1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * The "bscbus" driver provides access to the LOMlite2 virtual registers,
26 * so that its clients (children) need not be concerned with the details
27 * of the access mechanism, which in this case is implemented via a
28 * packet-based protocol over a Xbus (similar to ebus) parallel link to the
29 * H8 host interface registers.
30 *
31 * On the other hand, this driver doesn't generally know what the virtual
32 * registers signify - only the clients need this information.
33 */
34
35
36 #include <sys/note.h>
37 #include <sys/types.h>
38 #include <sys/conf.h>
39 #include <sys/debug.h>
40 #include <sys/errno.h>
41 #include <sys/file.h>
42
43 #if defined(__sparc)
44 #include <sys/intr.h>
45 #include <sys/membar.h>
46 #endif
47
48 #include <sys/kmem.h>
49 #include <sys/modctl.h>
50 #include <sys/note.h>
51 #include <sys/open.h>
52 #include <sys/poll.h>
53 #include <sys/spl.h>
54 #include <sys/stat.h>
55 #include <sys/strlog.h>
56 #include <sys/atomic.h>
57
58 #include <sys/ddi.h>
59 #include <sys/sunddi.h>
60 #include <sys/sunndi.h>
61
62 #include <sys/bscbus.h>
63
64 #if defined(NDI_ACC_HDL_V2)
65
66 /*
67 * Compiling for Solaris 10+ with access handle enhancements
68 */
69 #define HANDLE_TYPE ndi_acc_handle_t
70 #define HANDLE_ADDR(hdlp) (hdlp->ah_addr)
71 #define HANDLE_FAULT(hdlp) (hdlp->ah_fault)
72 #define HANDLE_MAPLEN(hdlp) (hdlp->ah_len)
73 #define HANDLE_PRIVATE(hdlp) (hdlp->ah_bus_private)
74
75 #else
76
77 /*
78 * Compatibility definitions for backport to Solaris 8/9
79 */
80 #define HANDLE_TYPE ddi_acc_impl_t
81 #define HANDLE_ADDR(hdlp) (hdlp->ahi_common.ah_addr)
82 #define HANDLE_FAULT(hdlp) (hdlp->ahi_fault)
83 #define HANDLE_MAPLEN(hdlp) (hdlp->ahi_common.ah_len)
84 #define HANDLE_PRIVATE(hdlp) (hdlp->ahi_common.ah_bus_private)
85
86 #define ddi_driver_major(dip) ddi_name_to_major(ddi_binding_name(dip))
87
88 #endif /* NDI_ACC_HDL_V2 */
89
90
91 /*
92 * Local definitions
93 */
94 #define MYNAME "bscbus"
95 #define NOMAJOR (~(major_t)0)
96 #define DUMMY_VALUE (~(int8_t)0)
97
98 #define BSCBUS_INST_TO_MINOR(i) (i)
99 #define BSCBUS_MINOR_TO_INST(m) (m)
100
101 #define BSCBUS_MAX_CHANNELS (4)
102
103 #define BSCBUS_DUMMY_ADDRESS ((caddr_t)0x0CADD1ED)
104 #define ADDR_TO_OFFSET(a, hdlp) ((caddr_t)(a) - HANDLE_ADDR(hdlp))
105 #define ADDR_TO_VREG(a) ((caddr_t)(a) - BSCBUS_DUMMY_ADDRESS)
106 #define VREG_TO_ADDR(v) (BSCBUS_DUMMY_ADDRESS + (v))
107
108 #ifdef DEBUG
109 #define BSCBUS_LOGSTATUS
110 #endif /* DEBUG */
111
112 #ifdef BSCBUS_LOGSTATUS
113 /*
114 * BSC command logging routines.
115 * Record the data passing to and from the BSC
116 */
117
118 typedef enum {
119 BSC_CMD_BUSY = 1, /* bsc reports busy */
120 BSC_CMD_CLEARING = 2, /* clearing bsc busy */
121 BSC_CMD_CLEARED = 3, /* cleared bsc busy */
122 BSC_CMD_SENDING = 4, /* sending next byte */
123 BSC_CMD_SENT = 5, /* sending last byte */
124 BSC_CMD_PENDING = 6, /* got sent byte ack */
125 BSC_CMD_REPLY = 7, /* got reply byte */
126 BSC_CMD_COMPLETE = 8, /* command complete */
127 BSC_CMD_ERROR_SEQ = 9, /* error status */
128 BSC_CMD_ERROR_STATUS = 10, /* error status */
129 BSC_CMD_ERROR_OFLOW = 11, /* error status */
130 BSC_CMD_ERROR_TOUT = 12, /* error status */
131
132 BSC_CMD_PROCESS = 13, /* async intr */
133 BSC_CMD_V1INTR = 14, /* v1 intr */
134 BSC_CMD_V1INTRUNCL = 15, /* v1 intr unclaim */
135 BSC_CMD_DOGPAT = 17 /* watchdog pat */
136 } bsc_cmd_stamp_t;
137
138 typedef struct {
139 hrtime_t bcl_now;
140 int bcl_seq;
141 bsc_cmd_stamp_t bcl_cat;
142 uint8_t bcl_chno;
143 uint8_t bcl_cmdstate;
144 uint8_t bcl_status;
145 uint8_t bcl_data;
146 } bsc_cmd_log_t;
147
148 uint32_t bscbus_cmd_log_size = 1024;
149
150 uint32_t bscbus_cmd_log_flags = 0xffffffff;
151
152 #endif /* BSCBUS_LOGSTATUS */
153
154 /*
155 * The following definitions are taken from the Hardware Manual for
156 * the Hitachi H8S/2148 in conjunction with the hardware specification
157 * for the Stiletto blade.
158 *
159 * Each instance of the host interface has 3 registers on the H8:
160 * IDRn - Input Data Register - write-only for Solaris.
161 * writes to this can be done via two
162 * addresses - control and data.
163 * The H8 can determine which address was
164 * written by examining the C/D bit in
165 * the status register.
166 * ODRn - Output Data Register - read-only for Solaris.
167 * A read has the side effect of acknowledging
168 * interrupts.
169 * STRn - Status Register - read-only for Solaris.
170 *
171 *
172 *
173 * In terms of host access to this the Input and Output data registers are
174 * mapped at the same address.
175 */
176 #define H8_IDRD 0
177 #define H8_IDRC 1
178 #define H8_ODR 0
179 #define H8_STR 1
180
181 #define H8_STR_OBF 0x01 /* data available in ODR */
182 #define H8_STR_IBF 0x02 /* data for H8 in IDR */
183 #define H8_STR_IDRC 0x08 /* last write to IDR was to IDRC */
184 /* 0=data, 1=command */
185 #define H8_STR_BUSY 0x04 /* H8 busy processing command */
186 #define H8_STR_TOKENPROTOCOL 0x80 /* token-passing protocol */
187
188 /*
189 * Packet format ...
190 */
191 #define BSCBUS_MASK 0xc0 /* Byte-type bits */
192 #define BSCBUS_PARAM 0x00 /* Parameter byte: 0b0xxxxxxx */
193 #define BSCBUS_LAST 0x80 /* Last byte of packet */
194 #define BSCBUS_CMD 0x80 /* Command byte: 0b10###XWV */
195 #define BSCBUS_STATUS 0xc0 /* Status byte: 0b11###AEV */
196
197 #define BSCBUS_SEQ 0x38 /* Sequence number bits */
198 #define BSCBUS_SEQ_LSB 0x08 /* Sequence number LSB */
199 #define BSCBUS_CMD_XADDR 0x04 /* Extended (2-byte) addressing */
200 #define BSCBUS_CMD_WRITE 0x02 /* Write command */
201 #define BSCBUS_CMD_WMSB 0x01 /* Set MSB on Write */
202 #define BSCBUS_CMD_READ 0x01 /* Read command */
203 #define BSCBUS_CMD_NOP 0x00 /* NOP command */
204
205 #define BSCBUS_STATUS_ASYNC 0x04 /* Asynchronous event pending */
206 #define BSCBUS_STATUS_ERR 0x02 /* Error in command processing */
207 #define BSCBUS_STATUS_MSB 0x01 /* MSB of Value read */
208
209 #define BSCBUS_VREG_LO(x) ((x) & ((1 << 7) - 1))
210 #define BSCBUS_VREG_HI(x) ((x) >> 7)
211
212 #define BSCBUS_BUFSIZE 8
213
214 #define BSCBUS_CHANNEL_TO_OFFSET(chno) ((chno) * 2) /* Register offset */
215
216 /*
217 * Time periods, in nanoseconds
218 *
219 * Note that LOMBUS_ONE_SEC and some other time
220 * periods are defined in <sys/lombus.h>
221 */
222 #define BSCBUS_CMD_POLL (LOMBUS_ONE_SEC)
223 #define BSCBUS_CMD_POLLNOINTS (LOMBUS_ONE_SEC/20)
224 #define BSCBUS_HWRESET_POLL (LOMBUS_ONE_SEC/20)
225 #define BSCBUS_HWRESET_TIMEOUT (LOMBUS_ONE_SEC*2)
226
227 #define BSCBUS_DOG_PAT_POLL_LIMIT (1000)
228 #define BSCBUS_DOG_PAT_POLL (1)
229 #define BSCBUS_PAT_RETRY_LIMIT 5
230
231 /*
232 * Local datatypes
233 */
234 enum bscbus_cmdstate {
235 BSCBUS_CMDSTATE_IDLE, /* No transaction in progress */
236 BSCBUS_CMDSTATE_BUSY, /* Setting up command */
237 BSCBUS_CMDSTATE_CLEARING, /* Clearing firmware busy status */
238 BSCBUS_CMDSTATE_SENDING, /* Waiting to send data to f/w */
239 BSCBUS_CMDSTATE_PENDING, /* Waiting for ack from f/w */
240 BSCBUS_CMDSTATE_WAITING, /* Waiting for status from f/w */
241 BSCBUS_CMDSTATE_READY, /* Status received/command done */
242 BSCBUS_CMDSTATE_ERROR /* Command failed with error */
243 };
244
245 struct bscbus_channel_state {
246 /* Changes to these are protected by the instance ch_mutex mutex */
247 struct bscbus_state *ssp;
248 uint8_t *ch_regs;
249 ddi_acc_handle_t ch_handle; /* per channel access handle */
250 unsigned int chno;
251 unsigned int map_count; /* Number of mappings to channel */
252 boolean_t map_dog; /* channel is mapped for watchdog */
253
254 /*
255 * Flag to indicate that we've incurred a hardware fault on
256 * accesses to the H8; once this is set, we fake all further
257 * accesses in order not to provoke additional bus errors.
258 */
259 boolean_t xio_fault;
260
261 /*
262 * Data protected by the dog_mutex: the watchdog-patting
263 * protocol data (since the dog can be patted from a high-level
264 * cyclic), and the interrupt-enabled flag.
265 */
266 kmutex_t dog_mutex[1];
267 unsigned int pat_retry_count;
268 unsigned int pat_fail_count;
269
270 /*
271 * Serial protocol state data, protected by lo_mutex
272 * (which is initialised using <lo_iblk>)
273 */
274 kmutex_t lo_mutex[1];
275 ddi_iblock_cookie_t lo_iblk;
276 kcondvar_t lo_cv[1];
277 int unclaimed_count;
278
279 volatile enum bscbus_cmdstate cmdstate;
280 clock_t deadline;
281 clock_t poll_hz;
282 boolean_t interrupt_failed;
283 uint8_t cmdbuf[BSCBUS_BUFSIZE];
284 uint8_t *cmdp; /* Points to last tx'd in cmdbuf */
285 uint8_t reply[BSCBUS_BUFSIZE];
286 uint8_t async;
287 uint8_t index;
288 uint8_t result;
289 uint8_t sequence;
290 uint32_t error;
291 };
292
293 #define BSCBUS_TX_PENDING(csp) ((csp)->cmdp > (csp)->cmdbuf)
294
295 /*
296 * This driver's soft-state structure
297 */
298
299 struct bscbus_state {
300 /*
301 * Configuration data, set during attach
302 */
303 dev_info_t *dip;
304 major_t majornum;
305 int instance;
306
307 ddi_acc_handle_t h8_handle;
308 uint8_t *h8_regs;
309
310 /*
311 * Parameters derived from .conf properties
312 */
313 uint32_t debug;
314
315 /*
316 * Flag to indicate that we are using per channel
317 * mapping of the register sets and interrupts.
318 * reg set 0 is chan 0
319 * reg set 1 is chan 1 ...
320 *
321 * Interrupts are specified in that order but later
322 * channels may not have interrupts.
323 */
324 boolean_t per_channel_regs;
325
326 /*
327 * channel state data, protected by ch_mutex
328 * channel claim/release requests are protected by this mutex.
329 */
330 kmutex_t ch_mutex[1];
331 struct bscbus_channel_state channel[BSCBUS_MAX_CHANNELS];
332
333 #ifdef BSCBUS_LOGSTATUS
334 /*
335 * Command logging buffer for recording transactions with the
336 * BSC. This is useful for debugging failed transactions and other
337 * such funnies.
