1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "block-group.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
entry_end(struct btrfs_ordered_extent * entry)26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 return (u64)-1;
30 return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34 * in the tree
35 */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 struct rb_node *node)
38 {
39 struct rb_node **p = &root->rb_node;
40 struct rb_node *parent = NULL;
41 struct btrfs_ordered_extent *entry;
42
43 while (*p) {
44 parent = *p;
45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47 if (file_offset < entry->file_offset)
48 p = &(*p)->rb_left;
49 else if (file_offset >= entry_end(entry))
50 p = &(*p)->rb_right;
51 else
52 return parent;
53 }
54
55 rb_link_node(node, parent, p);
56 rb_insert_color(node, root);
57 return NULL;
58 }
59
60 /*
61 * look for a given offset in the tree, and if it can't be found return the
62 * first lesser offset
63 */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 struct rb_node **prev_ret)
66 {
67 struct rb_node *n = root->rb_node;
68 struct rb_node *prev = NULL;
69 struct rb_node *test;
70 struct btrfs_ordered_extent *entry;
71 struct btrfs_ordered_extent *prev_entry = NULL;
72
73 while (n) {
74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 prev = n;
76 prev_entry = entry;
77
78 if (file_offset < entry->file_offset)
79 n = n->rb_left;
80 else if (file_offset >= entry_end(entry))
81 n = n->rb_right;
82 else
83 return n;
84 }
85 if (!prev_ret)
86 return NULL;
87
88 while (prev && file_offset >= entry_end(prev_entry)) {
89 test = rb_next(prev);
90 if (!test)
91 break;
92 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 rb_node);
94 if (file_offset < entry_end(prev_entry))
95 break;
96
97 prev = test;
98 }
99 if (prev)
100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 rb_node);
102 while (prev && file_offset < entry_end(prev_entry)) {
103 test = rb_prev(prev);
104 if (!test)
105 break;
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 rb_node);
108 prev = test;
109 }
110 *prev_ret = prev;
111 return NULL;
112 }
113
btrfs_range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)114 static int btrfs_range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 u64 len)
116 {
117 if (file_offset + len <= entry->file_offset ||
118 entry->file_offset + entry->num_bytes <= file_offset)
119 return 0;
120 return 1;
121 }
122
123 /*
124 * look find the first ordered struct that has this offset, otherwise
125 * the first one less than this offset
126 */
ordered_tree_search(struct btrfs_inode * inode,u64 file_offset)127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128 u64 file_offset)
129 {
130 struct rb_node *prev = NULL;
131 struct rb_node *ret;
132 struct btrfs_ordered_extent *entry;
133
134 if (inode->ordered_tree_last) {
135 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136 rb_node);
137 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138 return inode->ordered_tree_last;
139 }
140 ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141 if (!ret)
142 ret = prev;
143 if (ret)
144 inode->ordered_tree_last = ret;
145 return ret;
146 }
147
alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 num_bytes,u64 ram_bytes,u64 disk_bytenr,u64 disk_num_bytes,u64 offset,unsigned long flags,int compress_type)148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151 u64 offset, unsigned long flags, int compress_type)
152 {
153 struct btrfs_ordered_extent *entry;
154 int ret;
155 u64 qgroup_rsv = 0;
156
157 if (flags &
158 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
159 /* For nocow write, we can release the qgroup rsv right now */
160 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
161 if (ret < 0)
162 return ERR_PTR(ret);
163 } else {
164 /*
165 * The ordered extent has reserved qgroup space, release now
166 * and pass the reserved number for qgroup_record to free.
167 */
168 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
169 if (ret < 0)
170 return ERR_PTR(ret);
171 }
172 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173 if (!entry)
174 return ERR_PTR(-ENOMEM);
175
176 entry->file_offset = file_offset;
177 entry->num_bytes = num_bytes;
178 entry->ram_bytes = ram_bytes;
179 entry->disk_bytenr = disk_bytenr;
180 entry->disk_num_bytes = disk_num_bytes;
181 entry->offset = offset;
182 entry->bytes_left = num_bytes;
183 entry->inode = BTRFS_I(igrab(&inode->vfs_inode));
184 entry->compress_type = compress_type;
185 entry->truncated_len = (u64)-1;
186 entry->qgroup_rsv = qgroup_rsv;
187 entry->flags = flags;
188 refcount_set(&entry->refs, 1);
189 init_waitqueue_head(&entry->wait);
190 INIT_LIST_HEAD(&entry->list);
191 INIT_LIST_HEAD(&entry->log_list);
192 INIT_LIST_HEAD(&entry->root_extent_list);
193 INIT_LIST_HEAD(&entry->work_list);
194 INIT_LIST_HEAD(&entry->bioc_list);
195 init_completion(&entry->completion);
196
197 /*
198 * We don't need the count_max_extents here, we can assume that all of
199 * that work has been done at higher layers, so this is truly the
200 * smallest the extent is going to get.
