1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74
75 struct btrfs_iget_args {
76 u64 ino;
77 struct btrfs_root *root;
78 };
79
80 struct btrfs_rename_ctx {
81 /* Output field. Stores the index number of the old directory entry. */
82 u64 index;
83 };
84
85 /*
86 * Used by data_reloc_print_warning_inode() to pass needed info for filename
87 * resolution and output of error message.
88 */
89 struct data_reloc_warn {
90 struct btrfs_path path;
91 struct btrfs_fs_info *fs_info;
92 u64 extent_item_size;
93 u64 logical;
94 int mirror_num;
95 };
96
97 /*
98 * For the file_extent_tree, we want to hold the inode lock when we lookup and
99 * update the disk_i_size, but lockdep will complain because our io_tree we hold
100 * the tree lock and get the inode lock when setting delalloc. These two things
101 * are unrelated, so make a class for the file_extent_tree so we don't get the
102 * two locking patterns mixed up.
103 */
104 static struct lock_class_key file_extent_tree_class;
105
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112
113 static struct kmem_cache *btrfs_inode_cachep;
114
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 struct folio *locked_folio, u64 start,
120 u64 end, struct writeback_control *wbc,
121 bool pages_dirty);
122
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 u64 root, void *warn_ctx)
125 {
126 struct data_reloc_warn *warn = warn_ctx;
127 struct btrfs_fs_info *fs_info = warn->fs_info;
128 struct extent_buffer *eb;
129 struct btrfs_inode_item *inode_item;
130 struct inode_fs_paths *ipath = NULL;
131 struct btrfs_root *local_root;
132 struct btrfs_key key;
133 unsigned int nofs_flag;
134 u32 nlink;
135 int ret;
136
137 local_root = btrfs_get_fs_root(fs_info, root, true);
138 if (IS_ERR(local_root)) {
139 ret = PTR_ERR(local_root);
140 goto err;
141 }
142
143 /* This makes the path point to (inum INODE_ITEM ioff). */
144 key.objectid = inum;
145 key.type = BTRFS_INODE_ITEM_KEY;
146 key.offset = 0;
147
148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 if (ret) {
150 btrfs_put_root(local_root);
151 btrfs_release_path(&warn->path);
152 goto err;
153 }
154
155 eb = warn->path.nodes[0];
156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 nlink = btrfs_inode_nlink(eb, inode_item);
158 btrfs_release_path(&warn->path);
159
160 nofs_flag = memalloc_nofs_save();
161 ipath = init_ipath(4096, local_root, &warn->path);
162 memalloc_nofs_restore(nofs_flag);
163 if (IS_ERR(ipath)) {
164 btrfs_put_root(local_root);
165 ret = PTR_ERR(ipath);
166 ipath = NULL;
167 /*
168 * -ENOMEM, not a critical error, just output an generic error
169 * without filename.
170 */
171 btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 warn->logical, warn->mirror_num, root, inum, offset);
174 return ret;
175 }
176 ret = paths_from_inode(inum, ipath);
177 if (ret < 0)
178 goto err;
179
180 /*
181 * We deliberately ignore the bit ipath might have been too small to
182 * hold all of the paths here
183 */
184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 warn->logical, warn->mirror_num, root, inum, offset,
188 fs_info->sectorsize, nlink,
189 (char *)(unsigned long)ipath->fspath->val[i]);
190 }
191
192 btrfs_put_root(local_root);
193 free_ipath(ipath);
194 return 0;
195
196 err:
197 btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 warn->logical, warn->mirror_num, root, inum, offset, ret);
200
201 free_ipath(ipath);
202 return ret;
203 }
204
205 /*
206 * Do extra user-friendly error output (e.g. lookup all the affected files).
207 *
208 * Return true if we succeeded doing the backref lookup.
209 * Return false if such lookup failed, and has to fallback to the old error message.
210 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 const u8 *csum, const u8 *csum_expected,
213 int mirror_num)
214 {
215 struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 struct btrfs_path path = { 0 };
217 struct btrfs_key found_key = { 0 };
218 struct extent_buffer *eb;
219 struct btrfs_extent_item *ei;
220 const u32 csum_size = fs_info->csum_size;
221 u64 logical;
222 u64 flags;
223 u32 item_size;
224 int ret;
225
226 mutex_lock(&fs_info->reloc_mutex);
227 logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 mutex_unlock(&fs_info->reloc_mutex);
229
230 if (logical == U64_MAX) {
231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 CSUM_FMT_VALUE(csum_size, csum),
236 CSUM_FMT_VALUE(csum_size, csum_expected),
237 mirror_num);
238 return;
239 }
240
241 logical += file_off;
242 btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 btrfs_root_id(inode->root),
245 btrfs_ino(inode), file_off, logical,
246 CSUM_FMT_VALUE(csum_size, csum),
247 CSUM_FMT_VALUE(csum_size, csum_expected),
248 mirror_num);
249
250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 if (ret < 0) {
252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 logical, ret);
254 return;
255 }
256 eb = path.nodes[0];
257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 item_size = btrfs_item_size(eb, path.slots[0]);
259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 unsigned long ptr = 0;
261 u64 ref_root;
262 u8 ref_level;
263
264 while (true) {
265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 item_size, &ref_root,
267 &ref_level);
268 if (ret < 0) {
269 btrfs_warn_rl(fs_info,
270 "failed to resolve tree backref for logical %llu: %d",
271 logical, ret);
272 break;
273 }
274 if (ret > 0)
275 break;
276
277 btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 logical, mirror_num,
280 (ref_level ? "node" : "leaf"),
281 ref_level, ref_root);
282 }
283 btrfs_release_path(&path);
284 } else {
285 struct btrfs_backref_walk_ctx ctx = { 0 };
286 struct data_reloc_warn reloc_warn = { 0 };
287
288 btrfs_release_path(&path);
289
290 ctx.bytenr = found_key.objectid;
291 ctx.extent_item_pos = logical - found_key.objectid;
292 ctx.fs_info = fs_info;
293
294 reloc_warn.logical = logical;
295 reloc_warn.extent_item_size = found_key.offset;
296 reloc_warn.mirror_num = mirror_num;
297 reloc_warn.fs_info = fs_info;
298
299 iterate_extent_inodes(&ctx, true,
300 data_reloc_print_warning_inode, &reloc_warn);
301 }
302 }
303
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 struct btrfs_root *root = inode->root;
308 const u32 csum_size = root->fs_info->csum_size;
309
310 /* For data reloc tree, it's better to do a backref lookup instead. */
311 if (btrfs_is_data_reloc_root(root))
312 return print_data_reloc_error(inode, logical_start, csum,
313 csum_expected, mirror_num);
314
315 /* Output without objectid, which is more meaningful */
316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 btrfs_root_id(root), btrfs_ino(inode),
320 logical_start,
321 CSUM_FMT_VALUE(csum_size, csum),
322 CSUM_FMT_VALUE(csum_size, csum_expected),
323 mirror_num);
324 } else {
325 btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 btrfs_root_id(root), btrfs_ino(inode),
328 logical_start,
329 CSUM_FMT_VALUE(csum_size, csum),
330 CSUM_FMT_VALUE(csum_size, csum_expected),
331 mirror_num);
332 }
333 }
334
335 /*
336 * Lock inode i_rwsem based on arguments passed.
337 *
338 * ilock_flags can have the following bit set:
339 *
340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342 * return -EAGAIN
343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 if (ilock_flags & BTRFS_ILOCK_TRY) {
349 if (!inode_trylock_shared(&inode->vfs_inode))
350 return -EAGAIN;
351 else
352 return 0;
353 }
354 inode_lock_shared(&inode->vfs_inode);
355 } else {
356 if (ilock_flags & BTRFS_ILOCK_TRY) {
357 if (!inode_trylock(&inode->vfs_inode))
358 return -EAGAIN;
359 else
360 return 0;
361 }
362 inode_lock(&inode->vfs_inode);
363 }
364 if (ilock_flags & BTRFS_ILOCK_MMAP)
365 down_write(&inode->i_mmap_lock);
366 return 0;
367 }
368
369 /*
370 * Unock inode i_rwsem.
371 *
372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373 * to decide whether the lock acquired is shared or exclusive.
374 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 if (ilock_flags & BTRFS_ILOCK_MMAP)
378 up_write(&inode->i_mmap_lock);
379 if (ilock_flags & BTRFS_ILOCK_SHARED)
380 inode_unlock_shared(&inode->vfs_inode);
381 else
382 inode_unlock(&inode->vfs_inode);
383 }
384
385 /*
386 * Cleanup all submitted ordered extents in specified range to handle errors
387 * from the btrfs_run_delalloc_range() callback.
388 *
389 * NOTE: caller must ensure that when an error happens, it can not call
390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392 * to be released, which we want to happen only when finishing the ordered
393 * extent (btrfs_finish_ordered_io()).
394 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,u64 offset,u64 bytes)395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 u64 offset, u64 bytes)
397 {
398 pgoff_t index = offset >> PAGE_SHIFT;
399 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT;
400 struct folio *folio;
401
402 while (index <= end_index) {
403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
404 if (IS_ERR(folio)) {
405 index++;
406 continue;
407 }
408
409 index = folio_end(folio) >> PAGE_SHIFT;
410 /*
411 * Here we just clear all Ordered bits for every page in the
412 * range, then btrfs_mark_ordered_io_finished() will handle
413 * the ordered extent accounting for the range.
414 */
415 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
416 offset, bytes);
417 folio_put(folio);
418 }
419
420 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
421 }
422
423 static int btrfs_dirty_inode(struct btrfs_inode *inode);
424
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)425 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
426 struct btrfs_new_inode_args *args)
427 {
428 int ret;
429
430 if (args->default_acl) {
431 ret = __btrfs_set_acl(trans, args->inode, args->default_acl,
432 ACL_TYPE_DEFAULT);
433 if (ret)
434 return ret;
435 }
436 if (args->acl) {
437 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
438 if (ret)
439 return ret;
440 }
441 if (!args->default_acl && !args->acl)
442 cache_no_acl(args->inode);
443 return btrfs_xattr_security_init(trans, args->inode, args->dir,
444 &args->dentry->d_name);
445 }
446
447 /*
448 * this does all the hard work for inserting an inline extent into
449 * the btree. The caller should have done a btrfs_drop_extents so that
450 * no overlapping inline items exist in the btree
451 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)452 static int insert_inline_extent(struct btrfs_trans_handle *trans,
453 struct btrfs_path *path,
454 struct btrfs_inode *inode, bool extent_inserted,
455 size_t size, size_t compressed_size,
456 int compress_type,
457 struct folio *compressed_folio,
458 bool update_i_size)
459 {
460 struct btrfs_root *root = inode->root;
461 struct extent_buffer *leaf;
462 const u32 sectorsize = trans->fs_info->sectorsize;
463 char *kaddr;
464 unsigned long ptr;
465 struct btrfs_file_extent_item *ei;
466 int ret;
467 size_t cur_size = size;
468 u64 i_size;
469
470 /*
471 * The decompressed size must still be no larger than a sector. Under
472 * heavy race, we can have size == 0 passed in, but that shouldn't be a
473 * big deal and we can continue the insertion.
474 */
475 ASSERT(size <= sectorsize);
476
477 /*
478 * The compressed size also needs to be no larger than a sector.
479 * That's also why we only need one page as the parameter.
480 */
481 if (compressed_folio)
482 ASSERT(compressed_size <= sectorsize);
483 else
484 ASSERT(compressed_size == 0);
485
486 if (compressed_size && compressed_folio)
487 cur_size = compressed_size;
488
489 if (!extent_inserted) {
490 struct btrfs_key key;
491 size_t datasize;
492
493 key.objectid = btrfs_ino(inode);
494 key.type = BTRFS_EXTENT_DATA_KEY;
495 key.offset = 0;
496
497 datasize = btrfs_file_extent_calc_inline_size(cur_size);
498 ret = btrfs_insert_empty_item(trans, root, path, &key,
499 datasize);
500 if (ret)
501 goto fail;
502 }
503 leaf = path->nodes[0];
504 ei = btrfs_item_ptr(leaf, path->slots[0],
505 struct btrfs_file_extent_item);
506 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
507 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
508 btrfs_set_file_extent_encryption(leaf, ei, 0);
509 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
510 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
511 ptr = btrfs_file_extent_inline_start(ei);
512
513 if (compress_type != BTRFS_COMPRESS_NONE) {
514 kaddr = kmap_local_folio(compressed_folio, 0);
515 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
516 kunmap_local(kaddr);
517
518 btrfs_set_file_extent_compression(leaf, ei,
519 compress_type);
520 } else {
521 struct folio *folio;
522
523 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
524 ASSERT(!IS_ERR(folio));
525 btrfs_set_file_extent_compression(leaf, ei, 0);
526 kaddr = kmap_local_folio(folio, 0);
527 write_extent_buffer(leaf, kaddr, ptr, size);
528 kunmap_local(kaddr);
529 folio_put(folio);
530 }
531 btrfs_release_path(path);
532
533 /*
534 * We align size to sectorsize for inline extents just for simplicity
535 * sake.
536 */
537 ret = btrfs_inode_set_file_extent_range(inode, 0,
538 ALIGN(size, root->fs_info->sectorsize));
539 if (ret)
540 goto fail;
541
542 /*
543 * We're an inline extent, so nobody can extend the file past i_size
544 * without locking a page we already have locked.
545 *
546 * We must do any i_size and inode updates before we unlock the pages.
547 * Otherwise we could end up racing with unlink.
548 */
549 i_size = i_size_read(&inode->vfs_inode);
550 if (update_i_size && size > i_size) {
551 i_size_write(&inode->vfs_inode, size);
552 i_size = size;
553 }
554 inode->disk_i_size = i_size;
555
556 fail:
557 return ret;
558 }
559
can_cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size)560 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
561 u64 offset, u64 size,
562 size_t compressed_size)
563 {
564 struct btrfs_fs_info *fs_info = inode->root->fs_info;
565 u64 data_len = (compressed_size ?: size);
566
567 /* Inline extents must start at offset 0. */
568 if (offset != 0)
569 return false;
570
571 /* Inline extents are limited to sectorsize. */
572 if (size > fs_info->sectorsize)
573 return false;
574
575 /* We do not allow a non-compressed extent to be as large as block size. */
576 if (data_len >= fs_info->sectorsize)
577 return false;
578
579 /* We cannot exceed the maximum inline data size. */
580 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
581 return false;
582
583 /* We cannot exceed the user specified max_inline size. */
584 if (data_len > fs_info->max_inline)
585 return false;
586
587 /* Inline extents must be the entirety of the file. */
588 if (size < i_size_read(&inode->vfs_inode))
589 return false;
590
591 return true;
592 }
593
594 /*
595 * conditionally insert an inline extent into the file. This
596 * does the checks required to make sure the data is small enough
597 * to fit as an inline extent.
598 *
599 * If being used directly, you must have already checked we're allowed to cow
600 * the range by getting true from can_cow_file_range_inline().
601 */
__cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)602 static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
603 u64 size, size_t compressed_size,
604 int compress_type,
605 struct folio *compressed_folio,
606 bool update_i_size)
607 {
608 struct btrfs_drop_extents_args drop_args = { 0 };
609 struct btrfs_root *root = inode->root;
610 struct btrfs_fs_info *fs_info = root->fs_info;
611 struct btrfs_trans_handle *trans;
612 u64 data_len = (compressed_size ?: size);
613 int ret;
614 struct btrfs_path *path;
615
616 path = btrfs_alloc_path();
617 if (!path)
618 return -ENOMEM;
619
620 trans = btrfs_join_transaction(root);
621 if (IS_ERR(trans)) {
622 btrfs_free_path(path);
623 return PTR_ERR(trans);
624 }
625 trans->block_rsv = &inode->block_rsv;
626
627 drop_args.path = path;
628 drop_args.start = 0;
629 drop_args.end = fs_info->sectorsize;
630 drop_args.drop_cache = true;
631 drop_args.replace_extent = true;
632 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
633 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
634 if (ret) {
635 btrfs_abort_transaction(trans, ret);
636 goto out;
637 }
638
639 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
640 size, compressed_size, compress_type,
641 compressed_folio, update_i_size);
642 if (ret && ret != -ENOSPC) {
643 btrfs_abort_transaction(trans, ret);
644 goto out;
645 } else if (ret == -ENOSPC) {
646 ret = 1;
647 goto out;
648 }
649
650 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
651 ret = btrfs_update_inode(trans, inode);
652 if (ret && ret != -ENOSPC) {
653 btrfs_abort_transaction(trans, ret);
654 goto out;
655 } else if (ret == -ENOSPC) {
656 ret = 1;
657 goto out;
658 }
659
660 btrfs_set_inode_full_sync(inode);
661 out:
662 /*
663 * Don't forget to free the reserved space, as for inlined extent
664 * it won't count as data extent, free them directly here.
665 * And at reserve time, it's always aligned to page size, so
666 * just free one page here.
667 */
668 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL);
669 btrfs_free_path(path);
670 btrfs_end_transaction(trans);
671 return ret;
672 }
673
cow_file_range_inline(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 end,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)674 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
675 struct folio *locked_folio,
676 u64 offset, u64 end,
677 size_t compressed_size,
678 int compress_type,
679 struct folio *compressed_folio,
680 bool update_i_size)
681 {
682 struct extent_state *cached = NULL;
683 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
684 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
685 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
686 int ret;
687
688 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
689 return 1;
690
691 btrfs_lock_extent(&inode->io_tree, offset, end, &cached);
692 ret = __cow_file_range_inline(inode, size, compressed_size,
693 compress_type, compressed_folio,
694 update_i_size);
695 if (ret > 0) {
696 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached);
697 return ret;
698 }
699
700 /*
701 * In the successful case (ret == 0 here), cow_file_range will return 1.
702 *
703 * Quite a bit further up the callstack in extent_writepage(), ret == 1
704 * is treated as a short circuited success and does not unlock the folio,
705 * so we must do it here.
706 *
707 * In the failure case, the locked_folio does get unlocked by
708 * btrfs_folio_end_all_writers, which asserts that it is still locked
709 * at that point, so we must *not* unlock it here.
710 *
711 * The other two callsites in compress_file_range do not have a
712 * locked_folio, so they are not relevant to this logic.
713 */
714 if (ret == 0)
715 locked_folio = NULL;
716
717 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
718 clear_flags, PAGE_UNLOCK |
719 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
720 return ret;
721 }
722
723 struct async_extent {
724 u64 start;
725 u64 ram_size;
726 u64 compressed_size;
727 struct folio **folios;
728 unsigned long nr_folios;
729 int compress_type;
730 struct list_head list;
731 };
732
733 struct async_chunk {
734 struct btrfs_inode *inode;
735 struct folio *locked_folio;
736 u64 start;
737 u64 end;
738 blk_opf_t write_flags;
739 struct list_head extents;
740 struct cgroup_subsys_state *blkcg_css;
741 struct btrfs_work work;
742 struct async_cow *async_cow;
743 };
744
745 struct async_cow {
746 atomic_t num_chunks;
747 struct async_chunk chunks[];
748 };
749
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct folio ** folios,unsigned long nr_folios,int compress_type)750 static noinline int add_async_extent(struct async_chunk *cow,
751 u64 start, u64 ram_size,
752 u64 compressed_size,
753 struct folio **folios,
754 unsigned long nr_folios,
755 int compress_type)
756 {
757 struct async_extent *async_extent;
758
759 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
760 if (!async_extent)
761 return -ENOMEM;
762 async_extent->start = start;
763 async_extent->ram_size = ram_size;
764 async_extent->compressed_size = compressed_size;
765 async_extent->folios = folios;
766 async_extent->nr_folios = nr_folios;
767 async_extent->compress_type = compress_type;
768 list_add_tail(&async_extent->list, &cow->extents);
769 return 0;
770 }
771
772 /*
773 * Check if the inode needs to be submitted to compression, based on mount
774 * options, defragmentation, properties or heuristics.
775 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)776 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
777 u64 end)
778 {
779 struct btrfs_fs_info *fs_info = inode->root->fs_info;
780
781 if (!btrfs_inode_can_compress(inode)) {
782 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode));
783 return 0;
784 }
785
786 /* Defrag ioctl takes precedence over mount options and properties. */
787 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS)
788 return 0;
789 if (BTRFS_COMPRESS_NONE < inode->defrag_compress &&
790 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES)
791 return 1;
792 /* force compress */
793 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
794 return 1;
795 /* bad compression ratios */
796 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
797 return 0;
798 if (btrfs_test_opt(fs_info, COMPRESS) ||
799 inode->flags & BTRFS_INODE_COMPRESS ||
800 inode->prop_compress)
801 return btrfs_compress_heuristic(inode, start, end);
802 return 0;
803 }
804
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)805 static inline void inode_should_defrag(struct btrfs_inode *inode,
806 u64 start, u64 end, u64 num_bytes, u32 small_write)
807 {
808 /* If this is a small write inside eof, kick off a defrag */
809 if (num_bytes < small_write &&
810 (start > 0 || end + 1 < inode->disk_i_size))
811 btrfs_add_inode_defrag(inode, small_write);
812 }
813
extent_range_clear_dirty_for_io(struct btrfs_inode * inode,u64 start,u64 end)814 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end)
815 {
816 const pgoff_t end_index = end >> PAGE_SHIFT;
817 struct folio *folio;
818 int ret = 0;
819
820 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) {
821 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
822 if (IS_ERR(folio)) {
823 if (!ret)
824 ret = PTR_ERR(folio);
825 continue;
826 }
827 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start,
828 end + 1 - start);
829 folio_put(folio);
830 }
831 return ret;
832 }
833
834 /*
835 * Work queue call back to started compression on a file and pages.
836 *
837 * This is done inside an ordered work queue, and the compression is spread
838 * across many cpus. The actual IO submission is step two, and the ordered work
839 * queue takes care of making sure that happens in the same order things were
840 * put onto the queue by writepages and friends.
841 *
842 * If this code finds it can't get good compression, it puts an entry onto the
843 * work queue to write the uncompressed bytes. This makes sure that both
844 * compressed inodes and uncompressed inodes are written in the same order that
845 * the flusher thread sent them down.
846 */
compress_file_range(struct btrfs_work * work)847 static void compress_file_range(struct btrfs_work *work)
848 {
849 struct async_chunk *async_chunk =
850 container_of(work, struct async_chunk, work);
851 struct btrfs_inode *inode = async_chunk->inode;
852 struct btrfs_fs_info *fs_info = inode->root->fs_info;
853 struct address_space *mapping = inode->vfs_inode.i_mapping;
854 u64 blocksize = fs_info->sectorsize;
855 u64 start = async_chunk->start;
856 u64 end = async_chunk->end;
857 u64 actual_end;
858 u64 i_size;
859 int ret = 0;
860 struct folio **folios;
861 unsigned long nr_folios;
862 unsigned long total_compressed = 0;
863 unsigned long total_in = 0;
864 unsigned int poff;
865 int i;
866 int compress_type = fs_info->compress_type;
867 int compress_level = fs_info->compress_level;
868
869 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
870
871 /*
872 * We need to call clear_page_dirty_for_io on each page in the range.
873 * Otherwise applications with the file mmap'd can wander in and change
874 * the page contents while we are compressing them.
875 */
876 ret = extent_range_clear_dirty_for_io(inode, start, end);
877
878 /*
879 * All the folios should have been locked thus no failure.
880 *
881 * And even if some folios are missing, btrfs_compress_folios()
882 * would handle them correctly, so here just do an ASSERT() check for
883 * early logic errors.
884 */
885 ASSERT(ret == 0);
886
887 /*
888 * We need to save i_size before now because it could change in between
889 * us evaluating the size and assigning it. This is because we lock and
890 * unlock the page in truncate and fallocate, and then modify the i_size
891 * later on.
892 *
893 * The barriers are to emulate READ_ONCE, remove that once i_size_read
894 * does that for us.
895 */
896 barrier();
897 i_size = i_size_read(&inode->vfs_inode);
898 barrier();
899 actual_end = min_t(u64, i_size, end + 1);
900 again:
901 folios = NULL;
902 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
903 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
904
905 /*
906 * we don't want to send crud past the end of i_size through
907 * compression, that's just a waste of CPU time. So, if the
908 * end of the file is before the start of our current
909 * requested range of bytes, we bail out to the uncompressed
910 * cleanup code that can deal with all of this.
911 *
912 * It isn't really the fastest way to fix things, but this is a
913 * very uncommon corner.
914 */
915 if (actual_end <= start)
916 goto cleanup_and_bail_uncompressed;
917
918 total_compressed = actual_end - start;
919
920 /*
921 * Skip compression for a small file range(<=blocksize) that
922 * isn't an inline extent, since it doesn't save disk space at all.
923 */
924 if (total_compressed <= blocksize &&
925 (start > 0 || end + 1 < inode->disk_i_size))
926 goto cleanup_and_bail_uncompressed;
927
928 total_compressed = min_t(unsigned long, total_compressed,
929 BTRFS_MAX_UNCOMPRESSED);
930 total_in = 0;
931 ret = 0;
932
933 /*
934 * We do compression for mount -o compress and when the inode has not
935 * been flagged as NOCOMPRESS. This flag can change at any time if we
936 * discover bad compression ratios.
937 */
938 if (!inode_need_compress(inode, start, end))
939 goto cleanup_and_bail_uncompressed;
940
941 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
942 if (!folios) {
943 /*
944 * Memory allocation failure is not a fatal error, we can fall
945 * back to uncompressed code.
946 */
947 goto cleanup_and_bail_uncompressed;
948 }
949
950 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) {
951 compress_type = inode->defrag_compress;
952 compress_level = inode->defrag_compress_level;
953 } else if (inode->prop_compress) {
954 compress_type = inode->prop_compress;
955 }
956
957 /* Compression level is applied here. */
958 ret = btrfs_compress_folios(compress_type, compress_level,
959 mapping, start, folios, &nr_folios, &total_in,
960 &total_compressed);
961 if (ret)
962 goto mark_incompressible;
963
964 /*
965 * Zero the tail end of the last page, as we might be sending it down
966 * to disk.
967 */
968 poff = offset_in_page(total_compressed);
969 if (poff)
970 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
971
972 /*
973 * Try to create an inline extent.
974 *
975 * If we didn't compress the entire range, try to create an uncompressed
976 * inline extent, else a compressed one.
977 *
978 * Check cow_file_range() for why we don't even try to create inline
979 * extent for the subpage case.
980 */
981 if (total_in < actual_end)
982 ret = cow_file_range_inline(inode, NULL, start, end, 0,
983 BTRFS_COMPRESS_NONE, NULL, false);
984 else
985 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
986 compress_type, folios[0], false);
987 if (ret <= 0) {
988 if (ret < 0)
989 mapping_set_error(mapping, -EIO);
990 goto free_pages;
991 }
992
993 /*
994 * We aren't doing an inline extent. Round the compressed size up to a
995 * block size boundary so the allocator does sane things.
996 */
997 total_compressed = ALIGN(total_compressed, blocksize);
998
999 /*
1000 * One last check to make sure the compression is really a win, compare
1001 * the page count read with the blocks on disk, compression must free at
1002 * least one sector.
1003 */
1004 total_in = round_up(total_in, fs_info->sectorsize);
1005 if (total_compressed + blocksize > total_in)
1006 goto mark_incompressible;
1007
1008 /*
1009 * The async work queues will take care of doing actual allocation on
1010 * disk for these compressed pages, and will submit the bios.
1011 */
1012 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1013 nr_folios, compress_type);
1014 BUG_ON(ret);
1015 if (start + total_in < end) {
1016 start += total_in;
1017 cond_resched();
1018 goto again;
1019 }
1020 return;
1021
1022 mark_incompressible:
1023 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1024 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1025 cleanup_and_bail_uncompressed:
1026 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1027 BTRFS_COMPRESS_NONE);
1028 BUG_ON(ret);
1029 free_pages:
1030 if (folios) {
1031 for (i = 0; i < nr_folios; i++) {
1032 WARN_ON(folios[i]->mapping);
1033 btrfs_free_compr_folio(folios[i]);
1034 }
1035 kfree(folios);
1036 }
1037 }
1038
free_async_extent_pages(struct async_extent * async_extent)1039 static void free_async_extent_pages(struct async_extent *async_extent)
1040 {
1041 int i;
1042
1043 if (!async_extent->folios)
1044 return;
1045
1046 for (i = 0; i < async_extent->nr_folios; i++) {
1047 WARN_ON(async_extent->folios[i]->mapping);
1048 btrfs_free_compr_folio(async_extent->folios[i]);
1049 }
1050 kfree(async_extent->folios);
1051 async_extent->nr_folios = 0;
1052 async_extent->folios = NULL;
1053 }
1054
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct folio * locked_folio)1055 static void submit_uncompressed_range(struct btrfs_inode *inode,
1056 struct async_extent *async_extent,
1057 struct folio *locked_folio)
1058 {
1059 u64 start = async_extent->start;
1060 u64 end = async_extent->start + async_extent->ram_size - 1;
1061 int ret;
1062 struct writeback_control wbc = {
1063 .sync_mode = WB_SYNC_ALL,
1064 .range_start = start,
1065 .range_end = end,
1066 .no_cgroup_owner = 1,
1067 };
1068
1069 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1070 ret = run_delalloc_cow(inode, locked_folio, start, end,
1071 &wbc, false);
1072 wbc_detach_inode(&wbc);
1073 if (ret < 0) {
1074 if (locked_folio)
1075 btrfs_folio_end_lock(inode->root->fs_info, locked_folio,
1076 start, async_extent->ram_size);
1077 btrfs_err_rl(inode->root->fs_info,
1078 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1079 __func__, btrfs_root_id(inode->root),
1080 btrfs_ino(inode), start, async_extent->ram_size, ret);
1081 }
1082 }
1083
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1084 static void submit_one_async_extent(struct async_chunk *async_chunk,
1085 struct async_extent *async_extent,
1086 u64 *alloc_hint)
1087 {
1088 struct btrfs_inode *inode = async_chunk->inode;
1089 struct extent_io_tree *io_tree = &inode->io_tree;
1090 struct btrfs_root *root = inode->root;
1091 struct btrfs_fs_info *fs_info = root->fs_info;
1092 struct btrfs_ordered_extent *ordered;
1093 struct btrfs_file_extent file_extent;
1094 struct btrfs_key ins;
1095 struct folio *locked_folio = NULL;
1096 struct extent_state *cached = NULL;
1097 struct extent_map *em;
1098 int ret = 0;
1099 bool free_pages = false;
1100 u64 start = async_extent->start;
1101 u64 end = async_extent->start + async_extent->ram_size - 1;
1102
1103 if (async_chunk->blkcg_css)
1104 kthread_associate_blkcg(async_chunk->blkcg_css);
1105
1106 /*
1107 * If async_chunk->locked_folio is in the async_extent range, we need to
1108 * handle it.
1109 */
1110 if (async_chunk->locked_folio) {
1111 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1112 u64 locked_folio_end = locked_folio_start +
1113 folio_size(async_chunk->locked_folio) - 1;
1114
1115 if (!(start >= locked_folio_end || end <= locked_folio_start))
1116 locked_folio = async_chunk->locked_folio;
1117 }
1118
1119 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1120 ASSERT(!async_extent->folios);
1121 ASSERT(async_extent->nr_folios == 0);
1122 submit_uncompressed_range(inode, async_extent, locked_folio);
1123 free_pages = true;
1124 goto done;
1125 }
1126
1127 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1128 async_extent->compressed_size,
1129 async_extent->compressed_size,
1130 0, *alloc_hint, &ins, 1, 1);
1131 if (ret) {
1132 /*
1133 * We can't reserve contiguous space for the compressed size.
1134 * Unlikely, but it's possible that we could have enough
1135 * non-contiguous space for the uncompressed size instead. So
1136 * fall back to uncompressed.
1137 */
1138 submit_uncompressed_range(inode, async_extent, locked_folio);
1139 free_pages = true;
1140 goto done;
1141 }
1142
1143 btrfs_lock_extent(io_tree, start, end, &cached);
1144
1145 /* Here we're doing allocation and writeback of the compressed pages */
1146 file_extent.disk_bytenr = ins.objectid;
1147 file_extent.disk_num_bytes = ins.offset;
1148 file_extent.ram_bytes = async_extent->ram_size;
1149 file_extent.num_bytes = async_extent->ram_size;
1150 file_extent.offset = 0;
1151 file_extent.compression = async_extent->compress_type;
1152
1153 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1154 if (IS_ERR(em)) {
1155 ret = PTR_ERR(em);
1156 goto out_free_reserve;
1157 }
1158 btrfs_free_extent_map(em);
1159
1160 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1161 1U << BTRFS_ORDERED_COMPRESSED);
1162 if (IS_ERR(ordered)) {
1163 btrfs_drop_extent_map_range(inode, start, end, false);
1164 ret = PTR_ERR(ordered);
1165 goto out_free_reserve;
1166 }
1167 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1168
1169 /* Clear dirty, set writeback and unlock the pages. */
1170 extent_clear_unlock_delalloc(inode, start, end,
1171 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1172 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1173 btrfs_submit_compressed_write(ordered,
1174 async_extent->folios, /* compressed_folios */
1175 async_extent->nr_folios,
1176 async_chunk->write_flags, true);
1177 *alloc_hint = ins.objectid + ins.offset;
1178 done:
1179 if (async_chunk->blkcg_css)
1180 kthread_associate_blkcg(NULL);
1181 if (free_pages)
1182 free_async_extent_pages(async_extent);
1183 kfree(async_extent);
1184 return;
1185
1186 out_free_reserve:
1187 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1188 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1189 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1190 extent_clear_unlock_delalloc(inode, start, end,
1191 NULL, &cached,
1192 EXTENT_LOCKED | EXTENT_DELALLOC |
1193 EXTENT_DELALLOC_NEW |
1194 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1195 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1196 PAGE_END_WRITEBACK);
1197 free_async_extent_pages(async_extent);
1198 if (async_chunk->blkcg_css)
1199 kthread_associate_blkcg(NULL);
1200 btrfs_debug(fs_info,
1201 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1202 btrfs_root_id(root), btrfs_ino(inode), start,
1203 async_extent->ram_size, ret);
1204 kfree(async_extent);
1205 }
1206
btrfs_get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1207 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1208 u64 num_bytes)
1209 {
1210 struct extent_map_tree *em_tree = &inode->extent_tree;
1211 struct extent_map *em;
1212 u64 alloc_hint = 0;
1213
1214 read_lock(&em_tree->lock);
1215 em = btrfs_search_extent_mapping(em_tree, start, num_bytes);
1216 if (em) {
1217 /*
1218 * if block start isn't an actual block number then find the
1219 * first block in this inode and use that as a hint. If that
1220 * block is also bogus then just don't worry about it.
1221 */
1222 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1223 btrfs_free_extent_map(em);
1224 em = btrfs_search_extent_mapping(em_tree, 0, 0);
1225 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1226 alloc_hint = btrfs_extent_map_block_start(em);
1227 if (em)
1228 btrfs_free_extent_map(em);
1229 } else {
1230 alloc_hint = btrfs_extent_map_block_start(em);
1231 btrfs_free_extent_map(em);
1232 }
1233 }
1234 read_unlock(&em_tree->lock);
1235
1236 return alloc_hint;
1237 }
1238
1239 /*
1240 * when extent_io.c finds a delayed allocation range in the file,
1241 * the call backs end up in this code. The basic idea is to
1242 * allocate extents on disk for the range, and create ordered data structs
1243 * in ram to track those extents.
1244 *
1245 * locked_folio is the folio that writepage had locked already. We use
1246 * it to make sure we don't do extra locks or unlocks.
1247 *
1248 * When this function fails, it unlocks all pages except @locked_folio.
1249 *
1250 * When this function successfully creates an inline extent, it returns 1 and
1251 * unlocks all pages including locked_folio and starts I/O on them.
1252 * (In reality inline extents are limited to a single page, so locked_folio is
1253 * the only page handled anyway).
1254 *
1255 * When this function succeed and creates a normal extent, the page locking
1256 * status depends on the passed in flags:
1257 *
1258 * - If @keep_locked is set, all pages are kept locked.
1259 * - Else all pages except for @locked_folio are unlocked.
1260 *
1261 * When a failure happens in the second or later iteration of the
1262 * while-loop, the ordered extents created in previous iterations are cleaned up.
1263 */
cow_file_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,u64 * done_offset,bool keep_locked,bool no_inline)1264 static noinline int cow_file_range(struct btrfs_inode *inode,
1265 struct folio *locked_folio, u64 start,
1266 u64 end, u64 *done_offset,
1267 bool keep_locked, bool no_inline)
1268 {
1269 struct btrfs_root *root = inode->root;
1270 struct btrfs_fs_info *fs_info = root->fs_info;
1271 struct extent_state *cached = NULL;
1272 u64 alloc_hint = 0;
1273 u64 orig_start = start;
1274 u64 num_bytes;
1275 u64 cur_alloc_size = 0;
1276 u64 min_alloc_size;
1277 u64 blocksize = fs_info->sectorsize;
1278 struct btrfs_key ins;
1279 struct extent_map *em;
1280 unsigned clear_bits;
1281 unsigned long page_ops;
1282 int ret = 0;
1283
1284 if (btrfs_is_free_space_inode(inode)) {
1285 ret = -EINVAL;
1286 goto out_unlock;
1287 }
1288
1289 num_bytes = ALIGN(end - start + 1, blocksize);
1290 num_bytes = max(blocksize, num_bytes);
1291 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1292
1293 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1294
1295 if (!no_inline) {
1296 /* lets try to make an inline extent */
1297 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1298 BTRFS_COMPRESS_NONE, NULL, false);
1299 if (ret <= 0) {
1300 /*
1301 * We succeeded, return 1 so the caller knows we're done
1302 * with this page and already handled the IO.
1303 *
1304 * If there was an error then cow_file_range_inline() has
1305 * already done the cleanup.
1306 */
1307 if (ret == 0)
1308 ret = 1;
1309 goto done;
1310 }
1311 }
1312
1313 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1314
1315 /*
1316 * We're not doing compressed IO, don't unlock the first page (which
1317 * the caller expects to stay locked), don't clear any dirty bits and
1318 * don't set any writeback bits.
1319 *
1320 * Do set the Ordered (Private2) bit so we know this page was properly
1321 * setup for writepage.
1322 */
1323 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1324 page_ops |= PAGE_SET_ORDERED;
1325
1326 /*
1327 * Relocation relies on the relocated extents to have exactly the same
1328 * size as the original extents. Normally writeback for relocation data
1329 * extents follows a NOCOW path because relocation preallocates the
1330 * extents. However, due to an operation such as scrub turning a block
1331 * group to RO mode, it may fallback to COW mode, so we must make sure
1332 * an extent allocated during COW has exactly the requested size and can
1333 * not be split into smaller extents, otherwise relocation breaks and
1334 * fails during the stage where it updates the bytenr of file extent
1335 * items.
1336 */
1337 if (btrfs_is_data_reloc_root(root))
1338 min_alloc_size = num_bytes;
1339 else
1340 min_alloc_size = fs_info->sectorsize;
1341
1342 while (num_bytes > 0) {
1343 struct btrfs_ordered_extent *ordered;
1344 struct btrfs_file_extent file_extent;
1345
1346 ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1347 min_alloc_size, 0, alloc_hint,
1348 &ins, 1, 1);
1349 if (ret == -EAGAIN) {
1350 /*
1351 * btrfs_reserve_extent only returns -EAGAIN for zoned
1352 * file systems, which is an indication that there are
1353 * no active zones to allocate from at the moment.
1354 *
1355 * If this is the first loop iteration, wait for at
1356 * least one zone to finish before retrying the
1357 * allocation. Otherwise ask the caller to write out
1358 * the already allocated blocks before coming back to
1359 * us, or return -ENOSPC if it can't handle retries.
1360 */
1361 ASSERT(btrfs_is_zoned(fs_info));
1362 if (start == orig_start) {
1363 wait_on_bit_io(&inode->root->fs_info->flags,
1364 BTRFS_FS_NEED_ZONE_FINISH,
1365 TASK_UNINTERRUPTIBLE);
1366 continue;
1367 }
1368 if (done_offset) {
1369 /*
1370 * Move @end to the end of the processed range,
1371 * and exit the loop to unlock the processed extents.
1372 */
1373 end = start - 1;
1374 ret = 0;
1375 break;
1376 }
1377 ret = -ENOSPC;
1378 }
1379 if (ret < 0)
1380 goto out_unlock;
1381 cur_alloc_size = ins.offset;
1382
1383 file_extent.disk_bytenr = ins.objectid;
1384 file_extent.disk_num_bytes = ins.offset;
1385 file_extent.num_bytes = ins.offset;
1386 file_extent.ram_bytes = ins.offset;
1387 file_extent.offset = 0;
1388 file_extent.compression = BTRFS_COMPRESS_NONE;
1389
1390 /*
1391 * Locked range will be released either during error clean up or
1392 * after the whole range is finished.
