1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2020, 2021, 2022 by Pawel Jakub Dawidek
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/brt.h>
32 #include <sys/brt_impl.h>
33 #include <sys/ddt.h>
34 #include <sys/bitmap.h>
35 #include <sys/zap.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc.h>
38 #include <sys/dsl_pool.h>
39 #include <sys/dsl_scan.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/kstat.h>
42 #include <sys/wmsum.h>
43
44 /*
45 * Block Cloning design.
46 *
47 * Block Cloning allows to manually clone a file (or a subset of its blocks)
48 * into another (or the same) file by just creating additional references to
49 * the data blocks without copying the data itself. Those references are kept
50 * in the Block Reference Tables (BRTs).
51 *
52 * In many ways this is similar to the existing deduplication, but there are
53 * some important differences:
54 *
55 * - Deduplication is automatic and Block Cloning is not - one has to use a
56 * dedicated system call(s) to clone the given file/blocks.
57 * - Deduplication keeps all data blocks in its table, even those referenced
58 * just once. Block Cloning creates an entry in its tables only when there
59 * are at least two references to the given data block. If the block was
60 * never explicitly cloned or the second to last reference was dropped,
61 * there will be neither space nor performance overhead.
62 * - Deduplication needs data to work - one needs to pass real data to the
63 * write(2) syscall, so hash can be calculated. Block Cloning doesn't require
64 * data, just block pointers to the data, so it is extremely fast, as we pay
65 * neither the cost of reading the data, nor the cost of writing the data -
66 * we operate exclusively on metadata.
67 * - If the D (dedup) bit is not set in the block pointer, it means that
68 * the block is not in the dedup table (DDT) and we won't consult the DDT
69 * when we need to free the block. Block Cloning must be consulted on every
70 * free, because we cannot modify the source BP (eg. by setting something
71 * similar to the D bit), thus we have no hint if the block is in the
72 * Block Reference Table (BRT), so we need to look into the BRT. There is
73 * an optimization in place that allows us to eliminate the majority of BRT
74 * lookups which is described below in the "Minimizing free penalty" section.
75 * - The BRT entry is much smaller than the DDT entry - for BRT we only store
76 * 64bit offset and 64bit reference counter.
77 * - Dedup keys are cryptographic hashes, so two blocks that are close to each
78 * other on disk are most likely in totally different parts of the DDT.
79 * The BRT entry keys are offsets into a single top-level VDEV, so data blocks
80 * from one file should have BRT entries close to each other.
81 * - Scrub will only do a single pass over a block that is referenced multiple
82 * times in the DDT. Unfortunately it is not currently (if at all) possible
83 * with Block Cloning and block referenced multiple times will be scrubbed
84 * multiple times. The new, sorted scrub should be able to eliminate
85 * duplicated reads given enough memory.
86 * - Deduplication requires cryptographically strong hash as a checksum or
87 * additional data verification. Block Cloning works with any checksum
88 * algorithm or even with checksumming disabled.
89 *
90 * As mentioned above, the BRT entries are much smaller than the DDT entries.
91 * To uniquely identify a block we just need its vdev id and offset. We also
92 * need to maintain a reference counter. The vdev id will often repeat, as there
93 * is a small number of top-level VDEVs and a large number of blocks stored in
94 * each VDEV. We take advantage of that to reduce the BRT entry size further by
95 * maintaining one BRT for each top-level VDEV, so we can then have only offset
96 * and counter as the BRT entry.
97 *
98 * Minimizing free penalty.
99 *
100 * Block Cloning allows creating additional references to any existing block.
101 * When we free a block there is no hint in the block pointer whether the block
102 * was cloned or not, so on each free we have to check if there is a
103 * corresponding entry in the BRT or not. If there is, we need to decrease
104 * the reference counter. Doing BRT lookup on every free can potentially be
105 * expensive by requiring additional I/Os if the BRT doesn't fit into memory.
106 * This is the main problem with deduplication, so we've learned our lesson and
107 * try not to repeat the same mistake here. How do we do that? We divide each
108 * top-level VDEV into 16MB regions. For each region we maintain a counter that
109 * is a sum of all the BRT entries that have offsets within the region. This
110 * creates the entries count array of 16bit numbers for each top-level VDEV.
111 * The entries count array is always kept in memory and updated on disk in the
112 * same transaction group as the BRT updates to keep everything in-sync. We can
113 * keep the array in memory, because it is very small. With 16MB regions and
114 * 1TB VDEV the array requires only 128kB of memory (we may decide to decrease
115 * the region size even further in the future). Now, when we want to free
116 * a block, we first consult the array. If the counter for the whole region is
117 * zero, there is no need to look for the BRT entry, as there isn't one for
118 * sure. If the counter for the region is greater than zero, only then we will
119 * do a BRT lookup and if an entry is found we will decrease the reference
120 * counter in the BRT entry and in the entry counters array.
121 *
122 * The entry counters array is small, but can potentially be larger for very
123 * large VDEVs or smaller regions. In this case we don't want to rewrite entire
124 * array on every change. We then divide the array into 32kB block and keep
125 * a bitmap of dirty blocks within a transaction group. When we sync the
126 * transaction group we can only update the parts of the entry counters array
127 * that were modified. Note: Keeping track of the dirty parts of the entry
128 * counters array is implemented, but updating only parts of the array on disk
129 * is not yet implemented - for now we will update entire array if there was
130 * any change.
131 *
132 * The implementation tries to be economic: if BRT is not used, or no longer
133 * used, there will be no entries in the MOS and no additional memory used (eg.
134 * the entry counters array is only allocated if needed).
135 *
136 * Interaction between Deduplication and Block Cloning.
137 *
138 * If both functionalities are in use, we could end up with a block that is
139 * referenced multiple times in both DDT and BRT. When we free one of the
140 * references we couldn't tell where it belongs, so we would have to decide
141 * what table takes the precedence: do we first clear DDT references or BRT
142 * references? To avoid this dilemma BRT cooperates with DDT - if a given block
143 * is being cloned using BRT and the BP has the D (dedup) bit set, BRT will
144 * lookup DDT entry instead and increase the counter there. No BRT entry
145 * will be created for a block which has the D (dedup) bit set.
146 * BRT may be more efficient for manual deduplication, but if the block is
147 * already in the DDT, then creating additional BRT entry would be less
148 * efficient. This clever idea was proposed by Allan Jude.
149 *
150 * Block Cloning across datasets.
151 *
152 * Block Cloning is not limited to cloning blocks within the same dataset.
153 * It is possible (and very useful) to clone blocks between different datasets.
154 * One use case is recovering files from snapshots. By cloning the files into
155 * dataset we need no additional storage. Without Block Cloning we would need
156 * additional space for those files.
157 * Another interesting use case is moving the files between datasets
158 * (copying the file content to the new dataset and removing the source file).
159 * In that case Block Cloning will only be used briefly, because the BRT entries
160 * will be removed when the source is removed.
161 * Block Cloning across encrypted datasets is supported as long as both
162 * datasets share the same master key (e.g. snapshots and clones)
163 *
164 * Block Cloning flow through ZFS layers.
165 *
166 * Note: Block Cloning can be used both for cloning file system blocks and ZVOL
167 * blocks. As of this writing no interface is implemented that allows for block
168 * cloning within a ZVOL.
169 * FreeBSD and Linux provides copy_file_range(2) system call and we will use it
170 * for blocking cloning.
171 *
172 * ssize_t
173 * copy_file_range(int infd, off_t *inoffp, int outfd, off_t *outoffp,
174 * size_t len, unsigned int flags);
175 *
176 * Even though offsets and length represent bytes, they have to be
177 * block-aligned or we will return an error so the upper layer can
178 * fallback to the generic mechanism that will just copy the data.
179 * Using copy_file_range(2) will call OS-independent zfs_clone_range() function.