201 */
202 spin_lock(&inode->lock);
203 btrfs_mod_outstanding_extents(inode, 1);
204 spin_unlock(&inode->lock);
205
206 return entry;
207 }
208
insert_ordered_extent(struct btrfs_ordered_extent * entry)209 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
210 {
211 struct btrfs_inode *inode = entry->inode;
212 struct btrfs_root *root = inode->root;
213 struct btrfs_fs_info *fs_info = root->fs_info;
214 struct rb_node *node;
215
216 trace_btrfs_ordered_extent_add(inode, entry);
217
218 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
219 fs_info->delalloc_batch);
220
221 /* One ref for the tree. */
222 refcount_inc(&entry->refs);
223
224 spin_lock_irq(&inode->ordered_tree_lock);
225 node = tree_insert(&inode->ordered_tree, entry->file_offset,
226 &entry->rb_node);
227 if (unlikely(node))
228 btrfs_panic(fs_info, -EEXIST,
229 "inconsistency in ordered tree at offset %llu",
230 entry->file_offset);
231 spin_unlock_irq(&inode->ordered_tree_lock);
232
233 spin_lock(&root->ordered_extent_lock);
234 list_add_tail(&entry->root_extent_list,
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241 spin_unlock(&fs_info->ordered_root_lock);
242 }
243 spin_unlock(&root->ordered_extent_lock);
244 }
245
246 /*
247 * Add an ordered extent to the per-inode tree.
248 *
249 * @inode: Inode that this extent is for.
250 * @file_offset: Logical offset in file where the extent starts.
251 * @num_bytes: Logical length of extent in file.
252 * @ram_bytes: Full length of unencoded data.
253 * @disk_bytenr: Offset of extent on disk.
254 * @disk_num_bytes: Size of extent on disk.
255 * @offset: Offset into unencoded data where file data starts.
256 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
257 * @compress_type: Compression algorithm used for data.
258 *
259 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
260 * tree is given a single reference on the ordered extent that was inserted, and
261 * the returned pointer is given a second reference.
262 *
263 * Return: the new ordered extent or error pointer.
264 */
btrfs_alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,const struct btrfs_file_extent * file_extent,unsigned long flags)265 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
266 struct btrfs_inode *inode, u64 file_offset,
267 const struct btrfs_file_extent *file_extent, unsigned long flags)
268 {
269 struct btrfs_ordered_extent *entry;
270
271 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
272
273 /*
274 * For regular writes, we just use the members in @file_extent.
275 *
276 * For NOCOW, we don't really care about the numbers except @start and
277 * file_extent->num_bytes, as we won't insert a file extent item at all.
278 *
279 * For PREALLOC, we do not use ordered extent members, but
280 * btrfs_mark_extent_written() handles everything.
281 *
282 * So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents,
283 * or btrfs_split_ordered_extent() cannot handle it correctly.
284 */
285 if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)))
286 entry = alloc_ordered_extent(inode, file_offset,
287 file_extent->num_bytes,
288 file_extent->num_bytes,
289 file_extent->disk_bytenr + file_extent->offset,
290 file_extent->num_bytes, 0, flags,
291 file_extent->compression);
292 else
293 entry = alloc_ordered_extent(inode, file_offset,
294 file_extent->num_bytes,
295 file_extent->ram_bytes,
296 file_extent->disk_bytenr,
297 file_extent->disk_num_bytes,
298 file_extent->offset, flags,
299 file_extent->compression);
300 if (!IS_ERR(entry))
301 insert_ordered_extent(entry);
302 return entry;
303 }
304
305 /*
306 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
307 * when an ordered extent is finished. If the list covers more than one
308 * ordered extent, it is split across multiples.
309 */
btrfs_add_ordered_sum(struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)310 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
311 struct btrfs_ordered_sum *sum)
312 {
313 struct btrfs_inode *inode = entry->inode;
314
315 spin_lock_irq(&inode->ordered_tree_lock);
316 list_add_tail(&sum->list, &entry->list);
317 spin_unlock_irq(&inode->ordered_tree_lock);
318 }
319
btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent * ordered)320 void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
321 {
322 if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
323 mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO);
324 }
325
finish_ordered_fn(struct btrfs_work * work)326 static void finish_ordered_fn(struct btrfs_work *work)
327 {
328 struct btrfs_ordered_extent *ordered_extent;
329
330 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
331 btrfs_finish_ordered_io(ordered_extent);
332 }
333
can_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct folio * folio,u64 file_offset,u64 len,bool uptodate)334 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
335 struct folio *folio, u64 file_offset,
336 u64 len, bool uptodate)
337 {
338 struct btrfs_inode *inode = ordered->inode;
339 struct btrfs_fs_info *fs_info = inode->root->fs_info;
340
341 lockdep_assert_held(&inode->ordered_tree_lock);
342
343 if (folio) {
344 ASSERT(folio->mapping);
345 ASSERT(folio_pos(folio) <= file_offset);
346 ASSERT(file_offset + len <= folio_pos(folio) + folio_size(folio));
347
348 /*
349 * Ordered flag indicates whether we still have
350 * pending io unfinished for the ordered extent.
351 *
352 * If it's not set, we need to skip to next range.
353 */
354 if (!btrfs_folio_test_ordered(fs_info, folio, file_offset, len))
355 return false;
356 btrfs_folio_clear_ordered(fs_info, folio, file_offset, len);
357 }
358
359 /* Now we're fine to update the accounting. */
360 if (WARN_ON_ONCE(len > ordered->bytes_left)) {
361 btrfs_crit(fs_info,
362 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
363 btrfs_root_id(inode->root), btrfs_ino(inode),
364 ordered->file_offset, ordered->num_bytes,
365 len, ordered->bytes_left);
366 ordered->bytes_left = 0;
367 } else {
368 ordered->bytes_left -= len;
369 }
370
371 if (!uptodate)
372 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
373
374 if (ordered->bytes_left)
375 return false;
376
377 /*
378 * All the IO of the ordered extent is finished, we need to queue
379 * the finish_func to be executed.
