
259 struct btrfs_delayed_node *delayed_node,
260 int mod)
261 {
262 struct btrfs_delayed_root *delayed_root;
263
264 if (!delayed_node)
265 return;
266
267 delayed_root = delayed_node->root->fs_info->delayed_root;
268
269 mutex_lock(&delayed_node->mutex);
270 if (delayed_node->count)
271 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
272 else
273 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
274 mutex_unlock(&delayed_node->mutex);
275
276 if (refcount_dec_and_test(&delayed_node->refs)) {
277 struct btrfs_root *root = delayed_node->root;
278
279 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
280 /*
281 * Once our refcount goes to zero, nobody is allowed to bump it
282 * back up. We can delete it now.
283 */
284 ASSERT(refcount_read(&delayed_node->refs) == 0);
285 kmem_cache_free(delayed_node_cache, delayed_node);
286 }
287 }
288
btrfs_release_delayed_node(struct btrfs_delayed_node * node)289 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
290 {
291 __btrfs_release_delayed_node(node, 0);
292 }
293
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)294 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
295 struct btrfs_delayed_root *delayed_root)
296 {
297 struct btrfs_delayed_node *node;
298
299 spin_lock(&delayed_root->lock);
300 node = list_first_entry_or_null(&delayed_root->prepare_list,
301 struct btrfs_delayed_node, p_list);
302 if (node) {
303 list_del_init(&node->p_list);
304 refcount_inc(&node->refs);
305 }
306 spin_unlock(&delayed_root->lock);
307
308 return node;
309 }
310
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)311 static inline void btrfs_release_prepared_delayed_node(
312 struct btrfs_delayed_node *node)
313 {
314 __btrfs_release_delayed_node(node, 1);
315 }
316
btrfs_alloc_delayed_item(u16 data_len,struct btrfs_delayed_node * node,enum btrfs_delayed_item_type type)317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
318 struct btrfs_delayed_node *node,
319 enum btrfs_delayed_item_type type)
320 {
321 struct btrfs_delayed_item *item;
322
323 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
324 if (item) {
325 item->data_len = data_len;
326 item->type = type;
327 item->bytes_reserved = 0;
328 item->delayed_node = node;
329 RB_CLEAR_NODE(&item->rb_node);
330 INIT_LIST_HEAD(&item->log_list);
331 item->logged = false;
332 refcount_set(&item->refs, 1);
333 }
334 return item;
335 }
336
337 /*
338 * Look up the delayed item by key.
339 *
340 * @delayed_node: pointer to the delayed node
341 * @index: the dir index value to lookup (offset of a dir index key)
342 *
343 * Note: if we don't find the right item, we will return the prev item and
344 * the next item.
345 */
__btrfs_lookup_delayed_item(struct rb_root * root,u64 index)346 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
347 struct rb_root *root,
348 u64 index)
349 {
350 struct rb_node *node = root->rb_node;
351 struct btrfs_delayed_item *delayed_item = NULL;
352
353 while (node) {
354 delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 rb_node);
356 if (delayed_item->index < index)
357 node = node->rb_right;
358 else if (delayed_item->index > index)
359 node = node->rb_left;
360 else
361 return delayed_item;
362 }
363
364 return NULL;
365 }
366
btrfs_delayed_item_cmp(const struct rb_node * new,const struct rb_node * exist)367 static int btrfs_delayed_item_cmp(const struct rb_node *new,
368 const struct rb_node *exist)
369 {
370 const struct btrfs_delayed_item *new_item =
371 rb_entry(new, struct btrfs_delayed_item, rb_node);
372 const struct btrfs_delayed_item *exist_item =
373 rb_entry(exist, struct btrfs_delayed_item, rb_node);
374
375 if (new_item->index < exist_item->index)
376 return -1;
377 if (new_item->index > exist_item->index)
378 return 1;
379 return 0;
380 }
381
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins)382 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
383 struct btrfs_delayed_item *ins)
384 {
385 struct rb_root_cached *root;
386 struct rb_node *exist;
387
388 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
389 root = &delayed_node->ins_root;
390 else
391 root = &delayed_node->del_root;
392
393 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
394 if (exist)
395 return -EEXIST;
396
397 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
398 ins->index >= delayed_node->index_cnt)
399 delayed_node->index_cnt = ins->index + 1;
400
401 delayed_node->count++;
402 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
403 return 0;
404 }
405
finish_one_item(struct btrfs_delayed_root * delayed_root)406 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
407 {
408 int seq = atomic_inc_return(&delayed_root->items_seq);
409
410 /* atomic_dec_return implies a barrier */
411 if ((atomic_dec_return(&delayed_root->items) <
412 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
413 cond_wake_up_nomb(&delayed_root->wait);
414 }
415
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)416 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
417 {
418 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
419 struct rb_root_cached *root;
420 struct btrfs_delayed_root *delayed_root;
421
422 /* Not inserted, ignore it. */
423 if (RB_EMPTY_NODE(&delayed_item->rb_node))
424 return;
425
426 /* If it's in a rbtree, then we need to have delayed node locked. */
427 lockdep_assert_held(&delayed_node->mutex);
428
429 delayed_root = delayed_node->root->fs_info->delayed_root;
430
431 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
432 root = &delayed_node->ins_root;
433 else
434 root = &delayed_node->del_root;
435
436 rb_erase_cached(&delayed_item->rb_node, root);
437 RB_CLEAR_NODE(&delayed_item->rb_node);
438 delayed_node->count--;
439
440 finish_one_item(delayed_root);
441 }
442
btrfs_release_delayed_item(struct btrfs_delayed_item * item)443 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
444 {
445 if (item) {
446 __btrfs_remove_delayed_item(item);
447 if (refcount_dec_and_test(&item->refs))
448 kfree(item);
449 }
450 }
451
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)452 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
453 struct btrfs_delayed_node *delayed_node)
454 {
455 struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
456
457 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
458 }
459
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)460 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
461 struct btrfs_delayed_node *delayed_node)
462 {
463 struct rb_node *p = rb_first_cached(&delayed_node->del_root);
464
465 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
466 }
467
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)468 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
469 struct btrfs_delayed_item *item)
470 {
471 struct rb_node *p = rb_next(&item->rb_node);
472
473 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
474 }
475
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_delayed_item * item)476 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
477 struct btrfs_delayed_item *item)
478 {
479 struct btrfs_block_rsv *src_rsv;
480 struct btrfs_block_rsv *dst_rsv;
481 struct btrfs_fs_info *fs_info = trans->fs_info;
482 u64 num_bytes;
483 int ret;
484
485 if (!trans->bytes_reserved)
486 return 0;
487
488 src_rsv = trans->block_rsv;
489 dst_rsv = &fs_info->delayed_block_rsv;
490
491 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
492
493 /*
494 * Here we migrate space rsv from transaction rsv, since have already
495 * reserved space when starting a transaction. So no need to reserve
496 * qgroup space here.
497 */
498 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
499 if (!ret) {
500 trace_btrfs_space_reservation(fs_info, "delayed_item",
501 item->delayed_node->inode_id,
502 num_bytes, 1);
503 /*
504 * For insertions we track reserved metadata space by accounting
505 * for the number of leaves that will be used, based on the delayed
506 * node's curr_index_batch_size and index_item_leaves fields.