180 * This function was implemented based on zfs_write(), but instead of writing
181 * the given data we first read block pointers using the new dmu_read_l0_bps()
182 * function from the source file. Once we have BPs from the source file we call
183 * the dmu_brt_clone() function on the destination file. This function
184 * allocates BPs for us. We iterate over all source BPs. If the given BP is
185 * a hole or an embedded block, we just copy BP as-is. If it points to a real
186 * data we place this BP on a BRT pending list using the brt_pending_add()
187 * function.
188 *
189 * We use this pending list to keep track of all BPs that got new references
190 * within this transaction group.
191 *
192 * Some special cases to consider and how we address them:
193 * - The block we want to clone may have been created within the same
194 * transaction group that we are trying to clone. Such block has no BP
195 * allocated yet, so cannot be immediately cloned. We return EAGAIN.
196 * - The block we want to clone may have been modified within the same
197 * transaction group. We return EAGAIN.
198 * - A block may be cloned multiple times during one transaction group (that's
199 * why pending list is actually a tree and not an append-only list - this
200 * way we can figure out faster if this block is cloned for the first time
201 * in this txg or consecutive time).
202 * - A block may be cloned and freed within the same transaction group
203 * (see dbuf_undirty()).
204 * - A block may be cloned and within the same transaction group the clone
205 * can be cloned again (see dmu_read_l0_bps()).
206 * - A file might have been deleted, but the caller still has a file descriptor
207 * open to this file and clones it.
208 *
209 * When we free a block we have an additional step in the ZIO pipeline where we
210 * call the zio_brt_free() function. We then call the brt_entry_decref()
211 * that loads the corresponding BRT entry (if one exists) and decreases
212 * reference counter. If this is not the last reference we will stop ZIO
213 * pipeline here. If this is the last reference or the block is not in the
214 * BRT, we continue the pipeline and free the block as usual.
215 *
216 * At the beginning of spa_sync() where there can be no more block cloning,
217 * but before issuing frees we call brt_pending_apply(). This function applies
218 * all the new clones to the BRT table - we load BRT entries and update
219 * reference counters. To sync new BRT entries to disk, we use brt_sync()
220 * function. This function will sync all dirty per-top-level-vdev BRTs,
221 * the entry counters arrays, etc.
222 *
223 * Block Cloning and ZIL.
224 *
225 * Every clone operation is divided into chunks (similar to write) and each
226 * chunk is cloned in a separate transaction. The chunk size is determined by
227 * how many BPs we can fit into a single ZIL entry.
228 * Replaying clone operation is different from the regular clone operation,
229 * as when we log clone operations we cannot use the source object - it may
230 * reside on a different dataset, so we log BPs we want to clone.
231 * The ZIL is replayed when we mount the given dataset, not when the pool is
232 * imported. Taking this into account it is possible that the pool is imported
233 * without mounting datasets and the source dataset is destroyed before the
234 * destination dataset is mounted and its ZIL replayed.
235 * To address this situation we leverage zil_claim() mechanism where ZFS will
236 * parse all the ZILs on pool import. When we come across TX_CLONE_RANGE
237 * entries, we will bump reference counters for their BPs in the BRT. Then
238 * on mount and ZIL replay we bump the reference counters once more, while the
239 * first references are dropped during ZIL destroy by zil_free_clone_range().
240 * It is possible that after zil_claim() we never mount the destination, so
241 * we never replay its ZIL and just destroy it. In this case the only taken
242 * references will be dropped by zil_free_clone_range(), since the cloning is
243 * not going to ever take place.
244 */
245
246 static kmem_cache_t *brt_entry_cache;
247
248 /*
249 * Enable/disable prefetching of BRT entries that we are going to modify.
250 */
251 static int brt_zap_prefetch = 1;
252
253 #ifdef ZFS_DEBUG
254 #define BRT_DEBUG(...) do { \
255 if ((zfs_flags & ZFS_DEBUG_BRT) != 0) { \
256 __dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__); \
257 } \
258 } while (0)
259 #else
260 #define BRT_DEBUG(...) do { } while (0)
261 #endif
262
263 static int brt_zap_default_bs = 13;
264 static int brt_zap_default_ibs = 13;
265
266 static kstat_t *brt_ksp;
267
268 typedef struct brt_stats {
269 kstat_named_t brt_addref_entry_not_on_disk;
270 kstat_named_t brt_addref_entry_on_disk;
271 kstat_named_t brt_decref_entry_in_memory;
272 kstat_named_t brt_decref_entry_loaded_from_disk;
273 kstat_named_t brt_decref_entry_not_in_memory;
274 kstat_named_t brt_decref_entry_read_lost_race;
275 kstat_named_t brt_decref_entry_still_referenced;
276 kstat_named_t brt_decref_free_data_later;
277 kstat_named_t brt_decref_free_data_now;
278 kstat_named_t brt_decref_no_entry;
279 } brt_stats_t;
280
281 static brt_stats_t brt_stats = {
282 { "addref_entry_not_on_disk", KSTAT_DATA_UINT64 },
283 { "addref_entry_on_disk", KSTAT_DATA_UINT64 },
284 { "decref_entry_in_memory", KSTAT_DATA_UINT64 },
285 { "decref_entry_loaded_from_disk", KSTAT_DATA_UINT64 },
286 { "decref_entry_not_in_memory", KSTAT_DATA_UINT64 },
287 { "decref_entry_read_lost_race", KSTAT_DATA_UINT64 },
288 { "decref_entry_still_referenced", KSTAT_DATA_UINT64 },
289 { "decref_free_data_later", KSTAT_DATA_UINT64 },
290 { "decref_free_data_now", KSTAT_DATA_UINT64 },
291 { "decref_no_entry", KSTAT_DATA_UINT64 }
292 };
293
294 struct {
295 wmsum_t brt_addref_entry_not_on_disk;
296 wmsum_t brt_addref_entry_on_disk;
297 wmsum_t brt_decref_entry_in_memory;
298 wmsum_t brt_decref_entry_loaded_from_disk;
299 wmsum_t brt_decref_entry_not_in_memory;
300 wmsum_t brt_decref_entry_read_lost_race;
301 wmsum_t brt_decref_entry_still_referenced;
302 wmsum_t brt_decref_free_data_later;
303 wmsum_t brt_decref_free_data_now;
304 wmsum_t brt_decref_no_entry;
305 } brt_sums;
306
307 #define BRTSTAT_BUMP(stat) wmsum_add(&brt_sums.stat, 1)
308
309 static int brt_entry_compare(const void *x1, const void *x2);
310 static void brt_vdevs_expand(spa_t *spa, uint64_t nvdevs);
311
312 static void
brt_rlock(spa_t * spa)313 brt_rlock(spa_t *spa)
314 {
315 rw_enter(&spa->spa_brt_lock, RW_READER);
316 }
317
318 static void
brt_wlock(spa_t * spa)319 brt_wlock(spa_t *spa)
320 {
321 rw_enter(&spa->spa_brt_lock, RW_WRITER);