380 */
381 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
382 cond_wake_up(&ordered->wait);
383 refcount_inc(&ordered->refs);
384 trace_btrfs_ordered_extent_mark_finished(inode, ordered);
385 return true;
386 }
387
btrfs_queue_ordered_fn(struct btrfs_ordered_extent * ordered)388 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
389 {
390 struct btrfs_inode *inode = ordered->inode;
391 struct btrfs_fs_info *fs_info = inode->root->fs_info;
392 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
393 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
394
395 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
396 btrfs_queue_work(wq, &ordered->work);
397 }
398
btrfs_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct folio * folio,u64 file_offset,u64 len,bool uptodate)399 void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
400 struct folio *folio, u64 file_offset, u64 len,
401 bool uptodate)
402 {
403 struct btrfs_inode *inode = ordered->inode;
404 unsigned long flags;
405 bool ret;
406
407 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
408
409 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
410 ret = can_finish_ordered_extent(ordered, folio, file_offset, len,
411 uptodate);
412 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
413
414 /*
415 * If this is a COW write it means we created new extent maps for the
416 * range and they point to unwritten locations if we got an error either
417 * before submitting a bio or during IO.
418 *
419 * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we
420 * are queuing its completion below. During completion, at
421 * btrfs_finish_one_ordered(), we will drop the extent maps for the
422 * unwritten extents.
423 *
424 * However because completion runs in a work queue we can end up having
425 * a fast fsync running before that. In the case of direct IO, once we
426 * unlock the inode the fsync might start, and we queue the completion
427 * before unlocking the inode. In the case of buffered IO when writeback
428 * finishes (end_bbio_data_write()) we queue the completion, so if the
429 * writeback was triggered by a fast fsync, the fsync might start
430 * logging before ordered extent completion runs in the work queue.
431 *
432 * The fast fsync will log file extent items based on the extent maps it
433 * finds, so if by the time it collects extent maps the ordered extent
434 * completion didn't happen yet, it will log file extent items that
435 * point to unwritten extents, resulting in a corruption if a crash
436 * happens and the log tree is replayed. Note that a fast fsync does not
437 * wait for completion of ordered extents in order to reduce latency.
438 *
439 * Set a flag in the inode so that the next fast fsync will wait for
440 * ordered extents to complete before starting to log.
441 */
442 if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
443 set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
444
445 if (ret)
446 btrfs_queue_ordered_fn(ordered);
447 }
448
449 /*
450 * Mark all ordered extents io inside the specified range finished.
451 *
452 * @folio: The involved folio for the operation.
453 * For uncompressed buffered IO, the folio status also needs to be
454 * updated to indicate whether the pending ordered io is finished.
455 * Can be NULL for direct IO and compressed write.
456 * For these cases, callers are ensured they won't execute the
457 * endio function twice.
458 *
459 * This function is called for endio, thus the range must have ordered
460 * extent(s) covering it.
461 */
btrfs_mark_ordered_io_finished(struct btrfs_inode * inode,struct folio * folio,u64 file_offset,u64 num_bytes,bool uptodate)462 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
463 struct folio *folio, u64 file_offset,
464 u64 num_bytes, bool uptodate)
465 {
466 struct rb_node *node;
467 struct btrfs_ordered_extent *entry = NULL;
468 unsigned long flags;
469 u64 cur = file_offset;
470
471 trace_btrfs_writepage_end_io_hook(inode, file_offset,
472 file_offset + num_bytes - 1,
473 uptodate);
474
475 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
476 while (cur < file_offset + num_bytes) {
477 u64 entry_end;
478 u64 end;
479 u32 len;
480
481 node = ordered_tree_search(inode, cur);
482 /* No ordered extents at all */
483 if (!node)
484 break;
485
486 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
487 entry_end = entry->file_offset + entry->num_bytes;
488 /*
489 * |<-- OE --->| |
490 * cur
491 * Go to next OE.
492 */
493 if (cur >= entry_end) {
494 node = rb_next(node);
495 /* No more ordered extents, exit */
496 if (!node)
497 break;
498 entry = rb_entry(node, struct btrfs_ordered_extent,
499 rb_node);
500
501 /* Go to next ordered extent and continue */
502 cur = entry->file_offset;
503 continue;
504 }
505 /*
506 * | |<--- OE --->|
507 * cur
508 * Go to the start of OE.
509 */
510 if (cur < entry->file_offset) {
511 cur = entry->file_offset;
512 continue;
513 }
514
515 /*
516 * Now we are definitely inside one ordered extent.
517 *
518 * |<--- OE --->|
519 * |
520 * cur
521 */
522 end = min(entry->file_offset + entry->num_bytes,
523 file_offset + num_bytes) - 1;
524 ASSERT(end + 1 - cur < U32_MAX);
525 len = end + 1 - cur;
526
527 if (can_finish_ordered_extent(entry, folio, cur, len, uptodate)) {
528 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
529 btrfs_queue_ordered_fn(entry);
530 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
531 }
532 cur += len;
533 }
534 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
535 }
536
537 /*
538 * Finish IO for one ordered extent across a given range. The range can only
539 * contain one ordered extent.
540 *
541 * @cached: The cached ordered extent. If not NULL, we can skip the tree
542 * search and use the ordered extent directly.
543 * Will be also used to store the finished ordered extent.