507 */
508 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
509 item->bytes_reserved = num_bytes;
510 }
511
512 return ret;
513 }
514
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)515 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
516 struct btrfs_delayed_item *item)
517 {
518 struct btrfs_block_rsv *rsv;
519 struct btrfs_fs_info *fs_info = root->fs_info;
520
521 if (!item->bytes_reserved)
522 return;
523
524 rsv = &fs_info->delayed_block_rsv;
525 /*
526 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
527 * to release/reserve qgroup space.
528 */
529 trace_btrfs_space_reservation(fs_info, "delayed_item",
530 item->delayed_node->inode_id,
531 item->bytes_reserved, 0);
532 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
533 }
534
btrfs_delayed_item_release_leaves(struct btrfs_delayed_node * node,unsigned int num_leaves)535 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
536 unsigned int num_leaves)
537 {
538 struct btrfs_fs_info *fs_info = node->root->fs_info;
539 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
540
541 /* There are no space reservations during log replay, bail out. */
542 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
543 return;
544
545 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
546 bytes, 0);
547 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
548 }
549
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_node * node)550 static int btrfs_delayed_inode_reserve_metadata(
551 struct btrfs_trans_handle *trans,
552 struct btrfs_root *root,
553 struct btrfs_delayed_node *node)
554 {
555 struct btrfs_fs_info *fs_info = root->fs_info;
556 struct btrfs_block_rsv *src_rsv;
557 struct btrfs_block_rsv *dst_rsv;
558 u64 num_bytes;
559 int ret;
560
561 src_rsv = trans->block_rsv;
562 dst_rsv = &fs_info->delayed_block_rsv;
563
564 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
565
566 /*
567 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
568 * which doesn't reserve space for speed. This is a problem since we
569 * still need to reserve space for this update, so try to reserve the
570 * space.
571 *
572 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
573 * we always reserve enough to update the inode item.
574 */
575 if (!src_rsv || (!trans->bytes_reserved &&
576 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
577 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
578 BTRFS_QGROUP_RSV_META_PREALLOC, true);
579 if (ret < 0)
580 return ret;
581 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
582 BTRFS_RESERVE_NO_FLUSH);
583 /* NO_FLUSH could only fail with -ENOSPC */
584 ASSERT(ret == 0 || ret == -ENOSPC);
585 if (ret)
586 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
587 } else {
588 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
589 }
590
591 if (!ret) {
592 trace_btrfs_space_reservation(fs_info, "delayed_inode",
593 node->inode_id, num_bytes, 1);
594 node->bytes_reserved = num_bytes;
595 }
596
597 return ret;
598 }
599
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)600 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
601 struct btrfs_delayed_node *node,
602 bool qgroup_free)
603 {
604 struct btrfs_block_rsv *rsv;
605
606 if (!node->bytes_reserved)
607 return;
608
609 rsv = &fs_info->delayed_block_rsv;
610 trace_btrfs_space_reservation(fs_info, "delayed_inode",
611 node->inode_id, node->bytes_reserved, 0);
612 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
613 if (qgroup_free)
614 btrfs_qgroup_free_meta_prealloc(node->root,
615 node->bytes_reserved);
616 else
617 btrfs_qgroup_convert_reserved_meta(node->root,
618 node->bytes_reserved);
619 node->bytes_reserved = 0;
620 }
621
622 /*
623 * Insert a single delayed item or a batch of delayed items, as many as possible
624 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
625 * in the rbtree, and if there's a gap between two consecutive dir index items,
626 * then it means at some point we had delayed dir indexes to add but they got
627 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
628 * into the subvolume tree. Dir index keys also have their offsets coming from a
629 * monotonically increasing counter, so we can't get new keys with an offset that
630 * fits within a gap between delayed dir index items.
631 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * first_item)632 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
633 struct btrfs_root *root,
634 struct btrfs_path *path,
635 struct btrfs_delayed_item *first_item)
636 {
637 struct btrfs_fs_info *fs_info = root->fs_info;
638 struct btrfs_delayed_node *node = first_item->delayed_node;
639 LIST_HEAD(item_list);
640 struct btrfs_delayed_item *curr;
641 struct btrfs_delayed_item *next;
642 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
643 struct btrfs_item_batch batch;
644 struct btrfs_key first_key;
645 const u32 first_data_size = first_item->data_len;
646 int total_size;
647 char *ins_data = NULL;
648 int ret;
649 bool continuous_keys_only = false;
650
651 lockdep_assert_held(&node->mutex);
652
653 /*
654 * During normal operation the delayed index offset is continuously
655 * increasing, so we can batch insert all items as there will not be any
656 * overlapping keys in the tree.
657 *
658 * The exception to this is log replay, where we may have interleaved
659 * offsets in the tree, so our batch needs to be continuous keys only in
660 * order to ensure we do not end up with out of order items in our leaf.
661 */
662 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
663 continuous_keys_only = true;
664
665 /*
666 * For delayed items to insert, we track reserved metadata bytes based
667 * on the number of leaves that we will use.
668 * See btrfs_insert_delayed_dir_index() and
669 * btrfs_delayed_item_reserve_metadata()).
670 */
671 ASSERT(first_item->bytes_reserved == 0);
672
673 list_add_tail(&first_item->tree_list, &item_list);
674 batch.total_data_size = first_data_size;
675 batch.nr = 1;
676 total_size = first_data_size + sizeof(struct btrfs_item);
677 curr = first_item;
678
679 while (true) {
680 int next_size;
681
682 next = __btrfs_next_delayed_item(curr);
683 if (!next)
684 break;
685
686 /*
687 * We cannot allow gaps in the key space if we're doing log
688 * replay.
689 */
690 if (continuous_keys_only && (next->index != curr->index + 1))
691 break;
692
693 ASSERT(next->bytes_reserved == 0);
694
695 next_size = next->data_len + sizeof(struct btrfs_item);
696 if (total_size + next_size > max_size)
697 break;
698
699 list_add_tail(&next->tree_list, &item_list);
700 batch.nr++;
701 total_size += next_size;
702 batch.total_data_size += next->data_len;
703 curr = next;
704 }
705
706 if (batch.nr == 1) {
707 first_key.objectid = node->inode_id;
708 first_key.type = BTRFS_DIR_INDEX_KEY;
709 first_key.offset = first_item->index;
710 batch.keys = &first_key;
711 batch.data_sizes = &first_data_size;
712 } else {
713 struct btrfs_key *ins_keys;
714 u32 *ins_sizes;
715 int i = 0;
716
717 ins_data = kmalloc(batch.nr * sizeof(u32) +
718 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
719 if (!ins_data) {
720 ret = -ENOMEM;
721 goto out;
722 }
723 ins_sizes = (u32 *)ins_data;
724 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
725 batch.keys = ins_keys;
726 batch.data_sizes = ins_sizes;
727 list_for_each_entry(curr, &item_list, tree_list) {
728 ins_keys[i].objectid = node->inode_id;
729 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
730 ins_keys[i].offset = curr->index;
731 ins_sizes[i] = curr->data_len;
732 i++;
733 }
734 }
735
736 ret = btrfs_insert_empty_items(trans, root, path, &batch);
737 if (ret)
738 goto out;
739
740 list_for_each_entry(curr, &item_list, tree_list) {
741 char *data_ptr;
742
743 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
744 write_extent_buffer(path->nodes[0], &curr->data,
745 (unsigned long)data_ptr, curr->data_len);
746 path->slots[0]++;
747 }
748
749 /*
750 * Now release our path before releasing the delayed items and their
751 * metadata reservations, so that we don't block other tasks for more
752 * time than needed.
