1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <ctype.h> 14 #include <endian.h> 15 #include <errno.h> 16 #include <limits.h> 17 #include <linux/err.h> 18 #include <linux/btf.h> 19 #include <linux/kernel.h> 20 #include "btf.h" 21 #include "hashmap.h" 22 #include "libbpf.h" 23 #include "libbpf_internal.h" 24 #include "str_error.h" 25 26 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 27 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 28 29 static const char *pfx(int lvl) 30 { 31 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 32 } 33 34 enum btf_dump_type_order_state { 35 NOT_ORDERED, 36 ORDERING, 37 ORDERED, 38 }; 39 40 enum btf_dump_type_emit_state { 41 NOT_EMITTED, 42 EMITTING, 43 EMITTED, 44 }; 45 46 /* per-type auxiliary state */ 47 struct btf_dump_type_aux_state { 48 /* topological sorting state */ 49 enum btf_dump_type_order_state order_state: 2; 50 /* emitting state used to determine the need for forward declaration */ 51 enum btf_dump_type_emit_state emit_state: 2; 52 /* whether forward declaration was already emitted */ 53 __u8 fwd_emitted: 1; 54 /* whether unique non-duplicate name was already assigned */ 55 __u8 name_resolved: 1; 56 /* whether type is referenced from any other type */ 57 __u8 referenced: 1; 58 }; 59 60 /* indent string length; one indent string is added for each indent level */ 61 #define BTF_DATA_INDENT_STR_LEN 32 62 63 /* 64 * Common internal data for BTF type data dump operations. 65 */ 66 struct btf_dump_data { 67 const void *data_end; /* end of valid data to show */ 68 bool compact; 69 bool skip_names; 70 bool emit_zeroes; 71 __u8 indent_lvl; /* base indent level */ 72 char indent_str[BTF_DATA_INDENT_STR_LEN]; 73 /* below are used during iteration */ 74 int depth; 75 bool is_array_member; 76 bool is_array_terminated; 77 bool is_array_char; 78 }; 79 80 struct btf_dump { 81 const struct btf *btf; 82 btf_dump_printf_fn_t printf_fn; 83 void *cb_ctx; 84 int ptr_sz; 85 bool strip_mods; 86 bool skip_anon_defs; 87 int last_id; 88 89 /* per-type auxiliary state */ 90 struct btf_dump_type_aux_state *type_states; 91 size_t type_states_cap; 92 /* per-type optional cached unique name, must be freed, if present */ 93 const char **cached_names; 94 size_t cached_names_cap; 95 96 /* topo-sorted list of dependent type definitions */ 97 __u32 *emit_queue; 98 int emit_queue_cap; 99 int emit_queue_cnt; 100 101 /* 102 * stack of type declarations (e.g., chain of modifiers, arrays, 103 * funcs, etc) 104 */ 105 __u32 *decl_stack; 106 int decl_stack_cap; 107 int decl_stack_cnt; 108 109 /* maps struct/union/enum name to a number of name occurrences */ 110 struct hashmap *type_names; 111 /* 112 * maps typedef identifiers and enum value names to a number of such 113 * name occurrences 114 */ 115 struct hashmap *ident_names; 116 /* 117 * data for typed display; allocated if needed. 118 */ 119 struct btf_dump_data *typed_dump; 120 }; 121 122 static size_t str_hash_fn(long key, void *ctx) 123 { 124 return str_hash((void *)key); 125 } 126 127 static bool str_equal_fn(long a, long b, void *ctx) 128 { 129 return strcmp((void *)a, (void *)b) == 0; 130 } 131 132 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 133 { 134 return btf__name_by_offset(d->btf, name_off); 135 } 136 137 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 138 { 139 va_list args; 140 141 va_start(args, fmt); 142 d->printf_fn(d->cb_ctx, fmt, args); 143 va_end(args); 144 } 145 146 static int btf_dump_mark_referenced(struct btf_dump *d); 147 static int btf_dump_resize(struct btf_dump *d); 148 149 struct btf_dump *btf_dump__new(const struct btf *btf, 150 btf_dump_printf_fn_t printf_fn, 151 void *ctx, 152 const struct btf_dump_opts *opts) 153 { 154 struct btf_dump *d; 155 int err; 156 157 if (!OPTS_VALID(opts, btf_dump_opts)) 158 return libbpf_err_ptr(-EINVAL); 159 160 if (!printf_fn) 161 return libbpf_err_ptr(-EINVAL); 162 163 d = calloc(1, sizeof(struct btf_dump)); 164 if (!d) 165 return libbpf_err_ptr(-ENOMEM); 166 167 d->btf = btf; 168 d->printf_fn = printf_fn; 169 d->cb_ctx = ctx; 170 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 171 172 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 173 if (IS_ERR(d->type_names)) { 174 err = PTR_ERR(d->type_names); 175 d->type_names = NULL; 176 goto err; 177 } 178 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 179 if (IS_ERR(d->ident_names)) { 180 err = PTR_ERR(d->ident_names); 181 d->ident_names = NULL; 182 goto err; 183 } 184 185 err = btf_dump_resize(d); 186 if (err) 187 goto err; 188 189 return d; 190 err: 191 btf_dump__free(d); 192 return libbpf_err_ptr(err); 193 } 194 195 static int btf_dump_resize(struct btf_dump *d) 196 { 197 int err, last_id = btf__type_cnt(d->btf) - 1; 198 199 if (last_id <= d->last_id) 200 return 0; 201 202 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap, 203 sizeof(*d->type_states), last_id + 1)) 204 return -ENOMEM; 205 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, 206 sizeof(*d->cached_names), last_id + 1)) 207 return -ENOMEM; 208 209 if (d->last_id == 0) { 210 /* VOID is special */ 211 d->type_states[0].order_state = ORDERED; 212 d->type_states[0].emit_state = EMITTED; 213 } 214 215 /* eagerly determine referenced types for anon enums */ 216 err = btf_dump_mark_referenced(d); 217 if (err) 218 return err; 219 220 d->last_id = last_id; 221 return 0; 222 } 223 224 static void btf_dump_free_names(struct hashmap *map) 225 { 226 size_t bkt; 227 struct hashmap_entry *cur; 228 229 hashmap__for_each_entry(map, cur, bkt) 230 free((void *)cur->pkey); 231 232 hashmap__free(map); 233 } 234 235 void btf_dump__free(struct btf_dump *d) 236 { 237 int i; 238 239 if (IS_ERR_OR_NULL(d)) 240 return; 241 242 free(d->type_states); 243 if (d->cached_names) { 244 /* any set cached name is owned by us and should be freed */ 245 for (i = 0; i <= d->last_id; i++) { 246 if (d->cached_names[i]) 247 free((void *)d->cached_names[i]); 248 } 249 } 250 free(d->cached_names); 251 free(d->emit_queue); 252 free(d->decl_stack); 253 btf_dump_free_names(d->type_names); 254 btf_dump_free_names(d->ident_names); 255 256 free(d); 257 } 258 259 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 260 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 261 262 /* 263 * Dump BTF type in a compilable C syntax, including all the necessary 264 * dependent types, necessary for compilation. If some of the dependent types 265 * were already emitted as part of previous btf_dump__dump_type() invocation 266 * for another type, they won't be emitted again. This API allows callers to 267 * filter out BTF types according to user-defined criterias and emitted only 268 * minimal subset of types, necessary to compile everything. Full struct/union 269 * definitions will still be emitted, even if the only usage is through 270 * pointer and could be satisfied with just a forward declaration. 271 * 272 * Dumping is done in two high-level passes: 273 * 1. Topologically sort type definitions to satisfy C rules of compilation. 274 * 2. Emit type definitions in C syntax. 275 * 276 * Returns 0 on success; <0, otherwise. 277 */ 278 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 279 { 280 int err, i; 281 282 if (id >= btf__type_cnt(d->btf)) 283 return libbpf_err(-EINVAL); 284 285 err = btf_dump_resize(d); 286 if (err) 287 return libbpf_err(err); 288 289 d->emit_queue_cnt = 0; 290 err = btf_dump_order_type(d, id, false); 291 if (err < 0) 292 return libbpf_err(err); 293 294 for (i = 0; i < d->emit_queue_cnt; i++) 295 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 296 297 return 0; 298 } 299 300 /* 301 * Mark all types that are referenced from any other type. This is used to 302 * determine top-level anonymous enums that need to be emitted as an 303 * independent type declarations. 304 * Anonymous enums come in two flavors: either embedded in a struct's field 305 * definition, in which case they have to be declared inline as part of field 306 * type declaration; or as a top-level anonymous enum, typically used for 307 * declaring global constants. It's impossible to distinguish between two 308 * without knowing whether given enum type was referenced from other type: 309 * top-level anonymous enum won't be referenced by anything, while embedded 310 * one will. 311 */ 312 static int btf_dump_mark_referenced(struct btf_dump *d) 313 { 314 int i, j, n = btf__type_cnt(d->btf); 315 const struct btf_type *t; 316 __u16 vlen; 317 318 for (i = d->last_id + 1; i < n; i++) { 319 t = btf__type_by_id(d->btf, i); 320 vlen = btf_vlen(t); 321 322 switch (btf_kind(t)) { 323 case BTF_KIND_INT: 324 case BTF_KIND_ENUM: 325 case BTF_KIND_ENUM64: 326 case BTF_KIND_FWD: 327 case BTF_KIND_FLOAT: 328 break; 329 330 case BTF_KIND_VOLATILE: 331 case BTF_KIND_CONST: 332 case BTF_KIND_RESTRICT: 333 case BTF_KIND_PTR: 334 case BTF_KIND_TYPEDEF: 335 case BTF_KIND_FUNC: 336 case BTF_KIND_VAR: 337 case BTF_KIND_DECL_TAG: 338 case BTF_KIND_TYPE_TAG: 339 d->type_states[t->type].referenced = 1; 340 break; 341 342 case BTF_KIND_ARRAY: { 343 const struct btf_array *a = btf_array(t); 344 345 d->type_states[a->index_type].referenced = 1; 346 d->type_states[a->type].referenced = 1; 347 break; 348 } 349 case BTF_KIND_STRUCT: 350 case BTF_KIND_UNION: { 351 const struct btf_member *m = btf_members(t); 352 353 for (j = 0; j < vlen; j++, m++) 354 d->type_states[m->type].referenced = 1; 355 break; 356 } 357 case BTF_KIND_FUNC_PROTO: { 358 const struct btf_param *p = btf_params(t); 359 360 for (j = 