xref: /freebsd/sys/contrib/openzfs/include/sys/btree.h (revision 4e8d558c9d1cf3e7e424e3fb123b01979c3d57f2)
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 /*
16  * Copyright (c) 2019 by Delphix. All rights reserved.
17  */
18 
19 #ifndef	_BTREE_H
20 #define	_BTREE_H
21 
22 #ifdef	__cplusplus
23 extern "C" {
24 #endif
25 
26 #include	<sys/zfs_context.h>
27 
28 /*
29  * This file defines the interface for a B-Tree implementation for ZFS. The
30  * tree can be used to store arbitrary sortable data types with low overhead
31  * and good operation performance. In addition the tree intelligently
32  * optimizes bulk in-order insertions to improve memory use and performance.
33  *
34  * Note that for all B-Tree functions, the values returned are pointers to the
35  * internal copies of the data in the tree. The internal data can only be
36  * safely mutated if the changes cannot change the ordering of the element
37  * with respect to any other elements in the tree.
38  *
39  * The major drawback of the B-Tree is that any returned elements or indexes
40  * are only valid until a side-effectful operation occurs, since these can
41  * result in reallocation or relocation of data. Side effectful operations are
42  * defined as insertion, removal, and zfs_btree_destroy_nodes.
43  *
44  * The B-Tree has two types of nodes: core nodes, and leaf nodes. Core
45  * nodes have an array of children pointing to other nodes, and an array of
46  * elements that act as separators between the elements of the subtrees rooted
47  * at its children. Leaf nodes only contain data elements, and form the bottom
48  * layer of the tree. Unlike B+ Trees, in this B-Tree implementation the
49  * elements in the core nodes are not copies of or references to leaf node
50  * elements.  Each element occurs only once in the tree, no matter what kind
51  * of node it is in.
52  *
53  * The tree's height is the same throughout, unlike many other forms of search
54  * tree. Each node (except for the root) must be between half minus one and
55  * completely full of elements (and children) at all times. Any operation that
56  * would put the node outside of that range results in a rebalancing operation
57  * (taking, merging, or splitting).
58  *
59  * This tree was implemented using descriptions from Wikipedia's articles on
60  * B-Trees and B+ Trees.
61  */
62 
63 /*
64  * Decreasing these values results in smaller memmove operations, but more of
65  * them, and increased memory overhead. Increasing these values results in
66  * higher variance in operation time, and reduces memory overhead.
67  */
68 #define	BTREE_CORE_ELEMS	126
69 #define	BTREE_LEAF_SIZE		4096
70 
71 extern kmem_cache_t *zfs_btree_leaf_cache;
72 
73 typedef struct zfs_btree_hdr {
74 	struct zfs_btree_core	*bth_parent;
75 	/*
76 	 * Set to -1 to indicate core nodes. Other values represent first
77 	 * valid element offset for leaf nodes.
78 	 */
79 	uint32_t		bth_first;
80 	/*
81 	 * For both leaf and core nodes, represents the number of elements in
82 	 * the node. For core nodes, they will have bth_count + 1 children.
83 	 */
84 	uint32_t		bth_count;
85 } zfs_btree_hdr_t;
86 
87 typedef struct zfs_btree_core {
88 	zfs_btree_hdr_t	btc_hdr;
89 	zfs_btree_hdr_t	*btc_children[BTREE_CORE_ELEMS + 1];
90 	uint8_t		btc_elems[];
91 } zfs_btree_core_t;
92 
93 typedef struct zfs_btree_leaf {
94 	zfs_btree_hdr_t	btl_hdr;
95 	uint8_t		btl_elems[];
96 } zfs_btree_leaf_t;
97 
98 typedef struct zfs_btree_index {
99 	zfs_btree_hdr_t	*bti_node;
100 	uint32_t	bti_offset;
101 	/*
102 	 * True if the location is before the list offset, false if it's at
103 	 * the listed offset.