338 */
339 bsc_cmd_log_t *cmd_log;
340 uint32_t cmd_log_idx;
341 uint32_t cmd_log_size;
342 uint32_t cmd_log_flags;
343 #endif /* BSCBUS_LOGSTATUS */
344 };
345
346 /*
347 * The auxiliary structure attached to each child
348 * (the child's parent-private-data points to this).
349 */
350 struct bscbus_child_info {
351 lombus_regspec_t *rsp;
352 int nregs;
353 };
354
355 #ifdef BSCBUS_LOGSTATUS
356 void bscbus_cmd_log(struct bscbus_channel_state *, bsc_cmd_stamp_t,
357 uint8_t, uint8_t);
358 #else /* BSCBUS_LOGSTATUS */
359 #define bscbus_cmd_log(state, stamp, status, data)
360 #endif /* BSCBUS_LOGSTATUS */
361
362
363 /*
364 * Local data
365 */
366
367 static void *bscbus_statep;
368
369 static major_t bscbus_major = NOMAJOR;
370
371 static ddi_device_acc_attr_t bscbus_dev_acc_attr[1] = {
372 DDI_DEVICE_ATTR_V0,
373 DDI_STRUCTURE_LE_ACC,
374 DDI_STRICTORDER_ACC
375 };
376
377
378 /*
379 * General utility routines ...
380 */
381
382 #ifdef DEBUG
383 static void
bscbus_trace(struct bscbus_channel_state * csp,char code,const char * caller,const char * fmt,...)384 bscbus_trace(struct bscbus_channel_state *csp, char code, const char *caller,
385 const char *fmt, ...)
386 {
387 char buf[256];
388 char *p;
389 va_list va;
390
391 if (csp->ssp->debug & (1 << (code-'@'))) {
392 p = buf;
393 (void) snprintf(p, sizeof (buf) - (p - buf),
394 "%s/%s: ", MYNAME, caller);
395 p += strlen(p);
396
397 va_start(va, fmt);
398 (void) vsnprintf(p, sizeof (buf) - (p - buf), fmt, va);
399 va_end(va);
400
401 buf[sizeof (buf) - 1] = '\0';
402 (void) strlog(csp->ssp->majornum, csp->ssp->instance,
403 code, SL_TRACE, buf);
404 }
405 }
406 #else /* DEBUG */
407 #define bscbus_trace
408 #endif /* DEBUG */
409
410 static struct bscbus_state *
bscbus_getstate(dev_info_t * dip,int instance,const char * caller)411 bscbus_getstate(dev_info_t *dip, int instance, const char *caller)
412 {
413 struct bscbus_state *ssp = NULL;
414 dev_info_t *sdip = NULL;
415 major_t dmaj = NOMAJOR;
416
417 if (dip != NULL) {
418 /*
419 * Use the instance number from the <dip>; also,
420 * check that it really corresponds to this driver
421 */
422 instance = ddi_get_instance(dip);
423 dmaj = ddi_driver_major(dip);
424 if (bscbus_major == NOMAJOR && dmaj != NOMAJOR)
425 bscbus_major = dmaj;
426 else if (dmaj != bscbus_major) {
427 cmn_err(CE_WARN,
428 "%s: major number mismatch (%d vs. %d) in %s(),"
429 "probably due to child misconfiguration",
430 MYNAME, bscbus_major, dmaj, caller);
431 instance = -1;
432 }
433 }
434
435 if (instance >= 0)
436 ssp = ddi_get_soft_state(bscbus_statep, instance);
437 if (ssp != NULL) {
438 sdip = ssp->dip;
439 if (dip == NULL && sdip == NULL)
440 ssp = NULL;
441 else if (dip != NULL && sdip != NULL && sdip != dip) {
442 cmn_err(CE_WARN,
443 "%s: devinfo mismatch (%p vs. %p) in %s(), "
444 "probably due to child misconfiguration",
445 MYNAME, (void *)dip, (void *)sdip, caller);
446 ssp = NULL;
447 }
448 }
449
450 return (ssp);
451 }
452
453 /*
454 * Lowest-level I/O register read/write
455 */
456
457 static void
bscbus_put_reg(struct bscbus_channel_state * csp,uint_t reg,uint8_t val)458 bscbus_put_reg(struct bscbus_channel_state *csp, uint_t reg, uint8_t val)
459 {
460 if (csp->ch_handle != NULL && !csp->xio_fault) {
461 ddi_put8(csp->ch_handle,
462 csp->ch_regs + reg, val);
463 }
464 }
465
466 static uint8_t
bscbus_get_reg(struct bscbus_channel_state * csp,uint_t reg)467 bscbus_get_reg(struct bscbus_channel_state *csp, uint_t reg)
468 {
469 uint8_t val;
470
471 if (csp->ch_handle != NULL && !csp->xio_fault)
472 val = ddi_get8(csp->ch_handle,
473 csp->ch_regs + reg);
474 else
475 val = DUMMY_VALUE;
476
477 return (val);
478 }
479
480 static void
bscbus_check_fault_status(struct bscbus_channel_state * csp)481 bscbus_check_fault_status(struct bscbus_channel_state *csp)
482 {
483 csp->xio_fault =
484 ddi_check_acc_handle(csp->ch_handle) != DDI_SUCCESS;
485 }
486
487 static boolean_t
bscbus_faulty(struct bscbus_channel_state * csp)488 bscbus_faulty(struct bscbus_channel_state *csp)
489 {
490 if (!csp->xio_fault)
491 bscbus_check_fault_status(csp);
492 return (csp->xio_fault);
493 }
494
495 /*
496 * Write data into h8 registers
497 */
498 static void
bscbus_pat_dog(struct bscbus_channel_state * csp,uint8_t val)499 bscbus_pat_dog(struct bscbus_channel_state *csp, uint8_t val)
500 {
501 uint8_t status;
502 uint32_t doglimit = BSCBUS_DOG_PAT_POLL_LIMIT;
503
504 bscbus_trace(csp, 'W', "bscbus_pat_dog:", "");
505
506 bscbus_cmd_log(csp, BSC_CMD_DOGPAT, 0, val);
507 status = bscbus_get_reg(csp, H8_STR);
508 while (status & H8_STR_IBF) {
509 if (csp->pat_retry_count > BSCBUS_PAT_RETRY_LIMIT) {
510 /*
511 * Previous attempts to contact BSC have failed.
512 * Do not bother waiting for it to eat previous
513 * data.
514 * Pat anyway just in case the BSC is really alive
515 * and the IBF bit is lying.
516 */
517 bscbus_put_reg(csp, H8_IDRC, val);
518 bscbus_trace(csp, 'W', "bscbus_pat_dog:",
519 "retry count exceeded");
520 return;
521 }
522 if (--doglimit == 0) {
523 /* The BSC is not responding - give up */
524 csp->pat_fail_count++;
525 csp->pat_retry_count++;
526 /* Pat anyway just in case the BSC is really alive */
527 bscbus_put_reg(csp, H8_IDRC, val);
528 bscbus_trace(csp, 'W', "bscbus_pat_dog:",
529 "poll limit exceeded");
530 return;
531 }
532 drv_usecwait(BSCBUS_DOG_PAT_POLL);
533 status = bscbus_get_reg(csp, H8_STR);
534 }
535 bscbus_put_reg(csp, H8_IDRC, val);
536 csp->pat_retry_count = 0;
537 }
538
539 /*
540 * State diagrams for how bscbus_process works.
541 * BSCBUS_CMDSTATE_IDLE No transaction in progress
542 * BSCBUS_CMDSTATE_BUSY Setting up command
543 * BSCBUS_CMDSTATE_CLEARING Clearing firmware busy status
544 * BSCBUS_CMDSTATE_SENDING Waiting to send data to f/w
545 * BSCBUS_CMDSTATE_PENDING Waiting for ack from f/w
546 * BSCBUS_CMDSTATE_WAITING Waiting for status from f/w
547 * BSCBUS_CMDSTATE_READY Status received/command done
548 * BSCBUS_CMDSTATE_ERROR Command failed with error
549 *
550 * +----------+
551 * | |
552 * | IDLE/BUSY|
553 * | (0/1) | abnormal
554 * +----------+ state
555 * | \ detected
556 * | \------>------+ +----<---+
557 * bsc | | | |
558 * is | V V |
559 * ready| +----------+ |
560 * | | | ^
561 * | | CLEARING | |
562 * | | (2) | |
563 * | +----------+ |
564 * | cleared / | \ | more to clear
565 * | / | \-->--+
566 * | +-------<-------/ V
567 * | | |
568 * V V |timeout
569 * +----------+ timeout |
570 * | |------>---------+--------+
571 * | SENDING | |
572 * | (3) |------<-------+ |
573 * +----------+ | V
574 * sent| \ send ^ack |
575 * last| \ next |received |
576 * | \ +----------+ |
577 * | \ | | |
578 * | \------>| PENDING |-->-+
579 * | | (4) | |
580 * | +----------+ |timeout
581 * | +---<----+ |
582 * | | | |
583 * V V | |
584 * +----------+ | |
585 * | | | |
586 * | WAITING | ^ |
587 * | (5) | | |
588 * +----------+ | |
589 * | | |more | |
590 * | V |required| |
591 * done| | +--->----+ |
592 * | +--->--------------+ +---<---+
593 * | error/timeout | |
594 * V V V
595 * +----------+ +----------+
596 * | | | |
597 * | READY | | ERROR |
598 * | (7) | | (6) |
599 * +----------+ +----------+
600 * | |
601 * V V
602 * | |
603 * +------>---+---<------+
604 * |
605 * |
606 * Back to
607 * Idle
608 */
609
610 static void
bscbus_process_sending(struct bscbus_channel_state * csp,uint8_t status)611 bscbus_process_sending(struct bscbus_channel_state *csp, uint8_t status)
612 {
613 /*
614 * When we get here we actually expect H8_STR_IBF to
615 * be clear but we check just in case of problems.
616 */
617 ASSERT(BSCBUS_TX_PENDING(csp));
618 if (!(status & H8_STR_IBF)) {
619 bscbus_put_reg(csp, H8_IDRD, *--csp->cmdp);
620 bscbus_trace(csp, 'P', "bscbus_process_sending",
621 "state %d; val $%x",
622 csp->cmdstate, *csp->cmdp);
623 if (!BSCBUS_TX_PENDING(csp)) {
624 bscbus_cmd_log(csp, BSC_CMD_SENT,
625 status, *csp->cmdp);
626 /* No more pending - move to waiting state */
627 bscbus_trace(csp, 'P', "bscbus_process_sending",
628 "moving to waiting");
629 csp->cmdstate = BSCBUS_CMDSTATE_WAITING;
630 /* Extend deadline because time has moved on */
631 csp->deadline = ddi_get_lbolt() +
632 drv_usectohz(LOMBUS_CMD_TIMEOUT/1000);
633 } else {
634 /* Wait for ack of this byte */
635 bscbus_cmd_log(csp, BSC_CMD_SENDING,
636 status, *csp->cmdp);
637 csp->cmdstate = BSCBUS_CMDSTATE_PENDING;
638 bscbus_trace(csp, 'P', "bscbus_process_sending",
639 "moving to pending");
640 }
641 }
642 }
643
644 static void
bscbus_process_clearing(struct bscbus_channel_state * csp,uint8_t status,uint8_t data)645 bscbus_process_clearing(struct bscbus_channel_state *csp,
646 uint8_t status, uint8_t data)
647 {
648 /*
649 * We only enter this state if H8_STR_BUSY was set when
650 * we started the transaction. We just ignore all received
651 * data until we see OBF set AND BUSY cleared.
652 * It is not good enough to see BUSY clear on its own
653 */
654 if ((status & H8_STR_OBF) && !(status & H8_STR_BUSY)) {
655 bscbus_cmd_log(csp, BSC_CMD_CLEARED, status, data);
656 csp->cmdstate = BSCBUS_CMDSTATE_SENDING;
657 /* Throw away any data received up until now */
658 bscbus_trace(csp, 'P', "bscbus_process_clearing",
659 "busy cleared");
660 /*
661 * Send the next byte immediately.
662 * At this stage we should clear the OBF flag because that
663 * data has been used. IBF is still valid so do not clear that.
664 */
665 status &= ~(H8_STR_OBF);
666 bscbus_process_sending(csp, status);
667 } else {
668 if (status & H8_STR_OBF) {
669 bscbus_cmd_log(csp, BSC_CMD_CLEARING, status, data);
670 }
671 }
672 }
673
674 static void
bscbus_process_pending(struct bscbus_channel_state * csp,uint8_t status)675 bscbus_process_pending(struct bscbus_channel_state *csp, uint8_t status)
676 {
677 /* We are waiting for an acknowledgement of a byte */
678 if (status & H8_STR_OBF) {
679 bscbus_cmd_log(csp, BSC_CMD_PENDING,
680 status, *csp->cmdp);
681 bscbus_trace(csp, 'P', "bscbus_process_pending",
682 "moving to sending");
683 csp->cmdstate = BSCBUS_CMDSTATE_SENDING;
684 /*
685 * Send the next byte immediately.