322 }
323
324 static void
brt_unlock(spa_t * spa)325 brt_unlock(spa_t *spa)
326 {
327 rw_exit(&spa->spa_brt_lock);
328 }
329
330 static uint16_t
brt_vdev_entcount_get(const brt_vdev_t * brtvd,uint64_t idx)331 brt_vdev_entcount_get(const brt_vdev_t *brtvd, uint64_t idx)
332 {
333
334 ASSERT3U(idx, <, brtvd->bv_size);
335
336 if (unlikely(brtvd->bv_need_byteswap)) {
337 return (BSWAP_16(brtvd->bv_entcount[idx]));
338 } else {
339 return (brtvd->bv_entcount[idx]);
340 }
341 }
342
343 static void
brt_vdev_entcount_set(brt_vdev_t * brtvd,uint64_t idx,uint16_t entcnt)344 brt_vdev_entcount_set(brt_vdev_t *brtvd, uint64_t idx, uint16_t entcnt)
345 {
346
347 ASSERT3U(idx, <, brtvd->bv_size);
348
349 if (unlikely(brtvd->bv_need_byteswap)) {
350 brtvd->bv_entcount[idx] = BSWAP_16(entcnt);
351 } else {
352 brtvd->bv_entcount[idx] = entcnt;
353 }
354 }
355
356 static void
brt_vdev_entcount_inc(brt_vdev_t * brtvd,uint64_t idx)357 brt_vdev_entcount_inc(brt_vdev_t *brtvd, uint64_t idx)
358 {
359 uint16_t entcnt;
360
361 ASSERT3U(idx, <, brtvd->bv_size);
362
363 entcnt = brt_vdev_entcount_get(brtvd, idx);
364 ASSERT(entcnt < UINT16_MAX);
365
366 brt_vdev_entcount_set(brtvd, idx, entcnt + 1);
367 }
368
369 static void
brt_vdev_entcount_dec(brt_vdev_t * brtvd,uint64_t idx)370 brt_vdev_entcount_dec(brt_vdev_t *brtvd, uint64_t idx)
371 {
372 uint16_t entcnt;
373
374 ASSERT3U(idx, <, brtvd->bv_size);
375
376 entcnt = brt_vdev_entcount_get(brtvd, idx);
377 ASSERT(entcnt > 0);
378
379 brt_vdev_entcount_set(brtvd, idx, entcnt - 1);
380 }
381
382 #ifdef ZFS_DEBUG
383 static void
brt_vdev_dump(brt_vdev_t * brtvd)384 brt_vdev_dump(brt_vdev_t *brtvd)
385 {
386 uint64_t idx;
387
388 uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
389 zfs_dbgmsg(" BRT vdevid=%llu meta_dirty=%d entcount_dirty=%d "
390 "size=%llu totalcount=%llu nblocks=%llu bitmapsize=%zu",
391 (u_longlong_t)brtvd->bv_vdevid,
392 brtvd->bv_meta_dirty, brtvd->bv_entcount_dirty,
393 (u_longlong_t)brtvd->bv_size,
394 (u_longlong_t)brtvd->bv_totalcount,
395 (u_longlong_t)nblocks,
396 (size_t)BT_SIZEOFMAP(nblocks));
397 if (brtvd->bv_totalcount > 0) {
398 zfs_dbgmsg(" entcounts:");
399 for (idx = 0; idx < brtvd->bv_size; idx++) {
400 uint16_t entcnt = brt_vdev_entcount_get(brtvd, idx);
401 if (entcnt > 0) {
402 zfs_dbgmsg(" [%04llu] %hu",
403 (u_longlong_t)idx, entcnt);
404 }
405 }
406 }
407 if (brtvd->bv_entcount_dirty) {
408 char *bitmap;
409
410 bitmap = kmem_alloc(nblocks + 1, KM_SLEEP);
411 for (idx = 0; idx < nblocks; idx++) {
412 bitmap[idx] =
413 BT_TEST(brtvd->bv_bitmap, idx) ? 'x' : '.';
414 }
415 bitmap[idx] = '\0';
416 zfs_dbgmsg(" dirty: %s", bitmap);
417 kmem_free(bitmap, nblocks + 1);
418 }
419 }
420 #endif
421
422 static brt_vdev_t *
brt_vdev(spa_t * spa,uint64_t vdevid,boolean_t alloc)423 brt_vdev(spa_t *spa, uint64_t vdevid, boolean_t alloc)
424 {
425 brt_vdev_t *brtvd = NULL;
426
427 brt_rlock(spa);
428 if (vdevid < spa->spa_brt_nvdevs) {
429 brtvd = spa->spa_brt_vdevs[vdevid];
430 } else if (alloc) {
431 /* New VDEV was added. */
432 brt_unlock(spa);
433 brt_wlock(spa);
434 if (vdevid >= spa->spa_brt_nvdevs)
435 brt_vdevs_expand(spa, vdevid + 1);
436 brtvd = spa->spa_brt_vdevs[vdevid];
437 }
438 brt_unlock(spa);
439 return (brtvd);
440 }
441
442 static void
brt_vdev_create(spa_t * spa,brt_vdev_t * brtvd,dmu_tx_t * tx)443 brt_vdev_create(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
444 {
445 char name[64];
446
447 ASSERT(brtvd->bv_initiated);
448 ASSERT0(brtvd->bv_mos_brtvdev);
449 ASSERT0(brtvd->bv_mos_entries);
450
451 uint64_t mos_entries = zap_create_flags(spa->spa_meta_objset, 0,
452 ZAP_FLAG_HASH64 | ZAP_FLAG_UINT64_KEY, DMU_OTN_ZAP_METADATA,
453 brt_zap_default_bs, brt_zap_default_ibs, DMU_OT_NONE, 0, tx);
454 VERIFY(mos_entries != 0);
455 VERIFY0(dnode_hold(spa->spa_meta_objset, mos_entries, brtvd,
456 &brtvd->bv_mos_entries_dnode));
457 dnode_set_storage_type(brtvd->bv_mos_entries_dnode, DMU_OT_DDT_ZAP);
458 rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
459 brtvd->bv_mos_entries = mos_entries;
460 rw_exit(&brtvd->bv_mos_entries_lock);
461 BRT_DEBUG("MOS entries created, object=%llu",
462 (u_longlong_t)brtvd->bv_mos_entries);
463
464 /*
465 * We allocate DMU buffer to store the bv_entcount[] array.
466 * We will keep array size (bv_size) and cummulative count for all
467 * bv_entcount[]s (bv_totalcount) in the bonus buffer.
468 */
469 brtvd->bv_mos_brtvdev = dmu_object_alloc(spa->spa_meta_objset,
470 DMU_OTN_UINT64_METADATA, BRT_BLOCKSIZE,
471 DMU_OTN_UINT64_METADATA, sizeof (brt_vdev_phys_t), tx);
472 VERIFY(brtvd->bv_mos_brtvdev != 0);
473 BRT_DEBUG("MOS BRT VDEV created, object=%llu",
474 (u_longlong_t)brtvd->bv_mos_brtvdev);
475
476 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
477 (u_longlong_t)brtvd->bv_vdevid);
478 VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name,
479 sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev, tx));
480 BRT_DEBUG("Pool directory object created, object=%s", name);
481
482 /*
483 * Activate the endian-fixed feature if this is the first BRT ZAP
484 * (i.e., BLOCK_CLONING is not yet active) and the feature is enabled.
485 */
486 if (spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN) &&
487 !spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
488 spa_feature_incr(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN, tx);
489 } else if (spa_feature_is_active(spa,
490 SPA_FEATURE_BLOCK_CLONING_ENDIAN)) {
491 spa_feature_incr(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN, tx);
492 }
493
494 spa_feature_incr(spa, SPA_FEATURE_BLOCK_CLONING, tx);
495 }
496
497 static void
brt_vdev_realloc(spa_t * spa,brt_vdev_t * brtvd)498 brt_vdev_realloc(spa_t *spa, brt_vdev_t *brtvd)
499 {
500 vdev_t *vd;
501 uint16_t *entcount;
502 ulong_t *bitmap;
503 uint64_t nblocks, onblocks, size;
504
505 ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
506
507 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
508 vd = vdev_lookup_top(spa, brtvd->bv_vdevid);
509 size = (vdev_get_min_asize(vd) - 1) / spa->spa_brt_rangesize + 1;
510 spa_config_exit(spa, SCL_VDEV, FTAG);
511
512 nblocks = BRT_RANGESIZE_TO_NBLOCKS(size);
513 entcount = vmem_zalloc(nblocks * BRT_BLOCKSIZE, KM_SLEEP);
514 bitmap = kmem_zalloc(BT_SIZEOFMAP(nblocks), KM_SLEEP);
515
516 if (!brtvd->bv_initiated) {
517 ASSERT0(brtvd->bv_size);
518 ASSERT0P(brtvd->bv_entcount);
519 ASSERT0P(brtvd->bv_bitmap);
520 } else {
521 ASSERT(brtvd->bv_size > 0);
522 ASSERT(brtvd->bv_entcount != NULL);
523 ASSERT(brtvd->bv_bitmap != NULL);
524 /*
525 * TODO: Allow vdev shrinking. We only need to implement
526 * shrinking the on-disk BRT VDEV object.