104 	 */
105 	boolean_t	bti_before;
106 } zfs_btree_index_t;
107 
108 typedef struct btree zfs_btree_t;
109 typedef void * (*bt_find_in_buf_f) (zfs_btree_t *, uint8_t *, uint32_t,
110     const void *, zfs_btree_index_t *);
111 
112 struct btree {
113 	int (*bt_compar) (const void *, const void *);
114 	bt_find_in_buf_f	bt_find_in_buf;
115 	size_t			bt_elem_size;
116 	size_t			bt_leaf_size;
117 	uint32_t		bt_leaf_cap;
118 	int32_t			bt_height;
119 	uint64_t		bt_num_elems;
120 	uint64_t		bt_num_nodes;
121 	zfs_btree_hdr_t		*bt_root;
122 	zfs_btree_leaf_t	*bt_bulk; // non-null if bulk loading
123 };
124 
125 /*
126  * Implementation of Shar's algorithm designed to accelerate binary search by
127  * eliminating impossible to predict branches.
128  *
129  * For optimality, this should be used to generate the search function in the
130  * same file as the comparator  and the comparator should be marked
131  * `__attribute__((always_inline) inline` so that the compiler will inline it.
132  *
133  * Arguments are:
134  *
135  * NAME   - The function name for this instance of the search function. Use it
136  *          in a subsequent call to zfs_btree_create().
137  * T      - The element type stored inside the B-Tree.
138  * COMP   - A comparator to compare two nodes, it must return exactly: -1, 0,
139  *          or +1 -1 for <, 0 for ==, and +1 for >. For trivial comparisons,
140  *          TREE_CMP() from avl.h can be used in a boilerplate function.
141  */
142 /* BEGIN CSTYLED */
143 #define	ZFS_BTREE_FIND_IN_BUF_FUNC(NAME, T, COMP)			\
144 _Pragma("GCC diagnostic push")						\
145 _Pragma("GCC diagnostic ignored \"-Wunknown-pragmas\"")			\
146 static void *								\
147 NAME(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems,			\
148     const void *value, zfs_btree_index_t *where)			\
149 {									\
150 	T *i = (T *)buf;						\
151 	(void) tree;							\
152 	_Pragma("GCC unroll 9")						\
153 	while (nelems > 1) {						\
154 		uint32_t half = nelems / 2;				\
155 		nelems -= half;						\
156 		i += (COMP(&i[half - 1], value) < 0) * half;		\
157 	}								\
158 									\
159 	int comp = COMP(i, value);					\
160 	where->bti_offset = (i - (T *)buf) + (comp < 0);		\
161 	where->bti_before = (comp != 0);				\
162 									\
163 	if (comp == 0) {						\
164 		return (i);						\
165 	}								\
166 									\
167 	return (NULL);							\
168 }									\
169 _Pragma("GCC diagnostic pop")
170 /* END CSTYLED */
171 
172 /*
173  * Allocate and deallocate caches for btree nodes.
174  */
175 void zfs_btree_init(void);
176 void zfs_btree_fini(void);
177 
178 /*
179  * Initialize an B-Tree. Arguments are:
180  *
181  * tree   - the tree to be initialized
182  * compar - function to compare two nodes, it must return exactly: -1, 0, or +1
183  *          -1 for <, 0 for ==, and +1 for >
184  * find   - optional function to accelerate searches inside B-Tree nodes
185  *          through Shar's algorithm and comparator inlining. Setting this to
186  *          NULL will use a generic function. The function should be created
187  *          using ZFS_BTREE_FIND_IN_BUF_FUNC() in the same file as compar.
188  *          compar should be marked `__attribute__((always_inline)) inline` or
189  *          performance is unlikely to improve very much.
190  * size   - the value of sizeof(struct my_type)
191  * lsize  - custom leaf size
192  */
193 void zfs_btree_create(zfs_btree_t *, int (*) (const void *, const void *),
194     bt_find_in_buf_f, size_t);
195 void zfs_btree_create_custom(zfs_btree_t *, int (*)(const void *, const void *),
196     bt_find_in_buf_f, size_t, size_t);
197 
198 /*
199  * Find a node with a matching value in the tree. Returns the matching node
200  * found. If not found, it returns NULL and then if "where" is not NULL it sets
201  * "where" for use with zfs_btree_add_idx() or zfs_btree_nearest().