544 * @file_offset: File offset for the finished IO
545 * @io_size: Length of the finish IO range
546 *
547 * Return true if the ordered extent is finished in the range, and update
548 * @cached.
549 * Return false otherwise.
550 *
551 * NOTE: The range can NOT cross multiple ordered extents.
552 * Thus caller should ensure the range doesn't cross ordered extents.
553 */
btrfs_dec_test_ordered_pending(struct btrfs_inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size)554 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
555 struct btrfs_ordered_extent **cached,
556 u64 file_offset, u64 io_size)
557 {
558 struct rb_node *node;
559 struct btrfs_ordered_extent *entry = NULL;
560 unsigned long flags;
561 bool finished = false;
562
563 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
564 if (cached && *cached) {
565 entry = *cached;
566 goto have_entry;
567 }
568
569 node = ordered_tree_search(inode, file_offset);
570 if (!node)
571 goto out;
572
573 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
574 have_entry:
575 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
576 goto out;
577
578 if (io_size > entry->bytes_left)
579 btrfs_crit(inode->root->fs_info,
580 "bad ordered accounting left %llu size %llu",
581 entry->bytes_left, io_size);
582
583 entry->bytes_left -= io_size;
584
585 if (entry->bytes_left == 0) {
586 /*
587 * Ensure only one caller can set the flag and finished_ret
588 * accordingly
589 */
590 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
591 /* test_and_set_bit implies a barrier */
592 cond_wake_up_nomb(&entry->wait);
593 }
594 out:
595 if (finished && cached && entry) {
596 *cached = entry;
597 refcount_inc(&entry->refs);
598 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
599 }
600 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
601 return finished;
602 }
603
604 /*
605 * used to drop a reference on an ordered extent. This will free
606 * the extent if the last reference is dropped
607 */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)608 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
609 {
610 struct list_head *cur;
611 struct btrfs_ordered_sum *sum;
612
613 trace_btrfs_ordered_extent_put(entry->inode, entry);
614
615 if (refcount_dec_and_test(&entry->refs)) {
616 ASSERT(list_empty(&entry->root_extent_list));
617 ASSERT(list_empty(&entry->log_list));
618 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
619 if (entry->inode)
620 btrfs_add_delayed_iput(entry->inode);
621 while (!list_empty(&entry->list)) {
622 cur = entry->list.next;
623 sum = list_entry(cur, struct btrfs_ordered_sum, list);
624 list_del(&sum->list);
625 kvfree(sum);
626 }
627 kmem_cache_free(btrfs_ordered_extent_cache, entry);
628 }
629 }
630
631 /*
632 * remove an ordered extent from the tree. No references are dropped
633 * and waiters are woken up.
634 */
btrfs_remove_ordered_extent(struct btrfs_inode * btrfs_inode,struct btrfs_ordered_extent * entry)635 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
636 struct btrfs_ordered_extent *entry)
637 {
638 struct btrfs_root *root = btrfs_inode->root;
639 struct btrfs_fs_info *fs_info = root->fs_info;
640 struct rb_node *node;
641 bool pending;
642 bool freespace_inode;
643
644 /*
645 * If this is a free space inode the thread has not acquired the ordered
646 * extents lockdep map.
647 */
648 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
649
650 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
651 /* This is paired with alloc_ordered_extent(). */
652 spin_lock(&btrfs_inode->lock);
653 btrfs_mod_outstanding_extents(btrfs_inode, -1);
654 spin_unlock(&btrfs_inode->lock);
655 if (root != fs_info->tree_root) {
656 u64 release;
657
658 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
659 release = entry->disk_num_bytes;
660 else
661 release = entry->num_bytes;
662 btrfs_delalloc_release_metadata(btrfs_inode, release,
663 test_bit(BTRFS_ORDERED_IOERR,
664 &entry->flags));
665 }
666
667 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
668 fs_info->delalloc_batch);
669
670 spin_lock_irq(&btrfs_inode->ordered_tree_lock);
671 node = &entry->rb_node;
672 rb_erase(node, &btrfs_inode->ordered_tree);
673 RB_CLEAR_NODE(node);
674 if (btrfs_inode->ordered_tree_last == node)
675 btrfs_inode->ordered_tree_last = NULL;
676 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
677 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
678 spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
679
680 /*
681 * The current running transaction is waiting on us, we need to let it
682 * know that we're complete and wake it up.
683 */
684 if (pending) {
685 struct btrfs_transaction *trans;
686
687 /*
688 * The checks for trans are just a formality, it should be set,
689 * but if it isn't we don't want to deref/assert under the spin
690 * lock, so be nice and check if trans is set, but ASSERT() so
691 * if it isn't set a developer will notice.
692 */
693 spin_lock(&fs_info->trans_lock);
694 trans = fs_info->running_transaction;
695 if (trans)
696 refcount_inc(&trans->use_count);
697 spin_unlock(&fs_info->trans_lock);
698
699 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
700 if (trans) {
701 if (atomic_dec_and_test(&trans->pending_ordered))
702 wake_up(&trans->pending_wait);
703 btrfs_put_transaction(trans);
704 }
705 }
706
707 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
708
709 spin_lock(&root->ordered_extent_lock);
710 list_del_init(&entry->root_extent_list);
711 root->nr_ordered_extents--;
712
713 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
714
715 if (!root->nr_ordered_extents) {
716 spin_lock(&fs_info->ordered_root_lock);
717 BUG_ON(list_empty(&root->ordered_root));
718 list_del_init(&root->ordered_root);
719 spin_unlock(&fs_info->ordered_root_lock);
720 }
721 spin_unlock(&root->ordered_extent_lock);
722 wake_up(&entry->wait);
723 if (!freespace_inode)
724 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
725 }
726
btrfs_run_ordered_extent_work(struct btrfs_work * work)727 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
728 {
729 struct btrfs_ordered_extent *ordered;
730
731 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
732 btrfs_start_ordered_extent(ordered);
733 complete(&ordered->completion);
734 }
735
736 /*
737 * Wait for all the ordered extents in a root. Use @bg as range or do whole
738 * range if it's NULL.