686 * At this stage we should clear the OBF flag because that
687 * data has been used. IBF is still valid so do not clear that.
688 */
689 status &= ~(H8_STR_OBF);
690 bscbus_process_sending(csp, status);
691 }
692 }
693
694 static boolean_t
bscbus_process_waiting(struct bscbus_channel_state * csp,uint8_t status,uint8_t data)695 bscbus_process_waiting(struct bscbus_channel_state *csp,
696 uint8_t status, uint8_t data)
697 {
698 uint8_t rcvd = 0;
699 boolean_t ready = B_FALSE;
700 uint8_t tmp;
701
702 if (status & H8_STR_OBF) {
703 csp->reply[rcvd = csp->index] = data;
704 if (++rcvd < BSCBUS_BUFSIZE)
705 csp->index = rcvd;
706
707 bscbus_trace(csp, 'D', "bscbus_process_waiting",
708 "rcvd %d: $%02x $%02x $%02x $%02x $%02x $%02x $%02x $%02x",
709 rcvd,
710 csp->reply[0], csp->reply[1],
711 csp->reply[2], csp->reply[3],
712 csp->reply[4], csp->reply[5],
713 csp->reply[6], csp->reply[7]);
714 }
715
716 if (rcvd == 0) {
717 /*
718 * No bytes received this time through (though there
719 * might be a partial packet sitting in the buffer).
720 */
721 /* EMPTY */
722 ;
723 } else if (rcvd >= BSCBUS_BUFSIZE) {
724 /*
725 * Buffer overflow; discard the data & treat as an error
726 * (even if the last byte read did claim to terminate a
727 * packet, it can't be a valid one 'cos it's too long!)
728 */
729 bscbus_cmd_log(csp, BSC_CMD_ERROR_OFLOW, status, data);
730 csp->index = 0;
731 csp->cmdstate = BSCBUS_CMDSTATE_ERROR;
732 csp->error = LOMBUS_ERR_OFLOW;
733 ready = B_TRUE;
734 } else if ((data & BSCBUS_LAST) == 0) {
735 /*
736 * Packet not yet complete; leave the partial packet in
737 * the buffer for later ...
738 */
739 bscbus_cmd_log(csp, BSC_CMD_REPLY, status, data);
740 } else if ((data & BSCBUS_MASK) != BSCBUS_STATUS) {
741 /* Invalid "status" byte - maybe an echo of the command? */
742 bscbus_cmd_log(csp, BSC_CMD_ERROR_STATUS, status, data);
743
744 csp->cmdstate = BSCBUS_CMDSTATE_ERROR;
745 csp->error = LOMBUS_ERR_BADSTATUS;
746 ready = B_TRUE;
747 } else if ((data & BSCBUS_SEQ) != csp->sequence) {
748 /* Wrong sequence number! Flag this as an error */
749 bscbus_cmd_log(csp, BSC_CMD_ERROR_SEQ, status, data);
750
751 csp->cmdstate = BSCBUS_CMDSTATE_ERROR;
752 csp->error = LOMBUS_ERR_SEQUENCE;
753 ready = B_TRUE;
754 } else {
755 /*
756 * Finally, we know that's it's a valid reply to our
757 * last command. Update the ASYNC status, derive the
758 * reply parameter (if any), and check the ERROR bit
759 * to find out what the parameter means.
760 *
761 * Note that not all the values read/assigned here
762 * are meaningful, but it doesn't matter; the waiting
763 * thread will know which one(s) it should check.
764 */
765 bscbus_cmd_log(csp, BSC_CMD_COMPLETE, status, data);
766 csp->async = (data & BSCBUS_STATUS_ASYNC) ? 1 : 0;
767
768 tmp = ((data & BSCBUS_STATUS_MSB) ? 0x80 : 0) | csp->reply[0];
769 if (data & BSCBUS_STATUS_ERR) {
770 csp->cmdstate = BSCBUS_CMDSTATE_ERROR;
771 csp->error = tmp;
772 } else {
773 csp->cmdstate = BSCBUS_CMDSTATE_READY;
774 csp->result = tmp;
775 }
776 ready = B_TRUE;
777 }
778 return (ready);
779 }
780
781 /*
782 * Packet receive handler
783 *
784 * This routine should be called from the low-level softint,
785 * or bscbus_cmd() (for polled operation), with the
786 * low-level mutex already held.
787 */
788 static void
bscbus_process(struct bscbus_channel_state * csp,uint8_t status,uint8_t data)789 bscbus_process(struct bscbus_channel_state *csp,
790 uint8_t status, uint8_t data)
791 {
792 boolean_t ready = B_FALSE;
793
794 ASSERT(mutex_owned(csp->lo_mutex));
795
796 if ((status & H8_STR_OBF) || (status & H8_STR_IBF)) {
797 bscbus_trace(csp, 'D', "bscbus_process",
798 "state %d; error $%x",
799 csp->cmdstate, csp->error);
800 }
801
802 switch (csp->cmdstate) {
803 case BSCBUS_CMDSTATE_CLEARING:
804 bscbus_process_clearing(csp, status, data);
805 break;
806 case BSCBUS_CMDSTATE_SENDING:
807 bscbus_process_sending(csp, status);
808 break;
809 case BSCBUS_CMDSTATE_PENDING:
810 bscbus_process_pending(csp, status);
811 break;
812 case BSCBUS_CMDSTATE_WAITING:
813 ready = bscbus_process_waiting(csp, status, data);
814 break;
815 default:
816 /* Nothing to do */
817 break;
818 }
819
820 /*
821 * Check for timeouts - but only if the command has not yet
822 * completed (ready is true when command completes in this
823 * call to bscbus_process OR cmdstate is READY or ERROR if
824 * this is a spurious call to bscbus_process i.e. a spurious
825 * interrupt)
826 */
827 if (!ready &&
828 ((ddi_get_lbolt() - csp->deadline) > 0) &&
829 csp->cmdstate != BSCBUS_CMDSTATE_READY &&
830 csp->cmdstate != BSCBUS_CMDSTATE_ERROR) {
831 bscbus_trace(csp, 'P', "bscbus_process",
832 "timeout previous state %d; error $%x",
833 csp->cmdstate, csp->error);
834 bscbus_cmd_log(csp, BSC_CMD_ERROR_TOUT, status, data);
835 if (csp->cmdstate == BSCBUS_CMDSTATE_CLEARING) {
836 /* Move onto sending because busy might be stuck */
837 csp->cmdstate = BSCBUS_CMDSTATE_SENDING;
838 /* Extend timeout relative to original start time */
839 csp->deadline += drv_usectohz(LOMBUS_CMD_TIMEOUT/1000);
840 } else if (csp->cmdstate != BSCBUS_CMDSTATE_IDLE) {
841 csp->cmdstate = BSCBUS_CMDSTATE_ERROR;
842 csp->error = LOMBUS_ERR_TIMEOUT;
843 }
844 ready = B_TRUE;
845 }
846
847 if ((status & H8_STR_OBF) || (status & H8_STR_IBF) || ready) {
848 bscbus_trace(csp, 'D', "bscbus_process",
849 "last $%02x; state %d; error $%x; ready %d",
850 data, csp->cmdstate, csp->error, ready);
851 }
852 if (ready)
853 cv_broadcast(csp->lo_cv);
854 }
855
856 static uint_t
bscbus_hwintr(caddr_t arg)857 bscbus_hwintr(caddr_t arg)
858 {
859 struct bscbus_channel_state *csp = (void *)arg;
860
861 uint8_t status;
862 uint8_t data = 0xb0 /* Dummy value */;
863
864 mutex_enter(csp->lo_mutex);
865 /*
866 * Read the registers to ensure that the interrupt is cleared.
867 * Status must be read first because reading data changes the
868 * status.
869 * We always read the data because that clears the interrupt down.
870 * This is horrible hardware semantics but we have to do it!
871 */
872 status = bscbus_get_reg(csp, H8_STR);
873 data = bscbus_get_reg(csp, H8_ODR);
874 if (!(status & H8_STR_OBF)) {
875 bscbus_cmd_log(csp, BSC_CMD_V1INTRUNCL, status, data);
876 csp->unclaimed_count++;
877 } else {
878 bscbus_cmd_log(csp, BSC_CMD_V1INTR, status, data);
879 }
880 if (status & H8_STR_TOKENPROTOCOL) {
881 bscbus_process(csp, status, data);
882 if (csp->interrupt_failed) {
883 bscbus_trace(csp, 'I', "bscbus_hwintr:",
884 "interrupt fault cleared channel %d", csp->chno);
885 csp->interrupt_failed = B_FALSE;
886 csp->poll_hz = drv_usectohz(BSCBUS_CMD_POLL / 1000);
887 }
888 }
889
890 mutex_exit(csp->lo_mutex);
891 return (DDI_INTR_CLAIMED);
892 }
893
894 void
bscbus_poll(struct bscbus_channel_state * csp)895 bscbus_poll(struct bscbus_channel_state *csp)
896 {
897 /*
898 * This routine is only called if we timeout in userland
899 * waiting for an interrupt. This generally means that we have
900 * lost interrupt capabilities or that something has gone
901 * wrong. In this case we are allowed to access the hardware
902 * and read the data register if necessary.
903 * If interrupts return then recovery actions should mend us!
904 */
905 uint8_t status;
906 uint8_t data = 0xfa; /* Dummy value */
907
908 ASSERT(mutex_owned(csp->lo_mutex));
909
910 /* Should look for data to receive */
911 status = bscbus_get_reg(csp, H8_STR);
912 if (status & H8_STR_OBF) {
913 /* There is data available */
914 data = bscbus_get_reg(csp, H8_ODR);
915 bscbus_cmd_log(csp, BSC_CMD_PROCESS, status, data);
916 }
917 bscbus_process(csp, status, data);
918 }
919
920 /*
921 * Serial protocol
922 *
923 * This routine builds a command and sets it in progress.
924 */
925 static uint8_t
bscbus_cmd(HANDLE_TYPE * hdlp,ptrdiff_t vreg,uint_t val,uint_t cmd)926 bscbus_cmd(HANDLE_TYPE *hdlp, ptrdiff_t vreg, uint_t val, uint_t cmd)
927 {
928 struct bscbus_channel_state *csp;
929 clock_t start;
930 uint8_t status;
931
932 /*
933 * First of all, wait for the interface to be available.
934 *
935 * NOTE: we blow through all the mutex/cv/state checking and
936 * preempt any command in progress if the system is panicking!
937 */
938 csp = HANDLE_PRIVATE(hdlp);
939 mutex_enter(csp->lo_mutex);
940 while (csp->cmdstate != BSCBUS_CMDSTATE_IDLE && !ddi_in_panic())
941 cv_wait(csp->lo_cv, csp->lo_mutex);
942
943 csp->cmdstate = BSCBUS_CMDSTATE_BUSY;
944 csp->sequence = (csp->sequence + BSCBUS_SEQ_LSB) & BSCBUS_SEQ;
945
946 /*
947 * We have exclusive ownership, so assemble the command (backwards):
948 *
949 * [byte 0] Command: modified by XADDR and/or WMSB bits
950 * [Optional] Parameter: Value to write (low 7 bits)
951 * [Optional] Parameter: Register number (high 7 bits)
952 * [Optional] Parameter: Register number (low 7 bits)
953 */
954 csp->cmdp = &csp->cmdbuf[0];
955 *csp->cmdp++ = BSCBUS_CMD | csp->sequence | cmd;
956 switch (cmd) {
957 case BSCBUS_CMD_WRITE:
958 *csp->cmdp++ = val & 0x7f;
959 if (val >= 0x80)
960 csp->cmdbuf[0] |= BSCBUS_CMD_WMSB;
961 /*FALLTHRU*/
962 case BSCBUS_CMD_READ:
963 if (BSCBUS_VREG_HI(vreg) != 0) {
964 *csp->cmdp++ = BSCBUS_VREG_HI(vreg);
965 csp->cmdbuf[0] |= BSCBUS_CMD_XADDR;
966 }
967 *csp->cmdp++ = BSCBUS_VREG_LO(vreg);
968 /*FALLTHRU*/
969 case BSCBUS_CMD_NOP:
970 break;
971 }
972
973 /*
974 * Check and update the H8 h/w fault status before accessing
975 * the chip registers. If there's a (new or previous) fault,
976 * we'll run through the protocol but won't really touch the
977 * hardware and all commands will timeout. If a previously
978 * discovered fault has now gone away (!), then we can (try to)
979 * proceed with the new command (probably a probe).