1393 */
1394 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1395 &cached);
1396
1397 em = btrfs_create_io_em(inode, start, &file_extent,
1398 BTRFS_ORDERED_REGULAR);
1399 if (IS_ERR(em)) {
1400 btrfs_unlock_extent(&inode->io_tree, start,
1401 start + cur_alloc_size - 1, &cached);
1402 ret = PTR_ERR(em);
1403 goto out_reserve;
1404 }
1405 btrfs_free_extent_map(em);
1406
1407 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1408 1U << BTRFS_ORDERED_REGULAR);
1409 if (IS_ERR(ordered)) {
1410 btrfs_unlock_extent(&inode->io_tree, start,
1411 start + cur_alloc_size - 1, &cached);
1412 ret = PTR_ERR(ordered);
1413 goto out_drop_extent_cache;
1414 }
1415
1416 if (btrfs_is_data_reloc_root(root)) {
1417 ret = btrfs_reloc_clone_csums(ordered);
1418
1419 /*
1420 * Only drop cache here, and process as normal.
1421 *
1422 * We must not allow extent_clear_unlock_delalloc()
1423 * at out_unlock label to free meta of this ordered
1424 * extent, as its meta should be freed by
1425 * btrfs_finish_ordered_io().
1426 *
1427 * So we must continue until @start is increased to
1428 * skip current ordered extent.
1429 */
1430 if (ret)
1431 btrfs_drop_extent_map_range(inode, start,
1432 start + cur_alloc_size - 1,
1433 false);
1434 }
1435 btrfs_put_ordered_extent(ordered);
1436
1437 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1438
1439 if (num_bytes < cur_alloc_size)
1440 num_bytes = 0;
1441 else
1442 num_bytes -= cur_alloc_size;
1443 alloc_hint = ins.objectid + ins.offset;
1444 start += cur_alloc_size;
1445 cur_alloc_size = 0;
1446
1447 /*
1448 * btrfs_reloc_clone_csums() error, since start is increased
1449 * extent_clear_unlock_delalloc() at out_unlock label won't
1450 * free metadata of current ordered extent, we're OK to exit.
1451 */
1452 if (ret)
1453 goto out_unlock;
1454 }
1455 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached,
1456 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops);
1457 done:
1458 if (done_offset)
1459 *done_offset = end;
1460 return ret;
1461
1462 out_drop_extent_cache:
1463 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1464 out_reserve:
1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1466 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
1467 out_unlock:
1468 /*
1469 * Now, we have three regions to clean up:
1470 *
1471 * |-------(1)----|---(2)---|-------------(3)----------|
1472 * `- orig_start `- start `- start + cur_alloc_size `- end
1473 *
1474 * We process each region below.
1475 */
1476
1477 /*
1478 * For the range (1). We have already instantiated the ordered extents
1479 * for this region, thus we need to cleanup those ordered extents.
1480 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV
1481 * are also handled by the ordered extents cleanup.
1482 *
1483 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and
1484 * finish the writeback of the involved folios, which will be never submitted.
1485 */
1486 if (orig_start < start) {
1487 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC;
1488 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1489
1490 if (!locked_folio)
1491 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1492
1493 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start);
1494 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1495 locked_folio, NULL, clear_bits, page_ops);
1496 }
1497
1498 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1499 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1500 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1501
1502 /*
1503 * For the range (2). If we reserved an extent for our delalloc range
1504 * (or a subrange) and failed to create the respective ordered extent,
1505 * then it means that when we reserved the extent we decremented the
1506 * extent's size from the data space_info's bytes_may_use counter and
1507 * incremented the space_info's bytes_reserved counter by the same
1508 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1509 * to decrement again the data space_info's bytes_may_use counter,
1510 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1511 */
1512 if (cur_alloc_size) {
1513 extent_clear_unlock_delalloc(inode, start,
1514 start + cur_alloc_size - 1,
1515 locked_folio, &cached, clear_bits,
1516 page_ops);
1517 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1518 }
1519
1520 /*
1521 * For the range (3). We never touched the region. In addition to the
1522 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1523 * space_info's bytes_may_use counter, reserved in
1524 * btrfs_check_data_free_space().
1525 */
1526 if (start + cur_alloc_size < end) {
1527 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1528 extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1529 end, locked_folio,
1530 &cached, clear_bits, page_ops);
1531 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1532 end - start - cur_alloc_size + 1, NULL);
1533 }
1534 btrfs_err_rl(fs_info,
1535 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
1536 __func__, btrfs_root_id(inode->root),
1537 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret);
1538 return ret;
1539 }
1540
1541 /*
1542 * Phase two of compressed writeback. This is the ordered portion of the code,
1543 * which only gets called in the order the work was queued. We walk all the
1544 * async extents created by compress_file_range and send them down to the disk.
1545 *
1546 * If called with @do_free == true then it'll try to finish the work and free
1547 * the work struct eventually.
1548 */
submit_compressed_extents(struct btrfs_work * work,bool do_free)1549 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1550 {
1551 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1552 work);
1553 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1554 struct async_extent *async_extent;
1555 unsigned long nr_pages;
1556 u64 alloc_hint = 0;
1557
1558 if (do_free) {
1559 struct async_cow *async_cow;
1560
1561 btrfs_add_delayed_iput(async_chunk->inode);
1562 if (async_chunk->blkcg_css)
1563 css_put(async_chunk->blkcg_css);
1564
1565 async_cow = async_chunk->async_cow;
1566 if (atomic_dec_and_test(&async_cow->num_chunks))
1567 kvfree(async_cow);
1568 return;
1569 }
1570
1571 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1572 PAGE_SHIFT;
1573
1574 while (!list_empty(&async_chunk->extents)) {
1575 async_extent = list_first_entry(&async_chunk->extents,
1576 struct async_extent, list);
1577 list_del(&async_extent->list);
1578 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1579 }
1580
1581 /* atomic_sub_return implies a barrier */
1582 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1583 5 * SZ_1M)
1584 cond_wake_up_nomb(&fs_info->async_submit_wait);
1585 }
1586
run_delalloc_compressed(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)1587 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1588 struct folio *locked_folio, u64 start,
1589 u64 end, struct writeback_control *wbc)
1590 {
1591 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1592 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1593 struct async_cow *ctx;
1594 struct async_chunk *async_chunk;
1595 unsigned long nr_pages;
1596 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1597 int i;
1598 unsigned nofs_flag;
1599 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1600
1601 nofs_flag = memalloc_nofs_save();
1602 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1603 memalloc_nofs_restore(nofs_flag);
1604 if (!ctx)
1605 return false;
1606
1607 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1608
1609 async_chunk = ctx->chunks;
1610 atomic_set(&ctx->num_chunks, num_chunks);
1611
1612 for (i = 0; i < num_chunks; i++) {
1613 u64 cur_end = min(end, start + SZ_512K - 1);
1614
1615 /*
1616 * igrab is called higher up in the call chain, take only the
1617 * lightweight reference for the callback lifetime
1618 */
1619 ihold(&inode->vfs_inode);
1620 async_chunk[i].async_cow = ctx;
1621 async_chunk[i].inode = inode;
1622 async_chunk[i].start = start;
1623 async_chunk[i].end = cur_end;
1624 async_chunk[i].write_flags = write_flags;
1625 INIT_LIST_HEAD(&async_chunk[i].extents);
1626
1627 /*
1628 * The locked_folio comes all the way from writepage and its
1629 * the original folio we were actually given. As we spread
1630 * this large delalloc region across multiple async_chunk
1631 * structs, only the first struct needs a pointer to
1632 * locked_folio.
1633 *
1634 * This way we don't need racey decisions about who is supposed
1635 * to unlock it.
1636 */
1637 if (locked_folio) {
1638 /*
1639 * Depending on the compressibility, the pages might or
1640 * might not go through async. We want all of them to
1641 * be accounted against wbc once. Let's do it here
1642 * before the paths diverge. wbc accounting is used
1643 * only for foreign writeback detection and doesn't
1644 * need full accuracy. Just account the whole thing
1645 * against the first page.
1646 */
1647 wbc_account_cgroup_owner(wbc, locked_folio,
1648 cur_end - start);
1649 async_chunk[i].locked_folio = locked_folio;
1650 locked_folio = NULL;
1651 } else {
1652 async_chunk[i].locked_folio = NULL;
1653 }
1654
1655 if (blkcg_css != blkcg_root_css) {
1656 css_get(blkcg_css);
1657 async_chunk[i].blkcg_css = blkcg_css;
1658 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1659 } else {
1660 async_chunk[i].blkcg_css = NULL;
1661 }
1662
1663 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1664 submit_compressed_extents);
1665
1666 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1667 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1668
1669 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1670
1671 start = cur_end + 1;
1672 }
1673 return true;
1674 }
1675
1676 /*
1677 * Run the delalloc range from start to end, and write back any dirty pages
1678 * covered by the range.
1679 */
run_delalloc_cow(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1680 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1681 struct folio *locked_folio, u64 start,
1682 u64 end, struct writeback_control *wbc,
1683 bool pages_dirty)
1684 {
1685 u64 done_offset = end;
1686 int ret;
1687
1688 while (start <= end) {
1689 ret = cow_file_range(inode, locked_folio, start, end,
1690 &done_offset, true, false);
1691 if (ret)
1692 return ret;
1693 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1694 start, done_offset, wbc, pages_dirty);
1695 start = done_offset + 1;
1696 }
1697
1698 return 1;
1699 }
1700
fallback_to_cow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)1701 static int fallback_to_cow(struct btrfs_inode *inode,
1702 struct folio *locked_folio, const u64 start,
1703 const u64 end)
1704 {
1705 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1706 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1707 const u64 range_bytes = end + 1 - start;
1708 struct extent_io_tree *io_tree = &inode->io_tree;
1709 struct extent_state *cached_state = NULL;
1710 u64 range_start = start;
1711 u64 count;
1712 int ret;
1713
1714 /*
1715 * If EXTENT_NORESERVE is set it means that when the buffered write was
1716 * made we had not enough available data space and therefore we did not
1717 * reserve data space for it, since we though we could do NOCOW for the
1718 * respective file range (either there is prealloc extent or the inode
1719 * has the NOCOW bit set).
1720 *
1721 * However when we need to fallback to COW mode (because for example the
1722 * block group for the corresponding extent was turned to RO mode by a
1723 * scrub or relocation) we need to do the following:
1724 *
1725 * 1) We increment the bytes_may_use counter of the data space info.
1726 * If COW succeeds, it allocates a new data extent and after doing
1727 * that it decrements the space info's bytes_may_use counter and
1728 * increments its bytes_reserved counter by the same amount (we do
1729 * this at btrfs_add_reserved_bytes()). So we need to increment the
1730 * bytes_may_use counter to compensate (when space is reserved at
1731 * buffered write time, the bytes_may_use counter is incremented);
1732 *
1733 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1734 * that if the COW path fails for any reason, it decrements (through
1735 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1736 * data space info, which we incremented in the step above.
1737 *
1738 * If we need to fallback to cow and the inode corresponds to a free
1739 * space cache inode or an inode of the data relocation tree, we must
1740 * also increment bytes_may_use of the data space_info for the same
1741 * reason. Space caches and relocated data extents always get a prealloc
1742 * extent for them, however scrub or balance may have set the block
1743 * group that contains that extent to RO mode and therefore force COW
1744 * when starting writeback.
1745 */
1746 btrfs_lock_extent(io_tree, start, end, &cached_state);
1747 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes,
1748 EXTENT_NORESERVE, 0, NULL);
1749 if (count > 0 || is_space_ino || is_reloc_ino) {
1750 u64 bytes = count;
1751 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1752 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1753
1754 if (is_space_ino || is_reloc_ino)
1755 bytes = range_bytes;
1756
1757 spin_lock(&sinfo->lock);
1758 btrfs_space_info_update_bytes_may_use(sinfo, bytes);
1759 spin_unlock(&sinfo->lock);
1760
1761 if (count > 0)
1762 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1763 &cached_state);
1764 }
1765 btrfs_unlock_extent(io_tree, start, end, &cached_state);
1766
1767 /*
1768 * Don't try to create inline extents, as a mix of inline extent that
1769 * is written out and unlocked directly and a normal NOCOW extent
1770 * doesn't work.
1771 */
1772 ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1773 true);
1774 ASSERT(ret != 1);
1775 return ret;
1776 }
1777
1778 struct can_nocow_file_extent_args {
1779 /* Input fields. */
1780
1781 /* Start file offset of the range we want to NOCOW. */
1782 u64 start;
1783 /* End file offset (inclusive) of the range we want to NOCOW. */
1784 u64 end;
1785 bool writeback_path;
1786 /*
1787 * Free the path passed to can_nocow_file_extent() once it's not needed
1788 * anymore.
1789 */
1790 bool free_path;
1791
1792 /*
1793 * Output fields. Only set when can_nocow_file_extent() returns 1.
1794 * The expected file extent for the NOCOW write.
1795 */
1796 struct btrfs_file_extent file_extent;
1797 };
1798
1799 /*
1800 * Check if we can NOCOW the file extent that the path points to.
1801 * This function may return with the path released, so the caller should check
1802 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1803 *
1804 * Returns: < 0 on error
1805 * 0 if we can not NOCOW
1806 * 1 if we can NOCOW
1807 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1808 static int can_nocow_file_extent(struct btrfs_path *path,
1809 struct btrfs_key *key,
1810 struct btrfs_inode *inode,
1811 struct can_nocow_file_extent_args *args)
1812 {
1813 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1814 struct extent_buffer *leaf = path->nodes[0];
1815 struct btrfs_root *root = inode->root;
1816 struct btrfs_file_extent_item *fi;
1817 struct btrfs_root *csum_root;
1818 u64 io_start;
1819 u64 extent_end;
1820 u8 extent_type;
1821 int can_nocow = 0;
1822 int ret = 0;
1823 bool nowait = path->nowait;
1824
1825 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1826 extent_type = btrfs_file_extent_type(leaf, fi);
1827
1828 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1829 goto out;
1830
1831 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1832 extent_type == BTRFS_FILE_EXTENT_REG)
1833 goto out;
1834
1835 /*
1836 * If the extent was created before the generation where the last snapshot
1837 * for its subvolume was created, then this implies the extent is shared,
1838 * hence we must COW.
1839 */
1840 if (btrfs_file_extent_generation(leaf, fi) <=
1841 btrfs_root_last_snapshot(&root->root_item))
1842 goto out;
1843
1844 /* An explicit hole, must COW. */
1845 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1846 goto out;
1847
1848 /* Compressed/encrypted/encoded extents must be COWed. */
1849 if (btrfs_file_extent_compression(leaf, fi) ||
1850 btrfs_file_extent_encryption(leaf, fi) ||
1851 btrfs_file_extent_other_encoding(leaf, fi))
1852 goto out;
1853
1854 extent_end = btrfs_file_extent_end(path);
1855
1856 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1857 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1858 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1859 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1860 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1861
1862 /*
1863 * The following checks can be expensive, as they need to take other
1864 * locks and do btree or rbtree searches, so release the path to avoid
1865 * blocking other tasks for too long.
1866 */
1867 btrfs_release_path(path);
1868
1869 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset,
1870 args->file_extent.disk_bytenr, path);
1871 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1872 if (ret != 0)
1873 goto out;
1874
1875 if (args->free_path) {
1876 /*
1877 * We don't need the path anymore, plus through the
1878 * btrfs_lookup_csums_list() call below we will end up allocating
1879 * another path. So free the path to avoid unnecessary extra
1880 * memory usage.
1881 */
1882 btrfs_free_path(path);
1883 path = NULL;
1884 }
1885
1886 /* If there are pending snapshots for this root, we must COW. */
1887 if (args->writeback_path && !is_freespace_inode &&
1888 atomic_read(&root->snapshot_force_cow))
1889 goto out;
1890
1891 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1892 args->file_extent.offset += args->start - key->offset;
1893 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1894
1895 /*
1896 * Force COW if csums exist in the range. This ensures that csums for a
1897 * given extent are either valid or do not exist.
1898 */
1899
1900 csum_root = btrfs_csum_root(root->fs_info, io_start);
1901 ret = btrfs_lookup_csums_list(csum_root, io_start,
1902 io_start + args->file_extent.num_bytes - 1,
1903 NULL, nowait);
1904 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1905 if (ret != 0)
1906 goto out;
1907
1908 can_nocow = 1;
1909 out:
1910 if (args->free_path && path)
1911 btrfs_free_path(path);
1912
1913 return ret < 0 ? ret : can_nocow;
1914 }
1915
1916 /*
1917 * Cleanup the dirty folios which will never be submitted due to error.
1918 *
1919 * When running a delalloc range, we may need to split the ranges (due to
1920 * fragmentation or NOCOW). If we hit an error in the later part, we will error
1921 * out and previously successfully executed range will never be submitted, thus
1922 * we have to cleanup those folios by clearing their dirty flag, starting and
1923 * finishing the writeback.
1924 */
cleanup_dirty_folios(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,int error)1925 static void cleanup_dirty_folios(struct btrfs_inode *inode,
1926 struct folio *locked_folio,
1927 u64 start, u64 end, int error)
1928 {
1929 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1930 struct address_space *mapping = inode->vfs_inode.i_mapping;
1931 pgoff_t start_index = start >> PAGE_SHIFT;
1932 pgoff_t end_index = end >> PAGE_SHIFT;
1933 u32 len;
1934
1935 ASSERT(end + 1 - start < U32_MAX);
1936 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
1937 IS_ALIGNED(end + 1, fs_info->sectorsize));
1938 len = end + 1 - start;
1939
1940 /*
1941 * Handle the locked folio first.
1942 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case.
1943 */
1944 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len);
1945
1946 for (pgoff_t index = start_index; index <= end_index; index++) {
1947 struct folio *folio;
1948
1949 /* Already handled at the beginning. */
1950 if (index == locked_folio->index)
1951 continue;
1952 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS);
1953 /* Cache already dropped, no need to do any cleanup. */
1954 if (IS_ERR(folio))
1955 continue;
1956 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len);
1957 folio_unlock(folio);
1958 folio_put(folio);
1959 }
1960 mapping_set_error(mapping, error);
1961 }
1962
nocow_one_range(struct btrfs_inode * inode,struct folio * locked_folio,struct extent_state ** cached,struct can_nocow_file_extent_args * nocow_args,u64 file_pos,bool is_prealloc)1963 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio,
1964 struct extent_state **cached,
1965 struct can_nocow_file_extent_args *nocow_args,
1966 u64 file_pos, bool is_prealloc)
1967 {
1968 struct btrfs_ordered_extent *ordered;
1969 u64 len = nocow_args->file_extent.num_bytes;
1970 u64 end = file_pos + len - 1;
1971 int ret = 0;
1972
1973 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached);
1974
1975 if (is_prealloc) {
1976 struct extent_map *em;
1977
1978 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent,
1979 BTRFS_ORDERED_PREALLOC);
1980 if (IS_ERR(em)) {
1981 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached);
1982 return PTR_ERR(em);
1983 }
1984 btrfs_free_extent_map(em);
1985 }
1986
1987 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent,
1988 is_prealloc
1989 ? (1U << BTRFS_ORDERED_PREALLOC)
1990 : (1U << BTRFS_ORDERED_NOCOW));
1991 if (IS_ERR(ordered)) {
1992 if (is_prealloc)
1993 btrfs_drop_extent_map_range(inode, file_pos, end, false);
1994 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached);
1995 return PTR_ERR(ordered);
1996 }
1997
1998 if (btrfs_is_data_reloc_root(inode->root))
1999 /*
2000 * Errors are handled later, as we must prevent
2001 * extent_clear_unlock_delalloc() in error handler from freeing
2002 * metadata of the created ordered extent.
2003 */
2004 ret = btrfs_reloc_clone_csums(ordered);
2005 btrfs_put_ordered_extent(ordered);
2006
2007 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
2008 EXTENT_LOCKED | EXTENT_DELALLOC |
2009 EXTENT_CLEAR_DATA_RESV,
2010 PAGE_UNLOCK | PAGE_SET_ORDERED);
2011 /*
2012 * On error, we need to cleanup the ordered extents we created.
2013 *
2014 * We do not clear the folio Dirty flags because they are set and
2015 * cleaered by the caller.
2016 */
2017 if (ret < 0)
2018 btrfs_cleanup_ordered_extents(inode, file_pos, len);
2019 return ret;
2020 }
2021
2022 /*
2023 * when nowcow writeback call back. This checks for snapshots or COW copies
2024 * of the extents that exist in the file, and COWs the file as required.
2025 *
2026 * If no cow copies or snapshots exist, we write directly to the existing
2027 * blocks on disk
2028 */
run_delalloc_nocow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)2029 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2030 struct folio *locked_folio,
2031 const u64 start, const u64 end)
2032 {
2033 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2034 struct btrfs_root *root = inode->root;
2035 struct btrfs_path *path;
2036 u64 cow_start = (u64)-1;
2037 /*
2038 * If not 0, represents the inclusive end of the last fallback_to_cow()
2039 * range. Only for error handling.
2040 */
2041 u64 cow_end = 0;
2042 u64 cur_offset = start;
2043 int ret;
2044 bool check_prev = true;
2045 u64 ino = btrfs_ino(inode);
2046 struct can_nocow_file_extent_args nocow_args = { 0 };
2047
2048 /*
2049 * Normally on a zoned device we're only doing COW writes, but in case
2050 * of relocation on a zoned filesystem serializes I/O so that we're only
2051 * writing sequentially and can end up here as well.
2052 */
2053 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2054
2055 path = btrfs_alloc_path();
2056 if (!path) {
2057 ret = -ENOMEM;
2058 goto error;
2059 }
2060
2061 nocow_args.end = end;
2062 nocow_args.writeback_path = true;
2063
2064 while (cur_offset <= end) {
2065 struct btrfs_block_group *nocow_bg = NULL;
2066 struct btrfs_key found_key;
2067 struct btrfs_file_extent_item *fi;
2068 struct extent_buffer *leaf;
2069 struct extent_state *cached_state = NULL;
2070 u64 extent_end;
2071 int extent_type;
2072
2073 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2074 cur_offset, 0);
2075 if (ret < 0)
2076 goto error;
2077
2078 /*
2079 * If there is no extent for our range when doing the initial
2080 * search, then go back to the previous slot as it will be the
2081 * one containing the search offset
2082 */
2083 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2084 leaf = path->nodes[0];
2085 btrfs_item_key_to_cpu(leaf, &found_key,
2086 path->slots[0] - 1);
2087 if (found_key.objectid == ino &&
2088 found_key.type == BTRFS_EXTENT_DATA_KEY)
2089 path->slots[0]--;
2090 }
2091 check_prev = false;
2092 next_slot:
2093 /* Go to next leaf if we have exhausted the current one */
2094 leaf = path->nodes[0];
2095 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2096 ret = btrfs_next_leaf(root, path);
2097 if (ret < 0)
2098 goto error;
2099 if (ret > 0)
2100 break;
2101 leaf = path->nodes[0];
2102 }
2103
2104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2105
2106 /* Didn't find anything for our INO */
2107 if (found_key.objectid > ino)
2108 break;
2109 /*
2110 * Keep searching until we find an EXTENT_ITEM or there are no
2111 * more extents for this inode
2112 */
2113 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2114 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2115 path->slots[0]++;
2116 goto next_slot;
2117 }
2118
2119 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2120 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2121 found_key.offset > end)
2122 break;
2123
2124 /*
2125 * If the found extent starts after requested offset, then
2126 * adjust cur_offset to be right before this extent begins.
2127 */
2128 if (found_key.offset > cur_offset) {
2129 if (cow_start == (u64)-1)
2130 cow_start = cur_offset;
2131 cur_offset = found_key.offset;
2132 goto next_slot;
2133 }
2134
2135 /*
2136 * Found extent which begins before our range and potentially
2137 * intersect it
2138 */
2139 fi = btrfs_item_ptr(leaf, path->slots[0],
2140 struct btrfs_file_extent_item);
2141 extent_type = btrfs_file_extent_type(leaf, fi);
2142 /* If this is triggered then we have a memory corruption. */
2143 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2144 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2145 ret = -EUCLEAN;
2146 goto error;
2147 }
2148 extent_end = btrfs_file_extent_end(path);
2149
2150 /*
2151 * If the extent we got ends before our current offset, skip to
2152 * the next extent.
2153 */
2154 if (extent_end <= cur_offset) {
2155 path->slots[0]++;
2156 goto next_slot;
2157 }
2158
2159 nocow_args.start = cur_offset;
2160 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2161 if (ret < 0)
2162 goto error;
2163 if (ret == 0)
2164 goto must_cow;
2165
2166 ret = 0;
2167 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2168 nocow_args.file_extent.disk_bytenr +
2169 nocow_args.file_extent.offset);
2170 if (!nocow_bg) {
2171 must_cow:
2172 /*
2173 * If we can't perform NOCOW writeback for the range,
2174 * then record the beginning of the range that needs to
2175 * be COWed. It will be written out before the next
2176 * NOCOW range if we find one, or when exiting this
2177 * loop.
2178 */
2179 if (cow_start == (u64)-1)
2180 cow_start = cur_offset;
2181 cur_offset = extent_end;
2182 if (cur_offset > end)
2183 break;
2184 if (!path->nodes[0])
2185 continue;
2186 path->slots[0]++;
2187 goto next_slot;
2188 }
2189
2190 /*
2191 * COW range from cow_start to found_key.offset - 1. As the key
2192 * will contain the beginning of the first extent that can be
2193 * NOCOW, following one which needs to be COW'ed
2194 */
2195 if (cow_start != (u64)-1) {
2196 ret = fallback_to_cow(inode, locked_folio, cow_start,
2197 found_key.offset - 1);
2198 if (ret) {
2199 cow_end = found_key.offset - 1;
2200 btrfs_dec_nocow_writers(nocow_bg);
2201 goto error;
2202 }
2203 cow_start = (u64)-1;
2204 }
2205
2206 ret = nocow_one_range(inode, locked_folio, &cached_state,
2207 &nocow_args, cur_offset,
2208 extent_type == BTRFS_FILE_EXTENT_PREALLOC);
2209 btrfs_dec_nocow_writers(nocow_bg);
2210 if (ret < 0)
2211 goto error;
2212 cur_offset = extent_end;
2213 }
2214 btrfs_release_path(path);
2215
2216 if (cur_offset <= end && cow_start == (u64)-1)
2217 cow_start = cur_offset;
2218
2219 if (cow_start != (u64)-1) {
2220 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2221 if (ret) {
2222 cow_end = end;
2223 goto error;
2224 }
2225 cow_start = (u64)-1;
2226 }
2227
2228 btrfs_free_path(path);
2229 return 0;
2230
2231 error:
2232 /*
2233 * There are several error cases:
2234 *
2235 * 1) Failed without falling back to COW
2236 * start cur_offset end
2237 * |/////////////| |
2238 *
2239 * In this case, cow_start should be (u64)-1.
2240 *
2241 * For range [start, cur_offset) the folios are already unlocked (except
2242 * @locked_folio), EXTENT_DELALLOC already removed.
2243 * Need to clear the dirty flags and finish the ordered extents.
2244 *
2245 * 2) Failed with error before calling fallback_to_cow()
2246 *
2247 * start cow_start end
2248 * |/////////////| |
2249 *
2250 * In this case, only @cow_start is set, @cur_offset is between
2251 * [cow_start, end)
2252 *
2253 * It's mostly the same as case 1), just replace @cur_offset with
2254 * @cow_start.
2255 *
2256 * 3) Failed with error from fallback_to_cow()
2257 *
2258 * start cow_start cow_end end
2259 * |/////////////|-----------| |
2260 *
2261 * In this case, both @cow_start and @cow_end is set.
2262 *
2263 * For range [start, cow_start) it's the same as case 1).
2264 * But for range [cow_start, cow_end), all the cleanup is handled by
2265 * cow_file_range(), we should not touch anything in that range.
2266 *
2267 * So for all above cases, if @cow_start is set, cleanup ordered extents
2268 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset).
2269 */
2270 if (cow_start != (u64)-1)
2271 cur_offset = cow_start;
2272
2273 if (cur_offset > start) {
2274 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start);
2275 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret);
2276 }
2277
2278 /*
2279 * If an error happened while a COW region is outstanding, cur_offset
2280 * needs to be reset to @cow_end + 1 to skip the COW range, as
2281 * cow_file_range() will do the proper cleanup at error.
2282 */
2283 if (cow_end)
2284 cur_offset = cow_end + 1;
2285
2286 /*
2287 * We need to lock the extent here because we're clearing DELALLOC and
2288 * we're not locked at this point.
2289 */
2290 if (cur_offset < end) {
2291 struct extent_state *cached = NULL;
2292
2293 btrfs_lock_extent(&inode->io_tree, cur_offset, end, &cached);
2294 extent_clear_unlock_delalloc(inode, cur_offset, end,
2295 locked_folio, &cached,
2296 EXTENT_LOCKED | EXTENT_DELALLOC |
2297 EXTENT_DEFRAG |
2298 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2299 PAGE_START_WRITEBACK |
2300 PAGE_END_WRITEBACK);
2301 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2302 }
2303 btrfs_free_path(path);
2304 btrfs_err_rl(fs_info,
2305 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d",
2306 __func__, btrfs_root_id(inode->root),
2307 btrfs_ino(inode), start, end + 1 - start, ret);
2308 return ret;
2309 }
2310
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2311 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2312 {
2313 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2314 if (inode->defrag_bytes &&
2315 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2316 return false;
2317 return true;
2318 }
2319 return false;
2320 }
2321
2322 /*
2323 * Function to process delayed allocation (create CoW) for ranges which are
2324 * being touched for the first time.
2325 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)2326 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2327 u64 start, u64 end, struct writeback_control *wbc)
2328 {
2329 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2330 int ret;
2331
2332 /*
2333 * The range must cover part of the @locked_folio, or a return of 1
2334 * can confuse the caller.
2335 */
2336 ASSERT(!(end <= folio_pos(locked_folio) || start >= folio_end(locked_folio)));
2337
2338 if (should_nocow(inode, start, end)) {
2339 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2340 return ret;
2341 }
2342
2343 if (btrfs_inode_can_compress(inode) &&
2344 inode_need_compress(inode, start, end) &&
2345 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2346 return 1;
2347
2348 if (zoned)
2349 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2350 true);
2351 else
2352 ret = cow_file_range(inode, locked_folio, start, end, NULL,
2353 false, false);
2354 return ret;
2355 }
2356
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2357 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2358 struct extent_state *orig, u64 split)
2359 {
2360 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2361 u64 size;
2362
2363 lockdep_assert_held(&inode->io_tree.lock);
2364
2365 /* not delalloc, ignore it */
2366 if (!(orig->state & EXTENT_DELALLOC))
2367 return;
2368
2369 size = orig->end - orig->start + 1;
2370 if (size > fs_info->max_extent_size) {
2371 u32 num_extents;
2372 u64 new_size;
2373
2374 /*
2375 * See the explanation in btrfs_merge_delalloc_extent, the same
2376 * applies here, just in reverse.
2377 */
2378 new_size = orig->end - split + 1;
2379 num_extents = count_max_extents(fs_info, new_size);
2380 new_size = split - orig->start;
2381 num_extents += count_max_extents(fs_info, new_size);
2382 if (count_max_extents(fs_info, size) >= num_extents)
2383 return;
2384 }
2385
2386 spin_lock(&inode->lock);
2387 btrfs_mod_outstanding_extents(inode, 1);
2388 spin_unlock(&inode->lock);
2389 }
2390
2391 /*
2392 * Handle merged delayed allocation extents so we can keep track of new extents
2393 * that are just merged onto old extents, such as when we are doing sequential
2394 * writes, so we can properly account for the metadata space we'll need.
2395 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2396 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2397 struct extent_state *other)
2398 {
2399 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2400 u64 new_size, old_size;
2401 u32 num_extents;
2402
2403 lockdep_assert_held(&inode->io_tree.lock);
2404
2405 /* not delalloc, ignore it */
2406 if (!(other->state & EXTENT_DELALLOC))
2407 return;
2408
2409 if (new->start > other->start)
2410 new_size = new->end - other->start + 1;
2411 else
2412 new_size = other->end - new->start + 1;
2413
2414 /* we're not bigger than the max, unreserve the space and go */
2415 if (new_size <= fs_info->max_extent_size) {
2416 spin_lock(&inode->lock);
2417 btrfs_mod_outstanding_extents(inode, -1);
2418 spin_unlock(&inode->lock);
2419 return;
2420 }
2421
2422 /*
2423 * We have to add up either side to figure out how many extents were
2424 * accounted for before we merged into one big extent. If the number of
2425 * extents we accounted for is <= the amount we need for the new range
2426 * then we can return, otherwise drop. Think of it like this
2427 *
2428 * [ 4k][MAX_SIZE]
2429 *
2430 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2431 * need 2 outstanding extents, on one side we have 1 and the other side
2432 * we have 1 so they are == and we can return. But in this case
2433 *
2434 * [MAX_SIZE+4k][MAX_SIZE+4k]
2435 *
2436 * Each range on their own accounts for 2 extents, but merged together
2437 * they are only 3 extents worth of accounting, so we need to drop in
2438 * this case.
2439 */
2440 old_size = other->end - other->start + 1;
2441 num_extents = count_max_extents(fs_info, old_size);
2442 old_size = new->end - new->start + 1;
2443 num_extents += count_max_extents(fs_info, old_size);
2444 if (count_max_extents(fs_info, new_size) >= num_extents)
2445 return;
2446
2447 spin_lock(&inode->lock);
2448 btrfs_mod_outstanding_extents(inode, -1);
2449 spin_unlock(&inode->lock);
2450 }
2451
btrfs_add_delalloc_inode(struct btrfs_inode * inode)2452 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2453 {
2454 struct btrfs_root *root = inode->root;
2455 struct btrfs_fs_info *fs_info = root->fs_info;
2456
2457 spin_lock(&root->delalloc_lock);
2458 ASSERT(list_empty(&inode->delalloc_inodes));
2459 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2460 root->nr_delalloc_inodes++;
2461 if (root->nr_delalloc_inodes == 1) {
2462 spin_lock(&fs_info->delalloc_root_lock);
2463 ASSERT(list_empty(&root->delalloc_root));
2464 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2465 spin_unlock(&fs_info->delalloc_root_lock);
2466 }
2467 spin_unlock(&root->delalloc_lock);
2468 }
2469
btrfs_del_delalloc_inode(struct btrfs_inode * inode)2470 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2471 {
2472 struct btrfs_root *root = inode->root;
2473 struct btrfs_fs_info *fs_info = root->fs_info;
2474
2475 lockdep_assert_held(&root->delalloc_lock);
2476
2477 /*
2478 * We may be called after the inode was already deleted from the list,
2479 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2480 * and then later through btrfs_clear_delalloc_extent() while the inode
2481 * still has ->delalloc_bytes > 0.
2482 */
2483 if (!list_empty(&inode->delalloc_inodes)) {
2484 list_del_init(&inode->delalloc_inodes);
2485 root->nr_delalloc_inodes--;
2486 if (!root->nr_delalloc_inodes) {
2487 ASSERT(list_empty(&root->delalloc_inodes));
2488 spin_lock(&fs_info->delalloc_root_lock);
2489 ASSERT(!list_empty(&root->delalloc_root));
2490 list_del_init(&root->delalloc_root);
2491 spin_unlock(&fs_info->delalloc_root_lock);
2492 }
2493 }
2494 }
2495
2496 /*
2497 * Properly track delayed allocation bytes in the inode and to maintain the
2498 * list of inodes that have pending delalloc work to be done.
2499 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2500 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2501 u32 bits)
2502 {
2503 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2504
2505 lockdep_assert_held(&inode->io_tree.lock);
2506
2507 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2508 WARN_ON(1);
2509 /*
2510 * set_bit and clear bit hooks normally require _irqsave/restore
2511 * but in this case, we are only testing for the DELALLOC
2512 * bit, which is only set or cleared with irqs on
2513 */
2514 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2515 u64 len = state->end + 1 - state->start;
2516 u64 prev_delalloc_bytes;
2517 u32 num_extents = count_max_extents(fs_info, len);
2518
2519 spin_lock(&inode->lock);
2520 btrfs_mod_outstanding_extents(inode, num_extents);
2521 spin_unlock(&inode->lock);
2522
2523 /* For sanity tests */
2524 if (btrfs_is_testing(fs_info))
2525 return;
2526
2527 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2528 fs_info->delalloc_batch);
2529 spin_lock(&inode->lock);
2530 prev_delalloc_bytes = inode->delalloc_bytes;
2531 inode->delalloc_bytes += len;
2532 if (bits & EXTENT_DEFRAG)
2533 inode->defrag_bytes += len;
2534 spin_unlock(&inode->lock);
2535
2536 /*
2537 * We don't need to be under the protection of the inode's lock,
2538 * because we are called while holding the inode's io_tree lock
2539 * and are therefore protected against concurrent calls of this
2540 * function and btrfs_clear_delalloc_extent().
2541 */
2542 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2543 btrfs_add_delalloc_inode(inode);
2544 }
2545
2546 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2547 (bits & EXTENT_DELALLOC_NEW)) {
2548 spin_lock(&inode->lock);
2549 inode->new_delalloc_bytes += state->end + 1 - state->start;
2550 spin_unlock(&inode->lock);
2551 }
2552 }
2553
2554 /*
2555 * Once a range is no longer delalloc this function ensures that proper
2556 * accounting happens.
2557 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2558 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2559 struct extent_state *state, u32 bits)
2560 {
2561 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2562 u64 len = state->end + 1 - state->start;
2563 u32 num_extents = count_max_extents(fs_info, len);
2564
2565 lockdep_assert_held(&inode->io_tree.lock);
2566
2567 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2568 spin_lock(&inode->lock);
2569 inode->defrag_bytes -= len;
2570 spin_unlock(&inode->lock);
2571 }
2572
2573 /*
2574 * set_bit and clear bit hooks normally require _irqsave/restore
2575 * but in this case, we are only testing for the DELALLOC
2576 * bit, which is only set or cleared with irqs on
2577 */
2578 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2579 struct btrfs_root *root = inode->root;
2580 u64 new_delalloc_bytes;
2581
2582 spin_lock(&inode->lock);
2583 btrfs_mod_outstanding_extents(inode, -num_extents);
2584 spin_unlock(&inode->lock);
2585
2586 /*
2587 * We don't reserve metadata space for space cache inodes so we
2588 * don't need to call delalloc_release_metadata if there is an
2589 * error.
2590 */
2591 if (bits & EXTENT_CLEAR_META_RESV &&
2592 root != fs_info->tree_root)
2593 btrfs_delalloc_release_metadata(inode, len, true);
2594
2595 /* For sanity tests. */
2596 if (btrfs_is_testing(fs_info))
2597 return;
2598
2599 if (!btrfs_is_data_reloc_root(root) &&
2600 !btrfs_is_free_space_inode(inode) &&
2601 !(state->state & EXTENT_NORESERVE) &&
2602 (bits & EXTENT_CLEAR_DATA_RESV))
2603 btrfs_free_reserved_data_space_noquota(inode, len);
2604
2605 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2606 fs_info->delalloc_batch);
2607 spin_lock(&inode->lock);
2608 inode->delalloc_bytes -= len;
2609 new_delalloc_bytes = inode->delalloc_bytes;
2610 spin_unlock(&inode->lock);
2611
2612 /*
2613 * We don't need to be under the protection of the inode's lock,
2614 * because we are called while holding the inode's io_tree lock
2615 * and are therefore protected against concurrent calls of this
2616 * function and btrfs_set_delalloc_extent().
2617 */
2618 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2619 spin_lock(&root->delalloc_lock);
2620 btrfs_del_delalloc_inode(inode);
2621 spin_unlock(&root->delalloc_lock);
2622 }
2623 }
2624
2625 if ((state->state & EXTENT_DELALLOC_NEW) &&
2626 (bits & EXTENT_DELALLOC_NEW)) {
2627 spin_lock(&inode->lock);
2628 ASSERT(inode->new_delalloc_bytes >= len);
2629 inode->new_delalloc_bytes -= len;
2630 if (bits & EXTENT_ADD_INODE_BYTES)
2631 inode_add_bytes(&inode->vfs_inode, len);
2632 spin_unlock(&inode->lock);
2633 }
2634 }
2635
2636 /*
2637 * given a list of ordered sums record them in the inode. This happens
2638 * at IO completion time based on sums calculated at bio submission time.
