xref: /linux/fs/btrfs/disk-io.c (revision 5ca7fe213ba3113dde19c4cd46347c16d9e69f81)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <linux/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53 
54 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
55 				 BTRFS_HEADER_FLAG_RELOC |\
56 				 BTRFS_SUPER_FLAG_ERROR |\
57 				 BTRFS_SUPER_FLAG_SEEDING |\
58 				 BTRFS_SUPER_FLAG_METADUMP |\
59 				 BTRFS_SUPER_FLAG_METADUMP_V2)
60 
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63 
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66 	if (fs_info->csum_shash)
67 		crypto_free_shash(fs_info->csum_shash);
68 }
69 
70 /*
71  * Compute the csum of a btree block and store the result to provided buffer.
72  */
csum_tree_block(struct extent_buffer * buf,u8 * result)73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75 	struct btrfs_fs_info *fs_info = buf->fs_info;
76 	int num_pages;
77 	u32 first_page_part;
78 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79 	char *kaddr;
80 	int i;
81 
82 	shash->tfm = fs_info->csum_shash;
83 	crypto_shash_init(shash);
84 
85 	if (buf->addr) {
86 		/* Pages are contiguous, handle them as a big one. */
87 		kaddr = buf->addr;
88 		first_page_part = fs_info->nodesize;
89 		num_pages = 1;
90 	} else {
91 		kaddr = folio_address(buf->folios[0]);
92 		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 		num_pages = num_extent_pages(buf);
94 	}
95 
96 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 			    first_page_part - BTRFS_CSUM_SIZE);
98 
99 	/*
100 	 * Multiple single-page folios case would reach here.
101 	 *
102 	 * nodesize <= PAGE_SIZE and large folio all handled by above
103 	 * crypto_shash_update() already.
104 	 */
105 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106 		kaddr = folio_address(buf->folios[i]);
107 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
108 	}
109 	memset(result, 0, BTRFS_CSUM_SIZE);
110 	crypto_shash_final(shash, result);
111 }
112 
113 /*
114  * we can't consider a given block up to date unless the transid of the
115  * block matches the transid in the parent node's pointer.  This is how we
116  * detect blocks that either didn't get written at all or got written
117  * in the wrong place.
118  */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,int atomic)119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121 	if (!extent_buffer_uptodate(eb))
122 		return 0;
123 
124 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 		return 1;
126 
127 	if (atomic)
128 		return -EAGAIN;
129 
130 	if (!extent_buffer_uptodate(eb) ||
131 	    btrfs_header_generation(eb) != parent_transid) {
132 		btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 			eb->start, eb->read_mirror,
135 			parent_transid, btrfs_header_generation(eb));
136 		clear_extent_buffer_uptodate(eb);
137 		return 0;
138 	}
139 	return 1;
140 }
141 
btrfs_supported_super_csum(u16 csum_type)142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144 	switch (csum_type) {
145 	case BTRFS_CSUM_TYPE_CRC32:
146 	case BTRFS_CSUM_TYPE_XXHASH:
147 	case BTRFS_CSUM_TYPE_SHA256:
148 	case BTRFS_CSUM_TYPE_BLAKE2:
149 		return true;
150 	default:
151 		return false;
152 	}
153 }
154 
155 /*
156  * Return 0 if the superblock checksum type matches the checksum value of that
157  * algorithm. Pass the raw disk superblock data.
158  */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 			   const struct btrfs_super_block *disk_sb)
161 {
162 	char result[BTRFS_CSUM_SIZE];
163 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164 
165 	shash->tfm = fs_info->csum_shash;
166 
167 	/*
168 	 * The super_block structure does not span the whole
169 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 	 * filled with zeros and is included in the checksum.
171 	 */
172 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174 
175 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176 		return 1;
177 
178 	return 0;
179 }
180 
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 				      int mirror_num)
183 {
184 	struct btrfs_fs_info *fs_info = eb->fs_info;
185 	int ret = 0;
186 
187 	if (sb_rdonly(fs_info->sb))
188 		return -EROFS;
189 
190 	for (int i = 0; i < num_extent_folios(eb); i++) {
191 		struct folio *folio = eb->folios[i];
192 		u64 start = max_t(u64, eb->start, folio_pos(folio));
193 		u64 end = min_t(u64, eb->start + eb->len,
194 				folio_pos(folio) + eb->folio_size);
195 		u32 len = end - start;
196 		phys_addr_t paddr = PFN_PHYS(folio_pfn(folio)) +
197 				    offset_in_folio(folio, start);
198 
199 		ret = btrfs_repair_io_failure(fs_info, 0, start, len, start,
200 					      paddr, mirror_num);
201 		if (ret)
202 			break;
203 	}
204 
205 	return ret;
206 }
207 
208 /*
209  * helper to read a given tree block, doing retries as required when
210  * the checksums don't match and we have alternate mirrors to try.
211  *
212  * @check:		expected tree parentness check, see the comments of the
213  *			structure for details.
214  */
btrfs_read_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216 			     const struct btrfs_tree_parent_check *check)
217 {
218 	struct btrfs_fs_info *fs_info = eb->fs_info;
219 	int failed = 0;
220 	int ret;
221 	int num_copies = 0;
222 	int mirror_num = 0;
223 	int failed_mirror = 0;
224 
225 	ASSERT(check);
226 
227 	while (1) {
228 		ret = read_extent_buffer_pages(eb, mirror_num, check);
229 		if (!ret)
230 			break;
231 
232 		num_copies = btrfs_num_copies(fs_info,
233 					      eb->start, eb->len);
234 		if (num_copies == 1)
235 			break;
236 
237 		if (!failed_mirror) {
238 			failed = 1;
239 			failed_mirror = eb->read_mirror;
240 		}
241 
242 		mirror_num++;
243 		if (mirror_num == failed_mirror)
244 			mirror_num++;
245 
246 		if (mirror_num > num_copies)
247 			break;
248 	}
249 
250 	if (failed && !ret && failed_mirror)
251 		btrfs_repair_eb_io_failure(eb, failed_mirror);
252 
253 	return ret;
254 }
255 
256 /*
257  * Checksum a dirty tree block before IO.
258  */
btree_csum_one_bio(struct btrfs_bio * bbio)259 int btree_csum_one_bio(struct btrfs_bio *bbio)
260 {
261 	struct extent_buffer *eb = bbio->private;
262 	struct btrfs_fs_info *fs_info = eb->fs_info;
263 	u64 found_start = btrfs_header_bytenr(eb);
264 	u64 last_trans;
265 	u8 result[BTRFS_CSUM_SIZE];
266 	int ret;
267 
268 	/* Btree blocks are always contiguous on disk. */
269 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
270 		return -EIO;
271 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
272 		return -EIO;
273 
274 	/*
275 	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
276 	 * checksum it but zero-out its content. This is done to preserve
277 	 * ordering of I/O without unnecessarily writing out data.
278 	 */
279 	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
280 		memzero_extent_buffer(eb, 0, eb->len);
281 		return 0;
282 	}
283 
284 	if (WARN_ON_ONCE(found_start != eb->start))
285 		return -EIO;
286 	if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb)))
287 		return -EIO;
288 
289 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
290 				    offsetof(struct btrfs_header, fsid),
291 				    BTRFS_FSID_SIZE) == 0);
292 	csum_tree_block(eb, result);
293 
294 	if (btrfs_header_level(eb))
295 		ret = btrfs_check_node(eb);
296 	else
297 		ret = btrfs_check_leaf(eb);
298 
299 	if (ret < 0)
300 		goto error;
301 
302 	/*
303 	 * Also check the generation, the eb reached here must be newer than
304 	 * last committed. Or something seriously wrong happened.
305 	 */
306 	last_trans = btrfs_get_last_trans_committed(fs_info);
307 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
308 		ret = -EUCLEAN;
309 		btrfs_err(fs_info,
310 			"block=%llu bad generation, have %llu expect > %llu",
311 			  eb->start, btrfs_header_generation(eb), last_trans);
312 		goto error;
313 	}
314 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
315 	return 0;
316 
317 error:
318 	btrfs_print_tree(eb, 0);
319 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
320 		  eb->start);
321 	/*
322 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
323 	 * a transaction in case there's a bad log tree extent buffer, we just
324 	 * fallback to a transaction commit. Still we want to know when there is
325 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
326 	 */
327 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
328 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
329 	return ret;
330 }
331 
check_tree_block_fsid(struct extent_buffer * eb)332 static bool check_tree_block_fsid(struct extent_buffer *eb)
333 {
334 	struct btrfs_fs_info *fs_info = eb->fs_info;
335 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
336 	u8 fsid[BTRFS_FSID_SIZE];
337 
338 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
339 			   BTRFS_FSID_SIZE);
340 
341 	/*
342 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
343 	 * This is then overwritten by metadata_uuid if it is present in the
344 	 * device_list_add(). The same true for a seed device as well. So use of
345 	 * fs_devices::metadata_uuid is appropriate here.
346 	 */
347 	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
348 		return false;
349 
350 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
351 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
352 			return false;
353 
354 	return true;
355 }
356 
357 /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)358 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
359 				 const struct btrfs_tree_parent_check *check)
360 {
361 	struct btrfs_fs_info *fs_info = eb->fs_info;
362 	u64 found_start;
363 	const u32 csum_size = fs_info->csum_size;
364 	u8 found_level;
365 	u8 result[BTRFS_CSUM_SIZE];
366 	const u8 *header_csum;
367 	int ret = 0;
368 	const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
369 
370 	ASSERT(check);
371 
372 	found_start = btrfs_header_bytenr(eb);
373 	if (found_start != eb->start) {
374 		btrfs_err_rl(fs_info,
375 			"bad tree block start, mirror %u want %llu have %llu",
376 			     eb->read_mirror, eb->start, found_start);
377 		ret = -EIO;
378 		goto out;
379 	}
380 	if (check_tree_block_fsid(eb)) {
381 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
382 			     eb->start, eb->read_mirror);
383 		ret = -EIO;
384 		goto out;
385 	}
386 	found_level = btrfs_header_level(eb);
387 	if (found_level >= BTRFS_MAX_LEVEL) {
388 		btrfs_err(fs_info,
389 			"bad tree block level, mirror %u level %d on logical %llu",
390 			eb->read_mirror, btrfs_header_level(eb), eb->start);
391 		ret = -EIO;
392 		goto out;
393 	}
394 
395 	csum_tree_block(eb, result);
396 	header_csum = folio_address(eb->folios[0]) +
397 		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
398 
399 	if (memcmp(result, header_csum, csum_size) != 0) {
400 		btrfs_warn_rl(fs_info,
401 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
402 			      eb->start, eb->read_mirror,
403 			      CSUM_FMT_VALUE(csum_size, header_csum),
404 			      CSUM_FMT_VALUE(csum_size, result),
405 			      btrfs_header_level(eb),
406 			      ignore_csum ? ", ignored" : "");
407 		if (!ignore_csum) {
408 			ret = -EUCLEAN;
409 			goto out;
410 		}
411 	}
412 
413 	if (found_level != check->level) {
414 		btrfs_err(fs_info,
415 		"level verify failed on logical %llu mirror %u wanted %u found %u",
416 			  eb->start, eb->read_mirror, check->level, found_level);
417 		ret = -EIO;
418 		goto out;
419 	}
420 	if (unlikely(check->transid &&
421 		     btrfs_header_generation(eb) != check->transid)) {
422 		btrfs_err_rl(eb->fs_info,
423 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
424 				eb->start, eb->read_mirror, check->transid,
425 				btrfs_header_generation(eb));
426 		ret = -EIO;
427 		goto out;
428 	}
429 	if (check->has_first_key) {
430 		const struct btrfs_key *expect_key = &check->first_key;
431 		struct btrfs_key found_key;
432 
433 		if (found_level)
434 			btrfs_node_key_to_cpu(eb, &found_key, 0);
435 		else
436 			btrfs_item_key_to_cpu(eb, &found_key, 0);
437 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
438 			btrfs_err(fs_info,
439 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
440 				  eb->start, check->transid,
441 				  expect_key->objectid,
442 				  expect_key->type, expect_key->offset,
443 				  found_key.objectid, found_key.type,
444 				  found_key.offset);
445 			ret = -EUCLEAN;
446 			goto out;
447 		}
448 	}
449 	if (check->owner_root) {
450 		ret = btrfs_check_eb_owner(eb, check->owner_root);
451 		if (ret < 0)
452 			goto out;
453 	}
454 
455 	/* If this is a leaf block and it is corrupt, just return -EIO. */
456 	if (found_level == 0 && btrfs_check_leaf(eb))
457 		ret = -EIO;
458 
459 	if (found_level > 0 && btrfs_check_node(eb))
460 		ret = -EIO;
461 
462 	if (ret)
463 		btrfs_err(fs_info,
464 		"read time tree block corruption detected on logical %llu mirror %u",
465 			  eb->start, eb->read_mirror);
466 out:
467 	return ret;
468 }
469 
470 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)471 static int btree_migrate_folio(struct address_space *mapping,
472 		struct folio *dst, struct folio *src, enum migrate_mode mode)
473 {
474 	/*
475 	 * we can't safely write a btree page from here,
476 	 * we haven't done the locking hook
477 	 */
478 	if (folio_test_dirty(src))
479 		return -EAGAIN;
480 	/*
481 	 * Buffers may be managed in a filesystem specific way.
482 	 * We must have no buffers or drop them.
483 	 */
484 	if (folio_get_private(src) &&
485 	    !filemap_release_folio(src, GFP_KERNEL))
486 		return -EAGAIN;
487 	return migrate_folio(mapping, dst, src, mode);
488 }
489 #else
490 #define btree_migrate_folio NULL
491 #endif
492 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)493 static int btree_writepages(struct address_space *mapping,
494 			    struct writeback_control *wbc)
495 {
496 	int ret;
497 
498 	if (wbc->sync_mode == WB_SYNC_NONE) {
499 		struct btrfs_fs_info *fs_info;
500 
501 		if (wbc->for_kupdate)
502 			return 0;
503 
504 		fs_info = inode_to_fs_info(mapping->host);
505 		/* this is a bit racy, but that's ok */
506 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
507 					     BTRFS_DIRTY_METADATA_THRESH,
508 					     fs_info->dirty_metadata_batch);
509 		if (ret < 0)
510 			return 0;
511 	}
512 	return btree_write_cache_pages(mapping, wbc);
513 }
514 
btree_release_folio(struct folio * folio,gfp_t gfp_flags)515 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
516 {
517 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
518 		return false;
519 
520 	return try_release_extent_buffer(folio);
521 }
522 
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)523 static void btree_invalidate_folio(struct folio *folio, size_t offset,
524 				 size_t length)
525 {
526 	struct extent_io_tree *tree;
527 
528 	tree = &folio_to_inode(folio)->io_tree;
529 	extent_invalidate_folio(tree, folio, offset);
530 	btree_release_folio(folio, GFP_NOFS);
531 	if (folio_get_private(folio)) {
532 		btrfs_warn(folio_to_fs_info(folio),
533 			   "folio private not zero on folio %llu",
534 			   (unsigned long long)folio_pos(folio));
535 		folio_detach_private(folio);
536 	}
537 }
538 
539 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)540 static bool btree_dirty_folio(struct address_space *mapping,
541 		struct folio *folio)
542 {
543 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
544 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
545 	struct btrfs_subpage *subpage;
546 	struct extent_buffer *eb;
547 	int cur_bit = 0;
548 	u64 page_start = folio_pos(folio);
549 
550 	if (fs_info->sectorsize == PAGE_SIZE) {
551 		eb = folio_get_private(folio);
552 		BUG_ON(!eb);
553 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
554 		BUG_ON(!atomic_read(&eb->refs));
555 		btrfs_assert_tree_write_locked(eb);
556 		return filemap_dirty_folio(mapping, folio);
557 	}
558 
559 	ASSERT(spi);
560 	subpage = folio_get_private(folio);
561 
562 	for (cur_bit = spi->dirty_offset;
563 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
564 	     cur_bit++) {
565 		unsigned long flags;
566 		u64 cur;
567 
568 		spin_lock_irqsave(&subpage->lock, flags);
569 		if (!test_bit(cur_bit, subpage->bitmaps)) {
570 			spin_unlock_irqrestore(&subpage->lock, flags);
571 			continue;
572 		}
573 		spin_unlock_irqrestore(&subpage->lock, flags);
574 		cur = page_start + cur_bit * fs_info->sectorsize;
575 
576 		eb = find_extent_buffer(fs_info, cur);
577 		ASSERT(eb);
578 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
579 		ASSERT(atomic_read(&eb->refs));
580 		btrfs_assert_tree_write_locked(eb);
581 		free_extent_buffer(eb);
582 
583 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
584 	}
585 	return filemap_dirty_folio(mapping, folio);
586 }
587 #else
588 #define btree_dirty_folio filemap_dirty_folio
589 #endif
590 
591 static const struct address_space_operations btree_aops = {
592 	.writepages	= btree_writepages,
593 	.release_folio	= btree_release_folio,
594 	.invalidate_folio = btree_invalidate_folio,
595 	.migrate_folio	= btree_migrate_folio,
596 	.dirty_folio	= btree_dirty_folio,
597 };
598 
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)599 struct extent_buffer *btrfs_find_create_tree_block(
600 						struct btrfs_fs_info *fs_info,
601 						u64 bytenr, u64 owner_root,
602 						int level)
603 {
604 	if (btrfs_is_testing(fs_info))
605 		return alloc_test_extent_buffer(fs_info, bytenr);
606 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
607 }
608 
609 /*
610  * Read tree block at logical address @bytenr and do variant basic but critical
611  * verification.
612  *
613  * @check:		expected tree parentness check, see comments of the
614  *			structure for details.