739 */
btrfs_wait_ordered_extents(struct btrfs_root * root,u64 nr,const struct btrfs_block_group * bg)740 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
741 const struct btrfs_block_group *bg)
742 {
743 struct btrfs_fs_info *fs_info = root->fs_info;
744 LIST_HEAD(splice);
745 LIST_HEAD(skipped);
746 LIST_HEAD(works);
747 struct btrfs_ordered_extent *ordered, *next;
748 u64 count = 0;
749 u64 range_start, range_len;
750 u64 range_end;
751
752 if (bg) {
753 range_start = bg->start;
754 range_len = bg->length;
755 } else {
756 range_start = 0;
757 range_len = U64_MAX;
758 }
759 range_end = range_start + range_len;
760
761 mutex_lock(&root->ordered_extent_mutex);
762 spin_lock(&root->ordered_extent_lock);
763 list_splice_init(&root->ordered_extents, &splice);
764 while (!list_empty(&splice) && nr) {
765 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
766 root_extent_list);
767
768 if (range_end <= ordered->disk_bytenr ||
769 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
770 list_move_tail(&ordered->root_extent_list, &skipped);
771 cond_resched_lock(&root->ordered_extent_lock);
772 continue;
773 }
774
775 list_move_tail(&ordered->root_extent_list,
776 &root->ordered_extents);
777 refcount_inc(&ordered->refs);
778 spin_unlock(&root->ordered_extent_lock);
779
780 btrfs_init_work(&ordered->flush_work,
781 btrfs_run_ordered_extent_work, NULL);
782 list_add_tail(&ordered->work_list, &works);
783 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
784
785 cond_resched();
786 if (nr != U64_MAX)
787 nr--;
788 count++;
789 spin_lock(&root->ordered_extent_lock);
790 }
791 list_splice_tail(&skipped, &root->ordered_extents);
792 list_splice_tail(&splice, &root->ordered_extents);
793 spin_unlock(&root->ordered_extent_lock);
794
795 list_for_each_entry_safe(ordered, next, &works, work_list) {
796 list_del_init(&ordered->work_list);
797 wait_for_completion(&ordered->completion);
798 btrfs_put_ordered_extent(ordered);
799 cond_resched();
800 }
801 mutex_unlock(&root->ordered_extent_mutex);
802
803 return count;
804 }
805
806 /*
807 * Wait for @nr ordered extents that intersect the @bg, or the whole range of
808 * the filesystem if @bg is NULL.
809 */
btrfs_wait_ordered_roots(struct btrfs_fs_info * fs_info,u64 nr,const struct btrfs_block_group * bg)810 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
811 const struct btrfs_block_group *bg)
812 {
813 struct btrfs_root *root;
814 LIST_HEAD(splice);
815 u64 done;
816
817 mutex_lock(&fs_info->ordered_operations_mutex);
818 spin_lock(&fs_info->ordered_root_lock);
819 list_splice_init(&fs_info->ordered_roots, &splice);
820 while (!list_empty(&splice) && nr) {
821 root = list_first_entry(&splice, struct btrfs_root,
822 ordered_root);
823 root = btrfs_grab_root(root);
824 BUG_ON(!root);
825 list_move_tail(&root->ordered_root,
826 &fs_info->ordered_roots);
827 spin_unlock(&fs_info->ordered_root_lock);
828
829 done = btrfs_wait_ordered_extents(root, nr, bg);
830 btrfs_put_root(root);
831
832 if (nr != U64_MAX)
833 nr -= done;
834
835 spin_lock(&fs_info->ordered_root_lock);
836 }
837 list_splice_tail(&splice, &fs_info->ordered_roots);
838 spin_unlock(&fs_info->ordered_root_lock);
839 mutex_unlock(&fs_info->ordered_operations_mutex);
840 }
841
842 /*
843 * Start IO and wait for a given ordered extent to finish.
844 *
845 * Wait on page writeback for all the pages in the extent but not in
846 * [@nowriteback_start, @nowriteback_start + @nowriteback_len) and the
847 * IO completion code to insert metadata into the btree corresponding to the extent.
848 */
btrfs_start_ordered_extent_nowriteback(struct btrfs_ordered_extent * entry,u64 nowriteback_start,u32 nowriteback_len)849 void btrfs_start_ordered_extent_nowriteback(struct btrfs_ordered_extent *entry,
850 u64 nowriteback_start, u32 nowriteback_len)
851 {
852 u64 start = entry->file_offset;
853 u64 end = start + entry->num_bytes - 1;
854 struct btrfs_inode *inode = entry->inode;
855 bool freespace_inode;
856
857 trace_btrfs_ordered_extent_start(inode, entry);
858
859 /*
860 * If this is a free space inode do not take the ordered extents lockdep
861 * map.