2639 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2640 static int add_pending_csums(struct btrfs_trans_handle *trans,
2641 struct list_head *list)
2642 {
2643 struct btrfs_ordered_sum *sum;
2644 struct btrfs_root *csum_root = NULL;
2645 int ret;
2646
2647 list_for_each_entry(sum, list, list) {
2648 trans->adding_csums = true;
2649 if (!csum_root)
2650 csum_root = btrfs_csum_root(trans->fs_info,
2651 sum->logical);
2652 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2653 trans->adding_csums = false;
2654 if (ret)
2655 return ret;
2656 }
2657 return 0;
2658 }
2659
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2660 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2661 const u64 start,
2662 const u64 len,
2663 struct extent_state **cached_state)
2664 {
2665 u64 search_start = start;
2666 const u64 end = start + len - 1;
2667
2668 while (search_start < end) {
2669 const u64 search_len = end - search_start + 1;
2670 struct extent_map *em;
2671 u64 em_len;
2672 int ret = 0;
2673
2674 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2675 if (IS_ERR(em))
2676 return PTR_ERR(em);
2677
2678 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2679 goto next;
2680
2681 em_len = em->len;
2682 if (em->start < search_start)
2683 em_len -= search_start - em->start;
2684 if (em_len > search_len)
2685 em_len = search_len;
2686
2687 ret = btrfs_set_extent_bit(&inode->io_tree, search_start,
2688 search_start + em_len - 1,
2689 EXTENT_DELALLOC_NEW, cached_state);
2690 next:
2691 search_start = btrfs_extent_map_end(em);
2692 btrfs_free_extent_map(em);
2693 if (ret)
2694 return ret;
2695 }
2696 return 0;
2697 }
2698
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2699 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2700 unsigned int extra_bits,
2701 struct extent_state **cached_state)
2702 {
2703 WARN_ON(PAGE_ALIGNED(end));
2704
2705 if (start >= i_size_read(&inode->vfs_inode) &&
2706 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2707 /*
2708 * There can't be any extents following eof in this case so just
2709 * set the delalloc new bit for the range directly.
2710 */
2711 extra_bits |= EXTENT_DELALLOC_NEW;
2712 } else {
2713 int ret;
2714
2715 ret = btrfs_find_new_delalloc_bytes(inode, start,
2716 end + 1 - start,
2717 cached_state);
2718 if (ret)
2719 return ret;
2720 }
2721
2722 return btrfs_set_extent_bit(&inode->io_tree, start, end,
2723 EXTENT_DELALLOC | extra_bits, cached_state);
2724 }
2725
2726 /* see btrfs_writepage_start_hook for details on why this is required */
2727 struct btrfs_writepage_fixup {
2728 struct folio *folio;
2729 struct btrfs_inode *inode;
2730 struct btrfs_work work;
2731 };
2732
btrfs_writepage_fixup_worker(struct btrfs_work * work)2733 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2734 {
2735 struct btrfs_writepage_fixup *fixup =
2736 container_of(work, struct btrfs_writepage_fixup, work);
2737 struct btrfs_ordered_extent *ordered;
2738 struct extent_state *cached_state = NULL;
2739 struct extent_changeset *data_reserved = NULL;
2740 struct folio *folio = fixup->folio;
2741 struct btrfs_inode *inode = fixup->inode;
2742 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2743 u64 page_start = folio_pos(folio);
2744 u64 page_end = folio_end(folio) - 1;
2745 int ret = 0;
2746 bool free_delalloc_space = true;
2747
2748 /*
2749 * This is similar to page_mkwrite, we need to reserve the space before
2750 * we take the folio lock.
2751 */
2752 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2753 folio_size(folio));
2754 again:
2755 folio_lock(folio);
2756
2757 /*
2758 * Before we queued this fixup, we took a reference on the folio.
2759 * folio->mapping may go NULL, but it shouldn't be moved to a different
2760 * address space.
2761 */
2762 if (!folio->mapping || !folio_test_dirty(folio) ||
2763 !folio_test_checked(folio)) {
2764 /*
2765 * Unfortunately this is a little tricky, either
2766 *
2767 * 1) We got here and our folio had already been dealt with and
2768 * we reserved our space, thus ret == 0, so we need to just
2769 * drop our space reservation and bail. This can happen the
2770 * first time we come into the fixup worker, or could happen
2771 * while waiting for the ordered extent.
2772 * 2) Our folio was already dealt with, but we happened to get an
2773 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2774 * this case we obviously don't have anything to release, but
2775 * because the folio was already dealt with we don't want to
2776 * mark the folio with an error, so make sure we're resetting
2777 * ret to 0. This is why we have this check _before_ the ret
2778 * check, because we do not want to have a surprise ENOSPC
2779 * when the folio was already properly dealt with.
2780 */
2781 if (!ret) {
2782 btrfs_delalloc_release_extents(inode, folio_size(folio));
2783 btrfs_delalloc_release_space(inode, data_reserved,
2784 page_start, folio_size(folio),
2785 true);
2786 }
2787 ret = 0;
2788 goto out_page;
2789 }
2790
2791 /*
2792 * We can't mess with the folio state unless it is locked, so now that
2793 * it is locked bail if we failed to make our space reservation.
2794 */
2795 if (ret)
2796 goto out_page;
2797
2798 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2799
2800 /* already ordered? We're done */
2801 if (folio_test_ordered(folio))
2802 goto out_reserved;
2803
2804 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2805 if (ordered) {
2806 btrfs_unlock_extent(&inode->io_tree, page_start, page_end,
2807 &cached_state);
2808 folio_unlock(folio);
2809 btrfs_start_ordered_extent(ordered);
2810 btrfs_put_ordered_extent(ordered);
2811 goto again;
2812 }
2813
2814 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2815 &cached_state);
2816 if (ret)
2817 goto out_reserved;
2818
2819 /*
2820 * Everything went as planned, we're now the owner of a dirty page with
2821 * delayed allocation bits set and space reserved for our COW
2822 * destination.
2823 *
2824 * The page was dirty when we started, nothing should have cleaned it.
2825 */
2826 BUG_ON(!folio_test_dirty(folio));
2827 free_delalloc_space = false;
2828 out_reserved:
2829 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2830 if (free_delalloc_space)
2831 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2832 PAGE_SIZE, true);
2833 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2834 out_page:
2835 if (ret) {
2836 /*
2837 * We hit ENOSPC or other errors. Update the mapping and page
2838 * to reflect the errors and clean the page.
2839 */
2840 mapping_set_error(folio->mapping, ret);
2841 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2842 folio_size(folio), !ret);
2843 folio_clear_dirty_for_io(folio);
2844 }
2845 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2846 folio_unlock(folio);
2847 folio_put(folio);
2848 kfree(fixup);
2849 extent_changeset_free(data_reserved);
2850 /*
2851 * As a precaution, do a delayed iput in case it would be the last iput
2852 * that could need flushing space. Recursing back to fixup worker would
2853 * deadlock.
2854 */
2855 btrfs_add_delayed_iput(inode);
2856 }
2857
2858 /*
2859 * There are a few paths in the higher layers of the kernel that directly
2860 * set the folio dirty bit without asking the filesystem if it is a
2861 * good idea. This causes problems because we want to make sure COW
2862 * properly happens and the data=ordered rules are followed.
2863 *
2864 * In our case any range that doesn't have the ORDERED bit set
2865 * hasn't been properly setup for IO. We kick off an async process
2866 * to fix it up. The async helper will wait for ordered extents, set
2867 * the delalloc bit and make it safe to write the folio.
2868 */
btrfs_writepage_cow_fixup(struct folio * folio)2869 int btrfs_writepage_cow_fixup(struct folio *folio)
2870 {
2871 struct inode *inode = folio->mapping->host;
2872 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2873 struct btrfs_writepage_fixup *fixup;
2874
2875 /* This folio has ordered extent covering it already */
2876 if (folio_test_ordered(folio))
2877 return 0;
2878
2879 /*
2880 * For experimental build, we error out instead of EAGAIN.
2881 *
2882 * We should not hit such out-of-band dirty folios anymore.
2883 */
2884 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
2885 DEBUG_WARN();
2886 btrfs_err_rl(fs_info,
2887 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
2888 btrfs_root_id(BTRFS_I(inode)->root),
2889 btrfs_ino(BTRFS_I(inode)),
2890 folio_pos(folio));
2891 return -EUCLEAN;
2892 }
2893
2894 /*
2895 * folio_checked is set below when we create a fixup worker for this
2896 * folio, don't try to create another one if we're already
2897 * folio_test_checked.
2898 *
2899 * The extent_io writepage code will redirty the foio if we send back
2900 * EAGAIN.
2901 */
2902 if (folio_test_checked(folio))
2903 return -EAGAIN;
2904
2905 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2906 if (!fixup)
2907 return -EAGAIN;
2908
2909 /*
2910 * We are already holding a reference to this inode from
2911 * write_cache_pages. We need to hold it because the space reservation
2912 * takes place outside of the folio lock, and we can't trust
2913 * folio->mapping outside of the folio lock.
2914 */
2915 ihold(inode);
2916 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2917 folio_get(folio);
2918 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2919 fixup->folio = folio;
2920 fixup->inode = BTRFS_I(inode);
2921 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2922
2923 return -EAGAIN;
2924 }
2925
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2926 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2927 struct btrfs_inode *inode, u64 file_pos,
2928 struct btrfs_file_extent_item *stack_fi,
2929 const bool update_inode_bytes,
2930 u64 qgroup_reserved)
2931 {
2932 struct btrfs_root *root = inode->root;
2933 const u64 sectorsize = root->fs_info->sectorsize;
2934 BTRFS_PATH_AUTO_FREE(path);
2935 struct extent_buffer *leaf;
2936 struct btrfs_key ins;
2937 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2938 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2939 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2940 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2941 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2942 struct btrfs_drop_extents_args drop_args = { 0 };
2943 int ret;
2944
2945 path = btrfs_alloc_path();
2946 if (!path)
2947 return -ENOMEM;
2948
2949 /*
2950 * we may be replacing one extent in the tree with another.
2951 * The new extent is pinned in the extent map, and we don't want
2952 * to drop it from the cache until it is completely in the btree.
2953 *
2954 * So, tell btrfs_drop_extents to leave this extent in the cache.
2955 * the caller is expected to unpin it and allow it to be merged
2956 * with the others.
2957 */
2958 drop_args.path = path;
2959 drop_args.start = file_pos;
2960 drop_args.end = file_pos + num_bytes;
2961 drop_args.replace_extent = true;
2962 drop_args.extent_item_size = sizeof(*stack_fi);
2963 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2964 if (ret)
2965 goto out;
2966
2967 if (!drop_args.extent_inserted) {
2968 ins.objectid = btrfs_ino(inode);
2969 ins.type = BTRFS_EXTENT_DATA_KEY;
2970 ins.offset = file_pos;
2971
2972 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2973 sizeof(*stack_fi));
2974 if (ret)
2975 goto out;
2976 }
2977 leaf = path->nodes[0];
2978 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2979 write_extent_buffer(leaf, stack_fi,
2980 btrfs_item_ptr_offset(leaf, path->slots[0]),
2981 sizeof(struct btrfs_file_extent_item));
2982
2983 btrfs_release_path(path);
2984
2985 /*
2986 * If we dropped an inline extent here, we know the range where it is
2987 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2988 * number of bytes only for that range containing the inline extent.
2989 * The remaining of the range will be processed when clearning the
2990 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2991 */
2992 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2993 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2994
2995 inline_size = drop_args.bytes_found - inline_size;
2996 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2997 drop_args.bytes_found -= inline_size;
2998 num_bytes -= sectorsize;
2999 }
3000
3001 if (update_inode_bytes)
3002 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3003
3004 ins.objectid = disk_bytenr;
3005 ins.type = BTRFS_EXTENT_ITEM_KEY;
3006 ins.offset = disk_num_bytes;
3007
3008 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3009 if (ret)
3010 goto out;
3011
3012 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3013 file_pos - offset,
3014 qgroup_reserved, &ins);
3015 out:
3016 return ret;
3017 }
3018
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3019 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3020 u64 start, u64 len)
3021 {
3022 struct btrfs_block_group *cache;
3023
3024 cache = btrfs_lookup_block_group(fs_info, start);
3025 ASSERT(cache);
3026
3027 spin_lock(&cache->lock);
3028 cache->delalloc_bytes -= len;
3029 spin_unlock(&cache->lock);
3030
3031 btrfs_put_block_group(cache);
3032 }
3033
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3034 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3035 struct btrfs_ordered_extent *oe)
3036 {
3037 struct btrfs_file_extent_item stack_fi;
3038 bool update_inode_bytes;
3039 u64 num_bytes = oe->num_bytes;
3040 u64 ram_bytes = oe->ram_bytes;
3041
3042 memset(&stack_fi, 0, sizeof(stack_fi));
3043 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3044 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3045 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3046 oe->disk_num_bytes);
3047 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3048 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3049 num_bytes = oe->truncated_len;
3050 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3051 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3052 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3053 /* Encryption and other encoding is reserved and all 0 */
3054
3055 /*
3056 * For delalloc, when completing an ordered extent we update the inode's
3057 * bytes when clearing the range in the inode's io tree, so pass false
3058 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3059 * except if the ordered extent was truncated.
3060 */
3061 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3062 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3063 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3064
3065 return insert_reserved_file_extent(trans, oe->inode,
3066 oe->file_offset, &stack_fi,
3067 update_inode_bytes, oe->qgroup_rsv);
3068 }
3069
3070 /*
3071 * As ordered data IO finishes, this gets called so we can finish
3072 * an ordered extent if the range of bytes in the file it covers are
3073 * fully written.
3074 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3075 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3076 {
3077 struct btrfs_inode *inode = ordered_extent->inode;
3078 struct btrfs_root *root = inode->root;
3079 struct btrfs_fs_info *fs_info = root->fs_info;
3080 struct btrfs_trans_handle *trans = NULL;
3081 struct extent_io_tree *io_tree = &inode->io_tree;
3082 struct extent_state *cached_state = NULL;
3083 u64 start, end;
3084 int compress_type = 0;
3085 int ret = 0;
3086 u64 logical_len = ordered_extent->num_bytes;
3087 bool freespace_inode;
3088 bool truncated = false;
3089 bool clear_reserved_extent = true;
3090 unsigned int clear_bits = EXTENT_DEFRAG;
3091
3092 start = ordered_extent->file_offset;
3093 end = start + ordered_extent->num_bytes - 1;
3094
3095 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3096 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3097 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3098 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3099 clear_bits |= EXTENT_DELALLOC_NEW;
3100
3101 freespace_inode = btrfs_is_free_space_inode(inode);
3102 if (!freespace_inode)
3103 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3104
3105 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3106 ret = -EIO;
3107 goto out;
3108 }
3109
3110 if (btrfs_is_zoned(fs_info))
3111 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3112 ordered_extent->disk_num_bytes);
3113
3114 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3115 truncated = true;
3116 logical_len = ordered_extent->truncated_len;
3117 /* Truncated the entire extent, don't bother adding */
3118 if (!logical_len)
3119 goto out;
3120 }
3121
3122 /*
3123 * If it's a COW write we need to lock the extent range as we will be
3124 * inserting/replacing file extent items and unpinning an extent map.
3125 * This must be taken before joining a transaction, as it's a higher
3126 * level lock (like the inode's VFS lock), otherwise we can run into an
3127 * ABBA deadlock with other tasks (transactions work like a lock,
3128 * depending on their current state).
3129 */
3130 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3131 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED;
3132 btrfs_lock_extent_bits(io_tree, start, end,
3133 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED,
3134 &cached_state);
3135 }
3136
3137 if (freespace_inode)
3138 trans = btrfs_join_transaction_spacecache(root);
3139 else
3140 trans = btrfs_join_transaction(root);
3141 if (IS_ERR(trans)) {
3142 ret = PTR_ERR(trans);
3143 trans = NULL;
3144 goto out;
3145 }
3146
3147 trans->block_rsv = &inode->block_rsv;
3148
3149 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3150 if (ret) {
3151 btrfs_abort_transaction(trans, ret);
3152 goto out;
3153 }
3154
3155 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3156 /* Logic error */
3157 ASSERT(list_empty(&ordered_extent->list));
3158 if (!list_empty(&ordered_extent->list)) {
3159 ret = -EINVAL;
3160 btrfs_abort_transaction(trans, ret);
3161 goto out;
3162 }
3163
3164 btrfs_inode_safe_disk_i_size_write(inode, 0);
3165 ret = btrfs_update_inode_fallback(trans, inode);
3166 if (ret) {
3167 /* -ENOMEM or corruption */
3168 btrfs_abort_transaction(trans, ret);
3169 }
3170 goto out;
3171 }
3172
3173 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3174 compress_type = ordered_extent->compress_type;
3175 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3176 BUG_ON(compress_type);
3177 ret = btrfs_mark_extent_written(trans, inode,
3178 ordered_extent->file_offset,
3179 ordered_extent->file_offset +
3180 logical_len);
3181 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3182 ordered_extent->disk_num_bytes);
3183 } else {
3184 BUG_ON(root == fs_info->tree_root);
3185 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3186 if (!ret) {
3187 clear_reserved_extent = false;
3188 btrfs_release_delalloc_bytes(fs_info,
3189 ordered_extent->disk_bytenr,
3190 ordered_extent->disk_num_bytes);
3191 }
3192 }
3193 if (ret < 0) {
3194 btrfs_abort_transaction(trans, ret);
3195 goto out;
3196 }
3197
3198 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset,
3199 ordered_extent->num_bytes, trans->transid);
3200 if (ret < 0) {
3201 btrfs_abort_transaction(trans, ret);
3202 goto out;
3203 }
3204
3205 ret = add_pending_csums(trans, &ordered_extent->list);
3206 if (ret) {
3207 btrfs_abort_transaction(trans, ret);
3208 goto out;
3209 }
3210
3211 /*
3212 * If this is a new delalloc range, clear its new delalloc flag to
3213 * update the inode's number of bytes. This needs to be done first
3214 * before updating the inode item.
3215 */
3216 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3217 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3218 btrfs_clear_extent_bit(&inode->io_tree, start, end,
3219 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3220 &cached_state);
3221
3222 btrfs_inode_safe_disk_i_size_write(inode, 0);
3223 ret = btrfs_update_inode_fallback(trans, inode);
3224 if (ret) { /* -ENOMEM or corruption */
3225 btrfs_abort_transaction(trans, ret);
3226 goto out;
3227 }
3228 out:
3229 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3230 &cached_state);
3231
3232 if (trans)
3233 btrfs_end_transaction(trans);
3234
3235 if (ret || truncated) {
3236 /*
3237 * If we failed to finish this ordered extent for any reason we
3238 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3239 * extent, and mark the inode with the error if it wasn't
3240 * already set. Any error during writeback would have already
3241 * set the mapping error, so we need to set it if we're the ones
3242 * marking this ordered extent as failed.
3243 */
3244 if (ret)
3245 btrfs_mark_ordered_extent_error(ordered_extent);
3246
3247 /*
3248 * Drop extent maps for the part of the extent we didn't write.
3249 *
3250 * We have an exception here for the free_space_inode, this is
3251 * because when we do btrfs_get_extent() on the free space inode
3252 * we will search the commit root. If this is a new block group
3253 * we won't find anything, and we will trip over the assert in
3254 * writepage where we do ASSERT(em->block_start !=
3255 * EXTENT_MAP_HOLE).
3256 *
3257 * Theoretically we could also skip this for any NOCOW extent as
3258 * we don't mess with the extent map tree in the NOCOW case, but
3259 * for now simply skip this if we are the free space inode.
3260 */
3261 if (!btrfs_is_free_space_inode(inode)) {
3262 u64 unwritten_start = start;
3263
3264 if (truncated)
3265 unwritten_start += logical_len;
3266
3267 btrfs_drop_extent_map_range(inode, unwritten_start,
3268 end, false);
3269 }
3270
3271 /*
3272 * If the ordered extent had an IOERR or something else went
3273 * wrong we need to return the space for this ordered extent
3274 * back to the allocator. We only free the extent in the
3275 * truncated case if we didn't write out the extent at all.
3276 *
3277 * If we made it past insert_reserved_file_extent before we
3278 * errored out then we don't need to do this as the accounting
3279 * has already been done.
3280 */
3281 if ((ret || !logical_len) &&
3282 clear_reserved_extent &&
3283 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3284 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3285 /*
3286 * Discard the range before returning it back to the
3287 * free space pool
3288 */
3289 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3290 btrfs_discard_extent(fs_info,
3291 ordered_extent->disk_bytenr,
3292 ordered_extent->disk_num_bytes,
3293 NULL);
3294 btrfs_free_reserved_extent(fs_info,
3295 ordered_extent->disk_bytenr,
3296 ordered_extent->disk_num_bytes, true);
3297 /*
3298 * Actually free the qgroup rsv which was released when
3299 * the ordered extent was created.
3300 */
3301 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3302 ordered_extent->qgroup_rsv,
3303 BTRFS_QGROUP_RSV_DATA);
3304 }
3305 }
3306
3307 /*
3308 * This needs to be done to make sure anybody waiting knows we are done
3309 * updating everything for this ordered extent.
3310 */
3311 btrfs_remove_ordered_extent(inode, ordered_extent);
3312
3313 /* once for us */
3314 btrfs_put_ordered_extent(ordered_extent);
3315 /* once for the tree */
3316 btrfs_put_ordered_extent(ordered_extent);
3317
3318 return ret;
3319 }
3320
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3321 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3322 {
3323 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3324 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3325 list_empty(&ordered->bioc_list))
3326 btrfs_finish_ordered_zoned(ordered);
3327 return btrfs_finish_one_ordered(ordered);
3328 }
3329
3330 /*
3331 * Verify the checksum for a single sector without any extra action that depend
3332 * on the type of I/O.
3333 *
3334 * @kaddr must be a properly kmapped address.
3335 */
btrfs_check_sector_csum(struct btrfs_fs_info * fs_info,void * kaddr,u8 * csum,const u8 * const csum_expected)3336 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, void *kaddr, u8 *csum,
3337 const u8 * const csum_expected)
3338 {
3339 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3340
3341 shash->tfm = fs_info->csum_shash;
3342 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3343
3344 if (memcmp(csum, csum_expected, fs_info->csum_size))
3345 return -EIO;
3346 return 0;
3347 }
3348
3349 /*
3350 * Verify the checksum of a single data sector.
3351 *
3352 * @bbio: btrfs_io_bio which contains the csum
3353 * @dev: device the sector is on
3354 * @bio_offset: offset to the beginning of the bio (in bytes)
3355 * @bv: bio_vec to check
3356 *
3357 * Check if the checksum on a data block is valid. When a checksum mismatch is
3358 * detected, report the error and fill the corrupted range with zero.
3359 *
3360 * Return %true if the sector is ok or had no checksum to start with, else %false.
3361 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,struct bio_vec * bv)3362 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3363 u32 bio_offset, struct bio_vec *bv)
3364 {
3365 struct btrfs_inode *inode = bbio->inode;
3366 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3367 u64 file_offset = bbio->file_offset + bio_offset;
3368 u64 end = file_offset + bv->bv_len - 1;
3369 u8 *csum_expected;
3370 u8 csum[BTRFS_CSUM_SIZE];
3371 void *kaddr;
3372
3373 ASSERT(bv->bv_len == fs_info->sectorsize);
3374
3375 if (!bbio->csum)
3376 return true;
3377
3378 if (btrfs_is_data_reloc_root(inode->root) &&
3379 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3380 NULL)) {
3381 /* Skip the range without csum for data reloc inode */
3382 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end,
3383 EXTENT_NODATASUM, NULL);
3384 return true;
3385 }
3386
3387 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3388 fs_info->csum_size;
3389 kaddr = bvec_kmap_local(bv);
3390 if (btrfs_check_sector_csum(fs_info, kaddr, csum, csum_expected)) {
3391 kunmap_local(kaddr);
3392 goto zeroit;
3393 }
3394 kunmap_local(kaddr);
3395 return true;
3396
3397 zeroit:
3398 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3399 bbio->mirror_num);
3400 if (dev)
3401 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3402 memzero_bvec(bv);
3403 return false;
3404 }
3405
3406 /*
3407 * Perform a delayed iput on @inode.
3408 *
3409 * @inode: The inode we want to perform iput on
3410 *
3411 * This function uses the generic vfs_inode::i_count to track whether we should
3412 * just decrement it (in case it's > 1) or if this is the last iput then link
3413 * the inode to the delayed iput machinery. Delayed iputs are processed at
3414 * transaction commit time/superblock commit/cleaner kthread.
3415 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3416 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3417 {
3418 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3419 unsigned long flags;
3420
3421 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3422 return;
3423
3424 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state));
3425 atomic_inc(&fs_info->nr_delayed_iputs);
3426 /*
3427 * Need to be irq safe here because we can be called from either an irq
3428 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3429 * context.
3430 */
3431 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3432 ASSERT(list_empty(&inode->delayed_iput));
3433 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3434 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3435 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3436 wake_up_process(fs_info->cleaner_kthread);
3437 }
3438
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3439 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3440 struct btrfs_inode *inode)
3441 {
3442 list_del_init(&inode->delayed_iput);
3443 spin_unlock_irq(&fs_info->delayed_iput_lock);
3444 iput(&inode->vfs_inode);
3445 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3446 wake_up(&fs_info->delayed_iputs_wait);
3447 spin_lock_irq(&fs_info->delayed_iput_lock);
3448 }
3449
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3450 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3451 struct btrfs_inode *inode)
3452 {
3453 if (!list_empty(&inode->delayed_iput)) {
3454 spin_lock_irq(&fs_info->delayed_iput_lock);
3455 if (!list_empty(&inode->delayed_iput))
3456 run_delayed_iput_locked(fs_info, inode);
3457 spin_unlock_irq(&fs_info->delayed_iput_lock);
3458 }
3459 }
3460
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3461 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3462 {
3463 /*
3464 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3465 * calls btrfs_add_delayed_iput() and that needs to lock
3466 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3467 * prevent a deadlock.
3468 */
3469 spin_lock_irq(&fs_info->delayed_iput_lock);
3470 while (!list_empty(&fs_info->delayed_iputs)) {
3471 struct btrfs_inode *inode;
3472
3473 inode = list_first_entry(&fs_info->delayed_iputs,
3474 struct btrfs_inode, delayed_iput);
3475 run_delayed_iput_locked(fs_info, inode);
3476 if (need_resched()) {
3477 spin_unlock_irq(&fs_info->delayed_iput_lock);
3478 cond_resched();
3479 spin_lock_irq(&fs_info->delayed_iput_lock);
3480 }
3481 }
3482 spin_unlock_irq(&fs_info->delayed_iput_lock);
3483 }
3484
3485 /*
3486 * Wait for flushing all delayed iputs
3487 *
3488 * @fs_info: the filesystem
3489 *
3490 * This will wait on any delayed iputs that are currently running with KILLABLE
3491 * set. Once they are all done running we will return, unless we are killed in
3492 * which case we return EINTR. This helps in user operations like fallocate etc
3493 * that might get blocked on the iputs.
3494 *
3495 * Return EINTR if we were killed, 0 if nothing's pending
3496 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3497 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3498 {
3499 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3500 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3501 if (ret)
3502 return -EINTR;
3503 return 0;
3504 }
3505
3506 /*
3507 * This creates an orphan entry for the given inode in case something goes wrong
3508 * in the middle of an unlink.
3509 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3510 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3511 struct btrfs_inode *inode)
3512 {
3513 int ret;
3514
3515 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3516 if (ret && ret != -EEXIST) {
3517 btrfs_abort_transaction(trans, ret);
3518 return ret;
3519 }
3520
3521 return 0;
3522 }
3523
3524 /*
3525 * We have done the delete so we can go ahead and remove the orphan item for
3526 * this particular inode.
3527 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3528 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3529 struct btrfs_inode *inode)
3530 {
3531 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3532 }
3533
3534 /*
3535 * this cleans up any orphans that may be left on the list from the last use
3536 * of this root.
3537 */
btrfs_orphan_cleanup(struct btrfs_root * root)3538 int btrfs_orphan_cleanup(struct btrfs_root *root)
3539 {
3540 struct btrfs_fs_info *fs_info = root->fs_info;
3541 BTRFS_PATH_AUTO_FREE(path);
3542 struct extent_buffer *leaf;
3543 struct btrfs_key key, found_key;
3544 struct btrfs_trans_handle *trans;
3545 u64 last_objectid = 0;
3546 int ret = 0, nr_unlink = 0;
3547
3548 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3549 return 0;
3550
3551 path = btrfs_alloc_path();
3552 if (!path) {
3553 ret = -ENOMEM;
3554 goto out;
3555 }
3556 path->reada = READA_BACK;
3557
3558 key.objectid = BTRFS_ORPHAN_OBJECTID;
3559 key.type = BTRFS_ORPHAN_ITEM_KEY;
3560 key.offset = (u64)-1;
3561
3562 while (1) {
3563 struct btrfs_inode *inode;
3564
3565 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3566 if (ret < 0)
3567 goto out;
3568
3569 /*
3570 * if ret == 0 means we found what we were searching for, which
3571 * is weird, but possible, so only screw with path if we didn't
3572 * find the key and see if we have stuff that matches
3573 */
3574 if (ret > 0) {
3575 ret = 0;
3576 if (path->slots[0] == 0)
3577 break;
3578 path->slots[0]--;
3579 }
3580
3581 /* pull out the item */
3582 leaf = path->nodes[0];
3583 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3584
3585 /* make sure the item matches what we want */
3586 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3587 break;
3588 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3589 break;
3590
3591 /* release the path since we're done with it */
3592 btrfs_release_path(path);
3593
3594 /*
3595 * this is where we are basically btrfs_lookup, without the
3596 * crossing root thing. we store the inode number in the
3597 * offset of the orphan item.
3598 */
3599
3600 if (found_key.offset == last_objectid) {
3601 /*
3602 * We found the same inode as before. This means we were
3603 * not able to remove its items via eviction triggered
3604 * by an iput(). A transaction abort may have happened,
3605 * due to -ENOSPC for example, so try to grab the error
3606 * that lead to a transaction abort, if any.
3607 */
3608 btrfs_err(fs_info,
3609 "Error removing orphan entry, stopping orphan cleanup");
3610 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3611 goto out;
3612 }
3613
3614 last_objectid = found_key.offset;
3615
3616 found_key.objectid = found_key.offset;
3617 found_key.type = BTRFS_INODE_ITEM_KEY;
3618 found_key.offset = 0;
3619 inode = btrfs_iget(last_objectid, root);
3620 if (IS_ERR(inode)) {
3621 ret = PTR_ERR(inode);
3622 inode = NULL;
3623 if (ret != -ENOENT)
3624 goto out;
3625 }
3626
3627 if (!inode && root == fs_info->tree_root) {
3628 struct btrfs_root *dead_root;
3629 int is_dead_root = 0;
3630
3631 /*
3632 * This is an orphan in the tree root. Currently these
3633 * could come from 2 sources:
3634 * a) a root (snapshot/subvolume) deletion in progress
3635 * b) a free space cache inode
3636 * We need to distinguish those two, as the orphan item
3637 * for a root must not get deleted before the deletion
3638 * of the snapshot/subvolume's tree completes.
3639 *
3640 * btrfs_find_orphan_roots() ran before us, which has
3641 * found all deleted roots and loaded them into
3642 * fs_info->fs_roots_radix. So here we can find if an
3643 * orphan item corresponds to a deleted root by looking
3644 * up the root from that radix tree.
3645 */
3646
3647 spin_lock(&fs_info->fs_roots_radix_lock);
3648 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3649 (unsigned long)found_key.objectid);
3650 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3651 is_dead_root = 1;
3652 spin_unlock(&fs_info->fs_roots_radix_lock);
3653
3654 if (is_dead_root) {
3655 /* prevent this orphan from being found again */
3656 key.offset = found_key.objectid - 1;
3657 continue;
3658 }
3659
3660 }
3661
3662 /*
3663 * If we have an inode with links, there are a couple of
3664 * possibilities:
3665 *
3666 * 1. We were halfway through creating fsverity metadata for the
3667 * file. In that case, the orphan item represents incomplete
3668 * fsverity metadata which must be cleaned up with
3669 * btrfs_drop_verity_items and deleting the orphan item.
3670
3671 * 2. Old kernels (before v3.12) used to create an
3672 * orphan item for truncate indicating that there were possibly
3673 * extent items past i_size that needed to be deleted. In v3.12,
3674 * truncate was changed to update i_size in sync with the extent
3675 * items, but the (useless) orphan item was still created. Since
3676 * v4.18, we don't create the orphan item for truncate at all.
3677 *
3678 * So, this item could mean that we need to do a truncate, but
3679 * only if this filesystem was last used on a pre-v3.12 kernel
3680 * and was not cleanly unmounted. The odds of that are quite
3681 * slim, and it's a pain to do the truncate now, so just delete
3682 * the orphan item.
3683 *
3684 * It's also possible that this orphan item was supposed to be
3685 * deleted but wasn't. The inode number may have been reused,
3686 * but either way, we can delete the orphan item.
3687 */
3688 if (!inode || inode->vfs_inode.i_nlink) {
3689 if (inode) {
3690 ret = btrfs_drop_verity_items(inode);
3691 iput(&inode->vfs_inode);
3692 inode = NULL;
3693 if (ret)
3694 goto out;
3695 }
3696 trans = btrfs_start_transaction(root, 1);
3697 if (IS_ERR(trans)) {
3698 ret = PTR_ERR(trans);
3699 goto out;
3700 }
3701 btrfs_debug(fs_info, "auto deleting %Lu",
3702 found_key.objectid);
3703 ret = btrfs_del_orphan_item(trans, root,
3704 found_key.objectid);
3705 btrfs_end_transaction(trans);
3706 if (ret)
3707 goto out;
3708 continue;
3709 }
3710
3711 nr_unlink++;
3712
3713 /* this will do delete_inode and everything for us */
3714 iput(&inode->vfs_inode);
3715 }
3716 /* release the path since we're done with it */
3717 btrfs_release_path(path);
3718
3719 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3720 trans = btrfs_join_transaction(root);
3721 if (!IS_ERR(trans))
3722 btrfs_end_transaction(trans);
3723 }
3724
3725 if (nr_unlink)
3726 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3727
3728 out:
3729 if (ret)
3730 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3731 return ret;
3732 }
3733
3734 /*
3735 * Look ahead in the leaf for xattrs. If we don't find any then we know there
3736 * can't be any ACLs.
3737 *
3738 * @leaf: the eb leaf where to search
3739 * @slot: the slot the inode is in
3740 * @objectid: the objectid of the inode
3741 *
3742 * Return true if there is xattr/ACL, false otherwise.
3743 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3744 static noinline bool acls_after_inode_item(struct extent_buffer *leaf,
3745 int slot, u64 objectid,
3746 int *first_xattr_slot)
3747 {
3748 u32 nritems = btrfs_header_nritems(leaf);
3749 struct btrfs_key found_key;
3750 static u64 xattr_access = 0;
3751 static u64 xattr_default = 0;
3752 int scanned = 0;
3753
3754 if (!xattr_access) {
3755 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3756 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3757 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3758 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3759 }
3760
3761 slot++;
3762 *first_xattr_slot = -1;
3763 while (slot < nritems) {
3764 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3765
3766 /* We found a different objectid, there must be no ACLs. */
3767 if (found_key.objectid != objectid)
3768 return false;
3769
3770 /* We found an xattr, assume we've got an ACL. */
3771 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3772 if (*first_xattr_slot == -1)
3773 *first_xattr_slot = slot;
3774 if (found_key.offset == xattr_access ||
3775 found_key.offset == xattr_default)
3776 return true;
3777 }
3778
3779 /*
3780 * We found a key greater than an xattr key, there can't be any
3781 * ACLs later on.
3782 */
3783 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3784 return false;
3785
3786 slot++;
3787 scanned++;
3788
3789 /*
3790 * The item order goes like:
3791 * - inode
3792 * - inode backrefs
3793 * - xattrs
3794 * - extents,
3795 *
3796 * so if there are lots of hard links to an inode there can be
3797 * a lot of backrefs. Don't waste time searching too hard,
3798 * this is just an optimization.
3799 */
3800 if (scanned >= 8)
3801 break;
3802 }
3803 /*
3804 * We hit the end of the leaf before we found an xattr or something
3805 * larger than an xattr. We have to assume the inode has ACLs.
3806 */
3807 if (*first_xattr_slot == -1)
3808 *first_xattr_slot = slot;
3809 return true;
3810 }
3811
btrfs_init_file_extent_tree(struct btrfs_inode * inode)3812 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3813 {
3814 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3815
3816 if (WARN_ON_ONCE(inode->file_extent_tree))
3817 return 0;
3818 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3819 return 0;
3820 if (!S_ISREG(inode->vfs_inode.i_mode))
3821 return 0;
3822 if (btrfs_is_free_space_inode(inode))
3823 return 0;
3824
3825 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3826 if (!inode->file_extent_tree)
3827 return -ENOMEM;
3828
3829 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree,
3830 IO_TREE_INODE_FILE_EXTENT);
3831 /* Lockdep class is set only for the file extent tree. */
3832 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3833
3834 return 0;
3835 }
3836
btrfs_add_inode_to_root(struct btrfs_inode * inode,bool prealloc)3837 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3838 {
3839 struct btrfs_root *root = inode->root;
3840 struct btrfs_inode *existing;
3841 const u64 ino = btrfs_ino(inode);
3842 int ret;
3843
3844 if (inode_unhashed(&inode->vfs_inode))
3845 return 0;
3846
3847 if (prealloc) {
3848 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3849 if (ret)
3850 return ret;
3851 }
3852
3853 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3854
3855 if (xa_is_err(existing)) {
3856 ret = xa_err(existing);
3857 ASSERT(ret != -EINVAL);
3858 ASSERT(ret != -ENOMEM);
3859 return ret;
3860 } else if (existing) {
3861 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
3862 }
3863
3864 return 0;
3865 }
3866
3867 /*
3868 * Read a locked inode from the btree into the in-memory inode and add it to
3869 * its root list/tree.
3870 *
3871 * On failure clean up the inode.
3872 */
btrfs_read_locked_inode(struct btrfs_inode * inode,struct btrfs_path * path)3873 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path)
3874 {
3875 struct btrfs_root *root = inode->root;
3876 struct btrfs_fs_info *fs_info = root->fs_info;
3877 struct extent_buffer *leaf;
3878 struct btrfs_inode_item *inode_item;
3879 struct inode *vfs_inode = &inode->vfs_inode;
3880 struct btrfs_key location;
3881 unsigned long ptr;
3882 int maybe_acls;
3883 u32 rdev;
3884 int ret;
3885 bool filled = false;
3886 int first_xattr_slot;
3887
3888 ret = btrfs_init_file_extent_tree(inode);
3889 if (ret)
3890 goto out;
3891
3892 ret = btrfs_fill_inode(inode, &rdev);
3893 if (!ret)
3894 filled = true;
3895
3896 ASSERT(path);
3897
3898 btrfs_get_inode_key(inode, &location);
3899
3900 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3901 if (ret) {
3902 /*
3903 * ret > 0 can come from btrfs_search_slot called by
3904 * btrfs_lookup_inode(), this means the inode was not found.
3905 */
3906 if (ret > 0)
3907 ret = -ENOENT;
3908 goto out;
3909 }
3910
3911 leaf = path->nodes[0];
3912
3913 if (filled)
3914 goto cache_index;
3915
3916 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3917 struct btrfs_inode_item);
3918 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3919 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item));
3920 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item));
3921 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item));
3922 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3923 btrfs_inode_set_file_extent_range(inode, 0,
3924 round_up(i_size_read(vfs_inode), fs_info->sectorsize));
3925
3926 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3927 btrfs_timespec_nsec(leaf, &inode_item->atime));
3928
3929 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3930 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3931
3932 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3933 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3934
3935 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3936 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3937
3938 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item));
3939 inode->generation = btrfs_inode_generation(leaf, inode_item);
3940 inode->last_trans = btrfs_inode_transid(leaf, inode_item);
3941
3942 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item));
3943 vfs_inode->i_generation = inode->generation;
3944 vfs_inode->i_rdev = 0;
3945 rdev = btrfs_inode_rdev(leaf, inode_item);
3946
3947 if (S_ISDIR(vfs_inode->i_mode))
3948 inode->index_cnt = (u64)-1;
3949
3950 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3951 &inode->flags, &inode->ro_flags);
3952 btrfs_update_inode_mapping_flags(inode);
3953 btrfs_set_inode_mapping_order(inode);
3954
3955 cache_index:
3956 /*
3957 * If we were modified in the current generation and evicted from memory
3958 * and then re-read we need to do a full sync since we don't have any
3959 * idea about which extents were modified before we were evicted from
3960 * cache.
3961 *
3962 * This is required for both inode re-read from disk and delayed inode
3963 * in the delayed_nodes xarray.
3964 */
3965 if (inode->last_trans == btrfs_get_fs_generation(fs_info))
3966 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3967
3968 /*
3969 * We don't persist the id of the transaction where an unlink operation
3970 * against the inode was last made. So here we assume the inode might
3971 * have been evicted, and therefore the exact value of last_unlink_trans
3972 * lost, and set it to last_trans to avoid metadata inconsistencies
3973 * between the inode and its parent if the inode is fsync'ed and the log
3974 * replayed. For example, in the scenario:
3975 *
3976 * touch mydir/foo
3977 * ln mydir/foo mydir/bar
3978 * sync
3979 * unlink mydir/bar
3980 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3981 * xfs_io -c fsync mydir/foo
3982 * <power failure>
3983 * mount fs, triggers fsync log replay
3984 *
3985 * We must make sure that when we fsync our inode foo we also log its
3986 * parent inode, otherwise after log replay the parent still has the
3987 * dentry with the "bar" name but our inode foo has a link count of 1
3988 * and doesn't have an inode ref with the name "bar" anymore.