980 */
981 bscbus_check_fault_status(csp);
982
983 /*
984 * Prepare for the command (to be processed by the interrupt
985 * handler and/or polling loop below), and wait for a response
986 * or timeout.
987 */
988 start = ddi_get_lbolt();
989 csp->deadline = start + drv_usectohz(LOMBUS_CMD_TIMEOUT/1000);
990 csp->error = 0;
991 csp->index = 0;
992 csp->result = DUMMY_VALUE;
993
994 status = bscbus_get_reg(csp, H8_STR);
995 if (status & H8_STR_BUSY) {
996 bscbus_cmd_log(csp, BSC_CMD_BUSY, status, 0xfd);
997 /*
998 * Must ensure that the busy state has cleared before
999 * sending the command
1000 */
1001 csp->cmdstate = BSCBUS_CMDSTATE_CLEARING;
1002 bscbus_trace(csp, 'P', "bscbus_cmd",
1003 "h8 reporting status (%x) busy - clearing", status);
1004 } else {
1005 /* It is clear to send the command immediately */
1006 csp->cmdstate = BSCBUS_CMDSTATE_SENDING;
1007 bscbus_trace(csp, 'P', "bscbus_cmd",
1008 "sending first byte of command, status %x", status);
1009 bscbus_poll(csp);
1010 }
1011
1012 csp->poll_hz = drv_usectohz(
1013 (csp->interrupt_failed ?
1014 BSCBUS_CMD_POLLNOINTS : BSCBUS_CMD_POLL) / 1000);
1015
1016 while ((csp->cmdstate != BSCBUS_CMDSTATE_READY) &&
1017 (csp->cmdstate != BSCBUS_CMDSTATE_ERROR)) {
1018 ASSERT(csp->cmdstate != BSCBUS_CMDSTATE_IDLE);
1019
1020 if ((cv_reltimedwait(csp->lo_cv, csp->lo_mutex,
1021 csp->poll_hz, TR_CLOCK_TICK) == -1) &&
1022 csp->cmdstate != BSCBUS_CMDSTATE_READY &&
1023 csp->cmdstate != BSCBUS_CMDSTATE_ERROR) {
1024 if (!csp->interrupt_failed) {
1025 bscbus_trace(csp, 'I', "bscbus_cmd:",
1026 "interrupt_failed channel %d", csp->chno);
1027 csp->interrupt_failed = B_TRUE;
1028 csp->poll_hz = drv_usectohz(
1029 BSCBUS_CMD_POLLNOINTS / 1000);
1030 }
1031 bscbus_poll(csp);
1032 }
1033 }
1034
1035 /*
1036 * The return value may not be meaningful but retrieve it anyway
1037 */
1038 val = csp->result;
1039 if (bscbus_faulty(csp)) {
1040 val = DUMMY_VALUE;
1041 HANDLE_FAULT(hdlp) = LOMBUS_ERR_SIOHW;
1042 } else if (csp->cmdstate != BSCBUS_CMDSTATE_READY) {
1043 /*
1044 * Some problem here ... transfer the error code from
1045 * the per-instance state to the per-handle fault flag.
1046 * The error code shouldn't be zero!
1047 */
1048 if (csp->error != 0)
1049 HANDLE_FAULT(hdlp) = csp->error;
1050 else
1051 HANDLE_FAULT(hdlp) = LOMBUS_ERR_BADERRCODE;
1052 }
1053
1054 /*
1055 * All done now!
1056 */
1057 csp->index = 0;
1058 csp->cmdstate = BSCBUS_CMDSTATE_IDLE;
1059 cv_broadcast(csp->lo_cv);
1060 mutex_exit(csp->lo_mutex);
1061
1062 return (val);
1063 }
1064
1065 /*
1066 * Space 0 - LOM virtual register access
1067 * Only 8-bit accesses are supported.
1068 */
1069 static uint8_t
bscbus_vreg_get8(HANDLE_TYPE * hdlp,uint8_t * addr)1070 bscbus_vreg_get8(HANDLE_TYPE *hdlp, uint8_t *addr)
1071 {
1072 ptrdiff_t offset;
1073
1074 /*
1075 * Check the offset that the caller has added to the base address
1076 * against the length of the mapping originally requested.
1077 */
1078 offset = ADDR_TO_OFFSET(addr, hdlp);
1079 if (offset < 0 || offset >= HANDLE_MAPLEN(hdlp)) {
1080 /*
1081 * Invalid access - flag a fault and return a dummy value
1082 */
1083 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM;
1084 return (DUMMY_VALUE);
1085 }
1086
1087 /*
1088 * Derive the virtual register number and run the command
1089 */
1090 return (bscbus_cmd(hdlp, ADDR_TO_VREG(addr), 0, BSCBUS_CMD_READ));
1091 }
1092
1093 static void
bscbus_vreg_put8(HANDLE_TYPE * hdlp,uint8_t * addr,uint8_t val)1094 bscbus_vreg_put8(HANDLE_TYPE *hdlp, uint8_t *addr, uint8_t val)
1095 {
1096 ptrdiff_t offset;
1097
1098 /*
1099 * Check the offset that the caller has added to the base address
1100 * against the length of the mapping originally requested.
1101 */
1102 offset = ADDR_TO_OFFSET(addr, hdlp);
1103 if (offset < 0 || offset >= HANDLE_MAPLEN(hdlp)) {
1104 /*
1105 * Invalid access - flag a fault and return
1106 */
1107 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM;
1108 return;
1109 }
1110
1111 /*
1112 * Derive the virtual register number and run the command
1113 */
1114 (void) bscbus_cmd(hdlp, ADDR_TO_VREG(addr), val, BSCBUS_CMD_WRITE);
1115 }
1116
1117 static void
bscbus_vreg_rep_get8(HANDLE_TYPE * hdlp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)1118 bscbus_vreg_rep_get8(HANDLE_TYPE *hdlp, uint8_t *host_addr,
1119 uint8_t *dev_addr, size_t repcount, uint_t flags)
1120 {
1121 size_t inc;
1122
1123 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0;
1124 for (; repcount--; dev_addr += inc)
1125 *host_addr++ = bscbus_vreg_get8(hdlp, dev_addr);
1126 }
1127
1128 static void
bscbus_vreg_rep_put8(HANDLE_TYPE * hdlp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)1129 bscbus_vreg_rep_put8(HANDLE_TYPE *hdlp, uint8_t *host_addr,
1130 uint8_t *dev_addr, size_t repcount, uint_t flags)
1131 {
1132 size_t inc;
1133
1134 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0;
1135 for (; repcount--; dev_addr += inc)
1136 bscbus_vreg_put8(hdlp, dev_addr, *host_addr++);
1137 }
1138
1139
1140 /*
1141 * Space 1 - LOM watchdog pat register access
1142 * Only 8-bit accesses are supported.
1143 *
1144 * Reads have no effect and return 0.
1145 *
1146 * Multi-byte reads (using ddi_rep_get8(9F)) are a fairly inefficient
1147 * way of zeroing the destination area ;-) and still won't pat the dog.
1148 *
1149 * Multi-byte writes (using ddi_rep_put8(9F)) will almost certainly
1150 * only count as a single pat, no matter how many bytes the caller
1151 * says to write, as the inter-pat time is VERY long compared with
1152 * the time it will take to read the memory source area.
1153 */
1154
1155 static uint8_t
bscbus_pat_get8(HANDLE_TYPE * hdlp,uint8_t * addr)1156 bscbus_pat_get8(HANDLE_TYPE *hdlp, uint8_t *addr)
1157 {
1158 ptrdiff_t offset;
1159
1160 /*
1161 * Check the offset that the caller has added to the base address
1162 * against the length of the mapping originally requested.
1163 */
1164 offset = ADDR_TO_OFFSET(addr, hdlp);
1165 if (offset < 0 || offset >= HANDLE_MAPLEN(hdlp)) {
1166 /*
1167 * Invalid access - flag a fault and return a dummy value
1168 */
1169 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM;
1170 return (DUMMY_VALUE);
1171 }
1172
1173 return (0);
1174 }
1175
1176 static void
bscbus_pat_put8(HANDLE_TYPE * hdlp,uint8_t * addr,uint8_t val)1177 bscbus_pat_put8(HANDLE_TYPE *hdlp, uint8_t *addr, uint8_t val)
1178 {
1179 struct bscbus_channel_state *csp;
1180 ptrdiff_t offset;
1181
1182 /*
1183 * Check the offset that the caller has added to the base address
1184 * against the length of the mapping originally requested.
1185 */
1186 offset = ADDR_TO_OFFSET(addr, hdlp);
1187 if (offset < 0 || offset >= HANDLE_MAPLEN(hdlp)) {
1188 /*
1189 * Invalid access - flag a fault and return
1190 */
1191 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM;
1192 return;
1193 }
1194
1195 csp = HANDLE_PRIVATE(hdlp);
1196 mutex_enter(csp->dog_mutex);
1197 bscbus_pat_dog(csp, val);
1198 mutex_exit(csp->dog_mutex);
1199 }
1200
1201 static void
bscbus_pat_rep_get8(HANDLE_TYPE * hdlp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)1202 bscbus_pat_rep_get8(HANDLE_TYPE *hdlp, uint8_t *host_addr,
1203 uint8_t *dev_addr, size_t repcount, uint_t flags)
1204 {
1205 size_t inc;
1206
1207 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0;
1208 for (; repcount--; dev_addr += inc)
1209 *host_addr++ = bscbus_pat_get8(hdlp, dev_addr);
1210 }
1211
1212 static void
bscbus_pat_rep_put8(HANDLE_TYPE * hdlp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)1213 bscbus_pat_rep_put8(HANDLE_TYPE *hdlp, uint8_t *host_addr,
1214 uint8_t *dev_addr, size_t repcount, uint_t flags)
1215 {
1216 size_t inc;
1217
1218 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0;
1219 for (; repcount--; dev_addr += inc)
1220 bscbus_pat_put8(hdlp, dev_addr, *host_addr++);
1221 }
1222
1223
1224 /*
1225 * Space 2 - LOM async event flag register access
1226 * Only 16-bit accesses are supported.
1227 */
1228 static uint16_t
bscbus_event_get16(HANDLE_TYPE * hdlp,uint16_t * addr)1229 bscbus_event_get16(HANDLE_TYPE *hdlp, uint16_t *addr)
1230 {
1231 struct bscbus_channel_state *csp;
1232 ptrdiff_t offset;
1233
1234 /*
1235 * Check the offset that the caller has added to the base address
1236 * against the length of the mapping orignally requested.
1237 */
1238 offset = ADDR_TO_OFFSET(addr, hdlp);
1239 if (offset < 0 || (offset%2) != 0 || offset >= HANDLE_MAPLEN(hdlp)) {
1240 /*
1241 * Invalid access - flag a fault and return a dummy value
1242 */
1243 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM;
1244 return (DUMMY_VALUE);
1245 }
1246
1247 /*
1248 * Return the value of the asynchronous-event-pending flag
1249 * as passed back by the LOM at the end of the last command.
1250 */
1251 csp = HANDLE_PRIVATE(hdlp);
1252 return (csp->async);
1253 }
1254
1255 static void
bscbus_event_put16(HANDLE_TYPE * hdlp,uint16_t * addr,uint16_t val)1256 bscbus_event_put16(HANDLE_TYPE *hdlp, uint16_t *addr, uint16_t val)
1257 {
1258 ptrdiff_t offset;
1259
1260 _NOTE(ARGUNUSED(val))
1261
1262 /*
1263 * Check the offset that the caller has added to the base address
1264 * against the length of the mapping originally requested.
1265 */
1266 offset = ADDR_TO_OFFSET(addr, hdlp);
1267 if (offset < 0 || (offset%2) != 0 || offset >= HANDLE_MAPLEN(hdlp)) {
1268 /*
1269 * Invalid access - flag a fault and return
1270 */
1271 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_NUM;
1272 return;
1273 }
1274
1275 /*
1276 * The user can't overwrite the asynchronous-event-pending flag!
1277 */
1278 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_RO;
1279 }
1280
1281 static void
bscbus_event_rep_get16(HANDLE_TYPE * hdlp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)1282 bscbus_event_rep_get16(HANDLE_TYPE *hdlp, uint16_t *host_addr,
1283 uint16_t *dev_addr, size_t repcount, uint_t flags)
1284 {
1285 size_t inc;
1286
1287 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0;
1288 for (; repcount--; dev_addr += inc)
1289 *host_addr++ = bscbus_event_get16(hdlp, dev_addr);
1290 }
1291
1292 static void
bscbus_event_rep_put16(HANDLE_TYPE * hdlp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)1293 bscbus_event_rep_put16(HANDLE_TYPE *hdlp, uint16_t *host_addr,
1294 uint16_t *dev_addr, size_t repcount, uint_t flags)
1295 {
1296 size_t inc;
1297
1298 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0;
1299 for (; repcount--; dev_addr += inc)
1300 bscbus_event_put16(hdlp, dev_addr, *host_addr++);
1301 }
1302
1303
1304 /*
1305 * All spaces - access handle fault information
1306 * Only 32-bit accesses are supported.