862 */
863 freespace_inode = btrfs_is_free_space_inode(inode);
864
865 /*
866 * pages in the range can be dirty, clean or writeback. We
867 * start IO on any dirty ones so the wait doesn't stall waiting
868 * for the flusher thread to find them
869 */
870 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) {
871 if (!nowriteback_len) {
872 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
873 } else {
874 if (start < nowriteback_start)
875 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start,
876 nowriteback_start - 1);
877 if (nowriteback_start + nowriteback_len < end)
878 filemap_fdatawrite_range(inode->vfs_inode.i_mapping,
879 nowriteback_start + nowriteback_len,
880 end);
881 }
882 }
883
884 if (!freespace_inode)
885 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
886 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
887 }
888
889 /*
890 * Used to wait on ordered extents across a large range of bytes.
891 */
btrfs_wait_ordered_range(struct btrfs_inode * inode,u64 start,u64 len)892 int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len)
893 {
894 int ret = 0;
895 int ret_wb = 0;
896 u64 end;
897 u64 orig_end;
898 struct btrfs_ordered_extent *ordered;
899
900 if (start + len < start) {
901 orig_end = OFFSET_MAX;
902 } else {
903 orig_end = start + len - 1;
904 if (orig_end > OFFSET_MAX)
905 orig_end = OFFSET_MAX;
906 }
907
908 /* start IO across the range first to instantiate any delalloc
909 * extents
910 */
911 ret = btrfs_fdatawrite_range(inode, start, orig_end);
912 if (ret)
913 return ret;
914
915 /*
916 * If we have a writeback error don't return immediately. Wait first
917 * for any ordered extents that haven't completed yet. This is to make
918 * sure no one can dirty the same page ranges and call writepages()
919 * before the ordered extents complete - to avoid failures (-EEXIST)
920 * when adding the new ordered extents to the ordered tree.
921 */
922 ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end);
923
924 end = orig_end;
925 while (1) {
926 ordered = btrfs_lookup_first_ordered_extent(inode, end);
927 if (!ordered)
928 break;
929 if (ordered->file_offset > orig_end) {
930 btrfs_put_ordered_extent(ordered);
931 break;
932 }
933 if (ordered->file_offset + ordered->num_bytes <= start) {
934 btrfs_put_ordered_extent(ordered);
935 break;
936 }
937 btrfs_start_ordered_extent(ordered);
938 end = ordered->file_offset;
939 /*
940 * If the ordered extent had an error save the error but don't
941 * exit without waiting first for all other ordered extents in
942 * the range to complete.
943 */
944 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
945 ret = -EIO;
946 btrfs_put_ordered_extent(ordered);
947 if (end == 0 || end == start)
948 break;
949 end--;
950 }
951 return ret_wb ? ret_wb : ret;
952 }
953
954 /*
955 * find an ordered extent corresponding to file_offset. return NULL if
956 * nothing is found, otherwise take a reference on the extent and return it
957 */
btrfs_lookup_ordered_extent(struct btrfs_inode * inode,u64 file_offset)958 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
959 u64 file_offset)
960 {
961 struct rb_node *node;
962 struct btrfs_ordered_extent *entry = NULL;
963 unsigned long flags;
964
965 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
966 node = ordered_tree_search(inode, file_offset);
967 if (!node)
968 goto out;
969
970 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
971 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
972 entry = NULL;
973 if (entry) {
974 refcount_inc(&entry->refs);
975 trace_btrfs_ordered_extent_lookup(inode, entry);
976 }
977 out:
978 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
979 return entry;
980 }
981
982 /* Since the DIO code tries to lock a wide area we need to look for any ordered
983 * extents that exist in the range, rather than just the start of the range.
984 */
btrfs_lookup_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)985 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
986 struct btrfs_inode *inode, u64 file_offset, u64 len)
987 {
988 struct rb_node *node;
989 struct btrfs_ordered_extent *entry = NULL;
990
991 spin_lock_irq(&inode->ordered_tree_lock);
992 node = ordered_tree_search(inode, file_offset);
993 if (!node) {
994 node = ordered_tree_search(inode, file_offset + len);
995 if (!node)
996 goto out;
997 }
998
999 while (1) {
1000 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1001 if (btrfs_range_overlaps(entry, file_offset, len))
1002 break;
1003
1004 if (entry->file_offset >= file_offset + len) {
1005 entry = NULL;
1006 break;
1007 }
1008 entry = NULL;
1009 node = rb_next(node);
1010 if (!node)
1011 break;
1012 }
1013 out:
1014 if (entry) {
1015 refcount_inc(&entry->refs);
1016 trace_btrfs_ordered_extent_lookup_range(inode, entry);
1017 }
1018 spin_unlock_irq(&inode->ordered_tree_lock);
1019 return entry;
1020 }
1021
1022 /*
1023 * Adds all ordered extents to the given list. The list ends up sorted by the
1024 * file_offset of the ordered extents.