615  */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)616 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
617 				      struct btrfs_tree_parent_check *check)
618 {
619 	struct extent_buffer *buf = NULL;
620 	int ret;
621 
622 	ASSERT(check);
623 
624 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
625 					   check->level);
626 	if (IS_ERR(buf))
627 		return buf;
628 
629 	ret = btrfs_read_extent_buffer(buf, check);
630 	if (ret) {
631 		free_extent_buffer_stale(buf);
632 		return ERR_PTR(ret);
633 	}
634 	return buf;
635 
636 }
637 
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)638 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
639 					   u64 objectid, gfp_t flags)
640 {
641 	struct btrfs_root *root;
642 	bool dummy = btrfs_is_testing(fs_info);
643 
644 	root = kzalloc(sizeof(*root), flags);
645 	if (!root)
646 		return NULL;
647 
648 	memset(&root->root_key, 0, sizeof(root->root_key));
649 	memset(&root->root_item, 0, sizeof(root->root_item));
650 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
651 	root->fs_info = fs_info;
652 	root->root_key.objectid = objectid;
653 	root->node = NULL;
654 	root->commit_root = NULL;
655 	root->state = 0;
656 	RB_CLEAR_NODE(&root->rb_node);
657 
658 	btrfs_set_root_last_trans(root, 0);
659 	root->free_objectid = 0;
660 	root->nr_delalloc_inodes = 0;
661 	root->nr_ordered_extents = 0;
662 	xa_init(&root->inodes);
663 	xa_init(&root->delayed_nodes);
664 
665 	btrfs_init_root_block_rsv(root);
666 
667 	INIT_LIST_HEAD(&root->dirty_list);
668 	INIT_LIST_HEAD(&root->root_list);
669 	INIT_LIST_HEAD(&root->delalloc_inodes);
670 	INIT_LIST_HEAD(&root->delalloc_root);
671 	INIT_LIST_HEAD(&root->ordered_extents);
672 	INIT_LIST_HEAD(&root->ordered_root);
673 	INIT_LIST_HEAD(&root->reloc_dirty_list);
674 	spin_lock_init(&root->delalloc_lock);
675 	spin_lock_init(&root->ordered_extent_lock);
676 	spin_lock_init(&root->accounting_lock);
677 	spin_lock_init(&root->qgroup_meta_rsv_lock);
678 	mutex_init(&root->objectid_mutex);
679 	mutex_init(&root->log_mutex);
680 	mutex_init(&root->ordered_extent_mutex);
681 	mutex_init(&root->delalloc_mutex);
682 	init_waitqueue_head(&root->qgroup_flush_wait);
683 	init_waitqueue_head(&root->log_writer_wait);
684 	init_waitqueue_head(&root->log_commit_wait[0]);
685 	init_waitqueue_head(&root->log_commit_wait[1]);
686 	INIT_LIST_HEAD(&root->log_ctxs[0]);
687 	INIT_LIST_HEAD(&root->log_ctxs[1]);
688 	atomic_set(&root->log_commit[0], 0);
689 	atomic_set(&root->log_commit[1], 0);
690 	atomic_set(&root->log_writers, 0);
691 	atomic_set(&root->log_batch, 0);
692 	refcount_set(&root->refs, 1);
693 	atomic_set(&root->snapshot_force_cow, 0);
694 	atomic_set(&root->nr_swapfiles, 0);
695 	btrfs_set_root_log_transid(root, 0);
696 	root->log_transid_committed = -1;
697 	btrfs_set_root_last_log_commit(root, 0);
698 	root->anon_dev = 0;
699 	if (!dummy) {
700 		btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages,
701 					  IO_TREE_ROOT_DIRTY_LOG_PAGES);
702 		btrfs_extent_io_tree_init(fs_info, &root->log_csum_range,
703 					  IO_TREE_LOG_CSUM_RANGE);
704 	}
705 
706 	spin_lock_init(&root->root_item_lock);
707 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
708 #ifdef CONFIG_BTRFS_DEBUG
709 	INIT_LIST_HEAD(&root->leak_list);
710 	spin_lock(&fs_info->fs_roots_radix_lock);
711 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
712 	spin_unlock(&fs_info->fs_roots_radix_lock);
713 #endif
714 
715 	return root;
716 }
717 
718 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
719 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)720 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
721 {
722 	struct btrfs_root *root;
723 
724 	if (!fs_info)
725 		return ERR_PTR(-EINVAL);
726 
727 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
728 	if (!root)
729 		return ERR_PTR(-ENOMEM);
730 
731 	/* We don't use the stripesize in selftest, set it as sectorsize */
732 	root->alloc_bytenr = 0;
733 
734 	return root;
735 }
736 #endif
737 
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)738 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
739 {
740 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
741 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
742 
743 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
744 }
745 
global_root_key_cmp(const void * k,const struct rb_node * node)746 static int global_root_key_cmp(const void *k, const struct rb_node *node)
747 {
748 	const struct btrfs_key *key = k;
749 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
750 
751 	return btrfs_comp_cpu_keys(key, &root->root_key);
752 }
753 
btrfs_global_root_insert(struct btrfs_root * root)754 int btrfs_global_root_insert(struct btrfs_root *root)
755 {
756 	struct btrfs_fs_info *fs_info = root->fs_info;
757 	struct rb_node *tmp;
758 	int ret = 0;
759 
760 	write_lock(&fs_info->global_root_lock);
761 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
762 	write_unlock(&fs_info->global_root_lock);
763 
764 	if (tmp) {
765 		ret = -EEXIST;
766 		btrfs_warn(fs_info, "global root %llu %llu already exists",
767 			   btrfs_root_id(root), root->root_key.offset);
768 	}
769 	return ret;
770 }
771 
btrfs_global_root_delete(struct btrfs_root * root)772 void btrfs_global_root_delete(struct btrfs_root *root)
773 {
774 	struct btrfs_fs_info *fs_info = root->fs_info;
775 
776 	write_lock(&fs_info->global_root_lock);
777 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
778 	write_unlock(&fs_info->global_root_lock);
779 }
780 
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)781 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
782 				     struct btrfs_key *key)
783 {
784 	struct rb_node *node;
785 	struct btrfs_root *root = NULL;
786 
787 	read_lock(&fs_info->global_root_lock);
788 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
789 	if (node)
790 		root = container_of(node, struct btrfs_root, rb_node);
791 	read_unlock(&fs_info->global_root_lock);
792 
793 	return root;
794 }
795 
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)796 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
797 {
798 	struct btrfs_block_group *block_group;
799 	u64 ret;
800 
801 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
802 		return 0;
803 
804 	if (bytenr)
805 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
806 	else
807 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
808 	ASSERT(block_group);
809 	if (!block_group)
810 		return 0;
811 	ret = block_group->global_root_id;
812 	btrfs_put_block_group(block_group);
813 
814 	return ret;
815 }
816 
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)817 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
818 {
819 	struct btrfs_key key = {
820 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
821 		.type = BTRFS_ROOT_ITEM_KEY,
822 		.offset = btrfs_global_root_id(fs_info, bytenr),
823 	};
824 
825 	return btrfs_global_root(fs_info, &key);
826 }
827 
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)828 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
829 {
830 	struct btrfs_key key = {
831 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
832 		.type = BTRFS_ROOT_ITEM_KEY,
833 		.offset = btrfs_global_root_id(fs_info, bytenr),
834 	};
835 
836 	return btrfs_global_root(fs_info, &key);
837 }
838 
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)839 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
840 				     u64 objectid)
841 {
842 	struct btrfs_fs_info *fs_info = trans->fs_info;
843 	struct extent_buffer *leaf;
844 	struct btrfs_root *tree_root = fs_info->tree_root;
845 	struct btrfs_root *root;
846 	struct btrfs_key key;
847 	unsigned int nofs_flag;
848 	int ret = 0;
849 
850 	/*
851 	 * We're holding a transaction handle, so use a NOFS memory allocation
852 	 * context to avoid deadlock if reclaim happens.
853 	 */
854 	nofs_flag = memalloc_nofs_save();
855 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
856 	memalloc_nofs_restore(nofs_flag);
857 	if (!root)
858 		return ERR_PTR(-ENOMEM);
859 
860 	root->root_key.objectid = objectid;
861 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
862 	root->root_key.offset = 0;
863 
864 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
865 				      0, BTRFS_NESTING_NORMAL);
866 	if (IS_ERR(leaf)) {
867 		ret = PTR_ERR(leaf);
868 		leaf = NULL;
869 		goto fail;
870 	}
871 
872 	root->node = leaf;
873 	btrfs_mark_buffer_dirty(trans, leaf);
874 
875 	root->commit_root = btrfs_root_node(root);
876 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
877 
878 	btrfs_set_root_flags(&root->root_item, 0);
879 	btrfs_set_root_limit(&root->root_item, 0);
880 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
881 	btrfs_set_root_generation(&root->root_item, trans->transid);
882 	btrfs_set_root_level(&root->root_item, 0);
883 	btrfs_set_root_refs(&root->root_item, 1);
884 	btrfs_set_root_used(&root->root_item, leaf->len);
885 	btrfs_set_root_last_snapshot(&root->root_item, 0);
886 	btrfs_set_root_dirid(&root->root_item, 0);
887 	if (is_fstree(objectid))
888 		generate_random_guid(root->root_item.uuid);
889 	else
890 		export_guid(root->root_item.uuid, &guid_null);
891 	btrfs_set_root_drop_level(&root->root_item, 0);
892 
893 	btrfs_tree_unlock(leaf);
894 
895 	key.objectid = objectid;
896 	key.type = BTRFS_ROOT_ITEM_KEY;
897 	key.offset = 0;
898 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
899 	if (ret)
900 		goto fail;
901 
902 	return root;
903 
904 fail:
905 	btrfs_put_root(root);
906 
907 	return ERR_PTR(ret);
908 }
909 
alloc_log_tree(struct btrfs_fs_info * fs_info)910 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
911 {
912 	struct btrfs_root *root;
913 
914 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
915 	if (!root)
916 		return ERR_PTR(-ENOMEM);
917 
918 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
919 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
920 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
921 
922 	return root;
923 }
924 
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)925 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
926 			      struct btrfs_root *root)
927 {
928 	struct extent_buffer *leaf;
929 
930 	/*
931 	 * DON'T set SHAREABLE bit for log trees.
932 	 *
933 	 * Log trees are not exposed to user space thus can't be snapshotted,
934 	 * and they go away before a real commit is actually done.
935 	 *
936 	 * They do store pointers to file data extents, and those reference
937 	 * counts still get updated (along with back refs to the log tree).
938 	 */
939 
940 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
941 			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
942 	if (IS_ERR(leaf))
943 		return PTR_ERR(leaf);
944 
945 	root->node = leaf;
946 
947 	btrfs_mark_buffer_dirty(trans, root->node);
948 	btrfs_tree_unlock(root->node);
949 
950 	return 0;
951 }
952 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)953 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
954 			     struct btrfs_fs_info *fs_info)
955 {
956 	struct btrfs_root *log_root;
957 
958 	log_root = alloc_log_tree(fs_info);
959 	if (IS_ERR(log_root))
960 		return PTR_ERR(log_root);
961 
962 	if (!btrfs_is_zoned(fs_info)) {
963 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
964 
965 		if (ret) {
966 			btrfs_put_root(log_root);
967 			return ret;
968 		}
969 	}
970 
971 	WARN_ON(fs_info->log_root_tree);
972 	fs_info->log_root_tree = log_root;
973 	return 0;
974 }
975 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)976 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
977 		       struct btrfs_root *root)
978 {
979 	struct btrfs_fs_info *fs_info = root->fs_info;
980 	struct btrfs_root *log_root;
981 	struct btrfs_inode_item *inode_item;
982 	int ret;
983 
984 	log_root = alloc_log_tree(fs_info);
985 	if (IS_ERR(log_root))
986 		return PTR_ERR(log_root);
987 
988 	ret = btrfs_alloc_log_tree_node(trans, log_root);
989 	if (ret) {
990 		btrfs_put_root(log_root);
991 		return ret;
992 	}
993 
994 	btrfs_set_root_last_trans(log_root, trans->transid);
995 	log_root->root_key.offset = btrfs_root_id(root);
996 
997 	inode_item = &log_root->root_item.inode;
998 	btrfs_set_stack_inode_generation(inode_item, 1);
999 	btrfs_set_stack_inode_size(inode_item, 3);
1000 	btrfs_set_stack_inode_nlink(inode_item, 1);
1001 	btrfs_set_stack_inode_nbytes(inode_item,
1002 				     fs_info->nodesize);
1003 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1004 
1005 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1006 
1007 	WARN_ON(root->log_root);
1008 	root->log_root = log_root;
1009 	btrfs_set_root_log_transid(root, 0);
1010 	root->log_transid_committed = -1;
1011 	btrfs_set_root_last_log_commit(root, 0);
1012 	return 0;
1013 }
1014 
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,const struct btrfs_key * key)1015 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1016 					      struct btrfs_path *path,
1017 					      const struct btrfs_key *key)
1018 {
1019 	struct btrfs_root *root;
1020 	struct btrfs_tree_parent_check check = { 0 };
1021 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1022 	u64 generation;
1023 	int ret;
1024 	int level;
1025 
1026 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1027 	if (!root)
1028 		return ERR_PTR(-ENOMEM);
1029 
1030 	ret = btrfs_find_root(tree_root, key, path,
1031 			      &root->root_item, &root->root_key);
1032 	if (ret) {
1033 		if (ret > 0)
1034 			ret = -ENOENT;
1035 		goto fail;
1036 	}
1037 
1038 	generation = btrfs_root_generation(&root->root_item);
1039 	level = btrfs_root_level(&root->root_item);
1040 	check.level = level;
1041 	check.transid = generation;
1042 	check.owner_root = key->objectid;
1043 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1044 				     &check);
1045 	if (IS_ERR(root->node)) {
1046 		ret = PTR_ERR(root->node);
1047 		root->node = NULL;
1048 		goto fail;
1049 	}
1050 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1051 		ret = -EIO;
1052 		goto fail;
1053 	}
1054 
1055 	/*
1056 	 * For real fs, and not log/reloc trees, root owner must
1057 	 * match its root node owner
1058 	 */
1059 	if (!btrfs_is_testing(fs_info) &&
1060 	    btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1061 	    btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1062 	    btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1063 		btrfs_crit(fs_info,
1064 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1065 			   btrfs_root_id(root), root->node->start,
1066 			   btrfs_header_owner(root->node),
1067 			   btrfs_root_id(root));
1068 		ret = -EUCLEAN;
1069 		goto fail;
1070 	}
1071 	root->commit_root = btrfs_root_node(root);
1072 	return root;
1073 fail:
1074 	btrfs_put_root(root);
1075 	return ERR_PTR(ret);
1076 }
1077 
btrfs_read_tree_root(struct btrfs_root * tree_root,const struct btrfs_key * key)1078 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1079 					const struct btrfs_key *key)
1080 {
1081 	struct btrfs_root *root;
1082 	BTRFS_PATH_AUTO_FREE(path);
1083 
1084 	path = btrfs_alloc_path();
1085 	if (!path)
1086 		return ERR_PTR(-ENOMEM);
1087 	root = read_tree_root_path(tree_root, path, key);
1088 
1089 	return root;
1090 }
1091 
1092 /*
1093  * Initialize subvolume root in-memory structure.
1094  *
1095  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1096  *
1097  * In case of failure the caller is responsible to call btrfs_free_fs_root()
1098  */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1099 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1100 {
1101 	int ret;
1102 
1103 	btrfs_drew_lock_init(&root->snapshot_lock);
1104 
1105 	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1106 	    !btrfs_is_data_reloc_root(root) &&
1107 	    is_fstree(btrfs_root_id(root))) {
1108 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1109 		btrfs_check_and_init_root_item(&root->root_item);
1110 	}
1111 
1112 	/*
1113 	 * Don't assign anonymous block device to roots that are not exposed to
1114 	 * userspace, the id pool is limited to 1M
1115 	 */
1116 	if (is_fstree(btrfs_root_id(root)) &&
1117 	    btrfs_root_refs(&root->root_item) > 0) {
1118 		if (!anon_dev) {
1119 			ret = get_anon_bdev(&root->anon_dev);
1120 			if (ret)
1121 				return ret;
1122 		} else {
1123 			root->anon_dev = anon_dev;
1124 		}
1125 	}
1126 
1127 	mutex_lock(&root->objectid_mutex);
1128 	ret = btrfs_init_root_free_objectid(root);
1129 	if (ret) {
1130 		mutex_unlock(&root->objectid_mutex);
1131 		return ret;
1132 	}
1133 
1134 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1135 
1136 	mutex_unlock(&root->objectid_mutex);
1137 
1138 	return 0;
1139 }
1140 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1142 					       u64 root_id)
1143 {
1144 	struct btrfs_root *root;
1145 
1146 	spin_lock(&fs_info->fs_roots_radix_lock);
1147 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1148 				 (unsigned long)root_id);
1149 	root = btrfs_grab_root(root);
1150 	spin_unlock(&fs_info->fs_roots_radix_lock);
1151 	return root;
1152 }
1153 
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1155 						u64 objectid)
1156 {
1157 	struct btrfs_key key = {
1158 		.objectid = objectid,
1159 		.type = BTRFS_ROOT_ITEM_KEY,
1160 		.offset = 0,
1161 	};
1162 
1163 	switch (objectid) {
1164 	case BTRFS_ROOT_TREE_OBJECTID:
1165 		return btrfs_grab_root(fs_info->tree_root);
1166 	case BTRFS_EXTENT_TREE_OBJECTID:
1167 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1168 	case BTRFS_CHUNK_TREE_OBJECTID:
1169 		return btrfs_grab_root(fs_info->chunk_root);
1170 	case BTRFS_DEV_TREE_OBJECTID:
1171 		return btrfs_grab_root(fs_info->dev_root);
1172 	case BTRFS_CSUM_TREE_OBJECTID:
1173 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1174 	case BTRFS_QUOTA_TREE_OBJECTID:
1175 		return btrfs_grab_root(fs_info->quota_root);
1176 	case BTRFS_UUID_TREE_OBJECTID:
1177 		return btrfs_grab_root(fs_info->uuid_root);
1178 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1179 		return btrfs_grab_root(fs_info->block_group_root);
1180 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1181 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1182 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1183 		return btrfs_grab_root(fs_info->stripe_root);
1184 	default:
1185 		return NULL;
1186 	}
1187 }
1188 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1189 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1190 			 struct btrfs_root *root)
1191 {
1192 	int ret;
1193 
1194 	ret = radix_tree_preload(GFP_NOFS);
1195 	if (ret)
1196 		return ret;
1197 
1198 	spin_lock(&fs_info->fs_roots_radix_lock);
1199 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1200 				(unsigned long)btrfs_root_id(root),
1201 				root);
1202 	if (ret == 0) {
1203 		btrfs_grab_root(root);
1204 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1205 	}
1206 	spin_unlock(&fs_info->fs_roots_radix_lock);
1207 	radix_tree_preload_end();
1208 
1209 	return ret;
1210 }
1211 
btrfs_check_leaked_roots(const struct btrfs_fs_info * fs_info)1212 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1213 {
1214 #ifdef CONFIG_BTRFS_DEBUG
1215 	struct btrfs_root *root;
1216 
1217 	while (!list_empty(&fs_info->allocated_roots)) {
1218 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1219 
1220 		root = list_first_entry(&fs_info->allocated_roots,
1221 					struct btrfs_root, leak_list);
1222 		btrfs_err(fs_info, "leaked root %s refcount %d",
1223 			  btrfs_root_name(&root->root_key, buf),
1224 			  refcount_read(&root->refs));
1225 		WARN_ON_ONCE(1);
1226 		while (refcount_read(&root->refs) > 1)
1227 			btrfs_put_root(root);
1228 		btrfs_put_root(root);
1229 	}
1230 #endif
1231 }
1232 
free_global_roots(struct btrfs_fs_info * fs_info)1233 static void free_global_roots(struct btrfs_fs_info *fs_info)
1234 {
1235 	struct btrfs_root *root;
1236 	struct rb_node *node;
1237 
1238 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1239 		root = rb_entry(node, struct btrfs_root, rb_node);
1240 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1241 		btrfs_put_root(root);
1242 	}
1243 }
1244 
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1245 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1246 {
1247 	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1248 
1249 	percpu_counter_destroy(&fs_info->stats_read_blocks);
1250 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1251 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1252 	percpu_counter_destroy(&fs_info->ordered_bytes);
1253 	if (percpu_counter_initialized(em_counter))
1254 		ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1255 	percpu_counter_destroy(em_counter);
1256 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1257 	btrfs_free_csum_hash(fs_info);
1258 	btrfs_free_stripe_hash_table(fs_info);
1259 	btrfs_free_ref_cache(fs_info);
1260 	kfree(fs_info->balance_ctl);
1261 	kfree(fs_info->delayed_root);
1262 	free_global_roots(fs_info);
1263 	btrfs_put_root(fs_info->tree_root);
1264 	btrfs_put_root(fs_info->chunk_root);
1265 	btrfs_put_root(fs_info->dev_root);
1266 	btrfs_put_root(fs_info->quota_root);
1267 	btrfs_put_root(fs_info->uuid_root);
1268 	btrfs_put_root(fs_info->fs_root);
1269 	btrfs_put_root(fs_info->data_reloc_root);
1270 	btrfs_put_root(fs_info->block_group_root);
1271 	btrfs_put_root(fs_info->stripe_root);
1272 	btrfs_check_leaked_roots(fs_info);
1273 	btrfs_extent_buffer_leak_debug_check(fs_info);
1274 	kfree(fs_info->super_copy);
1275 	kfree(fs_info->super_for_commit);
1276 	kvfree(fs_info);
1277 }
1278 
1279 
1280 /*
1281  * Get an in-memory reference of a root structure.