1307 */
1308 static uint32_t
bscbus_meta_get32(HANDLE_TYPE * hdlp,uint32_t * addr)1309 bscbus_meta_get32(HANDLE_TYPE *hdlp, uint32_t *addr)
1310 {
1311 struct bscbus_channel_state *csp;
1312 ptrdiff_t offset;
1313
1314 /*
1315 * Derive the offset that the caller has added to the base
1316 * address originally returned, and use it to determine
1317 * which meta-register is to be accessed ...
1318 */
1319 offset = ADDR_TO_OFFSET(addr, hdlp);
1320 switch (offset) {
1321 case LOMBUS_FAULT_REG:
1322 /*
1323 * This meta-register provides a code for the most
1324 * recent virtual register access fault, if any.
1325 */
1326 return (HANDLE_FAULT(hdlp));
1327
1328 case LOMBUS_PROBE_REG:
1329 /*
1330 * Reading this meta-register clears any existing fault
1331 * (at the virtual, not the hardware access layer), then
1332 * runs a NOP command and returns the fault code from that.
1333 */
1334 HANDLE_FAULT(hdlp) = 0;
1335 (void) bscbus_cmd(hdlp, 0, 0, BSCBUS_CMD_NOP);
1336 return (HANDLE_FAULT(hdlp));
1337
1338 case LOMBUS_ASYNC_REG:
1339 /*
1340 * Obsolescent - but still supported for backwards
1341 * compatibility. This is an alias for the newer
1342 * LOMBUS_EVENT_REG, but doesn't require a separate
1343 * "reg" entry and ddi_regs_map_setup() call.
1344 *
1345 * It returns the value of the asynchronous-event-pending
1346 * flag as passed back by the BSC at the end of the last
1347 * completed command.
1348 */
1349 csp = HANDLE_PRIVATE(hdlp);
1350 return (csp->async);
1351
1352 default:
1353 /*
1354 * Invalid access - flag a fault and return a dummy value
1355 */
1356 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1357 return (DUMMY_VALUE);
1358 }
1359 }
1360
1361 static void
bscbus_meta_put32(HANDLE_TYPE * hdlp,uint32_t * addr,uint32_t val)1362 bscbus_meta_put32(HANDLE_TYPE *hdlp, uint32_t *addr, uint32_t val)
1363 {
1364 ptrdiff_t offset;
1365
1366 /*
1367 * Derive the offset that the caller has added to the base
1368 * address originally returned, and use it to determine
1369 * which meta-register is to be accessed ...
1370 */
1371 offset = ADDR_TO_OFFSET(addr, hdlp);
1372 switch (offset) {
1373 case LOMBUS_FAULT_REG:
1374 /*
1375 * This meta-register contains a code for the most
1376 * recent virtual register access fault, if any.
1377 * It can be cleared simply by writing 0 to it.
1378 */
1379 HANDLE_FAULT(hdlp) = val;
1380 return;
1381
1382 case LOMBUS_PROBE_REG:
1383 /*
1384 * Writing this meta-register clears any existing fault
1385 * (at the virtual, not the hardware acess layer), then
1386 * runs a NOP command. The caller can check the fault
1387 * code later if required.
1388 */
1389 HANDLE_FAULT(hdlp) = 0;
1390 (void) bscbus_cmd(hdlp, 0, 0, BSCBUS_CMD_NOP);
1391 return;
1392
1393 default:
1394 /*
1395 * Invalid access - flag a fault
1396 */
1397 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1398 return;
1399 }
1400 }
1401
1402 static void
bscbus_meta_rep_get32(HANDLE_TYPE * hdlp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)1403 bscbus_meta_rep_get32(HANDLE_TYPE *hdlp, uint32_t *host_addr,
1404 uint32_t *dev_addr, size_t repcount, uint_t flags)
1405 {
1406 size_t inc;
1407
1408 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0;
1409 for (; repcount--; dev_addr += inc)
1410 *host_addr++ = bscbus_meta_get32(hdlp, dev_addr);
1411 }
1412
1413 static void
bscbus_meta_rep_put32(HANDLE_TYPE * hdlp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)1414 bscbus_meta_rep_put32(HANDLE_TYPE *hdlp, uint32_t *host_addr,
1415 uint32_t *dev_addr, size_t repcount, uint_t flags)
1416 {
1417 size_t inc;
1418
1419 inc = (flags & DDI_DEV_AUTOINCR) ? 1 : 0;
1420 for (; repcount--; dev_addr += inc)
1421 bscbus_meta_put32(hdlp, dev_addr, *host_addr++);
1422 }
1423
1424
1425 /*
1426 * Finally, some dummy functions for all unsupported access
1427 * space/size/mode combinations ...
1428 */
1429 static uint8_t
bscbus_no_get8(HANDLE_TYPE * hdlp,uint8_t * addr)1430 bscbus_no_get8(HANDLE_TYPE *hdlp, uint8_t *addr)
1431 {
1432 _NOTE(ARGUNUSED(addr))
1433
1434 /*
1435 * Invalid access - flag a fault and return a dummy value
1436 */
1437 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1438 return (DUMMY_VALUE);
1439 }
1440
1441 static void
bscbus_no_put8(HANDLE_TYPE * hdlp,uint8_t * addr,uint8_t val)1442 bscbus_no_put8(HANDLE_TYPE *hdlp, uint8_t *addr, uint8_t val)
1443 {
1444 _NOTE(ARGUNUSED(addr, val))
1445
1446 /*
1447 * Invalid access - flag a fault
1448 */
1449 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1450 }
1451
1452 static void
bscbus_no_rep_get8(HANDLE_TYPE * hdlp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)1453 bscbus_no_rep_get8(HANDLE_TYPE *hdlp, uint8_t *host_addr,
1454 uint8_t *dev_addr, size_t repcount, uint_t flags)
1455 {
1456 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags))
1457
1458 /*
1459 * Invalid access - flag a fault
1460 */
1461 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1462 }
1463
1464 static void
bscbus_no_rep_put8(HANDLE_TYPE * hdlp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)1465 bscbus_no_rep_put8(HANDLE_TYPE *hdlp, uint8_t *host_addr,
1466 uint8_t *dev_addr, size_t repcount, uint_t flags)
1467 {
1468 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags))
1469
1470 /*
1471 * Invalid access - flag a fault
1472 */
1473 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1474 }
1475
1476 static uint16_t
bscbus_no_get16(HANDLE_TYPE * hdlp,uint16_t * addr)1477 bscbus_no_get16(HANDLE_TYPE *hdlp, uint16_t *addr)
1478 {
1479 _NOTE(ARGUNUSED(addr))
1480
1481 /*
1482 * Invalid access - flag a fault and return a dummy value
1483 */
1484 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1485 return (DUMMY_VALUE);
1486 }
1487
1488 static void
bscbus_no_put16(HANDLE_TYPE * hdlp,uint16_t * addr,uint16_t val)1489 bscbus_no_put16(HANDLE_TYPE *hdlp, uint16_t *addr, uint16_t val)
1490 {
1491 _NOTE(ARGUNUSED(addr, val))
1492
1493 /*
1494 * Invalid access - flag a fault
1495 */
1496 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1497 }
1498
1499 static void
bscbus_no_rep_get16(HANDLE_TYPE * hdlp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)1500 bscbus_no_rep_get16(HANDLE_TYPE *hdlp, uint16_t *host_addr,
1501 uint16_t *dev_addr, size_t repcount, uint_t flags)
1502 {
1503 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags))
1504
1505 /*
1506 * Invalid access - flag a fault
1507 */
1508 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1509 }
1510
1511 static void
bscbus_no_rep_put16(HANDLE_TYPE * hdlp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)1512 bscbus_no_rep_put16(HANDLE_TYPE *hdlp, uint16_t *host_addr,
1513 uint16_t *dev_addr, size_t repcount, uint_t flags)
1514 {
1515 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags))
1516
1517 /*
1518 * Invalid access - flag a fault
1519 */
1520 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1521 }
1522
1523 static uint64_t
bscbus_no_get64(HANDLE_TYPE * hdlp,uint64_t * addr)1524 bscbus_no_get64(HANDLE_TYPE *hdlp, uint64_t *addr)
1525 {
1526 _NOTE(ARGUNUSED(addr))
1527
1528 /*
1529 * Invalid access - flag a fault and return a dummy value
1530 */
1531 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1532 return (DUMMY_VALUE);
1533 }
1534
1535 static void
bscbus_no_put64(HANDLE_TYPE * hdlp,uint64_t * addr,uint64_t val)1536 bscbus_no_put64(HANDLE_TYPE *hdlp, uint64_t *addr, uint64_t val)
1537 {
1538 _NOTE(ARGUNUSED(addr, val))
1539
1540 /*
1541 * Invalid access - flag a fault
1542 */
1543 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1544 }
1545
1546 static void
bscbus_no_rep_get64(HANDLE_TYPE * hdlp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)1547 bscbus_no_rep_get64(HANDLE_TYPE *hdlp, uint64_t *host_addr,
1548 uint64_t *dev_addr, size_t repcount, uint_t flags)
1549 {
1550 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags))
1551
1552 /*
1553 * Invalid access - flag a fault
1554 */
1555 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1556 }
1557
1558 static void
bscbus_no_rep_put64(HANDLE_TYPE * hdlp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)1559 bscbus_no_rep_put64(HANDLE_TYPE *hdlp, uint64_t *host_addr,
1560 uint64_t *dev_addr, size_t repcount, uint_t flags)
1561 {
1562 _NOTE(ARGUNUSED(host_addr, dev_addr, repcount, flags))
1563
1564 /*
1565 * Invalid access - flag a fault
1566 */
1567 HANDLE_FAULT(hdlp) = LOMBUS_ERR_REG_SIZE;
1568 }
1569
1570 static int
bscbus_acc_fault_check(HANDLE_TYPE * hdlp)1571 bscbus_acc_fault_check(HANDLE_TYPE *hdlp)
1572 {
1573 return (HANDLE_FAULT(hdlp) != 0);
1574 }
1575
1576 /*
1577 * Hardware setup - ensure that there are no pending transactions and
1578 * hence no pending interrupts. We do this be ensuring that the BSC is
1579 * not reporting a busy condition and that it does not have any data
1580 * pending in its output buffer.
1581 * This is important because if we have pending interrupts at attach
1582 * time Solaris will hang due to bugs in ddi_get_iblock_cookie.
1583 */
1584 static void
bscbus_hw_reset(struct bscbus_channel_state * csp)1585 bscbus_hw_reset(struct bscbus_channel_state *csp)
1586 {
1587 int64_t timeout;
1588 uint8_t status;
1589
1590 if (csp->map_count == 0) {
1591 /* No-one using this instance - no need to reset hardware */
1592 return;
1593 }
1594
1595 bscbus_trace(csp, 'R', "bscbus_hw_reset",
1596 "resetting channel %d", csp->chno);
1597
1598 status = bscbus_get_reg(csp, H8_STR);
1599 if (status & H8_STR_BUSY) {
1600 /*
1601 * Give the h8 time to complete a reply.
1602 * In practice we should never worry about this
1603 * because whenever we get here it will have been
1604 * long enough for the h8 to complete a reply
1605 */
1606 bscbus_cmd_log(csp, BSC_CMD_BUSY, status, 0);
1607 bscbus_trace(csp, 'R', "bscbus_hw_reset",
1608 "h8 reporting status (%x) busy - waiting", status);
1609 if (ddi_in_panic()) {
1610 drv_usecwait(BSCBUS_HWRESET_POLL/1000);
1611 } else {
1612 delay(drv_usectohz(BSCBUS_HWRESET_POLL/1000));
1613 }
1614 }
1615 /* Reply should be completed by now. Try to clear busy status */
1616 status = bscbus_get_reg(csp, H8_STR);
1617 if (status & (H8_STR_BUSY | H8_STR_OBF)) {
1618 bscbus_trace(csp, 'R', "bscbus_hw_reset",
1619 "clearing busy status for channel %d", csp->chno);
1620
1621 for (timeout = BSCBUS_HWRESET_TIMEOUT;
1622 (timeout > 0);
1623 timeout -= BSCBUS_HWRESET_POLL) {
1624 if (status & H8_STR_OBF) {
1625 (void) bscbus_get_reg(csp, H8_ODR);
1626 if (!(status & H8_STR_BUSY)) {
1627 /* We are done */
1628 break;
1629 }
1630 }
1631 if (ddi_in_panic()) {
1632 drv_usecwait(BSCBUS_HWRESET_POLL/1000);
1633 } else {
1634 delay(drv_usectohz(BSCBUS_HWRESET_POLL/1000));
1635 }
1636 status = bscbus_get_reg(csp, H8_STR);
1637 }
1638 if (timeout <= 0) {
1639 cmn_err(CE_WARN, "bscbus_hw_reset: timed out "
1640 "clearing busy status");
1641 }
1642 }
1643 /*
1644 * We read ODR just in case there is a pending interrupt with
1645 * no data. This is potentially dangerous because we could get
1646 * out of sync due to race conditions BUT at this point the
1647 * channel should be idle so it is safe.