753 */
754 btrfs_release_path(path);
755
756 ASSERT(node->index_item_leaves > 0);
757
758 /*
759 * For normal operations we will batch an entire leaf's worth of delayed
760 * items, so if there are more items to process we can decrement
761 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
762 *
763 * However for log replay we may not have inserted an entire leaf's
764 * worth of items, we may have not had continuous items, so decrementing
765 * here would mess up the index_item_leaves accounting. For this case
766 * only clean up the accounting when there are no items left.
767 */
768 if (next && !continuous_keys_only) {
769 /*
770 * We inserted one batch of items into a leaf a there are more
771 * items to flush in a future batch, now release one unit of
772 * metadata space from the delayed block reserve, corresponding
773 * the leaf we just flushed to.
774 */
775 btrfs_delayed_item_release_leaves(node, 1);
776 node->index_item_leaves--;
777 } else if (!next) {
778 /*
779 * There are no more items to insert. We can have a number of
780 * reserved leaves > 1 here - this happens when many dir index
781 * items are added and then removed before they are flushed (file
782 * names with a very short life, never span a transaction). So
783 * release all remaining leaves.
784 */
785 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
786 node->index_item_leaves = 0;
787 }
788
789 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
790 list_del(&curr->tree_list);
791 btrfs_release_delayed_item(curr);
792 }
793 out:
794 kfree(ins_data);
795 return ret;
796 }
797
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)798 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
799 struct btrfs_path *path,
800 struct btrfs_root *root,
801 struct btrfs_delayed_node *node)
802 {
803 int ret = 0;
804
805 while (ret == 0) {
806 struct btrfs_delayed_item *curr;
807
808 mutex_lock(&node->mutex);
809 curr = __btrfs_first_delayed_insertion_item(node);
810 if (!curr) {
811 mutex_unlock(&node->mutex);
812 break;
813 }
814 ret = btrfs_insert_delayed_item(trans, root, path, curr);
815 mutex_unlock(&node->mutex);
816 }
817
818 return ret;
819 }
820
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)821 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root,
823 struct btrfs_path *path,
824 struct btrfs_delayed_item *item)
825 {
826 const u64 ino = item->delayed_node->inode_id;
827 struct btrfs_fs_info *fs_info = root->fs_info;
828 struct btrfs_delayed_item *curr, *next;
829 struct extent_buffer *leaf = path->nodes[0];
830 LIST_HEAD(batch_list);
831 int nitems, slot, last_slot;
832 int ret;
833 u64 total_reserved_size = item->bytes_reserved;
834
835 ASSERT(leaf != NULL);
836
837 slot = path->slots[0];
838 last_slot = btrfs_header_nritems(leaf) - 1;
839 /*
840 * Our caller always gives us a path pointing to an existing item, so
841 * this can not happen.
842 */
843 ASSERT(slot <= last_slot);
844 if (WARN_ON(slot > last_slot))
845 return -ENOENT;
846
847 nitems = 1;
848 curr = item;
849 list_add_tail(&curr->tree_list, &batch_list);
850
851 /*
852 * Keep checking if the next delayed item matches the next item in the
853 * leaf - if so, we can add it to the batch of items to delete from the
854 * leaf.
855 */
856 while (slot < last_slot) {
857 struct btrfs_key key;
858
859 next = __btrfs_next_delayed_item(curr);
860 if (!next)
861 break;
862
863 slot++;
864 btrfs_item_key_to_cpu(leaf, &key, slot);
865 if (key.objectid != ino ||
866 key.type != BTRFS_DIR_INDEX_KEY ||
867 key.offset != next->index)
868 break;
869 nitems++;
870 curr = next;
871 list_add_tail(&curr->tree_list, &batch_list);
872 total_reserved_size += curr->bytes_reserved;
873 }
874
875 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
876 if (ret)
877 return ret;
878
879 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
880 if (total_reserved_size > 0) {
881 /*
882 * Check btrfs_delayed_item_reserve_metadata() to see why we
883 * don't need to release/reserve qgroup space.
884 */
885 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
886 total_reserved_size, 0);
887 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
888 total_reserved_size, NULL);
889 }
890
891 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
892 list_del(&curr->tree_list);
893 btrfs_release_delayed_item(curr);
894 }
895
896 return 0;
897 }
898
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)899 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
900 struct btrfs_path *path,
901 struct btrfs_root *root,
902 struct btrfs_delayed_node *node)
903 {
904 struct btrfs_key key;
905 int ret = 0;
906
907 key.objectid = node->inode_id;
908 key.type = BTRFS_DIR_INDEX_KEY;
909
910 while (ret == 0) {
911 struct btrfs_delayed_item *item;
912
913 mutex_lock(&node->mutex);
914 item = __btrfs_first_delayed_deletion_item(node);
915 if (!item) {
916 mutex_unlock(&node->mutex);
917 break;
918 }
919
920 key.offset = item->index;
921 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
922 if (ret > 0) {
923 /*
924 * There's no matching item in the leaf. This means we
925 * have already deleted this item in a past run of the
926 * delayed items. We ignore errors when running delayed
927 * items from an async context, through a work queue job
928 * running btrfs_async_run_delayed_root(), and don't
929 * release delayed items that failed to complete. This
930 * is because we will retry later, and at transaction
931 * commit time we always run delayed items and will
932 * then deal with errors if they fail to run again.
933 *
934 * So just release delayed items for which we can't find
935 * an item in the tree, and move to the next item.
936 */
937 btrfs_release_path(path);
938 btrfs_release_delayed_item(item);
939 ret = 0;
940 } else if (ret == 0) {
941 ret = btrfs_batch_delete_items(trans, root, path, item);
942 btrfs_release_path(path);
943 }
944
945 /*
946 * We unlock and relock on each iteration, this is to prevent
947 * blocking other tasks for too long while we are being run from
948 * the async context (work queue job). Those tasks are typically
949 * running system calls like creat/mkdir/rename/unlink/etc which
950 * need to add delayed items to this delayed node.
951 */
952 mutex_unlock(&node->mutex);
953 }
954
955 return ret;
956 }
957
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)958 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
959 {
960 struct btrfs_delayed_root *delayed_root;
961
962 if (delayed_node &&
963 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
964 ASSERT(delayed_node->root);
965 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
966 delayed_node->count--;
967
968 delayed_root = delayed_node->root->fs_info->delayed_root;
969 finish_one_item(delayed_root);
970 }
971 }
972
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)973 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
974 {
975
976 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
977 struct btrfs_delayed_root *delayed_root;
978
979 ASSERT(delayed_node->root);
980 delayed_node->count--;
981
982 delayed_root = delayed_node->root->fs_info->delayed_root;
983 finish_one_item(delayed_root);
984 }
985 }
986
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)987 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
988 struct btrfs_root *root,
989 struct btrfs_path *path,
990 struct btrfs_delayed_node *node)
991 {
992 struct btrfs_fs_info *fs_info = root->fs_info;
993 struct btrfs_key key;
994 struct btrfs_inode_item *inode_item;
995 struct extent_buffer *leaf;
996 int mod;
997 int ret;
998
999 key.objectid = node->inode_id;
1000 key.type = BTRFS_INODE_ITEM_KEY;
1001 key.offset = 0;
1002
1003 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1004 mod = -1;
1005 else
1006 mod = 1;
1007
1008 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1009 if (ret > 0)
1010 ret = -ENOENT;
1011 if (ret < 0)
1012 goto out;
1013
1014 leaf = path->nodes[0];
1015 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1016 struct btrfs_inode_item);
1017 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1018 sizeof(struct btrfs_inode_item));
1019
1020 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1021 goto out;
1022
1023 /*
1024 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1025 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1026 *
1027 * But if we're the last item already, release and search for the last
1028 * INODE_REF/EXTREF.