1025 */
btrfs_get_ordered_extents_for_logging(struct btrfs_inode * inode,struct list_head * list)1026 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
1027 struct list_head *list)
1028 {
1029 struct rb_node *n;
1030
1031 btrfs_assert_inode_locked(inode);
1032
1033 spin_lock_irq(&inode->ordered_tree_lock);
1034 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
1035 struct btrfs_ordered_extent *ordered;
1036
1037 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
1038
1039 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
1040 continue;
1041
1042 ASSERT(list_empty(&ordered->log_list));
1043 list_add_tail(&ordered->log_list, list);
1044 refcount_inc(&ordered->refs);
1045 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
1046 }
1047 spin_unlock_irq(&inode->ordered_tree_lock);
1048 }
1049
1050 /*
1051 * lookup and return any extent before 'file_offset'. NULL is returned
1052 * if none is found
1053 */
1054 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct btrfs_inode * inode,u64 file_offset)1055 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
1056 {
1057 struct rb_node *node;
1058 struct btrfs_ordered_extent *entry = NULL;
1059
1060 spin_lock_irq(&inode->ordered_tree_lock);
1061 node = ordered_tree_search(inode, file_offset);
1062 if (!node)
1063 goto out;
1064
1065 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1066 refcount_inc(&entry->refs);
1067 trace_btrfs_ordered_extent_lookup_first(inode, entry);
1068 out:
1069 spin_unlock_irq(&inode->ordered_tree_lock);
1070 return entry;
1071 }
1072
1073 /*
1074 * Lookup the first ordered extent that overlaps the range
1075 * [@file_offset, @file_offset + @len).
1076 *
1077 * The difference between this and btrfs_lookup_first_ordered_extent() is
1078 * that this one won't return any ordered extent that does not overlap the range.
1079 * And the difference against btrfs_lookup_ordered_extent() is, this function
1080 * ensures the first ordered extent gets returned.
1081 */
btrfs_lookup_first_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)1082 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1083 struct btrfs_inode *inode, u64 file_offset, u64 len)
1084 {
1085 struct rb_node *node;
1086 struct rb_node *cur;
1087 struct rb_node *prev;
1088 struct rb_node *next;
1089 struct btrfs_ordered_extent *entry = NULL;
1090
1091 spin_lock_irq(&inode->ordered_tree_lock);
1092 node = inode->ordered_tree.rb_node;
1093 /*
1094 * Here we don't want to use tree_search() which will use tree->last
1095 * and screw up the search order.
1096 * And __tree_search() can't return the adjacent ordered extents
1097 * either, thus here we do our own search.
1098 */
1099 while (node) {
1100 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1101
1102 if (file_offset < entry->file_offset) {
1103 node = node->rb_left;
1104 } else if (file_offset >= entry_end(entry)) {
1105 node = node->rb_right;
1106 } else {
1107 /*
1108 * Direct hit, got an ordered extent that starts at
1109 * @file_offset
1110 */
1111 goto out;
1112 }
1113 }
1114 if (!entry) {
1115 /* Empty tree */
1116 goto out;
1117 }
1118
1119 cur = &entry->rb_node;
1120 /* We got an entry around @file_offset, check adjacent entries */
1121 if (entry->file_offset < file_offset) {
1122 prev = cur;
1123 next = rb_next(cur);
1124 } else {
1125 prev = rb_prev(cur);
1126 next = cur;
1127 }
1128 if (prev) {
1129 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1130 if (btrfs_range_overlaps(entry, file_offset, len))
1131 goto out;
1132 }
1133 if (next) {
1134 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1135 if (btrfs_range_overlaps(entry, file_offset, len))
1136 goto out;
1137 }
1138 /* No ordered extent in the range */
1139 entry = NULL;
1140 out:
1141 if (entry) {
1142 refcount_inc(&entry->refs);
1143 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1144 }
1145
1146 spin_unlock_irq(&inode->ordered_tree_lock);
1147 return entry;
1148 }
1149
1150 /*
1151 * Lock the passed range and ensures all pending ordered extents in it are run
1152 * to completion.
1153 *
1154 * @inode: Inode whose ordered tree is to be searched
1155 * @start: Beginning of range to flush
1156 * @end: Last byte of range to lock
1157 * @cached_state: If passed, will return the extent state responsible for the
1158 * locked range. It's the caller's responsibility to free the
1159 * cached state.
1160 *
1161 * Always return with the given range locked, ensuring after it's called no
1162 * order extent can be pending.
1163 */
btrfs_lock_and_flush_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1164 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1165 u64 end,
1166 struct extent_state **cached_state)
1167 {
1168 struct btrfs_ordered_extent *ordered;
1169 struct extent_state *cache = NULL;
1170 struct extent_state **cachedp = &cache;
1171
1172 if (cached_state)
1173 cachedp = cached_state;
1174
1175 while (1) {
1176 lock_extent(&inode->io_tree, start, end, cachedp);
1177 ordered = btrfs_lookup_ordered_range(inode, start,
1178 end - start + 1);
1179 if (!ordered) {
1180 /*
1181 * If no external cached_state has been passed then
1182 * decrement the extra ref taken for cachedp since we
1183 * aren't exposing it outside of this function
1184 */
1185 if (!cached_state)
1186 refcount_dec(&cache->refs);
1187 break;
1188 }
1189 unlock_extent(&inode->io_tree, start, end, cachedp);
1190 btrfs_start_ordered_extent(ordered);
1191 btrfs_put_ordered_extent(ordered);
1192 }
1193 }
1194
1195 /*
1196 * Lock the passed range and ensure all pending ordered extents in it are run
1197 * to completion in nowait mode.
1198 *
1199 * Return true if btrfs_lock_ordered_range does not return any extents,
1200 * otherwise false.