202  *
203  * node   - node that has the value being looked for
204  * where  - position for use with zfs_btree_nearest() or zfs_btree_add_idx(),
205  *          may be NULL
206  */
207 void *zfs_btree_find(zfs_btree_t *, const void *, zfs_btree_index_t *);
208 
209 /*
210  * Insert a node into the tree.
211  *
212  * node   - the node to insert
213  * where  - position as returned from zfs_btree_find()
214  */
215 void zfs_btree_add_idx(zfs_btree_t *, const void *, const zfs_btree_index_t *);
216 
217 /*
218  * Return the first or last valued node in the tree. Will return NULL if the
219  * tree is empty. The index can be NULL if the location of the first or last
220  * element isn't required.
221  */
222 void *zfs_btree_first(zfs_btree_t *, zfs_btree_index_t *);
223 void *zfs_btree_last(zfs_btree_t *, zfs_btree_index_t *);
224 
225 /*
226  * Return the next or previous valued node in the tree. The second index can
227  * safely be NULL, if the location of the next or previous value isn't
228  * required.
229  */
230 void *zfs_btree_next(zfs_btree_t *, const zfs_btree_index_t *,
231     zfs_btree_index_t *);
232 void *zfs_btree_prev(zfs_btree_t *, const zfs_btree_index_t *,
233     zfs_btree_index_t *);
234 
235 /*
236  * Get a value from a tree and an index.
237  */
238 void *zfs_btree_get(zfs_btree_t *, zfs_btree_index_t *);
239 
240 /*
241  * Add a single value to the tree. The value must not compare equal to any
242  * other node already in the tree. Note that the value will be copied out, not
243  * inserted directly. It is safe to free or destroy the value once this
244  * function returns.
245  */
246 void zfs_btree_add(zfs_btree_t *, const void *);
247 
248 /*
249  * Remove a single value from the tree.  The value must be in the tree. The
250  * pointer passed in may be a pointer into a tree-controlled buffer, but it
251  * need not be.
252  */
253 void zfs_btree_remove(zfs_btree_t *, const void *);
254 
255 /*
256  * Remove the value at the given location from the tree.
257  */
258 void zfs_btree_remove_idx(zfs_btree_t *, zfs_btree_index_t *);
259 
260 /*
261  * Return the number of nodes in the tree
262  */
263 ulong_t zfs_btree_numnodes(zfs_btree_t *);
264 
265 /*
266  * Used to destroy any remaining nodes in a tree. The cookie argument should
267  * be initialized to NULL before the first call. Returns a node that has been
268  * removed from the tree and may be free()'d. Returns NULL when the tree is
269  * empty.
270  *
271  * Once you call zfs_btree_destroy_nodes(), you can only continuing calling it
272  * and finally zfs_btree_destroy(). No other B-Tree routines will be valid.
273  *
274  * cookie - an index used to save state between calls to
275  * zfs_btree_destroy_nodes()
276  *
277  * EXAMPLE:
278  *	zfs_btree_t *tree;
279  *	struct my_data *node;
280  *	zfs_btree_index_t *cookie;
281  *
282  *	cookie = NULL;
283  *	while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
284  *		data_destroy(node);
285  *	zfs_btree_destroy(tree);
286  */
287 void *zfs_btree_destroy_nodes(zfs_btree_t *, zfs_btree_index_t **);
288 
289 /*
290  * Destroys all nodes in the tree quickly. This doesn't give the caller an
291  * opportunity to iterate over each node and do its own cleanup; for that, use
292  * zfs_btree_destroy_nodes().
293  */
294 void zfs_btree_clear(zfs_btree_t *);
295 
296 /*
297  * Final destroy of an B-Tree. Arguments are:
298  *
299  * tree   - the empty tree to destroy
300  */
301 void zfs_btree_destroy(zfs_btree_t *tree);
302 
303 /* Runs a variety of self-checks on the btree to verify integrity. */
304 void zfs_btree_verify(zfs_btree_t *tree);
305 
306 #ifdef	__cplusplus
307 }
308 #endif
309 
310 #endif	/* _BTREE_H */
311