0; j < vlen; j++, p++) 361 d->type_states[p->type].referenced = 1; 362 break; 363 } 364 case BTF_KIND_DATASEC: { 365 const struct btf_var_secinfo *v = btf_var_secinfos(t); 366 367 for (j = 0; j < vlen; j++, v++) 368 d->type_states[v->type].referenced = 1; 369 break; 370 } 371 default: 372 return -EINVAL; 373 } 374 } 375 return 0; 376 } 377 378 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 379 { 380 __u32 *new_queue; 381 size_t new_cap; 382 383 if (d->emit_queue_cnt >= d->emit_queue_cap) { 384 new_cap = max(16, d->emit_queue_cap * 3 / 2); 385 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 386 if (!new_queue) 387 return -ENOMEM; 388 d->emit_queue = new_queue; 389 d->emit_queue_cap = new_cap; 390 } 391 392 d->emit_queue[d->emit_queue_cnt++] = id; 393 return 0; 394 } 395 396 /* 397 * Determine order of emitting dependent types and specified type to satisfy 398 * C compilation rules. This is done through topological sorting with an 399 * additional complication which comes from C rules. The main idea for C is 400 * that if some type is "embedded" into a struct/union, it's size needs to be 401 * known at the time of definition of containing type. E.g., for: 402 * 403 * struct A {}; 404 * struct B { struct A x; } 405 * 406 * struct A *HAS* to be defined before struct B, because it's "embedded", 407 * i.e., it is part of struct B layout. But in the following case: 408 * 409 * struct A; 410 * struct B { struct A *x; } 411 * struct A {}; 412 * 413 * it's enough to just have a forward declaration of struct A at the time of 414 * struct B definition, as struct B has a pointer to struct A, so the size of 415 * field x is known without knowing struct A size: it's sizeof(void *). 416 * 417 * Unfortunately, there are some trickier cases we need to handle, e.g.: 418 * 419 * struct A {}; // if this was forward-declaration: compilation error 420 * struct B { 421 * struct { // anonymous struct 422 * struct A y; 423 * } *x; 424 * }; 425 * 426 * In this case, struct B's field x is a pointer, so it's size is known 427 * regardless of the size of (anonymous) struct it points to. But because this 428 * struct is anonymous and thus defined inline inside struct B, *and* it 429 * embeds struct A, compiler requires full definition of struct A to be known 430 * before struct B can be defined. This creates a transitive dependency 431 * between struct A and struct B. If struct A was forward-declared before 432 * struct B definition and fully defined after struct B definition, that would 433 * trigger compilation error. 434 * 435 * All this means that while we are doing topological sorting on BTF type 436 * graph, we need to determine relationships between different types (graph 437 * nodes): 438 * - weak link (relationship) between X and Y, if Y *CAN* be 439 * forward-declared at the point of X definition; 440 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 441 * 442 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 443 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 444 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 445 * Weak/strong relationship is determined recursively during DFS traversal and 446 * is returned as a result from btf_dump_order_type(). 447 * 448 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 449 * but it is not guaranteeing that no extraneous forward declarations will be 450 * emitted. 451 * 452 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 453 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 454 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 455 * entire graph path, so depending where from one came to that BTF type, it 456 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 457 * once they are processed, there is no need to do it again, so they are 458 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 459 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 460 * in any case, once those are processed, no need to do it again, as the 461 * result won't change. 462 * 463 * Returns: 464 * - 1, if type is part of strong link (so there is strong topological 465 * ordering requirements); 466 * - 0, if type is part of weak link (so can be satisfied through forward 467 * declaration); 468 * - <0, on error (e.g., unsatisfiable type loop detected). 469 */ 470 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 471 { 472 /* 473 * Order state is used to detect strong link cycles, but only for BTF 474 * kinds that are or could be an independent definition (i.e., 475 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 476 * func_protos, modifiers are just means to get to these definitions. 477 * Int/void don't need definitions, they are assumed to be always 478 * properly defined. We also ignore datasec, var, and funcs for now. 479 * So for all non-defining kinds, we never even set ordering state, 480 * for defining kinds we set ORDERING and subsequently ORDERED if it 481 * forms a strong link. 482 */ 483 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 484 const struct btf_type *t; 485 __u16 vlen; 486 int err, i; 487 488 /* return true, letting typedefs know that it's ok to be emitted */ 489 if (tstate->order_state == ORDERED) 490 return 1; 491 492 t = btf__type_by_id(d->btf, id); 493 494 if (tstate->order_state == ORDERING) { 495 /* type loop, but resolvable through fwd declaration */ 496 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 497 return 0; 498 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 499 return -ELOOP; 500 } 501 502 switch (btf_kind(t)) { 503 case BTF_KIND_INT: 504 case BTF_KIND_FLOAT: 505 tstate->order_state = ORDERED; 506 return 0; 507 508 case BTF_KIND_PTR: 509 err = btf_dump_order_type(d, t->type, true); 510 tstate->order_state = ORDERED; 511 return err; 512 513 case BTF_KIND_ARRAY: 514 return btf_dump_order_type(d, btf_array(t)->type, false); 515 516 case BTF_KIND_STRUCT: 517 case BTF_KIND_UNION: { 518 const struct btf_member *m = btf_members(t); 519 /* 520 * struct/union is part of strong link, only if it's embedded 521 * (so no ptr in a path) or it's anonymous (so has to be 522 * defined inline, even if declared through ptr) 523 */ 524 if (through_ptr && t->name_off != 0) 525 return 0; 526 527 tstate->order_state = ORDERING; 528 529 vlen = btf_vlen(t); 530 for (i = 0; i < vlen; i++, m++) { 531 err = btf_dump_order_type(d, m->type, false); 532 if (err < 0) 533 return err; 534 } 535 536 if (t->name_off != 0) { 537 err = btf_dump_add_emit_queue_id(d, id); 538 if (err < 0) 539 return err; 540 } 541 542 tstate->order_state = ORDERED; 543 return 1; 544 } 545 case BTF_KIND_ENUM: 546 case BTF_KIND_ENUM64: 547 case BTF_KIND_FWD: 548 /* 549 * non-anonymous or non-referenced enums are top-level 550 * declarations and should be emitted. Same logic can be 551 * applied to FWDs, it won't hurt anyways. 552 */ 553 if (t->name_off != 0 || !tstate->referenced) { 554 err = btf_dump_add_emit_queue_id(d, id); 555 if (err) 556 return err; 557 } 558 tstate->order_state = ORDERED; 559 return 1; 560 561 case BTF_KIND_TYPEDEF: { 562 int is_strong; 563 564 is_strong = btf_dump_order_type(d, t->type, through_ptr); 565 if (is_strong < 0) 566 return is_strong; 567 568 /* typedef is similar to struct/union w.r.t. fwd-decls */ 569 if (through_ptr && !is_strong) 570 return 0; 571 572 /* typedef is always a named definition */ 573 err = btf_dump_add_emit_queue_id(d, id); 574 if (err) 575 return err; 576 577 d->type_states[id].order_state = ORDERED; 578 return 1; 579 } 580 case BTF_KIND_VOLATILE: 581 case BTF_KIND_CONST: 582 case BTF_KIND_RESTRICT: 583 case BTF_KIND_TYPE_TAG: 584 return btf_dump_order_type(d, t->type, through_ptr); 585 586 case BTF_KIND_FUNC_PROTO: { 587 const struct btf_param *p = btf_params(t); 588 bool is_strong; 589 590 err = btf_dump_order_type(d, t->type, through_ptr); 591 if (err < 0) 592 return err; 593 is_strong = err > 0; 594 595 vlen = btf_vlen(t); 596 for (i = 0; i < vlen; i++, p++) { 597 err = btf_dump_order_type(d, p->type, through_ptr); 598 if (err < 0) 599 return err; 600 if (err > 0) 601 is_strong = true; 602 } 603 return is_strong; 604 } 605 case BTF_KIND_FUNC: 606 case BTF_KIND_VAR: 607 case BTF_KIND_DATASEC: 608 case BTF_KIND_DECL_TAG: 609 d->type_states[id].order_state = ORDERED; 610 return 0; 611 612 default: 613 return -EINVAL; 614 } 615 } 616 617 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 618 const struct btf_type *t); 619 620 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 621 const struct btf_type *t); 622 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 623 const struct btf_type *t, int lvl); 624 625 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 626 const struct btf_type *t); 627 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 628 const struct btf_type *t, int lvl); 629 630 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 631 const struct btf_type *t); 632 633 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 634 const struct btf_type *t, int lvl); 635 636 /* a local view into a shared stack */ 637 struct id_stack { 638 const __u32 *ids; 639 int cnt; 640 }; 641 642 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 643 const char *fname, int lvl); 644 static void btf_dump_emit_type_chain(struct btf_dump *d, 645 struct id_stack *decl_stack, 646 const char *fname, int lvl); 647 648 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 649 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 650 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 651 const char *orig_name); 652 653 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 654 { 655 const struct btf_type *t = btf__type_by_id(d->btf, id); 656 657 /* __builtin_va_list is a compiler built-in, which causes compilation 658 * errors, when compiling w/ different compiler, then used to compile 659 * original code (e.g., GCC to compile kernel, Clang to use generated 660 * C header from BTF). As it is built-in, it should be already defined 661 * properly internally in compiler. 