1201 */
btrfs_try_lock_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1202 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1203 struct extent_state **cached_state)
1204 {
1205 struct btrfs_ordered_extent *ordered;
1206
1207 if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1208 return false;
1209
1210 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1211 if (!ordered)
1212 return true;
1213
1214 btrfs_put_ordered_extent(ordered);
1215 unlock_extent(&inode->io_tree, start, end, cached_state);
1216
1217 return false;
1218 }
1219
1220 /* Split out a new ordered extent for this first @len bytes of @ordered. */
btrfs_split_ordered_extent(struct btrfs_ordered_extent * ordered,u64 len)1221 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1222 struct btrfs_ordered_extent *ordered, u64 len)
1223 {
1224 struct btrfs_inode *inode = ordered->inode;
1225 struct btrfs_root *root = inode->root;
1226 struct btrfs_fs_info *fs_info = root->fs_info;
1227 u64 file_offset = ordered->file_offset;
1228 u64 disk_bytenr = ordered->disk_bytenr;
1229 unsigned long flags = ordered->flags;
1230 struct btrfs_ordered_sum *sum, *tmpsum;
1231 struct btrfs_ordered_extent *new;
1232 struct rb_node *node;
1233 u64 offset = 0;
1234
1235 trace_btrfs_ordered_extent_split(inode, ordered);
1236
1237 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1238
1239 /*
1240 * The entire bio must be covered by the ordered extent, but we can't
1241 * reduce the original extent to a zero length either.
1242 */
1243 if (WARN_ON_ONCE(len >= ordered->num_bytes))
1244 return ERR_PTR(-EINVAL);
1245 /*
1246 * If our ordered extent had an error there's no point in continuing.
1247 * The error may have come from a transaction abort done either by this
1248 * task or some other concurrent task, and the transaction abort path
1249 * iterates over all existing ordered extents and sets the flag
1250 * BTRFS_ORDERED_IOERR on them.
1251 */
1252 if (unlikely(flags & (1U << BTRFS_ORDERED_IOERR))) {
1253 const int fs_error = BTRFS_FS_ERROR(fs_info);
1254
1255 return fs_error ? ERR_PTR(fs_error) : ERR_PTR(-EIO);
1256 }
1257 /* We cannot split partially completed ordered extents. */
1258 if (ordered->bytes_left) {
1259 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1260 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1261 return ERR_PTR(-EINVAL);
1262 }
1263 /* We cannot split a compressed ordered extent. */
1264 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1265 return ERR_PTR(-EINVAL);
1266
1267 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1268 len, 0, flags, ordered->compress_type);
1269 if (IS_ERR(new))
1270 return new;
1271
1272 /* One ref for the tree. */
1273 refcount_inc(&new->refs);
1274
1275 /*
1276 * Take the root's ordered_extent_lock to avoid a race with
1277 * btrfs_wait_ordered_extents() when updating the disk_bytenr and
1278 * disk_num_bytes fields of the ordered extent below. And we disable
1279 * IRQs because the inode's ordered_tree_lock is used in IRQ context
1280 * elsewhere.
1281 *
1282 * There's no concern about a previous caller of
1283 * btrfs_wait_ordered_extents() getting the trimmed ordered extent
1284 * before we insert the new one, because even if it gets the ordered
1285 * extent before it's trimmed and the new one inserted, right before it
1286 * uses it or during its use, the ordered extent might have been
1287 * trimmed in the meanwhile, and it missed the new ordered extent.
1288 * There's no way around this and it's harmless for current use cases,
1289 * so we take the root's ordered_extent_lock to fix that race during
1290 * trimming and silence tools like KCSAN.
1291 */
1292 spin_lock_irq(&root->ordered_extent_lock);
1293 spin_lock(&inode->ordered_tree_lock);
1294
1295 /*
1296 * We don't have overlapping ordered extents (that would imply double
1297 * allocation of extents) and we checked above that the split length
1298 * does not cross the ordered extent's num_bytes field, so there's
1299 * no need to remove it and re-insert it in the tree.
1300 */
1301 ordered->file_offset += len;
1302 ordered->disk_bytenr += len;
1303 ordered->num_bytes -= len;
1304 ordered->disk_num_bytes -= len;
1305 ordered->ram_bytes -= len;
1306
1307 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1308 ASSERT(ordered->bytes_left == 0);
1309 new->bytes_left = 0;
1310 } else {
1311 ordered->bytes_left -= len;
1312 }
1313
1314 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1315 if (ordered->truncated_len > len) {
1316 ordered->truncated_len -= len;
1317 } else {
1318 new->truncated_len = ordered->truncated_len;
1319 ordered->truncated_len = 0;
1320 }
1321 }
1322
1323 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1324 if (offset == len)
1325 break;
1326 list_move_tail(&sum->list, &new->list);
1327 offset += sum->len;
1328 }
1329
1330 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1331 if (unlikely(node))
1332 btrfs_panic(fs_info, -EEXIST,
1333 "inconsistency in ordered tree at offset %llu after split",
1334 new->file_offset);
1335 spin_unlock(&inode->ordered_tree_lock);
1336
1337 list_add_tail(&new->root_extent_list, &root->ordered_extents);
1338 root->nr_ordered_extents++;
1339 spin_unlock_irq(&root->ordered_extent_lock);
1340 return new;
1341 }
1342
ordered_data_init(void)1343 int __init ordered_data_init(void)
1344 {
1345 btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1346 if (!btrfs_ordered_extent_cache)
1347 return -ENOMEM;
1348
1349 return 0;
1350 }
1351
ordered_data_exit(void)1352 void __cold ordered_data_exit(void)
1353 {
1354 kmem_cache_destroy(btrfs_ordered_extent_cache);
1355 }
1356