3989 *
3990 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3991 * but it guarantees correctness at the expense of occasional full
3992 * transaction commits on fsync if our inode is a directory, or if our
3993 * inode is not a directory, logging its parent unnecessarily.
3994 */
3995 inode->last_unlink_trans = inode->last_trans;
3996
3997 /*
3998 * Same logic as for last_unlink_trans. We don't persist the generation
3999 * of the last transaction where this inode was used for a reflink
4000 * operation, so after eviction and reloading the inode we must be
4001 * pessimistic and assume the last transaction that modified the inode.
4002 */
4003 inode->last_reflink_trans = inode->last_trans;
4004
4005 path->slots[0]++;
4006 if (vfs_inode->i_nlink != 1 ||
4007 path->slots[0] >= btrfs_header_nritems(leaf))
4008 goto cache_acl;
4009
4010 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4011 if (location.objectid != btrfs_ino(inode))
4012 goto cache_acl;
4013
4014 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4015 if (location.type == BTRFS_INODE_REF_KEY) {
4016 struct btrfs_inode_ref *ref;
4017
4018 ref = (struct btrfs_inode_ref *)ptr;
4019 inode->dir_index = btrfs_inode_ref_index(leaf, ref);
4020 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4021 struct btrfs_inode_extref *extref;
4022
4023 extref = (struct btrfs_inode_extref *)ptr;
4024 inode->dir_index = btrfs_inode_extref_index(leaf, extref);
4025 }
4026 cache_acl:
4027 /*
4028 * try to precache a NULL acl entry for files that don't have
4029 * any xattrs or acls
4030 */
4031 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4032 btrfs_ino(inode), &first_xattr_slot);
4033 if (first_xattr_slot != -1) {
4034 path->slots[0] = first_xattr_slot;
4035 ret = btrfs_load_inode_props(inode, path);
4036 if (ret)
4037 btrfs_err(fs_info,
4038 "error loading props for ino %llu (root %llu): %d",
4039 btrfs_ino(inode), btrfs_root_id(root), ret);
4040 }
4041
4042 if (!maybe_acls)
4043 cache_no_acl(vfs_inode);
4044
4045 switch (vfs_inode->i_mode & S_IFMT) {
4046 case S_IFREG:
4047 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4048 vfs_inode->i_fop = &btrfs_file_operations;
4049 vfs_inode->i_op = &btrfs_file_inode_operations;
4050 break;
4051 case S_IFDIR:
4052 vfs_inode->i_fop = &btrfs_dir_file_operations;
4053 vfs_inode->i_op = &btrfs_dir_inode_operations;
4054 break;
4055 case S_IFLNK:
4056 vfs_inode->i_op = &btrfs_symlink_inode_operations;
4057 inode_nohighmem(vfs_inode);
4058 vfs_inode->i_mapping->a_ops = &btrfs_aops;
4059 break;
4060 default:
4061 vfs_inode->i_op = &btrfs_special_inode_operations;
4062 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev);
4063 break;
4064 }
4065
4066 btrfs_sync_inode_flags_to_i_flags(inode);
4067
4068 ret = btrfs_add_inode_to_root(inode, true);
4069 if (ret)
4070 goto out;
4071
4072 return 0;
4073 out:
4074 iget_failed(vfs_inode);
4075 return ret;
4076 }
4077
4078 /*
4079 * given a leaf and an inode, copy the inode fields into the leaf
4080 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4081 static void fill_inode_item(struct btrfs_trans_handle *trans,
4082 struct extent_buffer *leaf,
4083 struct btrfs_inode_item *item,
4084 struct inode *inode)
4085 {
4086 u64 flags;
4087
4088 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4089 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4090 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
4091 btrfs_set_inode_mode(leaf, item, inode->i_mode);
4092 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4093
4094 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4095 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4096
4097 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4098 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4099
4100 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4101 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4102
4103 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4104 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4105
4106 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
4107 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4108 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4109 btrfs_set_inode_transid(leaf, item, trans->transid);
4110 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4111 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4112 BTRFS_I(inode)->ro_flags);
4113 btrfs_set_inode_flags(leaf, item, flags);
4114 btrfs_set_inode_block_group(leaf, item, 0);
4115 }
4116
4117 /*
4118 * copy everything in the in-memory inode into the btree.
4119 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4120 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4121 struct btrfs_inode *inode)
4122 {
4123 struct btrfs_inode_item *inode_item;
4124 BTRFS_PATH_AUTO_FREE(path);
4125 struct extent_buffer *leaf;
4126 struct btrfs_key key;
4127 int ret;
4128
4129 path = btrfs_alloc_path();
4130 if (!path)
4131 return -ENOMEM;
4132
4133 btrfs_get_inode_key(inode, &key);
4134 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4135 if (ret) {
4136 if (ret > 0)
4137 ret = -ENOENT;
4138 return ret;
4139 }
4140
4141 leaf = path->nodes[0];
4142 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4143 struct btrfs_inode_item);
4144
4145 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4146 btrfs_set_inode_last_trans(trans, inode);
4147 return 0;
4148 }
4149
4150 /*
4151 * copy everything in the in-memory inode into the btree.
4152 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4153 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4154 struct btrfs_inode *inode)
4155 {
4156 struct btrfs_root *root = inode->root;
4157 struct btrfs_fs_info *fs_info = root->fs_info;
4158 int ret;
4159
4160 /*
4161 * If the inode is a free space inode, we can deadlock during commit
4162 * if we put it into the delayed code.
4163 *
4164 * The data relocation inode should also be directly updated
4165 * without delay
4166 */
4167 if (!btrfs_is_free_space_inode(inode)
4168 && !btrfs_is_data_reloc_root(root)
4169 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4170 btrfs_update_root_times(trans, root);
4171
4172 ret = btrfs_delayed_update_inode(trans, inode);
4173 if (!ret)
4174 btrfs_set_inode_last_trans(trans, inode);
4175 return ret;
4176 }
4177
4178 return btrfs_update_inode_item(trans, inode);
4179 }
4180
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4181 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4182 struct btrfs_inode *inode)
4183 {
4184 int ret;
4185
4186 ret = btrfs_update_inode(trans, inode);
4187 if (ret == -ENOSPC)
4188 return btrfs_update_inode_item(trans, inode);
4189 return ret;
4190 }
4191
update_time_after_link_or_unlink(struct btrfs_inode * dir)4192 static void update_time_after_link_or_unlink(struct btrfs_inode *dir)
4193 {
4194 struct timespec64 now;
4195
4196 /*
4197 * If we are replaying a log tree, we do not want to update the mtime
4198 * and ctime of the parent directory with the current time, since the
4199 * log replay procedure is responsible for setting them to their correct
4200 * values (the ones it had when the fsync was done).
4201 */
4202 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags))
4203 return;
4204
4205 now = inode_set_ctime_current(&dir->vfs_inode);
4206 inode_set_mtime_to_ts(&dir->vfs_inode, now);
4207 }
4208
4209 /*
4210 * unlink helper that gets used here in inode.c and in the tree logging
4211 * recovery code. It remove a link in a directory with a given name, and
4212 * also drops the back refs in the inode to the directory
4213 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4214 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4215 struct btrfs_inode *dir,
4216 struct btrfs_inode *inode,
4217 const struct fscrypt_str *name,
4218 struct btrfs_rename_ctx *rename_ctx)
4219 {
4220 struct btrfs_root *root = dir->root;
4221 struct btrfs_fs_info *fs_info = root->fs_info;
4222 struct btrfs_path *path;
4223 int ret = 0;
4224 struct btrfs_dir_item *di;
4225 u64 index;
4226 u64 ino = btrfs_ino(inode);
4227 u64 dir_ino = btrfs_ino(dir);
4228
4229 path = btrfs_alloc_path();
4230 if (!path)
4231 return -ENOMEM;
4232
4233 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4234 if (IS_ERR_OR_NULL(di)) {
4235 btrfs_free_path(path);
4236 return di ? PTR_ERR(di) : -ENOENT;
4237 }
4238 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4239 /*
4240 * Down the call chains below we'll also need to allocate a path, so no
4241 * need to hold on to this one for longer than necessary.
4242 */
4243 btrfs_free_path(path);
4244 if (ret)
4245 return ret;
4246
4247 /*
4248 * If we don't have dir index, we have to get it by looking up
4249 * the inode ref, since we get the inode ref, remove it directly,
4250 * it is unnecessary to do delayed deletion.
4251 *
4252 * But if we have dir index, needn't search inode ref to get it.
4253 * Since the inode ref is close to the inode item, it is better
4254 * that we delay to delete it, and just do this deletion when
4255 * we update the inode item.
4256 */
4257 if (inode->dir_index) {
4258 ret = btrfs_delayed_delete_inode_ref(inode);
4259 if (!ret) {
4260 index = inode->dir_index;
4261 goto skip_backref;
4262 }
4263 }
4264
4265 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4266 if (ret) {
4267 btrfs_crit(fs_info,
4268 "failed to delete reference to %.*s, root %llu inode %llu parent %llu",
4269 name->len, name->name, btrfs_root_id(root), ino, dir_ino);
4270 btrfs_abort_transaction(trans, ret);
4271 return ret;
4272 }
4273 skip_backref:
4274 if (rename_ctx)
4275 rename_ctx->index = index;
4276
4277 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4278 if (ret) {
4279 btrfs_abort_transaction(trans, ret);
4280 return ret;
4281 }
4282
4283 /*
4284 * If we are in a rename context, we don't need to update anything in the
4285 * log. That will be done later during the rename by btrfs_log_new_name().
4286 * Besides that, doing it here would only cause extra unnecessary btree
4287 * operations on the log tree, increasing latency for applications.
4288 */
4289 if (!rename_ctx) {
4290 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4291 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4292 }
4293
4294 /*
4295 * If we have a pending delayed iput we could end up with the final iput
4296 * being run in btrfs-cleaner context. If we have enough of these built
4297 * up we can end up burning a lot of time in btrfs-cleaner without any
4298 * way to throttle the unlinks. Since we're currently holding a ref on
4299 * the inode we can run the delayed iput here without any issues as the
4300 * final iput won't be done until after we drop the ref we're currently
4301 * holding.
4302 */
4303 btrfs_run_delayed_iput(fs_info, inode);
4304
4305 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4306 inode_inc_iversion(&inode->vfs_inode);
4307 inode_set_ctime_current(&inode->vfs_inode);
4308 inode_inc_iversion(&dir->vfs_inode);
4309 update_time_after_link_or_unlink(dir);
4310
4311 return btrfs_update_inode(trans, dir);
4312 }
4313
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4314 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4315 struct btrfs_inode *dir, struct btrfs_inode *inode,
4316 const struct fscrypt_str *name)
4317 {
4318 int ret;
4319
4320 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4321 if (!ret) {
4322 drop_nlink(&inode->vfs_inode);
4323 ret = btrfs_update_inode(trans, inode);
4324 }
4325 return ret;
4326 }
4327
4328 /*
4329 * helper to start transaction for unlink and rmdir.
4330 *
4331 * unlink and rmdir are special in btrfs, they do not always free space, so
4332 * if we cannot make our reservations the normal way try and see if there is
4333 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4334 * allow the unlink to occur.
4335 */
__unlink_start_trans(struct btrfs_inode * dir)4336 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4337 {
4338 struct btrfs_root *root = dir->root;
4339
4340 return btrfs_start_transaction_fallback_global_rsv(root,
4341 BTRFS_UNLINK_METADATA_UNITS);
4342 }
4343
btrfs_unlink(struct inode * dir,struct dentry * dentry)4344 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4345 {
4346 struct btrfs_trans_handle *trans;
4347 struct inode *inode = d_inode(dentry);
4348 int ret;
4349 struct fscrypt_name fname;
4350
4351 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4352 if (ret)
4353 return ret;
4354
4355 /* This needs to handle no-key deletions later on */
4356
4357 trans = __unlink_start_trans(BTRFS_I(dir));
4358 if (IS_ERR(trans)) {
4359 ret = PTR_ERR(trans);
4360 goto fscrypt_free;
4361 }
4362
4363 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4364 false);
4365
4366 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4367 &fname.disk_name);
4368 if (ret)
4369 goto end_trans;
4370
4371 if (inode->i_nlink == 0) {
4372 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4373 if (ret)
4374 goto end_trans;
4375 }
4376
4377 end_trans:
4378 btrfs_end_transaction(trans);
4379 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4380 fscrypt_free:
4381 fscrypt_free_filename(&fname);
4382 return ret;
4383 }
4384
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4385 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4386 struct btrfs_inode *dir, struct dentry *dentry)
4387 {
4388 struct btrfs_root *root = dir->root;
4389 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4390 struct btrfs_path *path;
4391 struct extent_buffer *leaf;
4392 struct btrfs_dir_item *di;
4393 struct btrfs_key key;
4394 u64 index;
4395 int ret;
4396 u64 objectid;
4397 u64 dir_ino = btrfs_ino(dir);
4398 struct fscrypt_name fname;
4399
4400 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4401 if (ret)
4402 return ret;
4403
4404 /* This needs to handle no-key deletions later on */
4405
4406 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4407 objectid = btrfs_root_id(inode->root);
4408 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4409 objectid = inode->ref_root_id;
4410 } else {
4411 WARN_ON(1);
4412 fscrypt_free_filename(&fname);
4413 return -EINVAL;
4414 }
4415
4416 path = btrfs_alloc_path();
4417 if (!path) {
4418 ret = -ENOMEM;
4419 goto out;
4420 }
4421
4422 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4423 &fname.disk_name, -1);
4424 if (IS_ERR_OR_NULL(di)) {
4425 ret = di ? PTR_ERR(di) : -ENOENT;
4426 goto out;
4427 }
4428
4429 leaf = path->nodes[0];
4430 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4431 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4432 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4433 if (ret) {
4434 btrfs_abort_transaction(trans, ret);
4435 goto out;
4436 }
4437 btrfs_release_path(path);
4438
4439 /*
4440 * This is a placeholder inode for a subvolume we didn't have a
4441 * reference to at the time of the snapshot creation. In the meantime
4442 * we could have renamed the real subvol link into our snapshot, so
4443 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4444 * Instead simply lookup the dir_index_item for this entry so we can
4445 * remove it. Otherwise we know we have a ref to the root and we can
4446 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4447 */
4448 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4449 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4450 if (IS_ERR(di)) {
4451 ret = PTR_ERR(di);
4452 btrfs_abort_transaction(trans, ret);
4453 goto out;
4454 }
4455
4456 leaf = path->nodes[0];
4457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4458 index = key.offset;
4459 btrfs_release_path(path);
4460 } else {
4461 ret = btrfs_del_root_ref(trans, objectid,
4462 btrfs_root_id(root), dir_ino,
4463 &index, &fname.disk_name);
4464 if (ret) {
4465 btrfs_abort_transaction(trans, ret);
4466 goto out;
4467 }
4468 }
4469
4470 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4471 if (ret) {
4472 btrfs_abort_transaction(trans, ret);
4473 goto out;
4474 }
4475
4476 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4477 inode_inc_iversion(&dir->vfs_inode);
4478 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4479 ret = btrfs_update_inode_fallback(trans, dir);
4480 if (ret)
4481 btrfs_abort_transaction(trans, ret);
4482 out:
4483 btrfs_free_path(path);
4484 fscrypt_free_filename(&fname);
4485 return ret;
4486 }
4487
4488 /*
4489 * Helper to check if the subvolume references other subvolumes or if it's
4490 * default.
4491 */
may_destroy_subvol(struct btrfs_root * root)4492 static noinline int may_destroy_subvol(struct btrfs_root *root)
4493 {
4494 struct btrfs_fs_info *fs_info = root->fs_info;
4495 BTRFS_PATH_AUTO_FREE(path);
4496 struct btrfs_dir_item *di;
4497 struct btrfs_key key;
4498 struct fscrypt_str name = FSTR_INIT("default", 7);
4499 u64 dir_id;
4500 int ret;
4501
4502 path = btrfs_alloc_path();
4503 if (!path)
4504 return -ENOMEM;
4505
4506 /* Make sure this root isn't set as the default subvol */
4507 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4508 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4509 dir_id, &name, 0);
4510 if (di && !IS_ERR(di)) {
4511 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4512 if (key.objectid == btrfs_root_id(root)) {
4513 ret = -EPERM;
4514 btrfs_err(fs_info,
4515 "deleting default subvolume %llu is not allowed",
4516 key.objectid);
4517 return ret;
4518 }
4519 btrfs_release_path(path);
4520 }
4521
4522 key.objectid = btrfs_root_id(root);
4523 key.type = BTRFS_ROOT_REF_KEY;
4524 key.offset = (u64)-1;
4525
4526 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4527 if (ret < 0)
4528 return ret;
4529 if (ret == 0) {
4530 /*
4531 * Key with offset -1 found, there would have to exist a root
4532 * with such id, but this is out of valid range.
4533 */
4534 return -EUCLEAN;
4535 }
4536
4537 ret = 0;
4538 if (path->slots[0] > 0) {
4539 path->slots[0]--;
4540 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4541 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4542 ret = -ENOTEMPTY;
4543 }
4544
4545 return ret;
4546 }
4547
4548 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4549 static void btrfs_prune_dentries(struct btrfs_root *root)
4550 {
4551 struct btrfs_fs_info *fs_info = root->fs_info;
4552 struct btrfs_inode *inode;
4553 u64 min_ino = 0;
4554
4555 if (!BTRFS_FS_ERROR(fs_info))
4556 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4557
4558 inode = btrfs_find_first_inode(root, min_ino);
4559 while (inode) {
4560 if (atomic_read(&inode->vfs_inode.i_count) > 1)
4561 d_prune_aliases(&inode->vfs_inode);
4562
4563 min_ino = btrfs_ino(inode) + 1;
4564 /*
4565 * btrfs_drop_inode() will have it removed from the inode
4566 * cache when its usage count hits zero.
4567 */
4568 iput(&inode->vfs_inode);
4569 cond_resched();
4570 inode = btrfs_find_first_inode(root, min_ino);
4571 }
4572 }
4573
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4574 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4575 {
4576 struct btrfs_root *root = dir->root;
4577 struct btrfs_fs_info *fs_info = root->fs_info;
4578 struct inode *inode = d_inode(dentry);
4579 struct btrfs_root *dest = BTRFS_I(inode)->root;
4580 struct btrfs_trans_handle *trans;
4581 struct btrfs_block_rsv block_rsv;
4582 u64 root_flags;
4583 u64 qgroup_reserved = 0;
4584 int ret;
4585
4586 down_write(&fs_info->subvol_sem);
4587
4588 /*
4589 * Don't allow to delete a subvolume with send in progress. This is
4590 * inside the inode lock so the error handling that has to drop the bit
4591 * again is not run concurrently.
4592 */
4593 spin_lock(&dest->root_item_lock);
4594 if (dest->send_in_progress) {
4595 spin_unlock(&dest->root_item_lock);
4596 btrfs_warn(fs_info,
4597 "attempt to delete subvolume %llu during send",
4598 btrfs_root_id(dest));
4599 ret = -EPERM;
4600 goto out_up_write;
4601 }
4602 if (atomic_read(&dest->nr_swapfiles)) {
4603 spin_unlock(&dest->root_item_lock);
4604 btrfs_warn(fs_info,
4605 "attempt to delete subvolume %llu with active swapfile",
4606 btrfs_root_id(root));
4607 ret = -EPERM;
4608 goto out_up_write;
4609 }
4610 root_flags = btrfs_root_flags(&dest->root_item);
4611 btrfs_set_root_flags(&dest->root_item,
4612 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4613 spin_unlock(&dest->root_item_lock);
4614
4615 ret = may_destroy_subvol(dest);
4616 if (ret)
4617 goto out_undead;
4618
4619 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4620 /*
4621 * One for dir inode,
4622 * two for dir entries,
4623 * two for root ref/backref.
4624 */
4625 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4626 if (ret)
4627 goto out_undead;
4628 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4629
4630 trans = btrfs_start_transaction(root, 0);
4631 if (IS_ERR(trans)) {
4632 ret = PTR_ERR(trans);
4633 goto out_release;
4634 }
4635 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4636 qgroup_reserved = 0;
4637 trans->block_rsv = &block_rsv;
4638 trans->bytes_reserved = block_rsv.size;
4639
4640 btrfs_record_snapshot_destroy(trans, dir);
4641
4642 ret = btrfs_unlink_subvol(trans, dir, dentry);
4643 if (ret) {
4644 btrfs_abort_transaction(trans, ret);
4645 goto out_end_trans;
4646 }
4647
4648 ret = btrfs_record_root_in_trans(trans, dest);
4649 if (ret) {
4650 btrfs_abort_transaction(trans, ret);
4651 goto out_end_trans;
4652 }
4653
4654 memset(&dest->root_item.drop_progress, 0,
4655 sizeof(dest->root_item.drop_progress));
4656 btrfs_set_root_drop_level(&dest->root_item, 0);
4657 btrfs_set_root_refs(&dest->root_item, 0);
4658
4659 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4660 ret = btrfs_insert_orphan_item(trans,
4661 fs_info->tree_root,
4662 btrfs_root_id(dest));
4663 if (ret) {
4664 btrfs_abort_transaction(trans, ret);
4665 goto out_end_trans;
4666 }
4667 }
4668
4669 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4670 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4671 if (ret && ret != -ENOENT) {
4672 btrfs_abort_transaction(trans, ret);
4673 goto out_end_trans;
4674 }
4675 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4676 ret = btrfs_uuid_tree_remove(trans,
4677 dest->root_item.received_uuid,
4678 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4679 btrfs_root_id(dest));
4680 if (ret && ret != -ENOENT) {
4681 btrfs_abort_transaction(trans, ret);
4682 goto out_end_trans;
4683 }
4684 }
4685
4686 free_anon_bdev(dest->anon_dev);
4687 dest->anon_dev = 0;
4688 out_end_trans:
4689 trans->block_rsv = NULL;
4690 trans->bytes_reserved = 0;
4691 ret = btrfs_end_transaction(trans);
4692 inode->i_flags |= S_DEAD;
4693 out_release:
4694 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4695 if (qgroup_reserved)
4696 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4697 out_undead:
4698 if (ret) {
4699 spin_lock(&dest->root_item_lock);
4700 root_flags = btrfs_root_flags(&dest->root_item);
4701 btrfs_set_root_flags(&dest->root_item,
4702 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4703 spin_unlock(&dest->root_item_lock);
4704 }
4705 out_up_write:
4706 up_write(&fs_info->subvol_sem);
4707 if (!ret) {
4708 d_invalidate(dentry);
4709 btrfs_prune_dentries(dest);
4710 ASSERT(dest->send_in_progress == 0);
4711 }
4712
4713 return ret;
4714 }
4715
btrfs_rmdir(struct inode * vfs_dir,struct dentry * dentry)4716 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry)
4717 {
4718 struct btrfs_inode *dir = BTRFS_I(vfs_dir);
4719 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4720 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4721 int ret = 0;
4722 struct btrfs_trans_handle *trans;
4723 struct fscrypt_name fname;
4724
4725 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE)
4726 return -ENOTEMPTY;
4727 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4728 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4729 btrfs_err(fs_info,
4730 "extent tree v2 doesn't support snapshot deletion yet");
4731 return -EOPNOTSUPP;
4732 }
4733 return btrfs_delete_subvolume(dir, dentry);
4734 }
4735
4736 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname);
4737 if (ret)
4738 return ret;
4739
4740 /* This needs to handle no-key deletions later on */
4741
4742 trans = __unlink_start_trans(dir);
4743 if (IS_ERR(trans)) {
4744 ret = PTR_ERR(trans);
4745 goto out_notrans;
4746 }
4747
4748 /*
4749 * Propagate the last_unlink_trans value of the deleted dir to its
4750 * parent directory. This is to prevent an unrecoverable log tree in the
4751 * case we do something like this:
4752 * 1) create dir foo
4753 * 2) create snapshot under dir foo
4754 * 3) delete the snapshot
4755 * 4) rmdir foo
4756 * 5) mkdir foo
4757 * 6) fsync foo or some file inside foo
4758 *
4759 * This is because we can't unlink other roots when replaying the dir
4760 * deletes for directory foo.
4761 */
4762 if (inode->last_unlink_trans >= trans->transid)
4763 btrfs_record_snapshot_destroy(trans, dir);
4764
4765 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4766 ret = btrfs_unlink_subvol(trans, dir, dentry);
4767 goto out;
4768 }
4769
4770 ret = btrfs_orphan_add(trans, inode);
4771 if (ret)
4772 goto out;
4773
4774 /* now the directory is empty */
4775 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name);
4776 if (!ret)
4777 btrfs_i_size_write(inode, 0);
4778 out:
4779 btrfs_end_transaction(trans);
4780 out_notrans:
4781 btrfs_btree_balance_dirty(fs_info);
4782 fscrypt_free_filename(&fname);
4783
4784 return ret;
4785 }
4786
is_inside_block(u64 bytenr,u64 blockstart,u32 blocksize)4787 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize)
4788 {
4789 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u",
4790 blockstart, blocksize);
4791
4792 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1)
4793 return true;
4794 return false;
4795 }
4796
truncate_block_zero_beyond_eof(struct btrfs_inode * inode,u64 start)4797 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start)
4798 {
4799 const pgoff_t index = (start >> PAGE_SHIFT);
4800 struct address_space *mapping = inode->vfs_inode.i_mapping;
4801 struct folio *folio;
4802 u64 zero_start;
4803 u64 zero_end;
4804 int ret = 0;
4805
4806 again:
4807 folio = filemap_lock_folio(mapping, index);
4808 /* No folio present. */
4809 if (IS_ERR(folio))
4810 return 0;
4811
4812 if (!folio_test_uptodate(folio)) {
4813 ret = btrfs_read_folio(NULL, folio);
4814 folio_lock(folio);
4815 if (folio->mapping != mapping) {
4816 folio_unlock(folio);
4817 folio_put(folio);
4818 goto again;
4819 }
4820 if (!folio_test_uptodate(folio)) {
4821 ret = -EIO;
4822 goto out_unlock;
4823 }
4824 }
4825 folio_wait_writeback(folio);
4826
4827 /*
4828 * We do not need to lock extents nor wait for OE, as it's already
4829 * beyond EOF.
4830 */
4831
4832 zero_start = max_t(u64, folio_pos(folio), start);
4833 zero_end = folio_end(folio);
4834 folio_zero_range(folio, zero_start - folio_pos(folio),
4835 zero_end - zero_start);
4836
4837 out_unlock:
4838 folio_unlock(folio);
4839 folio_put(folio);
4840 return ret;
4841 }
4842
4843 /*
4844 * Handle the truncation of a fs block.
4845 *
4846 * @inode - inode that we're zeroing
4847 * @offset - the file offset of the block to truncate
4848 * The value must be inside [@start, @end], and the function will do
4849 * extra checks if the block that covers @offset needs to be zeroed.
4850 * @start - the start file offset of the range we want to zero
4851 * @end - the end (inclusive) file offset of the range we want to zero.
4852 *
4853 * If the range is not block aligned, read out the folio that covers @offset,
4854 * and if needed zero blocks that are inside the folio and covered by [@start, @end).
4855 * If @start or @end + 1 lands inside a block, that block will be marked dirty
4856 * for writeback.
4857 *
4858 * This is utilized by hole punch, zero range, file expansion.
4859 */
btrfs_truncate_block(struct btrfs_inode * inode,u64 offset,u64 start,u64 end)4860 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end)
4861 {
4862 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4863 struct address_space *mapping = inode->vfs_inode.i_mapping;
4864 struct extent_io_tree *io_tree = &inode->io_tree;
4865 struct btrfs_ordered_extent *ordered;
4866 struct extent_state *cached_state = NULL;
4867 struct extent_changeset *data_reserved = NULL;
4868 bool only_release_metadata = false;
4869 u32 blocksize = fs_info->sectorsize;
4870 pgoff_t index = (offset >> PAGE_SHIFT);
4871 struct folio *folio;
4872 gfp_t mask = btrfs_alloc_write_mask(mapping);
4873 int ret = 0;
4874 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize),
4875 blocksize);
4876 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize),
4877 blocksize);
4878 bool need_truncate_head = false;
4879 bool need_truncate_tail = false;
4880 u64 zero_start;
4881 u64 zero_end;
4882 u64 block_start;
4883 u64 block_end;
4884
4885 /* @offset should be inside the range. */
4886 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu",
4887 offset, start, end);
4888
4889 /* The range is aligned at both ends. */
4890 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) {
4891 /*
4892 * For block size < page size case, we may have polluted blocks
4893 * beyond EOF. So we also need to zero them out.
4894 */
4895 if (end == (u64)-1 && blocksize < PAGE_SIZE)
4896 ret = truncate_block_zero_beyond_eof(inode, start);
4897 goto out;
4898 }
4899
4900 /*
4901 * @offset may not be inside the head nor tail block. In that case we
4902 * don't need to do anything.
4903 */
4904 if (!in_head_block && !in_tail_block)
4905 goto out;
4906
4907 /*
4908 * Skip the truncatioin if the range in the target block is already aligned.
4909 * The seemingly complex check will also handle the same block case.
4910 */
4911 if (in_head_block && !IS_ALIGNED(start, blocksize))
4912 need_truncate_head = true;
4913 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize))
4914 need_truncate_tail = true;
4915 if (!need_truncate_head && !need_truncate_tail)
4916 goto out;
4917
4918 block_start = round_down(offset, blocksize);
4919 block_end = block_start + blocksize - 1;
4920
4921 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4922 blocksize, false);
4923 if (ret < 0) {
4924 size_t write_bytes = blocksize;
4925
4926 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4927 /* For nocow case, no need to reserve data space. */
4928 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u",
4929 write_bytes, blocksize);
4930 only_release_metadata = true;
4931 } else {
4932 goto out;
4933 }
4934 }
4935 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4936 if (ret < 0) {
4937 if (!only_release_metadata)
4938 btrfs_free_reserved_data_space(inode, data_reserved,
4939 block_start, blocksize);
4940 goto out;
4941 }
4942 again:
4943 folio = __filemap_get_folio(mapping, index,
4944 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4945 if (IS_ERR(folio)) {
4946 if (only_release_metadata)
4947 btrfs_delalloc_release_metadata(inode, blocksize, true);
4948 else
4949 btrfs_delalloc_release_space(inode, data_reserved,
4950 block_start, blocksize, true);
4951 btrfs_delalloc_release_extents(inode, blocksize);
4952 ret = PTR_ERR(folio);
4953 goto out;
4954 }
4955
4956 if (!folio_test_uptodate(folio)) {
4957 ret = btrfs_read_folio(NULL, folio);
4958 folio_lock(folio);
4959 if (folio->mapping != mapping) {
4960 folio_unlock(folio);
4961 folio_put(folio);
4962 goto again;
4963 }
4964 if (!folio_test_uptodate(folio)) {
4965 ret = -EIO;
4966 goto out_unlock;
4967 }
4968 }
4969
4970 /*
4971 * We unlock the page after the io is completed and then re-lock it
4972 * above. release_folio() could have come in between that and cleared
4973 * folio private, but left the page in the mapping. Set the page mapped
4974 * here to make sure it's properly set for the subpage stuff.
4975 */
4976 ret = set_folio_extent_mapped(folio);
4977 if (ret < 0)
4978 goto out_unlock;
4979
4980 folio_wait_writeback(folio);
4981
4982 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state);
4983
4984 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4985 if (ordered) {
4986 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
4987 folio_unlock(folio);
4988 folio_put(folio);
4989 btrfs_start_ordered_extent(ordered);
4990 btrfs_put_ordered_extent(ordered);
4991 goto again;
4992 }
4993
4994 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end,
4995 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4996 &cached_state);
4997
4998 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4999 &cached_state);
5000 if (ret) {
5001 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5002 goto out_unlock;
5003 }
5004
5005 if (end == (u64)-1) {
5006 /*
5007 * We're truncating beyond EOF, the remaining blocks normally are
5008 * already holes thus no need to zero again, but it's possible for
5009 * fs block size < page size cases to have memory mapped writes
5010 * to pollute ranges beyond EOF.
5011 *
5012 * In that case although such polluted blocks beyond EOF will
5013 * not reach disk, it still affects our page caches.
5014 */
5015 zero_start = max_t(u64, folio_pos(folio), start);
5016 zero_end = min_t(u64, folio_end(folio) - 1, end);
5017 } else {
5018 zero_start = max_t(u64, block_start, start);
5019 zero_end = min_t(u64, block_end, end);
5020 }
5021 folio_zero_range(folio, zero_start - folio_pos(folio),
5022 zero_end - zero_start + 1);
5023
5024 btrfs_folio_clear_checked(fs_info, folio, block_start,
5025 block_end + 1 - block_start);
5026 btrfs_folio_set_dirty(fs_info, folio, block_start,
5027 block_end + 1 - block_start);
5028
5029 if (only_release_metadata)
5030 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end,
5031 EXTENT_NORESERVE, &cached_state);
5032
5033 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state);
5034
5035 out_unlock:
5036 if (ret) {
5037 if (only_release_metadata)
5038 btrfs_delalloc_release_metadata(inode, blocksize, true);
5039 else
5040 btrfs_delalloc_release_space(inode, data_reserved,
5041 block_start, blocksize, true);
5042 }
5043 btrfs_delalloc_release_extents(inode, blocksize);
5044 folio_unlock(folio);
5045 folio_put(folio);
5046 out:
5047 if (only_release_metadata)
5048 btrfs_check_nocow_unlock(inode);
5049 extent_changeset_free(data_reserved);
5050 return ret;
5051 }
5052
maybe_insert_hole(struct btrfs_inode * inode,u64 offset,u64 len)5053 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
5054 {
5055 struct btrfs_root *root = inode->root;
5056 struct btrfs_fs_info *fs_info = root->fs_info;
5057 struct btrfs_trans_handle *trans;
5058 struct btrfs_drop_extents_args drop_args = { 0 };
5059 int ret;
5060
5061 /*
5062 * If NO_HOLES is enabled, we don't need to do anything.
5063 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5064 * or btrfs_update_inode() will be called, which guarantee that the next
5065 * fsync will know this inode was changed and needs to be logged.
5066 */
5067 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5068 return 0;
5069
5070 /*
5071 * 1 - for the one we're dropping
5072 * 1 - for the one we're adding
5073 * 1 - for updating the inode.
5074 */
5075 trans = btrfs_start_transaction(root, 3);
5076 if (IS_ERR(trans))
5077 return PTR_ERR(trans);
5078
5079 drop_args.start = offset;
5080 drop_args.end = offset + len;
5081 drop_args.drop_cache = true;
5082
5083 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5084 if (ret) {
5085 btrfs_abort_transaction(trans, ret);
5086 btrfs_end_transaction(trans);
5087 return ret;
5088 }
5089
5090 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5091 if (ret) {
5092 btrfs_abort_transaction(trans, ret);
5093 } else {
5094 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5095 btrfs_update_inode(trans, inode);
5096 }
5097 btrfs_end_transaction(trans);
5098 return ret;
5099 }
5100
5101 /*
5102 * This function puts in dummy file extents for the area we're creating a hole
5103 * for. So if we are truncating this file to a larger size we need to insert
5104 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5105 * the range between oldsize and size
5106 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5107 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5108 {
5109 struct btrfs_root *root = inode->root;
5110 struct btrfs_fs_info *fs_info = root->fs_info;
5111 struct extent_io_tree *io_tree = &inode->io_tree;
5112 struct extent_map *em = NULL;
5113 struct extent_state *cached_state = NULL;
5114 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5115 u64 block_end = ALIGN(size, fs_info->sectorsize);
5116 u64 last_byte;
5117 u64 cur_offset;
5118 u64 hole_size;
5119 int ret = 0;
5120
5121 /*
5122 * If our size started in the middle of a block we need to zero out the
5123 * rest of the block before we expand the i_size, otherwise we could
5124 * expose stale data.
5125 */
5126 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1);
5127 if (ret)
5128 return ret;
5129
5130 if (size <= hole_start)
5131 return 0;
5132
5133 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5134 &cached_state);
5135 cur_offset = hole_start;
5136 while (1) {
5137 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
5138 if (IS_ERR(em)) {
5139 ret = PTR_ERR(em);
5140 em = NULL;
5141 break;
5142 }
5143 last_byte = min(btrfs_extent_map_end(em), block_end);
5144 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5145 hole_size = last_byte - cur_offset;
5146
5147 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5148 struct extent_map *hole_em;
5149
5150 ret = maybe_insert_hole(inode, cur_offset, hole_size);
5151 if (ret)
5152 break;
5153
5154 ret = btrfs_inode_set_file_extent_range(inode,
5155 cur_offset, hole_size);
5156 if (ret)
5157 break;
5158
5159 hole_em = btrfs_alloc_extent_map();
5160 if (!hole_em) {
5161 btrfs_drop_extent_map_range(inode, cur_offset,
5162 cur_offset + hole_size - 1,
5163 false);
5164 btrfs_set_inode_full_sync(inode);
5165 goto next;
5166 }
5167 hole_em->start = cur_offset;
5168 hole_em->len = hole_size;
5169
5170 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
5171 hole_em->disk_num_bytes = 0;
5172 hole_em->ram_bytes = hole_size;
5173 hole_em->generation = btrfs_get_fs_generation(fs_info);
5174
5175 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
5176 btrfs_free_extent_map(hole_em);
5177 } else {
5178 ret = btrfs_inode_set_file_extent_range(inode,
5179 cur_offset, hole_size);
5180 if (ret)
5181 break;
5182 }
5183 next:
5184 btrfs_free_extent_map(em);
5185 em = NULL;
5186 cur_offset = last_byte;
5187 if (cur_offset >= block_end)
5188 break;
5189 }
5190 btrfs_free_extent_map(em);
5191 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5192 return ret;
5193 }
5194
btrfs_setsize(struct inode * inode,struct iattr * attr)5195 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5196 {
5197 struct btrfs_root *root = BTRFS_I(inode)->root;
5198 struct btrfs_trans_handle *trans;
5199 loff_t oldsize = i_size_read(inode);
5200 loff_t newsize = attr->ia_size;
5201 int mask = attr->ia_valid;
5202 int ret;
5203
5204 /*
5205 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5206 * special case where we need to update the times despite not having
5207 * these flags set. For all other operations the VFS set these flags
5208 * explicitly if it wants a timestamp update.
5209 */
5210 if (newsize != oldsize) {
5211 inode_inc_iversion(inode);
5212 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5213 inode_set_mtime_to_ts(inode,
5214 inode_set_ctime_current(inode));
5215 }
5216 }
5217
5218 if (newsize > oldsize) {
5219 /*
5220 * Don't do an expanding truncate while snapshotting is ongoing.
5221 * This is to ensure the snapshot captures a fully consistent
5222 * state of this file - if the snapshot captures this expanding
5223 * truncation, it must capture all writes that happened before
5224 * this truncation.
5225 */
5226 btrfs_drew_write_lock(&root->snapshot_lock);
5227 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5228 if (ret) {
5229 btrfs_drew_write_unlock(&root->snapshot_lock);
5230 return ret;
5231 }
5232
5233 trans = btrfs_start_transaction(root, 1);
5234 if (IS_ERR(trans)) {
5235 btrfs_drew_write_unlock(&root->snapshot_lock);
5236 return PTR_ERR(trans);
5237 }
5238
5239 i_size_write(inode, newsize);
5240 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5241 pagecache_isize_extended(inode, oldsize, newsize);
5242 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5243 btrfs_drew_write_unlock(&root->snapshot_lock);
5244 btrfs_end_transaction(trans);
5245 } else {
5246 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5247
5248 if (btrfs_is_zoned(fs_info)) {
5249 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5250 ALIGN(newsize, fs_info->sectorsize),
5251 (u64)-1);
5252 if (ret)
5253 return ret;
5254 }
5255
5256 /*
5257 * We're truncating a file that used to have good data down to
5258 * zero. Make sure any new writes to the file get on disk
5259 * on close.
5260 */
5261 if (newsize == 0)
5262 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5263 &BTRFS_I(inode)->runtime_flags);
5264
5265 truncate_setsize(inode, newsize);
5266
5267 inode_dio_wait(inode);
5268
5269 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5270 if (ret && inode->i_nlink) {
5271 int ret2;
5272
5273 /*
5274 * Truncate failed, so fix up the in-memory size. We
5275 * adjusted disk_i_size down as we removed extents, so
5276 * wait for disk_i_size to be stable and then update the
5277 * in-memory size to match.