1282  *
1283  * For essential trees like root/extent tree, we grab it from fs_info directly.
1284  * For subvolume trees, we check the cached filesystem roots first. If not
1285  * found, then read it from disk and add it to cached fs roots.
1286  *
1287  * Caller should release the root by calling btrfs_put_root() after the usage.
1288  *
1289  * NOTE: Reloc and log trees can't be read by this function as they share the
1290  *	 same root objectid.
1291  *
1292  * @objectid:	root id
1293  * @anon_dev:	preallocated anonymous block device number for new roots,
1294  *		pass NULL for a new allocation.
1295  * @check_ref:	whether to check root item references, If true, return -ENOENT
1296  *		for orphan roots
1297  */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev,bool check_ref)1298 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1299 					     u64 objectid, dev_t *anon_dev,
1300 					     bool check_ref)
1301 {
1302 	struct btrfs_root *root;
1303 	struct btrfs_path *path;
1304 	struct btrfs_key key;
1305 	int ret;
1306 
1307 	root = btrfs_get_global_root(fs_info, objectid);
1308 	if (root)
1309 		return root;
1310 
1311 	/*
1312 	 * If we're called for non-subvolume trees, and above function didn't
1313 	 * find one, do not try to read it from disk.
1314 	 *
1315 	 * This is namely for free-space-tree and quota tree, which can change
1316 	 * at runtime and should only be grabbed from fs_info.
1317 	 */
1318 	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1319 		return ERR_PTR(-ENOENT);
1320 again:
1321 	root = btrfs_lookup_fs_root(fs_info, objectid);
1322 	if (root) {
1323 		/*
1324 		 * Some other caller may have read out the newly inserted
1325 		 * subvolume already (for things like backref walk etc).  Not
1326 		 * that common but still possible.  In that case, we just need
1327 		 * to free the anon_dev.
1328 		 */
1329 		if (unlikely(anon_dev && *anon_dev)) {
1330 			free_anon_bdev(*anon_dev);
1331 			*anon_dev = 0;
1332 		}
1333 
1334 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1335 			btrfs_put_root(root);
1336 			return ERR_PTR(-ENOENT);
1337 		}
1338 		return root;
1339 	}
1340 
1341 	key.objectid = objectid;
1342 	key.type = BTRFS_ROOT_ITEM_KEY;
1343 	key.offset = (u64)-1;
1344 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1345 	if (IS_ERR(root))
1346 		return root;
1347 
1348 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1349 		ret = -ENOENT;
1350 		goto fail;
1351 	}
1352 
1353 	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1354 	if (ret)
1355 		goto fail;
1356 
1357 	path = btrfs_alloc_path();
1358 	if (!path) {
1359 		ret = -ENOMEM;
1360 		goto fail;
1361 	}
1362 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1363 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1364 	key.offset = objectid;
1365 
1366 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1367 	btrfs_free_path(path);
1368 	if (ret < 0)
1369 		goto fail;
1370 	if (ret == 0)
1371 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1372 
1373 	ret = btrfs_insert_fs_root(fs_info, root);
1374 	if (ret) {
1375 		if (ret == -EEXIST) {
1376 			btrfs_put_root(root);
1377 			goto again;
1378 		}
1379 		goto fail;
1380 	}
1381 	return root;
1382 fail:
1383 	/*
1384 	 * If our caller provided us an anonymous device, then it's his
1385 	 * responsibility to free it in case we fail. So we have to set our
1386 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1387 	 * and once again by our caller.
1388 	 */
1389 	if (anon_dev && *anon_dev)
1390 		root->anon_dev = 0;
1391 	btrfs_put_root(root);
1392 	return ERR_PTR(ret);
1393 }
1394 
1395 /*
1396  * Get in-memory reference of a root structure
1397  *
1398  * @objectid:	tree objectid
1399  * @check_ref:	if set, verify that the tree exists and the item has at least
1400  *		one reference
1401  */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1402 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1403 				     u64 objectid, bool check_ref)
1404 {
1405 	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1406 }
1407 
1408 /*
1409  * Get in-memory reference of a root structure, created as new, optionally pass
1410  * the anonymous block device id
1411  *
1412  * @objectid:	tree objectid
1413  * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1414  *		parameter value if not NULL
1415  */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev)1416 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1417 					 u64 objectid, dev_t *anon_dev)
1418 {
1419 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1420 }
1421 
1422 /*
1423  * Return a root for the given objectid.
1424  *
1425  * @fs_info:	the fs_info
1426  * @objectid:	the objectid we need to lookup
1427  *
1428  * This is exclusively used for backref walking, and exists specifically because
1429  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1430  * creation time, which means we may have to read the tree_root in order to look
1431  * up a fs root that is not in memory.  If the root is not in memory we will
1432  * read the tree root commit root and look up the fs root from there.  This is a
1433  * temporary root, it will not be inserted into the radix tree as it doesn't
1434  * have the most uptodate information, it'll simply be discarded once the
1435  * backref code is finished using the root.
1436  */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1437 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1438 						 struct btrfs_path *path,
1439 						 u64 objectid)
1440 {
1441 	struct btrfs_root *root;
1442 	struct btrfs_key key;
1443 
1444 	ASSERT(path->search_commit_root && path->skip_locking);
1445 
1446 	/*
1447 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1448 	 * since this is called via the backref walking code we won't be looking
1449 	 * up a root that doesn't exist, unless there's corruption.  So if root
1450 	 * != NULL just return it.
1451 	 */
1452 	root = btrfs_get_global_root(fs_info, objectid);
1453 	if (root)
1454 		return root;
1455 
1456 	root = btrfs_lookup_fs_root(fs_info, objectid);
1457 	if (root)
1458 		return root;
1459 
1460 	key.objectid = objectid;
1461 	key.type = BTRFS_ROOT_ITEM_KEY;
1462 	key.offset = (u64)-1;
1463 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1464 	btrfs_release_path(path);
1465 
1466 	return root;
1467 }
1468 
cleaner_kthread(void * arg)1469 static int cleaner_kthread(void *arg)
1470 {
1471 	struct btrfs_fs_info *fs_info = arg;
1472 	int again;
1473 
1474 	while (1) {
1475 		again = 0;
1476 
1477 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1478 
1479 		/* Make the cleaner go to sleep early. */
1480 		if (btrfs_need_cleaner_sleep(fs_info))
1481 			goto sleep;
1482 
1483 		/*
1484 		 * Do not do anything if we might cause open_ctree() to block
1485 		 * before we have finished mounting the filesystem.
1486 		 */
1487 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1488 			goto sleep;
1489 
1490 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1491 			goto sleep;
1492 
1493 		/*
1494 		 * Avoid the problem that we change the status of the fs
1495 		 * during the above check and trylock.
1496 		 */
1497 		if (btrfs_need_cleaner_sleep(fs_info)) {
1498 			mutex_unlock(&fs_info->cleaner_mutex);
1499 			goto sleep;
1500 		}
1501 
1502 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1503 			btrfs_sysfs_feature_update(fs_info);
1504 
1505 		btrfs_run_delayed_iputs(fs_info);
1506 
1507 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1508 		mutex_unlock(&fs_info->cleaner_mutex);
1509 
1510 		/*
1511 		 * The defragger has dealt with the R/O remount and umount,
1512 		 * needn't do anything special here.
1513 		 */
1514 		btrfs_run_defrag_inodes(fs_info);
1515 
1516 		/*
1517 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1518 		 * with relocation (btrfs_relocate_chunk) and relocation
1519 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1520 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1521 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1522 		 * unused block groups.
1523 		 */
1524 		btrfs_delete_unused_bgs(fs_info);
1525 
1526 		/*
1527 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1528 		 * all unused block_groups. This possibly gives us some more free
1529 		 * space.
1530 		 */
1531 		btrfs_reclaim_bgs(fs_info);
1532 sleep:
1533 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1534 		if (kthread_should_park())
1535 			kthread_parkme();
1536 		if (kthread_should_stop())
1537 			return 0;
1538 		if (!again) {
1539 			set_current_state(TASK_INTERRUPTIBLE);
1540 			schedule();
1541 			__set_current_state(TASK_RUNNING);
1542 		}
1543 	}
1544 }
1545 
transaction_kthread(void * arg)1546 static int transaction_kthread(void *arg)
1547 {
1548 	struct btrfs_root *root = arg;
1549 	struct btrfs_fs_info *fs_info = root->fs_info;
1550 	struct btrfs_trans_handle *trans;
1551 	struct btrfs_transaction *cur;
1552 	u64 transid;
1553 	time64_t delta;
1554 	unsigned long delay;
1555 	bool cannot_commit;
1556 
1557 	do {
1558 		cannot_commit = false;
1559 		delay = secs_to_jiffies(fs_info->commit_interval);
1560 		mutex_lock(&fs_info->transaction_kthread_mutex);
1561 
1562 		spin_lock(&fs_info->trans_lock);
1563 		cur = fs_info->running_transaction;
1564 		if (!cur) {
1565 			spin_unlock(&fs_info->trans_lock);
1566 			goto sleep;
1567 		}
1568 
1569 		delta = ktime_get_seconds() - cur->start_time;
1570 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1571 		    cur->state < TRANS_STATE_COMMIT_PREP &&
1572 		    delta < fs_info->commit_interval) {
1573 			spin_unlock(&fs_info->trans_lock);
1574 			delay -= secs_to_jiffies(delta - 1);
1575 			delay = min(delay,
1576 				    secs_to_jiffies(fs_info->commit_interval));
1577 			goto sleep;
1578 		}
1579 		transid = cur->transid;
1580 		spin_unlock(&fs_info->trans_lock);
1581 
1582 		/* If the file system is aborted, this will always fail. */
1583 		trans = btrfs_attach_transaction(root);
1584 		if (IS_ERR(trans)) {
1585 			if (PTR_ERR(trans) != -ENOENT)
1586 				cannot_commit = true;
1587 			goto sleep;
1588 		}
1589 		if (transid == trans->transid) {
1590 			btrfs_commit_transaction(trans);
1591 		} else {
1592 			btrfs_end_transaction(trans);
1593 		}
1594 sleep:
1595 		wake_up_process(fs_info->cleaner_kthread);
1596 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1597 
1598 		if (BTRFS_FS_ERROR(fs_info))
1599 			btrfs_cleanup_transaction(fs_info);
1600 		if (!kthread_should_stop() &&
1601 				(!btrfs_transaction_blocked(fs_info) ||
1602 				 cannot_commit))
1603 			schedule_timeout_interruptible(delay);
1604 	} while (!kthread_should_stop());
1605 	return 0;
1606 }
1607 
1608 /*
1609  * This will find the highest generation in the array of root backups.  The
1610  * index of the highest array is returned, or -EINVAL if we can't find
1611  * anything.
1612  *
1613  * We check to make sure the array is valid by comparing the
1614  * generation of the latest  root in the array with the generation
1615  * in the super block.  If they don't match we pitch it.
1616  */
find_newest_super_backup(struct btrfs_fs_info * info)1617 static int find_newest_super_backup(struct btrfs_fs_info *info)
1618 {
1619 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1620 	u64 cur;
1621 	struct btrfs_root_backup *root_backup;
1622 	int i;
1623 
1624 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1625 		root_backup = info->super_copy->super_roots + i;
1626 		cur = btrfs_backup_tree_root_gen(root_backup);
1627 		if (cur == newest_gen)
1628 			return i;
1629 	}
1630 
1631 	return -EINVAL;
1632 }
1633 
1634 /*
1635  * copy all the root pointers into the super backup array.
1636  * this will bump the backup pointer by one when it is
1637  * done
1638  */
backup_super_roots(struct btrfs_fs_info * info)1639 static void backup_super_roots(struct btrfs_fs_info *info)
1640 {
1641 	const int next_backup = info->backup_root_index;
1642 	struct btrfs_root_backup *root_backup;
1643 
1644 	root_backup = info->super_for_commit->super_roots + next_backup;
1645 
1646 	/*
1647 	 * make sure all of our padding and empty slots get zero filled
1648 	 * regardless of which ones we use today
1649 	 */
1650 	memset(root_backup, 0, sizeof(*root_backup));
1651 
1652 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1653 
1654 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1655 	btrfs_set_backup_tree_root_gen(root_backup,
1656 			       btrfs_header_generation(info->tree_root->node));
1657 
1658 	btrfs_set_backup_tree_root_level(root_backup,
1659 			       btrfs_header_level(info->tree_root->node));
1660 
1661 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1662 	btrfs_set_backup_chunk_root_gen(root_backup,
1663 			       btrfs_header_generation(info->chunk_root->node));
1664 	btrfs_set_backup_chunk_root_level(root_backup,
1665 			       btrfs_header_level(info->chunk_root->node));
1666 
1667 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1668 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1669 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1670 
1671 		btrfs_set_backup_extent_root(root_backup,
1672 					     extent_root->node->start);
1673 		btrfs_set_backup_extent_root_gen(root_backup,
1674 				btrfs_header_generation(extent_root->node));
1675 		btrfs_set_backup_extent_root_level(root_backup,
1676 					btrfs_header_level(extent_root->node));
1677 
1678 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1679 		btrfs_set_backup_csum_root_gen(root_backup,
1680 					       btrfs_header_generation(csum_root->node));
1681 		btrfs_set_backup_csum_root_level(root_backup,
1682 						 btrfs_header_level(csum_root->node));
1683 	}
1684 
1685 	/*
1686 	 * we might commit during log recovery, which happens before we set
1687 	 * the fs_root.  Make sure it is valid before we fill it in.
1688 	 */
1689 	if (info->fs_root && info->fs_root->node) {
1690 		btrfs_set_backup_fs_root(root_backup,
1691 					 info->fs_root->node->start);
1692 		btrfs_set_backup_fs_root_gen(root_backup,
1693 			       btrfs_header_generation(info->fs_root->node));
1694 		btrfs_set_backup_fs_root_level(root_backup,
1695 			       btrfs_header_level(info->fs_root->node));
1696 	}
1697 
1698 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1699 	btrfs_set_backup_dev_root_gen(root_backup,
1700 			       btrfs_header_generation(info->dev_root->node));
1701 	btrfs_set_backup_dev_root_level(root_backup,
1702 				       btrfs_header_level(info->dev_root->node));
1703 
1704 	btrfs_set_backup_total_bytes(root_backup,
1705 			     btrfs_super_total_bytes(info->super_copy));
1706 	btrfs_set_backup_bytes_used(root_backup,
1707 			     btrfs_super_bytes_used(info->super_copy));
1708 	btrfs_set_backup_num_devices(root_backup,
1709 			     btrfs_super_num_devices(info->super_copy));
1710 
1711 	/*
1712 	 * if we don't copy this out to the super_copy, it won't get remembered
1713 	 * for the next commit
1714 	 */
1715 	memcpy(&info->super_copy->super_roots,
1716 	       &info->super_for_commit->super_roots,
1717 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1718 }
1719 
1720 /*
1721  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1722  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1723  *
1724  * @fs_info:  filesystem whose backup roots need to be read
1725  * @priority: priority of backup root required
1726  *
1727  * Returns backup root index on success and -EINVAL otherwise.
1728  */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1729 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1730 {
1731 	int backup_index = find_newest_super_backup(fs_info);
1732 	struct btrfs_super_block *super = fs_info->super_copy;
1733 	struct btrfs_root_backup *root_backup;
1734 
1735 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1736 		if (priority == 0)
1737 			return backup_index;
1738 
1739 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1740 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1741 	} else {
1742 		return -EINVAL;
1743 	}
1744 
1745 	root_backup = super->super_roots + backup_index;
1746 
1747 	btrfs_set_super_generation(super,
1748 				   btrfs_backup_tree_root_gen(root_backup));
1749 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1750 	btrfs_set_super_root_level(super,
1751 				   btrfs_backup_tree_root_level(root_backup));
1752 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1753 
1754 	/*
1755 	 * Fixme: the total bytes and num_devices need to match or we should
1756 	 * need a fsck
1757 	 */
1758 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1759 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1760 
1761 	return backup_index;
1762 }
1763 
1764 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1765 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1766 {
1767 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1768 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1769 	btrfs_destroy_workqueue(fs_info->workers);
1770 	if (fs_info->endio_workers)
1771 		destroy_workqueue(fs_info->endio_workers);
1772 	if (fs_info->rmw_workers)
1773 		destroy_workqueue(fs_info->rmw_workers);
1774 	if (fs_info->compressed_write_workers)
1775 		destroy_workqueue(fs_info->compressed_write_workers);
1776 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1777 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1778 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1779 	btrfs_destroy_workqueue(fs_info->caching_workers);
1780 	btrfs_destroy_workqueue(fs_info->flush_workers);
1781 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1782 	if (fs_info->discard_ctl.discard_workers)
1783 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1784 	/*
1785 	 * Now that all other work queues are destroyed, we can safely destroy
1786 	 * the queues used for metadata I/O, since tasks from those other work
1787 	 * queues can do metadata I/O operations.
1788 	 */
1789 	if (fs_info->endio_meta_workers)
1790 		destroy_workqueue(fs_info->endio_meta_workers);
1791 }
1792 
free_root_extent_buffers(struct btrfs_root * root)1793 static void free_root_extent_buffers(struct btrfs_root *root)
1794 {
1795 	if (root) {
1796 		free_extent_buffer(root->node);
1797 		free_extent_buffer(root->commit_root);
1798 		root->node = NULL;
1799 		root->commit_root = NULL;
1800 	}
1801 }
1802 
free_global_root_pointers(struct btrfs_fs_info * fs_info)1803 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1804 {
1805 	struct btrfs_root *root, *tmp;
1806 
1807 	rbtree_postorder_for_each_entry_safe(root, tmp,
1808 					     &fs_info->global_root_tree,
1809 					     rb_node)
1810 		free_root_extent_buffers(root);
1811 }
1812 
1813 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1814 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1815 {
1816 	free_root_extent_buffers(info->tree_root);
1817 
1818 	free_global_root_pointers(info);
1819 	free_root_extent_buffers(info->dev_root);
1820 	free_root_extent_buffers(info->quota_root);
1821 	free_root_extent_buffers(info->uuid_root);
1822 	free_root_extent_buffers(info->fs_root);
1823 	free_root_extent_buffers(info->data_reloc_root);
1824 	free_root_extent_buffers(info->block_group_root);
1825 	free_root_extent_buffers(info->stripe_root);
1826 	if (free_chunk_root)
1827 		free_root_extent_buffers(info->chunk_root);
1828 }
1829 
btrfs_put_root(struct btrfs_root * root)1830 void btrfs_put_root(struct btrfs_root *root)
1831 {
1832 	if (!root)
1833 		return;
1834 
1835 	if (refcount_dec_and_test(&root->refs)) {
1836 		if (WARN_ON(!xa_empty(&root->inodes)))
1837 			xa_destroy(&root->inodes);
1838 		if (WARN_ON(!xa_empty(&root->delayed_nodes)))
1839 			xa_destroy(&root->delayed_nodes);
1840 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1841 		if (root->anon_dev)
1842 			free_anon_bdev(root->anon_dev);
1843 		free_root_extent_buffers(root);
1844 #ifdef CONFIG_BTRFS_DEBUG
1845 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1846 		list_del_init(&root->leak_list);
1847 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1848 #endif
1849 		kfree(root);
1850 	}
1851 }
1852 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1853 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1854 {
1855 	int ret;
1856 	struct btrfs_root *gang[8];
1857 	int i;
1858 
1859 	while (!list_empty(&fs_info->dead_roots)) {
1860 		gang[0] = list_first_entry(&fs_info->dead_roots,
1861 					   struct btrfs_root, root_list);
1862 		list_del(&gang[0]->root_list);
1863 
1864 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1865 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1866 		btrfs_put_root(gang[0]);
1867 	}
1868 
1869 	while (1) {
1870 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1871 					     (void **)gang, 0,
1872 					     ARRAY_SIZE(gang));
1873 		if (!ret)
1874 			break;
1875 		for (i = 0; i < ret; i++)
1876 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1877 	}
1878 }
1879 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1880 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1881 {
1882 	mutex_init(&fs_info->scrub_lock);
1883 	atomic_set(&fs_info->scrubs_running, 0);
1884 	atomic_set(&fs_info->scrub_pause_req, 0);
1885 	atomic_set(&fs_info->scrubs_paused, 0);
1886 	atomic_set(&fs_info->scrub_cancel_req, 0);
1887 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1888 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1889 }
1890 
btrfs_init_balance(struct btrfs_fs_info * fs_info)1891 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1892 {
1893 	spin_lock_init(&fs_info->balance_lock);
1894 	mutex_init(&fs_info->balance_mutex);
1895 	atomic_set(&fs_info->balance_pause_req, 0);
1896 	atomic_set(&fs_info->balance_cancel_req, 0);
1897 	fs_info->balance_ctl = NULL;
1898 	init_waitqueue_head(&fs_info->balance_wait_q);
1899 	atomic_set(&fs_info->reloc_cancel_req, 0);
1900 }
1901 
btrfs_init_btree_inode(struct super_block * sb)1902 static int btrfs_init_btree_inode(struct super_block *sb)
1903 {
1904 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1905 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1906 					      fs_info->tree_root);
1907 	struct inode *inode;
1908 
1909 	inode = new_inode(sb);
1910 	if (!inode)
1911 		return -ENOMEM;
1912 
1913 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1914 	set_nlink(inode, 1);
1915 	/*
1916 	 * we set the i_size on the btree inode to the max possible int.