662 */ 663 if (t->name_off == 0) 664 return false; 665 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 666 } 667 668 /* 669 * Emit C-syntax definitions of types from chains of BTF types. 670 * 671 * High-level handling of determining necessary forward declarations are handled 672 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 673 * declarations/definitions in C syntax are handled by a combo of 674 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 675 * corresponding btf_dump_emit_*_{def,fwd}() functions. 676 * 677 * We also keep track of "containing struct/union type ID" to determine when 678 * we reference it from inside and thus can avoid emitting unnecessary forward 679 * declaration. 680 * 681 * This algorithm is designed in such a way, that even if some error occurs 682 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 683 * that doesn't comply to C rules completely), algorithm will try to proceed 684 * and produce as much meaningful output as possible. 685 */ 686 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 687 { 688 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 689 bool top_level_def = cont_id == 0; 690 const struct btf_type *t; 691 __u16 kind; 692 693 if (tstate->emit_state == EMITTED) 694 return; 695 696 t = btf__type_by_id(d->btf, id); 697 kind = btf_kind(t); 698 699 if (tstate->emit_state == EMITTING) { 700 if (tstate->fwd_emitted) 701 return; 702 703 switch (kind) { 704 case BTF_KIND_STRUCT: 705 case BTF_KIND_UNION: 706 /* 707 * if we are referencing a struct/union that we are 708 * part of - then no need for fwd declaration 709 */ 710 if (id == cont_id) 711 return; 712 if (t->name_off == 0) { 713 pr_warn("anonymous struct/union loop, id:[%u]\n", 714 id); 715 return; 716 } 717 btf_dump_emit_struct_fwd(d, id, t); 718 btf_dump_printf(d, ";\n\n"); 719 tstate->fwd_emitted = 1; 720 break; 721 case BTF_KIND_TYPEDEF: 722 /* 723 * for typedef fwd_emitted means typedef definition 724 * was emitted, but it can be used only for "weak" 725 * references through pointer only, not for embedding 726 */ 727 if (!btf_dump_is_blacklisted(d, id)) { 728 btf_dump_emit_typedef_def(d, id, t, 0); 729 btf_dump_printf(d, ";\n\n"); 730 } 731 tstate->fwd_emitted = 1; 732 break; 733 default: 734 break; 735 } 736 737 return; 738 } 739 740 switch (kind) { 741 case BTF_KIND_INT: 742 /* Emit type alias definitions if necessary */ 743 btf_dump_emit_missing_aliases(d, id, t); 744 745 tstate->emit_state = EMITTED; 746 break; 747 case BTF_KIND_ENUM: 748 case BTF_KIND_ENUM64: 749 if (top_level_def) { 750 btf_dump_emit_enum_def(d, id, t, 0); 751 btf_dump_printf(d, ";\n\n"); 752 } 753 tstate->emit_state = EMITTED; 754 break; 755 case BTF_KIND_PTR: 756 case BTF_KIND_VOLATILE: 757 case BTF_KIND_CONST: 758 case BTF_KIND_RESTRICT: 759 case BTF_KIND_TYPE_TAG: 760 btf_dump_emit_type(d, t->type, cont_id); 761 break; 762 case BTF_KIND_ARRAY: 763 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 764 break; 765 case BTF_KIND_FWD: 766 btf_dump_emit_fwd_def(d, id, t); 767 btf_dump_printf(d, ";\n\n"); 768 tstate->emit_state = EMITTED; 769 break; 770 case BTF_KIND_TYPEDEF: 771 tstate->emit_state = EMITTING; 772 btf_dump_emit_type(d, t->type, id); 773 /* 774 * typedef can server as both definition and forward 775 * declaration; at this stage someone depends on 776 * typedef as a forward declaration (refers to it 777 * through pointer), so unless we already did it, 778 * emit typedef as a forward declaration 779 */ 780 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 781 btf_dump_emit_typedef_def(d, id, t, 0); 782 btf_dump_printf(d, ";\n\n"); 783 } 784 tstate->emit_state = EMITTED; 785 break; 786 case BTF_KIND_STRUCT: 787 case BTF_KIND_UNION: 788 tstate->emit_state = EMITTING; 789 /* if it's a top-level struct/union definition or struct/union 790 * is anonymous, then in C we'll be emitting all fields and 791 * their types (as opposed to just `struct X`), so we need to 792 * make sure that all types, referenced from struct/union 793 * members have necessary forward-declarations, where 794 * applicable 795 */ 796 if (top_level_def || t->name_off == 0) { 797 const struct btf_member *m = btf_members(t); 798 __u16 vlen = btf_vlen(t); 799 int i, new_cont_id; 800 801 new_cont_id = t->name_off == 0 ? cont_id : id; 802 for (i = 0; i < vlen; i++, m++) 803 btf_dump_emit_type(d, m->type, new_cont_id); 804 } else if (!tstate->fwd_emitted && id != cont_id) { 805 btf_dump_emit_struct_fwd(d, id, t); 806 btf_dump_printf(d, ";\n\n"); 807 tstate->fwd_emitted = 1; 808 } 809 810 if (top_level_def) { 811 btf_dump_emit_struct_def(d, id, t, 0); 812 btf_dump_printf(d, ";\n\n"); 813 tstate->emit_state = EMITTED; 814 } else { 815 tstate->emit_state = NOT_EMITTED; 816 } 817 break; 818 case BTF_KIND_FUNC_PROTO: { 819 const struct btf_param *p = btf_params(t); 820 __u16 n = btf_vlen(t); 821 int i; 822 823 btf_dump_emit_type(d, t->type, cont_id); 824 for (i = 0; i < n; i++, p++) 825 btf_dump_emit_type(d, p->type, cont_id); 826 827 break; 828 } 829 default: 830 break; 831 } 832 } 833 834 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 835 const struct btf_type *t) 836 { 837 const struct btf_member *m; 838 int max_align = 1, align, i, bit_sz; 839 __u16 vlen; 840 841 m = btf_members(t); 842 vlen = btf_vlen(t); 843 /* all non-bitfield fields have to be naturally aligned */ 844 for (i = 0; i < vlen; i++, m++) { 845 align = btf__align_of(btf, m->type); 846 bit_sz = btf_member_bitfield_size(t, i); 847 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 848 return true; 849 max_align = max(align, max_align); 850 } 851 /* size of a non-packed struct has to be a multiple of its alignment */ 852 if (t->size % max_align != 0) 853 return true; 854 /* 855 * if original struct was marked as packed, but its layout is 856 * naturally aligned, we'll detect that it's not packed 857 */ 858 return false; 859 } 860 861 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 862 int cur_off, int next_off, int next_align, 863 bool in_bitfield, int lvl) 864 { 865 const struct { 866 const char *name; 867 int bits; 868 } pads[] = { 869 {"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8} 870 }; 871 int new_off = 0, pad_bits = 0, bits, i; 872 const char *pad_type = NULL; 873 874 if (cur_off >= next_off) 875 return; /* no gap */ 876 877 /* For filling out padding we want to take advantage of 878 * natural alignment rules to minimize unnecessary explicit 879 * padding. First, we find the largest type (among long, int, 880 * short, or char) that can be used to force naturally aligned 881 * boundary. Once determined, we'll use such type to fill in 882 * the remaining padding gap. In some cases we can rely on 883 * compiler filling some gaps, but sometimes we need to force 884 * alignment to close natural alignment with markers like 885 * `long: 0` (this is always the case for bitfields). Note 886 * that even if struct itself has, let's say 4-byte alignment 887 * (i.e., it only uses up to int-aligned types), using `long: 888 * X;` explicit padding doesn't actually change struct's 889 * overall alignment requirements, but compiler does take into 890 * account that type's (long, in this example) natural 891 * alignment requirements when adding implicit padding. We use 892 * this fact heavily and don't worry about ruining correct 893 * struct alignment requirement. 894 */ 895 for (i = 0; i < ARRAY_SIZE(pads); i++) { 896 pad_bits = pads[i].bits; 897 pad_type = pads[i].name; 898 899 new_off = roundup(cur_off, pad_bits); 900 if (new_off <= next_off) 901 break; 902 } 903 904 if (new_off > cur_off && new_off <= next_off) { 905 /* We need explicit `<type>: 0` aligning mark if next 906 * field is right on alignment offset and its 907 * alignment requirement is less strict than <type>'s 908 * alignment (so compiler won't naturally align to the 909 * offset we expect), or if subsequent `<type>: X`, 910 * will actually completely fit in the remaining hole, 911 * making compiler basically ignore `<type>: X` 912 * completely. 913 */ 914 if (in_bitfield || 915 (new_off == next_off && roundup(cur_off, next_align * 8) != new_off) || 916 (new_off != next_off && next_off - new_off <= new_off - cur_off)) 917 /* but for bitfields we'll emit explicit bit count */ 918 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, 919 in_bitfield ? new_off - cur_off : 0); 920 cur_off = new_off; 921 } 922 923 /* Now we know we start at naturally aligned offset for a chosen 924 * padding type (long, int, short, or char), and so the rest is just 925 * a straightforward filling of remaining padding gap with full 926 * `<type>: sizeof(<type>);` markers, except for the last one, which 927 * might need smaller than sizeof(<type>) padding. 