5278 */
5279 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5280 if (ret2)
5281 return ret2;
5282 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5283 }
5284 }
5285
5286 return ret;
5287 }
5288
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5289 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5290 struct iattr *attr)
5291 {
5292 struct inode *inode = d_inode(dentry);
5293 struct btrfs_root *root = BTRFS_I(inode)->root;
5294 int ret;
5295
5296 if (btrfs_root_readonly(root))
5297 return -EROFS;
5298
5299 ret = setattr_prepare(idmap, dentry, attr);
5300 if (ret)
5301 return ret;
5302
5303 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5304 ret = btrfs_setsize(inode, attr);
5305 if (ret)
5306 return ret;
5307 }
5308
5309 if (attr->ia_valid) {
5310 setattr_copy(idmap, inode, attr);
5311 inode_inc_iversion(inode);
5312 ret = btrfs_dirty_inode(BTRFS_I(inode));
5313
5314 if (!ret && attr->ia_valid & ATTR_MODE)
5315 ret = posix_acl_chmod(idmap, dentry, inode->i_mode);
5316 }
5317
5318 return ret;
5319 }
5320
5321 /*
5322 * While truncating the inode pages during eviction, we get the VFS
5323 * calling btrfs_invalidate_folio() against each folio of the inode. This
5324 * is slow because the calls to btrfs_invalidate_folio() result in a
5325 * huge amount of calls to lock_extent() and clear_extent_bit(),
5326 * which keep merging and splitting extent_state structures over and over,
5327 * wasting lots of time.
5328 *
5329 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5330 * skip all those expensive operations on a per folio basis and do only
5331 * the ordered io finishing, while we release here the extent_map and
5332 * extent_state structures, without the excessive merging and splitting.
5333 */
evict_inode_truncate_pages(struct inode * inode)5334 static void evict_inode_truncate_pages(struct inode *inode)
5335 {
5336 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5337 struct rb_node *node;
5338
5339 ASSERT(inode->i_state & I_FREEING);
5340 truncate_inode_pages_final(&inode->i_data);
5341
5342 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5343
5344 /*
5345 * Keep looping until we have no more ranges in the io tree.
5346 * We can have ongoing bios started by readahead that have
5347 * their endio callback (extent_io.c:end_bio_extent_readpage)
5348 * still in progress (unlocked the pages in the bio but did not yet
5349 * unlocked the ranges in the io tree). Therefore this means some
5350 * ranges can still be locked and eviction started because before
5351 * submitting those bios, which are executed by a separate task (work
5352 * queue kthread), inode references (inode->i_count) were not taken
5353 * (which would be dropped in the end io callback of each bio).
5354 * Therefore here we effectively end up waiting for those bios and
5355 * anyone else holding locked ranges without having bumped the inode's
5356 * reference count - if we don't do it, when they access the inode's
5357 * io_tree to unlock a range it may be too late, leading to an
5358 * use-after-free issue.
5359 */
5360 spin_lock(&io_tree->lock);
5361 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5362 struct extent_state *state;
5363 struct extent_state *cached_state = NULL;
5364 u64 start;
5365 u64 end;
5366 unsigned state_flags;
5367
5368 node = rb_first(&io_tree->state);
5369 state = rb_entry(node, struct extent_state, rb_node);
5370 start = state->start;
5371 end = state->end;
5372 state_flags = state->state;
5373 spin_unlock(&io_tree->lock);
5374
5375 btrfs_lock_extent(io_tree, start, end, &cached_state);
5376
5377 /*
5378 * If still has DELALLOC flag, the extent didn't reach disk,
5379 * and its reserved space won't be freed by delayed_ref.
5380 * So we need to free its reserved space here.
5381 * (Refer to comment in btrfs_invalidate_folio, case 2)
5382 *
5383 * Note, end is the bytenr of last byte, so we need + 1 here.
5384 */
5385 if (state_flags & EXTENT_DELALLOC)
5386 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5387 end - start + 1, NULL);
5388
5389 btrfs_clear_extent_bit(io_tree, start, end,
5390 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5391 &cached_state);
5392
5393 cond_resched();
5394 spin_lock(&io_tree->lock);
5395 }
5396 spin_unlock(&io_tree->lock);
5397 }
5398
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5399 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5400 struct btrfs_block_rsv *rsv)
5401 {
5402 struct btrfs_fs_info *fs_info = root->fs_info;
5403 struct btrfs_trans_handle *trans;
5404 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5405 int ret;
5406
5407 /*
5408 * Eviction should be taking place at some place safe because of our
5409 * delayed iputs. However the normal flushing code will run delayed
5410 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5411 *
5412 * We reserve the delayed_refs_extra here again because we can't use
5413 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5414 * above. We reserve our extra bit here because we generate a ton of
5415 * delayed refs activity by truncating.
5416 *
5417 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5418 * if we fail to make this reservation we can re-try without the
5419 * delayed_refs_extra so we can make some forward progress.
5420 */
5421 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5422 BTRFS_RESERVE_FLUSH_EVICT);
5423 if (ret) {
5424 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5425 BTRFS_RESERVE_FLUSH_EVICT);
5426 if (ret) {
5427 btrfs_warn(fs_info,
5428 "could not allocate space for delete; will truncate on mount");
5429 return ERR_PTR(-ENOSPC);
5430 }
5431 delayed_refs_extra = 0;
5432 }
5433
5434 trans = btrfs_join_transaction(root);
5435 if (IS_ERR(trans))
5436 return trans;
5437
5438 if (delayed_refs_extra) {
5439 trans->block_rsv = &fs_info->trans_block_rsv;
5440 trans->bytes_reserved = delayed_refs_extra;
5441 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5442 delayed_refs_extra, true);
5443 }
5444 return trans;
5445 }
5446
btrfs_evict_inode(struct inode * inode)5447 void btrfs_evict_inode(struct inode *inode)
5448 {
5449 struct btrfs_fs_info *fs_info;
5450 struct btrfs_trans_handle *trans;
5451 struct btrfs_root *root = BTRFS_I(inode)->root;
5452 struct btrfs_block_rsv rsv;
5453 int ret;
5454
5455 trace_btrfs_inode_evict(inode);
5456
5457 if (!root) {
5458 fsverity_cleanup_inode(inode);
5459 clear_inode(inode);
5460 return;
5461 }
5462
5463 fs_info = inode_to_fs_info(inode);
5464 evict_inode_truncate_pages(inode);
5465
5466 if (inode->i_nlink &&
5467 ((btrfs_root_refs(&root->root_item) != 0 &&
5468 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5469 btrfs_is_free_space_inode(BTRFS_I(inode))))
5470 goto out;
5471
5472 if (is_bad_inode(inode))
5473 goto out;
5474
5475 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5476 goto out;
5477
5478 if (inode->i_nlink > 0) {
5479 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5480 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5481 goto out;
5482 }
5483
5484 /*
5485 * This makes sure the inode item in tree is uptodate and the space for
5486 * the inode update is released.
5487 */
5488 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5489 if (ret)
5490 goto out;
5491
5492 /*
5493 * This drops any pending insert or delete operations we have for this
5494 * inode. We could have a delayed dir index deletion queued up, but
5495 * we're removing the inode completely so that'll be taken care of in
5496 * the truncate.
5497 */
5498 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5499
5500 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
5501 rsv.size = btrfs_calc_metadata_size(fs_info, 1);
5502 rsv.failfast = true;
5503
5504 btrfs_i_size_write(BTRFS_I(inode), 0);
5505
5506 while (1) {
5507 struct btrfs_truncate_control control = {
5508 .inode = BTRFS_I(inode),
5509 .ino = btrfs_ino(BTRFS_I(inode)),
5510 .new_size = 0,
5511 .min_type = 0,
5512 };
5513
5514 trans = evict_refill_and_join(root, &rsv);
5515 if (IS_ERR(trans))
5516 goto out_release;
5517
5518 trans->block_rsv = &rsv;
5519
5520 ret = btrfs_truncate_inode_items(trans, root, &control);
5521 trans->block_rsv = &fs_info->trans_block_rsv;
5522 btrfs_end_transaction(trans);
5523 /*
5524 * We have not added new delayed items for our inode after we
5525 * have flushed its delayed items, so no need to throttle on
5526 * delayed items. However we have modified extent buffers.
5527 */
5528 btrfs_btree_balance_dirty_nodelay(fs_info);
5529 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5530 goto out_release;
5531 else if (!ret)
5532 break;
5533 }
5534
5535 /*
5536 * Errors here aren't a big deal, it just means we leave orphan items in
5537 * the tree. They will be cleaned up on the next mount. If the inode
5538 * number gets reused, cleanup deletes the orphan item without doing
5539 * anything, and unlink reuses the existing orphan item.
5540 *
5541 * If it turns out that we are dropping too many of these, we might want
5542 * to add a mechanism for retrying these after a commit.
5543 */
5544 trans = evict_refill_and_join(root, &rsv);
5545 if (!IS_ERR(trans)) {
5546 trans->block_rsv = &rsv;
5547 btrfs_orphan_del(trans, BTRFS_I(inode));
5548 trans->block_rsv = &fs_info->trans_block_rsv;
5549 btrfs_end_transaction(trans);
5550 }
5551
5552 out_release:
5553 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
5554 out:
5555 /*
5556 * If we didn't successfully delete, the orphan item will still be in
5557 * the tree and we'll retry on the next mount. Again, we might also want
5558 * to retry these periodically in the future.
5559 */
5560 btrfs_remove_delayed_node(BTRFS_I(inode));
5561 fsverity_cleanup_inode(inode);
5562 clear_inode(inode);
5563 }
5564
5565 /*
5566 * Return the key found in the dir entry in the location pointer, fill @type
5567 * with BTRFS_FT_*, and return 0.
5568 *
5569 * If no dir entries were found, returns -ENOENT.
5570 * If found a corrupted location in dir entry, returns -EUCLEAN.
5571 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5572 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5573 struct btrfs_key *location, u8 *type)
5574 {
5575 struct btrfs_dir_item *di;
5576 BTRFS_PATH_AUTO_FREE(path);
5577 struct btrfs_root *root = dir->root;
5578 int ret = 0;
5579 struct fscrypt_name fname;
5580
5581 path = btrfs_alloc_path();
5582 if (!path)
5583 return -ENOMEM;
5584
5585 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5586 if (ret < 0)
5587 return ret;
5588 /*
5589 * fscrypt_setup_filename() should never return a positive value, but
5590 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5591 */
5592 ASSERT(ret == 0);
5593
5594 /* This needs to handle no-key deletions later on */
5595
5596 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5597 &fname.disk_name, 0);
5598 if (IS_ERR_OR_NULL(di)) {
5599 ret = di ? PTR_ERR(di) : -ENOENT;
5600 goto out;
5601 }
5602
5603 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5604 if (location->type != BTRFS_INODE_ITEM_KEY &&
5605 location->type != BTRFS_ROOT_ITEM_KEY) {
5606 ret = -EUCLEAN;
5607 btrfs_warn(root->fs_info,
5608 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5609 __func__, fname.disk_name.name, btrfs_ino(dir),
5610 location->objectid, location->type, location->offset);
5611 }
5612 if (!ret)
5613 *type = btrfs_dir_ftype(path->nodes[0], di);
5614 out:
5615 fscrypt_free_filename(&fname);
5616 return ret;
5617 }
5618
5619 /*
5620 * when we hit a tree root in a directory, the btrfs part of the inode
5621 * needs to be changed to reflect the root directory of the tree root. This
5622 * is kind of like crossing a mount point.
5623 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5624 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5625 struct btrfs_inode *dir,
5626 struct dentry *dentry,
5627 struct btrfs_key *location,
5628 struct btrfs_root **sub_root)
5629 {
5630 BTRFS_PATH_AUTO_FREE(path);
5631 struct btrfs_root *new_root;
5632 struct btrfs_root_ref *ref;
5633 struct extent_buffer *leaf;
5634 struct btrfs_key key;
5635 int ret;
5636 int err = 0;
5637 struct fscrypt_name fname;
5638
5639 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5640 if (ret)
5641 return ret;
5642
5643 path = btrfs_alloc_path();
5644 if (!path) {
5645 err = -ENOMEM;
5646 goto out;
5647 }
5648
5649 err = -ENOENT;
5650 key.objectid = btrfs_root_id(dir->root);
5651 key.type = BTRFS_ROOT_REF_KEY;
5652 key.offset = location->objectid;
5653
5654 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5655 if (ret) {
5656 if (ret < 0)
5657 err = ret;
5658 goto out;
5659 }
5660
5661 leaf = path->nodes[0];
5662 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5663 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5664 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5665 goto out;
5666
5667 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5668 (unsigned long)(ref + 1), fname.disk_name.len);
5669 if (ret)
5670 goto out;
5671
5672 btrfs_release_path(path);
5673
5674 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5675 if (IS_ERR(new_root)) {
5676 err = PTR_ERR(new_root);
5677 goto out;
5678 }
5679
5680 *sub_root = new_root;
5681 location->objectid = btrfs_root_dirid(&new_root->root_item);
5682 location->type = BTRFS_INODE_ITEM_KEY;
5683 location->offset = 0;
5684 err = 0;
5685 out:
5686 fscrypt_free_filename(&fname);
5687 return err;
5688 }
5689
5690
5691
btrfs_del_inode_from_root(struct btrfs_inode * inode)5692 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5693 {
5694 struct btrfs_root *root = inode->root;
5695 struct btrfs_inode *entry;
5696 bool empty = false;
5697
5698 xa_lock(&root->inodes);
5699 entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5700 if (entry == inode)
5701 empty = xa_empty(&root->inodes);
5702 xa_unlock(&root->inodes);
5703
5704 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5705 xa_lock(&root->inodes);
5706 empty = xa_empty(&root->inodes);
5707 xa_unlock(&root->inodes);
5708 if (empty)
5709 btrfs_add_dead_root(root);
5710 }
5711 }
5712
5713
btrfs_init_locked_inode(struct inode * inode,void * p)5714 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5715 {
5716 struct btrfs_iget_args *args = p;
5717
5718 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5719 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5720
5721 if (args->root && args->root == args->root->fs_info->tree_root &&
5722 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5723 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5724 &BTRFS_I(inode)->runtime_flags);
5725 return 0;
5726 }
5727
btrfs_find_actor(struct inode * inode,void * opaque)5728 static int btrfs_find_actor(struct inode *inode, void *opaque)
5729 {
5730 struct btrfs_iget_args *args = opaque;
5731
5732 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5733 args->root == BTRFS_I(inode)->root;
5734 }
5735
btrfs_iget_locked(u64 ino,struct btrfs_root * root)5736 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5737 {
5738 struct inode *inode;
5739 struct btrfs_iget_args args;
5740 unsigned long hashval = btrfs_inode_hash(ino, root);
5741
5742 args.ino = ino;
5743 args.root = root;
5744
5745 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5746 btrfs_init_locked_inode,
5747 (void *)&args);
5748 if (!inode)
5749 return NULL;
5750 return BTRFS_I(inode);
5751 }
5752
5753 /*
5754 * Get an inode object given its inode number and corresponding root. Path is
5755 * preallocated to prevent recursing back to iget through allocator.
5756 */
btrfs_iget_path(u64 ino,struct btrfs_root * root,struct btrfs_path * path)5757 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5758 struct btrfs_path *path)
5759 {
5760 struct btrfs_inode *inode;
5761 int ret;
5762
5763 inode = btrfs_iget_locked(ino, root);
5764 if (!inode)
5765 return ERR_PTR(-ENOMEM);
5766
5767 if (!(inode->vfs_inode.i_state & I_NEW))
5768 return inode;
5769
5770 ret = btrfs_read_locked_inode(inode, path);
5771 if (ret)
5772 return ERR_PTR(ret);
5773
5774 unlock_new_inode(&inode->vfs_inode);
5775 return inode;
5776 }
5777
5778 /*
5779 * Get an inode object given its inode number and corresponding root.
5780 */
btrfs_iget(u64 ino,struct btrfs_root * root)5781 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5782 {
5783 struct btrfs_inode *inode;
5784 struct btrfs_path *path;
5785 int ret;
5786
5787 inode = btrfs_iget_locked(ino, root);
5788 if (!inode)
5789 return ERR_PTR(-ENOMEM);
5790
5791 if (!(inode->vfs_inode.i_state & I_NEW))
5792 return inode;
5793
5794 path = btrfs_alloc_path();
5795 if (!path) {
5796 iget_failed(&inode->vfs_inode);
5797 return ERR_PTR(-ENOMEM);
5798 }
5799
5800 ret = btrfs_read_locked_inode(inode, path);
5801 btrfs_free_path(path);
5802 if (ret)
5803 return ERR_PTR(ret);
5804
5805 unlock_new_inode(&inode->vfs_inode);
5806 return inode;
5807 }
5808
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5809 static struct btrfs_inode *new_simple_dir(struct inode *dir,
5810 struct btrfs_key *key,
5811 struct btrfs_root *root)
5812 {
5813 struct timespec64 ts;
5814 struct inode *vfs_inode;
5815 struct btrfs_inode *inode;
5816
5817 vfs_inode = new_inode(dir->i_sb);
5818 if (!vfs_inode)
5819 return ERR_PTR(-ENOMEM);
5820
5821 inode = BTRFS_I(vfs_inode);
5822 inode->root = btrfs_grab_root(root);
5823 inode->ref_root_id = key->objectid;
5824 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags);
5825 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags);
5826
5827 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5828 /*
5829 * We only need lookup, the rest is read-only and there's no inode
5830 * associated with the dentry
5831 */
5832 vfs_inode->i_op = &simple_dir_inode_operations;
5833 vfs_inode->i_opflags &= ~IOP_XATTR;
5834 vfs_inode->i_fop = &simple_dir_operations;
5835 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5836
5837 ts = inode_set_ctime_current(vfs_inode);
5838 inode_set_mtime_to_ts(vfs_inode, ts);
5839 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir));
5840 inode->i_otime_sec = ts.tv_sec;
5841 inode->i_otime_nsec = ts.tv_nsec;
5842
5843 vfs_inode->i_uid = dir->i_uid;
5844 vfs_inode->i_gid = dir->i_gid;
5845
5846 return inode;
5847 }
5848
5849 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5850 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5851 static_assert(BTRFS_FT_DIR == FT_DIR);
5852 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5853 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5854 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5855 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5856 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5857
btrfs_inode_type(const struct btrfs_inode * inode)5858 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode)
5859 {
5860 return fs_umode_to_ftype(inode->vfs_inode.i_mode);
5861 }
5862
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5863 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5864 {
5865 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5866 struct btrfs_inode *inode;
5867 struct btrfs_root *root = BTRFS_I(dir)->root;
5868 struct btrfs_root *sub_root = root;
5869 struct btrfs_key location = { 0 };
5870 u8 di_type = 0;
5871 int ret = 0;
5872
5873 if (dentry->d_name.len > BTRFS_NAME_LEN)
5874 return ERR_PTR(-ENAMETOOLONG);
5875
5876 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5877 if (ret < 0)
5878 return ERR_PTR(ret);
5879
5880 if (location.type == BTRFS_INODE_ITEM_KEY) {
5881 inode = btrfs_iget(location.objectid, root);
5882 if (IS_ERR(inode))
5883 return ERR_CAST(inode);
5884
5885 /* Do extra check against inode mode with di_type */
5886 if (btrfs_inode_type(inode) != di_type) {
5887 btrfs_crit(fs_info,
5888 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5889 inode->vfs_inode.i_mode, btrfs_inode_type(inode),
5890 di_type);
5891 iput(&inode->vfs_inode);
5892 return ERR_PTR(-EUCLEAN);
5893 }
5894 return &inode->vfs_inode;
5895 }
5896
5897 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5898 &location, &sub_root);
5899 if (ret < 0) {
5900 if (ret != -ENOENT)
5901 inode = ERR_PTR(ret);
5902 else
5903 inode = new_simple_dir(dir, &location, root);
5904 } else {
5905 inode = btrfs_iget(location.objectid, sub_root);
5906 btrfs_put_root(sub_root);
5907
5908 if (IS_ERR(inode))
5909 return ERR_CAST(inode);
5910
5911 down_read(&fs_info->cleanup_work_sem);
5912 if (!sb_rdonly(inode->vfs_inode.i_sb))
5913 ret = btrfs_orphan_cleanup(sub_root);
5914 up_read(&fs_info->cleanup_work_sem);
5915 if (ret) {
5916 iput(&inode->vfs_inode);
5917 inode = ERR_PTR(ret);
5918 }
5919 }
5920
5921 if (IS_ERR(inode))
5922 return ERR_CAST(inode);
5923
5924 return &inode->vfs_inode;
5925 }
5926
btrfs_dentry_delete(const struct dentry * dentry)5927 static int btrfs_dentry_delete(const struct dentry *dentry)
5928 {
5929 struct btrfs_root *root;
5930 struct inode *inode = d_inode(dentry);
5931
5932 if (!inode && !IS_ROOT(dentry))
5933 inode = d_inode(dentry->d_parent);
5934
5935 if (inode) {
5936 root = BTRFS_I(inode)->root;
5937 if (btrfs_root_refs(&root->root_item) == 0)
5938 return 1;
5939
5940 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5941 return 1;
5942 }
5943 return 0;
5944 }
5945
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5946 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5947 unsigned int flags)
5948 {
5949 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5950
5951 if (inode == ERR_PTR(-ENOENT))
5952 inode = NULL;
5953 return d_splice_alias(inode, dentry);
5954 }
5955
5956 /*
5957 * Find the highest existing sequence number in a directory and then set the
5958 * in-memory index_cnt variable to the first free sequence number.
5959 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5960 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5961 {
5962 struct btrfs_root *root = inode->root;
5963 struct btrfs_key key, found_key;
5964 BTRFS_PATH_AUTO_FREE(path);
5965 struct extent_buffer *leaf;
5966 int ret;
5967
5968 key.objectid = btrfs_ino(inode);
5969 key.type = BTRFS_DIR_INDEX_KEY;
5970 key.offset = (u64)-1;
5971
5972 path = btrfs_alloc_path();
5973 if (!path)
5974 return -ENOMEM;
5975
5976 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5977 if (ret < 0)
5978 return ret;
5979 /* FIXME: we should be able to handle this */
5980 if (ret == 0)
5981 return ret;
5982
5983 if (path->slots[0] == 0) {
5984 inode->index_cnt = BTRFS_DIR_START_INDEX;
5985 return 0;
5986 }
5987
5988 path->slots[0]--;
5989
5990 leaf = path->nodes[0];
5991 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5992
5993 if (found_key.objectid != btrfs_ino(inode) ||
5994 found_key.type != BTRFS_DIR_INDEX_KEY) {
5995 inode->index_cnt = BTRFS_DIR_START_INDEX;
5996 return 0;
5997 }
5998
5999 inode->index_cnt = found_key.offset + 1;
6000
6001 return 0;
6002 }
6003
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)6004 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
6005 {
6006 int ret = 0;
6007
6008 btrfs_inode_lock(dir, 0);
6009 if (dir->index_cnt == (u64)-1) {
6010 ret = btrfs_inode_delayed_dir_index_count(dir);
6011 if (ret) {
6012 ret = btrfs_set_inode_index_count(dir);
6013 if (ret)
6014 goto out;
6015 }
6016 }
6017
6018 /* index_cnt is the index number of next new entry, so decrement it. */
6019 *index = dir->index_cnt - 1;
6020 out:
6021 btrfs_inode_unlock(dir, 0);
6022
6023 return ret;
6024 }
6025
6026 /*
6027 * All this infrastructure exists because dir_emit can fault, and we are holding
6028 * the tree lock when doing readdir. For now just allocate a buffer and copy
6029 * our information into that, and then dir_emit from the buffer. This is
6030 * similar to what NFS does, only we don't keep the buffer around in pagecache
6031 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6032 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6033 * tree lock.
6034 */
btrfs_opendir(struct inode * inode,struct file * file)6035 static int btrfs_opendir(struct inode *inode, struct file *file)
6036 {
6037 struct btrfs_file_private *private;
6038 u64 last_index;
6039 int ret;
6040
6041 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
6042 if (ret)
6043 return ret;
6044
6045 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6046 if (!private)
6047 return -ENOMEM;
6048 private->last_index = last_index;
6049 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6050 if (!private->filldir_buf) {
6051 kfree(private);
6052 return -ENOMEM;
6053 }
6054 file->private_data = private;
6055 return 0;
6056 }
6057
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)6058 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
6059 {
6060 struct btrfs_file_private *private = file->private_data;
6061 int ret;
6062
6063 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
6064 &private->last_index);
6065 if (ret)
6066 return ret;
6067
6068 return generic_file_llseek(file, offset, whence);
6069 }
6070
6071 struct dir_entry {
6072 u64 ino;
6073 u64 offset;
6074 unsigned type;
6075 int name_len;
6076 };
6077
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6078 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6079 {
6080 while (entries--) {
6081 struct dir_entry *entry = addr;
6082 char *name = (char *)(entry + 1);
6083
6084 ctx->pos = get_unaligned(&entry->offset);
6085 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6086 get_unaligned(&entry->ino),
6087 get_unaligned(&entry->type)))
6088 return 1;
6089 addr += sizeof(struct dir_entry) +
6090 get_unaligned(&entry->name_len);
6091 ctx->pos++;
6092 }
6093 return 0;
6094 }
6095
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6096 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6097 {
6098 struct inode *inode = file_inode(file);
6099 struct btrfs_root *root = BTRFS_I(inode)->root;
6100 struct btrfs_file_private *private = file->private_data;
6101 struct btrfs_dir_item *di;
6102 struct btrfs_key key;
6103 struct btrfs_key found_key;
6104 BTRFS_PATH_AUTO_FREE(path);
6105 void *addr;
6106 LIST_HEAD(ins_list);
6107 LIST_HEAD(del_list);
6108 int ret;
6109 char *name_ptr;
6110 int name_len;
6111 int entries = 0;
6112 int total_len = 0;
6113 bool put = false;
6114 struct btrfs_key location;
6115
6116 if (!dir_emit_dots(file, ctx))
6117 return 0;
6118
6119 path = btrfs_alloc_path();
6120 if (!path)
6121 return -ENOMEM;
6122
6123 addr = private->filldir_buf;
6124 path->reada = READA_FORWARD;
6125
6126 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
6127 &ins_list, &del_list);
6128
6129 again:
6130 key.type = BTRFS_DIR_INDEX_KEY;
6131 key.offset = ctx->pos;
6132 key.objectid = btrfs_ino(BTRFS_I(inode));
6133
6134 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6135 struct dir_entry *entry;
6136 struct extent_buffer *leaf = path->nodes[0];
6137 u8 ftype;
6138
6139 if (found_key.objectid != key.objectid)
6140 break;
6141 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6142 break;
6143 if (found_key.offset < ctx->pos)
6144 continue;
6145 if (found_key.offset > private->last_index)
6146 break;
6147 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6148 continue;
6149 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6150 name_len = btrfs_dir_name_len(leaf, di);
6151 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6152 PAGE_SIZE) {
6153 btrfs_release_path(path);
6154 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6155 if (ret)
6156 goto nopos;
6157 addr = private->filldir_buf;
6158 entries = 0;
6159 total_len = 0;
6160 goto again;
6161 }
6162
6163 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6164 entry = addr;
6165 name_ptr = (char *)(entry + 1);
6166 read_extent_buffer(leaf, name_ptr,
6167 (unsigned long)(di + 1), name_len);
6168 put_unaligned(name_len, &entry->name_len);
6169 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6170 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6171 put_unaligned(location.objectid, &entry->ino);
6172 put_unaligned(found_key.offset, &entry->offset);
6173 entries++;
6174 addr += sizeof(struct dir_entry) + name_len;
6175 total_len += sizeof(struct dir_entry) + name_len;
6176 }
6177 /* Catch error encountered during iteration */
6178 if (ret < 0)
6179 goto err;
6180
6181 btrfs_release_path(path);
6182
6183 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6184 if (ret)
6185 goto nopos;
6186
6187 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list))
6188 goto nopos;
6189
6190 /*
6191 * Stop new entries from being returned after we return the last
6192 * entry.
6193 *
6194 * New directory entries are assigned a strictly increasing
6195 * offset. This means that new entries created during readdir
6196 * are *guaranteed* to be seen in the future by that readdir.
6197 * This has broken buggy programs which operate on names as
6198 * they're returned by readdir. Until we reuse freed offsets
6199 * we have this hack to stop new entries from being returned
6200 * under the assumption that they'll never reach this huge
6201 * offset.
6202 *
6203 * This is being careful not to overflow 32bit loff_t unless the
6204 * last entry requires it because doing so has broken 32bit apps
6205 * in the past.
6206 */
6207 if (ctx->pos >= INT_MAX)
6208 ctx->pos = LLONG_MAX;
6209 else
6210 ctx->pos = INT_MAX;
6211 nopos:
6212 ret = 0;
6213 err:
6214 if (put)
6215 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6216 return ret;
6217 }
6218
6219 /*
6220 * This is somewhat expensive, updating the tree every time the
6221 * inode changes. But, it is most likely to find the inode in cache.
6222 * FIXME, needs more benchmarking...there are no reasons other than performance
6223 * to keep or drop this code.
6224 */
btrfs_dirty_inode(struct btrfs_inode * inode)6225 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6226 {
6227 struct btrfs_root *root = inode->root;
6228 struct btrfs_fs_info *fs_info = root->fs_info;
6229 struct btrfs_trans_handle *trans;
6230 int ret;
6231
6232 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6233 return 0;
6234
6235 trans = btrfs_join_transaction(root);
6236 if (IS_ERR(trans))
6237 return PTR_ERR(trans);
6238
6239 ret = btrfs_update_inode(trans, inode);
6240 if (ret == -ENOSPC || ret == -EDQUOT) {
6241 /* whoops, lets try again with the full transaction */
6242 btrfs_end_transaction(trans);
6243 trans = btrfs_start_transaction(root, 1);
6244 if (IS_ERR(trans))
6245 return PTR_ERR(trans);
6246
6247 ret = btrfs_update_inode(trans, inode);
6248 }
6249 btrfs_end_transaction(trans);
6250 if (inode->delayed_node)
6251 btrfs_balance_delayed_items(fs_info);
6252
6253 return ret;
6254 }
6255
6256 /*
6257 * This is a copy of file_update_time. We need this so we can return error on
6258 * ENOSPC for updating the inode in the case of file write and mmap writes.
6259 */
btrfs_update_time(struct inode * inode,int flags)6260 static int btrfs_update_time(struct inode *inode, int flags)
6261 {
6262 struct btrfs_root *root = BTRFS_I(inode)->root;
6263 bool dirty;
6264
6265 if (btrfs_root_readonly(root))
6266 return -EROFS;
6267
6268 dirty = inode_update_timestamps(inode, flags);
6269 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6270 }
6271
6272 /*
6273 * helper to find a free sequence number in a given directory. This current
6274 * code is very simple, later versions will do smarter things in the btree
6275 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6276 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6277 {
6278 int ret = 0;
6279
6280 if (dir->index_cnt == (u64)-1) {
6281 ret = btrfs_inode_delayed_dir_index_count(dir);
6282 if (ret) {
6283 ret = btrfs_set_inode_index_count(dir);
6284 if (ret)
6285 return ret;
6286 }
6287 }
6288
6289 *index = dir->index_cnt;
6290 dir->index_cnt++;
6291
6292 return ret;
6293 }
6294
btrfs_insert_inode_locked(struct inode * inode)6295 static int btrfs_insert_inode_locked(struct inode *inode)
6296 {
6297 struct btrfs_iget_args args;
6298
6299 args.ino = btrfs_ino(BTRFS_I(inode));
6300 args.root = BTRFS_I(inode)->root;
6301
6302 return insert_inode_locked4(inode,
6303 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6304 btrfs_find_actor, &args);
6305 }
6306
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6307 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6308 unsigned int *trans_num_items)
6309 {
6310 struct inode *dir = args->dir;
6311 struct inode *inode = args->inode;
6312 int ret;
6313
6314 if (!args->orphan) {
6315 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6316 &args->fname);
6317 if (ret)
6318 return ret;
6319 }
6320
6321 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6322 if (ret) {
6323 fscrypt_free_filename(&args->fname);
6324 return ret;
6325 }
6326
6327 /* 1 to add inode item */
6328 *trans_num_items = 1;
6329 /* 1 to add compression property */
6330 if (BTRFS_I(dir)->prop_compress)
6331 (*trans_num_items)++;
6332 /* 1 to add default ACL xattr */
6333 if (args->default_acl)
6334 (*trans_num_items)++;
6335 /* 1 to add access ACL xattr */
6336 if (args->acl)
6337 (*trans_num_items)++;
6338 #ifdef CONFIG_SECURITY
6339 /* 1 to add LSM xattr */
6340 if (dir->i_security)
6341 (*trans_num_items)++;
6342 #endif
6343 if (args->orphan) {
6344 /* 1 to add orphan item */
6345 (*trans_num_items)++;
6346 } else {
6347 /*
6348 * 1 to add dir item
6349 * 1 to add dir index
6350 * 1 to update parent inode item
6351 *
6352 * No need for 1 unit for the inode ref item because it is
6353 * inserted in a batch together with the inode item at
6354 * btrfs_create_new_inode().
6355 */
6356 *trans_num_items += 3;
6357 }
6358 return 0;
6359 }
6360
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6361 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6362 {
6363 posix_acl_release(args->acl);
6364 posix_acl_release(args->default_acl);
6365 fscrypt_free_filename(&args->fname);
6366 }
6367
6368 /*
6369 * Inherit flags from the parent inode.
6370 *
6371 * Currently only the compression flags and the cow flags are inherited.
6372 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6373 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6374 {
6375 unsigned int flags;
6376
6377 flags = dir->flags;
6378
6379 if (flags & BTRFS_INODE_NOCOMPRESS) {
6380 inode->flags &= ~BTRFS_INODE_COMPRESS;
6381 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6382 } else if (flags & BTRFS_INODE_COMPRESS) {
6383 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6384 inode->flags |= BTRFS_INODE_COMPRESS;
6385 }
6386
6387 if (flags & BTRFS_INODE_NODATACOW) {
6388 inode->flags |= BTRFS_INODE_NODATACOW;
6389 if (S_ISREG(inode->vfs_inode.i_mode))
6390 inode->flags |= BTRFS_INODE_NODATASUM;
6391 }
6392
6393 btrfs_sync_inode_flags_to_i_flags(inode);
6394 }
6395
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6396 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6397 struct btrfs_new_inode_args *args)
6398 {
6399 struct timespec64 ts;
6400 struct inode *dir = args->dir;
6401 struct inode *inode = args->inode;
6402 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6403 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6404 struct btrfs_root *root;
6405 struct btrfs_inode_item *inode_item;
6406 struct btrfs_path *path;
6407 u64 objectid;
6408 struct btrfs_inode_ref *ref;
6409 struct btrfs_key key[2];
6410 u32 sizes[2];
6411 struct btrfs_item_batch batch;
6412 unsigned long ptr;
6413 int ret;
6414 bool xa_reserved = false;
6415
6416 path = btrfs_alloc_path();
6417 if (!path)
6418 return -ENOMEM;
6419
6420 if (!args->subvol)
6421 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6422 root = BTRFS_I(inode)->root;
6423
6424 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6425 if (ret)
6426 goto out;
6427
6428 ret = btrfs_get_free_objectid(root, &objectid);
6429 if (ret)
6430 goto out;
6431 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6432
6433 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6434 if (ret)
6435 goto out;
6436 xa_reserved = true;
6437
6438 if (args->orphan) {
6439 /*
6440 * O_TMPFILE, set link count to 0, so that after this point, we
6441 * fill in an inode item with the correct link count.
6442 */
6443 set_nlink(inode, 0);
6444 } else {
6445 trace_btrfs_inode_request(dir);
6446
6447 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6448 if (ret)
6449 goto out;
6450 }
6451
6452 if (S_ISDIR(inode->i_mode))
6453 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6454
6455 BTRFS_I(inode)->generation = trans->transid;
6456 inode->i_generation = BTRFS_I(inode)->generation;
6457
6458 /*
6459 * We don't have any capability xattrs set here yet, shortcut any
6460 * queries for the xattrs here. If we add them later via the inode
6461 * security init path or any other path this flag will be cleared.
6462 */
6463 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6464
6465 /*
6466 * Subvolumes don't inherit flags from their parent directory.
6467 * Originally this was probably by accident, but we probably can't
6468 * change it now without compatibility issues.
6469 */
6470 if (!args->subvol)
6471 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6472
6473 if (S_ISREG(inode->i_mode)) {
6474 if (btrfs_test_opt(fs_info, NODATASUM))
6475 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6476 if (btrfs_test_opt(fs_info, NODATACOW))
6477 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6478 BTRFS_INODE_NODATASUM;
6479 btrfs_update_inode_mapping_flags(BTRFS_I(inode));
6480 btrfs_set_inode_mapping_order(BTRFS_I(inode));
6481 }
6482
6483 ret = btrfs_insert_inode_locked(inode);
6484 if (ret < 0) {
6485 if (!args->orphan)
6486 BTRFS_I(dir)->index_cnt--;
6487 goto out;
6488 }
6489
6490 /*
6491 * We could have gotten an inode number from somebody who was fsynced
6492 * and then removed in this same transaction, so let's just set full
6493 * sync since it will be a full sync anyway and this will blow away the
6494 * old info in the log.
6495 */
6496 btrfs_set_inode_full_sync(BTRFS_I(inode));
6497
6498 key[0].objectid = objectid;
6499 key[0].type = BTRFS_INODE_ITEM_KEY;
6500 key[0].offset = 0;
6501
6502 sizes[0] = sizeof(struct btrfs_inode_item);
6503
6504 if (!args->orphan) {
6505 /*
6506 * Start new inodes with an inode_ref. This is slightly more
6507 * efficient for small numbers of hard links since they will
6508 * be packed into one item. Extended refs will kick in if we
6509 * add more hard links than can fit in the ref item.
6510 */
6511 key[1].objectid = objectid;
6512 key[1].type = BTRFS_INODE_REF_KEY;
6513 if (args->subvol) {
6514 key[1].offset = objectid;
6515 sizes[1] = 2 + sizeof(*ref);
6516 } else {
6517 key[1].offset = btrfs_ino(BTRFS_I(dir));
6518 sizes[1] = name->len + sizeof(*ref);
6519 }
6520 }
6521
6522 batch.keys = &key[0];
6523 batch.data_sizes = &sizes[0];
6524 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6525 batch.nr = args->orphan ? 1 : 2;
6526 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6527 if (ret != 0) {
6528 btrfs_abort_transaction(trans, ret);
6529 goto discard;
6530 }
6531
6532 ts = simple_inode_init_ts(inode);
6533 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6534 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6535
6536 /*
6537 * We're going to fill the inode item now, so at this point the inode
6538 * must be fully initialized.
6539 */
6540
6541 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6542 struct btrfs_inode_item);
6543 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6544 sizeof(*inode_item));
6545 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6546
6547 if (!args->orphan) {
6548 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6549 struct btrfs_inode_ref);
6550 ptr = (unsigned long)(ref + 1);
6551 if (args->subvol) {
6552 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6553 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6554 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6555 } else {
6556 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6557 name->len);
6558 btrfs_set_inode_ref_index(path->nodes[0], ref,
6559 BTRFS_I(inode)->dir_index);
6560 write_extent_buffer(path->nodes[0], name->name, ptr,
6561 name->len);
6562 }
6563 }
6564
6565 /*
6566 * We don't need the path anymore, plus inheriting properties, adding
6567 * ACLs, security xattrs, orphan item or adding the link, will result in
6568 * allocating yet another path. So just free our path.
6569 */
6570 btrfs_free_path(path);
6571 path = NULL;
6572
6573 if (args->subvol) {
6574 struct btrfs_inode *parent;
6575
6576 /*
6577 * Subvolumes inherit properties from their parent subvolume,
6578 * not the directory they were created in.
6579 */
6580 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6581 if (IS_ERR(parent)) {
6582 ret = PTR_ERR(parent);
6583 } else {
6584 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6585 parent);
6586 iput(&parent->vfs_inode);
6587 }
6588 } else {
6589 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode),
6590 BTRFS_I(dir));
6591 }
6592 if (ret) {
6593 btrfs_err(fs_info,
6594 "error inheriting props for ino %llu (root %llu): %d",
6595 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6596 }
6597
6598 /*
6599 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6600 * probably a bug.
6601 */
6602 if (!args->subvol) {
6603 ret = btrfs_init_inode_security(trans, args);
6604 if (ret) {
6605 btrfs_abort_transaction(trans, ret);
6606 goto discard;
6607 }
6608 }
6609
6610 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6611 if (WARN_ON(ret)) {
6612 /* Shouldn't happen, we used xa_reserve() before. */
6613 btrfs_abort_transaction(trans, ret);
6614 goto discard;
6615 }
6616
6617 trace_btrfs_inode_new(inode);
6618 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6619
6620 btrfs_update_root_times(trans, root);
6621
6622 if (args->orphan) {
6623 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6624 if (ret) {
6625 btrfs_abort_transaction(trans, ret);
6626 goto discard;
6627 }
6628 } else {
6629 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6630 0, BTRFS_I(inode)->dir_index);
6631 if (ret) {
6632 btrfs_abort_transaction(trans, ret);
6633 goto discard;
6634 }
6635 }
6636
6637 return 0;
6638
6639 discard:
6640 /*
6641 * discard_new_inode() calls iput(), but the caller owns the reference
6642 * to the inode.