1917 	 * the real end of the address space is determined by all of
1918 	 * the devices in the system
1919 	 */
1920 	inode->i_size = OFFSET_MAX;
1921 	inode->i_mapping->a_ops = &btree_aops;
1922 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1923 
1924 	btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1925 				  IO_TREE_BTREE_INODE_IO);
1926 	btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1927 
1928 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1929 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1930 	__insert_inode_hash(inode, hash);
1931 	fs_info->btree_inode = inode;
1932 
1933 	return 0;
1934 }
1935 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1936 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1937 {
1938 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1939 	init_rwsem(&fs_info->dev_replace.rwsem);
1940 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1941 }
1942 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1943 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1944 {
1945 	spin_lock_init(&fs_info->qgroup_lock);
1946 	mutex_init(&fs_info->qgroup_ioctl_lock);
1947 	fs_info->qgroup_tree = RB_ROOT;
1948 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1949 	fs_info->qgroup_seq = 1;
1950 	fs_info->qgroup_ulist = NULL;
1951 	fs_info->qgroup_rescan_running = false;
1952 	fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1953 	mutex_init(&fs_info->qgroup_rescan_lock);
1954 }
1955 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1956 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1957 {
1958 	u32 max_active = fs_info->thread_pool_size;
1959 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1960 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1961 
1962 	fs_info->workers =
1963 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1964 
1965 	fs_info->delalloc_workers =
1966 		btrfs_alloc_workqueue(fs_info, "delalloc",
1967 				      flags, max_active, 2);
1968 
1969 	fs_info->flush_workers =
1970 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1971 				      flags, max_active, 0);
1972 
1973 	fs_info->caching_workers =
1974 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1975 
1976 	fs_info->fixup_workers =
1977 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1978 
1979 	fs_info->endio_workers =
1980 		alloc_workqueue("btrfs-endio", flags, max_active);
1981 	fs_info->endio_meta_workers =
1982 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1983 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1984 	fs_info->endio_write_workers =
1985 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1986 				      max_active, 2);
1987 	fs_info->compressed_write_workers =
1988 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
1989 	fs_info->endio_freespace_worker =
1990 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1991 				      max_active, 0);
1992 	fs_info->delayed_workers =
1993 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1994 				      max_active, 0);
1995 	fs_info->qgroup_rescan_workers =
1996 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1997 					      ordered_flags);
1998 	fs_info->discard_ctl.discard_workers =
1999 		alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE);
2000 
2001 	if (!(fs_info->workers &&
2002 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2003 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2004 	      fs_info->compressed_write_workers &&
2005 	      fs_info->endio_write_workers &&
2006 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2007 	      fs_info->caching_workers && fs_info->fixup_workers &&
2008 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2009 	      fs_info->discard_ctl.discard_workers)) {
2010 		return -ENOMEM;
2011 	}
2012 
2013 	return 0;
2014 }
2015 
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2016 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2017 {
2018 	struct crypto_shash *csum_shash;
2019 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2020 
2021 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2022 
2023 	if (IS_ERR(csum_shash)) {
2024 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2025 			  csum_driver);
2026 		return PTR_ERR(csum_shash);
2027 	}
2028 
2029 	fs_info->csum_shash = csum_shash;
2030 
2031 	/*
2032 	 * Check if the checksum implementation is a fast accelerated one.
2033 	 * As-is this is a bit of a hack and should be replaced once the csum
2034 	 * implementations provide that information themselves.
2035 	 */
2036 	switch (csum_type) {
2037 	case BTRFS_CSUM_TYPE_CRC32:
2038 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2039 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2040 		break;
2041 	case BTRFS_CSUM_TYPE_XXHASH:
2042 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2043 		break;
2044 	default:
2045 		break;
2046 	}
2047 
2048 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2049 			btrfs_super_csum_name(csum_type),
2050 			crypto_shash_driver_name(csum_shash));
2051 	return 0;
2052 }
2053 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2054 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2055 			    struct btrfs_fs_devices *fs_devices)
2056 {
2057 	int ret;
2058 	struct btrfs_tree_parent_check check = { 0 };
2059 	struct btrfs_root *log_tree_root;
2060 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2061 	u64 bytenr = btrfs_super_log_root(disk_super);
2062 	int level = btrfs_super_log_root_level(disk_super);
2063 
2064 	if (fs_devices->rw_devices == 0) {
2065 		btrfs_warn(fs_info, "log replay required on RO media");
2066 		return -EIO;
2067 	}
2068 
2069 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2070 					 GFP_KERNEL);
2071 	if (!log_tree_root)
2072 		return -ENOMEM;
2073 
2074 	check.level = level;
2075 	check.transid = fs_info->generation + 1;
2076 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2077 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2078 	if (IS_ERR(log_tree_root->node)) {
2079 		btrfs_warn(fs_info, "failed to read log tree");
2080 		ret = PTR_ERR(log_tree_root->node);
2081 		log_tree_root->node = NULL;
2082 		btrfs_put_root(log_tree_root);
2083 		return ret;
2084 	}
2085 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2086 		btrfs_err(fs_info, "failed to read log tree");
2087 		btrfs_put_root(log_tree_root);
2088 		return -EIO;
2089 	}
2090 
2091 	/* returns with log_tree_root freed on success */
2092 	ret = btrfs_recover_log_trees(log_tree_root);
2093 	if (ret) {
2094 		btrfs_handle_fs_error(fs_info, ret,
2095 				      "Failed to recover log tree");
2096 		btrfs_put_root(log_tree_root);
2097 		return ret;
2098 	}
2099 
2100 	if (sb_rdonly(fs_info->sb)) {
2101 		ret = btrfs_commit_super(fs_info);
2102 		if (ret)
2103 			return ret;
2104 	}
2105 
2106 	return 0;
2107 }
2108 
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2109 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2110 				      struct btrfs_path *path, u64 objectid,
2111 				      const char *name)
2112 {
2113 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2114 	struct btrfs_root *root;
2115 	u64 max_global_id = 0;
2116 	int ret;
2117 	struct btrfs_key key = {
2118 		.objectid = objectid,
2119 		.type = BTRFS_ROOT_ITEM_KEY,
2120 		.offset = 0,
2121 	};
2122 	bool found = false;
2123 
2124 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2125 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2126 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2127 		set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2128 		return 0;
2129 	}
2130 
2131 	while (1) {
2132 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2133 		if (ret < 0)
2134 			break;
2135 
2136 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2137 			ret = btrfs_next_leaf(tree_root, path);
2138 			if (ret) {
2139 				if (ret > 0)
2140 					ret = 0;
2141 				break;
2142 			}
2143 		}
2144 		ret = 0;
2145 
2146 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2147 		if (key.objectid != objectid)
2148 			break;
2149 		btrfs_release_path(path);
2150 
2151 		/*
2152 		 * Just worry about this for extent tree, it'll be the same for
2153 		 * everybody.
2154 		 */
2155 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2156 			max_global_id = max(max_global_id, key.offset);
2157 
2158 		found = true;
2159 		root = read_tree_root_path(tree_root, path, &key);
2160 		if (IS_ERR(root)) {
2161 			ret = PTR_ERR(root);
2162 			break;
2163 		}
2164 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2165 		ret = btrfs_global_root_insert(root);
2166 		if (ret) {
2167 			btrfs_put_root(root);
2168 			break;
2169 		}
2170 		key.offset++;
2171 	}
2172 	btrfs_release_path(path);
2173 
2174 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2175 		fs_info->nr_global_roots = max_global_id + 1;
2176 
2177 	if (!found || ret) {
2178 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2179 			set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2180 
2181 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2182 			ret = ret ? ret : -ENOENT;
2183 		else
2184 			ret = 0;
2185 		btrfs_err(fs_info, "failed to load root %s", name);
2186 	}
2187 	return ret;
2188 }
2189 
load_global_roots(struct btrfs_root * tree_root)2190 static int load_global_roots(struct btrfs_root *tree_root)
2191 {
2192 	BTRFS_PATH_AUTO_FREE(path);
2193 	int ret;
2194 
2195 	path = btrfs_alloc_path();
2196 	if (!path)
2197 		return -ENOMEM;
2198 
2199 	ret = load_global_roots_objectid(tree_root, path,
2200 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2201 	if (ret)
2202 		return ret;
2203 	ret = load_global_roots_objectid(tree_root, path,
2204 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2205 	if (ret)
2206 		return ret;
2207 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2208 		return ret;
2209 	ret = load_global_roots_objectid(tree_root, path,
2210 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2211 					 "free space");
2212 
2213 	return ret;
2214 }
2215 
btrfs_read_roots(struct btrfs_fs_info * fs_info)2216 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2217 {
2218 	struct btrfs_root *tree_root = fs_info->tree_root;
2219 	struct btrfs_root *root;
2220 	struct btrfs_key location;
2221 	int ret;
2222 
2223 	ASSERT(fs_info->tree_root);
2224 
2225 	ret = load_global_roots(tree_root);
2226 	if (ret)
2227 		return ret;
2228 
2229 	location.type = BTRFS_ROOT_ITEM_KEY;
2230 	location.offset = 0;
2231 
2232 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2233 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2234 		root = btrfs_read_tree_root(tree_root, &location);
2235 		if (IS_ERR(root)) {
2236 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2237 				ret = PTR_ERR(root);
2238 				goto out;
2239 			}
2240 		} else {
2241 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2242 			fs_info->block_group_root = root;
2243 		}
2244 	}
2245 
2246 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2247 	root = btrfs_read_tree_root(tree_root, &location);
2248 	if (IS_ERR(root)) {
2249 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2250 			ret = PTR_ERR(root);
2251 			goto out;
2252 		}
2253 	} else {
2254 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2255 		fs_info->dev_root = root;
2256 	}
2257 	/* Initialize fs_info for all devices in any case */
2258 	ret = btrfs_init_devices_late(fs_info);
2259 	if (ret)
2260 		goto out;
2261 
2262 	/*
2263 	 * This tree can share blocks with some other fs tree during relocation
2264 	 * and we need a proper setup by btrfs_get_fs_root
2265 	 */
2266 	root = btrfs_get_fs_root(tree_root->fs_info,
2267 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2268 	if (IS_ERR(root)) {
2269 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2270 			ret = PTR_ERR(root);
2271 			goto out;
2272 		}
2273 	} else {
2274 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2275 		fs_info->data_reloc_root = root;
2276 	}
2277 
2278 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2279 	root = btrfs_read_tree_root(tree_root, &location);
2280 	if (!IS_ERR(root)) {
2281 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2282 		fs_info->quota_root = root;
2283 	}
2284 
2285 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2286 	root = btrfs_read_tree_root(tree_root, &location);
2287 	if (IS_ERR(root)) {
2288 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2289 			ret = PTR_ERR(root);
2290 			if (ret != -ENOENT)
2291 				goto out;
2292 		}
2293 	} else {
2294 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2295 		fs_info->uuid_root = root;
2296 	}
2297 
2298 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2299 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2300 		root = btrfs_read_tree_root(tree_root, &location);
2301 		if (IS_ERR(root)) {
2302 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2303 				ret = PTR_ERR(root);
2304 				goto out;
2305 			}
2306 		} else {
2307 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2308 			fs_info->stripe_root = root;
2309 		}
2310 	}
2311 
2312 	return 0;
2313 out:
2314 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2315 		   location.objectid, ret);
2316 	return ret;
2317 }
2318 
validate_sys_chunk_array(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb)2319 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info,
2320 				    const struct btrfs_super_block *sb)
2321 {
2322 	unsigned int cur = 0; /* Offset inside the sys chunk array */
2323 	/*
2324 	 * At sb read time, fs_info is not fully initialized. Thus we have
2325 	 * to use super block sectorsize, which should have been validated.
2326 	 */
2327 	const u32 sectorsize = btrfs_super_sectorsize(sb);
2328 	u32 sys_array_size = btrfs_super_sys_array_size(sb);
2329 
2330 	if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2331 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2332 			  sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2333 		return -EUCLEAN;
2334 	}
2335 
2336 	while (cur < sys_array_size) {
2337 		struct btrfs_disk_key *disk_key;
2338 		struct btrfs_chunk *chunk;
2339 		struct btrfs_key key;
2340 		u64 type;
2341 		u16 num_stripes;
2342 		u32 len;
2343 		int ret;
2344 
2345 		disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur);
2346 		len = sizeof(*disk_key);
2347 
2348 		if (cur + len > sys_array_size)
2349 			goto short_read;
2350 		cur += len;
2351 
2352 		btrfs_disk_key_to_cpu(&key, disk_key);
2353 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
2354 			btrfs_err(fs_info,
2355 			    "unexpected item type %u in sys_array at offset %u",
2356 				  key.type, cur);
2357 			return -EUCLEAN;
2358 		}
2359 		chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur);
2360 		num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2361 		if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size)
2362 			goto short_read;
2363 		type = btrfs_stack_chunk_type(chunk);
2364 		if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
2365 			btrfs_err(fs_info,
2366 			"invalid chunk type %llu in sys_array at offset %u",
2367 				  type, cur);
2368 			return -EUCLEAN;
2369 		}
2370 		ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset,
2371 					      sectorsize);
2372 		if (ret < 0)
2373 			return ret;
2374 		cur += btrfs_chunk_item_size(num_stripes);
2375 	}
2376 	return 0;
2377 short_read:
2378 	btrfs_err(fs_info,
2379 	"super block sys chunk array short read, cur=%u sys_array_size=%u",
2380 		  cur, sys_array_size);
2381 	return -EUCLEAN;
2382 }
2383 
2384 /*
2385  * Real super block validation
2386  * NOTE: super csum type and incompat features will not be checked here.
2387  *
2388  * @sb:		super block to check
2389  * @mirror_num:	the super block number to check its bytenr:
2390  * 		0	the primary (1st) sb
2391  * 		1, 2	2nd and 3rd backup copy
2392  * 	       -1	skip bytenr check
2393  */
btrfs_validate_super(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb,int mirror_num)2394 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2395 			 const struct btrfs_super_block *sb, int mirror_num)
2396 {
2397 	u64 nodesize = btrfs_super_nodesize(sb);
2398 	u64 sectorsize = btrfs_super_sectorsize(sb);
2399 	int ret = 0;
2400 	const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2401 
2402 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2403 		btrfs_err(fs_info, "no valid FS found");
2404 		ret = -EINVAL;
2405 	}
2406 	if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2407 		if (!ignore_flags) {
2408 			btrfs_err(fs_info,
2409 			"unrecognized or unsupported super flag 0x%llx",
2410 				  btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2411 			ret = -EINVAL;
2412 		} else {
2413 			btrfs_info(fs_info,
2414 			"unrecognized or unsupported super flags: 0x%llx, ignored",
2415 				   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2416 		}
2417 	}
2418 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2420 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2421 		ret = -EINVAL;
2422 	}
2423 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2424 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2425 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2426 		ret = -EINVAL;
2427 	}
2428 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2430 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2431 		ret = -EINVAL;
2432 	}
2433 
2434 	/*
2435 	 * Check sectorsize and nodesize first, other check will need it.
2436 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2437 	 */
2438 	if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE ||
2439 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2440 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2441 		ret = -EINVAL;
2442 	}
2443 
2444 	/*
2445 	 * We only support at most 3 sectorsizes: 4K, PAGE_SIZE, MIN_BLOCKSIZE.
2446 	 *
2447 	 * For 4K page sized systems with non-debug builds, all 3 matches (4K).
2448 	 * For 4K page sized systems with debug builds, there are two block sizes
2449 	 * supported. (4K and 2K)
2450 	 *
2451 	 * We can support 16K sectorsize with 64K page size without problem,
2452 	 * but such sectorsize/pagesize combination doesn't make much sense.
2453 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2454 	 * beginning.