928 */ 929 while (cur_off != next_off) { 930 bits = min(next_off - cur_off, pad_bits); 931 if (bits == pad_bits) { 932 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 933 cur_off += bits; 934 continue; 935 } 936 /* For the remainder padding that doesn't cover entire 937 * pad_type bit length, we pick the smallest necessary type. 938 * This is pure aesthetics, we could have just used `long`, 939 * but having smallest necessary one communicates better the 940 * scale of the padding gap. 941 */ 942 for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) { 943 pad_type = pads[i].name; 944 pad_bits = pads[i].bits; 945 if (pad_bits < bits) 946 continue; 947 948 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits); 949 cur_off += bits; 950 break; 951 } 952 } 953 } 954 955 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 956 const struct btf_type *t) 957 { 958 btf_dump_printf(d, "%s%s%s", 959 btf_is_struct(t) ? "struct" : "union", 960 t->name_off ? " " : "", 961 btf_dump_type_name(d, id)); 962 } 963 964 static void btf_dump_emit_struct_def(struct btf_dump *d, 965 __u32 id, 966 const struct btf_type *t, 967 int lvl) 968 { 969 const struct btf_member *m = btf_members(t); 970 bool is_struct = btf_is_struct(t); 971 bool packed, prev_bitfield = false; 972 int align, i, off = 0; 973 __u16 vlen = btf_vlen(t); 974 975 align = btf__align_of(d->btf, id); 976 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 977 978 btf_dump_printf(d, "%s%s%s {", 979 is_struct ? "struct" : "union", 980 t->name_off ? " " : "", 981 btf_dump_type_name(d, id)); 982 983 for (i = 0; i < vlen; i++, m++) { 984 const char *fname; 985 int m_off, m_sz, m_align; 986 bool in_bitfield; 987 988 fname = btf_name_of(d, m->name_off); 989 m_sz = btf_member_bitfield_size(t, i); 990 m_off = btf_member_bit_offset(t, i); 991 m_align = packed ? 1 : btf__align_of(d->btf, m->type); 992 993 in_bitfield = prev_bitfield && m_sz != 0; 994 995 btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1); 996 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 997 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 998 999 if (m_sz) { 1000 btf_dump_printf(d, ": %d", m_sz); 1001 off = m_off + m_sz; 1002 prev_bitfield = true; 1003 } else { 1004 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); 1005 off = m_off + m_sz * 8; 1006 prev_bitfield = false; 1007 } 1008 1009 btf_dump_printf(d, ";"); 1010 } 1011 1012 /* pad at the end, if necessary */ 1013 if (is_struct) 1014 btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1); 1015 1016 /* 1017 * Keep `struct empty {}` on a single line, 1018 * only print newline when there are regular or padding fields. 1019 */ 1020 if (vlen || t->size) { 1021 btf_dump_printf(d, "\n"); 1022 btf_dump_printf(d, "%s}", pfx(lvl)); 1023 } else { 1024 btf_dump_printf(d, "}"); 1025 } 1026 if (packed) 1027 btf_dump_printf(d, " __attribute__((packed))"); 1028 } 1029 1030 static const char *missing_base_types[][2] = { 1031 /* 1032 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 1033 * SIMD intrinsics. Alias them to standard base types. 1034 */ 1035 { "__Poly8_t", "unsigned char" }, 1036 { "__Poly16_t", "unsigned short" }, 1037 { "__Poly64_t", "unsigned long long" }, 1038 { "__Poly128_t", "unsigned __int128" }, 1039 }; 1040 1041 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 1042 const struct btf_type *t) 1043 { 1044 const char *name = btf_dump_type_name(d, id); 1045 int i; 1046 1047 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 1048 if (strcmp(name, missing_base_types[i][0]) == 0) { 1049 btf_dump_printf(d, "typedef %s %s;\n\n", 1050 missing_base_types[i][1], name); 1051 break; 1052 } 1053 } 1054 } 1055 1056 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 1057 const struct btf_type *t) 1058 { 1059 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 1060 } 1061 1062 static void btf_dump_emit_enum32_val(struct btf_dump *d, 1063 const struct btf_type *t, 1064 int lvl, __u16 vlen) 1065 { 1066 const struct btf_enum *v = btf_enum(t); 1067 bool is_signed = btf_kflag(t); 1068 const char *fmt_str; 1069 const char *name; 1070 size_t dup_cnt; 1071 int i; 1072 1073 for (i = 0; i < vlen; i++, v++) { 1074 name = btf_name_of(d, v->name_off); 1075 /* enumerators share namespace with typedef idents */ 1076 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1077 if (dup_cnt > 1) { 1078 fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,"; 1079 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val); 1080 } else { 1081 fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,"; 1082 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val); 1083 } 1084 } 1085 } 1086 1087 static void btf_dump_emit_enum64_val(struct btf_dump *d, 1088 const struct btf_type *t, 1089 int lvl, __u16 vlen) 1090 { 1091 const struct btf_enum64 *v = btf_enum64(t); 1092 bool is_signed = btf_kflag(t); 1093 const char *fmt_str; 1094 const char *name; 1095 size_t dup_cnt; 1096 __u64 val; 1097 int i; 1098 1099 for (i = 0; i < vlen; i++, v++) { 1100 name = btf_name_of(d, v->name_off); 1101 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1102 val = btf_enum64_value(v); 1103 if (dup_cnt > 1) { 1104 fmt_str = is_signed ? "\n%s%s___%zd = %lldLL," 1105 : "\n%s%s___%zd = %lluULL,"; 1106 btf_dump_printf(d, fmt_str, 1107 pfx(lvl + 1), name, dup_cnt, 1108 (unsigned long long)val); 1109 } else { 1110 fmt_str = is_signed ? "\n%s%s = %lldLL," 1111 : "\n%s%s = %lluULL,"; 1112 btf_dump_printf(d, fmt_str, 1113 pfx(lvl + 1), name, 1114 (unsigned long long)val); 1115 } 1116 } 1117 } 1118 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 1119 const struct btf_type *t, 1120 int lvl) 1121 { 1122 __u16 vlen = btf_vlen(t); 1123 1124 btf_dump_printf(d, "enum%s%s", 1125 t->name_off ? " " : "", 1126 btf_dump_type_name(d, id)); 1127 1128 if (!vlen) 1129 return; 1130 1131 btf_dump_printf(d, " {"); 1132 if (btf_is_enum(t)) 1133 btf_dump_emit_enum32_val(d, t, lvl, vlen); 1134 else 1135 btf_dump_emit_enum64_val(d, t, lvl, vlen); 1136 btf_dump_printf(d, "\n%s}", pfx(lvl)); 1137 1138 /* special case enums with special sizes */ 1139 if (t->size == 1) { 1140 /* one-byte enums can be forced with mode(byte) attribute */ 1141 btf_dump_printf(d, " __attribute__((mode(byte)))"); 1142 } else if (t->size == 8 && d->ptr_sz == 8) { 1143 /* enum can be 8-byte sized if one of the enumerator values 1144 * doesn't fit in 32-bit integer, or by adding mode(word) 1145 * attribute (but probably only on 64-bit architectures); do 1146 * our best here to try to satisfy the contract without adding 1147 * unnecessary attributes 1148 */ 1149 bool needs_word_mode; 1150 1151 if (btf_is_enum(t)) { 1152 /* enum can't represent 64-bit values, so we need word mode */ 1153 needs_word_mode = true; 1154 } else { 1155 /* enum64 needs mode(word) if none of its values has 1156 * non-zero upper 32-bits (which means that all values 1157 * fit in 32-bit integers and won't cause compiler to 1158 * bump enum to be 64-bit naturally 1159 */ 1160 int i; 1161 1162 needs_word_mode = true; 1163 for (i = 0; i < vlen; i++) { 1164 if (btf_enum64(t)[i].val_hi32 != 0) { 1165 needs_word_mode = false; 1166 break; 1167 } 1168 } 1169 } 1170 if (needs_word_mode) 1171 btf_dump_printf(d, " __attribute__((mode(word)))"); 1172 } 1173 1174 } 1175 1176 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 1177 const struct btf_type *t) 1178 { 1179 const char *name = btf_dump_type_name(d, id); 1180 1181 if (btf_kflag(t)) 1182 btf_dump_printf(d, "union %s", name); 1183 else 1184 btf_dump_printf(d, "struct %s", name); 1185 } 1186 1187 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 1188 const struct btf_type *t, int lvl) 1189 { 1190 const char *name = btf_dump_ident_name(d, id); 1191 1192 /* 1193 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 1194 * pointing to VOID. This generates warnings from btf_dump() and 1195 * results in uncompilable header file, so we are fixing it up here 1196 * with valid typedef into __builtin_va_list. 1197 */ 1198 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 1199 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 1200 return; 1201 } 1202 1203 btf_dump_printf(d, "typedef "); 1204 btf_dump_emit_type_decl(d, t->type, name, lvl); 1205 } 1206 1207 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 1208 { 1209 __u32 *new_stack; 1210 size_t new_cap; 1211 1212 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1213 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1214 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1215 if (!new_stack) 1216 return -ENOMEM; 1217 d->decl_stack = new_stack; 1218 d->decl_stack_cap = new_cap; 1219 } 1220 1221 d->decl_stack[d->decl_stack_cnt++] = id; 1222 1223 return 0; 1224 } 1225 1226 /* 1227 * Emit type declaration (e.g., field type declaration in a struct or argument 1228 * declaration in function prototype) in correct C syntax. 1229 * 1230 * For most types it's trivial, but there are few quirky type declaration 1231 * cases worth mentioning: 1232 * - function prototypes (especially nesting of function prototypes); 1233 * - arrays; 1234 * - const/volatile/restrict for pointers vs other types. 1235 * 1236 * For a good discussion of *PARSING* C syntax (as a human), see 1237 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1238 * Ch.3 "Unscrambling Declarations in C". 1239 * 1240 * It won't help with BTF to C conversion much, though, as it's an opposite 1241 * problem. So we came up with this algorithm in reverse to van der Linden's 1242 * parsing algorithm. It goes from structured BTF representation of type 1243 * declaration to a valid compilable C syntax. 