6643 */
6644 ihold(inode);
6645 discard_new_inode(inode);
6646 out:
6647 if (xa_reserved)
6648 xa_release(&root->inodes, objectid);
6649
6650 btrfs_free_path(path);
6651 return ret;
6652 }
6653
6654 /*
6655 * utility function to add 'inode' into 'parent_inode' with
6656 * a give name and a given sequence number.
6657 * if 'add_backref' is true, also insert a backref from the
6658 * inode to the parent directory.
6659 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,int add_backref,u64 index)6660 int btrfs_add_link(struct btrfs_trans_handle *trans,
6661 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6662 const struct fscrypt_str *name, int add_backref, u64 index)
6663 {
6664 int ret = 0;
6665 struct btrfs_key key;
6666 struct btrfs_root *root = parent_inode->root;
6667 u64 ino = btrfs_ino(inode);
6668 u64 parent_ino = btrfs_ino(parent_inode);
6669
6670 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6671 memcpy(&key, &inode->root->root_key, sizeof(key));
6672 } else {
6673 key.objectid = ino;
6674 key.type = BTRFS_INODE_ITEM_KEY;
6675 key.offset = 0;
6676 }
6677
6678 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6679 ret = btrfs_add_root_ref(trans, key.objectid,
6680 btrfs_root_id(root), parent_ino,
6681 index, name);
6682 } else if (add_backref) {
6683 ret = btrfs_insert_inode_ref(trans, root, name,
6684 ino, parent_ino, index);
6685 }
6686
6687 /* Nothing to clean up yet */
6688 if (ret)
6689 return ret;
6690
6691 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6692 btrfs_inode_type(inode), index);
6693 if (ret == -EEXIST || ret == -EOVERFLOW)
6694 goto fail_dir_item;
6695 else if (ret) {
6696 btrfs_abort_transaction(trans, ret);
6697 return ret;
6698 }
6699
6700 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6701 name->len * 2);
6702 inode_inc_iversion(&parent_inode->vfs_inode);
6703 update_time_after_link_or_unlink(parent_inode);
6704
6705 ret = btrfs_update_inode(trans, parent_inode);
6706 if (ret)
6707 btrfs_abort_transaction(trans, ret);
6708 return ret;
6709
6710 fail_dir_item:
6711 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6712 u64 local_index;
6713 int ret2;
6714
6715 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root),
6716 parent_ino, &local_index, name);
6717 if (ret2)
6718 btrfs_abort_transaction(trans, ret2);
6719 } else if (add_backref) {
6720 int ret2;
6721
6722 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL);
6723 if (ret2)
6724 btrfs_abort_transaction(trans, ret2);
6725 }
6726
6727 /* Return the original error code */
6728 return ret;
6729 }
6730
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6731 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6732 struct inode *inode)
6733 {
6734 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6735 struct btrfs_root *root = BTRFS_I(dir)->root;
6736 struct btrfs_new_inode_args new_inode_args = {
6737 .dir = dir,
6738 .dentry = dentry,
6739 .inode = inode,
6740 };
6741 unsigned int trans_num_items;
6742 struct btrfs_trans_handle *trans;
6743 int ret;
6744
6745 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6746 if (ret)
6747 goto out_inode;
6748
6749 trans = btrfs_start_transaction(root, trans_num_items);
6750 if (IS_ERR(trans)) {
6751 ret = PTR_ERR(trans);
6752 goto out_new_inode_args;
6753 }
6754
6755 ret = btrfs_create_new_inode(trans, &new_inode_args);
6756 if (!ret)
6757 d_instantiate_new(dentry, inode);
6758
6759 btrfs_end_transaction(trans);
6760 btrfs_btree_balance_dirty(fs_info);
6761 out_new_inode_args:
6762 btrfs_new_inode_args_destroy(&new_inode_args);
6763 out_inode:
6764 if (ret)
6765 iput(inode);
6766 return ret;
6767 }
6768
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6769 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6770 struct dentry *dentry, umode_t mode, dev_t rdev)
6771 {
6772 struct inode *inode;
6773
6774 inode = new_inode(dir->i_sb);
6775 if (!inode)
6776 return -ENOMEM;
6777 inode_init_owner(idmap, inode, dir, mode);
6778 inode->i_op = &btrfs_special_inode_operations;
6779 init_special_inode(inode, inode->i_mode, rdev);
6780 return btrfs_create_common(dir, dentry, inode);
6781 }
6782
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6783 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6784 struct dentry *dentry, umode_t mode, bool excl)
6785 {
6786 struct inode *inode;
6787
6788 inode = new_inode(dir->i_sb);
6789 if (!inode)
6790 return -ENOMEM;
6791 inode_init_owner(idmap, inode, dir, mode);
6792 inode->i_fop = &btrfs_file_operations;
6793 inode->i_op = &btrfs_file_inode_operations;
6794 inode->i_mapping->a_ops = &btrfs_aops;
6795 return btrfs_create_common(dir, dentry, inode);
6796 }
6797
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6798 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6799 struct dentry *dentry)
6800 {
6801 struct btrfs_trans_handle *trans = NULL;
6802 struct btrfs_root *root = BTRFS_I(dir)->root;
6803 struct inode *inode = d_inode(old_dentry);
6804 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6805 struct fscrypt_name fname;
6806 u64 index;
6807 int ret;
6808 int drop_inode = 0;
6809
6810 /* do not allow sys_link's with other subvols of the same device */
6811 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6812 return -EXDEV;
6813
6814 if (inode->i_nlink >= BTRFS_LINK_MAX)
6815 return -EMLINK;
6816
6817 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6818 if (ret)
6819 goto fail;
6820
6821 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
6822 if (ret)
6823 goto fail;
6824
6825 /*
6826 * 2 items for inode and inode ref
6827 * 2 items for dir items
6828 * 1 item for parent inode
6829 * 1 item for orphan item deletion if O_TMPFILE
6830 */
6831 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6832 if (IS_ERR(trans)) {
6833 ret = PTR_ERR(trans);
6834 trans = NULL;
6835 goto fail;
6836 }
6837
6838 /* There are several dir indexes for this inode, clear the cache. */
6839 BTRFS_I(inode)->dir_index = 0ULL;
6840 inc_nlink(inode);
6841 inode_inc_iversion(inode);
6842 inode_set_ctime_current(inode);
6843 ihold(inode);
6844 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6845
6846 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6847 &fname.disk_name, 1, index);
6848
6849 if (ret) {
6850 drop_inode = 1;
6851 } else {
6852 struct dentry *parent = dentry->d_parent;
6853
6854 ret = btrfs_update_inode(trans, BTRFS_I(inode));
6855 if (ret)
6856 goto fail;
6857 if (inode->i_nlink == 1) {
6858 /*
6859 * If new hard link count is 1, it's a file created
6860 * with open(2) O_TMPFILE flag.
6861 */
6862 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
6863 if (ret)
6864 goto fail;
6865 }
6866 d_instantiate(dentry, inode);
6867 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6868 }
6869
6870 fail:
6871 fscrypt_free_filename(&fname);
6872 if (trans)
6873 btrfs_end_transaction(trans);
6874 if (drop_inode) {
6875 inode_dec_link_count(inode);
6876 iput(inode);
6877 }
6878 btrfs_btree_balance_dirty(fs_info);
6879 return ret;
6880 }
6881
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)6882 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6883 struct dentry *dentry, umode_t mode)
6884 {
6885 struct inode *inode;
6886
6887 inode = new_inode(dir->i_sb);
6888 if (!inode)
6889 return ERR_PTR(-ENOMEM);
6890 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6891 inode->i_op = &btrfs_dir_inode_operations;
6892 inode->i_fop = &btrfs_dir_file_operations;
6893 return ERR_PTR(btrfs_create_common(dir, dentry, inode));
6894 }
6895
uncompress_inline(struct btrfs_path * path,struct folio * folio,struct btrfs_file_extent_item * item)6896 static noinline int uncompress_inline(struct btrfs_path *path,
6897 struct folio *folio,
6898 struct btrfs_file_extent_item *item)
6899 {
6900 int ret;
6901 struct extent_buffer *leaf = path->nodes[0];
6902 const u32 blocksize = leaf->fs_info->sectorsize;
6903 char *tmp;
6904 size_t max_size;
6905 unsigned long inline_size;
6906 unsigned long ptr;
6907 int compress_type;
6908
6909 compress_type = btrfs_file_extent_compression(leaf, item);
6910 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6911 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6912 tmp = kmalloc(inline_size, GFP_NOFS);
6913 if (!tmp)
6914 return -ENOMEM;
6915 ptr = btrfs_file_extent_inline_start(item);
6916
6917 read_extent_buffer(leaf, tmp, ptr, inline_size);
6918
6919 max_size = min_t(unsigned long, blocksize, max_size);
6920 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6921 max_size);
6922
6923 /*
6924 * decompression code contains a memset to fill in any space between the end
6925 * of the uncompressed data and the end of max_size in case the decompressed
6926 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6927 * the end of an inline extent and the beginning of the next block, so we
6928 * cover that region here.
6929 */
6930
6931 if (max_size < blocksize)
6932 folio_zero_range(folio, max_size, blocksize - max_size);
6933 kfree(tmp);
6934 return ret;
6935 }
6936
read_inline_extent(struct btrfs_path * path,struct folio * folio)6937 static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
6938 {
6939 const u32 blocksize = path->nodes[0]->fs_info->sectorsize;
6940 struct btrfs_file_extent_item *fi;
6941 void *kaddr;
6942 size_t copy_size;
6943
6944 if (!folio || folio_test_uptodate(folio))
6945 return 0;
6946
6947 ASSERT(folio_pos(folio) == 0);
6948
6949 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6950 struct btrfs_file_extent_item);
6951 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6952 return uncompress_inline(path, folio, fi);
6953
6954 copy_size = min_t(u64, blocksize,
6955 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6956 kaddr = kmap_local_folio(folio, 0);
6957 read_extent_buffer(path->nodes[0], kaddr,
6958 btrfs_file_extent_inline_start(fi), copy_size);
6959 kunmap_local(kaddr);
6960 if (copy_size < blocksize)
6961 folio_zero_range(folio, copy_size, blocksize - copy_size);
6962 return 0;
6963 }
6964
6965 /*
6966 * Lookup the first extent overlapping a range in a file.
6967 *
6968 * @inode: file to search in
6969 * @page: page to read extent data into if the extent is inline
6970 * @start: file offset
6971 * @len: length of range starting at @start
6972 *
6973 * Return the first &struct extent_map which overlaps the given range, reading
6974 * it from the B-tree and caching it if necessary. Note that there may be more
6975 * extents which overlap the given range after the returned extent_map.
6976 *
6977 * If @page is not NULL and the extent is inline, this also reads the extent
6978 * data directly into the page and marks the extent up to date in the io_tree.
6979 *
6980 * Return: ERR_PTR on error, non-NULL extent_map on success.
6981 */
btrfs_get_extent(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len)6982 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6983 struct folio *folio, u64 start, u64 len)
6984 {
6985 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6986 int ret = 0;
6987 u64 extent_start = 0;
6988 u64 extent_end = 0;
6989 u64 objectid = btrfs_ino(inode);
6990 int extent_type = -1;
6991 struct btrfs_path *path = NULL;
6992 struct btrfs_root *root = inode->root;
6993 struct btrfs_file_extent_item *item;
6994 struct extent_buffer *leaf;
6995 struct btrfs_key found_key;
6996 struct extent_map *em = NULL;
6997 struct extent_map_tree *em_tree = &inode->extent_tree;
6998
6999 read_lock(&em_tree->lock);
7000 em = btrfs_lookup_extent_mapping(em_tree, start, len);
7001 read_unlock(&em_tree->lock);
7002
7003 if (em) {
7004 if (em->start > start || em->start + em->len <= start)
7005 btrfs_free_extent_map(em);
7006 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
7007 btrfs_free_extent_map(em);
7008 else
7009 goto out;
7010 }
7011 em = btrfs_alloc_extent_map();
7012 if (!em) {
7013 ret = -ENOMEM;
7014 goto out;
7015 }
7016 em->start = EXTENT_MAP_HOLE;
7017 em->disk_bytenr = EXTENT_MAP_HOLE;
7018 em->len = (u64)-1;
7019
7020 path = btrfs_alloc_path();
7021 if (!path) {
7022 ret = -ENOMEM;
7023 goto out;
7024 }
7025
7026 /* Chances are we'll be called again, so go ahead and do readahead */
7027 path->reada = READA_FORWARD;
7028
7029 /*
7030 * The same explanation in load_free_space_cache applies here as well,
7031 * we only read when we're loading the free space cache, and at that
7032 * point the commit_root has everything we need.
7033 */
7034 if (btrfs_is_free_space_inode(inode)) {
7035 path->search_commit_root = 1;
7036 path->skip_locking = 1;
7037 }
7038
7039 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7040 if (ret < 0) {
7041 goto out;
7042 } else if (ret > 0) {
7043 if (path->slots[0] == 0)
7044 goto not_found;
7045 path->slots[0]--;
7046 ret = 0;
7047 }
7048
7049 leaf = path->nodes[0];
7050 item = btrfs_item_ptr(leaf, path->slots[0],
7051 struct btrfs_file_extent_item);
7052 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7053 if (found_key.objectid != objectid ||
7054 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7055 /*
7056 * If we backup past the first extent we want to move forward
7057 * and see if there is an extent in front of us, otherwise we'll
7058 * say there is a hole for our whole search range which can
7059 * cause problems.
7060 */
7061 extent_end = start;
7062 goto next;
7063 }
7064
7065 extent_type = btrfs_file_extent_type(leaf, item);
7066 extent_start = found_key.offset;
7067 extent_end = btrfs_file_extent_end(path);
7068 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7069 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7070 /* Only regular file could have regular/prealloc extent */
7071 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7072 ret = -EUCLEAN;
7073 btrfs_crit(fs_info,
7074 "regular/prealloc extent found for non-regular inode %llu",
7075 btrfs_ino(inode));
7076 goto out;
7077 }
7078 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7079 extent_start);
7080 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7081 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7082 path->slots[0],
7083 extent_start);
7084 }
7085 next:
7086 if (start >= extent_end) {
7087 path->slots[0]++;
7088 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7089 ret = btrfs_next_leaf(root, path);
7090 if (ret < 0)
7091 goto out;
7092 else if (ret > 0)
7093 goto not_found;
7094
7095 leaf = path->nodes[0];
7096 }
7097 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7098 if (found_key.objectid != objectid ||
7099 found_key.type != BTRFS_EXTENT_DATA_KEY)
7100 goto not_found;
7101 if (start + len <= found_key.offset)
7102 goto not_found;
7103 if (start > found_key.offset)
7104 goto next;
7105
7106 /* New extent overlaps with existing one */
7107 em->start = start;
7108 em->len = found_key.offset - start;
7109 em->disk_bytenr = EXTENT_MAP_HOLE;
7110 goto insert;
7111 }
7112
7113 btrfs_extent_item_to_extent_map(inode, path, item, em);
7114
7115 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7116 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7117 goto insert;
7118 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7119 /*
7120 * Inline extent can only exist at file offset 0. This is
7121 * ensured by tree-checker and inline extent creation path.
7122 * Thus all members representing file offsets should be zero.
7123 */
7124 ASSERT(extent_start == 0);
7125 ASSERT(em->start == 0);
7126
7127 /*
7128 * btrfs_extent_item_to_extent_map() should have properly
7129 * initialized em members already.
7130 *
7131 * Other members are not utilized for inline extents.
7132 */
7133 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
7134 ASSERT(em->len == fs_info->sectorsize);
7135
7136 ret = read_inline_extent(path, folio);
7137 if (ret < 0)
7138 goto out;
7139 goto insert;
7140 }
7141 not_found:
7142 em->start = start;
7143 em->len = len;
7144 em->disk_bytenr = EXTENT_MAP_HOLE;
7145 insert:
7146 ret = 0;
7147 btrfs_release_path(path);
7148 if (em->start > start || btrfs_extent_map_end(em) <= start) {
7149 btrfs_err(fs_info,
7150 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7151 em->start, em->len, start, len);
7152 ret = -EIO;
7153 goto out;
7154 }
7155
7156 write_lock(&em_tree->lock);
7157 ret = btrfs_add_extent_mapping(inode, &em, start, len);
7158 write_unlock(&em_tree->lock);
7159 out:
7160 btrfs_free_path(path);
7161
7162 trace_btrfs_get_extent(root, inode, em);
7163
7164 if (ret) {
7165 btrfs_free_extent_map(em);
7166 return ERR_PTR(ret);
7167 }
7168 return em;
7169 }
7170
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7171 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7172 {
7173 struct btrfs_block_group *block_group;
7174 bool readonly = false;
7175
7176 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7177 if (!block_group || block_group->ro)
7178 readonly = true;
7179 if (block_group)
7180 btrfs_put_block_group(block_group);
7181 return readonly;
7182 }
7183
7184 /*
7185 * Check if we can do nocow write into the range [@offset, @offset + @len)
7186 *
7187 * @offset: File offset
7188 * @len: The length to write, will be updated to the nocow writeable
7189 * range
7190 * @orig_start: (optional) Return the original file offset of the file extent
7191 * @orig_len: (optional) Return the original on-disk length of the file extent
7192 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7193 *
7194 * Return:
7195 * >0 and update @len if we can do nocow write
7196 * 0 if we can't do nocow write
7197 * <0 if error happened
7198 *
7199 * NOTE: This only checks the file extents, caller is responsible to wait for
7200 * any ordered extents.
7201 */
can_nocow_extent(struct btrfs_inode * inode,u64 offset,u64 * len,struct btrfs_file_extent * file_extent,bool nowait)7202 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len,
7203 struct btrfs_file_extent *file_extent,
7204 bool nowait)
7205 {
7206 struct btrfs_root *root = inode->root;
7207 struct btrfs_fs_info *fs_info = root->fs_info;
7208 struct can_nocow_file_extent_args nocow_args = { 0 };
7209 BTRFS_PATH_AUTO_FREE(path);
7210 int ret;
7211 struct extent_buffer *leaf;
7212 struct extent_io_tree *io_tree = &inode->io_tree;
7213 struct btrfs_file_extent_item *fi;
7214 struct btrfs_key key;
7215 int found_type;
7216
7217 path = btrfs_alloc_path();
7218 if (!path)
7219 return -ENOMEM;
7220 path->nowait = nowait;
7221
7222 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7223 offset, 0);
7224 if (ret < 0)
7225 return ret;
7226
7227 if (ret == 1) {
7228 if (path->slots[0] == 0) {
7229 /* Can't find the item, must COW. */
7230 return 0;
7231 }
7232 path->slots[0]--;
7233 }
7234 ret = 0;
7235 leaf = path->nodes[0];
7236 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7237 if (key.objectid != btrfs_ino(inode) ||
7238 key.type != BTRFS_EXTENT_DATA_KEY) {
7239 /* Not our file or wrong item type, must COW. */
7240 return 0;
7241 }
7242
7243 if (key.offset > offset) {
7244 /* Wrong offset, must COW. */
7245 return 0;
7246 }
7247
7248 if (btrfs_file_extent_end(path) <= offset)
7249 return 0;
7250
7251 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7252 found_type = btrfs_file_extent_type(leaf, fi);
7253
7254 nocow_args.start = offset;
7255 nocow_args.end = offset + *len - 1;
7256 nocow_args.free_path = true;
7257
7258 ret = can_nocow_file_extent(path, &key, inode, &nocow_args);
7259 /* can_nocow_file_extent() has freed the path. */
7260 path = NULL;
7261
7262 if (ret != 1) {
7263 /* Treat errors as not being able to NOCOW. */
7264 return 0;
7265 }
7266
7267 if (btrfs_extent_readonly(fs_info,
7268 nocow_args.file_extent.disk_bytenr +
7269 nocow_args.file_extent.offset))
7270 return 0;
7271
7272 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
7273 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7274 u64 range_end;
7275
7276 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7277 root->fs_info->sectorsize) - 1;
7278 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end,
7279 EXTENT_DELALLOC);
7280 if (ret)
7281 return -EAGAIN;
7282 }
7283
7284 if (file_extent)
7285 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7286
7287 *len = nocow_args.file_extent.num_bytes;
7288
7289 return 1;
7290 }
7291
7292 /* The callers of this must take lock_extent() */
btrfs_create_io_em(struct btrfs_inode * inode,u64 start,const struct btrfs_file_extent * file_extent,int type)7293 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7294 const struct btrfs_file_extent *file_extent,
7295 int type)
7296 {
7297 struct extent_map *em;
7298 int ret;
7299
7300 /*
7301 * Note the missing NOCOW type.
7302 *
7303 * For pure NOCOW writes, we should not create an io extent map, but
7304 * just reusing the existing one.
7305 * Only PREALLOC writes (NOCOW write into preallocated range) can
7306 * create an io extent map.
7307 */
7308 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7309 type == BTRFS_ORDERED_COMPRESSED ||
7310 type == BTRFS_ORDERED_REGULAR);
7311
7312 switch (type) {
7313 case BTRFS_ORDERED_PREALLOC:
7314 /* We're only referring part of a larger preallocated extent. */
7315 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7316 break;
7317 case BTRFS_ORDERED_REGULAR:
7318 /* COW results a new extent matching our file extent size. */
7319 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7320 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7321
7322 /* Since it's a new extent, we should not have any offset. */
7323 ASSERT(file_extent->offset == 0);
7324 break;
7325 case BTRFS_ORDERED_COMPRESSED:
7326 /* Must be compressed. */
7327 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7328
7329 /*
7330 * Encoded write can make us to refer to part of the
7331 * uncompressed extent.
7332 */
7333 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7334 break;
7335 }
7336
7337 em = btrfs_alloc_extent_map();
7338 if (!em)
7339 return ERR_PTR(-ENOMEM);
7340
7341 em->start = start;
7342 em->len = file_extent->num_bytes;
7343 em->disk_bytenr = file_extent->disk_bytenr;
7344 em->disk_num_bytes = file_extent->disk_num_bytes;
7345 em->ram_bytes = file_extent->ram_bytes;
7346 em->generation = -1;
7347 em->offset = file_extent->offset;
7348 em->flags |= EXTENT_FLAG_PINNED;
7349 if (type == BTRFS_ORDERED_COMPRESSED)
7350 btrfs_extent_map_set_compression(em, file_extent->compression);
7351
7352 ret = btrfs_replace_extent_map_range(inode, em, true);
7353 if (ret) {
7354 btrfs_free_extent_map(em);
7355 return ERR_PTR(ret);
7356 }
7357
7358 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */
7359 return em;
7360 }
7361
7362 /*
7363 * For release_folio() and invalidate_folio() we have a race window where
7364 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7365 * If we continue to release/invalidate the page, we could cause use-after-free
7366 * for subpage spinlock. So this function is to spin and wait for subpage
7367 * spinlock.
7368 */
wait_subpage_spinlock(struct folio * folio)7369 static void wait_subpage_spinlock(struct folio *folio)
7370 {
7371 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7372 struct btrfs_folio_state *bfs;
7373
7374 if (!btrfs_is_subpage(fs_info, folio))
7375 return;
7376
7377 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7378 bfs = folio_get_private(folio);
7379
7380 /*
7381 * This may look insane as we just acquire the spinlock and release it,
7382 * without doing anything. But we just want to make sure no one is
7383 * still holding the subpage spinlock.
7384 * And since the page is not dirty nor writeback, and we have page
7385 * locked, the only possible way to hold a spinlock is from the endio
7386 * function to clear page writeback.
7387 *
7388 * Here we just acquire the spinlock so that all existing callers
7389 * should exit and we're safe to release/invalidate the page.
7390 */
7391 spin_lock_irq(&bfs->lock);
7392 spin_unlock_irq(&bfs->lock);
7393 }
7394
btrfs_launder_folio(struct folio * folio)7395 static int btrfs_launder_folio(struct folio *folio)
7396 {
7397 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7398 folio_size(folio), NULL);
7399 }
7400
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7401 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7402 {
7403 if (try_release_extent_mapping(folio, gfp_flags)) {
7404 wait_subpage_spinlock(folio);
7405 clear_folio_extent_mapped(folio);
7406 return true;
7407 }
7408 return false;
7409 }
7410
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7411 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7412 {
7413 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7414 return false;
7415 return __btrfs_release_folio(folio, gfp_flags);
7416 }
7417
7418 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7419 static int btrfs_migrate_folio(struct address_space *mapping,
7420 struct folio *dst, struct folio *src,
7421 enum migrate_mode mode)
7422 {
7423 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7424
7425 if (ret != MIGRATEPAGE_SUCCESS)
7426 return ret;
7427
7428 if (folio_test_ordered(src)) {
7429 folio_clear_ordered(src);
7430 folio_set_ordered(dst);
7431 }
7432
7433 return MIGRATEPAGE_SUCCESS;
7434 }
7435 #else
7436 #define btrfs_migrate_folio NULL
7437 #endif
7438
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7439 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7440 size_t length)
7441 {
7442 struct btrfs_inode *inode = folio_to_inode(folio);
7443 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7444 struct extent_io_tree *tree = &inode->io_tree;
7445 struct extent_state *cached_state = NULL;
7446 u64 page_start = folio_pos(folio);
7447 u64 page_end = page_start + folio_size(folio) - 1;
7448 u64 cur;
7449 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7450
7451 /*
7452 * We have folio locked so no new ordered extent can be created on this
7453 * page, nor bio can be submitted for this folio.
7454 *
7455 * But already submitted bio can still be finished on this folio.
7456 * Furthermore, endio function won't skip folio which has Ordered
7457 * already cleared, so it's possible for endio and
7458 * invalidate_folio to do the same ordered extent accounting twice
7459 * on one folio.
7460 *
7461 * So here we wait for any submitted bios to finish, so that we won't
7462 * do double ordered extent accounting on the same folio.
7463 */
7464 folio_wait_writeback(folio);
7465 wait_subpage_spinlock(folio);
7466
7467 /*
7468 * For subpage case, we have call sites like
7469 * btrfs_punch_hole_lock_range() which passes range not aligned to
7470 * sectorsize.
7471 * If the range doesn't cover the full folio, we don't need to and
7472 * shouldn't clear page extent mapped, as folio->private can still
7473 * record subpage dirty bits for other part of the range.
7474 *
7475 * For cases that invalidate the full folio even the range doesn't
7476 * cover the full folio, like invalidating the last folio, we're
7477 * still safe to wait for ordered extent to finish.
7478 */
7479 if (!(offset == 0 && length == folio_size(folio))) {
7480 btrfs_release_folio(folio, GFP_NOFS);
7481 return;
7482 }
7483
7484 if (!inode_evicting)
7485 btrfs_lock_extent(tree, page_start, page_end, &cached_state);
7486
7487 cur = page_start;
7488 while (cur < page_end) {
7489 struct btrfs_ordered_extent *ordered;
7490 u64 range_end;
7491 u32 range_len;
7492 u32 extra_flags = 0;
7493
7494 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7495 page_end + 1 - cur);
7496 if (!ordered) {
7497 range_end = page_end;
7498 /*
7499 * No ordered extent covering this range, we are safe
7500 * to delete all extent states in the range.
7501 */
7502 extra_flags = EXTENT_CLEAR_ALL_BITS;
7503 goto next;
7504 }
7505 if (ordered->file_offset > cur) {
7506 /*
7507 * There is a range between [cur, oe->file_offset) not
7508 * covered by any ordered extent.
7509 * We are safe to delete all extent states, and handle
7510 * the ordered extent in the next iteration.
7511 */
7512 range_end = ordered->file_offset - 1;
7513 extra_flags = EXTENT_CLEAR_ALL_BITS;
7514 goto next;
7515 }
7516
7517 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7518 page_end);
7519 ASSERT(range_end + 1 - cur < U32_MAX);
7520 range_len = range_end + 1 - cur;
7521 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7522 /*
7523 * If Ordered is cleared, it means endio has
7524 * already been executed for the range.
7525 * We can't delete the extent states as
7526 * btrfs_finish_ordered_io() may still use some of them.
7527 */
7528 goto next;
7529 }
7530 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7531
7532 /*
7533 * IO on this page will never be started, so we need to account
7534 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7535 * here, must leave that up for the ordered extent completion.
7536 *
7537 * This will also unlock the range for incoming
7538 * btrfs_finish_ordered_io().
7539 */
7540 if (!inode_evicting)
7541 btrfs_clear_extent_bit(tree, cur, range_end,
7542 EXTENT_DELALLOC |
7543 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7544 EXTENT_DEFRAG, &cached_state);
7545
7546 spin_lock_irq(&inode->ordered_tree_lock);
7547 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7548 ordered->truncated_len = min(ordered->truncated_len,
7549 cur - ordered->file_offset);
7550 spin_unlock_irq(&inode->ordered_tree_lock);
7551
7552 /*
7553 * If the ordered extent has finished, we're safe to delete all
7554 * the extent states of the range, otherwise
7555 * btrfs_finish_ordered_io() will get executed by endio for
7556 * other pages, so we can't delete extent states.
7557 */
7558 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7559 cur, range_end + 1 - cur)) {
7560 btrfs_finish_ordered_io(ordered);
7561 /*
7562 * The ordered extent has finished, now we're again
7563 * safe to delete all extent states of the range.
7564 */
7565 extra_flags = EXTENT_CLEAR_ALL_BITS;
7566 }
7567 next:
7568 if (ordered)
7569 btrfs_put_ordered_extent(ordered);
7570 /*
7571 * Qgroup reserved space handler
7572 * Sector(s) here will be either:
7573 *
7574 * 1) Already written to disk or bio already finished
7575 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7576 * Qgroup will be handled by its qgroup_record then.
7577 * btrfs_qgroup_free_data() call will do nothing here.
7578 *
7579 * 2) Not written to disk yet
7580 * Then btrfs_qgroup_free_data() call will clear the
7581 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7582 * reserved data space.
7583 * Since the IO will never happen for this page.
7584 */
7585 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7586 if (!inode_evicting)
7587 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7588 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7589 EXTENT_DEFRAG | extra_flags,
7590 &cached_state);
7591 cur = range_end + 1;
7592 }
7593 /*
7594 * We have iterated through all ordered extents of the page, the page
7595 * should not have Ordered anymore, or the above iteration
7596 * did something wrong.
7597 */
7598 ASSERT(!folio_test_ordered(folio));
7599 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7600 if (!inode_evicting)
7601 __btrfs_release_folio(folio, GFP_NOFS);
7602 clear_folio_extent_mapped(folio);
7603 }
7604
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)7605 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7606 {
7607 struct btrfs_truncate_control control = {
7608 .inode = inode,
7609 .ino = btrfs_ino(inode),
7610 .min_type = BTRFS_EXTENT_DATA_KEY,
7611 .clear_extent_range = true,
7612 };
7613 struct btrfs_root *root = inode->root;
7614 struct btrfs_fs_info *fs_info = root->fs_info;
7615 struct btrfs_block_rsv rsv;
7616 int ret;
7617 struct btrfs_trans_handle *trans;
7618 u64 mask = fs_info->sectorsize - 1;
7619 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7620
7621 if (!skip_writeback) {
7622 ret = btrfs_wait_ordered_range(inode,
7623 inode->vfs_inode.i_size & (~mask),
7624 (u64)-1);
7625 if (ret)
7626 return ret;
7627 }
7628
7629 /*
7630 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7631 * things going on here:
7632 *
7633 * 1) We need to reserve space to update our inode.
7634 *
7635 * 2) We need to have something to cache all the space that is going to
7636 * be free'd up by the truncate operation, but also have some slack
7637 * space reserved in case it uses space during the truncate (thank you
7638 * very much snapshotting).
7639 *
7640 * And we need these to be separate. The fact is we can use a lot of
7641 * space doing the truncate, and we have no earthly idea how much space
7642 * we will use, so we need the truncate reservation to be separate so it
7643 * doesn't end up using space reserved for updating the inode. We also
7644 * need to be able to stop the transaction and start a new one, which
7645 * means we need to be able to update the inode several times, and we
7646 * have no idea of knowing how many times that will be, so we can't just
7647 * reserve 1 item for the entirety of the operation, so that has to be
7648 * done separately as well.
7649 *
7650 * So that leaves us with
7651 *
7652 * 1) rsv - for the truncate reservation, which we will steal from the
7653 * transaction reservation.
7654 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7655 * updating the inode.
7656 */
7657 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP);
7658 rsv.size = min_size;
7659 rsv.failfast = true;
7660
7661 /*
7662 * 1 for the truncate slack space
7663 * 1 for updating the inode.
7664 */
7665 trans = btrfs_start_transaction(root, 2);
7666 if (IS_ERR(trans)) {
7667 ret = PTR_ERR(trans);
7668 goto out;
7669 }
7670
7671 /* Migrate the slack space for the truncate to our reserve */
7672 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv,
7673 min_size, false);
7674 /*
7675 * We have reserved 2 metadata units when we started the transaction and
7676 * min_size matches 1 unit, so this should never fail, but if it does,
7677 * it's not critical we just fail truncation.
7678 */
7679 if (WARN_ON(ret)) {
7680 btrfs_end_transaction(trans);
7681 goto out;
7682 }
7683
7684 trans->block_rsv = &rsv;
7685
7686 while (1) {
7687 struct extent_state *cached_state = NULL;
7688 const u64 new_size = inode->vfs_inode.i_size;
7689 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7690
7691 control.new_size = new_size;
7692 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7693 /*
7694 * We want to drop from the next block forward in case this new
7695 * size is not block aligned since we will be keeping the last
7696 * block of the extent just the way it is.
7697 */
7698 btrfs_drop_extent_map_range(inode,
7699 ALIGN(new_size, fs_info->sectorsize),
7700 (u64)-1, false);
7701
7702 ret = btrfs_truncate_inode_items(trans, root, &control);
7703
7704 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7705 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7706
7707 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7708
7709 trans->block_rsv = &fs_info->trans_block_rsv;
7710 if (ret != -ENOSPC && ret != -EAGAIN)
7711 break;
7712
7713 ret = btrfs_update_inode(trans, inode);
7714 if (ret)
7715 break;
7716
7717 btrfs_end_transaction(trans);
7718 btrfs_btree_balance_dirty(fs_info);
7719
7720 trans = btrfs_start_transaction(root, 2);
7721 if (IS_ERR(trans)) {
7722 ret = PTR_ERR(trans);
7723 trans = NULL;
7724 break;
7725 }
7726
7727 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL);
7728 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7729 &rsv, min_size, false);
7730 /*
7731 * We have reserved 2 metadata units when we started the
7732 * transaction and min_size matches 1 unit, so this should never
7733 * fail, but if it does, it's not critical we just fail truncation.
7734 */
7735 if (WARN_ON(ret))
7736 break;
7737
7738 trans->block_rsv = &rsv;
7739 }
7740
7741 /*
7742 * We can't call btrfs_truncate_block inside a trans handle as we could
7743 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7744 * know we've truncated everything except the last little bit, and can
7745 * do btrfs_truncate_block and then update the disk_i_size.
7746 */
7747 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7748 btrfs_end_transaction(trans);
7749 btrfs_btree_balance_dirty(fs_info);
7750
7751 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size,
7752 inode->vfs_inode.i_size, (u64)-1);
7753 if (ret)
7754 goto out;
7755 trans = btrfs_start_transaction(root, 1);
7756 if (IS_ERR(trans)) {
7757 ret = PTR_ERR(trans);
7758 goto out;
7759 }
7760 btrfs_inode_safe_disk_i_size_write(inode, 0);
7761 }
7762
7763 if (trans) {
7764 int ret2;
7765
7766 trans->block_rsv = &fs_info->trans_block_rsv;
7767 ret2 = btrfs_update_inode(trans, inode);
7768 if (ret2 && !ret)
7769 ret = ret2;
7770
7771 ret2 = btrfs_end_transaction(trans);
7772 if (ret2 && !ret)
7773 ret = ret2;
7774 btrfs_btree_balance_dirty(fs_info);
7775 }
7776 out:
7777 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL);
7778 /*
7779 * So if we truncate and then write and fsync we normally would just
7780 * write the extents that changed, which is a problem if we need to
7781 * first truncate that entire inode. So set this flag so we write out
7782 * all of the extents in the inode to the sync log so we're completely
7783 * safe.
7784 *
7785 * If no extents were dropped or trimmed we don't need to force the next
7786 * fsync to truncate all the inode's items from the log and re-log them
7787 * all. This means the truncate operation did not change the file size,
7788 * or changed it to a smaller size but there was only an implicit hole
7789 * between the old i_size and the new i_size, and there were no prealloc
7790 * extents beyond i_size to drop.
7791 */
7792 if (control.extents_found > 0)
7793 btrfs_set_inode_full_sync(inode);
7794
7795 return ret;
7796 }
7797
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)7798 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7799 struct inode *dir)
7800 {
7801 struct inode *inode;
7802
7803 inode = new_inode(dir->i_sb);
7804 if (inode) {
7805 /*
7806 * Subvolumes don't inherit the sgid bit or the parent's gid if
7807 * the parent's sgid bit is set. This is probably a bug.
7808 */
7809 inode_init_owner(idmap, inode, NULL,
7810 S_IFDIR | (~current_umask() & S_IRWXUGO));
7811 inode->i_op = &btrfs_dir_inode_operations;
7812 inode->i_fop = &btrfs_dir_file_operations;
7813 }
7814 return inode;
7815 }
7816
btrfs_alloc_inode(struct super_block * sb)7817 struct inode *btrfs_alloc_inode(struct super_block *sb)
7818 {
7819 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7820 struct btrfs_inode *ei;
7821 struct inode *inode;
7822
7823 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7824 if (!ei)
7825 return NULL;
7826
7827 ei->root = NULL;
7828 ei->generation = 0;
7829 ei->last_trans = 0;
7830 ei->last_sub_trans = 0;
7831 ei->logged_trans = 0;
7832 ei->delalloc_bytes = 0;
7833 ei->new_delalloc_bytes = 0;
7834 ei->defrag_bytes = 0;
7835 ei->disk_i_size = 0;
7836 ei->flags = 0;
7837 ei->ro_flags = 0;
7838 /*
7839 * ->index_cnt will be properly initialized later when creating a new
7840 * inode (btrfs_create_new_inode()) or when reading an existing inode
7841 * from disk (btrfs_read_locked_inode()).
7842 */
7843 ei->csum_bytes = 0;
7844 ei->dir_index = 0;
7845 ei->last_unlink_trans = 0;
7846 ei->last_reflink_trans = 0;
7847 ei->last_log_commit = 0;
7848
7849 spin_lock_init(&ei->lock);
7850 ei->outstanding_extents = 0;
7851 if (sb->s_magic != BTRFS_TEST_MAGIC)
7852 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7853 BTRFS_BLOCK_RSV_DELALLOC);
7854 ei->runtime_flags = 0;
7855 ei->prop_compress = BTRFS_COMPRESS_NONE;
7856 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7857
7858 ei->delayed_node = NULL;
7859
7860 ei->i_otime_sec = 0;
7861 ei->i_otime_nsec = 0;
7862
7863 inode = &ei->vfs_inode;
7864 btrfs_extent_map_tree_init(&ei->extent_tree);
7865
7866 /* This io tree sets the valid inode. */
7867 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7868 ei->io_tree.inode = ei;
7869
7870 ei->file_extent_tree = NULL;
7871
7872 mutex_init(&ei->log_mutex);
7873 spin_lock_init(&ei->ordered_tree_lock);
7874 ei->ordered_tree = RB_ROOT;
7875 ei->ordered_tree_last = NULL;
7876 INIT_LIST_HEAD(&ei->delalloc_inodes);
7877 INIT_LIST_HEAD(&ei->delayed_iput);
7878 init_rwsem(&ei->i_mmap_lock);
7879
7880 return inode;
7881 }
7882
7883 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)7884 void btrfs_test_destroy_inode(struct inode *inode)
7885 {
7886 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7887 kfree(BTRFS_I(inode)->file_extent_tree);
7888 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7889 }
7890 #endif
7891
btrfs_free_inode(struct inode * inode)7892 void btrfs_free_inode(struct inode *inode)
7893 {
7894 kfree(BTRFS_I(inode)->file_extent_tree);
7895 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7896 }
7897
btrfs_destroy_inode(struct inode * vfs_inode)7898 void btrfs_destroy_inode(struct inode *vfs_inode)
7899 {
7900 struct btrfs_ordered_extent *ordered;
7901 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7902 struct btrfs_root *root = inode->root;
7903 bool freespace_inode;
7904
7905 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7906 WARN_ON(vfs_inode->i_data.nrpages);
7907 WARN_ON(inode->block_rsv.reserved);
7908 WARN_ON(inode->block_rsv.size);
7909 WARN_ON(inode->outstanding_extents);
7910 if (!S_ISDIR(vfs_inode->i_mode)) {
7911 WARN_ON(inode->delalloc_bytes);
7912 WARN_ON(inode->new_delalloc_bytes);
7913 WARN_ON(inode->csum_bytes);
7914 }
7915 if (!root || !btrfs_is_data_reloc_root(root))
7916 WARN_ON(inode->defrag_bytes);
7917
7918 /*
7919 * This can happen where we create an inode, but somebody else also
7920 * created the same inode and we need to destroy the one we already
7921 * created.