527 * dmu_free_range(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
528 * offset, size, tx);
529 */
530 ASSERT3U(brtvd->bv_size, <=, size);
531
532 memcpy(entcount, brtvd->bv_entcount,
533 sizeof (entcount[0]) * MIN(size, brtvd->bv_size));
534 onblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
535 vmem_free(brtvd->bv_entcount, onblocks * BRT_BLOCKSIZE);
536 memcpy(bitmap, brtvd->bv_bitmap, MIN(BT_SIZEOFMAP(nblocks),
537 BT_SIZEOFMAP(onblocks)));
538 kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(onblocks));
539 }
540
541 brtvd->bv_size = size;
542 brtvd->bv_entcount = entcount;
543 brtvd->bv_bitmap = bitmap;
544 if (!brtvd->bv_initiated) {
545 brtvd->bv_need_byteswap = FALSE;
546 brtvd->bv_initiated = TRUE;
547 BRT_DEBUG("BRT VDEV %llu initiated.",
548 (u_longlong_t)brtvd->bv_vdevid);
549 }
550 }
551
552 static int
brt_vdev_load(spa_t * spa,brt_vdev_t * brtvd)553 brt_vdev_load(spa_t *spa, brt_vdev_t *brtvd)
554 {
555 dmu_buf_t *db;
556 brt_vdev_phys_t *bvphys;
557 int error;
558
559 ASSERT(!brtvd->bv_initiated);
560 ASSERT(brtvd->bv_mos_brtvdev != 0);
561
562 error = dmu_bonus_hold(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
563 FTAG, &db);
564 if (error != 0)
565 return (error);
566
567 bvphys = db->db_data;
568 if (spa->spa_brt_rangesize == 0) {
569 spa->spa_brt_rangesize = bvphys->bvp_rangesize;
570 } else {
571 ASSERT3U(spa->spa_brt_rangesize, ==, bvphys->bvp_rangesize);
572 }
573
574 brt_vdev_realloc(spa, brtvd);
575
576 /* TODO: We don't support VDEV shrinking. */
577 ASSERT3U(bvphys->bvp_size, <=, brtvd->bv_size);
578
579 /*
580 * If VDEV grew, we will leave new bv_entcount[] entries zeroed out.
581 */
582 error = dmu_read(spa->spa_meta_objset, brtvd->bv_mos_brtvdev, 0,
583 MIN(brtvd->bv_size, bvphys->bvp_size) * sizeof (uint16_t),
584 brtvd->bv_entcount, DMU_READ_NO_PREFETCH | DMU_UNCACHEDIO);
585 if (error != 0)
586 return (error);
587
588 ASSERT(bvphys->bvp_mos_entries != 0);
589 VERIFY0(dnode_hold(spa->spa_meta_objset, bvphys->bvp_mos_entries, brtvd,
590 &brtvd->bv_mos_entries_dnode));
591 dnode_set_storage_type(brtvd->bv_mos_entries_dnode, DMU_OT_DDT_ZAP);
592 rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
593 brtvd->bv_mos_entries = bvphys->bvp_mos_entries;
594 rw_exit(&brtvd->bv_mos_entries_lock);
595 brtvd->bv_need_byteswap =
596 (bvphys->bvp_byteorder != BRT_NATIVE_BYTEORDER);
597 brtvd->bv_totalcount = bvphys->bvp_totalcount;
598 brtvd->bv_usedspace = bvphys->bvp_usedspace;
599 brtvd->bv_savedspace = bvphys->bvp_savedspace;
600
601 dmu_buf_rele(db, FTAG);
602
603 BRT_DEBUG("BRT VDEV %llu loaded: mos_brtvdev=%llu, mos_entries=%llu",
604 (u_longlong_t)brtvd->bv_vdevid,
605 (u_longlong_t)brtvd->bv_mos_brtvdev,
606 (u_longlong_t)brtvd->bv_mos_entries);
607 return (0);
608 }
609
610 static void
brt_vdev_dealloc(brt_vdev_t * brtvd)611 brt_vdev_dealloc(brt_vdev_t *brtvd)
612 {
613 ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
614 ASSERT(brtvd->bv_initiated);
615 ASSERT0(avl_numnodes(&brtvd->bv_tree));
616
617 uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
618 vmem_free(brtvd->bv_entcount, nblocks * BRT_BLOCKSIZE);
619 brtvd->bv_entcount = NULL;
620 kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(nblocks));
621 brtvd->bv_bitmap = NULL;
622
623 brtvd->bv_size = 0;
624
625 brtvd->bv_initiated = FALSE;
626 BRT_DEBUG("BRT VDEV %llu deallocated.", (u_longlong_t)brtvd->bv_vdevid);
627 }
628
629 static void
brt_vdev_destroy(spa_t * spa,brt_vdev_t * brtvd,dmu_tx_t * tx)630 brt_vdev_destroy(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
631 {
632 char name[64];
633 uint64_t count;
634
635 ASSERT(brtvd->bv_initiated);
636 ASSERT(brtvd->bv_mos_brtvdev != 0);
637 ASSERT(brtvd->bv_mos_entries != 0);
638 ASSERT0(brtvd->bv_totalcount);
639 ASSERT0(brtvd->bv_usedspace);
640 ASSERT0(brtvd->bv_savedspace);
641
642 uint64_t mos_entries = brtvd->bv_mos_entries;
643 rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
644 brtvd->bv_mos_entries = 0;
645 rw_exit(&brtvd->bv_mos_entries_lock);
646 dnode_rele(brtvd->bv_mos_entries_dnode, brtvd);
647 brtvd->bv_mos_entries_dnode = NULL;
648 ASSERT0(zap_count(spa->spa_meta_objset, mos_entries, &count));
649 ASSERT0(count);
650 VERIFY0(zap_destroy(spa->spa_meta_objset, mos_entries, tx));
651 BRT_DEBUG("MOS entries destroyed, object=%llu",
652 (u_longlong_t)mos_entries);
653
654 VERIFY0(dmu_object_free(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
655 tx));
656 BRT_DEBUG("MOS BRT VDEV destroyed, object=%llu",
657 (u_longlong_t)brtvd->bv_mos_brtvdev);
658 brtvd->bv_mos_brtvdev = 0;
659 brtvd->bv_entcount_dirty = FALSE;
660
661 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
662 (u_longlong_t)brtvd->bv_vdevid);
663 VERIFY0(zap_remove(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
664 name, tx));
665 BRT_DEBUG("Pool directory object removed, object=%s", name);
666
667 brtvd->bv_meta_dirty = FALSE;
668
669 rw_enter(&brtvd->bv_lock, RW_WRITER);
670 brt_vdev_dealloc(brtvd);
671 rw_exit(&brtvd->bv_lock);
672
673 spa_feature_decr(spa, SPA_FEATURE_BLOCK_CLONING, tx);
674 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN))
675 spa_feature_decr(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN, tx);
676 }
677
678 static void
brt_vdevs_expand(spa_t * spa,uint64_t nvdevs)679 brt_vdevs_expand(spa_t *spa, uint64_t nvdevs)
680 {
681 brt_vdev_t **vdevs;
682
683 ASSERT(RW_WRITE_HELD(&spa->spa_brt_lock));
684 ASSERT3U(nvdevs, >=, spa->spa_brt_nvdevs);
685
686 if (nvdevs == spa->spa_brt_nvdevs)
687 return;
688
689 vdevs = kmem_zalloc(sizeof (*spa->spa_brt_vdevs) * nvdevs, KM_SLEEP);
690 if (spa->spa_brt_nvdevs > 0) {
691 ASSERT(spa->spa_brt_vdevs != NULL);
692
693 memcpy(vdevs, spa->spa_brt_vdevs,
694 sizeof (*spa->spa_brt_vdevs) * spa->spa_brt_nvdevs);
695 kmem_free(spa->spa_brt_vdevs,
696 sizeof (*spa->spa_brt_vdevs) * spa->spa_brt_nvdevs);
697 }
698 spa->spa_brt_vdevs = vdevs;
699
700 for (uint64_t vdevid = spa->spa_brt_nvdevs; vdevid < nvdevs; vdevid++) {
701 brt_vdev_t *brtvd = kmem_zalloc(sizeof (*brtvd), KM_SLEEP);
702 rw_init(&brtvd->bv_lock, NULL, RW_DEFAULT, NULL);
703 brtvd->bv_vdevid = vdevid;
704 brtvd->bv_initiated = FALSE;
705 rw_init(&brtvd->bv_mos_entries_lock, NULL, RW_DEFAULT, NULL);