1244 * 1245 * For instance, consider this C typedef: 1246 * typedef const int * const * arr[10] arr_t; 1247 * It will be represented in BTF with this chain of BTF types: 1248 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1249 * 1250 * Notice how [const] modifier always goes before type it modifies in BTF type 1251 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1252 * the right of pointers, but to the left of other types. There are also other 1253 * quirks, like function pointers, arrays of them, functions returning other 1254 * functions, etc. 1255 * 1256 * We handle that by pushing all the types to a stack, until we hit "terminal" 1257 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1258 * top of a stack, modifiers are handled differently. Array/function pointers 1259 * have also wildly different syntax and how nesting of them are done. See 1260 * code for authoritative definition. 1261 * 1262 * To avoid allocating new stack for each independent chain of BTF types, we 1263 * share one bigger stack, with each chain working only on its own local view 1264 * of a stack frame. Some care is required to "pop" stack frames after 1265 * processing type declaration chain. 1266 */ 1267 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1268 const struct btf_dump_emit_type_decl_opts *opts) 1269 { 1270 const char *fname; 1271 int lvl, err; 1272 1273 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1274 return libbpf_err(-EINVAL); 1275 1276 err = btf_dump_resize(d); 1277 if (err) 1278 return libbpf_err(err); 1279 1280 fname = OPTS_GET(opts, field_name, ""); 1281 lvl = OPTS_GET(opts, indent_level, 0); 1282 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1283 btf_dump_emit_type_decl(d, id, fname, lvl); 1284 d->strip_mods = false; 1285 return 0; 1286 } 1287 1288 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1289 const char *fname, int lvl) 1290 { 1291 struct id_stack decl_stack; 1292 const struct btf_type *t; 1293 int err, stack_start; 1294 1295 stack_start = d->decl_stack_cnt; 1296 for (;;) { 1297 t = btf__type_by_id(d->btf, id); 1298 if (d->strip_mods && btf_is_mod(t)) 1299 goto skip_mod; 1300 1301 err = btf_dump_push_decl_stack_id(d, id); 1302 if (err < 0) { 1303 /* 1304 * if we don't have enough memory for entire type decl 1305 * chain, restore stack, emit warning, and try to 1306 * proceed nevertheless 1307 */ 1308 pr_warn("not enough memory for decl stack: %s\n", errstr(err)); 1309 d->decl_stack_cnt = stack_start; 1310 return; 1311 } 1312 skip_mod: 1313 /* VOID */ 1314 if (id == 0) 1315 break; 1316 1317 switch (btf_kind(t)) { 1318 case BTF_KIND_PTR: 1319 case BTF_KIND_VOLATILE: 1320 case BTF_KIND_CONST: 1321 case BTF_KIND_RESTRICT: 1322 case BTF_KIND_FUNC_PROTO: 1323 case BTF_KIND_TYPE_TAG: 1324 id = t->type; 1325 break; 1326 case BTF_KIND_ARRAY: 1327 id = btf_array(t)->type; 1328 break; 1329 case BTF_KIND_INT: 1330 case BTF_KIND_ENUM: 1331 case BTF_KIND_ENUM64: 1332 case BTF_KIND_FWD: 1333 case BTF_KIND_STRUCT: 1334 case BTF_KIND_UNION: 1335 case BTF_KIND_TYPEDEF: 1336 case BTF_KIND_FLOAT: 1337 goto done; 1338 default: 1339 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1340 btf_kind(t), id); 1341 goto done; 1342 } 1343 } 1344 done: 1345 /* 1346 * We might be inside a chain of declarations (e.g., array of function 1347 * pointers returning anonymous (so inlined) structs, having another 1348 * array field). Each of those needs its own "stack frame" to handle 1349 * emitting of declarations. Those stack frames are non-overlapping 1350 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1351 * handle this set of nested stacks, we create a view corresponding to 1352 * our own "stack frame" and work with it as an independent stack. 1353 * We'll need to clean up after emit_type_chain() returns, though. 1354 */ 1355 decl_stack.ids = d->decl_stack + stack_start; 1356 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1357 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1358 /* 1359 * emit_type_chain() guarantees that it will pop its entire decl_stack 1360 * frame before returning. But it works with a read-only view into 1361 * decl_stack, so it doesn't actually pop anything from the 1362 * perspective of shared btf_dump->decl_stack, per se. We need to 1363 * reset decl_stack state to how it was before us to avoid it growing 1364 * all the time. 1365 */ 1366 d->decl_stack_cnt = stack_start; 1367 } 1368 1369 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1370 { 1371 const struct btf_type *t; 1372 __u32 id; 1373 1374 while (decl_stack->cnt) { 1375 id = decl_stack->ids[decl_stack->cnt - 1]; 1376 t = btf__type_by_id(d->btf, id); 1377 1378 switch (btf_kind(t)) { 1379 case BTF_KIND_VOLATILE: 1380 btf_dump_printf(d, "volatile "); 1381 break; 1382 case BTF_KIND_CONST: 1383 btf_dump_printf(d, "const "); 1384 break; 1385 case BTF_KIND_RESTRICT: 1386 btf_dump_printf(d, "restrict "); 1387 break; 1388 default: 1389 return; 1390 } 1391 decl_stack->cnt--; 1392 } 1393 } 1394 1395 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1396 { 1397 const struct btf_type *t; 1398 __u32 id; 1399 1400 while (decl_stack->cnt) { 1401 id = decl_stack->ids[decl_stack->cnt - 1]; 1402 t = btf__type_by_id(d->btf, id); 1403 if (!btf_is_mod(t)) 1404 return; 1405 decl_stack->cnt--; 1406 } 1407 } 1408 1409 static void btf_dump_emit_name(const struct btf_dump *d, 1410 const char *name, bool last_was_ptr) 1411 { 1412 bool separate = name[0] && !last_was_ptr; 1413 1414 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1415 } 1416 1417 static void btf_dump_emit_type_chain(struct btf_dump *d, 1418 struct id_stack *decls, 1419 const char *fname, int lvl) 1420 { 1421 /* 1422 * last_was_ptr is used to determine if we need to separate pointer 1423 * asterisk (*) from previous part of type signature with space, so 1424 * that we get `int ***`, instead of `int * * *`. We default to true 1425 * for cases where we have single pointer in a chain. E.g., in ptr -> 1426 * func_proto case. func_proto will start a new emit_type_chain call 1427 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1428 * don't want to prepend space for that last pointer. 1429 */ 1430 bool last_was_ptr = true; 1431 const struct btf_type *t; 1432 const char *name; 1433 __u16 kind; 1434 __u32 id; 1435 1436 while (decls->cnt) { 1437 id = decls->ids[--decls->cnt]; 1438 if (id == 0) { 1439 /* VOID is a special snowflake */ 1440 btf_dump_emit_mods(d, decls); 1441 btf_dump_printf(d, "void"); 1442 last_was_ptr = false; 1443 continue; 1444 } 1445 1446 t = btf__type_by_id(d->btf, id); 1447 kind = btf_kind(t); 1448 1449 switch (kind) { 1450 case BTF_KIND_INT: 1451 case BTF_KIND_FLOAT: 1452 btf_dump_emit_mods(d, decls); 1453 name = btf_name_of(d, t->name_off); 1454 btf_dump_printf(d, "%s", name); 1455 break; 1456 case BTF_KIND_STRUCT: 1457 case BTF_KIND_UNION: 1458 btf_dump_emit_mods(d, decls); 1459 /* inline anonymous struct/union */ 1460 if (t->name_off == 0 && !d->skip_anon_defs) 1461 btf_dump_emit_struct_def(d, id, t, lvl); 1462 else 1463 btf_dump_emit_struct_fwd(d, id, t); 1464 break; 1465 case BTF_KIND_ENUM: 1466 case BTF_KIND_ENUM64: 1467 btf_dump_emit_mods(d, decls); 1468 /* inline anonymous enum */ 1469 if (t->name_off == 0 && !d->skip_anon_defs) 1470 btf_dump_emit_enum_def(d, id, t, lvl); 1471 else 1472 btf_dump_emit_enum_fwd(d, id, t); 1473 break; 1474 case BTF_KIND_FWD: 1475 btf_dump_emit_mods(d, decls); 1476 btf_dump_emit_fwd_def(d, id, t); 1477 break; 1478 case BTF_KIND_TYPEDEF: 1479 btf_dump_emit_mods(d, decls); 1480 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1481 break; 1482 case BTF_KIND_PTR: 1483 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1484 break; 1485 case BTF_KIND_VOLATILE: 1486 btf_dump_printf(d, " volatile"); 1487 break; 1488 case BTF_KIND_CONST: 1489 btf_dump_printf(d, " const"); 1490 break; 1491 case BTF_KIND_RESTRICT: 1492 btf_dump_printf(d, " restrict"); 1493 break; 1494 case BTF_KIND_TYPE_TAG: 1495 btf_dump_emit_mods(d, decls); 1496 name = btf_name_of(d, t->name_off); 1497 if (btf_kflag(t)) 1498 btf_dump_printf(d, " __attribute__((%s))", name); 1499 else 1500 btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name); 1501 break; 1502 case BTF_KIND_ARRAY: { 1503 const struct btf_array *a = btf_array(t); 1504 const struct btf_type *next_t; 1505 __u32 next_id; 1506 bool multidim; 1507 /* 1508 * GCC has a bug 1509 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1510 * which causes it to emit extra const/volatile 1511 * modifiers for an array, if array's element type has 1512 * const/volatile modifiers. Clang doesn't do that. 1513 * In general, it doesn't seem very meaningful to have 1514 * a const/volatile modifier for array, so we are 1515 * going to silently skip them here. 1516 */ 1517 btf_dump_drop_mods(d, decls); 1518 1519 if (decls->cnt == 0) { 1520 btf_dump_emit_name(d, fname, last_was_ptr); 1521 btf_dump_printf(d, "[%u]", a->nelems); 1522 return; 1523 } 1524 1525 next_id = decls->ids[decls->cnt - 1]; 1526 next_t = btf__type_by_id(d->btf, next_id); 1527 multidim = btf_is_array(next_t); 1528 /* we need space if we have named non-pointer */ 1529 if (fname[0] && !last_was_ptr) 1530 btf_dump_printf(d, " "); 1531 /* no parentheses for multi-dimensional array */ 1532 if (!multidim) 1533 btf_dump_printf(d, "("); 1534 btf_dump_emit_type_chain(d, decls, fname, lvl); 1535 if (!multidim) 1536 btf_dump_printf(d, ")"); 1537 btf_dump_printf(d, "[%u]", a->nelems); 1538 return; 1539 } 1540 case BTF_KIND_FUNC_PROTO: { 1541 const struct btf_param *p = btf_params(t); 1542 __u16 vlen = btf_vlen(t); 1543 int i; 1544 1545 /* 1546 * GCC emits