7922 */
7923 if (!root)
7924 return;
7925
7926 /*
7927 * If this is a free space inode do not take the ordered extents lockdep
7928 * map.
7929 */
7930 freespace_inode = btrfs_is_free_space_inode(inode);
7931
7932 while (1) {
7933 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7934 if (!ordered)
7935 break;
7936 else {
7937 btrfs_err(root->fs_info,
7938 "found ordered extent %llu %llu on inode cleanup",
7939 ordered->file_offset, ordered->num_bytes);
7940
7941 if (!freespace_inode)
7942 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7943
7944 btrfs_remove_ordered_extent(inode, ordered);
7945 btrfs_put_ordered_extent(ordered);
7946 btrfs_put_ordered_extent(ordered);
7947 }
7948 }
7949 btrfs_qgroup_check_reserved_leak(inode);
7950 btrfs_del_inode_from_root(inode);
7951 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7952 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7953 btrfs_put_root(inode->root);
7954 }
7955
btrfs_drop_inode(struct inode * inode)7956 int btrfs_drop_inode(struct inode *inode)
7957 {
7958 struct btrfs_root *root = BTRFS_I(inode)->root;
7959
7960 if (root == NULL)
7961 return 1;
7962
7963 /* the snap/subvol tree is on deleting */
7964 if (btrfs_root_refs(&root->root_item) == 0)
7965 return 1;
7966 else
7967 return generic_drop_inode(inode);
7968 }
7969
init_once(void * foo)7970 static void init_once(void *foo)
7971 {
7972 struct btrfs_inode *ei = foo;
7973
7974 inode_init_once(&ei->vfs_inode);
7975 }
7976
btrfs_destroy_cachep(void)7977 void __cold btrfs_destroy_cachep(void)
7978 {
7979 /*
7980 * Make sure all delayed rcu free inodes are flushed before we
7981 * destroy cache.
7982 */
7983 rcu_barrier();
7984 kmem_cache_destroy(btrfs_inode_cachep);
7985 }
7986
btrfs_init_cachep(void)7987 int __init btrfs_init_cachep(void)
7988 {
7989 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7990 sizeof(struct btrfs_inode), 0,
7991 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7992 init_once);
7993 if (!btrfs_inode_cachep)
7994 return -ENOMEM;
7995
7996 return 0;
7997 }
7998
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)7999 static int btrfs_getattr(struct mnt_idmap *idmap,
8000 const struct path *path, struct kstat *stat,
8001 u32 request_mask, unsigned int flags)
8002 {
8003 u64 delalloc_bytes;
8004 u64 inode_bytes;
8005 struct inode *inode = d_inode(path->dentry);
8006 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8007 u32 bi_flags = BTRFS_I(inode)->flags;
8008 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8009
8010 stat->result_mask |= STATX_BTIME;
8011 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8012 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8013 if (bi_flags & BTRFS_INODE_APPEND)
8014 stat->attributes |= STATX_ATTR_APPEND;
8015 if (bi_flags & BTRFS_INODE_COMPRESS)
8016 stat->attributes |= STATX_ATTR_COMPRESSED;
8017 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8018 stat->attributes |= STATX_ATTR_IMMUTABLE;
8019 if (bi_flags & BTRFS_INODE_NODUMP)
8020 stat->attributes |= STATX_ATTR_NODUMP;
8021 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8022 stat->attributes |= STATX_ATTR_VERITY;
8023
8024 stat->attributes_mask |= (STATX_ATTR_APPEND |
8025 STATX_ATTR_COMPRESSED |
8026 STATX_ATTR_IMMUTABLE |
8027 STATX_ATTR_NODUMP);
8028
8029 generic_fillattr(idmap, request_mask, inode, stat);
8030 stat->dev = BTRFS_I(inode)->root->anon_dev;
8031
8032 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root);
8033 stat->result_mask |= STATX_SUBVOL;
8034
8035 spin_lock(&BTRFS_I(inode)->lock);
8036 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8037 inode_bytes = inode_get_bytes(inode);
8038 spin_unlock(&BTRFS_I(inode)->lock);
8039 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8040 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8041 return 0;
8042 }
8043
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8044 static int btrfs_rename_exchange(struct inode *old_dir,
8045 struct dentry *old_dentry,
8046 struct inode *new_dir,
8047 struct dentry *new_dentry)
8048 {
8049 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8050 struct btrfs_trans_handle *trans;
8051 unsigned int trans_num_items;
8052 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8053 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8054 struct inode *new_inode = new_dentry->d_inode;
8055 struct inode *old_inode = old_dentry->d_inode;
8056 struct btrfs_rename_ctx old_rename_ctx;
8057 struct btrfs_rename_ctx new_rename_ctx;
8058 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8059 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8060 u64 old_idx = 0;
8061 u64 new_idx = 0;
8062 int ret;
8063 int ret2;
8064 bool need_abort = false;
8065 bool logs_pinned = false;
8066 struct fscrypt_name old_fname, new_fname;
8067 struct fscrypt_str *old_name, *new_name;
8068
8069 /*
8070 * For non-subvolumes allow exchange only within one subvolume, in the
8071 * same inode namespace. Two subvolumes (represented as directory) can
8072 * be exchanged as they're a logical link and have a fixed inode number.
8073 */
8074 if (root != dest &&
8075 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8076 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8077 return -EXDEV;
8078
8079 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8080 if (ret)
8081 return ret;
8082
8083 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8084 if (ret) {
8085 fscrypt_free_filename(&old_fname);
8086 return ret;
8087 }
8088
8089 old_name = &old_fname.disk_name;
8090 new_name = &new_fname.disk_name;
8091
8092 /* close the race window with snapshot create/destroy ioctl */
8093 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8094 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8095 down_read(&fs_info->subvol_sem);
8096
8097 /*
8098 * For each inode:
8099 * 1 to remove old dir item
8100 * 1 to remove old dir index
8101 * 1 to add new dir item
8102 * 1 to add new dir index
8103 * 1 to update parent inode
8104 *
8105 * If the parents are the same, we only need to account for one
8106 */
8107 trans_num_items = (old_dir == new_dir ? 9 : 10);
8108 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8109 /*
8110 * 1 to remove old root ref
8111 * 1 to remove old root backref
8112 * 1 to add new root ref
8113 * 1 to add new root backref
8114 */
8115 trans_num_items += 4;
8116 } else {
8117 /*
8118 * 1 to update inode item
8119 * 1 to remove old inode ref
8120 * 1 to add new inode ref
8121 */
8122 trans_num_items += 3;
8123 }
8124 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8125 trans_num_items += 4;
8126 else
8127 trans_num_items += 3;
8128 trans = btrfs_start_transaction(root, trans_num_items);
8129 if (IS_ERR(trans)) {
8130 ret = PTR_ERR(trans);
8131 goto out_notrans;
8132 }
8133
8134 if (dest != root) {
8135 ret = btrfs_record_root_in_trans(trans, dest);
8136 if (ret)
8137 goto out_fail;
8138 }
8139
8140 /*
8141 * We need to find a free sequence number both in the source and
8142 * in the destination directory for the exchange.
8143 */
8144 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8145 if (ret)
8146 goto out_fail;
8147 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8148 if (ret)
8149 goto out_fail;
8150
8151 BTRFS_I(old_inode)->dir_index = 0ULL;
8152 BTRFS_I(new_inode)->dir_index = 0ULL;
8153
8154 /* Reference for the source. */
8155 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8156 /* force full log commit if subvolume involved. */
8157 btrfs_set_log_full_commit(trans);
8158 } else {
8159 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8160 btrfs_ino(BTRFS_I(new_dir)),
8161 old_idx);
8162 if (ret)
8163 goto out_fail;
8164 need_abort = true;
8165 }
8166
8167 /* And now for the dest. */
8168 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8169 /* force full log commit if subvolume involved. */
8170 btrfs_set_log_full_commit(trans);
8171 } else {
8172 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8173 btrfs_ino(BTRFS_I(old_dir)),
8174 new_idx);
8175 if (ret) {
8176 if (need_abort)
8177 btrfs_abort_transaction(trans, ret);
8178 goto out_fail;
8179 }
8180 }
8181
8182 /* Update inode version and ctime/mtime. */
8183 inode_inc_iversion(old_dir);
8184 inode_inc_iversion(new_dir);
8185 inode_inc_iversion(old_inode);
8186 inode_inc_iversion(new_inode);
8187 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8188
8189 if (old_ino != BTRFS_FIRST_FREE_OBJECTID &&
8190 new_ino != BTRFS_FIRST_FREE_OBJECTID) {
8191 /*
8192 * If we are renaming in the same directory (and it's not for
8193 * root entries) pin the log early to prevent any concurrent
8194 * task from logging the directory after we removed the old
8195 * entries and before we add the new entries, otherwise that
8196 * task can sync a log without any entry for the inodes we are
8197 * renaming and therefore replaying that log, if a power failure
8198 * happens after syncing the log, would result in deleting the
8199 * inodes.
8200 *
8201 * If the rename affects two different directories, we want to
8202 * make sure the that there's no log commit that contains
8203 * updates for only one of the directories but not for the
8204 * other.
8205 *
8206 * If we are renaming an entry for a root, we don't care about
8207 * log updates since we called btrfs_set_log_full_commit().
8208 */
8209 btrfs_pin_log_trans(root);
8210 btrfs_pin_log_trans(dest);
8211 logs_pinned = true;
8212 }
8213
8214 if (old_dentry->d_parent != new_dentry->d_parent) {
8215 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8216 BTRFS_I(old_inode), true);
8217 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8218 BTRFS_I(new_inode), true);
8219 }
8220
8221 /* src is a subvolume */
8222 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8223 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8224 if (ret) {
8225 btrfs_abort_transaction(trans, ret);
8226 goto out_fail;
8227 }
8228 } else { /* src is an inode */
8229 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8230 BTRFS_I(old_dentry->d_inode),
8231 old_name, &old_rename_ctx);
8232 if (ret) {
8233 btrfs_abort_transaction(trans, ret);
8234 goto out_fail;
8235 }
8236 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8237 if (ret) {
8238 btrfs_abort_transaction(trans, ret);
8239 goto out_fail;
8240 }
8241 }
8242
8243 /* dest is a subvolume */
8244 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8245 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8246 if (ret) {
8247 btrfs_abort_transaction(trans, ret);
8248 goto out_fail;
8249 }
8250 } else { /* dest is an inode */
8251 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8252 BTRFS_I(new_dentry->d_inode),
8253 new_name, &new_rename_ctx);
8254 if (ret) {
8255 btrfs_abort_transaction(trans, ret);
8256 goto out_fail;
8257 }
8258 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8259 if (ret) {
8260 btrfs_abort_transaction(trans, ret);
8261 goto out_fail;
8262 }
8263 }
8264
8265 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8266 new_name, 0, old_idx);
8267 if (ret) {
8268 btrfs_abort_transaction(trans, ret);
8269 goto out_fail;
8270 }
8271
8272 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8273 old_name, 0, new_idx);
8274 if (ret) {
8275 btrfs_abort_transaction(trans, ret);
8276 goto out_fail;
8277 }
8278
8279 if (old_inode->i_nlink == 1)
8280 BTRFS_I(old_inode)->dir_index = old_idx;
8281 if (new_inode->i_nlink == 1)
8282 BTRFS_I(new_inode)->dir_index = new_idx;
8283
8284 /*
8285 * Do the log updates for all inodes.
8286 *
8287 * If either entry is for a root we don't need to update the logs since
8288 * we've called btrfs_set_log_full_commit() before.
8289 */
8290 if (logs_pinned) {
8291 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8292 old_rename_ctx.index, new_dentry->d_parent);
8293 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8294 new_rename_ctx.index, old_dentry->d_parent);
8295 }
8296
8297 out_fail:
8298 if (logs_pinned) {
8299 btrfs_end_log_trans(root);
8300 btrfs_end_log_trans(dest);
8301 }
8302 ret2 = btrfs_end_transaction(trans);
8303 ret = ret ? ret : ret2;
8304 out_notrans:
8305 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8306 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8307 up_read(&fs_info->subvol_sem);
8308
8309 fscrypt_free_filename(&new_fname);
8310 fscrypt_free_filename(&old_fname);
8311 return ret;
8312 }
8313
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8314 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8315 struct inode *dir)
8316 {
8317 struct inode *inode;
8318
8319 inode = new_inode(dir->i_sb);
8320 if (inode) {
8321 inode_init_owner(idmap, inode, dir,
8322 S_IFCHR | WHITEOUT_MODE);
8323 inode->i_op = &btrfs_special_inode_operations;
8324 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8325 }
8326 return inode;
8327 }
8328
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8329 static int btrfs_rename(struct mnt_idmap *idmap,
8330 struct inode *old_dir, struct dentry *old_dentry,
8331 struct inode *new_dir, struct dentry *new_dentry,
8332 unsigned int flags)
8333 {
8334 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8335 struct btrfs_new_inode_args whiteout_args = {
8336 .dir = old_dir,
8337 .dentry = old_dentry,
8338 };
8339 struct btrfs_trans_handle *trans;
8340 unsigned int trans_num_items;
8341 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8342 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8343 struct inode *new_inode = d_inode(new_dentry);
8344 struct inode *old_inode = d_inode(old_dentry);
8345 struct btrfs_rename_ctx rename_ctx;
8346 u64 index = 0;
8347 int ret;
8348 int ret2;
8349 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8350 struct fscrypt_name old_fname, new_fname;
8351 bool logs_pinned = false;
8352
8353 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8354 return -EPERM;
8355
8356 /* we only allow rename subvolume link between subvolumes */
8357 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8358 return -EXDEV;
8359
8360 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8361 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8362 return -ENOTEMPTY;
8363
8364 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8365 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8366 return -ENOTEMPTY;
8367
8368 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8369 if (ret)
8370 return ret;
8371
8372 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8373 if (ret) {
8374 fscrypt_free_filename(&old_fname);
8375 return ret;
8376 }
8377
8378 /* check for collisions, even if the name isn't there */
8379 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8380 if (ret) {
8381 if (ret == -EEXIST) {
8382 /* we shouldn't get
8383 * eexist without a new_inode */
8384 if (WARN_ON(!new_inode)) {
8385 goto out_fscrypt_names;
8386 }
8387 } else {
8388 /* maybe -EOVERFLOW */
8389 goto out_fscrypt_names;
8390 }
8391 }
8392 ret = 0;
8393
8394 /*
8395 * we're using rename to replace one file with another. Start IO on it
8396 * now so we don't add too much work to the end of the transaction
8397 */
8398 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8399 filemap_flush(old_inode->i_mapping);
8400
8401 if (flags & RENAME_WHITEOUT) {
8402 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8403 if (!whiteout_args.inode) {
8404 ret = -ENOMEM;
8405 goto out_fscrypt_names;
8406 }
8407 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8408 if (ret)
8409 goto out_whiteout_inode;
8410 } else {
8411 /* 1 to update the old parent inode. */
8412 trans_num_items = 1;
8413 }
8414
8415 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8416 /* Close the race window with snapshot create/destroy ioctl */
8417 down_read(&fs_info->subvol_sem);
8418 /*
8419 * 1 to remove old root ref
8420 * 1 to remove old root backref
8421 * 1 to add new root ref
8422 * 1 to add new root backref
8423 */
8424 trans_num_items += 4;
8425 } else {
8426 /*
8427 * 1 to update inode
8428 * 1 to remove old inode ref
8429 * 1 to add new inode ref
8430 */
8431 trans_num_items += 3;
8432 }
8433 /*
8434 * 1 to remove old dir item
8435 * 1 to remove old dir index
8436 * 1 to add new dir item
8437 * 1 to add new dir index
8438 */
8439 trans_num_items += 4;
8440 /* 1 to update new parent inode if it's not the same as the old parent */
8441 if (new_dir != old_dir)
8442 trans_num_items++;
8443 if (new_inode) {
8444 /*
8445 * 1 to update inode
8446 * 1 to remove inode ref
8447 * 1 to remove dir item
8448 * 1 to remove dir index
8449 * 1 to possibly add orphan item
8450 */
8451 trans_num_items += 5;
8452 }
8453 trans = btrfs_start_transaction(root, trans_num_items);
8454 if (IS_ERR(trans)) {
8455 ret = PTR_ERR(trans);
8456 goto out_notrans;
8457 }
8458
8459 if (dest != root) {
8460 ret = btrfs_record_root_in_trans(trans, dest);
8461 if (ret)
8462 goto out_fail;
8463 }
8464
8465 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8466 if (ret)
8467 goto out_fail;
8468
8469 BTRFS_I(old_inode)->dir_index = 0ULL;
8470 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8471 /* force full log commit if subvolume involved. */
8472 btrfs_set_log_full_commit(trans);
8473 } else {
8474 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8475 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8476 index);
8477 if (ret)
8478 goto out_fail;
8479 }
8480
8481 inode_inc_iversion(old_dir);
8482 inode_inc_iversion(new_dir);
8483 inode_inc_iversion(old_inode);
8484 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8485
8486 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8487 /*
8488 * If we are renaming in the same directory (and it's not a
8489 * root entry) pin the log to prevent any concurrent task from
8490 * logging the directory after we removed the old entry and
8491 * before we add the new entry, otherwise that task can sync
8492 * a log without any entry for the inode we are renaming and
8493 * therefore replaying that log, if a power failure happens
8494 * after syncing the log, would result in deleting the inode.
8495 *
8496 * If the rename affects two different directories, we want to
8497 * make sure the that there's no log commit that contains
8498 * updates for only one of the directories but not for the
8499 * other.
8500 *
8501 * If we are renaming an entry for a root, we don't care about
8502 * log updates since we called btrfs_set_log_full_commit().
8503 */
8504 btrfs_pin_log_trans(root);
8505 btrfs_pin_log_trans(dest);
8506 logs_pinned = true;
8507 }
8508
8509 if (old_dentry->d_parent != new_dentry->d_parent)
8510 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8511 BTRFS_I(old_inode), true);
8512
8513 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8514 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8515 if (ret) {
8516 btrfs_abort_transaction(trans, ret);
8517 goto out_fail;
8518 }
8519 } else {
8520 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8521 BTRFS_I(d_inode(old_dentry)),
8522 &old_fname.disk_name, &rename_ctx);
8523 if (ret) {
8524 btrfs_abort_transaction(trans, ret);
8525 goto out_fail;
8526 }
8527 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8528 if (ret) {
8529 btrfs_abort_transaction(trans, ret);
8530 goto out_fail;
8531 }
8532 }
8533
8534 if (new_inode) {
8535 inode_inc_iversion(new_inode);
8536 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8537 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8538 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8539 if (ret) {
8540 btrfs_abort_transaction(trans, ret);
8541 goto out_fail;
8542 }
8543 BUG_ON(new_inode->i_nlink == 0);
8544 } else {
8545 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8546 BTRFS_I(d_inode(new_dentry)),
8547 &new_fname.disk_name);
8548 if (ret) {
8549 btrfs_abort_transaction(trans, ret);
8550 goto out_fail;
8551 }
8552 }
8553 if (new_inode->i_nlink == 0) {
8554 ret = btrfs_orphan_add(trans,
8555 BTRFS_I(d_inode(new_dentry)));
8556 if (ret) {
8557 btrfs_abort_transaction(trans, ret);
8558 goto out_fail;
8559 }
8560 }
8561 }
8562
8563 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8564 &new_fname.disk_name, 0, index);
8565 if (ret) {
8566 btrfs_abort_transaction(trans, ret);
8567 goto out_fail;
8568 }
8569
8570 if (old_inode->i_nlink == 1)
8571 BTRFS_I(old_inode)->dir_index = index;
8572
8573 if (logs_pinned)
8574 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8575 rename_ctx.index, new_dentry->d_parent);
8576
8577 if (flags & RENAME_WHITEOUT) {
8578 ret = btrfs_create_new_inode(trans, &whiteout_args);
8579 if (ret) {
8580 btrfs_abort_transaction(trans, ret);
8581 goto out_fail;
8582 } else {
8583 unlock_new_inode(whiteout_args.inode);
8584 iput(whiteout_args.inode);
8585 whiteout_args.inode = NULL;
8586 }
8587 }
8588 out_fail:
8589 if (logs_pinned) {
8590 btrfs_end_log_trans(root);
8591 btrfs_end_log_trans(dest);
8592 }
8593 ret2 = btrfs_end_transaction(trans);
8594 ret = ret ? ret : ret2;
8595 out_notrans:
8596 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8597 up_read(&fs_info->subvol_sem);
8598 if (flags & RENAME_WHITEOUT)
8599 btrfs_new_inode_args_destroy(&whiteout_args);
8600 out_whiteout_inode:
8601 if (flags & RENAME_WHITEOUT)
8602 iput(whiteout_args.inode);
8603 out_fscrypt_names:
8604 fscrypt_free_filename(&old_fname);
8605 fscrypt_free_filename(&new_fname);
8606 return ret;
8607 }
8608
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8609 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8610 struct dentry *old_dentry, struct inode *new_dir,
8611 struct dentry *new_dentry, unsigned int flags)
8612 {
8613 int ret;
8614
8615 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8616 return -EINVAL;
8617
8618 if (flags & RENAME_EXCHANGE)
8619 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8620 new_dentry);
8621 else
8622 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8623 new_dentry, flags);
8624
8625 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8626
8627 return ret;
8628 }
8629
8630 struct btrfs_delalloc_work {
8631 struct inode *inode;
8632 struct completion completion;
8633 struct list_head list;
8634 struct btrfs_work work;
8635 };
8636
btrfs_run_delalloc_work(struct btrfs_work * work)8637 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8638 {
8639 struct btrfs_delalloc_work *delalloc_work;
8640 struct inode *inode;
8641
8642 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8643 work);
8644 inode = delalloc_work->inode;
8645 filemap_flush(inode->i_mapping);
8646 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8647 &BTRFS_I(inode)->runtime_flags))
8648 filemap_flush(inode->i_mapping);
8649
8650 iput(inode);
8651 complete(&delalloc_work->completion);
8652 }
8653
btrfs_alloc_delalloc_work(struct inode * inode)8654 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8655 {
8656 struct btrfs_delalloc_work *work;
8657
8658 work = kmalloc(sizeof(*work), GFP_NOFS);
8659 if (!work)
8660 return NULL;
8661
8662 init_completion(&work->completion);
8663 INIT_LIST_HEAD(&work->list);
8664 work->inode = inode;
8665 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8666
8667 return work;
8668 }
8669
8670 /*
8671 * some fairly slow code that needs optimization. This walks the list
8672 * of all the inodes with pending delalloc and forces them to disk.
8673 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)8674 static int start_delalloc_inodes(struct btrfs_root *root,
8675 struct writeback_control *wbc, bool snapshot,
8676 bool in_reclaim_context)
8677 {
8678 struct btrfs_delalloc_work *work, *next;
8679 LIST_HEAD(works);
8680 LIST_HEAD(splice);
8681 int ret = 0;
8682 bool full_flush = wbc->nr_to_write == LONG_MAX;
8683
8684 mutex_lock(&root->delalloc_mutex);
8685 spin_lock(&root->delalloc_lock);
8686 list_splice_init(&root->delalloc_inodes, &splice);
8687 while (!list_empty(&splice)) {
8688 struct btrfs_inode *inode;
8689 struct inode *tmp_inode;
8690
8691 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes);
8692
8693 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
8694
8695 if (in_reclaim_context &&
8696 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags))
8697 continue;
8698
8699 tmp_inode = igrab(&inode->vfs_inode);
8700 if (!tmp_inode) {
8701 cond_resched_lock(&root->delalloc_lock);
8702 continue;
8703 }
8704 spin_unlock(&root->delalloc_lock);
8705
8706 if (snapshot)
8707 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags);
8708 if (full_flush) {
8709 work = btrfs_alloc_delalloc_work(&inode->vfs_inode);
8710 if (!work) {
8711 iput(&inode->vfs_inode);
8712 ret = -ENOMEM;
8713 goto out;
8714 }
8715 list_add_tail(&work->list, &works);
8716 btrfs_queue_work(root->fs_info->flush_workers,
8717 &work->work);
8718 } else {
8719 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc);
8720 btrfs_add_delayed_iput(inode);
8721 if (ret || wbc->nr_to_write <= 0)
8722 goto out;
8723 }
8724 cond_resched();
8725 spin_lock(&root->delalloc_lock);
8726 }
8727 spin_unlock(&root->delalloc_lock);
8728
8729 out:
8730 list_for_each_entry_safe(work, next, &works, list) {
8731 list_del_init(&work->list);
8732 wait_for_completion(&work->completion);
8733 kfree(work);
8734 }
8735
8736 if (!list_empty(&splice)) {
8737 spin_lock(&root->delalloc_lock);
8738 list_splice_tail(&splice, &root->delalloc_inodes);
8739 spin_unlock(&root->delalloc_lock);
8740 }
8741 mutex_unlock(&root->delalloc_mutex);
8742 return ret;
8743 }
8744
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)8745 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8746 {
8747 struct writeback_control wbc = {
8748 .nr_to_write = LONG_MAX,
8749 .sync_mode = WB_SYNC_NONE,
8750 .range_start = 0,
8751 .range_end = LLONG_MAX,
8752 };
8753 struct btrfs_fs_info *fs_info = root->fs_info;
8754
8755 if (BTRFS_FS_ERROR(fs_info))
8756 return -EROFS;
8757
8758 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8759 }
8760
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)8761 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8762 bool in_reclaim_context)
8763 {
8764 struct writeback_control wbc = {
8765 .nr_to_write = nr,
8766 .sync_mode = WB_SYNC_NONE,
8767 .range_start = 0,
8768 .range_end = LLONG_MAX,
8769 };
8770 struct btrfs_root *root;
8771 LIST_HEAD(splice);
8772 int ret;
8773
8774 if (BTRFS_FS_ERROR(fs_info))
8775 return -EROFS;
8776
8777 mutex_lock(&fs_info->delalloc_root_mutex);
8778 spin_lock(&fs_info->delalloc_root_lock);
8779 list_splice_init(&fs_info->delalloc_roots, &splice);
8780 while (!list_empty(&splice)) {
8781 /*
8782 * Reset nr_to_write here so we know that we're doing a full
8783 * flush.
8784 */
8785 if (nr == LONG_MAX)
8786 wbc.nr_to_write = LONG_MAX;
8787
8788 root = list_first_entry(&splice, struct btrfs_root,
8789 delalloc_root);
8790 root = btrfs_grab_root(root);
8791 BUG_ON(!root);
8792 list_move_tail(&root->delalloc_root,
8793 &fs_info->delalloc_roots);
8794 spin_unlock(&fs_info->delalloc_root_lock);
8795
8796 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8797 btrfs_put_root(root);
8798 if (ret < 0 || wbc.nr_to_write <= 0)
8799 goto out;
8800 spin_lock(&fs_info->delalloc_root_lock);
8801 }
8802 spin_unlock(&fs_info->delalloc_root_lock);
8803
8804 ret = 0;
8805 out:
8806 if (!list_empty(&splice)) {
8807 spin_lock(&fs_info->delalloc_root_lock);
8808 list_splice_tail(&splice, &fs_info->delalloc_roots);
8809 spin_unlock(&fs_info->delalloc_root_lock);
8810 }
8811 mutex_unlock(&fs_info->delalloc_root_mutex);
8812 return ret;
8813 }
8814
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)8815 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8816 struct dentry *dentry, const char *symname)
8817 {
8818 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8819 struct btrfs_trans_handle *trans;
8820 struct btrfs_root *root = BTRFS_I(dir)->root;
8821 struct btrfs_path *path;
8822 struct btrfs_key key;
8823 struct inode *inode;
8824 struct btrfs_new_inode_args new_inode_args = {
8825 .dir = dir,
8826 .dentry = dentry,
8827 };
8828 unsigned int trans_num_items;
8829 int ret;
8830 int name_len;
8831 int datasize;
8832 unsigned long ptr;
8833 struct btrfs_file_extent_item *ei;
8834 struct extent_buffer *leaf;
8835
8836 name_len = strlen(symname);
8837 /*
8838 * Symlinks utilize uncompressed inline extent data, which should not
8839 * reach block size.
8840 */
8841 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8842 name_len >= fs_info->sectorsize)
8843 return -ENAMETOOLONG;
8844
8845 inode = new_inode(dir->i_sb);
8846 if (!inode)
8847 return -ENOMEM;
8848 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8849 inode->i_op = &btrfs_symlink_inode_operations;
8850 inode_nohighmem(inode);
8851 inode->i_mapping->a_ops = &btrfs_aops;
8852 btrfs_i_size_write(BTRFS_I(inode), name_len);
8853 inode_set_bytes(inode, name_len);
8854
8855 new_inode_args.inode = inode;
8856 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8857 if (ret)
8858 goto out_inode;
8859 /* 1 additional item for the inline extent */
8860 trans_num_items++;
8861
8862 trans = btrfs_start_transaction(root, trans_num_items);
8863 if (IS_ERR(trans)) {
8864 ret = PTR_ERR(trans);
8865 goto out_new_inode_args;
8866 }
8867
8868 ret = btrfs_create_new_inode(trans, &new_inode_args);
8869 if (ret)
8870 goto out;
8871
8872 path = btrfs_alloc_path();
8873 if (!path) {
8874 ret = -ENOMEM;
8875 btrfs_abort_transaction(trans, ret);
8876 discard_new_inode(inode);
8877 inode = NULL;
8878 goto out;
8879 }
8880 key.objectid = btrfs_ino(BTRFS_I(inode));
8881 key.type = BTRFS_EXTENT_DATA_KEY;
8882 key.offset = 0;
8883 datasize = btrfs_file_extent_calc_inline_size(name_len);
8884 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize);
8885 if (ret) {
8886 btrfs_abort_transaction(trans, ret);
8887 btrfs_free_path(path);
8888 discard_new_inode(inode);
8889 inode = NULL;
8890 goto out;
8891 }
8892 leaf = path->nodes[0];
8893 ei = btrfs_item_ptr(leaf, path->slots[0],
8894 struct btrfs_file_extent_item);
8895 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8896 btrfs_set_file_extent_type(leaf, ei,
8897 BTRFS_FILE_EXTENT_INLINE);
8898 btrfs_set_file_extent_encryption(leaf, ei, 0);
8899 btrfs_set_file_extent_compression(leaf, ei, 0);
8900 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8901 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8902
8903 ptr = btrfs_file_extent_inline_start(ei);
8904 write_extent_buffer(leaf, symname, ptr, name_len);
8905 btrfs_free_path(path);
8906
8907 d_instantiate_new(dentry, inode);
8908 ret = 0;
8909 out:
8910 btrfs_end_transaction(trans);
8911 btrfs_btree_balance_dirty(fs_info);
8912 out_new_inode_args:
8913 btrfs_new_inode_args_destroy(&new_inode_args);
8914 out_inode:
8915 if (ret)
8916 iput(inode);
8917 return ret;
8918 }
8919
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)8920 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8921 struct btrfs_trans_handle *trans_in,
8922 struct btrfs_inode *inode,
8923 struct btrfs_key *ins,
8924 u64 file_offset)
8925 {
8926 struct btrfs_file_extent_item stack_fi;
8927 struct btrfs_replace_extent_info extent_info;
8928 struct btrfs_trans_handle *trans = trans_in;
8929 struct btrfs_path *path;
8930 u64 start = ins->objectid;
8931 u64 len = ins->offset;
8932 u64 qgroup_released = 0;
8933 int ret;
8934
8935 memset(&stack_fi, 0, sizeof(stack_fi));
8936
8937 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8938 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8939 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8940 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8941 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8942 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8943 /* Encryption and other encoding is reserved and all 0 */
8944
8945 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8946 if (ret < 0)
8947 return ERR_PTR(ret);
8948
8949 if (trans) {
8950 ret = insert_reserved_file_extent(trans, inode,
8951 file_offset, &stack_fi,
8952 true, qgroup_released);
8953 if (ret)
8954 goto free_qgroup;
8955 return trans;
8956 }
8957
8958 extent_info.disk_offset = start;
8959 extent_info.disk_len = len;
8960 extent_info.data_offset = 0;
8961 extent_info.data_len = len;
8962 extent_info.file_offset = file_offset;
8963 extent_info.extent_buf = (char *)&stack_fi;
8964 extent_info.is_new_extent = true;
8965 extent_info.update_times = true;
8966 extent_info.qgroup_reserved = qgroup_released;
8967 extent_info.insertions = 0;
8968
8969 path = btrfs_alloc_path();
8970 if (!path) {
8971 ret = -ENOMEM;
8972 goto free_qgroup;
8973 }
8974
8975 ret = btrfs_replace_file_extents(inode, path, file_offset,
8976 file_offset + len - 1, &extent_info,
8977 &trans);
8978 btrfs_free_path(path);
8979 if (ret)
8980 goto free_qgroup;
8981 return trans;
8982
8983 free_qgroup:
8984 /*
8985 * We have released qgroup data range at the beginning of the function,
8986 * and normally qgroup_released bytes will be freed when committing
8987 * transaction.
8988 * But if we error out early, we have to free what we have released
8989 * or we leak qgroup data reservation.
8990 */
8991 btrfs_qgroup_free_refroot(inode->root->fs_info,
8992 btrfs_root_id(inode->root), qgroup_released,
8993 BTRFS_QGROUP_RSV_DATA);
8994 return ERR_PTR(ret);
8995 }
8996
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)8997 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8998 u64 start, u64 num_bytes, u64 min_size,
8999 loff_t actual_len, u64 *alloc_hint,
9000 struct btrfs_trans_handle *trans)
9001 {
9002 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9003 struct extent_map *em;
9004 struct btrfs_root *root = BTRFS_I(inode)->root;
9005 struct btrfs_key ins;
9006 u64 cur_offset = start;
9007 u64 clear_offset = start;
9008 u64 i_size;
9009 u64 cur_bytes;
9010 u64 last_alloc = (u64)-1;
9011 int ret = 0;
9012 bool own_trans = true;
9013 u64 end = start + num_bytes - 1;
9014
9015 if (trans)
9016 own_trans = false;
9017 while (num_bytes > 0) {
9018 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9019 cur_bytes = max(cur_bytes, min_size);
9020 /*
9021 * If we are severely fragmented we could end up with really
9022 * small allocations, so if the allocator is returning small
9023 * chunks lets make its job easier by only searching for those
9024 * sized chunks.
9025 */
9026 cur_bytes = min(cur_bytes, last_alloc);
9027 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9028 min_size, 0, *alloc_hint, &ins, 1, 0);
9029 if (ret)
9030 break;
9031
9032 /*
9033 * We've reserved this space, and thus converted it from
9034 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9035 * from here on out we will only need to clear our reservation
9036 * for the remaining unreserved area, so advance our
9037 * clear_offset by our extent size.
9038 */
9039 clear_offset += ins.offset;
9040
9041 last_alloc = ins.offset;
9042 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9043 &ins, cur_offset);
9044 /*
9045 * Now that we inserted the prealloc extent we can finally
9046 * decrement the number of reservations in the block group.
9047 * If we did it before, we could race with relocation and have
9048 * relocation miss the reserved extent, making it fail later.
9049 */
9050 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9051 if (IS_ERR(trans)) {
9052 ret = PTR_ERR(trans);
9053 btrfs_free_reserved_extent(fs_info, ins.objectid,
9054 ins.offset, false);
9055 break;
9056 }
9057
9058 em = btrfs_alloc_extent_map();
9059 if (!em) {
9060 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9061 cur_offset + ins.offset - 1, false);
9062 btrfs_set_inode_full_sync(BTRFS_I(inode));
9063 goto next;
9064 }
9065
9066 em->start = cur_offset;
9067 em->len = ins.offset;
9068 em->disk_bytenr = ins.objectid;
9069 em->offset = 0;
9070 em->disk_num_bytes = ins.offset;
9071 em->ram_bytes = ins.offset;
9072 em->flags |= EXTENT_FLAG_PREALLOC;
9073 em->generation = trans->transid;
9074
9075 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9076 btrfs_free_extent_map(em);
9077 next:
9078 num_bytes -= ins.offset;
9079 cur_offset += ins.offset;
9080 *alloc_hint = ins.objectid + ins.offset;
9081
9082 inode_inc_iversion(inode);
9083 inode_set_ctime_current(inode);
9084 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9085 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9086 (actual_len > inode->i_size) &&
9087 (cur_offset > inode->i_size)) {
9088 if (cur_offset > actual_len)
9089 i_size = actual_len;
9090 else
9091 i_size = cur_offset;
9092 i_size_write(inode, i_size);
9093 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9094 }
9095
9096 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9097
9098 if (ret) {
9099 btrfs_abort_transaction(trans, ret);
9100 if (own_trans)
9101 btrfs_end_transaction(trans);
9102 break;
9103 }
9104
9105 if (own_trans) {
9106 btrfs_end_transaction(trans);
9107 trans = NULL;
9108 }
9109 }
9110 if (clear_offset < end)
9111 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9112 end - clear_offset + 1);
9113 return ret;
9114 }
9115
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9116 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9117 u64 start, u64 num_bytes, u64 min_size,
9118 loff_t actual_len, u64 *alloc_hint)
9119 {
9120 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9121 min_size, actual_len, alloc_hint,
9122 NULL);
9123 }
9124
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9125 int btrfs_prealloc_file_range_trans(struct inode *inode,
9126 struct btrfs_trans_handle *trans, int mode,
9127 u64 start, u64 num_bytes, u64 min_size,
9128 loff_t actual_len, u64 *alloc_hint)
9129 {
9130 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9131 min_size, actual_len, alloc_hint, trans);
9132 }
9133
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)9134 static int btrfs_permission(struct mnt_idmap *idmap,
9135 struct inode *inode, int mask)
9136 {
9137 struct btrfs_root *root = BTRFS_I(inode)->root;
9138 umode_t mode = inode->i_mode;
9139
9140 if (mask & MAY_WRITE &&
9141 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9142 if (btrfs_root_readonly(root))
9143 return -EROFS;
9144 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9145 return -EACCES;
9146 }
9147 return generic_permission(idmap, inode, mask);
9148 }
9149
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)9150 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9151 struct file *file, umode_t mode)
9152 {
9153 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9154 struct btrfs_trans_handle *trans;
9155 struct btrfs_root *root = BTRFS_I(dir)->root;
9156 struct inode *inode;
9157 struct btrfs_new_inode_args new_inode_args = {
9158 .dir = dir,
9159 .dentry = file->f_path.dentry,
9160 .orphan = true,
9161 };
9162 unsigned int trans_num_items;
9163 int ret;
9164
9165 inode = new_inode(dir->i_sb);
9166 if (!inode)
9167 return -ENOMEM;
9168 inode_init_owner(idmap, inode, dir, mode);
9169 inode->i_fop = &btrfs_file_operations;
9170 inode->i_op = &btrfs_file_inode_operations;
9171 inode->i_mapping->a_ops = &btrfs_aops;
9172
9173 new_inode_args.inode = inode;
9174 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9175 if (ret)
9176 goto out_inode;
9177
9178 trans = btrfs_start_transaction(root, trans_num_items);
9179 if (IS_ERR(trans)) {
9180 ret = PTR_ERR(trans);
9181 goto out_new_inode_args;
9182 }
9183
9184 ret = btrfs_create_new_inode(trans, &new_inode_args);
9185
9186 /*
9187 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9188 * set it to 1 because d_tmpfile() will issue a warning if the count is
9189 * 0, through:
9190 *
9191 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9192 */
9193 set_nlink(inode, 1);
9194
9195 if (!ret) {
9196 d_tmpfile(file, inode);
9197 unlock_new_inode(inode);
9198 mark_inode_dirty(inode);
9199 }
9200
9201 btrfs_end_transaction(trans);
9202 btrfs_btree_balance_dirty(fs_info);
9203 out_new_inode_args:
9204 btrfs_new_inode_args_destroy(&new_inode_args);
9205 out_inode:
9206 if (ret)
9207 iput(inode);
9208 return finish_open_simple(file, ret);
9209 }
9210
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)9211 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9212 int compress_type)
9213 {
9214 switch (compress_type) {
9215 case BTRFS_COMPRESS_NONE:
9216 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9217 case BTRFS_COMPRESS_ZLIB:
9218 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9219 case BTRFS_COMPRESS_LZO:
9220 /*
9221 * The LZO format depends on the sector size. 64K is the maximum
9222 * sector size that we support.