706 avl_create(&brtvd->bv_tree, brt_entry_compare,
707 sizeof (brt_entry_t), offsetof(brt_entry_t, bre_node));
708 for (int i = 0; i < TXG_SIZE; i++) {
709 avl_create(&brtvd->bv_pending_tree[i],
710 brt_entry_compare, sizeof (brt_entry_t),
711 offsetof(brt_entry_t, bre_node));
712 }
713 mutex_init(&brtvd->bv_pending_lock, NULL, MUTEX_DEFAULT, NULL);
714 spa->spa_brt_vdevs[vdevid] = brtvd;
715 }
716
717 BRT_DEBUG("BRT VDEVs expanded from %llu to %llu.",
718 (u_longlong_t)spa->spa_brt_nvdevs, (u_longlong_t)nvdevs);
719 spa->spa_brt_nvdevs = nvdevs;
720 }
721
722 static boolean_t
brt_vdev_lookup(spa_t * spa,brt_vdev_t * brtvd,uint64_t offset)723 brt_vdev_lookup(spa_t *spa, brt_vdev_t *brtvd, uint64_t offset)
724 {
725 uint64_t idx = offset / spa->spa_brt_rangesize;
726 if (idx < brtvd->bv_size) {
727 /* VDEV wasn't expanded. */
728 return (brt_vdev_entcount_get(brtvd, idx) > 0);
729 }
730 return (FALSE);
731 }
732
733 static void
brt_vdev_addref(spa_t * spa,brt_vdev_t * brtvd,const brt_entry_t * bre,uint64_t dsize,uint64_t count)734 brt_vdev_addref(spa_t *spa, brt_vdev_t *brtvd, const brt_entry_t *bre,
735 uint64_t dsize, uint64_t count)
736 {
737 uint64_t idx;
738
739 ASSERT(brtvd->bv_initiated);
740
741 brtvd->bv_savedspace += dsize * count;
742 brtvd->bv_meta_dirty = TRUE;
743
744 if (bre->bre_count > 0)
745 return;
746
747 brtvd->bv_usedspace += dsize;
748
749 idx = BRE_OFFSET(bre) / spa->spa_brt_rangesize;
750 if (idx >= brtvd->bv_size) {
751 /* VDEV has been expanded. */
752 rw_enter(&brtvd->bv_lock, RW_WRITER);
753 brt_vdev_realloc(spa, brtvd);
754 rw_exit(&brtvd->bv_lock);
755 }
756
757 ASSERT3U(idx, <, brtvd->bv_size);
758
759 brtvd->bv_totalcount++;
760 brt_vdev_entcount_inc(brtvd, idx);
761 brtvd->bv_entcount_dirty = TRUE;
762 idx = idx / BRT_BLOCKSIZE / 8;
763 BT_SET(brtvd->bv_bitmap, idx);
764 }
765
766 static void
brt_vdev_decref(spa_t * spa,brt_vdev_t * brtvd,const brt_entry_t * bre,uint64_t dsize)767 brt_vdev_decref(spa_t *spa, brt_vdev_t *brtvd, const brt_entry_t *bre,
768 uint64_t dsize)
769 {
770 uint64_t idx;
771
772 ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
773 ASSERT(brtvd->bv_initiated);
774
775 brtvd->bv_savedspace -= dsize;
776 brtvd->bv_meta_dirty = TRUE;
777
778 if (bre->bre_count > 0)
779 return;
780
781 brtvd->bv_usedspace -= dsize;
782
783 idx = BRE_OFFSET(bre) / spa->spa_brt_rangesize;
784 ASSERT3U(idx, <, brtvd->bv_size);
785
786 ASSERT(brtvd->bv_totalcount > 0);
787 brtvd->bv_totalcount--;
788 brt_vdev_entcount_dec(brtvd, idx);
789 brtvd->bv_entcount_dirty = TRUE;
790 idx = idx / BRT_BLOCKSIZE / 8;
791 BT_SET(brtvd->bv_bitmap, idx);
792 }
793
794 static void
brt_vdev_sync(spa_t * spa,brt_vdev_t * brtvd,dmu_tx_t * tx)795 brt_vdev_sync(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
796 {
797 dmu_buf_t *db;
798 brt_vdev_phys_t *bvphys;
799
800 ASSERT(brtvd->bv_meta_dirty);
801 ASSERT(brtvd->bv_mos_brtvdev != 0);
802 ASSERT(dmu_tx_is_syncing(tx));
803
804 VERIFY0(dmu_bonus_hold(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
805 FTAG, &db));
806
807 if (brtvd->bv_entcount_dirty) {
808 /*
809 * TODO: Walk brtvd->bv_bitmap and write only the dirty blocks.
810 */
811 uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
812 dmu_write(spa->spa_meta_objset, brtvd->bv_mos_brtvdev, 0,
813 nblocks * BRT_BLOCKSIZE, brtvd->bv_entcount, tx,
814 DMU_READ_NO_PREFETCH | DMU_UNCACHEDIO);
815 memset(brtvd->bv_bitmap, 0, BT_SIZEOFMAP(nblocks));
816 brtvd->bv_entcount_dirty = FALSE;
817 }
818
819 dmu_buf_will_dirty(db, tx);
820 bvphys = db->db_data;
821 bvphys->bvp_mos_entries = brtvd->bv_mos_entries;
822 bvphys->bvp_size = brtvd->bv_size;
823 if (brtvd->bv_need_byteswap) {
824 bvphys->bvp_byteorder = BRT_NON_NATIVE_BYTEORDER;
825 } else {
826 bvphys->bvp_byteorder = BRT_NATIVE_BYTEORDER;
827 }
828 bvphys->bvp_totalcount = brtvd->bv_totalcount;
829 bvphys->bvp_rangesize = spa->spa_brt_rangesize;
830 bvphys->bvp_usedspace = brtvd->bv_usedspace;
831 bvphys->bvp_savedspace = brtvd->bv_savedspace;
832 dmu_buf_rele(db, FTAG);
833
834 brtvd->bv_meta_dirty = FALSE;
835 }
836
837 static void
brt_vdevs_free(spa_t * spa)838 brt_vdevs_free(spa_t *spa)
839 {
840 if (spa->spa_brt_vdevs == 0)
841 return;
842 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
843 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
844 rw_enter(&brtvd->bv_lock, RW_WRITER);
845 if (brtvd->bv_initiated)
846 brt_vdev_dealloc(brtvd);
847 rw_exit(&brtvd->bv_lock);
848 rw_destroy(&brtvd->bv_lock);
849 if (brtvd->bv_mos_entries != 0)
850 dnode_rele(brtvd->bv_mos_entries_dnode, brtvd);
851 rw_destroy(&brtvd->bv_mos_entries_lock);
852 avl_destroy(&brtvd->bv_tree);
853 for (int i = 0; i < TXG_SIZE; i++)
854 avl_destroy(&brtvd->bv_pending_tree[i]);
855 mutex_destroy(&brtvd->bv_pending_lock);
856 kmem_free(brtvd, sizeof (*brtvd));
857 }
858 kmem_free(spa->spa_brt_vdevs, sizeof (*spa->spa_brt_vdevs) *
859 spa->spa_brt_nvdevs);
860 }
861
862 static void
brt_entry_fill(const blkptr_t * bp,brt_entry_t * bre,uint64_t * vdevidp)863 brt_entry_fill(const blkptr_t *bp, brt_entry_t *bre, uint64_t *vdevidp)
864 {
865
866 bre->bre_bp = *bp;
867 bre->bre_count = 0;
868 bre->bre_pcount = 0;
869
870 *vdevidp = DVA_GET_VDEV(&bp->blk_dva[0]);
871 }
872
873 static boolean_t
brt_has_endian_fixed(spa_t * spa)874 brt_has_endian_fixed(spa_t *spa)
875 {
876 return (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING_ENDIAN));
877 }
878
879 static int
brt_entry_lookup(spa_t * spa,brt_vdev_t * brtvd,brt_entry_t * bre)880 brt_entry_lookup(spa_t *spa, brt_vdev_t *brtvd, brt_entry_t *bre)
881 {
882 uint64_t off = BRE_OFFSET(bre);
883
884 if (brtvd->bv_mos_entries == 0)
885 return (SET_ERROR(ENOENT));
886
887 if (brt_has_endian_fixed(spa)) {
888 return (zap_lookup_uint64_by_dnode(brtvd->bv_mos_entries_dnode,
889 &off, BRT_KEY_WORDS, sizeof (bre->bre_count), 1,
890 &bre->bre_count));
891 } else {
892 return (zap_lookup_uint64_by_dnode(brtvd->bv_mos_entries_dnode,
893 &off, BRT_KEY_WORDS, 1, sizeof (bre->bre_count),
894 &bre->bre_count));
895 }
896 }
897
898 /*
899 * Return TRUE if we _can_ have BRT entry for this bp. It might be false
900 * positive, but gives us quick answer if we should look into BRT, which
901 * may require reads and thus will be more expensive.