1648 */
1649 (void) bscbus_get_reg(csp, H8_ODR);
1650 }
1651
1652 /*
1653 * Higher-level setup & teardown
1654 */
1655
1656 static void
bscbus_offline(struct bscbus_state * ssp)1657 bscbus_offline(struct bscbus_state *ssp)
1658 {
1659 if (ssp->h8_handle != NULL)
1660 ddi_regs_map_free(&ssp->h8_handle);
1661 ssp->h8_handle = NULL;
1662 ssp->h8_regs = NULL;
1663 }
1664
1665 static int
bscbus_online(struct bscbus_state * ssp)1666 bscbus_online(struct bscbus_state *ssp)
1667 {
1668 ddi_acc_handle_t h;
1669 caddr_t p;
1670 int nregs;
1671 int err;
1672
1673 ssp->h8_handle = NULL;
1674 ssp->h8_regs = (void *)NULL;
1675 ssp->per_channel_regs = B_FALSE;
1676
1677 if (ddi_dev_nregs(ssp->dip, &nregs) != DDI_SUCCESS)
1678 nregs = 0;
1679
1680 switch (nregs) {
1681 case 1:
1682 /*
1683 * regset 0 represents the H8 interface registers
1684 */
1685 err = ddi_regs_map_setup(ssp->dip, 0, &p, 0, 0,
1686 bscbus_dev_acc_attr, &h);
1687 if (err != DDI_SUCCESS)
1688 return (EIO);
1689
1690 ssp->h8_handle = h;
1691 ssp->h8_regs = (void *)p;
1692 break;
1693
1694 case 0:
1695 /*
1696 * If no registers are defined, succeed vacuously;
1697 * commands will be accepted, but we fake the accesses.
1698 */
1699 break;
1700
1701 default:
1702 /*
1703 * Remember that we are using the new register scheme.
1704 * reg set 0 is chan 0
1705 * reg set 1 is chan 1 ...
1706 * Interrupts are specified in that order but later
1707 * channels may not have interrupts.
1708 * We map the regs later on a per channel basis.
1709 */
1710 ssp->per_channel_regs = B_TRUE;
1711 break;
1712 }
1713 return (0);
1714 }
1715
1716 static int
bscbus_claim_channel(struct bscbus_channel_state * csp,boolean_t map_dog)1717 bscbus_claim_channel(struct bscbus_channel_state *csp, boolean_t map_dog)
1718 {
1719 int err;
1720
1721 mutex_enter(csp->ssp->ch_mutex);
1722 csp->map_count++;
1723 bscbus_trace(csp, 'C', "bscbus_claim_channel",
1724 "claim channel for channel %d, count %d",
1725 csp->chno, csp->map_count);
1726
1727 if (csp->map_count == 1) {
1728 /* No-one is using this channel - initialise it */
1729 bscbus_trace(csp, 'C', "bscbus_claim_channel",
1730 "initialise channel %d, count %d",
1731 csp->chno, csp->map_count);
1732
1733 mutex_init(csp->dog_mutex, NULL, MUTEX_DRIVER,
1734 (void *)(uintptr_t)__ipltospl(SPL7 - 1));
1735 csp->map_dog = map_dog;
1736 csp->interrupt_failed = B_FALSE;
1737 csp->cmdstate = BSCBUS_CMDSTATE_IDLE;
1738 csp->pat_retry_count = 0;
1739 csp->pat_fail_count = 0;
1740
1741 /* Map appropriate register set for this channel */
1742 if (csp->ssp->per_channel_regs == B_TRUE) {
1743 ddi_acc_handle_t h;
1744 caddr_t p;
1745
1746 err = ddi_regs_map_setup(csp->ssp->dip, csp->chno,
1747 &p, 0, 0, bscbus_dev_acc_attr, &h);
1748
1749 if (err != DDI_SUCCESS) {
1750 goto failed1;
1751 }
1752
1753 csp->ch_handle = h;
1754 csp->ch_regs = (void *)p;
1755
1756 bscbus_trace(csp, 'C', "bscbus_claim_channel",
1757 "mapped chno=%d ch_handle=%d ch_regs=%p",
1758 csp->chno, h, p);
1759 } else {
1760 /*
1761 * if using the old reg property scheme use the
1762 * common mapping.
1763 */
1764 csp->ch_handle = csp->ssp->h8_handle;
1765 csp->ch_regs =
1766 csp->ssp->h8_regs +
1767 BSCBUS_CHANNEL_TO_OFFSET(csp->chno);
1768 }
1769
1770 /* Ensure no interrupts pending prior to getting iblk cookie */
1771 bscbus_hw_reset(csp);
1772
1773 if (csp->map_dog == 1) {
1774 /*
1775 * we don't want lo_mutex to be initialised
1776 * with an iblock cookie if we are the wdog,
1777 * because we don't use interrupts.
1778 */
1779 mutex_init(csp->lo_mutex, NULL,
1780 MUTEX_DRIVER, NULL);
1781 cv_init(csp->lo_cv, NULL,
1782 CV_DRIVER, NULL);
1783 csp->unclaimed_count = 0;
1784 } else {
1785 int ninterrupts;
1786
1787 /*
1788 * check that there is an interrupt for this
1789 * this channel. If we fail to setup interrupts we
1790 * must unmap the registers and fail.
1791 */
1792 err = ddi_dev_nintrs(csp->ssp->dip, &ninterrupts);
1793
1794 if (err != DDI_SUCCESS) {
1795 ninterrupts = 0;
1796 }
1797
1798 if (ninterrupts <= csp->chno) {
1799 cmn_err(CE_WARN,
1800 "no interrupt available for "
1801 "bscbus channel %d", csp->chno);
1802 goto failed2;
1803 }
1804
1805 if (ddi_intr_hilevel(csp->ssp->dip, csp->chno) != 0) {
1806 cmn_err(CE_WARN,
1807 "bscbus interrupts are high "
1808 "level - channel not usable.");
1809 goto failed2;
1810 } else {
1811 err = ddi_get_iblock_cookie(csp->ssp->dip,
1812 csp->chno, &csp->lo_iblk);
1813 if (err != DDI_SUCCESS) {
1814 goto failed2;
1815 }
1816
1817 mutex_init(csp->lo_mutex, NULL,
1818 MUTEX_DRIVER, csp->lo_iblk);
1819 cv_init(csp->lo_cv, NULL,
1820 CV_DRIVER, NULL);
1821 csp->unclaimed_count = 0;
1822
1823 err = ddi_add_intr(csp->ssp->dip, csp->chno,
1824 &csp->lo_iblk, NULL,
1825 bscbus_hwintr, (caddr_t)csp);
1826 if (err != DDI_SUCCESS) {
1827 cv_destroy(csp->lo_cv);
1828 mutex_destroy(csp->lo_mutex);
1829 goto failed2;
1830 }
1831 }
1832 }
1833 /*
1834 * The channel is now live and may
1835 * receive interrupts
1836 */
1837 } else if (csp->map_dog != map_dog) {
1838 bscbus_trace(csp, 'C', "bscbus_claim_channel",
1839 "request conflicts with previous mapping. old %x, new %x.",
1840 csp->map_dog, map_dog);
1841 goto failed1;
1842 }
1843 mutex_exit(csp->ssp->ch_mutex);
1844 return (1);
1845
1846 failed2:
1847 /* unmap regs for failed channel */
1848 if (csp->ssp->per_channel_regs == B_TRUE) {
1849 ddi_regs_map_free(&csp->ch_handle);
1850 }
1851 csp->ch_handle = NULL;
1852 csp->ch_regs = (void *)NULL;
1853 failed1:
1854 csp->map_count--;
1855 mutex_exit(csp->ssp->ch_mutex);
1856 return (0);
1857 }
1858
1859 static void
bscbus_release_channel(struct bscbus_channel_state * csp)1860 bscbus_release_channel(struct bscbus_channel_state *csp)
1861 {
1862 mutex_enter(csp->ssp->ch_mutex);
1863 if (csp->map_count == 1) {
1864 /* No-one is now using this channel - shutdown channel */
1865 bscbus_trace(csp, 'C', "bscbus_release_channel",
1866 "shutdown channel %d, count %d",
1867 csp->chno, csp->map_count);
1868
1869 if (csp->map_dog == 0) {
1870 ASSERT(!ddi_intr_hilevel(csp->ssp->dip, csp->chno));
1871 ddi_remove_intr(csp->ssp->dip, csp->chno, csp->lo_iblk);
1872 }
1873 cv_destroy(csp->lo_cv);
1874 mutex_destroy(csp->lo_mutex);
1875 mutex_destroy(csp->dog_mutex);
1876 bscbus_hw_reset(csp);
1877
1878 /* unmap registers if using the new register scheme */
1879 if (csp->ssp->per_channel_regs == B_TRUE) {
1880 ddi_regs_map_free(&csp->ch_handle);
1881 }
1882 csp->ch_handle = NULL;
1883 csp->ch_regs = (void *)NULL;
1884 }
1885 csp->map_count--;
1886 bscbus_trace(csp, 'C', "bscbus_release_channel",
1887 "release channel %d, count %d",
1888 csp->chno, csp->map_count);
1889 mutex_exit(csp->ssp->ch_mutex);
1890 }
1891
1892
1893 /*
1894 * Nexus routines
1895 */
1896
1897 #if defined(NDI_ACC_HDL_V2)
1898
1899 static const ndi_acc_fns_t bscbus_vreg_acc_fns = {
1900 NDI_ACC_FNS_CURRENT,
1901 NDI_ACC_FNS_V1,
1902
1903 bscbus_vreg_get8,
1904 bscbus_vreg_put8,
1905 bscbus_vreg_rep_get8,
1906 bscbus_vreg_rep_put8,
1907
1908 bscbus_no_get16,
1909 bscbus_no_put16,
1910 bscbus_no_rep_get16,
1911 bscbus_no_rep_put16,
1912
1913 bscbus_meta_get32,
1914 bscbus_meta_put32,
1915 bscbus_meta_rep_get32,
1916 bscbus_meta_rep_put32,
1917
1918 bscbus_no_get64,
1919 bscbus_no_put64,
1920 bscbus_no_rep_get64,
1921 bscbus_no_rep_put64,
1922
1923 bscbus_acc_fault_check
1924 };
1925
1926 static const ndi_acc_fns_t bscbus_pat_acc_fns = {
1927 NDI_ACC_FNS_CURRENT,
1928 NDI_ACC_FNS_V1,
1929
1930 bscbus_pat_get8,
1931 bscbus_pat_put8,
1932 bscbus_pat_rep_get8,
1933 bscbus_pat_rep_put8,
1934
1935 bscbus_no_get16,
1936 bscbus_no_put16,
1937 bscbus_no_rep_get16,
1938 bscbus_no_rep_put16,
1939
1940 bscbus_meta_get32,
1941 bscbus_meta_put32,
1942 bscbus_meta_rep_get32,
1943 bscbus_meta_rep_put32,
1944
1945 bscbus_no_get64,
1946 bscbus_no_put64,
1947 bscbus_no_rep_get64,
1948 bscbus_no_rep_put64,
1949
1950 bscbus_acc_fault_check
1951 };
1952
1953 static const ndi_acc_fns_t bscbus_event_acc_fns = {
1954 NDI_ACC_FNS_CURRENT,
1955 NDI_ACC_FNS_V1,
1956
1957 bscbus_no_get8,
1958 bscbus_no_put8,
1959 bscbus_no_rep_get8,
1960 bscbus_no_rep_put8,
1961
1962 bscbus_event_get16,
1963 bscbus_event_put16,
1964 bscbus_event_rep_get16,
1965 bscbus_event_rep_put16,
1966
1967 bscbus_meta_get32,
1968 bscbus_meta_put32,
1969 bscbus_meta_rep_get32,
1970 bscbus_meta_rep_put32,
1971
1972 bscbus_no_get64,
1973 bscbus_no_put64,
1974 bscbus_no_rep_get64,
1975 bscbus_no_rep_put64,
1976
1977 bscbus_acc_fault_check
1978 };
1979
1980 static int
bscbus_map_handle(struct bscbus_channel_state * csp,ddi_map_op_t op,int space,caddr_t vaddr,off_t len,ndi_acc_handle_t * hdlp,caddr_t * addrp)1981 bscbus_map_handle(struct bscbus_channel_state *csp, ddi_map_op_t op,
1982 int space, caddr_t vaddr, off_t len,
1983 ndi_acc_handle_t *hdlp, caddr_t *addrp)
1984 {
1985 switch (op) {
1986 default:
1987 return (DDI_ME_UNIMPLEMENTED);
1988
1989 case DDI_MO_MAP_LOCKED:
1990 if (bscbus_claim_channel(csp,
1991 (space == LOMBUS_PAT_SPACE)) == 0) {
1992 return (DDI_ME_GENERIC);
1993 }
1994
1995 switch (space) {
1996 default:
1997 return (DDI_ME_REGSPEC_RANGE);
1998
1999 case LOMBUS_VREG_SPACE:
2000 ndi_set_acc_fns(hdlp, &bscbus_vreg_acc_fns);
2001 break;
2002
2003 case LOMBUS_PAT_SPACE:
2004 ndi_set_acc_fns(hdlp, &bscbus_pat_acc_fns);
2005 break;
2006
2007 case LOMBUS_EVENT_SPACE:
2008 ndi_set_acc_fns(hdlp, &bscbus_event_acc_fns);
2009 break;