2455 	 */
2456 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K &&
2457 				       sectorsize != PAGE_SIZE &&
2458 				       sectorsize != BTRFS_MIN_BLOCKSIZE)) {
2459 		btrfs_err(fs_info,
2460 			"sectorsize %llu not yet supported for page size %lu",
2461 			sectorsize, PAGE_SIZE);
2462 		ret = -EINVAL;
2463 	}
2464 
2465 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2466 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2467 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2468 		ret = -EINVAL;
2469 	}
2470 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2471 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2472 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2473 		ret = -EINVAL;
2474 	}
2475 
2476 	/* Root alignment check */
2477 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2478 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2479 			   btrfs_super_root(sb));
2480 		ret = -EINVAL;
2481 	}
2482 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2483 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2484 			   btrfs_super_chunk_root(sb));
2485 		ret = -EINVAL;
2486 	}
2487 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2488 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2489 			   btrfs_super_log_root(sb));
2490 		ret = -EINVAL;
2491 	}
2492 
2493 	if (!fs_info->fs_devices->temp_fsid &&
2494 	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2495 		btrfs_err(fs_info,
2496 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2497 			  sb->fsid, fs_info->fs_devices->fsid);
2498 		ret = -EINVAL;
2499 	}
2500 
2501 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2502 		   BTRFS_FSID_SIZE) != 0) {
2503 		btrfs_err(fs_info,
2504 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2505 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2506 		ret = -EINVAL;
2507 	}
2508 
2509 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2510 		   BTRFS_FSID_SIZE) != 0) {
2511 		btrfs_err(fs_info,
2512 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2513 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2514 		ret = -EINVAL;
2515 	}
2516 
2517 	/*
2518 	 * Artificial requirement for block-group-tree to force newer features
2519 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2520 	 */
2521 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2522 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2523 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2524 		btrfs_err(fs_info,
2525 		"block-group-tree feature requires free-space-tree and no-holes");
2526 		ret = -EINVAL;
2527 	}
2528 
2529 	/*
2530 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2531 	 * done later
2532 	 */
2533 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2534 		btrfs_err(fs_info, "bytes_used is too small %llu",
2535 			  btrfs_super_bytes_used(sb));
2536 		ret = -EINVAL;
2537 	}
2538 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2539 		btrfs_err(fs_info, "invalid stripesize %u",
2540 			  btrfs_super_stripesize(sb));
2541 		ret = -EINVAL;
2542 	}
2543 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2544 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2545 			   btrfs_super_num_devices(sb));
2546 	if (btrfs_super_num_devices(sb) == 0) {
2547 		btrfs_err(fs_info, "number of devices is 0");
2548 		ret = -EINVAL;
2549 	}
2550 
2551 	if (mirror_num >= 0 &&
2552 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2553 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2554 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2555 		ret = -EINVAL;
2556 	}
2557 
2558 	if (ret)
2559 		return ret;
2560 
2561 	ret = validate_sys_chunk_array(fs_info, sb);
2562 
2563 	/*
2564 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2565 	 * and one chunk
2566 	 */
2567 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2568 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2569 			  btrfs_super_sys_array_size(sb),
2570 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2571 		ret = -EINVAL;
2572 	}
2573 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2574 			+ sizeof(struct btrfs_chunk)) {
2575 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2576 			  btrfs_super_sys_array_size(sb),
2577 			  sizeof(struct btrfs_disk_key)
2578 			  + sizeof(struct btrfs_chunk));
2579 		ret = -EINVAL;
2580 	}
2581 
2582 	/*
2583 	 * The generation is a global counter, we'll trust it more than the others
2584 	 * but it's still possible that it's the one that's wrong.
2585 	 */
2586 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2587 		btrfs_warn(fs_info,
2588 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2589 			btrfs_super_generation(sb),
2590 			btrfs_super_chunk_root_generation(sb));
2591 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2592 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2593 		btrfs_warn(fs_info,
2594 			"suspicious: generation < cache_generation: %llu < %llu",
2595 			btrfs_super_generation(sb),
2596 			btrfs_super_cache_generation(sb));
2597 
2598 	return ret;
2599 }
2600 
2601 /*
2602  * Validation of super block at mount time.
2603  * Some checks already done early at mount time, like csum type and incompat
2604  * flags will be skipped.
2605  */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2606 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2607 {
2608 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2609 }
2610 
2611 /*
2612  * Validation of super block at write time.
2613  * Some checks like bytenr check will be skipped as their values will be
2614  * overwritten soon.
2615  * Extra checks like csum type and incompat flags will be done here.
2616  */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2617 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2618 				      struct btrfs_super_block *sb)
2619 {
2620 	int ret;
2621 
2622 	ret = btrfs_validate_super(fs_info, sb, -1);
2623 	if (ret < 0)
2624 		goto out;
2625 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2626 		ret = -EUCLEAN;
2627 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2628 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2629 		goto out;
2630 	}
2631 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2632 		ret = -EUCLEAN;
2633 		btrfs_err(fs_info,
2634 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2635 			  btrfs_super_incompat_flags(sb),
2636 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2637 		goto out;
2638 	}
2639 out:
2640 	if (ret < 0)
2641 		btrfs_err(fs_info,
2642 		"super block corruption detected before writing it to disk");
2643 	return ret;
2644 }
2645 
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2646 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2647 {
2648 	struct btrfs_tree_parent_check check = {
2649 		.level = level,
2650 		.transid = gen,
2651 		.owner_root = btrfs_root_id(root)
2652 	};
2653 	int ret = 0;
2654 
2655 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2656 	if (IS_ERR(root->node)) {
2657 		ret = PTR_ERR(root->node);
2658 		root->node = NULL;
2659 		return ret;
2660 	}
2661 	if (!extent_buffer_uptodate(root->node)) {
2662 		free_extent_buffer(root->node);
2663 		root->node = NULL;
2664 		return -EIO;
2665 	}
2666 
2667 	btrfs_set_root_node(&root->root_item, root->node);
2668 	root->commit_root = btrfs_root_node(root);
2669 	btrfs_set_root_refs(&root->root_item, 1);
2670 	return ret;
2671 }
2672 
load_important_roots(struct btrfs_fs_info * fs_info)2673 static int load_important_roots(struct btrfs_fs_info *fs_info)
2674 {
2675 	struct btrfs_super_block *sb = fs_info->super_copy;
2676 	u64 gen, bytenr;
2677 	int level, ret;
2678 
2679 	bytenr = btrfs_super_root(sb);
2680 	gen = btrfs_super_generation(sb);
2681 	level = btrfs_super_root_level(sb);
2682 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2683 	if (ret) {
2684 		btrfs_warn(fs_info, "couldn't read tree root");
2685 		return ret;
2686 	}
2687 	return 0;
2688 }
2689 
init_tree_roots(struct btrfs_fs_info * fs_info)2690 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2691 {
2692 	int backup_index = find_newest_super_backup(fs_info);
2693 	struct btrfs_super_block *sb = fs_info->super_copy;
2694 	struct btrfs_root *tree_root = fs_info->tree_root;
2695 	bool handle_error = false;
2696 	int ret = 0;
2697 	int i;
2698 
2699 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2700 		if (handle_error) {
2701 			if (!IS_ERR(tree_root->node))
2702 				free_extent_buffer(tree_root->node);
2703 			tree_root->node = NULL;
2704 
2705 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2706 				break;
2707 
2708 			free_root_pointers(fs_info, 0);
2709 
2710 			/*
2711 			 * Don't use the log in recovery mode, it won't be
2712 			 * valid
2713 			 */
2714 			btrfs_set_super_log_root(sb, 0);
2715 
2716 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2717 			ret = read_backup_root(fs_info, i);
2718 			backup_index = ret;
2719 			if (ret < 0)
2720 				return ret;
2721 		}
2722 
2723 		ret = load_important_roots(fs_info);
2724 		if (ret) {
2725 			handle_error = true;
2726 			continue;
2727 		}
2728 
2729 		/*
2730 		 * No need to hold btrfs_root::objectid_mutex since the fs
2731 		 * hasn't been fully initialised and we are the only user
2732 		 */
2733 		ret = btrfs_init_root_free_objectid(tree_root);
2734 		if (ret < 0) {
2735 			handle_error = true;
2736 			continue;
2737 		}
2738 
2739 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2740 
2741 		ret = btrfs_read_roots(fs_info);
2742 		if (ret < 0) {
2743 			handle_error = true;
2744 			continue;
2745 		}
2746 
2747 		/* All successful */
2748 		fs_info->generation = btrfs_header_generation(tree_root->node);
2749 		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2750 		fs_info->last_reloc_trans = 0;
2751 
2752 		/* Always begin writing backup roots after the one being used */
2753 		if (backup_index < 0) {
2754 			fs_info->backup_root_index = 0;
2755 		} else {
2756 			fs_info->backup_root_index = backup_index + 1;
2757 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2758 		}
2759 		break;
2760 	}
2761 
2762 	return ret;
2763 }
2764 
2765 /*
2766  * Lockdep gets confused between our buffer_tree which requires IRQ locking because
2767  * we modify marks in the IRQ context, and our delayed inode xarray which doesn't
2768  * have these requirements. Use a class key so lockdep doesn't get them mixed up.
2769  */
2770 static struct lock_class_key buffer_xa_class;
2771 
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2772 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2773 {
2774 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2775 
2776 	/* Use the same flags as mapping->i_pages. */
2777 	xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
2778 	lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class);
2779 
2780 	INIT_LIST_HEAD(&fs_info->trans_list);
2781 	INIT_LIST_HEAD(&fs_info->dead_roots);
2782 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2783 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2784 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2785 	spin_lock_init(&fs_info->delalloc_root_lock);
2786 	spin_lock_init(&fs_info->trans_lock);
2787 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2788 	spin_lock_init(&fs_info->delayed_iput_lock);
2789 	spin_lock_init(&fs_info->defrag_inodes_lock);
2790 	spin_lock_init(&fs_info->super_lock);
2791 	spin_lock_init(&fs_info->unused_bgs_lock);
2792 	spin_lock_init(&fs_info->treelog_bg_lock);
2793 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2794 	spin_lock_init(&fs_info->relocation_bg_lock);
2795 	rwlock_init(&fs_info->tree_mod_log_lock);
2796 	rwlock_init(&fs_info->global_root_lock);
2797 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2798 	mutex_init(&fs_info->reclaim_bgs_lock);
2799 	mutex_init(&fs_info->reloc_mutex);
2800 	mutex_init(&fs_info->delalloc_root_mutex);
2801 	mutex_init(&fs_info->zoned_meta_io_lock);
2802 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2803 	seqlock_init(&fs_info->profiles_lock);
2804 
2805 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2806 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2807 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2808 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2809 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2810 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2811 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2812 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2813 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2814 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2815 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2816 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2817 
2818 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2819 	INIT_LIST_HEAD(&fs_info->space_info);
2820 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2821 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2822 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2823 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2824 #ifdef CONFIG_BTRFS_DEBUG
2825 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2826 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2827 	spin_lock_init(&fs_info->eb_leak_lock);
2828 #endif
2829 	fs_info->mapping_tree = RB_ROOT_CACHED;
2830 	rwlock_init(&fs_info->mapping_tree_lock);
2831 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2832 			     BTRFS_BLOCK_RSV_GLOBAL);
2833 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2834 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2835 	btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG);
2836 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2837 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2838 			     BTRFS_BLOCK_RSV_DELOPS);
2839 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2840 			     BTRFS_BLOCK_RSV_DELREFS);
2841 
2842 	atomic_set(&fs_info->async_delalloc_pages, 0);
2843 	atomic_set(&fs_info->defrag_running, 0);
2844 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2845 	atomic64_set(&fs_info->tree_mod_seq, 0);
2846 	fs_info->global_root_tree = RB_ROOT;
2847 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2848 	fs_info->metadata_ratio = 0;
2849 	fs_info->defrag_inodes = RB_ROOT;
2850 	atomic64_set(&fs_info->free_chunk_space, 0);
2851 	fs_info->tree_mod_log = RB_ROOT;
2852 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2853 	btrfs_init_ref_verify(fs_info);
2854 
2855 	fs_info->thread_pool_size = min_t(unsigned long,
2856 					  num_online_cpus() + 2, 8);
2857 
2858 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2859 	spin_lock_init(&fs_info->ordered_root_lock);
2860 
2861 	btrfs_init_scrub(fs_info);
2862 	btrfs_init_balance(fs_info);
2863 	btrfs_init_async_reclaim_work(fs_info);
2864 	btrfs_init_extent_map_shrinker_work(fs_info);
2865 
2866 	rwlock_init(&fs_info->block_group_cache_lock);
2867 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2868 
2869 	btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2870 				  IO_TREE_FS_EXCLUDED_EXTENTS);
2871 
2872 	mutex_init(&fs_info->ordered_operations_mutex);
2873 	mutex_init(&fs_info->tree_log_mutex);
2874 	mutex_init(&fs_info->chunk_mutex);
2875 	mutex_init(&fs_info->transaction_kthread_mutex);
2876 	mutex_init(&fs_info->cleaner_mutex);
2877 	mutex_init(&fs_info->ro_block_group_mutex);
2878 	init_rwsem(&fs_info->commit_root_sem);
2879 	init_rwsem(&fs_info->cleanup_work_sem);
2880 	init_rwsem(&fs_info->subvol_sem);
2881 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2882 
2883 	btrfs_init_dev_replace_locks(fs_info);
2884 	btrfs_init_qgroup(fs_info);
2885 	btrfs_discard_init(fs_info);
2886 
2887 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2888 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2889 
2890 	init_waitqueue_head(&fs_info->transaction_throttle);
2891 	init_waitqueue_head(&fs_info->transaction_wait);
2892 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2893 	init_waitqueue_head(&fs_info->async_submit_wait);
2894 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2895 
2896 	/* Usable values until the real ones are cached from the superblock */
2897 	fs_info->nodesize = 4096;
2898 	fs_info->sectorsize = 4096;
2899 	fs_info->sectorsize_bits = ilog2(4096);
2900 	fs_info->stripesize = 4096;
2901 
2902 	/* Default compress algorithm when user does -o compress */
2903 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2904 
2905 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2906 
2907 	spin_lock_init(&fs_info->swapfile_pins_lock);
2908 	fs_info->swapfile_pins = RB_ROOT;
2909 
2910 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2911 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2912 }
2913 
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2914 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2915 {
2916 	int ret;
2917 
2918 	fs_info->sb = sb;
2919 	/* Temporary fixed values for block size until we read the superblock. */
2920 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2921 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2922 
2923 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2924 	if (ret)
2925 		return ret;
2926 
2927 	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2928 	if (ret)
2929 		return ret;
2930 
2931 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2932 	if (ret)
2933 		return ret;
2934 
2935 	ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL);
2936 	if (ret)
2937 		return ret;
2938 
2939 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2940 					(1 + ilog2(nr_cpu_ids));
2941 
2942 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2943 	if (ret)
2944 		return ret;
2945 
2946 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2947 			GFP_KERNEL);
2948 	if (ret)
2949 		return ret;
2950 
2951 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2952 					GFP_KERNEL);
2953 	if (!fs_info->delayed_root)
2954 		return -ENOMEM;
2955 	btrfs_init_delayed_root(fs_info->delayed_root);
2956 
2957 	if (sb_rdonly(sb))
2958 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2959 	if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2960 		set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2961 
2962 	return btrfs_alloc_stripe_hash_table(fs_info);
2963 }
2964 
btrfs_uuid_rescan_kthread(void * data)2965 static int btrfs_uuid_rescan_kthread(void *data)
2966 {
2967 	struct btrfs_fs_info *fs_info = data;
2968 	int ret;
2969 
2970 	/*
2971 	 * 1st step is to iterate through the existing UUID tree and
2972 	 * to delete all entries that contain outdated data.
2973 	 * 2nd step is to add all missing entries to the UUID tree.
2974 	 */
2975 	ret = btrfs_uuid_tree_iterate(fs_info);
2976 	if (ret < 0) {
2977 		if (ret != -EINTR)
2978 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2979 				   ret);
2980 		up(&fs_info->uuid_tree_rescan_sem);
2981 		return ret;
2982 	}
2983 	return btrfs_uuid_scan_kthread(data);
2984 }
2985 
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2986 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2987 {
2988 	struct task_struct *task;
2989 
2990 	down(&fs_info->uuid_tree_rescan_sem);
2991 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2992 	if (IS_ERR(task)) {
2993 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2994 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2995 		up(&fs_info->uuid_tree_rescan_sem);
2996 		return PTR_ERR(task);
2997 	}
2998 
2999 	return 0;
3000 }
3001 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3002 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3003 {
3004 	u64 root_objectid = 0;
3005 	struct btrfs_root *gang[8];
3006 	int ret = 0;
3007 
3008 	while (1) {
3009 		unsigned int found;
3010 
3011 		spin_lock(&fs_info->fs_roots_radix_lock);
3012 		found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3013 					     (void **)gang, root_objectid,
3014 					     ARRAY_SIZE(gang));
3015 		if (!found) {
3016 			spin_unlock(&fs_info->fs_roots_radix_lock);
3017 			break;
3018 		}
3019 		root_objectid = btrfs_root_id(gang[found - 1]) + 1;
3020 
3021 		for (int i = 0; i < found; i++) {
3022 			/* Avoid to grab roots in dead_roots. */
3023 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3024 				gang[i] = NULL;
3025 				continue;
3026 			}
3027 			/* Grab all the search result for later use. */
3028 			gang[i] = btrfs_grab_root(gang[i]);
3029 		}
3030 		spin_unlock(&fs_info->fs_roots_radix_lock);
3031 
3032 		for (int i = 0; i < found; i++) {
3033 			if (!gang[i])
3034 				continue;
3035 			root_objectid = btrfs_root_id(gang[i]);
3036 			/*
3037 			 * Continue to release the remaining roots after the first
3038 			 * error without cleanup and preserve the first error
3039 			 * for the return.
3040 			 */
3041 			if (!ret)
3042 				ret = btrfs_orphan_cleanup(gang[i]);
3043 			btrfs_put_root(gang[i]);
3044 		}
3045 		if (ret)
3046 			break;
3047 
3048 		root_objectid++;
3049 	}
3050 	return ret;
3051 }
3052 
3053 /*
3054  * Mounting logic specific to read-write file systems. Shared by open_ctree
3055  * and btrfs_remount when remounting from read-only to read-write.
3056  */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3057 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3058 {
3059 	int ret;
3060 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3061 	bool rebuild_free_space_tree = false;
3062 
3063 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3064 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3065 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3066 			btrfs_warn(fs_info,
3067 				   "'clear_cache' option is ignored with extent tree v2");
3068 		else
3069 			rebuild_free_space_tree = true;
3070 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3071 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3072 		btrfs_warn(fs_info, "free space tree is invalid");
3073 		rebuild_free_space_tree = true;
3074 	}
3075 
3076 	if (rebuild_free_space_tree) {
3077 		btrfs_info(fs_info, "rebuilding free space tree");
3078 		ret = btrfs_rebuild_free_space_tree(fs_info);
3079 		if (ret) {
3080 			btrfs_warn(fs_info,
3081 				   "failed to rebuild free space tree: %d", ret);
3082 			goto out;
3083 		}
3084 	}
3085 
3086 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3087 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3088 		btrfs_info(fs_info, "disabling free space tree");
3089 		ret = btrfs_delete_free_space_tree(fs_info);
3090 		if (ret) {
3091 			btrfs_warn(fs_info,
3092 				   "failed to disable free space tree: %d", ret);
3093 			goto out;
3094 		}
3095 	}
3096 
3097 	/*
3098 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3099 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3100 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3101 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3102 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3103 	 * item before the root's tree is deleted - this means that if we unmount
3104 	 * or crash before the deletion completes, on the next mount we will not
3105 	 * delete what remains of the tree because the orphan item does not
3106 	 * exists anymore, which is what tells us we have a pending deletion.
3107 	 */
3108 	ret = btrfs_find_orphan_roots(fs_info);
3109 	if (ret)
3110 		goto out;
3111 
3112 	ret = btrfs_cleanup_fs_roots(fs_info);
3113 	if (ret)
3114 		goto out;
3115 
3116 	down_read(&fs_info->cleanup_work_sem);
3117 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3118 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3119 		up_read(&fs_info->cleanup_work_sem);
3120 		goto out;
3121 	}
3122 	up_read(&fs_info->cleanup_work_sem);
3123 
3124 	mutex_lock(&fs_info->cleaner_mutex);
3125 	ret = btrfs_recover_relocation(fs_info);
3126 	mutex_unlock(&fs_info->cleaner_mutex);
3127 	if (ret < 0) {
3128 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3129 		goto out;
3130 	}
3131 
3132 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3133 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3134 		btrfs_info(fs_info, "creating free space tree");
3135 		ret = btrfs_create_free_space_tree(fs_info);
3136 		if (ret) {
3137 			btrfs_warn(fs_info,
3138 				"failed to create free space tree: %d", ret);
3139 			goto out;
3140 		}
3141 	}
3142 
3143 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3144 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3145 		if (ret)
3146 			goto out;
3147 	}
3148 
3149 	ret = btrfs_resume_balance_async(fs_info);
3150 	if (ret)
3151 		goto out;
3152 
3153 	ret = btrfs_resume_dev_replace_async(fs_info);
3154 	if (ret) {
3155 		btrfs_warn(fs_info, "failed to resume dev_replace");
3156 		goto out;
3157 	}
3158 
3159 	btrfs_qgroup_rescan_resume(fs_info);
3160 
3161 	if (!fs_info->uuid_root) {
3162 		btrfs_info(fs_info, "creating UUID tree");
3163 		ret = btrfs_create_uuid_tree(fs_info);
3164 		if (ret) {
3165 			btrfs_warn(fs_info,
3166 				   "failed to create the UUID tree %d", ret);
3167 			goto out;
3168 		}
3169 	}
3170 
3171 out:
3172 	return ret;
3173 }
3174 
3175 /*
3176  * Do various sanity and dependency checks of different features.