9223 */
9224 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9225 return -EINVAL;
9226 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9227 (fs_info->sectorsize_bits - 12);
9228 case BTRFS_COMPRESS_ZSTD:
9229 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9230 default:
9231 return -EUCLEAN;
9232 }
9233 }
9234
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9235 static ssize_t btrfs_encoded_read_inline(
9236 struct kiocb *iocb,
9237 struct iov_iter *iter, u64 start,
9238 u64 lockend,
9239 struct extent_state **cached_state,
9240 u64 extent_start, size_t count,
9241 struct btrfs_ioctl_encoded_io_args *encoded,
9242 bool *unlocked)
9243 {
9244 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9245 struct btrfs_root *root = inode->root;
9246 struct btrfs_fs_info *fs_info = root->fs_info;
9247 struct extent_io_tree *io_tree = &inode->io_tree;
9248 BTRFS_PATH_AUTO_FREE(path);
9249 struct extent_buffer *leaf;
9250 struct btrfs_file_extent_item *item;
9251 u64 ram_bytes;
9252 unsigned long ptr;
9253 void *tmp;
9254 ssize_t ret;
9255 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9256
9257 path = btrfs_alloc_path();
9258 if (!path)
9259 return -ENOMEM;
9260
9261 path->nowait = nowait;
9262
9263 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9264 extent_start, 0);
9265 if (ret) {
9266 if (ret > 0) {
9267 /* The extent item disappeared? */
9268 return -EIO;
9269 }
9270 return ret;
9271 }
9272 leaf = path->nodes[0];
9273 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9274
9275 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9276 ptr = btrfs_file_extent_inline_start(item);
9277
9278 encoded->len = min_t(u64, extent_start + ram_bytes,
9279 inode->vfs_inode.i_size) - iocb->ki_pos;
9280 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9281 btrfs_file_extent_compression(leaf, item));
9282 if (ret < 0)
9283 return ret;
9284 encoded->compression = ret;
9285 if (encoded->compression) {
9286 size_t inline_size;
9287
9288 inline_size = btrfs_file_extent_inline_item_len(leaf,
9289 path->slots[0]);
9290 if (inline_size > count)
9291 return -ENOBUFS;
9292
9293 count = inline_size;
9294 encoded->unencoded_len = ram_bytes;
9295 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9296 } else {
9297 count = min_t(u64, count, encoded->len);
9298 encoded->len = count;
9299 encoded->unencoded_len = count;
9300 ptr += iocb->ki_pos - extent_start;
9301 }
9302
9303 tmp = kmalloc(count, GFP_NOFS);
9304 if (!tmp)
9305 return -ENOMEM;
9306
9307 read_extent_buffer(leaf, tmp, ptr, count);
9308 btrfs_release_path(path);
9309 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9310 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9311 *unlocked = true;
9312
9313 ret = copy_to_iter(tmp, count, iter);
9314 if (ret != count)
9315 ret = -EFAULT;
9316 kfree(tmp);
9317
9318 return ret;
9319 }
9320
9321 struct btrfs_encoded_read_private {
9322 struct completion *sync_reads;
9323 void *uring_ctx;
9324 refcount_t pending_refs;
9325 blk_status_t status;
9326 };
9327
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9328 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9329 {
9330 struct btrfs_encoded_read_private *priv = bbio->private;
9331
9332 if (bbio->bio.bi_status) {
9333 /*
9334 * The memory barrier implied by the refcount_dec_and_test() here
9335 * pairs with the memory barrier implied by the refcount_dec_and_test()
9336 * in btrfs_encoded_read_regular_fill_pages() to ensure that
9337 * this write is observed before the load of status in
9338 * btrfs_encoded_read_regular_fill_pages().
9339 */
9340 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9341 }
9342 if (refcount_dec_and_test(&priv->pending_refs)) {
9343 int err = blk_status_to_errno(READ_ONCE(priv->status));
9344
9345 if (priv->uring_ctx) {
9346 btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9347 kfree(priv);
9348 } else {
9349 complete(priv->sync_reads);
9350 }
9351 }
9352 bio_put(&bbio->bio);
9353 }
9354
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 disk_bytenr,u64 disk_io_size,struct page ** pages,void * uring_ctx)9355 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9356 u64 disk_bytenr, u64 disk_io_size,
9357 struct page **pages, void *uring_ctx)
9358 {
9359 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9360 struct btrfs_encoded_read_private *priv, sync_priv;
9361 struct completion sync_reads;
9362 unsigned long i = 0;
9363 struct btrfs_bio *bbio;
9364 int ret;
9365
9366 /*
9367 * Fast path for synchronous reads which completes in this call, io_uring
9368 * needs longer time span.
9369 */
9370 if (uring_ctx) {
9371 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9372 if (!priv)
9373 return -ENOMEM;
9374 } else {
9375 priv = &sync_priv;
9376 init_completion(&sync_reads);
9377 priv->sync_reads = &sync_reads;
9378 }
9379
9380 refcount_set(&priv->pending_refs, 1);
9381 priv->status = 0;
9382 priv->uring_ctx = uring_ctx;
9383
9384 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9385 btrfs_encoded_read_endio, priv);
9386 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9387 bbio->inode = inode;
9388
9389 do {
9390 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9391
9392 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9393 refcount_inc(&priv->pending_refs);
9394 btrfs_submit_bbio(bbio, 0);
9395
9396 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9397 btrfs_encoded_read_endio, priv);
9398 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9399 bbio->inode = inode;
9400 continue;
9401 }
9402
9403 i++;
9404 disk_bytenr += bytes;
9405 disk_io_size -= bytes;
9406 } while (disk_io_size);
9407
9408 refcount_inc(&priv->pending_refs);
9409 btrfs_submit_bbio(bbio, 0);
9410
9411 if (uring_ctx) {
9412 if (refcount_dec_and_test(&priv->pending_refs)) {
9413 ret = blk_status_to_errno(READ_ONCE(priv->status));
9414 btrfs_uring_read_extent_endio(uring_ctx, ret);
9415 kfree(priv);
9416 return ret;
9417 }
9418
9419 return -EIOCBQUEUED;
9420 } else {
9421 if (!refcount_dec_and_test(&priv->pending_refs))
9422 wait_for_completion_io(&sync_reads);
9423 /* See btrfs_encoded_read_endio() for ordering. */
9424 return blk_status_to_errno(READ_ONCE(priv->status));
9425 }
9426 }
9427
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)9428 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9429 u64 start, u64 lockend,
9430 struct extent_state **cached_state,
9431 u64 disk_bytenr, u64 disk_io_size,
9432 size_t count, bool compressed, bool *unlocked)
9433 {
9434 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9435 struct extent_io_tree *io_tree = &inode->io_tree;
9436 struct page **pages;
9437 unsigned long nr_pages, i;
9438 u64 cur;
9439 size_t page_offset;
9440 ssize_t ret;
9441
9442 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9443 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9444 if (!pages)
9445 return -ENOMEM;
9446 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9447 if (ret) {
9448 ret = -ENOMEM;
9449 goto out;
9450 }
9451
9452 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9453 disk_io_size, pages, NULL);
9454 if (ret)
9455 goto out;
9456
9457 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9458 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9459 *unlocked = true;
9460
9461 if (compressed) {
9462 i = 0;
9463 page_offset = 0;
9464 } else {
9465 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9466 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9467 }
9468 cur = 0;
9469 while (cur < count) {
9470 size_t bytes = min_t(size_t, count - cur,
9471 PAGE_SIZE - page_offset);
9472
9473 if (copy_page_to_iter(pages[i], page_offset, bytes,
9474 iter) != bytes) {
9475 ret = -EFAULT;
9476 goto out;
9477 }
9478 i++;
9479 cur += bytes;
9480 page_offset = 0;
9481 }
9482 ret = count;
9483 out:
9484 for (i = 0; i < nr_pages; i++) {
9485 if (pages[i])
9486 __free_page(pages[i]);
9487 }
9488 kfree(pages);
9489 return ret;
9490 }
9491
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded,struct extent_state ** cached_state,u64 * disk_bytenr,u64 * disk_io_size)9492 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9493 struct btrfs_ioctl_encoded_io_args *encoded,
9494 struct extent_state **cached_state,
9495 u64 *disk_bytenr, u64 *disk_io_size)
9496 {
9497 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9498 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9499 struct extent_io_tree *io_tree = &inode->io_tree;
9500 ssize_t ret;
9501 size_t count = iov_iter_count(iter);
9502 u64 start, lockend;
9503 struct extent_map *em;
9504 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9505 bool unlocked = false;
9506
9507 file_accessed(iocb->ki_filp);
9508
9509 ret = btrfs_inode_lock(inode,
9510 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9511 if (ret)
9512 return ret;
9513
9514 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9515 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9516 return 0;
9517 }
9518 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9519 /*
9520 * We don't know how long the extent containing iocb->ki_pos is, but if
9521 * it's compressed we know that it won't be longer than this.
9522 */
9523 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9524
9525 if (nowait) {
9526 struct btrfs_ordered_extent *ordered;
9527
9528 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9529 start, lockend)) {
9530 ret = -EAGAIN;
9531 goto out_unlock_inode;
9532 }
9533
9534 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) {
9535 ret = -EAGAIN;
9536 goto out_unlock_inode;
9537 }
9538
9539 ordered = btrfs_lookup_ordered_range(inode, start,
9540 lockend - start + 1);
9541 if (ordered) {
9542 btrfs_put_ordered_extent(ordered);
9543 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9544 ret = -EAGAIN;
9545 goto out_unlock_inode;
9546 }
9547 } else {
9548 for (;;) {
9549 struct btrfs_ordered_extent *ordered;
9550
9551 ret = btrfs_wait_ordered_range(inode, start,
9552 lockend - start + 1);
9553 if (ret)
9554 goto out_unlock_inode;
9555
9556 btrfs_lock_extent(io_tree, start, lockend, cached_state);
9557 ordered = btrfs_lookup_ordered_range(inode, start,
9558 lockend - start + 1);
9559 if (!ordered)
9560 break;
9561 btrfs_put_ordered_extent(ordered);
9562 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9563 cond_resched();
9564 }
9565 }
9566
9567 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9568 if (IS_ERR(em)) {
9569 ret = PTR_ERR(em);
9570 goto out_unlock_extent;
9571 }
9572
9573 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9574 u64 extent_start = em->start;
9575
9576 /*
9577 * For inline extents we get everything we need out of the
9578 * extent item.
9579 */
9580 btrfs_free_extent_map(em);
9581 em = NULL;
9582 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9583 cached_state, extent_start,
9584 count, encoded, &unlocked);
9585 goto out_unlock_extent;
9586 }
9587
9588 /*
9589 * We only want to return up to EOF even if the extent extends beyond
9590 * that.
9591 */
9592 encoded->len = min_t(u64, btrfs_extent_map_end(em),
9593 inode->vfs_inode.i_size) - iocb->ki_pos;
9594 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9595 (em->flags & EXTENT_FLAG_PREALLOC)) {
9596 *disk_bytenr = EXTENT_MAP_HOLE;
9597 count = min_t(u64, count, encoded->len);
9598 encoded->len = count;
9599 encoded->unencoded_len = count;
9600 } else if (btrfs_extent_map_is_compressed(em)) {
9601 *disk_bytenr = em->disk_bytenr;
9602 /*
9603 * Bail if the buffer isn't large enough to return the whole
9604 * compressed extent.
9605 */
9606 if (em->disk_num_bytes > count) {
9607 ret = -ENOBUFS;
9608 goto out_em;
9609 }
9610 *disk_io_size = em->disk_num_bytes;
9611 count = em->disk_num_bytes;
9612 encoded->unencoded_len = em->ram_bytes;
9613 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9614 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9615 btrfs_extent_map_compression(em));
9616 if (ret < 0)
9617 goto out_em;
9618 encoded->compression = ret;
9619 } else {
9620 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start);
9621 if (encoded->len > count)
9622 encoded->len = count;
9623 /*
9624 * Don't read beyond what we locked. This also limits the page
9625 * allocations that we'll do.
9626 */
9627 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9628 count = start + *disk_io_size - iocb->ki_pos;
9629 encoded->len = count;
9630 encoded->unencoded_len = count;
9631 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9632 }
9633 btrfs_free_extent_map(em);
9634 em = NULL;
9635
9636 if (*disk_bytenr == EXTENT_MAP_HOLE) {
9637 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9638 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9639 unlocked = true;
9640 ret = iov_iter_zero(count, iter);
9641 if (ret != count)
9642 ret = -EFAULT;
9643 } else {
9644 ret = -EIOCBQUEUED;
9645 goto out_unlock_extent;
9646 }
9647
9648 out_em:
9649 btrfs_free_extent_map(em);
9650 out_unlock_extent:
9651 /* Leave inode and extent locked if we need to do a read. */
9652 if (!unlocked && ret != -EIOCBQUEUED)
9653 btrfs_unlock_extent(io_tree, start, lockend, cached_state);
9654 out_unlock_inode:
9655 if (!unlocked && ret != -EIOCBQUEUED)
9656 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9657 return ret;
9658 }
9659
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)9660 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9661 const struct btrfs_ioctl_encoded_io_args *encoded)
9662 {
9663 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9664 struct btrfs_root *root = inode->root;
9665 struct btrfs_fs_info *fs_info = root->fs_info;
9666 struct extent_io_tree *io_tree = &inode->io_tree;
9667 struct extent_changeset *data_reserved = NULL;
9668 struct extent_state *cached_state = NULL;
9669 struct btrfs_ordered_extent *ordered;
9670 struct btrfs_file_extent file_extent;
9671 int compression;
9672 size_t orig_count;
9673 u64 start, end;
9674 u64 num_bytes, ram_bytes, disk_num_bytes;
9675 unsigned long nr_folios, i;
9676 struct folio **folios;
9677 struct btrfs_key ins;
9678 bool extent_reserved = false;
9679 struct extent_map *em;
9680 ssize_t ret;
9681
9682 switch (encoded->compression) {
9683 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9684 compression = BTRFS_COMPRESS_ZLIB;
9685 break;
9686 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9687 compression = BTRFS_COMPRESS_ZSTD;
9688 break;
9689 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9690 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9691 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9692 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9693 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9694 /* The sector size must match for LZO. */
9695 if (encoded->compression -
9696 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9697 fs_info->sectorsize_bits)
9698 return -EINVAL;
9699 compression = BTRFS_COMPRESS_LZO;
9700 break;
9701 default:
9702 return -EINVAL;
9703 }
9704 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9705 return -EINVAL;
9706
9707 /*
9708 * Compressed extents should always have checksums, so error out if we
9709 * have a NOCOW file or inode was created while mounted with NODATASUM.
9710 */
9711 if (inode->flags & BTRFS_INODE_NODATASUM)
9712 return -EINVAL;
9713
9714 orig_count = iov_iter_count(from);
9715
9716 /* The extent size must be sane. */
9717 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9718 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9719 return -EINVAL;
9720
9721 /*
9722 * The compressed data must be smaller than the decompressed data.
9723 *
9724 * It's of course possible for data to compress to larger or the same
9725 * size, but the buffered I/O path falls back to no compression for such
9726 * data, and we don't want to break any assumptions by creating these
9727 * extents.
9728 *
9729 * Note that this is less strict than the current check we have that the
9730 * compressed data must be at least one sector smaller than the
9731 * decompressed data. We only want to enforce the weaker requirement
9732 * from old kernels that it is at least one byte smaller.
9733 */
9734 if (orig_count >= encoded->unencoded_len)
9735 return -EINVAL;
9736
9737 /* The extent must start on a sector boundary. */
9738 start = iocb->ki_pos;
9739 if (!IS_ALIGNED(start, fs_info->sectorsize))
9740 return -EINVAL;
9741
9742 /*
9743 * The extent must end on a sector boundary. However, we allow a write
9744 * which ends at or extends i_size to have an unaligned length; we round
9745 * up the extent size and set i_size to the unaligned end.
9746 */
9747 if (start + encoded->len < inode->vfs_inode.i_size &&
9748 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9749 return -EINVAL;
9750
9751 /* Finally, the offset in the unencoded data must be sector-aligned. */
9752 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9753 return -EINVAL;
9754
9755 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9756 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9757 end = start + num_bytes - 1;
9758
9759 /*
9760 * If the extent cannot be inline, the compressed data on disk must be
9761 * sector-aligned. For convenience, we extend it with zeroes if it
9762 * isn't.
9763 */
9764 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9765 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9766 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9767 if (!folios)
9768 return -ENOMEM;
9769 for (i = 0; i < nr_folios; i++) {
9770 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9771 char *kaddr;
9772
9773 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9774 if (!folios[i]) {
9775 ret = -ENOMEM;
9776 goto out_folios;
9777 }
9778 kaddr = kmap_local_folio(folios[i], 0);
9779 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9780 kunmap_local(kaddr);
9781 ret = -EFAULT;
9782 goto out_folios;
9783 }
9784 if (bytes < PAGE_SIZE)
9785 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9786 kunmap_local(kaddr);
9787 }
9788
9789 for (;;) {
9790 struct btrfs_ordered_extent *ordered;
9791
9792 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9793 if (ret)
9794 goto out_folios;
9795 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9796 start >> PAGE_SHIFT,
9797 end >> PAGE_SHIFT);
9798 if (ret)
9799 goto out_folios;
9800 btrfs_lock_extent(io_tree, start, end, &cached_state);
9801 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9802 if (!ordered &&
9803 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9804 break;
9805 if (ordered)
9806 btrfs_put_ordered_extent(ordered);
9807 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9808 cond_resched();
9809 }
9810
9811 /*
9812 * We don't use the higher-level delalloc space functions because our
9813 * num_bytes and disk_num_bytes are different.
9814 */
9815 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9816 if (ret)
9817 goto out_unlock;
9818 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9819 if (ret)
9820 goto out_free_data_space;
9821 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9822 false);
9823 if (ret)
9824 goto out_qgroup_free_data;
9825
9826 /* Try an inline extent first. */
9827 if (encoded->unencoded_len == encoded->len &&
9828 encoded->unencoded_offset == 0 &&
9829 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9830 ret = __cow_file_range_inline(inode, encoded->len,
9831 orig_count, compression, folios[0],
9832 true);
9833 if (ret <= 0) {
9834 if (ret == 0)
9835 ret = orig_count;
9836 goto out_delalloc_release;
9837 }
9838 }
9839
9840 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9841 disk_num_bytes, 0, 0, &ins, 1, 1);
9842 if (ret)
9843 goto out_delalloc_release;
9844 extent_reserved = true;
9845
9846 file_extent.disk_bytenr = ins.objectid;
9847 file_extent.disk_num_bytes = ins.offset;
9848 file_extent.num_bytes = num_bytes;
9849 file_extent.ram_bytes = ram_bytes;
9850 file_extent.offset = encoded->unencoded_offset;
9851 file_extent.compression = compression;
9852 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9853 if (IS_ERR(em)) {
9854 ret = PTR_ERR(em);
9855 goto out_free_reserved;
9856 }
9857 btrfs_free_extent_map(em);
9858
9859 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9860 (1U << BTRFS_ORDERED_ENCODED) |
9861 (1U << BTRFS_ORDERED_COMPRESSED));
9862 if (IS_ERR(ordered)) {
9863 btrfs_drop_extent_map_range(inode, start, end, false);
9864 ret = PTR_ERR(ordered);
9865 goto out_free_reserved;
9866 }
9867 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9868
9869 if (start + encoded->len > inode->vfs_inode.i_size)
9870 i_size_write(&inode->vfs_inode, start + encoded->len);
9871
9872 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9873
9874 btrfs_delalloc_release_extents(inode, num_bytes);
9875
9876 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9877 ret = orig_count;
9878 goto out;
9879
9880 out_free_reserved:
9881 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9882 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
9883 out_delalloc_release:
9884 btrfs_delalloc_release_extents(inode, num_bytes);
9885 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9886 out_qgroup_free_data:
9887 if (ret < 0)
9888 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9889 out_free_data_space:
9890 /*
9891 * If btrfs_reserve_extent() succeeded, then we already decremented
9892 * bytes_may_use.
9893 */
9894 if (!extent_reserved)
9895 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes);
9896 out_unlock:
9897 btrfs_unlock_extent(io_tree, start, end, &cached_state);
9898 out_folios:
9899 for (i = 0; i < nr_folios; i++) {
9900 if (folios[i])
9901 folio_put(folios[i]);
9902 }
9903 kvfree(folios);
9904 out:
9905 if (ret >= 0)
9906 iocb->ki_pos += encoded->len;
9907 return ret;
9908 }
9909
9910 #ifdef CONFIG_SWAP
9911 /*
9912 * Add an entry indicating a block group or device which is pinned by a
9913 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9914 * negative errno on failure.
9915 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)9916 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9917 bool is_block_group)
9918 {
9919 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9920 struct btrfs_swapfile_pin *sp, *entry;
9921 struct rb_node **p;
9922 struct rb_node *parent = NULL;
9923
9924 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9925 if (!sp)
9926 return -ENOMEM;
9927 sp->ptr = ptr;
9928 sp->inode = inode;
9929 sp->is_block_group = is_block_group;
9930 sp->bg_extent_count = 1;
9931
9932 spin_lock(&fs_info->swapfile_pins_lock);
9933 p = &fs_info->swapfile_pins.rb_node;
9934 while (*p) {
9935 parent = *p;
9936 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9937 if (sp->ptr < entry->ptr ||
9938 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9939 p = &(*p)->rb_left;
9940 } else if (sp->ptr > entry->ptr ||
9941 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9942 p = &(*p)->rb_right;
9943 } else {
9944 if (is_block_group)
9945 entry->bg_extent_count++;
9946 spin_unlock(&fs_info->swapfile_pins_lock);
9947 kfree(sp);
9948 return 1;
9949 }
9950 }
9951 rb_link_node(&sp->node, parent, p);
9952 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9953 spin_unlock(&fs_info->swapfile_pins_lock);
9954 return 0;
9955 }
9956
9957 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)9958 static void btrfs_free_swapfile_pins(struct inode *inode)
9959 {
9960 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9961 struct btrfs_swapfile_pin *sp;
9962 struct rb_node *node, *next;
9963
9964 spin_lock(&fs_info->swapfile_pins_lock);
9965 node = rb_first(&fs_info->swapfile_pins);
9966 while (node) {
9967 next = rb_next(node);
9968 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9969 if (sp->inode == inode) {
9970 rb_erase(&sp->node, &fs_info->swapfile_pins);
9971 if (sp->is_block_group) {
9972 btrfs_dec_block_group_swap_extents(sp->ptr,
9973 sp->bg_extent_count);
9974 btrfs_put_block_group(sp->ptr);
9975 }
9976 kfree(sp);
9977 }
9978 node = next;
9979 }
9980 spin_unlock(&fs_info->swapfile_pins_lock);
9981 }
9982
9983 struct btrfs_swap_info {
9984 u64 start;
9985 u64 block_start;
9986 u64 block_len;
9987 u64 lowest_ppage;
9988 u64 highest_ppage;
9989 unsigned long nr_pages;
9990 int nr_extents;
9991 };
9992
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)9993 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9994 struct btrfs_swap_info *bsi)
9995 {
9996 unsigned long nr_pages;
9997 unsigned long max_pages;
9998 u64 first_ppage, first_ppage_reported, next_ppage;
9999 int ret;
10000
10001 /*
10002 * Our swapfile may have had its size extended after the swap header was
10003 * written. In that case activating the swapfile should not go beyond
10004 * the max size set in the swap header.
10005 */
10006 if (bsi->nr_pages >= sis->max)
10007 return 0;
10008
10009 max_pages = sis->max - bsi->nr_pages;
10010 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10011 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10012
10013 if (first_ppage >= next_ppage)
10014 return 0;
10015 nr_pages = next_ppage - first_ppage;
10016 nr_pages = min(nr_pages, max_pages);
10017
10018 first_ppage_reported = first_ppage;
10019 if (bsi->start == 0)
10020 first_ppage_reported++;
10021 if (bsi->lowest_ppage > first_ppage_reported)
10022 bsi->lowest_ppage = first_ppage_reported;
10023 if (bsi->highest_ppage < (next_ppage - 1))
10024 bsi->highest_ppage = next_ppage - 1;
10025
10026 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10027 if (ret < 0)
10028 return ret;
10029 bsi->nr_extents += ret;
10030 bsi->nr_pages += nr_pages;
10031 return 0;
10032 }
10033
btrfs_swap_deactivate(struct file * file)10034 static void btrfs_swap_deactivate(struct file *file)
10035 {
10036 struct inode *inode = file_inode(file);
10037
10038 btrfs_free_swapfile_pins(inode);
10039 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10040 }
10041
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10042 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10043 sector_t *span)
10044 {
10045 struct inode *inode = file_inode(file);
10046 struct btrfs_root *root = BTRFS_I(inode)->root;
10047 struct btrfs_fs_info *fs_info = root->fs_info;
10048 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10049 struct extent_state *cached_state = NULL;
10050 struct btrfs_chunk_map *map = NULL;
10051 struct btrfs_device *device = NULL;
10052 struct btrfs_swap_info bsi = {
10053 .lowest_ppage = (sector_t)-1ULL,
10054 };
10055 struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
10056 struct btrfs_path *path = NULL;
10057 int ret = 0;
10058 u64 isize;
10059 u64 prev_extent_end = 0;
10060
10061 /*
10062 * Acquire the inode's mmap lock to prevent races with memory mapped
10063 * writes, as they could happen after we flush delalloc below and before
10064 * we lock the extent range further below. The inode was already locked
10065 * up in the call chain.
10066 */
10067 btrfs_assert_inode_locked(BTRFS_I(inode));
10068 down_write(&BTRFS_I(inode)->i_mmap_lock);
10069
10070 /*
10071 * If the swap file was just created, make sure delalloc is done. If the
10072 * file changes again after this, the user is doing something stupid and
10073 * we don't really care.
10074 */
10075 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
10076 if (ret)
10077 goto out_unlock_mmap;
10078
10079 /*
10080 * The inode is locked, so these flags won't change after we check them.
10081 */
10082 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10083 btrfs_warn(fs_info, "swapfile must not be compressed");
10084 ret = -EINVAL;
10085 goto out_unlock_mmap;
10086 }
10087 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10088 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10089 ret = -EINVAL;
10090 goto out_unlock_mmap;
10091 }
10092 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10093 btrfs_warn(fs_info, "swapfile must not be checksummed");
10094 ret = -EINVAL;
10095 goto out_unlock_mmap;
10096 }
10097
10098 path = btrfs_alloc_path();
10099 backref_ctx = btrfs_alloc_backref_share_check_ctx();
10100 if (!path || !backref_ctx) {
10101 ret = -ENOMEM;
10102 goto out_unlock_mmap;
10103 }
10104
10105 /*
10106 * Balance or device remove/replace/resize can move stuff around from
10107 * under us. The exclop protection makes sure they aren't running/won't
10108 * run concurrently while we are mapping the swap extents, and
10109 * fs_info->swapfile_pins prevents them from running while the swap
10110 * file is active and moving the extents. Note that this also prevents
10111 * a concurrent device add which isn't actually necessary, but it's not
10112 * really worth the trouble to allow it.
10113 */
10114 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10115 btrfs_warn(fs_info,
10116 "cannot activate swapfile while exclusive operation is running");
10117 ret = -EBUSY;
10118 goto out_unlock_mmap;
10119 }
10120
10121 /*
10122 * Prevent snapshot creation while we are activating the swap file.
10123 * We do not want to race with snapshot creation. If snapshot creation
10124 * already started before we bumped nr_swapfiles from 0 to 1 and
10125 * completes before the first write into the swap file after it is
10126 * activated, than that write would fallback to COW.
10127 */
10128 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10129 btrfs_exclop_finish(fs_info);
10130 btrfs_warn(fs_info,
10131 "cannot activate swapfile because snapshot creation is in progress");
10132 ret = -EINVAL;
10133 goto out_unlock_mmap;
10134 }
10135 /*
10136 * Snapshots can create extents which require COW even if NODATACOW is
10137 * set. We use this counter to prevent snapshots. We must increment it
10138 * before walking the extents because we don't want a concurrent
10139 * snapshot to run after we've already checked the extents.
10140 *
10141 * It is possible that subvolume is marked for deletion but still not
10142 * removed yet. To prevent this race, we check the root status before
10143 * activating the swapfile.
10144 */
10145 spin_lock(&root->root_item_lock);
10146 if (btrfs_root_dead(root)) {
10147 spin_unlock(&root->root_item_lock);
10148
10149 btrfs_drew_write_unlock(&root->snapshot_lock);
10150 btrfs_exclop_finish(fs_info);
10151 btrfs_warn(fs_info,
10152 "cannot activate swapfile because subvolume %llu is being deleted",
10153 btrfs_root_id(root));
10154 ret = -EPERM;
10155 goto out_unlock_mmap;
10156 }
10157 atomic_inc(&root->nr_swapfiles);
10158 spin_unlock(&root->root_item_lock);
10159
10160 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10161
10162 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state);
10163 while (prev_extent_end < isize) {
10164 struct btrfs_key key;
10165 struct extent_buffer *leaf;
10166 struct btrfs_file_extent_item *ei;
10167 struct btrfs_block_group *bg;
10168 u64 logical_block_start;
10169 u64 physical_block_start;
10170 u64 extent_gen;
10171 u64 disk_bytenr;
10172 u64 len;
10173
10174 key.objectid = btrfs_ino(BTRFS_I(inode));
10175 key.type = BTRFS_EXTENT_DATA_KEY;
10176 key.offset = prev_extent_end;
10177
10178 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
10179 if (ret < 0)
10180 goto out;
10181
10182 /*
10183 * If key not found it means we have an implicit hole (NO_HOLES
10184 * is enabled).
10185 */
10186 if (ret > 0) {
10187 btrfs_warn(fs_info, "swapfile must not have holes");
10188 ret = -EINVAL;
10189 goto out;
10190 }
10191
10192 leaf = path->nodes[0];
10193 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10194
10195 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
10196 /*
10197 * It's unlikely we'll ever actually find ourselves
10198 * here, as a file small enough to fit inline won't be
10199 * big enough to store more than the swap header, but in
10200 * case something changes in the future, let's catch it
10201 * here rather than later.
10202 */
10203 btrfs_warn(fs_info, "swapfile must not be inline");
10204 ret = -EINVAL;
10205 goto out;
10206 }
10207
10208 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
10209 btrfs_warn(fs_info, "swapfile must not be compressed");
10210 ret = -EINVAL;
10211 goto out;
10212 }
10213
10214 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
10215 if (disk_bytenr == 0) {
10216 btrfs_warn(fs_info, "swapfile must not have holes");
10217 ret = -EINVAL;
10218 goto out;
10219 }
10220
10221 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
10222 extent_gen = btrfs_file_extent_generation(leaf, ei);
10223 prev_extent_end = btrfs_file_extent_end(path);
10224
10225 if (prev_extent_end > isize)
10226 len = isize - key.offset;
10227 else
10228 len = btrfs_file_extent_num_bytes(leaf, ei);
10229
10230 backref_ctx->curr_leaf_bytenr = leaf->start;
10231
10232 /*
10233 * Don't need the path anymore, release to avoid deadlocks when
10234 * calling btrfs_is_data_extent_shared() because when joining a
10235 * transaction it can block waiting for the current one's commit
10236 * which in turn may be trying to lock the same leaf to flush
10237 * delayed items for example.
10238 */
10239 btrfs_release_path(path);
10240
10241 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
10242 extent_gen, backref_ctx);
10243 if (ret < 0) {
10244 goto out;
10245 } else if (ret > 0) {
10246 btrfs_warn(fs_info,
10247 "swapfile must not be copy-on-write");
10248 ret = -EINVAL;
10249 goto out;
10250 }
10251
10252 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10253 if (IS_ERR(map)) {
10254 ret = PTR_ERR(map);
10255 goto out;
10256 }
10257
10258 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10259 btrfs_warn(fs_info,
10260 "swapfile must have single data profile");
10261 ret = -EINVAL;
10262 goto out;
10263 }
10264
10265 if (device == NULL) {
10266 device = map->stripes[0].dev;
10267 ret = btrfs_add_swapfile_pin(inode, device, false);
10268 if (ret == 1)
10269 ret = 0;
10270 else if (ret)
10271 goto out;
10272 } else if (device != map->stripes[0].dev) {
10273 btrfs_warn(fs_info, "swapfile must be on one device");
10274 ret = -EINVAL;
10275 goto out;
10276 }
10277
10278 physical_block_start = (map->stripes[0].physical +
10279 (logical_block_start - map->start));
10280 btrfs_free_chunk_map(map);
10281 map = NULL;
10282
10283 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10284 if (!bg) {
10285 btrfs_warn(fs_info,
10286 "could not find block group containing swapfile");
10287 ret = -EINVAL;
10288 goto out;
10289 }
10290
10291 if (!btrfs_inc_block_group_swap_extents(bg)) {
10292 btrfs_warn(fs_info,
10293 "block group for swapfile at %llu is read-only%s",
10294 bg->start,
10295 atomic_read(&fs_info->scrubs_running) ?
10296 " (scrub running)" : "");
10297 btrfs_put_block_group(bg);
10298 ret = -EINVAL;
10299 goto out;
10300 }
10301
10302 ret = btrfs_add_swapfile_pin(inode, bg, true);
10303 if (ret) {
10304 btrfs_put_block_group(bg);
10305 if (ret == 1)
10306 ret = 0;
10307 else
10308 goto out;
10309 }
10310
10311 if (bsi.block_len &&
10312 bsi.block_start + bsi.block_len == physical_block_start) {
10313 bsi.block_len += len;
10314 } else {
10315 if (bsi.block_len) {
10316 ret = btrfs_add_swap_extent(sis, &bsi);
10317 if (ret)
10318 goto out;
10319 }
10320 bsi.start = key.offset;
10321 bsi.block_start = physical_block_start;
10322 bsi.block_len = len;
10323 }
10324
10325 if (fatal_signal_pending(current)) {
10326 ret = -EINTR;
10327 goto out;
10328 }
10329
10330 cond_resched();
10331 }
10332
10333 if (bsi.block_len)
10334 ret = btrfs_add_swap_extent(sis, &bsi);
10335
10336 out:
10337 if (!IS_ERR_OR_NULL(map))
10338 btrfs_free_chunk_map(map);
10339
10340 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state);
10341
10342 if (ret)
10343 btrfs_swap_deactivate(file);
10344
10345 btrfs_drew_write_unlock(&root->snapshot_lock);
10346
10347 btrfs_exclop_finish(fs_info);
10348
10349 out_unlock_mmap:
10350 up_write(&BTRFS_I(inode)->i_mmap_lock);
10351 btrfs_free_backref_share_ctx(backref_ctx);
10352 btrfs_free_path(path);
10353 if (ret)
10354 return ret;
10355
10356 if (device)
10357 sis->bdev = device->bdev;
10358 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10359 sis->max = bsi.nr_pages;
10360 sis->pages = bsi.nr_pages - 1;
10361 return bsi.nr_extents;
10362 }
10363 #else
btrfs_swap_deactivate(struct file * file)10364 static void btrfs_swap_deactivate(struct file *file)
10365 {
10366 }
10367
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10368 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10369 sector_t *span)
10370 {
10371 return -EOPNOTSUPP;
10372 }
10373 #endif
10374
10375 /*
10376 * Update the number of bytes used in the VFS' inode. When we replace extents in
10377 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10378 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10379 * always get a correct value.
10380 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10381 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10382 const u64 add_bytes,
10383 const u64 del_bytes)
10384 {
10385 if (add_bytes == del_bytes)
10386 return;
10387
10388 spin_lock(&inode->lock);
10389 if (del_bytes > 0)
10390 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10391 if (add_bytes > 0)
10392 inode_add_bytes(&inode->vfs_inode, add_bytes);
10393 spin_unlock(&inode->lock);
10394 }
10395
10396 /*
10397 * Verify that there are no ordered extents for a given file range.
10398 *
10399 * @inode: The target inode.
10400 * @start: Start offset of the file range, should be sector size aligned.
10401 * @end: End offset (inclusive) of the file range, its value +1 should be
10402 * sector size aligned.
10403 *
10404 * This should typically be used for cases where we locked an inode's VFS lock in
10405 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10406 * we have flushed all delalloc in the range, we have waited for all ordered
10407 * extents in the range to complete and finally we have locked the file range in
10408 * the inode's io_tree.
10409 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10410 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10411 {
10412 struct btrfs_root *root = inode->root;
10413 struct btrfs_ordered_extent *ordered;
10414
10415 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10416 return;
10417
10418 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10419 if (ordered) {
10420 btrfs_err(root->fs_info,
10421 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10422 start, end, btrfs_ino(inode), btrfs_root_id(root),
10423 ordered->file_offset,
10424 ordered->file_offset + ordered->num_bytes - 1);
10425 btrfs_put_ordered_extent(ordered);
10426 }
10427
10428 ASSERT(ordered == NULL);
10429 }
10430
10431 /*
10432 * Find the first inode with a minimum number.
10433 *
10434 * @root: The root to search for.
10435 * @min_ino: The minimum inode number.
10436 *
10437 * Find the first inode in the @root with a number >= @min_ino and return it.
10438 * Returns NULL if no such inode found.
10439 */
btrfs_find_first_inode(struct btrfs_root * root,u64 min_ino)10440 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10441 {
10442 struct btrfs_inode *inode;
10443 unsigned long from = min_ino;
10444
10445 xa_lock(&root->inodes);
10446 while (true) {
10447 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10448 if (!inode)
10449 break;
10450 if (igrab(&inode->vfs_inode))
10451 break;
10452
10453 from = btrfs_ino(inode) + 1;
10454 cond_resched_lock(&root->inodes.xa_lock);
10455 }
10456 xa_unlock(&root->inodes);
10457
10458 return inode;
10459 }
10460
10461 static const struct inode_operations btrfs_dir_inode_operations = {
10462 .getattr = btrfs_getattr,
10463 .lookup = btrfs_lookup,
10464 .create = btrfs_create,
10465 .unlink = btrfs_unlink,
10466 .link = btrfs_link,
10467 .mkdir = btrfs_mkdir,
10468 .rmdir = btrfs_rmdir,
10469 .rename = btrfs_rename2,
10470 .symlink = btrfs_symlink,
10471 .setattr = btrfs_setattr,
10472 .mknod = btrfs_mknod,
10473 .listxattr = btrfs_listxattr,
10474 .permission = btrfs_permission,
10475 .get_inode_acl = btrfs_get_acl,
10476 .set_acl = btrfs_set_acl,
10477 .update_time = btrfs_update_time,
10478 .tmpfile = btrfs_tmpfile,
10479 .fileattr_get = btrfs_fileattr_get,
10480 .fileattr_set = btrfs_fileattr_set,
10481 };
10482
10483 static const struct file_operations btrfs_dir_file_operations = {
10484 .llseek = btrfs_dir_llseek,
10485 .read = generic_read_dir,
10486 .iterate_shared = btrfs_real_readdir,
10487 .open = btrfs_opendir,
10488 .unlocked_ioctl = btrfs_ioctl,
10489 #ifdef CONFIG_COMPAT
10490 .compat_ioctl = btrfs_compat_ioctl,
10491 #endif
10492 .release = btrfs_release_file,
10493 .fsync = btrfs_sync_file,
10494 };
10495
10496 /*
10497 * btrfs doesn't support the bmap operation because swapfiles
10498 * use bmap to make a mapping of extents in the file. They assume
10499 * these extents won't change over the life of the file and they
10500 * use the bmap result to do IO directly to the drive.
10501 *
10502 * the btrfs bmap call would return logical addresses that aren't
10503 * suitable for IO and they also will change frequently as COW
10504 * operations happen. So, swapfile + btrfs == corruption.
10505 *
10506 * For now we're avoiding this by dropping bmap.
10507 */
10508 static const struct address_space_operations btrfs_aops = {
10509 .read_folio = btrfs_read_folio,
10510 .writepages = btrfs_writepages,
10511 .readahead = btrfs_readahead,
10512 .invalidate_folio = btrfs_invalidate_folio,
10513 .launder_folio = btrfs_launder_folio,
10514 .release_folio = btrfs_release_folio,
10515 .migrate_folio = btrfs_migrate_folio,
10516 .dirty_folio = filemap_dirty_folio,
10517 .error_remove_folio = generic_error_remove_folio,
10518 .swap_activate = btrfs_swap_activate,
10519 .swap_deactivate = btrfs_swap_deactivate,
10520 };
10521
10522 static const struct inode_operations btrfs_file_inode_operations = {
10523 .getattr = btrfs_getattr,
10524 .setattr = btrfs_setattr,
10525 .listxattr = btrfs_listxattr,
10526 .permission = btrfs_permission,
10527 .fiemap = btrfs_fiemap,
10528 .get_inode_acl = btrfs_get_acl,
10529 .set_acl = btrfs_set_acl,
10530 .update_time = btrfs_update_time,
10531 .fileattr_get = btrfs_fileattr_get,
10532 .fileattr_set = btrfs_fileattr_set,
10533 };
10534 static const struct inode_operations btrfs_special_inode_operations = {
10535 .getattr = btrfs_getattr,
10536 .setattr = btrfs_setattr,
10537 .permission = btrfs_permission,
10538 .listxattr = btrfs_listxattr,
10539 .get_inode_acl = btrfs_get_acl,
10540 .set_acl = btrfs_set_acl,
10541 .update_time = btrfs_update_time,
10542 };
10543 static const struct inode_operations btrfs_symlink_inode_operations = {
10544 .get_link = page_get_link,
10545 .getattr = btrfs_getattr,
10546 .setattr = btrfs_setattr,
10547 .permission = btrfs_permission,
10548 .listxattr = btrfs_listxattr,
10549 .update_time = btrfs_update_time,
10550 };
10551
10552 const struct dentry_operations btrfs_dentry_operations = {
10553 .d_delete = btrfs_dentry_delete,
10554 };
10555