2010 }
2011 hdlp->ah_addr = *addrp = vaddr;
2012 hdlp->ah_len = len;
2013 hdlp->ah_bus_private = csp;
2014 return (DDI_SUCCESS);
2015
2016 case DDI_MO_UNMAP:
2017 *addrp = NULL;
2018 hdlp->ah_bus_private = NULL;
2019 bscbus_release_channel(csp);
2020 return (DDI_SUCCESS);
2021 }
2022 }
2023
2024 #else
2025
2026 static int
bscbus_map_handle(struct bscbus_channel_state * csp,ddi_map_op_t op,int space,caddr_t vaddr,off_t len,ddi_acc_hdl_t * hdlp,caddr_t * addrp)2027 bscbus_map_handle(struct bscbus_channel_state *csp, ddi_map_op_t op,
2028 int space, caddr_t vaddr, off_t len,
2029 ddi_acc_hdl_t *hdlp, caddr_t *addrp)
2030 {
2031 ddi_acc_impl_t *aip = hdlp->ah_platform_private;
2032
2033 switch (op) {
2034 default:
2035 return (DDI_ME_UNIMPLEMENTED);
2036
2037 case DDI_MO_MAP_LOCKED:
2038 if (bscbus_claim_channel(csp,
2039 (space == LOMBUS_PAT_SPACE)) == 0) {
2040 return (DDI_ME_GENERIC);
2041 }
2042
2043 switch (space) {
2044 default:
2045 return (DDI_ME_REGSPEC_RANGE);
2046
2047 case LOMBUS_VREG_SPACE:
2048 aip->ahi_get8 = bscbus_vreg_get8;
2049 aip->ahi_put8 = bscbus_vreg_put8;
2050 aip->ahi_rep_get8 = bscbus_vreg_rep_get8;
2051 aip->ahi_rep_put8 = bscbus_vreg_rep_put8;
2052
2053 aip->ahi_get16 = bscbus_no_get16;
2054 aip->ahi_put16 = bscbus_no_put16;
2055 aip->ahi_rep_get16 = bscbus_no_rep_get16;
2056 aip->ahi_rep_put16 = bscbus_no_rep_put16;
2057
2058 aip->ahi_get32 = bscbus_meta_get32;
2059 aip->ahi_put32 = bscbus_meta_put32;
2060 aip->ahi_rep_get32 = bscbus_meta_rep_get32;
2061 aip->ahi_rep_put32 = bscbus_meta_rep_put32;
2062
2063 aip->ahi_get64 = bscbus_no_get64;
2064 aip->ahi_put64 = bscbus_no_put64;
2065 aip->ahi_rep_get64 = bscbus_no_rep_get64;
2066 aip->ahi_rep_put64 = bscbus_no_rep_put64;
2067
2068 aip->ahi_fault_check = bscbus_acc_fault_check;
2069 break;
2070
2071 case LOMBUS_PAT_SPACE:
2072 aip->ahi_get8 = bscbus_pat_get8;
2073 aip->ahi_put8 = bscbus_pat_put8;
2074 aip->ahi_rep_get8 = bscbus_pat_rep_get8;
2075 aip->ahi_rep_put8 = bscbus_pat_rep_put8;
2076
2077 aip->ahi_get16 = bscbus_no_get16;
2078 aip->ahi_put16 = bscbus_no_put16;
2079 aip->ahi_rep_get16 = bscbus_no_rep_get16;
2080 aip->ahi_rep_put16 = bscbus_no_rep_put16;
2081
2082 aip->ahi_get32 = bscbus_meta_get32;
2083 aip->ahi_put32 = bscbus_meta_put32;
2084 aip->ahi_rep_get32 = bscbus_meta_rep_get32;
2085 aip->ahi_rep_put32 = bscbus_meta_rep_put32;
2086
2087 aip->ahi_get64 = bscbus_no_get64;
2088 aip->ahi_put64 = bscbus_no_put64;
2089 aip->ahi_rep_get64 = bscbus_no_rep_get64;
2090 aip->ahi_rep_put64 = bscbus_no_rep_put64;
2091
2092 aip->ahi_fault_check = bscbus_acc_fault_check;
2093 break;
2094
2095 case LOMBUS_EVENT_SPACE:
2096 aip->ahi_get8 = bscbus_no_get8;
2097 aip->ahi_put8 = bscbus_no_put8;
2098 aip->ahi_rep_get8 = bscbus_no_rep_get8;
2099 aip->ahi_rep_put8 = bscbus_no_rep_put8;
2100
2101 aip->ahi_get16 = bscbus_event_get16;
2102 aip->ahi_put16 = bscbus_event_put16;
2103 aip->ahi_rep_get16 = bscbus_event_rep_get16;
2104 aip->ahi_rep_put16 = bscbus_event_rep_put16;
2105
2106 aip->ahi_get32 = bscbus_meta_get32;
2107 aip->ahi_put32 = bscbus_meta_put32;
2108 aip->ahi_rep_get32 = bscbus_meta_rep_get32;
2109 aip->ahi_rep_put32 = bscbus_meta_rep_put32;
2110
2111 aip->ahi_get64 = bscbus_no_get64;
2112 aip->ahi_put64 = bscbus_no_put64;
2113 aip->ahi_rep_get64 = bscbus_no_rep_get64;
2114 aip->ahi_rep_put64 = bscbus_no_rep_put64;
2115
2116 aip->ahi_fault_check = bscbus_acc_fault_check;
2117 break;
2118 }
2119 hdlp->ah_addr = *addrp = vaddr;
2120 hdlp->ah_len = len;
2121 hdlp->ah_bus_private = csp;
2122 return (DDI_SUCCESS);
2123
2124 case DDI_MO_UNMAP:
2125 *addrp = NULL;
2126 hdlp->ah_bus_private = NULL;
2127 bscbus_release_channel(csp);
2128 return (DDI_SUCCESS);
2129 }
2130 }
2131
2132 #endif /* NDI_ACC_HDL_V2 */
2133
2134 static int
bscbus_map(dev_info_t * dip,dev_info_t * rdip,ddi_map_req_t * mp,off_t off,off_t len,caddr_t * addrp)2135 bscbus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
2136 off_t off, off_t len, caddr_t *addrp)
2137 {
2138 struct bscbus_child_info *lcip;
2139 struct bscbus_state *ssp;
2140 lombus_regspec_t *rsp;
2141
2142 if ((ssp = bscbus_getstate(dip, -1, "bscbus_map")) == NULL)
2143 return (DDI_FAILURE); /* this "can't happen" */
2144
2145 /*
2146 * Validate mapping request ...
2147 */
2148
2149 if (mp->map_flags != DDI_MF_KERNEL_MAPPING)
2150 return (DDI_ME_UNSUPPORTED);
2151 if (mp->map_handlep == NULL)
2152 return (DDI_ME_UNSUPPORTED);
2153 if (mp->map_type != DDI_MT_RNUMBER)
2154 return (DDI_ME_UNIMPLEMENTED);
2155 if ((lcip = ddi_get_parent_data(rdip)) == NULL)
2156 return (DDI_ME_INVAL);
2157 if ((rsp = lcip->rsp) == NULL)
2158 return (DDI_ME_INVAL);
2159 if (mp->map_obj.rnumber >= lcip->nregs)
2160 return (DDI_ME_RNUMBER_RANGE);
2161 rsp += mp->map_obj.rnumber;
2162 if (off < 0 || off >= rsp->lombus_size)
2163 return (DDI_ME_INVAL);
2164 if (len == 0)
2165 len = rsp->lombus_size-off;
2166 if (len < 0)
2167 return (DDI_ME_INVAL);
2168 if (off+len < 0 || off+len > rsp->lombus_size)
2169 return (DDI_ME_INVAL);
2170
2171 return (bscbus_map_handle(
2172 &ssp->channel[LOMBUS_SPACE_TO_CHANNEL(rsp->lombus_space)],
2173 mp->map_op, LOMBUS_SPACE_TO_REGSET(rsp->lombus_space),
2174 VREG_TO_ADDR(rsp->lombus_base+off), len, mp->map_handlep, addrp));
2175 }
2176
2177
2178 static int
bscbus_ctlops(dev_info_t * dip,dev_info_t * rdip,ddi_ctl_enum_t op,void * arg,void * result)2179 bscbus_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t op,
2180 void *arg, void *result)
2181 {
2182 struct bscbus_child_info *lcip;
2183 lombus_regspec_t *rsp;
2184 dev_info_t *cdip;
2185 char addr[32];
2186 uint_t nregs;
2187 uint_t rnum;
2188 int *regs;
2189 int limit;
2190 int err;
2191 int i;
2192
2193 if (bscbus_getstate(dip, -1, "bscbus_ctlops") == NULL)
2194 return (DDI_FAILURE); /* this "can't happen" */
2195
2196 switch (op) {
2197 default:
2198 break;
2199
2200 case DDI_CTLOPS_INITCHILD:
2201 /*
2202 * First, look up and validate the "reg" property.
2203 *
2204 * It must be a non-empty integer array containing a set
2205 * of triples. Once we've verified that, we can treat it
2206 * as an array of type lombus_regspec_t[], which defines
2207 * the meaning of the elements of each triple:
2208 * + the first element of each triple must be a valid space
2209 * + the second and third elements (base, size) of each
2210 * triple must define a valid subrange of that space
2211 * If it passes all the tests, we save it away for future
2212 * reference in the child's parent-private-data field.
2213 */
2214 cdip = arg;
2215 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, cdip,
2216 DDI_PROP_DONTPASS, "reg", ®s, &nregs);
2217 if (err != DDI_PROP_SUCCESS)
2218 return (DDI_FAILURE);
2219
2220 err = (nregs <= 0 || (nregs % LOMBUS_REGSPEC_SIZE) != 0);
2221 nregs /= LOMBUS_REGSPEC_SIZE;
2222 rsp = (lombus_regspec_t *)regs;
2223 for (i = 0; i < nregs && !err; ++i) {
2224 switch (LOMBUS_SPACE_TO_REGSET(rsp[i].lombus_space)) {
2225 default:
2226 limit = 0;
2227 err = 1;
2228 cmn_err(CE_WARN,
2229 "child(%p): unknown reg space %d",
2230 (void *)cdip, rsp[i].lombus_space);
2231 break;
2232
2233 case LOMBUS_VREG_SPACE:
2234 limit = LOMBUS_MAX_REG+1;
2235 break;
2236
2237 case LOMBUS_PAT_SPACE:
2238 limit = LOMBUS_PAT_REG+1;
2239 break;
2240
2241 case LOMBUS_EVENT_SPACE:
2242 limit = LOMBUS_EVENT_REG+1;
2243 break;
2244 }
2245
2246 err |= (rsp[i].lombus_base < 0);
2247 err |= (rsp[i].lombus_base >= limit);
2248
2249 if (rsp[i].lombus_size == 0)
2250 rsp[i].lombus_size = limit-rsp[i].lombus_base;
2251
2252 err |= (rsp[i].lombus_size < 0);
2253 err |= (rsp[i].lombus_base+rsp[i].lombus_size < 0);
2254 err |= (rsp[i].lombus_base+rsp[i].lombus_size > limit);
2255
2256 err |= (rsp[i].lombus_base+rsp[i].lombus_size > limit);
2257
2258 }
2259
2260 if (err) {
2261 ddi_prop_free(regs);
2262 return (DDI_FAILURE);
2263 }
2264
2265 lcip = kmem_zalloc(sizeof (*lcip), KM_SLEEP);
2266 lcip->nregs = nregs;
2267 lcip->rsp = rsp;
2268 ddi_set_parent_data(cdip, lcip);
2269
2270 (void) snprintf(addr, sizeof (addr),
2271 "%x,%x", rsp[0].lombus_space, rsp[0].lombus_base);
2272 ddi_set_name_addr(cdip, addr);
2273
2274 return (DDI_SUCCESS);
2275
2276 case DDI_CTLOPS_UNINITCHILD:
2277 cdip = arg;
2278 ddi_set_name_addr(cdip, NULL);
2279 lcip = ddi_get_parent_data(cdip);
2280 ddi_set_parent_data(cdip, NULL);
2281 ddi_prop_free(lcip->rsp);
2282 kmem_free(lcip, sizeof (*lcip));
2283 return (DDI_SUCCESS);
2284
2285 case DDI_CTLOPS_REPORTDEV:
2286 if (rdip == NULL)
2287 return (DDI_FAILURE);
2288
2289 cmn_err(CE_CONT, "?BSC device: %s@%s, %s#%d\n",
2290 ddi_node_name(rdip), ddi_get_name_addr(rdip),
2291 ddi_driver_name(dip), ddi_get_instance(dip));
2292
2293 return (DDI_SUCCESS);
2294
2295 case DDI_CTLOPS_REGSIZE:
2296 if ((lcip = ddi_get_parent_data(rdip)) == NULL)
2297 return (DDI_FAILURE);
2298 if ((rnum = *(uint_t *)arg) >= lcip->nregs)
2299 return (DDI_FAILURE);
2300 *(off_t *)result = lcip->rsp[rnum].lombus_size;
2301 return (DDI_SUCCESS);
2302
2303 case DDI_CTLOPS_NREGS:
2304 if ((lcip = ddi_get_parent_data(rdip)) == NULL)
2305 return (DDI_FAILURE);
2306 *(int *)result = lcip->nregs;
2307 return (DDI_SUCCESS);
2308 }
2309
2310 return (ddi_ctlops(dip, rdip, op, arg, result));
2311 }
2312
2313
2314 /*
2315 * This nexus does not support passing interrupts to leaf drivers, so
2316 * all the intrspec-related operations just fail as cleanly as possible.