3177  *
3178  * @is_rw_mount:	If the mount is read-write.
3179  *
3180  * This is the place for less strict checks (like for subpage or artificial
3181  * feature dependencies).
3182  *
3183  * For strict checks or possible corruption detection, see
3184  * btrfs_validate_super().
3185  *
3186  * This should be called after btrfs_parse_options(), as some mount options
3187  * (space cache related) can modify on-disk format like free space tree and
3188  * screw up certain feature dependencies.
3189  */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3190 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3191 {
3192 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3193 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3194 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3195 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3196 
3197 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3198 		btrfs_err(fs_info,
3199 		"cannot mount because of unknown incompat features (0x%llx)",
3200 		    incompat);
3201 		return -EINVAL;
3202 	}
3203 
3204 	/* Runtime limitation for mixed block groups. */
3205 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3206 	    (fs_info->sectorsize != fs_info->nodesize)) {
3207 		btrfs_err(fs_info,
3208 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3209 			fs_info->nodesize, fs_info->sectorsize);
3210 		return -EINVAL;
3211 	}
3212 
3213 	/* Mixed backref is an always-enabled feature. */
3214 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3215 
3216 	/* Set compression related flags just in case. */
3217 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3218 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3219 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3220 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3221 
3222 	/*
3223 	 * An ancient flag, which should really be marked deprecated.
3224 	 * Such runtime limitation doesn't really need a incompat flag.
3225 	 */
3226 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3227 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3228 
3229 	if (compat_ro_unsupp && is_rw_mount) {
3230 		btrfs_err(fs_info,
3231 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3232 		       compat_ro);
3233 		return -EINVAL;
3234 	}
3235 
3236 	/*
3237 	 * We have unsupported RO compat features, although RO mounted, we
3238 	 * should not cause any metadata writes, including log replay.
3239 	 * Or we could screw up whatever the new feature requires.
3240 	 */
3241 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3242 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3243 		btrfs_err(fs_info,
3244 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3245 			  compat_ro);
3246 		return -EINVAL;
3247 	}
3248 
3249 	/*
3250 	 * Artificial limitations for block group tree, to force
3251 	 * block-group-tree to rely on no-holes and free-space-tree.
3252 	 */
3253 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3254 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3255 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3256 		btrfs_err(fs_info,
3257 "block-group-tree feature requires no-holes and free-space-tree features");
3258 		return -EINVAL;
3259 	}
3260 
3261 	/*
3262 	 * Subpage runtime limitation on v1 cache.
3263 	 *
3264 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3265 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3266 	 * going to be deprecated anyway.
3267 	 */
3268 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3269 		btrfs_warn(fs_info,
3270 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3271 			   PAGE_SIZE, fs_info->sectorsize);
3272 		return -EINVAL;
3273 	}
3274 
3275 	/* This can be called by remount, we need to protect the super block. */
3276 	spin_lock(&fs_info->super_lock);
3277 	btrfs_set_super_incompat_flags(disk_super, incompat);
3278 	spin_unlock(&fs_info->super_lock);
3279 
3280 	return 0;
3281 }
3282 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices)3283 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3284 {
3285 	u32 sectorsize;
3286 	u32 nodesize;
3287 	u32 stripesize;
3288 	u64 generation;
3289 	u16 csum_type;
3290 	struct btrfs_super_block *disk_super;
3291 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3292 	struct btrfs_root *tree_root;
3293 	struct btrfs_root *chunk_root;
3294 	int ret;
3295 	int level;
3296 
3297 	ret = init_mount_fs_info(fs_info, sb);
3298 	if (ret)
3299 		goto fail;
3300 
3301 	/* These need to be init'ed before we start creating inodes and such. */
3302 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3303 				     GFP_KERNEL);
3304 	fs_info->tree_root = tree_root;
3305 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3306 				      GFP_KERNEL);
3307 	fs_info->chunk_root = chunk_root;
3308 	if (!tree_root || !chunk_root) {
3309 		ret = -ENOMEM;
3310 		goto fail;
3311 	}
3312 
3313 	ret = btrfs_init_btree_inode(sb);
3314 	if (ret)
3315 		goto fail;
3316 
3317 	invalidate_bdev(fs_devices->latest_dev->bdev);
3318 
3319 	/*
3320 	 * Read super block and check the signature bytes only
3321 	 */
3322 	disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false);
3323 	if (IS_ERR(disk_super)) {
3324 		ret = PTR_ERR(disk_super);
3325 		goto fail_alloc;
3326 	}
3327 
3328 	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3329 	/*
3330 	 * Verify the type first, if that or the checksum value are
3331 	 * corrupted, we'll find out
3332 	 */
3333 	csum_type = btrfs_super_csum_type(disk_super);
3334 	if (!btrfs_supported_super_csum(csum_type)) {
3335 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3336 			  csum_type);
3337 		ret = -EINVAL;
3338 		btrfs_release_disk_super(disk_super);
3339 		goto fail_alloc;
3340 	}
3341 
3342 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3343 
3344 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3345 	if (ret) {
3346 		btrfs_release_disk_super(disk_super);
3347 		goto fail_alloc;
3348 	}
3349 
3350 	/*
3351 	 * We want to check superblock checksum, the type is stored inside.
3352 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3353 	 */
3354 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3355 		btrfs_err(fs_info, "superblock checksum mismatch");
3356 		ret = -EINVAL;
3357 		btrfs_release_disk_super(disk_super);
3358 		goto fail_alloc;
3359 	}
3360 
3361 	/*
3362 	 * super_copy is zeroed at allocation time and we never touch the
3363 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3364 	 * the whole block of INFO_SIZE
3365 	 */
3366 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3367 	btrfs_release_disk_super(disk_super);
3368 
3369 	disk_super = fs_info->super_copy;
3370 
3371 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3372 	       sizeof(*fs_info->super_for_commit));
3373 
3374 	ret = btrfs_validate_mount_super(fs_info);
3375 	if (ret) {
3376 		btrfs_err(fs_info, "superblock contains fatal errors");
3377 		ret = -EINVAL;
3378 		goto fail_alloc;
3379 	}
3380 
3381 	if (!btrfs_super_root(disk_super)) {
3382 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3383 		ret = -EINVAL;
3384 		goto fail_alloc;
3385 	}
3386 
3387 	/* check FS state, whether FS is broken. */
3388 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3389 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3390 
3391 	/* Set up fs_info before parsing mount options */
3392 	nodesize = btrfs_super_nodesize(disk_super);
3393 	sectorsize = btrfs_super_sectorsize(disk_super);
3394 	stripesize = sectorsize;
3395 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3396 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3397 
3398 	fs_info->nodesize = nodesize;
3399 	fs_info->sectorsize = sectorsize;
3400 	fs_info->sectorsize_bits = ilog2(sectorsize);
3401 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3402 	fs_info->stripesize = stripesize;
3403 	fs_info->fs_devices->fs_info = fs_info;
3404 
3405 	/*
3406 	 * Handle the space caching options appropriately now that we have the
3407 	 * super block loaded and validated.
3408 	 */
3409 	btrfs_set_free_space_cache_settings(fs_info);
3410 
3411 	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3412 		ret = -EINVAL;
3413 		goto fail_alloc;
3414 	}
3415 
3416 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3417 	if (ret < 0)
3418 		goto fail_alloc;
3419 
3420 	/*
3421 	 * At this point our mount options are validated, if we set ->max_inline
3422 	 * to something non-standard make sure we truncate it to sectorsize.
3423 	 */
3424 	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3425 
3426 	ret = btrfs_init_workqueues(fs_info);
3427 	if (ret)
3428 		goto fail_sb_buffer;
3429 
3430 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3431 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3432 
3433 	/* Update the values for the current filesystem. */
3434 	sb->s_blocksize = sectorsize;
3435 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3436 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3437 
3438 	mutex_lock(&fs_info->chunk_mutex);
3439 	ret = btrfs_read_sys_array(fs_info);
3440 	mutex_unlock(&fs_info->chunk_mutex);
3441 	if (ret) {
3442 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3443 		goto fail_sb_buffer;
3444 	}
3445 
3446 	generation = btrfs_super_chunk_root_generation(disk_super);
3447 	level = btrfs_super_chunk_root_level(disk_super);
3448 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3449 			      generation, level);
3450 	if (ret) {
3451 		btrfs_err(fs_info, "failed to read chunk root");
3452 		goto fail_tree_roots;
3453 	}
3454 
3455 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3456 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3457 			   BTRFS_UUID_SIZE);
3458 
3459 	ret = btrfs_read_chunk_tree(fs_info);
3460 	if (ret) {
3461 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3462 		goto fail_tree_roots;
3463 	}
3464 
3465 	/*
3466 	 * At this point we know all the devices that make this filesystem,
3467 	 * including the seed devices but we don't know yet if the replace
3468 	 * target is required. So free devices that are not part of this
3469 	 * filesystem but skip the replace target device which is checked
3470 	 * below in btrfs_init_dev_replace().
3471 	 */
3472 	btrfs_free_extra_devids(fs_devices);
3473 	if (!fs_devices->latest_dev->bdev) {
3474 		btrfs_err(fs_info, "failed to read devices");
3475 		ret = -EIO;
3476 		goto fail_tree_roots;
3477 	}
3478 
3479 	ret = init_tree_roots(fs_info);
3480 	if (ret)
3481 		goto fail_tree_roots;
3482 
3483 	/*
3484 	 * Get zone type information of zoned block devices. This will also
3485 	 * handle emulation of a zoned filesystem if a regular device has the
3486 	 * zoned incompat feature flag set.
3487 	 */
3488 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3489 	if (ret) {
3490 		btrfs_err(fs_info,
3491 			  "zoned: failed to read device zone info: %d", ret);
3492 		goto fail_block_groups;
3493 	}
3494 
3495 	/*
3496 	 * If we have a uuid root and we're not being told to rescan we need to
3497 	 * check the generation here so we can set the
3498 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3499 	 * transaction during a balance or the log replay without updating the
3500 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3501 	 * even though it was perfectly fine.
3502 	 */
3503 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3504 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3505 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3506 
3507 	ret = btrfs_verify_dev_extents(fs_info);
3508 	if (ret) {
3509 		btrfs_err(fs_info,
3510 			  "failed to verify dev extents against chunks: %d",
3511 			  ret);
3512 		goto fail_block_groups;
3513 	}
3514 	ret = btrfs_recover_balance(fs_info);
3515 	if (ret) {
3516 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3517 		goto fail_block_groups;
3518 	}
3519 
3520 	ret = btrfs_init_dev_stats(fs_info);
3521 	if (ret) {
3522 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3523 		goto fail_block_groups;
3524 	}
3525 
3526 	ret = btrfs_init_dev_replace(fs_info);
3527 	if (ret) {
3528 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3529 		goto fail_block_groups;
3530 	}
3531 
3532 	ret = btrfs_check_zoned_mode(fs_info);
3533 	if (ret) {
3534 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3535 			  ret);
3536 		goto fail_block_groups;
3537 	}
3538 
3539 	ret = btrfs_sysfs_add_fsid(fs_devices);
3540 	if (ret) {
3541 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3542 				ret);
3543 		goto fail_block_groups;
3544 	}
3545 
3546 	ret = btrfs_sysfs_add_mounted(fs_info);
3547 	if (ret) {
3548 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3549 		goto fail_fsdev_sysfs;
3550 	}
3551 
3552 	ret = btrfs_init_space_info(fs_info);
3553 	if (ret) {
3554 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3555 		goto fail_sysfs;
3556 	}
3557 
3558 	ret = btrfs_read_block_groups(fs_info);
3559 	if (ret) {
3560 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3561 		goto fail_sysfs;
3562 	}
3563 
3564 	btrfs_free_zone_cache(fs_info);
3565 
3566 	btrfs_check_active_zone_reservation(fs_info);
3567 
3568 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3569 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3570 		btrfs_warn(fs_info,
3571 		"writable mount is not allowed due to too many missing devices");
3572 		ret = -EINVAL;
3573 		goto fail_sysfs;
3574 	}
3575 
3576 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3577 					       "btrfs-cleaner");
3578 	if (IS_ERR(fs_info->cleaner_kthread)) {
3579 		ret = PTR_ERR(fs_info->cleaner_kthread);
3580 		goto fail_sysfs;
3581 	}
3582 
3583 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3584 						   tree_root,
3585 						   "btrfs-transaction");
3586 	if (IS_ERR(fs_info->transaction_kthread)) {
3587 		ret = PTR_ERR(fs_info->transaction_kthread);
3588 		goto fail_cleaner;
3589 	}
3590 
3591 	ret = btrfs_read_qgroup_config(fs_info);
3592 	if (ret)
3593 		goto fail_trans_kthread;
3594 
3595 	if (btrfs_build_ref_tree(fs_info))
3596 		btrfs_err(fs_info, "couldn't build ref tree");
3597 
3598 	/* do not make disk changes in broken FS or nologreplay is given */
3599 	if (btrfs_super_log_root(disk_super) != 0 &&
3600 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3601 		btrfs_info(fs_info, "start tree-log replay");
3602 		ret = btrfs_replay_log(fs_info, fs_devices);
3603 		if (ret)
3604 			goto fail_qgroup;
3605 	}
3606 
3607 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3608 	if (IS_ERR(fs_info->fs_root)) {
3609 		ret = PTR_ERR(fs_info->fs_root);
3610 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3611 		fs_info->fs_root = NULL;
3612 		goto fail_qgroup;
3613 	}
3614 
3615 	if (sb_rdonly(sb))
3616 		return 0;
3617 
3618 	ret = btrfs_start_pre_rw_mount(fs_info);
3619 	if (ret) {
3620 		close_ctree(fs_info);
3621 		return ret;
3622 	}
3623 	btrfs_discard_resume(fs_info);
3624 
3625 	if (fs_info->uuid_root &&
3626 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3627 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3628 		btrfs_info(fs_info, "checking UUID tree");
3629 		ret = btrfs_check_uuid_tree(fs_info);
3630 		if (ret) {
3631 			btrfs_warn(fs_info,
3632 				"failed to check the UUID tree: %d", ret);
3633 			close_ctree(fs_info);
3634 			return ret;
3635 		}
3636 	}
3637 
3638 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3639 
3640 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3641 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3642 		wake_up_process(fs_info->cleaner_kthread);
3643 
3644 	return 0;
3645 
3646 fail_qgroup:
3647 	btrfs_free_qgroup_config(fs_info);
3648 fail_trans_kthread:
3649 	kthread_stop(fs_info->transaction_kthread);
3650 	btrfs_cleanup_transaction(fs_info);
3651 	btrfs_free_fs_roots(fs_info);
3652 fail_cleaner:
3653 	kthread_stop(fs_info->cleaner_kthread);
3654 
3655 	/*
3656 	 * make sure we're done with the btree inode before we stop our
3657 	 * kthreads
3658 	 */
3659 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3660 
3661 fail_sysfs:
3662 	btrfs_sysfs_remove_mounted(fs_info);
3663 
3664 fail_fsdev_sysfs:
3665 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3666 
3667 fail_block_groups:
3668 	btrfs_put_block_group_cache(fs_info);
3669 
3670 fail_tree_roots:
3671 	if (fs_info->data_reloc_root)
3672 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3673 	free_root_pointers(fs_info, true);
3674 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3675 
3676 fail_sb_buffer:
3677 	btrfs_stop_all_workers(fs_info);
3678 	btrfs_free_block_groups(fs_info);
3679 fail_alloc:
3680 	btrfs_mapping_tree_free(fs_info);
3681 
3682 	iput(fs_info->btree_inode);
3683 fail:
3684 	btrfs_close_devices(fs_info->fs_devices);
3685 	ASSERT(ret < 0);
3686 	return ret;
3687 }
3688 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3689 
btrfs_end_super_write(struct bio * bio)3690 static void btrfs_end_super_write(struct bio *bio)
3691 {
3692 	struct btrfs_device *device = bio->bi_private;
3693 	struct folio_iter fi;
3694 
3695 	bio_for_each_folio_all(fi, bio) {
3696 		if (bio->bi_status) {
3697 			btrfs_warn_rl_in_rcu(device->fs_info,
3698 				"lost super block write due to IO error on %s (%d)",
3699 				btrfs_dev_name(device),
3700 				blk_status_to_errno(bio->bi_status));
3701 			btrfs_dev_stat_inc_and_print(device,
3702 						     BTRFS_DEV_STAT_WRITE_ERRS);
3703 			/* Ensure failure if the primary sb fails. */
3704 			if (bio->bi_opf & REQ_FUA)
3705 				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3706 					   &device->sb_write_errors);
3707 			else
3708 				atomic_inc(&device->sb_write_errors);
3709 		}
3710 		folio_unlock(fi.folio);
3711 		folio_put(fi.folio);
3712 	}
3713 
3714 	bio_put(bio);
3715 }
3716 
3717 /*
3718  * Write superblock @sb to the @device. Do not wait for completion, all the
3719  * folios we use for writing are locked.
3720  *
3721  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3722  * the expected device size at commit time. Note that max_mirrors must be
3723  * same for write and wait phases.
3724  *
3725  * Return number of errors when folio is not found or submission fails.
3726  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3727 static int write_dev_supers(struct btrfs_device *device,
3728 			    struct btrfs_super_block *sb, int max_mirrors)
3729 {
3730 	struct btrfs_fs_info *fs_info = device->fs_info;
3731 	struct address_space *mapping = device->bdev->bd_mapping;
3732 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3733 	int i;
3734 	int ret;
3735 	u64 bytenr, bytenr_orig;
3736 
3737 	atomic_set(&device->sb_write_errors, 0);
3738 
3739 	if (max_mirrors == 0)
3740 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3741 
3742 	shash->tfm = fs_info->csum_shash;
3743 
3744 	for (i = 0; i < max_mirrors; i++) {
3745 		struct folio *folio;
3746 		struct bio *bio;
3747 		struct btrfs_super_block *disk_super;
3748 		size_t offset;
3749 
3750 		bytenr_orig = btrfs_sb_offset(i);
3751 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3752 		if (ret == -ENOENT) {
3753 			continue;
3754 		} else if (ret < 0) {
3755 			btrfs_err(device->fs_info,
3756 			  "couldn't get super block location for mirror %d error %d",
3757 			  i, ret);
3758 			atomic_inc(&device->sb_write_errors);
3759 			continue;
3760 		}
3761 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3762 		    device->commit_total_bytes)
3763 			break;
3764 
3765 		btrfs_set_super_bytenr(sb, bytenr_orig);
3766 
3767 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3768 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3769 				    sb->csum);
3770 
3771 		folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3772 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3773 					    GFP_NOFS);
3774 		if (IS_ERR(folio)) {
3775 			btrfs_err(device->fs_info,
3776 			  "couldn't get super block page for bytenr %llu error %ld",
3777 			  bytenr, PTR_ERR(folio));
3778 			atomic_inc(&device->sb_write_errors);
3779 			continue;
3780 		}
3781 
3782 		offset = offset_in_folio(folio, bytenr);
3783 		disk_super = folio_address(folio) + offset;
3784 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3785 
3786 		/*
3787 		 * Directly use bios here instead of relying on the page cache
3788 		 * to do I/O, so we don't lose the ability to do integrity
3789 		 * checking.