extra volatile qualifier for 1547 * __attribute__((noreturn)) function pointers. Clang 1548 * doesn't do it. It's a GCC quirk for backwards 1549 * compatibility with code written for GCC <2.5. So, 1550 * similarly to extra qualifiers for array, just drop 1551 * them, instead of handling them. 1552 */ 1553 btf_dump_drop_mods(d, decls); 1554 if (decls->cnt) { 1555 btf_dump_printf(d, " ("); 1556 btf_dump_emit_type_chain(d, decls, fname, lvl); 1557 btf_dump_printf(d, ")"); 1558 } else { 1559 btf_dump_emit_name(d, fname, last_was_ptr); 1560 } 1561 btf_dump_printf(d, "("); 1562 /* 1563 * Clang for BPF target generates func_proto with no 1564 * args as a func_proto with a single void arg (e.g., 1565 * `int (*f)(void)` vs just `int (*f)()`). We are 1566 * going to emit valid empty args (void) syntax for 1567 * such case. Similarly and conveniently, valid 1568 * no args case can be special-cased here as well. 1569 */ 1570 if (vlen == 0 || (vlen == 1 && p->type == 0)) { 1571 btf_dump_printf(d, "void)"); 1572 return; 1573 } 1574 1575 for (i = 0; i < vlen; i++, p++) { 1576 if (i > 0) 1577 btf_dump_printf(d, ", "); 1578 1579 /* last arg of type void is vararg */ 1580 if (i == vlen - 1 && p->type == 0) { 1581 btf_dump_printf(d, "..."); 1582 break; 1583 } 1584 1585 name = btf_name_of(d, p->name_off); 1586 btf_dump_emit_type_decl(d, p->type, name, lvl); 1587 } 1588 1589 btf_dump_printf(d, ")"); 1590 return; 1591 } 1592 default: 1593 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1594 kind, id); 1595 return; 1596 } 1597 1598 last_was_ptr = kind == BTF_KIND_PTR; 1599 } 1600 1601 btf_dump_emit_name(d, fname, last_was_ptr); 1602 } 1603 1604 /* show type name as (type_name) */ 1605 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id, 1606 bool top_level) 1607 { 1608 const struct btf_type *t; 1609 1610 /* for array members, we don't bother emitting type name for each 1611 * member to avoid the redundancy of 1612 * .name = (char[4])[(char)'f',(char)'o',(char)'o',] 1613 */ 1614 if (d->typed_dump->is_array_member) 1615 return; 1616 1617 /* avoid type name specification for variable/section; it will be done 1618 * for the associated variable value(s). 1619 */ 1620 t = btf__type_by_id(d->btf, id); 1621 if (btf_is_var(t) || btf_is_datasec(t)) 1622 return; 1623 1624 if (top_level) 1625 btf_dump_printf(d, "("); 1626 1627 d->skip_anon_defs = true; 1628 d->strip_mods = true; 1629 btf_dump_emit_type_decl(d, id, "", 0); 1630 d->strip_mods = false; 1631 d->skip_anon_defs = false; 1632 1633 if (top_level) 1634 btf_dump_printf(d, ")"); 1635 } 1636 1637 /* return number of duplicates (occurrences) of a given name */ 1638 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1639 const char *orig_name) 1640 { 1641 char *old_name, *new_name; 1642 size_t dup_cnt = 0; 1643 int err; 1644 1645 new_name = strdup(orig_name); 1646 if (!new_name) 1647 return 1; 1648 1649 (void)hashmap__find(name_map, orig_name, &dup_cnt); 1650 dup_cnt++; 1651 1652 err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL); 1653 if (err) 1654 free(new_name); 1655 1656 free(old_name); 1657 1658 return dup_cnt; 1659 } 1660 1661 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1662 struct hashmap *name_map) 1663 { 1664 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1665 const struct btf_type *t = btf__type_by_id(d->btf, id); 1666 const char *orig_name = btf_name_of(d, t->name_off); 1667 const char **cached_name = &d->cached_names[id]; 1668 size_t dup_cnt; 1669 1670 if (t->name_off == 0) 1671 return ""; 1672 1673 if (s->name_resolved) 1674 return *cached_name ? *cached_name : orig_name; 1675 1676 if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) { 1677 s->name_resolved = 1; 1678 return orig_name; 1679 } 1680 1681 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1682 if (dup_cnt > 1) { 1683 const size_t max_len = 256; 1684 char new_name[max_len]; 1685 1686 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1687 *cached_name = strdup(new_name); 1688 } 1689 1690 s->name_resolved = 1; 1691 return *cached_name ? *cached_name : orig_name; 1692 } 1693 1694 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1695 { 1696 return btf_dump_resolve_name(d, id, d->type_names); 1697 } 1698 1699 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1700 { 1701 return btf_dump_resolve_name(d, id, d->ident_names); 1702 } 1703 1704 static int btf_dump_dump_type_data(struct btf_dump *d, 1705 const char *fname, 1706 const struct btf_type *t, 1707 __u32 id, 1708 const void *data, 1709 __u8 bits_offset, 1710 __u8 bit_sz); 1711 1712 static const char *btf_dump_data_newline(struct btf_dump *d) 1713 { 1714 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n"; 1715 } 1716 1717 static const char *btf_dump_data_delim(struct btf_dump *d) 1718 { 1719 return d->typed_dump->depth == 0 ? "" : ","; 1720 } 1721 1722 static void btf_dump_data_pfx(struct btf_dump *d) 1723 { 1724 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth; 1725 1726 if (d->typed_dump->compact) 1727 return; 1728 1729 for (i = 0; i < lvl; i++) 1730 btf_dump_printf(d, "%s", d->typed_dump->indent_str); 1731 } 1732 1733 /* A macro is used here as btf_type_value[s]() appends format specifiers 1734 * to the format specifier passed in; these do the work of appending 1735 * delimiters etc while the caller simply has to specify the type values 1736 * in the format specifier + value(s). 1737 */ 1738 #define btf_dump_type_values(d, fmt, ...) \ 1739 btf_dump_printf(d, fmt "%s%s", \ 1740 ##__VA_ARGS__, \ 1741 btf_dump_data_delim(d), \ 1742 btf_dump_data_newline(d)) 1743 1744 static int btf_dump_unsupported_data(struct btf_dump *d, 1745 const struct btf_type *t, 1746 __u32 id) 1747 { 1748 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t)); 1749 return -ENOTSUP; 1750 } 1751 1752 static int btf_dump_get_bitfield_value(struct btf_dump *d, 1753 const struct btf_type *t, 1754 const void *data, 1755 __u8 bits_offset, 1756 __u8 bit_sz, 1757 __u64 *value) 1758 { 1759 __u16 left_shift_bits, right_shift_bits; 1760 const __u8 *bytes = data; 1761 __u8 nr_copy_bits; 1762 __u64 num = 0; 1763 int i; 1764 1765 /* Maximum supported bitfield size is 64 bits */ 1766 if (t->size > 8) { 1767 pr_warn("unexpected bitfield size %d\n", t->size); 1768 return -EINVAL; 1769 } 1770 1771 /* Bitfield value retrieval is done in two steps; first relevant bytes are 1772 * stored in num, then we left/right shift num to eliminate irrelevant bits. 1773 */ 1774 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1775 for (i = t->size - 1; i >= 0; i--) 1776 num = num * 256 + bytes[i]; 1777 nr_copy_bits = bit_sz + bits_offset; 1778 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1779 for (i = 0; i < t->size; i++) 1780 num = num * 256 + bytes[i]; 1781 nr_copy_bits = t->size * 8 - bits_offset; 1782 #else 1783 # error "Unrecognized __BYTE_ORDER__" 1784 #endif 1785 left_shift_bits = 64 - nr_copy_bits; 1786 right_shift_bits = 64 - bit_sz; 1787 1788 *value = (num << left_shift_bits) >> right_shift_bits; 1789 1790 return 0; 1791 } 1792 1793 static int btf_dump_bitfield_check_zero(struct btf_dump *d, 1794 const struct btf_type *t, 1795 const void *data, 1796 __u8 bits_offset, 1797 __u8 bit_sz) 1798 { 1799 __u64 check_num; 1800 int err; 1801 1802 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num); 1803 if (err) 1804 return err; 1805 if (check_num == 0) 1806 return -ENODATA; 1807 return 0; 1808 } 1809 1810 static int btf_dump_bitfield_data(struct btf_dump *d, 1811 const struct btf_type *t, 1812 const void *data, 1813 __u8 bits_offset, 1814 __u8 bit_sz) 1815 { 1816 __u64 print_num; 1817 int err; 1818 1819 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num); 1820 if (err) 1821 return err; 1822 1823 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num); 1824 1825 return 0; 1826 } 1827 1828 /* ints, floats and ptrs */ 1829 static int btf_dump_base_type_check_zero(struct btf_dump *d, 1830 const struct btf_type *t, 1831 __u32 id, 1832 const void *data) 1833 { 1834 static __u8 bytecmp[16] = {}; 1835 int nr_bytes; 1836 1837 /* For pointer types, pointer size is not defined on a per-type basis. 1838 * On dump creation however, we store the pointer size. 1839 */ 1840 if (btf_kind(t) == BTF_KIND_PTR) 1841 nr_bytes = d->ptr_sz; 1842 else 1843 nr_bytes = t->size; 1844 1845 if (nr_bytes < 1 || nr_bytes > 16) { 1846 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id); 1847 return -EINVAL; 1848 } 1849 1850 if (memcmp(data, bytecmp, nr_bytes) == 0) 1851 return -ENODATA; 1852 return 0; 1853 } 1854 1855 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id, 1856 const void *data) 1857 { 1858 int alignment = btf__align_of(btf, type_id); 1859 1860 if (alignment == 0) 1861 return false; 1862 1863 return ((uintptr_t)data) % alignment == 0; 1864 } 1865 1866 static int btf_dump_int_data(struct btf_dump *d, 1867 const struct btf_type *t, 1868 __u32 type_id, 1869 const void *data, 1870 __u8 bits_offset) 1871 { 1872 __u8 encoding = btf_int_encoding(t); 1873 bool sign = encoding & BTF_INT_SIGNED; 1874 char buf[16] __attribute__((aligned(16))); 1875 int sz = t->size; 1876 1877 if (sz == 0 || sz > sizeof(buf)) { 1878 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1879 return -EINVAL; 1880 } 1881 1882 /* handle packed int data - accesses of integers not aligned on 1883 * int boundaries can cause problems on some platforms. 