1029 */
1030 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1031 key.objectid = node->inode_id;
1032 key.type = BTRFS_INODE_EXTREF_KEY;
1033 key.offset = (u64)-1;
1034
1035 btrfs_release_path(path);
1036 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1037 if (ret < 0)
1038 goto err_out;
1039 ASSERT(ret > 0);
1040 ASSERT(path->slots[0] > 0);
1041 ret = 0;
1042 path->slots[0]--;
1043 leaf = path->nodes[0];
1044 } else {
1045 path->slots[0]++;
1046 }
1047 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1048 if (key.objectid != node->inode_id)
1049 goto out;
1050 if (key.type != BTRFS_INODE_REF_KEY &&
1051 key.type != BTRFS_INODE_EXTREF_KEY)
1052 goto out;
1053
1054 /*
1055 * Delayed iref deletion is for the inode who has only one link,
1056 * so there is only one iref. The case that several irefs are
1057 * in the same item doesn't exist.
1058 */
1059 ret = btrfs_del_item(trans, root, path);
1060 out:
1061 btrfs_release_delayed_iref(node);
1062 btrfs_release_path(path);
1063 err_out:
1064 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1065 btrfs_release_delayed_inode(node);
1066
1067 /*
1068 * If we fail to update the delayed inode we need to abort the
1069 * transaction, because we could leave the inode with the improper
1070 * counts behind.
1071 */
1072 if (ret && ret != -ENOENT)
1073 btrfs_abort_transaction(trans, ret);
1074
1075 return ret;
1076 }
1077
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1078 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1079 struct btrfs_root *root,
1080 struct btrfs_path *path,
1081 struct btrfs_delayed_node *node)
1082 {
1083 int ret;
1084
1085 mutex_lock(&node->mutex);
1086 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1087 mutex_unlock(&node->mutex);
1088 return 0;
1089 }
1090
1091 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1092 mutex_unlock(&node->mutex);
1093 return ret;
1094 }
1095
1096 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1097 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1098 struct btrfs_path *path,
1099 struct btrfs_delayed_node *node)
1100 {
1101 int ret;
1102
1103 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1104 if (ret)
1105 return ret;
1106
1107 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1108 if (ret)
1109 return ret;
1110
1111 ret = btrfs_record_root_in_trans(trans, node->root);
1112 if (ret)
1113 return ret;
1114 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1115 return ret;
1116 }
1117
1118 /*
1119 * Called when committing the transaction.
1120 * Returns 0 on success.
1121 * Returns < 0 on error and returns with an aborted transaction with any
1122 * outstanding delayed items cleaned up.
1123 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1124 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1125 {
1126 struct btrfs_fs_info *fs_info = trans->fs_info;
1127 struct btrfs_delayed_root *delayed_root;
1128 struct btrfs_delayed_node *curr_node, *prev_node;
1129 struct btrfs_path *path;
1130 struct btrfs_block_rsv *block_rsv;
1131 int ret = 0;
1132 bool count = (nr > 0);
1133
1134 if (TRANS_ABORTED(trans))
1135 return -EIO;
1136
1137 path = btrfs_alloc_path();
1138 if (!path)
1139 return -ENOMEM;
1140
1141 block_rsv = trans->block_rsv;
1142 trans->block_rsv = &fs_info->delayed_block_rsv;
1143
1144 delayed_root = fs_info->delayed_root;
1145
1146 curr_node = btrfs_first_delayed_node(delayed_root);
1147 while (curr_node && (!count || nr--)) {
1148 ret = __btrfs_commit_inode_delayed_items(trans, path,
1149 curr_node);
1150 if (ret) {
1151 btrfs_abort_transaction(trans, ret);
1152 break;
1153 }
1154
1155 prev_node = curr_node;
1156 curr_node = btrfs_next_delayed_node(curr_node);
1157 /*
1158 * See the comment below about releasing path before releasing
1159 * node. If the commit of delayed items was successful the path
1160 * should always be released, but in case of an error, it may
1161 * point to locked extent buffers (a leaf at the very least).
1162 */
1163 ASSERT(path->nodes[0] == NULL);
1164 btrfs_release_delayed_node(prev_node);
1165 }
1166
1167 /*
1168 * Release the path to avoid a potential deadlock and lockdep splat when
1169 * releasing the delayed node, as that requires taking the delayed node's
1170 * mutex. If another task starts running delayed items before we take
1171 * the mutex, it will first lock the mutex and then it may try to lock
1172 * the same btree path (leaf).
1173 */
1174 btrfs_free_path(path);
1175
1176 if (curr_node)
1177 btrfs_release_delayed_node(curr_node);
1178 trans->block_rsv = block_rsv;
1179
1180 return ret;
1181 }
1182
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1183 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1184 {
1185 return __btrfs_run_delayed_items(trans, -1);
1186 }
1187
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1188 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1189 {
1190 return __btrfs_run_delayed_items(trans, nr);
1191 }
1192
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1193 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1194 struct btrfs_inode *inode)
1195 {
1196 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1197 BTRFS_PATH_AUTO_FREE(path);
1198 struct btrfs_block_rsv *block_rsv;
1199 int ret;
1200
1201 if (!delayed_node)
1202 return 0;
1203
1204 mutex_lock(&delayed_node->mutex);
1205 if (!delayed_node->count) {
1206 mutex_unlock(&delayed_node->mutex);
1207 btrfs_release_delayed_node(delayed_node);
1208 return 0;
1209 }
1210 mutex_unlock(&delayed_node->mutex);
1211
1212 path = btrfs_alloc_path();
1213 if (!path) {
1214 btrfs_release_delayed_node(delayed_node);
1215 return -ENOMEM;
1216 }
1217
1218 block_rsv = trans->block_rsv;
1219 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1220
1221 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1222
1223 btrfs_release_delayed_node(delayed_node);
1224 trans->block_rsv = block_rsv;
1225
1226 return ret;
1227 }
1228
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1229 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1230 {
1231 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1232 struct btrfs_trans_handle *trans;
1233 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1234 struct btrfs_path *path;
1235 struct btrfs_block_rsv *block_rsv;
1236 int ret;
1237
1238 if (!delayed_node)
1239 return 0;
1240
1241 mutex_lock(&delayed_node->mutex);
1242 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1243 mutex_unlock(&delayed_node->mutex);
1244 btrfs_release_delayed_node(delayed_node);
1245 return 0;
1246 }
1247 mutex_unlock(&delayed_node->mutex);
1248
1249 trans = btrfs_join_transaction(delayed_node->root);
1250 if (IS_ERR(trans)) {
1251 ret = PTR_ERR(trans);
1252 goto out;
1253 }
1254
1255 path = btrfs_alloc_path();
1256 if (!path) {
1257 ret = -ENOMEM;
1258 goto trans_out;
1259 }
1260
1261 block_rsv = trans->block_rsv;
1262 trans->block_rsv = &fs_info->delayed_block_rsv;
1263
1264 mutex_lock(&delayed_node->mutex);
1265 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1266 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1267 path, delayed_node);
1268 else
1269 ret = 0;
1270 mutex_unlock(&delayed_node->mutex);
1271
1272 btrfs_free_path(path);
1273 trans->block_rsv = block_rsv;
1274 trans_out:
1275 btrfs_end_transaction(trans);
1276 btrfs_btree_balance_dirty(fs_info);
1277 out:
1278 btrfs_release_delayed_node(delayed_node);
1279
1280 return ret;
1281 }
1282
btrfs_remove_delayed_node(struct btrfs_inode * inode)1283 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1284 {
1285 struct btrfs_delayed_node *delayed_node;
1286
1287 delayed_node = READ_ONCE(inode->delayed_node);
1288 if (!delayed_node)
1289 return;
1290