3790 		 */
3791 		bio = bio_alloc(device->bdev, 1,
3792 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3793 				GFP_NOFS);
3794 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3795 		bio->bi_private = device;
3796 		bio->bi_end_io = btrfs_end_super_write;
3797 		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3798 
3799 		/*
3800 		 * We FUA only the first super block.  The others we allow to
3801 		 * go down lazy and there's a short window where the on-disk
3802 		 * copies might still contain the older version.
3803 		 */
3804 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3805 			bio->bi_opf |= REQ_FUA;
3806 		submit_bio(bio);
3807 
3808 		if (btrfs_advance_sb_log(device, i))
3809 			atomic_inc(&device->sb_write_errors);
3810 	}
3811 	return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3812 }
3813 
3814 /*
3815  * Wait for write completion of superblocks done by write_dev_supers,
3816  * @max_mirrors same for write and wait phases.
3817  *
3818  * Return -1 if primary super block write failed or when there were no super block
3819  * copies written. Otherwise 0.
3820  */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3821 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3822 {
3823 	int i;
3824 	int errors = 0;
3825 	bool primary_failed = false;
3826 	int ret;
3827 	u64 bytenr;
3828 
3829 	if (max_mirrors == 0)
3830 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3831 
3832 	for (i = 0; i < max_mirrors; i++) {
3833 		struct folio *folio;
3834 
3835 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3836 		if (ret == -ENOENT) {
3837 			break;
3838 		} else if (ret < 0) {
3839 			errors++;
3840 			if (i == 0)
3841 				primary_failed = true;
3842 			continue;
3843 		}
3844 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3845 		    device->commit_total_bytes)
3846 			break;
3847 
3848 		folio = filemap_get_folio(device->bdev->bd_mapping,
3849 					  bytenr >> PAGE_SHIFT);
3850 		/* If the folio has been removed, then we know it completed. */
3851 		if (IS_ERR(folio))
3852 			continue;
3853 
3854 		/* Folio will be unlocked once the write completes. */
3855 		folio_wait_locked(folio);
3856 		folio_put(folio);
3857 	}
3858 
3859 	errors += atomic_read(&device->sb_write_errors);
3860 	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3861 		primary_failed = true;
3862 	if (primary_failed) {
3863 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3864 			  device->devid);
3865 		return -1;
3866 	}
3867 
3868 	return errors < i ? 0 : -1;
3869 }
3870 
3871 /*
3872  * endio for the write_dev_flush, this will wake anyone waiting
3873  * for the barrier when it is done
3874  */
btrfs_end_empty_barrier(struct bio * bio)3875 static void btrfs_end_empty_barrier(struct bio *bio)
3876 {
3877 	bio_uninit(bio);
3878 	complete(bio->bi_private);
3879 }
3880 
3881 /*
3882  * Submit a flush request to the device if it supports it. Error handling is
3883  * done in the waiting counterpart.
3884  */
write_dev_flush(struct btrfs_device * device)3885 static void write_dev_flush(struct btrfs_device *device)
3886 {
3887 	struct bio *bio = &device->flush_bio;
3888 
3889 	device->last_flush_error = BLK_STS_OK;
3890 
3891 	bio_init(bio, device->bdev, NULL, 0,
3892 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3893 	bio->bi_end_io = btrfs_end_empty_barrier;
3894 	init_completion(&device->flush_wait);
3895 	bio->bi_private = &device->flush_wait;
3896 	submit_bio(bio);
3897 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3898 }
3899 
3900 /*
3901  * If the flush bio has been submitted by write_dev_flush, wait for it.
3902  * Return true for any error, and false otherwise.
3903  */
wait_dev_flush(struct btrfs_device * device)3904 static bool wait_dev_flush(struct btrfs_device *device)
3905 {
3906 	struct bio *bio = &device->flush_bio;
3907 
3908 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3909 		return false;
3910 
3911 	wait_for_completion_io(&device->flush_wait);
3912 
3913 	if (bio->bi_status) {
3914 		device->last_flush_error = bio->bi_status;
3915 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3916 		return true;
3917 	}
3918 
3919 	return false;
3920 }
3921 
3922 /*
3923  * send an empty flush down to each device in parallel,
3924  * then wait for them
3925  */
barrier_all_devices(struct btrfs_fs_info * info)3926 static int barrier_all_devices(struct btrfs_fs_info *info)
3927 {
3928 	struct list_head *head;
3929 	struct btrfs_device *dev;
3930 	int errors_wait = 0;
3931 
3932 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3933 	/* send down all the barriers */
3934 	head = &info->fs_devices->devices;
3935 	list_for_each_entry(dev, head, dev_list) {
3936 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3937 			continue;
3938 		if (!dev->bdev)
3939 			continue;
3940 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3941 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3942 			continue;
3943 
3944 		write_dev_flush(dev);
3945 	}
3946 
3947 	/* wait for all the barriers */
3948 	list_for_each_entry(dev, head, dev_list) {
3949 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3950 			continue;
3951 		if (!dev->bdev) {
3952 			errors_wait++;
3953 			continue;
3954 		}
3955 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3956 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3957 			continue;
3958 
3959 		if (wait_dev_flush(dev))
3960 			errors_wait++;
3961 	}
3962 
3963 	/*
3964 	 * Checks last_flush_error of disks in order to determine the device
3965 	 * state.
3966 	 */
3967 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3968 		return -EIO;
3969 
3970 	return 0;
3971 }
3972 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3973 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3974 {
3975 	int raid_type;
3976 	int min_tolerated = INT_MAX;
3977 
3978 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3979 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3980 		min_tolerated = min_t(int, min_tolerated,
3981 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3982 				    tolerated_failures);
3983 
3984 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3985 		if (raid_type == BTRFS_RAID_SINGLE)
3986 			continue;
3987 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3988 			continue;
3989 		min_tolerated = min_t(int, min_tolerated,
3990 				    btrfs_raid_array[raid_type].
3991 				    tolerated_failures);
3992 	}
3993 
3994 	if (min_tolerated == INT_MAX) {
3995 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3996 		min_tolerated = 0;
3997 	}
3998 
3999 	return min_tolerated;
4000 }
4001 
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4002 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4003 {
4004 	struct list_head *head;
4005 	struct btrfs_device *dev;
4006 	struct btrfs_super_block *sb;
4007 	struct btrfs_dev_item *dev_item;
4008 	int ret;
4009 	int do_barriers;
4010 	int max_errors;
4011 	int total_errors = 0;
4012 	u64 flags;
4013 
4014 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4015 
4016 	/*
4017 	 * max_mirrors == 0 indicates we're from commit_transaction,
4018 	 * not from fsync where the tree roots in fs_info have not
4019 	 * been consistent on disk.
4020 	 */
4021 	if (max_mirrors == 0)
4022 		backup_super_roots(fs_info);
4023 
4024 	sb = fs_info->super_for_commit;
4025 	dev_item = &sb->dev_item;
4026 
4027 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4028 	head = &fs_info->fs_devices->devices;
4029 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4030 
4031 	if (do_barriers) {
4032 		ret = barrier_all_devices(fs_info);
4033 		if (ret) {
4034 			mutex_unlock(
4035 				&fs_info->fs_devices->device_list_mutex);
4036 			btrfs_handle_fs_error(fs_info, ret,
4037 					      "errors while submitting device barriers.");
4038 			return ret;
4039 		}
4040 	}
4041 
4042 	list_for_each_entry(dev, head, dev_list) {
4043 		if (!dev->bdev) {
4044 			total_errors++;
4045 			continue;
4046 		}
4047 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4048 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4049 			continue;
4050 
4051 		btrfs_set_stack_device_generation(dev_item, 0);
4052 		btrfs_set_stack_device_type(dev_item, dev->type);
4053 		btrfs_set_stack_device_id(dev_item, dev->devid);
4054 		btrfs_set_stack_device_total_bytes(dev_item,
4055 						   dev->commit_total_bytes);
4056 		btrfs_set_stack_device_bytes_used(dev_item,
4057 						  dev->commit_bytes_used);
4058 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4059 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4060 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4061 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4062 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4063 		       BTRFS_FSID_SIZE);
4064 
4065 		flags = btrfs_super_flags(sb);
4066 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4067 
4068 		ret = btrfs_validate_write_super(fs_info, sb);
4069 		if (ret < 0) {
4070 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4071 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4072 				"unexpected superblock corruption detected");
4073 			return -EUCLEAN;
4074 		}
4075 
4076 		ret = write_dev_supers(dev, sb, max_mirrors);
4077 		if (ret)
4078 			total_errors++;
4079 	}
4080 	if (total_errors > max_errors) {
4081 		btrfs_err(fs_info, "%d errors while writing supers",
4082 			  total_errors);
4083 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4084 
4085 		/* FUA is masked off if unsupported and can't be the reason */
4086 		btrfs_handle_fs_error(fs_info, -EIO,
4087 				      "%d errors while writing supers",
4088 				      total_errors);
4089 		return -EIO;
4090 	}
4091 
4092 	total_errors = 0;
4093 	list_for_each_entry(dev, head, dev_list) {
4094 		if (!dev->bdev)
4095 			continue;
4096 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4097 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4098 			continue;
4099 
4100 		ret = wait_dev_supers(dev, max_mirrors);
4101 		if (ret)
4102 			total_errors++;
4103 	}
4104 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4105 	if (total_errors > max_errors) {
4106 		btrfs_handle_fs_error(fs_info, -EIO,
4107 				      "%d errors while writing supers",
4108 				      total_errors);
4109 		return -EIO;
4110 	}
4111 	return 0;
4112 }
4113 
4114 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4115 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4116 				  struct btrfs_root *root)
4117 {
4118 	bool drop_ref = false;
4119 
4120 	spin_lock(&fs_info->fs_roots_radix_lock);
4121 	radix_tree_delete(&fs_info->fs_roots_radix,
4122 			  (unsigned long)btrfs_root_id(root));
4123 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4124 		drop_ref = true;
4125 	spin_unlock(&fs_info->fs_roots_radix_lock);
4126 
4127 	if (BTRFS_FS_ERROR(fs_info)) {
4128 		ASSERT(root->log_root == NULL);
4129 		if (root->reloc_root) {
4130 			btrfs_put_root(root->reloc_root);
4131 			root->reloc_root = NULL;
4132 		}
4133 	}
4134 
4135 	if (drop_ref)
4136 		btrfs_put_root(root);
4137 }
4138 
btrfs_commit_super(struct btrfs_fs_info * fs_info)4139 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4140 {
4141 	mutex_lock(&fs_info->cleaner_mutex);
4142 	btrfs_run_delayed_iputs(fs_info);
4143 	mutex_unlock(&fs_info->cleaner_mutex);
4144 	wake_up_process(fs_info->cleaner_kthread);
4145 
4146 	/* wait until ongoing cleanup work done */
4147 	down_write(&fs_info->cleanup_work_sem);
4148 	up_write(&fs_info->cleanup_work_sem);
4149 
4150 	return btrfs_commit_current_transaction(fs_info->tree_root);
4151 }
4152 
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4153 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4154 {
4155 	struct btrfs_transaction *trans;
4156 	struct btrfs_transaction *tmp;
4157 	bool found = false;
4158 
4159 	/*
4160 	 * This function is only called at the very end of close_ctree(),
4161 	 * thus no other running transaction, no need to take trans_lock.
4162 	 */
4163 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4164 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4165 		struct extent_state *cached = NULL;
4166 		u64 dirty_bytes = 0;
4167 		u64 cur = 0;
4168 		u64 found_start;
4169 		u64 found_end;
4170 
4171 		found = true;
4172 		while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur,
4173 						   &found_start, &found_end,
4174 						   EXTENT_DIRTY, &cached)) {
4175 			dirty_bytes += found_end + 1 - found_start;
4176 			cur = found_end + 1;
4177 		}
4178 		btrfs_warn(fs_info,
4179 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4180 			   trans->transid, dirty_bytes);
4181 		btrfs_cleanup_one_transaction(trans);
4182 
4183 		if (trans == fs_info->running_transaction)
4184 			fs_info->running_transaction = NULL;
4185 		list_del_init(&trans->list);
4186 
4187 		btrfs_put_transaction(trans);
4188 		trace_btrfs_transaction_commit(fs_info);
4189 	}
4190 	ASSERT(!found);
4191 }
4192 
close_ctree(struct btrfs_fs_info * fs_info)4193 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4194 {
4195 	int ret;
4196 
4197 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4198 
4199 	/*
4200 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4201 	 * clear that bit and wake up relocation so it can stop.
4202 	 * We must do this before stopping the block group reclaim task, because
4203 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4204 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4205 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4206 	 * return 1.
4207 	 */
4208 	btrfs_wake_unfinished_drop(fs_info);
4209 
4210 	/*
4211 	 * We may have the reclaim task running and relocating a data block group,
4212 	 * in which case it may create delayed iputs. So stop it before we park
4213 	 * the cleaner kthread otherwise we can get new delayed iputs after
4214 	 * parking the cleaner, and that can make the async reclaim task to hang
4215 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4216 	 * parked and can not run delayed iputs - this will make us hang when
4217 	 * trying to stop the async reclaim task.
4218 	 */
4219 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4220 	/*
4221 	 * We don't want the cleaner to start new transactions, add more delayed
4222 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4223 	 * because that frees the task_struct, and the transaction kthread might
4224 	 * still try to wake up the cleaner.
4225 	 */
4226 	kthread_park(fs_info->cleaner_kthread);
4227 
4228 	/* wait for the qgroup rescan worker to stop */
4229 	btrfs_qgroup_wait_for_completion(fs_info, false);
4230 
4231 	/* wait for the uuid_scan task to finish */
4232 	down(&fs_info->uuid_tree_rescan_sem);
4233 	/* avoid complains from lockdep et al., set sem back to initial state */
4234 	up(&fs_info->uuid_tree_rescan_sem);
4235 
4236 	/* pause restriper - we want to resume on mount */
4237 	btrfs_pause_balance(fs_info);
4238 
4239 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4240 
4241 	btrfs_scrub_cancel(fs_info);
4242 
4243 	/* wait for any defraggers to finish */
4244 	wait_event(fs_info->transaction_wait,
4245 		   (atomic_read(&fs_info->defrag_running) == 0));
4246 
4247 	/* clear out the rbtree of defraggable inodes */
4248 	btrfs_cleanup_defrag_inodes(fs_info);
4249 
4250 	/*
4251 	 * Handle the error fs first, as it will flush and wait for all ordered
4252 	 * extents.  This will generate delayed iputs, thus we want to handle
4253 	 * it first.
4254 	 */
4255 	if (unlikely(BTRFS_FS_ERROR(fs_info)))
4256 		btrfs_error_commit_super(fs_info);
4257 
4258 	/*
4259 	 * Wait for any fixup workers to complete.
4260 	 * If we don't wait for them here and they are still running by the time
4261 	 * we call kthread_stop() against the cleaner kthread further below, we
4262 	 * get an use-after-free on the cleaner because the fixup worker adds an
4263 	 * inode to the list of delayed iputs and then attempts to wakeup the
4264 	 * cleaner kthread, which was already stopped and destroyed. We parked
4265 	 * already the cleaner, but below we run all pending delayed iputs.
4266 	 */
4267 	btrfs_flush_workqueue(fs_info->fixup_workers);
4268 	/*
4269 	 * Similar case here, we have to wait for delalloc workers before we
4270 	 * proceed below and stop the cleaner kthread, otherwise we trigger a
4271 	 * use-after-tree on the cleaner kthread task_struct when a delalloc
4272 	 * worker running submit_compressed_extents() adds a delayed iput, which
4273 	 * does a wake up on the cleaner kthread, which was already freed below
4274 	 * when we call kthread_stop().
4275 	 */
4276 	btrfs_flush_workqueue(fs_info->delalloc_workers);
4277 
4278 	/*
4279 	 * We can have ordered extents getting their last reference dropped from
4280 	 * the fs_info->workers queue because for async writes for data bios we
4281 	 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs
4282 	 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio
4283 	 * has an error, and that later function can do the final
4284 	 * btrfs_put_ordered_extent() on the ordered extent attached to the bio,
4285 	 * which adds a delayed iput for the inode. So we must flush the queue
4286 	 * so that we don't have delayed iputs after committing the current
4287 	 * transaction below and stopping the cleaner and transaction kthreads.
4288 	 */
4289 	btrfs_flush_workqueue(fs_info->workers);
4290 
4291 	/*
4292 	 * When finishing a compressed write bio we schedule a work queue item
4293 	 * to finish an ordered extent - btrfs_finish_compressed_write_work()
4294 	 * calls btrfs_finish_ordered_extent() which in turns does a call to
4295 	 * btrfs_queue_ordered_fn(), and that queues the ordered extent
4296 	 * completion either in the endio_write_workers work queue or in the
4297 	 * fs_info->endio_freespace_worker work queue. We flush those queues
4298 	 * below, so before we flush them we must flush this queue for the
4299 	 * workers of compressed writes.
4300 	 */
4301 	flush_workqueue(fs_info->compressed_write_workers);
4302 
4303 	/*
4304 	 * After we parked the cleaner kthread, ordered extents may have
4305 	 * completed and created new delayed iputs. If one of the async reclaim
4306 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4307 	 * can hang forever trying to stop it, because if a delayed iput is
4308 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4309 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4310 	 * no one else to run iputs.
4311 	 *
4312 	 * So wait for all ongoing ordered extents to complete and then run
4313 	 * delayed iputs. This works because once we reach this point no one
4314 	 * can create new ordered extents, but delayed iputs can still be added
4315 	 * by a reclaim worker (see comments further below).
4316 	 *
4317 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4318 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4319 	 * but the delayed iput for the respective inode is made only when doing
4320 	 * the final btrfs_put_ordered_extent() (which must happen at
4321 	 * btrfs_finish_ordered_io() when we are unmounting).
4322 	 */
4323 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4324 	/* Ordered extents for free space inodes. */
4325 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4326 	/*
4327 	 * Run delayed iputs in case an async reclaim worker is waiting for them
4328 	 * to be run as mentioned above.
4329 	 */
4330 	btrfs_run_delayed_iputs(fs_info);
4331 
4332 	cancel_work_sync(&fs_info->async_reclaim_work);
4333 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4334 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4335 	cancel_work_sync(&fs_info->em_shrinker_work);
4336 
4337 	/*
4338 	 * Run delayed iputs again because an async reclaim worker may have
4339 	 * added new ones if it was flushing delalloc:
4340 	 *
4341 	 * shrink_delalloc() -> btrfs_start_delalloc_roots() ->
4342 	 *    start_delalloc_inodes() -> btrfs_add_delayed_iput()
4343 	 */
4344 	btrfs_run_delayed_iputs(fs_info);
4345 
4346 	/* There should be no more workload to generate new delayed iputs. */
4347 	set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state);
4348 
4349 	/* Cancel or finish ongoing discard work */
4350 	btrfs_discard_cleanup(fs_info);
4351 
4352 	if (!sb_rdonly(fs_info->sb)) {
4353 		/*
4354 		 * The cleaner kthread is stopped, so do one final pass over
4355 		 * unused block groups.
4356 		 */
4357 		btrfs_delete_unused_bgs(fs_info);
4358 
4359 		/*
4360 		 * There might be existing delayed inode workers still running
4361 		 * and holding an empty delayed inode item. We must wait for
4362 		 * them to complete first because they can create a transaction.