1884 */ 1885 if (!ptr_is_aligned(d->btf, type_id, data)) { 1886 memcpy(buf, data, sz); 1887 data = buf; 1888 } 1889 1890 switch (sz) { 1891 case 16: { 1892 const __u64 *ints = data; 1893 __u64 lsi, msi; 1894 1895 /* avoid use of __int128 as some 32-bit platforms do not 1896 * support it. 1897 */ 1898 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1899 lsi = ints[0]; 1900 msi = ints[1]; 1901 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1902 lsi = ints[1]; 1903 msi = ints[0]; 1904 #else 1905 # error "Unrecognized __BYTE_ORDER__" 1906 #endif 1907 if (msi == 0) 1908 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi); 1909 else 1910 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi, 1911 (unsigned long long)lsi); 1912 break; 1913 } 1914 case 8: 1915 if (sign) 1916 btf_dump_type_values(d, "%lld", *(long long *)data); 1917 else 1918 btf_dump_type_values(d, "%llu", *(unsigned long long *)data); 1919 break; 1920 case 4: 1921 if (sign) 1922 btf_dump_type_values(d, "%d", *(__s32 *)data); 1923 else 1924 btf_dump_type_values(d, "%u", *(__u32 *)data); 1925 break; 1926 case 2: 1927 if (sign) 1928 btf_dump_type_values(d, "%d", *(__s16 *)data); 1929 else 1930 btf_dump_type_values(d, "%u", *(__u16 *)data); 1931 break; 1932 case 1: 1933 if (d->typed_dump->is_array_char) { 1934 /* check for null terminator */ 1935 if (d->typed_dump->is_array_terminated) 1936 break; 1937 if (*(char *)data == '\0') { 1938 btf_dump_type_values(d, "'\\0'"); 1939 d->typed_dump->is_array_terminated = true; 1940 break; 1941 } 1942 if (isprint(*(char *)data)) { 1943 btf_dump_type_values(d, "'%c'", *(char *)data); 1944 break; 1945 } 1946 } 1947 if (sign) 1948 btf_dump_type_values(d, "%d", *(__s8 *)data); 1949 else 1950 btf_dump_type_values(d, "%u", *(__u8 *)data); 1951 break; 1952 default: 1953 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id); 1954 return -EINVAL; 1955 } 1956 return 0; 1957 } 1958 1959 union float_data { 1960 long double ld; 1961 double d; 1962 float f; 1963 }; 1964 1965 static int btf_dump_float_data(struct btf_dump *d, 1966 const struct btf_type *t, 1967 __u32 type_id, 1968 const void *data) 1969 { 1970 const union float_data *flp = data; 1971 union float_data fl; 1972 int sz = t->size; 1973 1974 /* handle unaligned data; copy to local union */ 1975 if (!ptr_is_aligned(d->btf, type_id, data)) { 1976 memcpy(&fl, data, sz); 1977 flp = &fl; 1978 } 1979 1980 switch (sz) { 1981 case 16: 1982 btf_dump_type_values(d, "%Lf", flp->ld); 1983 break; 1984 case 8: 1985 btf_dump_type_values(d, "%lf", flp->d); 1986 break; 1987 case 4: 1988 btf_dump_type_values(d, "%f", flp->f); 1989 break; 1990 default: 1991 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1992 return -EINVAL; 1993 } 1994 return 0; 1995 } 1996 1997 static int btf_dump_var_data(struct btf_dump *d, 1998 const struct btf_type *v, 1999 __u32 id, 2000 const void *data) 2001 { 2002 enum btf_func_linkage linkage = btf_var(v)->linkage; 2003 const struct btf_type *t; 2004 const char *l; 2005 __u32 type_id; 2006 2007 switch (linkage) { 2008 case BTF_FUNC_STATIC: 2009 l = "static "; 2010 break; 2011 case BTF_FUNC_EXTERN: 2012 l = "extern "; 2013 break; 2014 case BTF_FUNC_GLOBAL: 2015 default: 2016 l = ""; 2017 break; 2018 } 2019 2020 /* format of output here is [linkage] [type] [varname] = (type)value, 2021 * for example "static int cpu_profile_flip = (int)1" 2022 */ 2023 btf_dump_printf(d, "%s", l); 2024 type_id = v->type; 2025 t = btf__type_by_id(d->btf, type_id); 2026 btf_dump_emit_type_cast(d, type_id, false); 2027 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off)); 2028 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0); 2029 } 2030 2031 static int btf_dump_array_data(struct btf_dump *d, 2032 const struct btf_type *t, 2033 __u32 id, 2034 const void *data) 2035 { 2036 const struct btf_array *array = btf_array(t); 2037 const struct btf_type *elem_type; 2038 __u32 i, elem_type_id; 2039 __s64 elem_size; 2040 bool is_array_member; 2041 bool is_array_terminated; 2042 2043 elem_type_id = array->type; 2044 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2045 elem_size = btf__resolve_size(d->btf, elem_type_id); 2046 if (elem_size <= 0) { 2047 pr_warn("unexpected elem size %zd for array type [%u]\n", 2048 (ssize_t)elem_size, id); 2049 return -EINVAL; 2050 } 2051 2052 if (btf_is_int(elem_type)) { 2053 /* 2054 * BTF_INT_CHAR encoding never seems to be set for 2055 * char arrays, so if size is 1 and element is 2056 * printable as a char, we'll do that. 2057 */ 2058 if (elem_size == 1) 2059 d->typed_dump->is_array_char = true; 2060 } 2061 2062 /* note that we increment depth before calling btf_dump_print() below; 2063 * this is intentional. btf_dump_data_newline() will not print a 2064 * newline for depth 0 (since this leaves us with trailing newlines 2065 * at the end of typed display), so depth is incremented first. 2066 * For similar reasons, we decrement depth before showing the closing 2067 * parenthesis. 2068 */ 2069 d->typed_dump->depth++; 2070 btf_dump_printf(d, "[%s", btf_dump_data_newline(d)); 2071 2072 /* may be a multidimensional array, so store current "is array member" 2073 * status so we can restore it correctly later. 2074 */ 2075 is_array_member = d->typed_dump->is_array_member; 2076 d->typed_dump->is_array_member = true; 2077 is_array_terminated = d->typed_dump->is_array_terminated; 2078 d->typed_dump->is_array_terminated = false; 2079 for (i = 0; i < array->nelems; i++, data += elem_size) { 2080 if (d->typed_dump->is_array_terminated) 2081 break; 2082 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0); 2083 } 2084 d->typed_dump->is_array_member = is_array_member; 2085 d->typed_dump->is_array_terminated = is_array_terminated; 2086 d->typed_dump->depth--; 2087 btf_dump_data_pfx(d); 2088 btf_dump_type_values(d, "]"); 2089 2090 return 0; 2091 } 2092 2093 static int btf_dump_struct_data(struct btf_dump *d, 2094 const struct btf_type *t, 2095 __u32 id, 2096 const void *data) 2097 { 2098 const struct btf_member *m = btf_members(t); 2099 __u16 n = btf_vlen(t); 2100 int i, err = 0; 2101 2102 /* note that we increment depth before calling btf_dump_print() below; 2103 * this is intentional. btf_dump_data_newline() will not print a 2104 * newline for depth 0 (since this leaves us with trailing newlines 2105 * at the end of typed display), so depth is incremented first. 2106 * For similar reasons, we decrement depth before showing the closing 2107 * parenthesis. 2108 */ 2109 d->typed_dump->depth++; 2110 btf_dump_printf(d, "{%s", btf_dump_data_newline(d)); 2111 2112 for (i = 0; i < n; i++, m++) { 2113 const struct btf_type *mtype; 2114 const char *mname; 2115 __u32 moffset; 2116 __u8 bit_sz; 2117 2118 mtype = btf__type_by_id(d->btf, m->type); 2119 mname = btf_name_of(d, m->name_off); 2120 moffset = btf_member_bit_offset(t, i); 2121 2122 bit_sz = btf_member_bitfield_size(t, i); 2123 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8, 2124 moffset % 8, bit_sz); 2125 if (err < 0) 2126 return err; 2127 } 2128 d->typed_dump->depth--; 2129 btf_dump_data_pfx(d); 2130 btf_dump_type_values(d, "}"); 2131 return err; 2132 } 2133 2134 union ptr_data { 2135 unsigned int p; 2136 unsigned long long lp; 2137 }; 2138 2139 static int btf_dump_ptr_data(struct btf_dump *d, 2140 const struct btf_type *t, 2141 __u32 id, 2142 const void *data) 2143 { 2144 if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) { 2145 btf_dump_type_values(d, "%p", *(void **)data); 2146 } else { 2147 union ptr_data pt; 2148 2149 memcpy(&pt, data, d->ptr_sz); 2150 if (d->ptr_sz == 4) 2151 btf_dump_type_values(d, "0x%x", pt.p); 2152 else 2153 btf_dump_type_values(d, "0x%llx", pt.lp); 2154 } 2155 return 0; 2156 } 2157 2158 static int btf_dump_get_enum_value(struct btf_dump *d, 2159 const struct btf_type *t, 2160 const void *data, 2161 __u32 id, 2162 __s64 *value) 2163 { 2164 bool is_signed = btf_kflag(t); 2165 2166 if (!ptr_is_aligned(d->btf, id, data)) { 2167 __u64 val; 2168 int err; 2169 2170 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val); 2171 if (err) 2172 return err; 2173 *value = (__s64)val; 2174 return 0; 2175 } 2176 2177 switch (t->size) { 2178 case 8: 2179 *value = *(__s64 *)data; 2180 return 0; 2181 case 4: 2182 *value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data; 2183 return 0; 2184 case 2: 2185 *value = is_signed ? *(__s16 *)data : *(__u16 *)data; 2186 return 0; 2187 case 1: 2188 *value = is_signed ? *(__s8 *)data : *(__u8 *)data; 2189 return 0; 2190 default: 2191 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id); 2192 return -EINVAL; 2193 } 2194 } 2195 2196 static int btf_dump_enum_data(struct btf_dump *d, 2197 const struct btf_type *t, 2198 __u32 id, 2199 const void *data) 2200 { 2201 bool is_signed; 2202 __s64 value; 2203 int i, err; 2204 2205 err = btf_dump_get_enum_value(d, t, data, id, &value); 2206 if (err) 2207 return err; 2208 2209 is_signed = btf_kflag(t); 2210 if (btf_is_enum(t)) { 2211 const struct btf_enum *e; 2212 2213 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) { 2214 if (value != e->val) 2215 continue; 2216 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2217 return 0; 2218 } 2219 2220 btf_dump_type_values(d, is_signed ? "%d" : "%u", value); 2221 } else { 2222 const struct btf_enum64 *e; 2223 2224 for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) { 2225 if (value != btf_enum64_value(e)) 2226 continue; 2227 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2228 return 0; 2229 } 2230 2231 btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL", 2232 (unsigned long long)value); 2233 } 2234 return 0; 2235 } 2236 2237 static int btf_dump_datasec_data(struct btf_dump *d, 2238 const struct btf_type *t, 2239 __u32 id, 2240 const void *data) 2241 { 2242 const struct btf_var_secinfo *vsi; 2243 const struct btf_type *var; 2244 __u32 i; 2245 int err; 2246 2247 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off)); 2248 2249 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) { 2250 var = btf__type_by_id(d->btf, vsi->type); 2251 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0); 2252 if (err < 0) 2253 return err; 2254 btf_dump_printf(d, ";"); 2255 } 2256 return 0; 2257 } 2258 2259 /* return size of type, or if base type overflows, return -E2BIG. */ 2260 static int btf_dump_type_data_check_overflow(struct btf_dump *d, 2261 const struct btf_type *t, 2262 __u32 id, 2263 const void *data, 2264 __u8 bits_offset, 2265 __u8 bit_sz) 2266 { 2267 __s64 size; 2268 2269 if (bit_sz) { 2270 /* bits_offset is at most 7. bit_sz is at most 128. */ 2271 __u8 nr_bytes = (bits_offset + bit_sz + 7) / 8; 2272 2273 /* When bit_sz is non zero, it is called from 2274 * btf_dump_struct_data() where it only cares about 2275 * negative error value. 