1291 inode->delayed_node = NULL;
1292 btrfs_release_delayed_node(delayed_node);
1293 }
1294
1295 struct btrfs_async_delayed_work {
1296 struct btrfs_delayed_root *delayed_root;
1297 int nr;
1298 struct btrfs_work work;
1299 };
1300
btrfs_async_run_delayed_root(struct btrfs_work * work)1301 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1302 {
1303 struct btrfs_async_delayed_work *async_work;
1304 struct btrfs_delayed_root *delayed_root;
1305 struct btrfs_trans_handle *trans;
1306 struct btrfs_path *path;
1307 struct btrfs_delayed_node *delayed_node = NULL;
1308 struct btrfs_root *root;
1309 struct btrfs_block_rsv *block_rsv;
1310 int total_done = 0;
1311
1312 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1313 delayed_root = async_work->delayed_root;
1314
1315 path = btrfs_alloc_path();
1316 if (!path)
1317 goto out;
1318
1319 do {
1320 if (atomic_read(&delayed_root->items) <
1321 BTRFS_DELAYED_BACKGROUND / 2)
1322 break;
1323
1324 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1325 if (!delayed_node)
1326 break;
1327
1328 root = delayed_node->root;
1329
1330 trans = btrfs_join_transaction(root);
1331 if (IS_ERR(trans)) {
1332 btrfs_release_path(path);
1333 btrfs_release_prepared_delayed_node(delayed_node);
1334 total_done++;
1335 continue;
1336 }
1337
1338 block_rsv = trans->block_rsv;
1339 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1340
1341 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1342
1343 trans->block_rsv = block_rsv;
1344 btrfs_end_transaction(trans);
1345 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1346
1347 btrfs_release_path(path);
1348 btrfs_release_prepared_delayed_node(delayed_node);
1349 total_done++;
1350
1351 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1352 || total_done < async_work->nr);
1353
1354 btrfs_free_path(path);
1355 out:
1356 wake_up(&delayed_root->wait);
1357 kfree(async_work);
1358 }
1359
1360
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1361 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1362 struct btrfs_fs_info *fs_info, int nr)
1363 {
1364 struct btrfs_async_delayed_work *async_work;
1365
1366 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1367 if (!async_work)
1368 return -ENOMEM;
1369
1370 async_work->delayed_root = delayed_root;
1371 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1372 async_work->nr = nr;
1373
1374 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375 return 0;
1376 }
1377
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1378 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379 {
1380 struct btrfs_delayed_node *node = btrfs_first_delayed_node(fs_info->delayed_root);
1381
1382 if (WARN_ON(node))
1383 refcount_dec(&node->refs);
1384 }
1385
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1386 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1387 {
1388 int val = atomic_read(&delayed_root->items_seq);
1389
1390 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1391 return true;
1392
1393 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1394 return true;
1395
1396 return false;
1397 }
1398
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1399 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1400 {
1401 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1402
1403 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1404 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1405 return;
1406
1407 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1408 int seq;
1409 int ret;
1410
1411 seq = atomic_read(&delayed_root->items_seq);
1412
1413 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1414 if (ret)
1415 return;
1416
1417 wait_event_interruptible(delayed_root->wait,
1418 could_end_wait(delayed_root, seq));
1419 return;
1420 }
1421
1422 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1423 }
1424
btrfs_release_dir_index_item_space(struct btrfs_trans_handle * trans)1425 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1426 {
1427 struct btrfs_fs_info *fs_info = trans->fs_info;
1428 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1429
1430 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1431 return;
1432
1433 /*
1434 * Adding the new dir index item does not require touching another
1435 * leaf, so we can release 1 unit of metadata that was previously
1436 * reserved when starting the transaction. This applies only to
1437 * the case where we had a transaction start and excludes the
1438 * transaction join case (when replaying log trees).
1439 */
1440 trace_btrfs_space_reservation(fs_info, "transaction",
1441 trans->transid, bytes, 0);
1442 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1443 ASSERT(trans->bytes_reserved >= bytes);
1444 trans->bytes_reserved -= bytes;
1445 }
1446
1447 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,const struct btrfs_disk_key * disk_key,u8 flags,u64 index)1448 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1449 const char *name, int name_len,
1450 struct btrfs_inode *dir,
1451 const struct btrfs_disk_key *disk_key, u8 flags,
1452 u64 index)
1453 {
1454 struct btrfs_fs_info *fs_info = trans->fs_info;
1455 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1456 struct btrfs_delayed_node *delayed_node;
1457 struct btrfs_delayed_item *delayed_item;
1458 struct btrfs_dir_item *dir_item;
1459 bool reserve_leaf_space;
1460 u32 data_len;
1461 int ret;
1462
1463 delayed_node = btrfs_get_or_create_delayed_node(dir);
1464 if (IS_ERR(delayed_node))
1465 return PTR_ERR(delayed_node);
1466
1467 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1468 delayed_node,
1469 BTRFS_DELAYED_INSERTION_ITEM);
1470 if (!delayed_item) {
1471 ret = -ENOMEM;
1472 goto release_node;
1473 }
1474
1475 delayed_item->index = index;
1476
1477 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1478 dir_item->location = *disk_key;
1479 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1480 btrfs_set_stack_dir_data_len(dir_item, 0);
1481 btrfs_set_stack_dir_name_len(dir_item, name_len);
1482 btrfs_set_stack_dir_flags(dir_item, flags);
1483 memcpy((char *)(dir_item + 1), name, name_len);
1484
1485 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1486
1487 mutex_lock(&delayed_node->mutex);
1488
1489 /*
1490 * First attempt to insert the delayed item. This is to make the error
1491 * handling path simpler in case we fail (-EEXIST). There's no risk of
1492 * any other task coming in and running the delayed item before we do
1493 * the metadata space reservation below, because we are holding the
1494 * delayed node's mutex and that mutex must also be locked before the
1495 * node's delayed items can be run.
1496 */
1497 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1498 if (unlikely(ret)) {
1499 btrfs_err(trans->fs_info,
1500 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1501 name_len, name, index, btrfs_root_id(delayed_node->root),
1502 delayed_node->inode_id, dir->index_cnt,
1503 delayed_node->index_cnt, ret);
1504 btrfs_release_delayed_item(delayed_item);
1505 btrfs_release_dir_index_item_space(trans);
1506 mutex_unlock(&delayed_node->mutex);
1507 goto release_node;
1508 }
1509
1510 if (delayed_node->index_item_leaves == 0 ||
1511 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1512 delayed_node->curr_index_batch_size = data_len;
1513 reserve_leaf_space = true;
1514 } else {
1515 delayed_node->curr_index_batch_size += data_len;
1516 reserve_leaf_space = false;
1517 }
1518
1519 if (reserve_leaf_space) {
1520 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1521 /*
1522 * Space was reserved for a dir index item insertion when we
1523 * started the transaction, so getting a failure here should be
1524 * impossible.