902 */
903 boolean_t
brt_maybe_exists(spa_t * spa,const blkptr_t * bp)904 brt_maybe_exists(spa_t *spa, const blkptr_t *bp)
905 {
906
907 if (spa->spa_brt_nvdevs == 0)
908 return (B_FALSE);
909
910 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
911 brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
912 if (brtvd == NULL || !brtvd->bv_initiated)
913 return (FALSE);
914
915 /*
916 * We don't need locks here, since bv_entcount pointer must be
917 * stable at this point, and we don't care about false positive
918 * races here, while false negative should be impossible, since
919 * all brt_vdev_addref() have already completed by this point.
920 */
921 uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[0]);
922 return (brt_vdev_lookup(spa, brtvd, off));
923 }
924
925 uint64_t
brt_get_dspace(spa_t * spa)926 brt_get_dspace(spa_t *spa)
927 {
928 if (spa->spa_brt_nvdevs == 0)
929 return (0);
930
931 brt_rlock(spa);
932 uint64_t s = 0;
933 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++)
934 s += spa->spa_brt_vdevs[vdevid]->bv_savedspace;
935 brt_unlock(spa);
936 return (s);
937 }
938
939 uint64_t
brt_get_used(spa_t * spa)940 brt_get_used(spa_t *spa)
941 {
942 if (spa->spa_brt_nvdevs == 0)
943 return (0);
944
945 brt_rlock(spa);
946 uint64_t s = 0;
947 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++)
948 s += spa->spa_brt_vdevs[vdevid]->bv_usedspace;
949 brt_unlock(spa);
950 return (s);
951 }
952
953 uint64_t
brt_get_saved(spa_t * spa)954 brt_get_saved(spa_t *spa)
955 {
956 return (brt_get_dspace(spa));
957 }
958
959 uint64_t
brt_get_ratio(spa_t * spa)960 brt_get_ratio(spa_t *spa)
961 {
962 uint64_t used = brt_get_used(spa);
963 if (used == 0)
964 return (100);
965 return ((used + brt_get_saved(spa)) * 100 / used);
966 }
967
968 static int
brt_kstats_update(kstat_t * ksp,int rw)969 brt_kstats_update(kstat_t *ksp, int rw)
970 {
971 brt_stats_t *bs = ksp->ks_data;
972
973 if (rw == KSTAT_WRITE)
974 return (EACCES);
975
976 bs->brt_addref_entry_not_on_disk.value.ui64 =
977 wmsum_value(&brt_sums.brt_addref_entry_not_on_disk);
978 bs->brt_addref_entry_on_disk.value.ui64 =
979 wmsum_value(&brt_sums.brt_addref_entry_on_disk);
980 bs->brt_decref_entry_in_memory.value.ui64 =
981 wmsum_value(&brt_sums.brt_decref_entry_in_memory);
982 bs->brt_decref_entry_loaded_from_disk.value.ui64 =
983 wmsum_value(&brt_sums.brt_decref_entry_loaded_from_disk);
984 bs->brt_decref_entry_not_in_memory.value.ui64 =
985 wmsum_value(&brt_sums.brt_decref_entry_not_in_memory);
986 bs->brt_decref_entry_read_lost_race.value.ui64 =
987 wmsum_value(&brt_sums.brt_decref_entry_read_lost_race);
988 bs->brt_decref_entry_still_referenced.value.ui64 =
989 wmsum_value(&brt_sums.brt_decref_entry_still_referenced);
990 bs->brt_decref_free_data_later.value.ui64 =
991 wmsum_value(&brt_sums.brt_decref_free_data_later);
992 bs->brt_decref_free_data_now.value.ui64 =
993 wmsum_value(&brt_sums.brt_decref_free_data_now);
994 bs->brt_decref_no_entry.value.ui64 =
995 wmsum_value(&brt_sums.brt_decref_no_entry);
996
997 return (0);
998 }
999
1000 static void
brt_stat_init(void)1001 brt_stat_init(void)
1002 {
1003
1004 wmsum_init(&brt_sums.brt_addref_entry_not_on_disk, 0);
1005 wmsum_init(&brt_sums.brt_addref_entry_on_disk, 0);
1006 wmsum_init(&brt_sums.brt_decref_entry_in_memory, 0);
1007 wmsum_init(&brt_sums.brt_decref_entry_loaded_from_disk, 0);
1008 wmsum_init(&brt_sums.brt_decref_entry_not_in_memory, 0);
1009 wmsum_init(&brt_sums.brt_decref_entry_read_lost_race, 0);
1010 wmsum_init(&brt_sums.brt_decref_entry_still_referenced, 0);
1011 wmsum_init(&brt_sums.brt_decref_free_data_later, 0);
1012 wmsum_init(&brt_sums.brt_decref_free_data_now, 0);
1013 wmsum_init(&brt_sums.brt_decref_no_entry, 0);
1014
1015 brt_ksp = kstat_create("zfs", 0, "brtstats", "misc", KSTAT_TYPE_NAMED,
1016 sizeof (brt_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
1017 if (brt_ksp != NULL) {
1018 brt_ksp->ks_data = &brt_stats;
1019 brt_ksp->ks_update = brt_kstats_update;
1020 kstat_install(brt_ksp);
1021 }
1022 }
1023
1024 static void
brt_stat_fini(void)1025 brt_stat_fini(void)
1026 {
1027 if (brt_ksp != NULL) {
1028 kstat_delete(brt_ksp);
1029 brt_ksp = NULL;
1030 }
1031
1032 wmsum_fini(&brt_sums.brt_addref_entry_not_on_disk);
1033 wmsum_fini(&brt_sums.brt_addref_entry_on_disk);
1034 wmsum_fini(&brt_sums.brt_decref_entry_in_memory);
1035 wmsum_fini(&brt_sums.brt_decref_entry_loaded_from_disk);
1036 wmsum_fini(&brt_sums.brt_decref_entry_not_in_memory);
1037 wmsum_fini(&brt_sums.brt_decref_entry_read_lost_race);
1038 wmsum_fini(&brt_sums.brt_decref_entry_still_referenced);
1039 wmsum_fini(&brt_sums.brt_decref_free_data_later);
1040 wmsum_fini(&brt_sums.brt_decref_free_data_now);
1041 wmsum_fini(&brt_sums.brt_decref_no_entry);
1042 }
1043
1044 void
brt_init(void)1045 brt_init(void)
1046 {
1047 brt_entry_cache = kmem_cache_create("brt_entry_cache",
1048 sizeof (brt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
1049
1050 brt_stat_init();
1051 }
1052
1053 void
brt_fini(void)1054 brt_fini(void)
1055 {
1056 brt_stat_fini();
1057
1058 kmem_cache_destroy(brt_entry_cache);
1059 }
1060
1061 /* Return TRUE if block should be freed immediately. */
1062 boolean_t
brt_entry_decref(spa_t * spa,const blkptr_t * bp)1063 brt_entry_decref(spa_t *spa, const blkptr_t *bp)
1064 {
1065 brt_entry_t *bre, *racebre;
1066 brt_entry_t bre_search;
1067 avl_index_t where;
1068 uint64_t vdevid;
1069 int error;
1070
1071 brt_entry_fill(bp, &bre_search, &vdevid);
1072
1073 brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
1074 ASSERT(brtvd != NULL);
1075
1076 rw_enter(&brtvd->bv_lock, RW_WRITER);
1077 ASSERT(brtvd->bv_initiated);
1078 bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1079 if (bre != NULL) {