2276 * Return nr_bytes in success case to make it 2277 * consistent as the regular integer case below. 2278 */ 2279 return data + nr_bytes > d->typed_dump->data_end ? -E2BIG : nr_bytes; 2280 } 2281 2282 size = btf__resolve_size(d->btf, id); 2283 2284 if (size < 0 || size >= INT_MAX) { 2285 pr_warn("unexpected size [%zu] for id [%u]\n", 2286 (size_t)size, id); 2287 return -EINVAL; 2288 } 2289 2290 /* Only do overflow checking for base types; we do not want to 2291 * avoid showing part of a struct, union or array, even if we 2292 * do not have enough data to show the full object. By 2293 * restricting overflow checking to base types we can ensure 2294 * that partial display succeeds, while avoiding overflowing 2295 * and using bogus data for display. 2296 */ 2297 t = skip_mods_and_typedefs(d->btf, id, NULL); 2298 if (!t) { 2299 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", 2300 id); 2301 return -EINVAL; 2302 } 2303 2304 switch (btf_kind(t)) { 2305 case BTF_KIND_INT: 2306 case BTF_KIND_FLOAT: 2307 case BTF_KIND_PTR: 2308 case BTF_KIND_ENUM: 2309 case BTF_KIND_ENUM64: 2310 if (data + bits_offset / 8 + size > d->typed_dump->data_end) 2311 return -E2BIG; 2312 break; 2313 default: 2314 break; 2315 } 2316 return (int)size; 2317 } 2318 2319 static int btf_dump_type_data_check_zero(struct btf_dump *d, 2320 const struct btf_type *t, 2321 __u32 id, 2322 const void *data, 2323 __u8 bits_offset, 2324 __u8 bit_sz) 2325 { 2326 __s64 value; 2327 int i, err; 2328 2329 /* toplevel exceptions; we show zero values if 2330 * - we ask for them (emit_zeros) 2331 * - if we are at top-level so we see "struct empty { }" 2332 * - or if we are an array member and the array is non-empty and 2333 * not a char array; we don't want to be in a situation where we 2334 * have an integer array 0, 1, 0, 1 and only show non-zero values. 2335 * If the array contains zeroes only, or is a char array starting 2336 * with a '\0', the array-level check_zero() will prevent showing it; 2337 * we are concerned with determining zero value at the array member 2338 * level here. 2339 */ 2340 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 || 2341 (d->typed_dump->is_array_member && 2342 !d->typed_dump->is_array_char)) 2343 return 0; 2344 2345 t = skip_mods_and_typedefs(d->btf, id, NULL); 2346 2347 switch (btf_kind(t)) { 2348 case BTF_KIND_INT: 2349 if (bit_sz) 2350 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz); 2351 return btf_dump_base_type_check_zero(d, t, id, data); 2352 case BTF_KIND_FLOAT: 2353 case BTF_KIND_PTR: 2354 return btf_dump_base_type_check_zero(d, t, id, data); 2355 case BTF_KIND_ARRAY: { 2356 const struct btf_array *array = btf_array(t); 2357 const struct btf_type *elem_type; 2358 __u32 elem_type_id, elem_size; 2359 bool ischar; 2360 2361 elem_type_id = array->type; 2362 elem_size = btf__resolve_size(d->btf, elem_type_id); 2363 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2364 2365 ischar = btf_is_int(elem_type) && elem_size == 1; 2366 2367 /* check all elements; if _any_ element is nonzero, all 2368 * of array is displayed. We make an exception however 2369 * for char arrays where the first element is 0; these 2370 * are considered zeroed also, even if later elements are 2371 * non-zero because the string is terminated. 2372 */ 2373 for (i = 0; i < array->nelems; i++) { 2374 if (i == 0 && ischar && *(char *)data == 0) 2375 return -ENODATA; 2376 err = btf_dump_type_data_check_zero(d, elem_type, 2377 elem_type_id, 2378 data + 2379 (i * elem_size), 2380 bits_offset, 0); 2381 if (err != -ENODATA) 2382 return err; 2383 } 2384 return -ENODATA; 2385 } 2386 case BTF_KIND_STRUCT: 2387 case BTF_KIND_UNION: { 2388 const struct btf_member *m = btf_members(t); 2389 __u16 n = btf_vlen(t); 2390 2391 /* if any struct/union member is non-zero, the struct/union 2392 * is considered non-zero and dumped. 2393 */ 2394 for (i = 0; i < n; i++, m++) { 2395 const struct btf_type *mtype; 2396 __u32 moffset; 2397 2398 mtype = btf__type_by_id(d->btf, m->type); 2399 moffset = btf_member_bit_offset(t, i); 2400 2401 /* btf_int_bits() does not store member bitfield size; 2402 * bitfield size needs to be stored here so int display 2403 * of member can retrieve it. 2404 */ 2405 bit_sz = btf_member_bitfield_size(t, i); 2406 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8, 2407 moffset % 8, bit_sz); 2408 if (err != ENODATA) 2409 return err; 2410 } 2411 return -ENODATA; 2412 } 2413 case BTF_KIND_ENUM: 2414 case BTF_KIND_ENUM64: 2415 err = btf_dump_get_enum_value(d, t, data, id, &value); 2416 if (err) 2417 return err; 2418 if (value == 0) 2419 return -ENODATA; 2420 return 0; 2421 default: 2422 return 0; 2423 } 2424 } 2425 2426 /* returns size of data dumped, or error. */ 2427 static int btf_dump_dump_type_data(struct btf_dump *d, 2428 const char *fname, 2429 const struct btf_type *t, 2430 __u32 id, 2431 const void *data, 2432 __u8 bits_offset, 2433 __u8 bit_sz) 2434 { 2435 int size, err = 0; 2436 2437 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset, bit_sz); 2438 if (size < 0) 2439 return size; 2440 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz); 2441 if (err) { 2442 /* zeroed data is expected and not an error, so simply skip 2443 * dumping such data. Record other errors however. 2444 */ 2445 if (err == -ENODATA) 2446 return size; 2447 return err; 2448 } 2449 btf_dump_data_pfx(d); 2450 2451 if (!d->typed_dump->skip_names) { 2452 if (fname && strlen(fname) > 0) 2453 btf_dump_printf(d, ".%s = ", fname); 2454 btf_dump_emit_type_cast(d, id, true); 2455 } 2456 2457 t = skip_mods_and_typedefs(d->btf, id, NULL); 2458 2459 switch (btf_kind(t)) { 2460 case BTF_KIND_UNKN: 2461 case BTF_KIND_FWD: 2462 case BTF_KIND_FUNC: 2463 case BTF_KIND_FUNC_PROTO: 2464 case BTF_KIND_DECL_TAG: 2465 err = btf_dump_unsupported_data(d, t, id); 2466 break; 2467 case BTF_KIND_INT: 2468 if (bit_sz) 2469 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz); 2470 else 2471 err = btf_dump_int_data(d, t, id, data, bits_offset); 2472 break; 2473 case BTF_KIND_FLOAT: 2474 err = btf_dump_float_data(d, t, id, data); 2475 break; 2476 case BTF_KIND_PTR: 2477 err = btf_dump_ptr_data(d, t, id, data); 2478 break; 2479 case BTF_KIND_ARRAY: 2480 err = btf_dump_array_data(d, t, id, data); 2481 break; 2482 case BTF_KIND_STRUCT: 2483 case BTF_KIND_UNION: 2484 err = btf_dump_struct_data(d, t, id, data); 2485 break; 2486 case BTF_KIND_ENUM: 2487 case BTF_KIND_ENUM64: 2488 /* handle bitfield and int enum values */ 2489 if (bit_sz) { 2490 __u64 print_num; 2491 __s64 enum_val; 2492 2493 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, 2494 &print_num); 2495 if (err) 2496 break; 2497 enum_val = (__s64)print_num; 2498 err = btf_dump_enum_data(d, t, id, &enum_val); 2499 } else 2500 err = btf_dump_enum_data(d, t, id, data); 2501 break; 2502 case BTF_KIND_VAR: 2503 err = btf_dump_var_data(d, t, id, data); 2504 break; 2505 case BTF_KIND_DATASEC: 2506 err = btf_dump_datasec_data(d, t, id, data); 2507 break; 2508 default: 2509 pr_warn("unexpected kind [%u] for id [%u]\n", 2510 BTF_INFO_KIND(t->info), id); 2511 return -EINVAL; 2512 } 2513 if (err < 0) 2514 return err; 2515 return size; 2516 } 2517 2518 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, 2519 const void *data, size_t data_sz, 2520 const struct btf_dump_type_data_opts *opts) 2521 { 2522 struct btf_dump_data typed_dump = {}; 2523 const struct btf_type *t; 2524 int ret; 2525 2526 if (!OPTS_VALID(opts, btf_dump_type_data_opts)) 2527 return libbpf_err(-EINVAL); 2528 2529 t = btf__type_by_id(d->btf, id); 2530 if (!t) 2531 return libbpf_err(-ENOENT); 2532 2533 d->typed_dump = &typed_dump; 2534 d->typed_dump->data_end = data + data_sz; 2535 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0); 2536 2537 /* default indent string is a tab */ 2538 if (!OPTS_GET(opts, indent_str, NULL)) 2539 d->typed_dump->indent_str[0] = '\t'; 2540 else 2541 libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str, 2542 sizeof(d->typed_dump->indent_str)); 2543 2544 d->typed_dump->compact = OPTS_GET(opts, compact, false); 2545 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false); 2546 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false); 2547 2548 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0); 2549 2550 d->typed_dump = NULL; 2551 2552 return libbpf_err(ret); 2553 } 2554