1525 */
1526 if (WARN_ON(ret)) {
1527 btrfs_release_delayed_item(delayed_item);
1528 mutex_unlock(&delayed_node->mutex);
1529 goto release_node;
1530 }
1531
1532 delayed_node->index_item_leaves++;
1533 } else {
1534 btrfs_release_dir_index_item_space(trans);
1535 }
1536 mutex_unlock(&delayed_node->mutex);
1537
1538 release_node:
1539 btrfs_release_delayed_node(delayed_node);
1540 return ret;
1541 }
1542
btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node * node,u64 index)1543 static int btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1544 u64 index)
1545 {
1546 struct btrfs_delayed_item *item;
1547
1548 mutex_lock(&node->mutex);
1549 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1550 if (!item) {
1551 mutex_unlock(&node->mutex);
1552 return 1;
1553 }
1554
1555 /*
1556 * For delayed items to insert, we track reserved metadata bytes based
1557 * on the number of leaves that we will use.
1558 * See btrfs_insert_delayed_dir_index() and
1559 * btrfs_delayed_item_reserve_metadata()).
1560 */
1561 ASSERT(item->bytes_reserved == 0);
1562 ASSERT(node->index_item_leaves > 0);
1563
1564 /*
1565 * If there's only one leaf reserved, we can decrement this item from the
1566 * current batch, otherwise we can not because we don't know which leaf
1567 * it belongs to. With the current limit on delayed items, we rarely
1568 * accumulate enough dir index items to fill more than one leaf (even
1569 * when using a leaf size of 4K).
1570 */
1571 if (node->index_item_leaves == 1) {
1572 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1573
1574 ASSERT(node->curr_index_batch_size >= data_len);
1575 node->curr_index_batch_size -= data_len;
1576 }
1577
1578 btrfs_release_delayed_item(item);
1579
1580 /* If we now have no more dir index items, we can release all leaves. */
1581 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1582 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1583 node->index_item_leaves = 0;
1584 }
1585
1586 mutex_unlock(&node->mutex);
1587 return 0;
1588 }
1589
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1590 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1591 struct btrfs_inode *dir, u64 index)
1592 {
1593 struct btrfs_delayed_node *node;
1594 struct btrfs_delayed_item *item;
1595 int ret;
1596
1597 node = btrfs_get_or_create_delayed_node(dir);
1598 if (IS_ERR(node))
1599 return PTR_ERR(node);
1600
1601 ret = btrfs_delete_delayed_insertion_item(node, index);
1602 if (!ret)
1603 goto end;
1604
1605 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1606 if (!item) {
1607 ret = -ENOMEM;
1608 goto end;
1609 }
1610
1611 item->index = index;
1612
1613 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1614 /*
1615 * we have reserved enough space when we start a new transaction,
1616 * so reserving metadata failure is impossible.
1617 */
1618 if (ret < 0) {
1619 btrfs_err(trans->fs_info,
1620 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1621 btrfs_release_delayed_item(item);
1622 goto end;
1623 }
1624
1625 mutex_lock(&node->mutex);
1626 ret = __btrfs_add_delayed_item(node, item);
1627 if (unlikely(ret)) {
1628 btrfs_err(trans->fs_info,
1629 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1630 index, btrfs_root_id(node->root),
1631 node->inode_id, ret);
1632 btrfs_delayed_item_release_metadata(dir->root, item);
1633 btrfs_release_delayed_item(item);
1634 }
1635 mutex_unlock(&node->mutex);
1636 end:
1637 btrfs_release_delayed_node(node);
1638 return ret;
1639 }
1640
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1641 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1642 {
1643 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1644
1645 if (!delayed_node)
1646 return -ENOENT;
1647
1648 /*
1649 * Since we have held i_mutex of this directory, it is impossible that
1650 * a new directory index is added into the delayed node and index_cnt
1651 * is updated now. So we needn't lock the delayed node.
1652 */
1653 if (!delayed_node->index_cnt) {
1654 btrfs_release_delayed_node(delayed_node);
1655 return -EINVAL;
1656 }
1657
1658 inode->index_cnt = delayed_node->index_cnt;
1659 btrfs_release_delayed_node(delayed_node);
1660 return 0;
1661 }
1662
btrfs_readdir_get_delayed_items(struct btrfs_inode * inode,u64 last_index,struct list_head * ins_list,struct list_head * del_list)1663 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1664 u64 last_index,
1665 struct list_head *ins_list,
1666 struct list_head *del_list)
1667 {
1668 struct btrfs_delayed_node *delayed_node;
1669 struct btrfs_delayed_item *item;
1670
1671 delayed_node = btrfs_get_delayed_node(inode);
1672 if (!delayed_node)
1673 return false;
1674
1675 /*
1676 * We can only do one readdir with delayed items at a time because of
1677 * item->readdir_list.
1678 */
1679 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1680 btrfs_inode_lock(inode, 0);
1681
1682 mutex_lock(&delayed_node->mutex);
1683 item = __btrfs_first_delayed_insertion_item(delayed_node);
1684 while (item && item->index <= last_index) {
1685 refcount_inc(&item->refs);
1686 list_add_tail(&item->readdir_list, ins_list);
1687 item = __btrfs_next_delayed_item(item);
1688 }
1689
1690 item = __btrfs_first_delayed_deletion_item(delayed_node);
1691 while (item && item->index <= last_index) {
1692 refcount_inc(&item->refs);
1693 list_add_tail(&item->readdir_list, del_list);
1694 item = __btrfs_next_delayed_item(item);
1695 }
1696 mutex_unlock(&delayed_node->mutex);
1697 /*
1698 * This delayed node is still cached in the btrfs inode, so refs
1699 * must be > 1 now, and we needn't check it is going to be freed
1700 * or not.
1701 *
1702 * Besides that, this function is used to read dir, we do not
1703 * insert/delete delayed items in this period. So we also needn't
1704 * requeue or dequeue this delayed node.
1705 */
1706 refcount_dec(&delayed_node->refs);
1707
1708 return true;
1709 }
1710
btrfs_readdir_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)1711 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1712 struct list_head *ins_list,
1713 struct list_head *del_list)
1714 {
1715 struct btrfs_delayed_item *curr, *next;
1716
1717 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1718 list_del(&curr->readdir_list);
1719 if (refcount_dec_and_test(&curr->refs))
1720 kfree(curr);
1721 }
1722
1723 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1724 list_del(&curr->readdir_list);
1725 if (refcount_dec_and_test(&curr->refs))
1726 kfree(curr);
1727 }
1728
1729 /*
1730 * The VFS is going to do up_read(), so we need to downgrade back to a
1731 * read lock.