1080 BRTSTAT_BUMP(brt_decref_entry_in_memory);
1081 goto out;
1082 } else {
1083 BRTSTAT_BUMP(brt_decref_entry_not_in_memory);
1084 }
1085 rw_exit(&brtvd->bv_lock);
1086
1087 error = brt_entry_lookup(spa, brtvd, &bre_search);
1088 /* bre_search now contains correct bre_count */
1089 if (error == ENOENT) {
1090 BRTSTAT_BUMP(brt_decref_no_entry);
1091 return (B_TRUE);
1092 }
1093 ASSERT0(error);
1094
1095 rw_enter(&brtvd->bv_lock, RW_WRITER);
1096 racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
1097 if (racebre != NULL) {
1098 /* The entry was added when the lock was dropped. */
1099 BRTSTAT_BUMP(brt_decref_entry_read_lost_race);
1100 bre = racebre;
1101 goto out;
1102 }
1103
1104 BRTSTAT_BUMP(brt_decref_entry_loaded_from_disk);
1105 bre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
1106 bre->bre_bp = bre_search.bre_bp;
1107 bre->bre_count = bre_search.bre_count;
1108 bre->bre_pcount = 0;
1109 avl_insert(&brtvd->bv_tree, bre, where);
1110
1111 out:
1112 if (bre->bre_count == 0) {
1113 rw_exit(&brtvd->bv_lock);
1114 BRTSTAT_BUMP(brt_decref_free_data_now);
1115 return (B_TRUE);
1116 }
1117
1118 bre->bre_pcount--;
1119 ASSERT(bre->bre_count > 0);
1120 bre->bre_count--;
1121 if (bre->bre_count == 0)
1122 BRTSTAT_BUMP(brt_decref_free_data_later);
1123 else
1124 BRTSTAT_BUMP(brt_decref_entry_still_referenced);
1125 brt_vdev_decref(spa, brtvd, bre, bp_get_dsize_sync(spa, bp));
1126
1127 rw_exit(&brtvd->bv_lock);
1128
1129 return (B_FALSE);
1130 }
1131
1132 uint64_t
brt_entry_get_refcount(spa_t * spa,const blkptr_t * bp)1133 brt_entry_get_refcount(spa_t *spa, const blkptr_t *bp)
1134 {
1135 brt_entry_t bre_search, *bre;
1136 uint64_t vdevid, refcnt;
1137 int error;
1138
1139 brt_entry_fill(bp, &bre_search, &vdevid);
1140
1141 brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
1142 ASSERT(brtvd != NULL);
1143
1144 rw_enter(&brtvd->bv_lock, RW_READER);
1145 ASSERT(brtvd->bv_initiated);
1146 bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1147 if (bre == NULL) {
1148 rw_exit(&brtvd->bv_lock);
1149 error = brt_entry_lookup(spa, brtvd, &bre_search);
1150 if (error == ENOENT) {
1151 refcnt = 0;
1152 } else {
1153 ASSERT0(error);
1154 refcnt = bre_search.bre_count;
1155 }
1156 } else {
1157 refcnt = bre->bre_count;
1158 rw_exit(&brtvd->bv_lock);
1159 }
1160
1161 return (refcnt);
1162 }
1163
1164 static void
brt_prefetch(brt_vdev_t * brtvd,const blkptr_t * bp)1165 brt_prefetch(brt_vdev_t *brtvd, const blkptr_t *bp)
1166 {
1167 if (!brt_zap_prefetch || brtvd->bv_mos_entries == 0)
1168 return;
1169
1170 uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[0]);
1171 rw_enter(&brtvd->bv_mos_entries_lock, RW_READER);
1172 if (brtvd->bv_mos_entries != 0) {
1173 (void) zap_prefetch_uint64_by_dnode(brtvd->bv_mos_entries_dnode,
1174 &off, BRT_KEY_WORDS);
1175 }
1176 rw_exit(&brtvd->bv_mos_entries_lock);
1177 }
1178
1179 static int
brt_entry_compare(const void * x1,const void * x2)1180 brt_entry_compare(const void *x1, const void *x2)
1181 {
1182 const brt_entry_t *bre1 = x1, *bre2 = x2;
1183 const blkptr_t *bp1 = &bre1->bre_bp, *bp2 = &bre2->bre_bp;
1184
1185 return (TREE_CMP(DVA_GET_OFFSET(&bp1->blk_dva[0]),
1186 DVA_GET_OFFSET(&bp2->blk_dva[0])));
1187 }
1188
1189 void
brt_pending_add(spa_t * spa,const blkptr_t * bp,dmu_tx_t * tx)1190 brt_pending_add(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
1191 {
1192 brt_entry_t *bre, *newbre;
1193 avl_index_t where;
1194 uint64_t txg;
1195
1196 txg = dmu_tx_get_txg(tx);
1197 ASSERT3U(txg, !=, 0);
1198
1199 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
1200 brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_TRUE);
1201 avl_tree_t *pending_tree = &brtvd->bv_pending_tree[txg & TXG_MASK];
1202
1203 newbre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
1204 newbre->bre_bp = *bp;
1205 newbre->bre_count = 0;
1206 newbre->bre_pcount = 1;
1207
1208 mutex_enter(&brtvd->bv_pending_lock);
1209 bre = avl_find(pending_tree, newbre, &where);
1210 if (bre == NULL) {
1211 avl_insert(pending_tree, newbre, where);
1212 newbre = NULL;
1213 } else {
1214 bre->bre_pcount++;
1215 }
1216 mutex_exit(&brtvd->bv_pending_lock);
1217
1218 if (newbre != NULL) {
1219 ASSERT(bre != NULL);
1220 ASSERT(bre != newbre);
1221 kmem_cache_free(brt_entry_cache, newbre);
1222 } else {
1223 ASSERT0P(bre);
1224
1225 /* Prefetch BRT entry for the syncing context. */
1226 brt_prefetch(brtvd, bp);
1227 }
1228 }
1229
1230 void
brt_pending_remove(spa_t * spa,const blkptr_t * bp,dmu_tx_t * tx)1231 brt_pending_remove(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
1232 {
1233 brt_entry_t *bre, bre_search;
1234 uint64_t txg;
1235
1236 txg = dmu_tx_get_txg(tx);
1237 ASSERT3U(txg, !=, 0);
1238
1239 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
1240 brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
1241 ASSERT(brtvd != NULL);
1242 avl_tree_t *pending_tree = &brtvd->bv_pending_tree[txg & TXG_MASK];
1243
1244 bre_search.bre_bp = *bp;
1245
1246 mutex_enter(&brtvd->bv_pending_lock);
1247 bre = avl_find(pending_tree, &bre_search, NULL);
1248 ASSERT(bre != NULL);
1249 ASSERT(bre->bre_pcount > 0);
1250 bre->bre_pcount--;
1251 if (bre->bre_pcount == 0)
1252 avl_remove(pending_tree, bre);
1253 else
1254 bre = NULL;
1255 mutex_exit(&brtvd->bv_pending_lock);
1256
1257 if (bre)
1258 kmem_cache_free(brt_entry_cache, bre);
1259 }
1260
1261 static void
brt_pending_apply_vdev(spa_t * spa,brt_vdev_t * brtvd,uint64_t txg)1262 brt_pending_apply_vdev(spa_t *spa, brt_vdev_t *brtvd, uint64_t txg)
1263 {
1264 brt_entry_t *bre, *nbre;
1265
1266 /*
1267 * We are in syncing context, so no other bv_pending_tree accesses
1268 * are possible for the TXG. So we don't need bv_pending_lock.