2317 */
2318
2319 /*ARGSUSED*/
2320 static int
bscbus_intr_op(dev_info_t * dip,dev_info_t * rdip,ddi_intr_op_t op,ddi_intr_handle_impl_t * hdlp,void * result)2321 bscbus_intr_op(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
2322 ddi_intr_handle_impl_t *hdlp, void *result)
2323 {
2324 #if defined(__sparc)
2325 return (i_ddi_intr_ops(dip, rdip, op, hdlp, result));
2326 #else
2327 _NOTE(ARGUNUSED(dip, rdip, op, hdlp, result))
2328 return (DDI_FAILURE);
2329 #endif
2330 }
2331
2332 /*
2333 * Clean up on detach or failure of attach
2334 */
2335 static int
bscbus_unattach(struct bscbus_state * ssp,int instance)2336 bscbus_unattach(struct bscbus_state *ssp, int instance)
2337 {
2338 int chno;
2339
2340 if (ssp != NULL) {
2341 for (chno = 0; chno < BSCBUS_MAX_CHANNELS; chno++) {
2342 ASSERT(ssp->channel[chno].map_count == 0);
2343 }
2344 bscbus_offline(ssp);
2345 ddi_set_driver_private(ssp->dip, NULL);
2346 mutex_destroy(ssp->ch_mutex);
2347 }
2348 #ifdef BSCBUS_LOGSTATUS
2349 if (ssp->cmd_log_size != 0) {
2350 kmem_free(ssp->cmd_log,
2351 ssp->cmd_log_size * sizeof (bsc_cmd_log_t));
2352 }
2353 #endif /* BSCBUS_LOGSTATUS */
2354
2355
2356 ddi_soft_state_free(bscbus_statep, instance);
2357 return (DDI_FAILURE);
2358 }
2359
2360 /*
2361 * Autoconfiguration routines
2362 */
2363
2364 static int
bscbus_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)2365 bscbus_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2366 {
2367 struct bscbus_state *ssp = NULL;
2368 int chno;
2369 int instance;
2370 int err;
2371
2372 switch (cmd) {
2373 default:
2374 return (DDI_FAILURE);
2375
2376 case DDI_ATTACH:
2377 break;
2378 }
2379
2380 /*
2381 * Allocate the soft-state structure
2382 */
2383 instance = ddi_get_instance(dip);
2384 if (ddi_soft_state_zalloc(bscbus_statep, instance) != DDI_SUCCESS)
2385 return (DDI_FAILURE);
2386 if ((ssp = bscbus_getstate(dip, instance, "bscbus_attach")) == NULL)
2387 return (bscbus_unattach(ssp, instance));
2388 ddi_set_driver_private(dip, ssp);
2389
2390 /*
2391 * Initialise devinfo-related fields
2392 */
2393 ssp->dip = dip;
2394 ssp->majornum = ddi_driver_major(dip);
2395 ssp->instance = instance;
2396
2397 /*
2398 * Set various options from .conf properties
2399 */
2400 ssp->debug = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2401 DDI_PROP_DONTPASS, "debug", 0);
2402
2403 mutex_init(ssp->ch_mutex, NULL, MUTEX_DRIVER, NULL);
2404
2405 #ifdef BSCBUS_LOGSTATUS
2406 ssp->cmd_log_size = bscbus_cmd_log_size;
2407 if (ssp->cmd_log_size != 0) {
2408 ssp->cmd_log_idx = 0;
2409 ssp->cmd_log = kmem_zalloc(ssp->cmd_log_size *
2410 sizeof (bsc_cmd_log_t), KM_SLEEP);
2411 }
2412 #endif /* BSCBUS_LOGSTATUS */
2413
2414 /*
2415 * Online the hardware ...
2416 */
2417 err = bscbus_online(ssp);
2418 if (err != 0)
2419 return (bscbus_unattach(ssp, instance));
2420
2421 for (chno = 0; chno < BSCBUS_MAX_CHANNELS; chno++) {
2422 struct bscbus_channel_state *csp = &ssp->channel[chno];
2423
2424 /*
2425 * Initialise state
2426 * The hardware/interrupts are setup at map time to
2427 * avoid claiming hardware that OBP is using
2428 */
2429 csp->ssp = ssp;
2430 csp->chno = chno;
2431 csp->map_count = 0;
2432 csp->map_dog = B_FALSE;
2433 }
2434
2435 /*
2436 * All done, report success
2437 */
2438 ddi_report_dev(dip);
2439 return (DDI_SUCCESS);
2440 }
2441
2442 static int
bscbus_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)2443 bscbus_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2444 {
2445 struct bscbus_state *ssp;
2446 int instance;
2447
2448 switch (cmd) {
2449 default:
2450 return (DDI_FAILURE);
2451
2452 case DDI_DETACH:
2453 break;
2454 }
2455
2456 instance = ddi_get_instance(dip);
2457 if ((ssp = bscbus_getstate(dip, instance, "bscbus_detach")) == NULL)
2458 return (DDI_FAILURE); /* this "can't happen" */
2459
2460 (void) bscbus_unattach(ssp, instance);
2461 return (DDI_SUCCESS);
2462 }
2463
2464 static int
bscbus_reset(dev_info_t * dip,ddi_reset_cmd_t cmd)2465 bscbus_reset(dev_info_t *dip, ddi_reset_cmd_t cmd)
2466 {
2467 struct bscbus_state *ssp;
2468 int chno;
2469
2470 _NOTE(ARGUNUSED(cmd))
2471
2472 if ((ssp = bscbus_getstate(dip, -1, "bscbus_reset")) == NULL)
2473 return (DDI_FAILURE);
2474
2475 for (chno = 0; chno < BSCBUS_MAX_CHANNELS; chno++) {
2476 bscbus_hw_reset(&ssp->channel[chno]);
2477 }
2478 return (DDI_SUCCESS);
2479 }
2480
2481
2482 /*
2483 * System interface structures
2484 */
2485
2486 static struct cb_ops bscbus_cb_ops =
2487 {
2488 nodev, /* b/c open */
2489 nodev, /* b/c close */
2490 nodev, /* b strategy */
2491 nodev, /* b print */
2492 nodev, /* b dump */
2493 nodev, /* c read */
2494 nodev, /* c write */
2495 nodev, /* c ioctl */
2496 nodev, /* c devmap */
2497 nodev, /* c mmap */
2498 nodev, /* c segmap */
2499 nochpoll, /* c poll */
2500 ddi_prop_op, /* b/c prop_op */
2501 NULL, /* c streamtab */
2502 D_MP | D_NEW /* b/c flags */
2503 };
2504
2505 static struct bus_ops bscbus_bus_ops =
2506 {
2507 BUSO_REV, /* revision */
2508 bscbus_map, /* bus_map */
2509 0, /* get_intrspec */
2510 0, /* add_intrspec */
2511 0, /* remove_intrspec */
2512 i_ddi_map_fault, /* map_fault */
2513 ddi_no_dma_map, /* dma_map */
2514 ddi_no_dma_allochdl, /* allocate DMA handle */
2515 ddi_no_dma_freehdl, /* free DMA handle */
2516 ddi_no_dma_bindhdl, /* bind DMA handle */
2517 ddi_no_dma_unbindhdl, /* unbind DMA handle */
2518 ddi_no_dma_flush, /* flush DMA */
2519 ddi_no_dma_win, /* move DMA window */
2520 ddi_no_dma_mctl, /* generic DMA control */
2521 bscbus_ctlops, /* generic control */
2522 ddi_bus_prop_op, /* prop_op */
2523 ndi_busop_get_eventcookie, /* get_eventcookie */
2524 ndi_busop_add_eventcall, /* add_eventcall */
2525 ndi_busop_remove_eventcall, /* remove_eventcall */
2526 ndi_post_event, /* post_event */
2527 0, /* interrupt control */
2528 0, /* bus_config */
2529 0, /* bus_unconfig */
2530 0, /* bus_fm_init */
2531 0, /* bus_fm_fini */
2532 0, /* bus_fm_access_enter */
2533 0, /* bus_fm_access_exit */
2534 0, /* bus_power */
2535 bscbus_intr_op /* bus_intr_op */
2536 };
2537
2538 static struct dev_ops bscbus_dev_ops =
2539 {
2540 DEVO_REV,
2541 0, /* refcount */
2542 ddi_no_info, /* getinfo */
2543 nulldev, /* identify */
2544 nulldev, /* probe */
2545 bscbus_attach, /* attach */
2546 bscbus_detach, /* detach */
2547 bscbus_reset, /* reset */
2548 &bscbus_cb_ops, /* driver operations */
2549 &bscbus_bus_ops, /* bus operations */
2550 NULL, /* power */
2551 ddi_quiesce_not_needed, /* quiesce */
2552 };
2553
2554 static struct modldrv modldrv =
2555 {
2556 &mod_driverops,
2557 "bscbus driver",
2558 &bscbus_dev_ops
2559 };
2560
2561 static struct modlinkage modlinkage =
2562 {
2563 MODREV_1,
2564 {
2565 &modldrv,
2566 NULL
2567 }
2568 };
2569
2570
2571 /*
2572 * Dynamic loader interface code
2573 */
2574
2575 int
_init(void)2576 _init(void)
2577 {
2578 int err;
2579
2580 err = ddi_soft_state_init(&bscbus_statep,
2581 sizeof (struct bscbus_state), 0);
2582 if (err == DDI_SUCCESS)
2583 if ((err = mod_install(&modlinkage)) != DDI_SUCCESS) {
2584 ddi_soft_state_fini(&bscbus_statep);
2585 }
2586
2587 return (err);
2588 }
2589
2590 int
_info(struct modinfo * mip)2591 _info(struct modinfo *mip)
2592 {
2593 return (mod_info(&modlinkage, mip));
2594 }
2595
2596 int
_fini(void)2597 _fini(void)
2598 {
2599 int err;
2600
2601 if ((err = mod_remove(&modlinkage)) == DDI_SUCCESS) {
2602 ddi_soft_state_fini(&bscbus_statep);
2603 bscbus_major = NOMAJOR;
2604 }
2605
2606 return (err);
2607 }
2608
2609 #ifdef BSCBUS_LOGSTATUS
bscbus_cmd_log(struct bscbus_channel_state * csp,bsc_cmd_stamp_t cat,uint8_t status,uint8_t data)2610 void bscbus_cmd_log(struct bscbus_channel_state *csp, bsc_cmd_stamp_t cat,
2611 uint8_t status, uint8_t data)
2612 {
2613 int idx;
2614 bsc_cmd_log_t *logp;
2615 struct bscbus_state *ssp;
2616
2617 if ((csp) == NULL)
2618 return;
2619 if ((ssp = (csp)->ssp) == NULL)
2620 return;
2621 if (ssp->cmd_log_size == 0)
2622 return;
2623 if ((bscbus_cmd_log_flags & (1 << cat)) == 0)
2624 return;
2625 idx = atomic_inc_32_nv(&ssp->cmd_log_idx);
2626 logp = &ssp->cmd_log[idx % ssp->cmd_log_size];
2627 logp->bcl_seq = idx;
2628 logp->bcl_cat = cat;
2629 logp->bcl_now = gethrtime();
2630 logp->bcl_chno = csp->chno;
2631 logp->bcl_cmdstate = csp->cmdstate;
2632 logp->bcl_status = status;
2633 logp->bcl_data = data;
2634 }
2635 #endif /* BSCBUS_LOGSTATUS */
2636