1732 */
1733 downgrade_write(&inode->vfs_inode.i_rwsem);
1734 }
1735
btrfs_should_delete_dir_index(const struct list_head * del_list,u64 index)1736 int btrfs_should_delete_dir_index(const struct list_head *del_list,
1737 u64 index)
1738 {
1739 struct btrfs_delayed_item *curr;
1740 int ret = 0;
1741
1742 list_for_each_entry(curr, del_list, readdir_list) {
1743 if (curr->index > index)
1744 break;
1745 if (curr->index == index) {
1746 ret = 1;
1747 break;
1748 }
1749 }
1750 return ret;
1751 }
1752
1753 /*
1754 * Read dir info stored in the delayed tree.
1755 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,const struct list_head * ins_list)1756 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1757 const struct list_head *ins_list)
1758 {
1759 struct btrfs_dir_item *di;
1760 struct btrfs_delayed_item *curr, *next;
1761 struct btrfs_key location;
1762 char *name;
1763 int name_len;
1764 int over = 0;
1765 unsigned char d_type;
1766
1767 /*
1768 * Changing the data of the delayed item is impossible. So
1769 * we needn't lock them. And we have held i_mutex of the
1770 * directory, nobody can delete any directory indexes now.
1771 */
1772 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1773 list_del(&curr->readdir_list);
1774
1775 if (curr->index < ctx->pos) {
1776 if (refcount_dec_and_test(&curr->refs))
1777 kfree(curr);
1778 continue;
1779 }
1780
1781 ctx->pos = curr->index;
1782
1783 di = (struct btrfs_dir_item *)curr->data;
1784 name = (char *)(di + 1);
1785 name_len = btrfs_stack_dir_name_len(di);
1786
1787 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1788 btrfs_disk_key_to_cpu(&location, &di->location);
1789
1790 over = !dir_emit(ctx, name, name_len,
1791 location.objectid, d_type);
1792
1793 if (refcount_dec_and_test(&curr->refs))
1794 kfree(curr);
1795
1796 if (over)
1797 return 1;
1798 ctx->pos++;
1799 }
1800 return 0;
1801 }
1802
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct btrfs_inode * inode)1803 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1804 struct btrfs_inode_item *inode_item,
1805 struct btrfs_inode *inode)
1806 {
1807 struct inode *vfs_inode = &inode->vfs_inode;
1808 u64 flags;
1809
1810 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1811 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1812 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1813 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1814 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1815 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1816 btrfs_set_stack_inode_generation(inode_item, inode->generation);
1817 btrfs_set_stack_inode_sequence(inode_item,
1818 inode_peek_iversion(vfs_inode));
1819 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1820 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1821 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1822 btrfs_set_stack_inode_flags(inode_item, flags);
1823 btrfs_set_stack_inode_block_group(inode_item, 0);
1824
1825 btrfs_set_stack_timespec_sec(&inode_item->atime,
1826 inode_get_atime_sec(vfs_inode));
1827 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1828 inode_get_atime_nsec(vfs_inode));
1829
1830 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1831 inode_get_mtime_sec(vfs_inode));
1832 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1833 inode_get_mtime_nsec(vfs_inode));
1834
1835 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1836 inode_get_ctime_sec(vfs_inode));
1837 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1838 inode_get_ctime_nsec(vfs_inode));
1839
1840 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1841 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1842 }
1843
btrfs_fill_inode(struct btrfs_inode * inode,u32 * rdev)1844 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1845 {
1846 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1847 struct btrfs_delayed_node *delayed_node;
1848 struct btrfs_inode_item *inode_item;
1849 struct inode *vfs_inode = &inode->vfs_inode;
1850
1851 delayed_node = btrfs_get_delayed_node(inode);
1852 if (!delayed_node)
1853 return -ENOENT;
1854
1855 mutex_lock(&delayed_node->mutex);
1856 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1857 mutex_unlock(&delayed_node->mutex);
1858 btrfs_release_delayed_node(delayed_node);
1859 return -ENOENT;
1860 }
1861
1862 inode_item = &delayed_node->inode_item;
1863
1864 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1865 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1866 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1867 btrfs_inode_set_file_extent_range(inode, 0,
1868 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
1869 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1870 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1871 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1872 inode->generation = btrfs_stack_inode_generation(inode_item);
1873 inode->last_trans = btrfs_stack_inode_transid(inode_item);
1874
1875 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1876 vfs_inode->i_rdev = 0;
1877 *rdev = btrfs_stack_inode_rdev(inode_item);
1878 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1879 &inode->flags, &inode->ro_flags);
1880
1881 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1882 btrfs_stack_timespec_nsec(&inode_item->atime));
1883
1884 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1885 btrfs_stack_timespec_nsec(&inode_item->mtime));
1886
1887 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1888 btrfs_stack_timespec_nsec(&inode_item->ctime));
1889
1890 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1891 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1892
1893 vfs_inode->i_generation = inode->generation;
1894 if (S_ISDIR(vfs_inode->i_mode))
1895 inode->index_cnt = (u64)-1;
1896
1897 mutex_unlock(&delayed_node->mutex);
1898 btrfs_release_delayed_node(delayed_node);
1899 return 0;
1900 }
1901
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1902 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1903 struct btrfs_inode *inode)
1904 {
1905 struct btrfs_root *root = inode->root;
1906 struct btrfs_delayed_node *delayed_node;
1907 int ret = 0;
1908
1909 delayed_node = btrfs_get_or_create_delayed_node(inode);
1910 if (IS_ERR(delayed_node))
1911 return PTR_ERR(delayed_node);
1912
1913 mutex_lock(&delayed_node->mutex);
1914 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1915 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1916 goto release_node;
1917 }
1918
1919 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1920 if (ret)
1921 goto release_node;
1922
1923 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1924 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1925 delayed_node->count++;
1926 atomic_inc(&root->fs_info->delayed_root->items);
1927 release_node:
1928 mutex_unlock(&delayed_node->mutex);
1929 btrfs_release_delayed_node(delayed_node);
1930 return ret;
1931 }
1932
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1933 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1934 {
1935 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1936 struct btrfs_delayed_node *delayed_node;
1937
1938 /*
1939 * we don't do delayed inode updates during log recovery because it
1940 * leads to enospc problems. This means we also can't do
1941 * delayed inode refs
1942 */
1943 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1944 return -EAGAIN;
1945
1946 delayed_node = btrfs_get_or_create_delayed_node(inode);
1947 if (IS_ERR(delayed_node))
1948 return PTR_ERR(delayed_node);
1949
1950 /*
1951 * We don't reserve space for inode ref deletion is because:
1952 * - We ONLY do async inode ref deletion for the inode who has only
1953 * one link(i_nlink == 1), it means there is only one inode ref.
1954 * And in most case, the inode ref and the inode item are in the
1955 * same leaf, and we will deal with them at the same time.
1956 * Since we are sure we will reserve the space for the inode item,
1957 * it is unnecessary to reserve space for inode ref deletion.
1958 * - If the inode ref and the inode item are not in the same leaf,
1959 * We also needn't worry about enospc problem, because we reserve
1960 * much more space for the inode update than it needs.
1961 * - At the worst, we can steal some space from the global reservation.
1962 * It is very rare.