4363 		 * This happens when someone calls btrfs_balance_delayed_items()
4364 		 * and then a transaction commit runs the same delayed nodes
4365 		 * before any delayed worker has done something with the nodes.
4366 		 * We must wait for any worker here and not at transaction
4367 		 * commit time since that could cause a deadlock.
4368 		 * This is a very rare case.
4369 		 */
4370 		btrfs_flush_workqueue(fs_info->delayed_workers);
4371 
4372 		ret = btrfs_commit_super(fs_info);
4373 		if (ret)
4374 			btrfs_err(fs_info, "commit super ret %d", ret);
4375 	}
4376 
4377 	kthread_stop(fs_info->transaction_kthread);
4378 	kthread_stop(fs_info->cleaner_kthread);
4379 
4380 	ASSERT(list_empty(&fs_info->delayed_iputs));
4381 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4382 
4383 	if (btrfs_check_quota_leak(fs_info)) {
4384 		DEBUG_WARN("qgroup reserved space leaked");
4385 		btrfs_err(fs_info, "qgroup reserved space leaked");
4386 	}
4387 
4388 	btrfs_free_qgroup_config(fs_info);
4389 	ASSERT(list_empty(&fs_info->delalloc_roots));
4390 
4391 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4392 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4393 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4394 	}
4395 
4396 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4397 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4398 			   percpu_counter_sum(&fs_info->ordered_bytes));
4399 
4400 	btrfs_sysfs_remove_mounted(fs_info);
4401 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4402 
4403 	btrfs_put_block_group_cache(fs_info);
4404 
4405 	/*
4406 	 * we must make sure there is not any read request to
4407 	 * submit after we stopping all workers.
4408 	 */
4409 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4410 	btrfs_stop_all_workers(fs_info);
4411 
4412 	/* We shouldn't have any transaction open at this point */
4413 	warn_about_uncommitted_trans(fs_info);
4414 
4415 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4416 	free_root_pointers(fs_info, true);
4417 	btrfs_free_fs_roots(fs_info);
4418 
4419 	/*
4420 	 * We must free the block groups after dropping the fs_roots as we could
4421 	 * have had an IO error and have left over tree log blocks that aren't
4422 	 * cleaned up until the fs roots are freed.  This makes the block group
4423 	 * accounting appear to be wrong because there's pending reserved bytes,
4424 	 * so make sure we do the block group cleanup afterwards.
4425 	 */
4426 	btrfs_free_block_groups(fs_info);
4427 
4428 	iput(fs_info->btree_inode);
4429 
4430 	btrfs_mapping_tree_free(fs_info);
4431 	btrfs_close_devices(fs_info->fs_devices);
4432 }
4433 
btrfs_mark_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * buf)4434 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4435 			     struct extent_buffer *buf)
4436 {
4437 	struct btrfs_fs_info *fs_info = buf->fs_info;
4438 	u64 transid = btrfs_header_generation(buf);
4439 
4440 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4441 	/*
4442 	 * This is a fast path so only do this check if we have sanity tests
4443 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4444 	 * outside of the sanity tests.
4445 	 */
4446 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4447 		return;
4448 #endif
4449 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4450 	ASSERT(trans->transid == fs_info->generation);
4451 	btrfs_assert_tree_write_locked(buf);
4452 	if (unlikely(transid != fs_info->generation)) {
4453 		btrfs_abort_transaction(trans, -EUCLEAN);
4454 		btrfs_crit(fs_info,
4455 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4456 			   buf->start, transid, fs_info->generation);
4457 	}
4458 	set_extent_buffer_dirty(buf);
4459 }
4460 
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4461 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4462 					int flush_delayed)
4463 {
4464 	/*
4465 	 * looks as though older kernels can get into trouble with
4466 	 * this code, they end up stuck in balance_dirty_pages forever
4467 	 */
4468 	int ret;
4469 
4470 	if (current->flags & PF_MEMALLOC)
4471 		return;
4472 
4473 	if (flush_delayed)
4474 		btrfs_balance_delayed_items(fs_info);
4475 
4476 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4477 				     BTRFS_DIRTY_METADATA_THRESH,
4478 				     fs_info->dirty_metadata_batch);
4479 	if (ret > 0) {
4480 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4481 	}
4482 }
4483 
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4484 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4485 {
4486 	__btrfs_btree_balance_dirty(fs_info, 1);
4487 }
4488 
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4489 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4490 {
4491 	__btrfs_btree_balance_dirty(fs_info, 0);
4492 }
4493 
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4494 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4495 {
4496 	/* cleanup FS via transaction */
4497 	btrfs_cleanup_transaction(fs_info);
4498 
4499 	down_write(&fs_info->cleanup_work_sem);
4500 	up_write(&fs_info->cleanup_work_sem);
4501 }
4502 
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4503 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4504 {
4505 	struct btrfs_root *gang[8];
4506 	u64 root_objectid = 0;
4507 	int ret;
4508 
4509 	spin_lock(&fs_info->fs_roots_radix_lock);
4510 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4511 					     (void **)gang, root_objectid,
4512 					     ARRAY_SIZE(gang))) != 0) {
4513 		int i;
4514 
4515 		for (i = 0; i < ret; i++)
4516 			gang[i] = btrfs_grab_root(gang[i]);
4517 		spin_unlock(&fs_info->fs_roots_radix_lock);
4518 
4519 		for (i = 0; i < ret; i++) {
4520 			if (!gang[i])
4521 				continue;
4522 			root_objectid = btrfs_root_id(gang[i]);
4523 			btrfs_free_log(NULL, gang[i]);
4524 			btrfs_put_root(gang[i]);
4525 		}
4526 		root_objectid++;
4527 		spin_lock(&fs_info->fs_roots_radix_lock);
4528 	}
4529 	spin_unlock(&fs_info->fs_roots_radix_lock);
4530 	btrfs_free_log_root_tree(NULL, fs_info);
4531 }
4532 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4533 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4534 {
4535 	struct btrfs_ordered_extent *ordered;
4536 
4537 	spin_lock(&root->ordered_extent_lock);
4538 	/*
4539 	 * This will just short circuit the ordered completion stuff which will
4540 	 * make sure the ordered extent gets properly cleaned up.
4541 	 */
4542 	list_for_each_entry(ordered, &root->ordered_extents,
4543 			    root_extent_list)
4544 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4545 	spin_unlock(&root->ordered_extent_lock);
4546 }
4547 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4548 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4549 {
4550 	struct btrfs_root *root;
4551 	LIST_HEAD(splice);
4552 
4553 	spin_lock(&fs_info->ordered_root_lock);
4554 	list_splice_init(&fs_info->ordered_roots, &splice);
4555 	while (!list_empty(&splice)) {
4556 		root = list_first_entry(&splice, struct btrfs_root,
4557 					ordered_root);
4558 		list_move_tail(&root->ordered_root,
4559 			       &fs_info->ordered_roots);
4560 
4561 		spin_unlock(&fs_info->ordered_root_lock);
4562 		btrfs_destroy_ordered_extents(root);
4563 
4564 		cond_resched();
4565 		spin_lock(&fs_info->ordered_root_lock);
4566 	}
4567 	spin_unlock(&fs_info->ordered_root_lock);
4568 
4569 	/*
4570 	 * We need this here because if we've been flipped read-only we won't
4571 	 * get sync() from the umount, so we need to make sure any ordered
4572 	 * extents that haven't had their dirty pages IO start writeout yet
4573 	 * actually get run and error out properly.
4574 	 */
4575 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4576 }
4577 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4578 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4579 {
4580 	struct btrfs_inode *btrfs_inode;
4581 	LIST_HEAD(splice);
4582 
4583 	spin_lock(&root->delalloc_lock);
4584 	list_splice_init(&root->delalloc_inodes, &splice);
4585 
4586 	while (!list_empty(&splice)) {
4587 		struct inode *inode = NULL;
4588 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4589 					       delalloc_inodes);
4590 		btrfs_del_delalloc_inode(btrfs_inode);
4591 		spin_unlock(&root->delalloc_lock);
4592 
4593 		/*
4594 		 * Make sure we get a live inode and that it'll not disappear
4595 		 * meanwhile.
4596 		 */
4597 		inode = igrab(&btrfs_inode->vfs_inode);
4598 		if (inode) {
4599 			unsigned int nofs_flag;
4600 
4601 			nofs_flag = memalloc_nofs_save();
4602 			invalidate_inode_pages2(inode->i_mapping);
4603 			memalloc_nofs_restore(nofs_flag);
4604 			iput(inode);
4605 		}
4606 		spin_lock(&root->delalloc_lock);
4607 	}
4608 	spin_unlock(&root->delalloc_lock);
4609 }
4610 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4611 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4612 {
4613 	struct btrfs_root *root;
4614 	LIST_HEAD(splice);
4615 
4616 	spin_lock(&fs_info->delalloc_root_lock);
4617 	list_splice_init(&fs_info->delalloc_roots, &splice);
4618 	while (!list_empty(&splice)) {
4619 		root = list_first_entry(&splice, struct btrfs_root,
4620 					 delalloc_root);
4621 		root = btrfs_grab_root(root);
4622 		BUG_ON(!root);
4623 		spin_unlock(&fs_info->delalloc_root_lock);
4624 
4625 		btrfs_destroy_delalloc_inodes(root);
4626 		btrfs_put_root(root);
4627 
4628 		spin_lock(&fs_info->delalloc_root_lock);
4629 	}
4630 	spin_unlock(&fs_info->delalloc_root_lock);
4631 }
4632 
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4633 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4634 					 struct extent_io_tree *dirty_pages,
4635 					 int mark)
4636 {
4637 	struct extent_buffer *eb;
4638 	u64 start = 0;
4639 	u64 end;
4640 
4641 	while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
4642 					   mark, NULL)) {
4643 		btrfs_clear_extent_bits(dirty_pages, start, end, mark);
4644 		while (start <= end) {
4645 			eb = find_extent_buffer(fs_info, start);
4646 			start += fs_info->nodesize;
4647 			if (!eb)
4648 				continue;
4649 
4650 			btrfs_tree_lock(eb);
4651 			wait_on_extent_buffer_writeback(eb);
4652 			btrfs_clear_buffer_dirty(NULL, eb);
4653 			btrfs_tree_unlock(eb);
4654 
4655 			free_extent_buffer_stale(eb);
4656 		}
4657 	}
4658 }
4659 
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4660 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4661 					struct extent_io_tree *unpin)
4662 {
4663 	u64 start;
4664 	u64 end;
4665 
4666 	while (1) {
4667 		struct extent_state *cached_state = NULL;
4668 
4669 		/*
4670 		 * The btrfs_finish_extent_commit() may get the same range as
4671 		 * ours between find_first_extent_bit and clear_extent_dirty.
4672 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4673 		 * the same extent range.
4674 		 */
4675 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4676 		if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end,
4677 						 EXTENT_DIRTY, &cached_state)) {
4678 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4679 			break;
4680 		}
4681 
4682 		btrfs_clear_extent_dirty(unpin, start, end, &cached_state);
4683 		btrfs_free_extent_state(cached_state);
4684 		btrfs_error_unpin_extent_range(fs_info, start, end);
4685 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4686 		cond_resched();
4687 	}
4688 }
4689 
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4690 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4691 {
4692 	struct inode *inode;
4693 
4694 	inode = cache->io_ctl.inode;
4695 	if (inode) {
4696 		unsigned int nofs_flag;
4697 
4698 		nofs_flag = memalloc_nofs_save();
4699 		invalidate_inode_pages2(inode->i_mapping);
4700 		memalloc_nofs_restore(nofs_flag);
4701 
4702 		BTRFS_I(inode)->generation = 0;
4703 		cache->io_ctl.inode = NULL;
4704 		iput(inode);
4705 	}
4706 	ASSERT(cache->io_ctl.pages == NULL);
4707 	btrfs_put_block_group(cache);
4708 }
4709 
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4710 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4711 			     struct btrfs_fs_info *fs_info)
4712 {
4713 	struct btrfs_block_group *cache;
4714 
4715 	spin_lock(&cur_trans->dirty_bgs_lock);
4716 	while (!list_empty(&cur_trans->dirty_bgs)) {
4717 		cache = list_first_entry(&cur_trans->dirty_bgs,
4718 					 struct btrfs_block_group,
4719 					 dirty_list);
4720 
4721 		if (!list_empty(&cache->io_list)) {
4722 			spin_unlock(&cur_trans->dirty_bgs_lock);
4723 			list_del_init(&cache->io_list);
4724 			btrfs_cleanup_bg_io(cache);
4725 			spin_lock(&cur_trans->dirty_bgs_lock);
4726 		}
4727 
4728 		list_del_init(&cache->dirty_list);
4729 		spin_lock(&cache->lock);
4730 		cache->disk_cache_state = BTRFS_DC_ERROR;
4731 		spin_unlock(&cache->lock);
4732 
4733 		spin_unlock(&cur_trans->dirty_bgs_lock);
4734 		btrfs_put_block_group(cache);
4735 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4736 		spin_lock(&cur_trans->dirty_bgs_lock);
4737 	}
4738 	spin_unlock(&cur_trans->dirty_bgs_lock);
4739 
4740 	/*
4741 	 * Refer to the definition of io_bgs member for details why it's safe
4742 	 * to use it without any locking
4743 	 */
4744 	while (!list_empty(&cur_trans->io_bgs)) {
4745 		cache = list_first_entry(&cur_trans->io_bgs,
4746 					 struct btrfs_block_group,
4747 					 io_list);
4748 
4749 		list_del_init(&cache->io_list);
4750 		spin_lock(&cache->lock);
4751 		cache->disk_cache_state = BTRFS_DC_ERROR;
4752 		spin_unlock(&cache->lock);
4753 		btrfs_cleanup_bg_io(cache);
4754 	}
4755 }
4756 
btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info * fs_info)4757 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4758 {
4759 	struct btrfs_root *gang[8];
4760 	int i;
4761 	int ret;
4762 
4763 	spin_lock(&fs_info->fs_roots_radix_lock);
4764 	while (1) {
4765 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4766 						 (void **)gang, 0,
4767 						 ARRAY_SIZE(gang),
4768 						 BTRFS_ROOT_TRANS_TAG);
4769 		if (ret == 0)
4770 			break;
4771 		for (i = 0; i < ret; i++) {
4772 			struct btrfs_root *root = gang[i];
4773 
4774 			btrfs_qgroup_free_meta_all_pertrans(root);
4775 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4776 					(unsigned long)btrfs_root_id(root),
4777 					BTRFS_ROOT_TRANS_TAG);
4778 		}
4779 	}
4780 	spin_unlock(&fs_info->fs_roots_radix_lock);
4781 }
4782 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans)4783 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
4784 {
4785 	struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4786 	struct btrfs_device *dev, *tmp;
4787 
4788 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4789 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4790 	ASSERT(list_empty(&cur_trans->io_bgs));
4791 
4792 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4793 				 post_commit_list) {
4794 		list_del_init(&dev->post_commit_list);
4795 	}
4796 
4797 	btrfs_destroy_delayed_refs(cur_trans);
4798 
4799 	cur_trans->state = TRANS_STATE_COMMIT_START;
4800 	wake_up(&fs_info->transaction_blocked_wait);
4801 
4802 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4803 	wake_up(&fs_info->transaction_wait);
4804 
4805 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4806 				     EXTENT_DIRTY);
4807 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4808 
4809 	cur_trans->state =TRANS_STATE_COMPLETED;
4810 	wake_up(&cur_trans->commit_wait);
4811 }
4812 
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4813 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4814 {
4815 	struct btrfs_transaction *t;
4816 
4817 	mutex_lock(&fs_info->transaction_kthread_mutex);
4818 
4819 	spin_lock(&fs_info->trans_lock);
4820 	while (!list_empty(&fs_info->trans_list)) {
4821 		t = list_first_entry(&fs_info->trans_list,
4822 				     struct btrfs_transaction, list);
4823 		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4824 			refcount_inc(&t->use_count);
4825 			spin_unlock(&fs_info->trans_lock);
4826 			btrfs_wait_for_commit(fs_info, t->transid);
4827 			btrfs_put_transaction(t);
4828 			spin_lock(&fs_info->trans_lock);
4829 			continue;
4830 		}
4831 		if (t == fs_info->running_transaction) {
4832 			t->state = TRANS_STATE_COMMIT_DOING;
4833 			spin_unlock(&fs_info->trans_lock);
4834 			/*
4835 			 * We wait for 0 num_writers since we don't hold a trans
4836 			 * handle open currently for this transaction.
4837 			 */
4838 			wait_event(t->writer_wait,
4839 				   atomic_read(&t->num_writers) == 0);
4840 		} else {
4841 			spin_unlock(&fs_info->trans_lock);
4842 		}
4843 		btrfs_cleanup_one_transaction(t);
4844 
4845 		spin_lock(&fs_info->trans_lock);
4846 		if (t == fs_info->running_transaction)
4847 			fs_info->running_transaction = NULL;
4848 		list_del_init(&t->list);
4849 		spin_unlock(&fs_info->trans_lock);
4850 
4851 		btrfs_put_transaction(t);
4852 		trace_btrfs_transaction_commit(fs_info);
4853 		spin_lock(&fs_info->trans_lock);
4854 	}
4855 	spin_unlock(&fs_info->trans_lock);
4856 	btrfs_destroy_all_ordered_extents(fs_info);
4857 	btrfs_destroy_delayed_inodes(fs_info);
4858 	btrfs_assert_delayed_root_empty(fs_info);
4859 	btrfs_destroy_all_delalloc_inodes(fs_info);
4860 	btrfs_drop_all_logs(fs_info);
4861 	btrfs_free_all_qgroup_pertrans(fs_info);
4862 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4863 
4864 	return 0;
4865 }
4866 
btrfs_init_root_free_objectid(struct btrfs_root * root)4867 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4868 {
4869 	BTRFS_PATH_AUTO_FREE(path);
4870 	int ret;
4871 	struct extent_buffer *l;
4872 	struct btrfs_key search_key;
4873 	struct btrfs_key found_key;
4874 	int slot;
4875 
4876 	path = btrfs_alloc_path();
4877 	if (!path)
4878 		return -ENOMEM;
4879 
4880 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4881 	search_key.type = -1;
4882 	search_key.offset = (u64)-1;
4883 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4884 	if (ret < 0)
4885 		return ret;
4886 	if (ret == 0) {
4887 		/*
4888 		 * Key with offset -1 found, there would have to exist a root
4889 		 * with such id, but this is out of valid range.
4890 		 */
4891 		return -EUCLEAN;
4892 	}
4893 	if (path->slots[0] > 0) {
4894 		slot = path->slots[0] - 1;
4895 		l = path->nodes[0];
4896 		btrfs_item_key_to_cpu(l, &found_key, slot);
4897 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4898 					    BTRFS_FIRST_FREE_OBJECTID);
4899 	} else {
4900 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4901 	}
4902 
4903 	return 0;
4904 }
4905 
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)4906 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4907 {
4908 	int ret;
4909 	mutex_lock(&root->objectid_mutex);
4910 
4911 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4912 		btrfs_warn(root->fs_info,
4913 			   "the objectid of root %llu reaches its highest value",
4914 			   btrfs_root_id(root));
4915 		ret = -ENOSPC;
4916 		goto out;
4917 	}
4918 
4919 	*objectid = root->free_objectid++;
4920 	ret = 0;
4921 out:
4922 	mutex_unlock(&root->objectid_mutex);
4923 	return ret;
4924 }
4925