1963 */
1964 mutex_lock(&delayed_node->mutex);
1965 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1966 goto release_node;
1967
1968 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1969 delayed_node->count++;
1970 atomic_inc(&fs_info->delayed_root->items);
1971 release_node:
1972 mutex_unlock(&delayed_node->mutex);
1973 btrfs_release_delayed_node(delayed_node);
1974 return 0;
1975 }
1976
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1977 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1978 {
1979 struct btrfs_root *root = delayed_node->root;
1980 struct btrfs_fs_info *fs_info = root->fs_info;
1981 struct btrfs_delayed_item *curr_item, *prev_item;
1982
1983 mutex_lock(&delayed_node->mutex);
1984 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1985 while (curr_item) {
1986 prev_item = curr_item;
1987 curr_item = __btrfs_next_delayed_item(prev_item);
1988 btrfs_release_delayed_item(prev_item);
1989 }
1990
1991 if (delayed_node->index_item_leaves > 0) {
1992 btrfs_delayed_item_release_leaves(delayed_node,
1993 delayed_node->index_item_leaves);
1994 delayed_node->index_item_leaves = 0;
1995 }
1996
1997 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1998 while (curr_item) {
1999 btrfs_delayed_item_release_metadata(root, curr_item);
2000 prev_item = curr_item;
2001 curr_item = __btrfs_next_delayed_item(prev_item);
2002 btrfs_release_delayed_item(prev_item);
2003 }
2004
2005 btrfs_release_delayed_iref(delayed_node);
2006
2007 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2008 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2009 btrfs_release_delayed_inode(delayed_node);
2010 }
2011 mutex_unlock(&delayed_node->mutex);
2012 }
2013
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)2014 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2015 {
2016 struct btrfs_delayed_node *delayed_node;
2017
2018 delayed_node = btrfs_get_delayed_node(inode);
2019 if (!delayed_node)
2020 return;
2021
2022 __btrfs_kill_delayed_node(delayed_node);
2023 btrfs_release_delayed_node(delayed_node);
2024 }
2025
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)2026 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2027 {
2028 unsigned long index = 0;
2029 struct btrfs_delayed_node *delayed_nodes[8];
2030
2031 while (1) {
2032 struct btrfs_delayed_node *node;
2033 int count;
2034
2035 xa_lock(&root->delayed_nodes);
2036 if (xa_empty(&root->delayed_nodes)) {
2037 xa_unlock(&root->delayed_nodes);
2038 return;
2039 }
2040
2041 count = 0;
2042 xa_for_each_start(&root->delayed_nodes, index, node, index) {
2043 /*
2044 * Don't increase refs in case the node is dead and
2045 * about to be removed from the tree in the loop below
2046 */
2047 if (refcount_inc_not_zero(&node->refs)) {
2048 delayed_nodes[count] = node;
2049 count++;
2050 }
2051 if (count >= ARRAY_SIZE(delayed_nodes))
2052 break;
2053 }
2054 xa_unlock(&root->delayed_nodes);
2055 index++;
2056
2057 for (int i = 0; i < count; i++) {
2058 __btrfs_kill_delayed_node(delayed_nodes[i]);
2059 btrfs_release_delayed_node(delayed_nodes[i]);
2060 }
2061 }
2062 }
2063
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2064 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2065 {
2066 struct btrfs_delayed_node *curr_node, *prev_node;
2067
2068 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2069 while (curr_node) {
2070 __btrfs_kill_delayed_node(curr_node);
2071
2072 prev_node = curr_node;
2073 curr_node = btrfs_next_delayed_node(curr_node);
2074 btrfs_release_delayed_node(prev_node);
2075 }
2076 }
2077
btrfs_log_get_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2078 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2079 struct list_head *ins_list,
2080 struct list_head *del_list)
2081 {
2082 struct btrfs_delayed_node *node;
2083 struct btrfs_delayed_item *item;
2084
2085 node = btrfs_get_delayed_node(inode);
2086 if (!node)
2087 return;
2088
2089 mutex_lock(&node->mutex);
2090 item = __btrfs_first_delayed_insertion_item(node);
2091 while (item) {
2092 /*
2093 * It's possible that the item is already in a log list. This
2094 * can happen in case two tasks are trying to log the same
2095 * directory. For example if we have tasks A and task B:
2096 *
2097 * Task A collected the delayed items into a log list while
2098 * under the inode's log_mutex (at btrfs_log_inode()), but it
2099 * only releases the items after logging the inodes they point
2100 * to (if they are new inodes), which happens after unlocking
2101 * the log mutex;
2102 *
2103 * Task B enters btrfs_log_inode() and acquires the log_mutex
2104 * of the same directory inode, before task B releases the
2105 * delayed items. This can happen for example when logging some
2106 * inode we need to trigger logging of its parent directory, so
2107 * logging two files that have the same parent directory can
2108 * lead to this.
2109 *
2110 * If this happens, just ignore delayed items already in a log
2111 * list. All the tasks logging the directory are under a log
2112 * transaction and whichever finishes first can not sync the log
2113 * before the other completes and leaves the log transaction.
2114 */
2115 if (!item->logged && list_empty(&item->log_list)) {
2116 refcount_inc(&item->refs);
2117 list_add_tail(&item->log_list, ins_list);
2118 }
2119 item = __btrfs_next_delayed_item(item);
2120 }
2121
2122 item = __btrfs_first_delayed_deletion_item(node);
2123 while (item) {
2124 /* It may be non-empty, for the same reason mentioned above. */
2125 if (!item->logged && list_empty(&item->log_list)) {
2126 refcount_inc(&item->refs);
2127 list_add_tail(&item->log_list, del_list);
2128 }
2129 item = __btrfs_next_delayed_item(item);
2130 }
2131 mutex_unlock(&node->mutex);
2132
2133 /*
2134 * We are called during inode logging, which means the inode is in use
2135 * and can not be evicted before we finish logging the inode. So we never
2136 * have the last reference on the delayed inode.
2137 * Also, we don't use btrfs_release_delayed_node() because that would
2138 * requeue the delayed inode (change its order in the list of prepared
2139 * nodes) and we don't want to do such change because we don't create or
2140 * delete delayed items.
2141 */
2142 ASSERT(refcount_read(&node->refs) > 1);
2143 refcount_dec(&node->refs);
2144 }
2145
btrfs_log_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2146 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2147 struct list_head *ins_list,
2148 struct list_head *del_list)
2149 {
2150 struct btrfs_delayed_node *node;
2151 struct btrfs_delayed_item *item;
2152 struct btrfs_delayed_item *next;
2153
2154 node = btrfs_get_delayed_node(inode);
2155 if (!node)
2156 return;
2157
2158 mutex_lock(&node->mutex);
2159
2160 list_for_each_entry_safe(item, next, ins_list, log_list) {
2161 item->logged = true;
2162 list_del_init(&item->log_list);
2163 if (refcount_dec_and_test(&item->refs))
2164 kfree(item);
2165 }
2166
2167 list_for_each_entry_safe(item, next, del_list, log_list) {
2168 item->logged = true;
2169 list_del_init(&item->log_list);
2170 if (refcount_dec_and_test(&item->refs))
2171 kfree(item);
2172 }
2173
2174 mutex_unlock(&node->mutex);
2175
2176 /*
2177 * We are called during inode logging, which means the inode is in use
2178 * and can not be evicted before we finish logging the inode. So we never
2179 * have the last reference on the delayed inode.
2180 * Also, we don't use btrfs_release_delayed_node() because that would
2181 * requeue the delayed inode (change its order in the list of prepared
2182 * nodes) and we don't want to do such change because we don't create or
2183 * delete delayed items.
2184 */
2185 ASSERT(refcount_read(&node->refs) > 1);
2186 refcount_dec(&node->refs);
2187 }
2188