1269 */
1270 ASSERT(avl_is_empty(&brtvd->bv_tree));
1271 avl_swap(&brtvd->bv_tree, &brtvd->bv_pending_tree[txg & TXG_MASK]);
1272
1273 for (bre = avl_first(&brtvd->bv_tree); bre; bre = nbre) {
1274 nbre = AVL_NEXT(&brtvd->bv_tree, bre);
1275
1276 /*
1277 * If the block has DEDUP bit set, it means that it
1278 * already exists in the DEDUP table, so we can just
1279 * use that instead of creating new entry in the BRT.
1280 */
1281 if (BP_GET_DEDUP(&bre->bre_bp)) {
1282 while (bre->bre_pcount > 0) {
1283 if (!ddt_addref(spa, &bre->bre_bp))
1284 break;
1285 bre->bre_pcount--;
1286 }
1287 if (bre->bre_pcount == 0) {
1288 avl_remove(&brtvd->bv_tree, bre);
1289 kmem_cache_free(brt_entry_cache, bre);
1290 continue;
1291 }
1292 }
1293
1294 /*
1295 * Unless we know that the block is definitely not in ZAP,
1296 * try to get its reference count from there.
1297 */
1298 uint64_t off = BRE_OFFSET(bre);
1299 if (brtvd->bv_mos_entries != 0 &&
1300 brt_vdev_lookup(spa, brtvd, off)) {
1301 int error;
1302 if (brt_has_endian_fixed(spa)) {
1303 error = zap_lookup_uint64_by_dnode(
1304 brtvd->bv_mos_entries_dnode, &off,
1305 BRT_KEY_WORDS, sizeof (bre->bre_count), 1,
1306 &bre->bre_count);
1307 } else {
1308 error = zap_lookup_uint64_by_dnode(
1309 brtvd->bv_mos_entries_dnode, &off,
1310 BRT_KEY_WORDS, 1, sizeof (bre->bre_count),
1311 &bre->bre_count);
1312 }
1313 if (error == 0) {
1314 BRTSTAT_BUMP(brt_addref_entry_on_disk);
1315 } else {
1316 ASSERT3U(error, ==, ENOENT);
1317 BRTSTAT_BUMP(brt_addref_entry_not_on_disk);
1318 }
1319 }
1320 }
1321
1322 /*
1323 * If all the cloned blocks we had were handled by DDT, we don't need
1324 * to initiate the vdev.
1325 */
1326 if (avl_is_empty(&brtvd->bv_tree))
1327 return;
1328
1329 if (!brtvd->bv_initiated) {
1330 rw_enter(&brtvd->bv_lock, RW_WRITER);
1331 brt_vdev_realloc(spa, brtvd);
1332 rw_exit(&brtvd->bv_lock);
1333 }
1334
1335 /*
1336 * Convert pending references into proper ones. This has to be a
1337 * separate loop, since entcount modifications would cause false
1338 * positives for brt_vdev_lookup() on following iterations.
1339 */
1340 for (bre = avl_first(&brtvd->bv_tree); bre;
1341 bre = AVL_NEXT(&brtvd->bv_tree, bre)) {
1342 brt_vdev_addref(spa, brtvd, bre,
1343 bp_get_dsize(spa, &bre->bre_bp), bre->bre_pcount);
1344 bre->bre_count += bre->bre_pcount;
1345 }
1346 }
1347
1348 void
brt_pending_apply(spa_t * spa,uint64_t txg)1349 brt_pending_apply(spa_t *spa, uint64_t txg)
1350 {
1351
1352 brt_rlock(spa);
1353 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
1354 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
1355 brt_unlock(spa);
1356
1357 brt_pending_apply_vdev(spa, brtvd, txg);
1358
1359 brt_rlock(spa);
1360 }
1361 brt_unlock(spa);
1362 }
1363
1364 static void
brt_sync_entry(spa_t * spa,dnode_t * dn,brt_entry_t * bre,dmu_tx_t * tx)1365 brt_sync_entry(spa_t *spa, dnode_t *dn, brt_entry_t *bre, dmu_tx_t *tx)
1366 {
1367 uint64_t off = BRE_OFFSET(bre);
1368
1369 if (bre->bre_pcount == 0) {
1370 /* The net change is zero, nothing to do in ZAP. */
1371 } else if (bre->bre_count == 0) {
1372 int error = zap_remove_uint64_by_dnode(dn, &off,
1373 BRT_KEY_WORDS, tx);
1374 VERIFY(error == 0 || error == ENOENT);
1375 } else {
1376 if (brt_has_endian_fixed(spa)) {
1377 VERIFY0(zap_update_uint64_by_dnode(dn, &off,
1378 BRT_KEY_WORDS, sizeof (bre->bre_count), 1,
1379 &bre->bre_count, tx));
1380 } else {
1381 VERIFY0(zap_update_uint64_by_dnode(dn, &off,
1382 BRT_KEY_WORDS, 1, sizeof (bre->bre_count),
1383 &bre->bre_count, tx));
1384 }
1385 }
1386 }
1387
1388 static void
brt_sync_table(spa_t * spa,dmu_tx_t * tx)1389 brt_sync_table(spa_t *spa, dmu_tx_t *tx)
1390 {
1391 brt_entry_t *bre;
1392
1393 brt_rlock(spa);
1394 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
1395 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
1396 brt_unlock(spa);
1397
1398 if (!brtvd->bv_meta_dirty) {
1399 ASSERT(!brtvd->bv_entcount_dirty);
1400 ASSERT0(avl_numnodes(&brtvd->bv_tree));
1401 brt_rlock(spa);
1402 continue;
1403 }
1404
1405 ASSERT(!brtvd->bv_entcount_dirty ||
1406 avl_numnodes(&brtvd->bv_tree) != 0);
1407
1408 if (brtvd->bv_mos_brtvdev == 0)
1409 brt_vdev_create(spa, brtvd, tx);
1410
1411 void *c = NULL;
1412 while ((bre = avl_destroy_nodes(&brtvd->bv_tree, &c)) != NULL) {
1413 brt_sync_entry(spa, brtvd->bv_mos_entries_dnode, bre,
1414 tx);
1415 kmem_cache_free(brt_entry_cache, bre);
1416 }
1417
1418 #ifdef ZFS_DEBUG
1419 if (zfs_flags & ZFS_DEBUG_BRT)
1420 brt_vdev_dump(brtvd);
1421 #endif
1422 if (brtvd->bv_totalcount == 0)
1423 brt_vdev_destroy(spa, brtvd, tx);
1424 else
1425 brt_vdev_sync(spa, brtvd, tx);
1426 brt_rlock(spa);
1427 }
1428 brt_unlock(spa);
1429 }
1430
1431 void
brt_sync(spa_t * spa,uint64_t txg)1432 brt_sync(spa_t *spa, uint64_t txg)
1433 {
1434 dmu_tx_t *tx;
1435 uint64_t vdevid;
1436
1437 ASSERT3U(spa_syncing_txg(spa), ==, txg);
1438
1439 brt_rlock(spa);
1440 for (vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
1441 if (spa->spa_brt_vdevs[vdevid]->bv_meta_dirty)
1442 break;
1443 }
1444 if (vdevid >= spa->spa_brt_nvdevs) {
1445 brt_unlock(spa);
1446 return;
1447 }
1448 brt_unlock(spa);
1449
1450 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1451 brt_sync_table(spa, tx);
1452 dmu_tx_commit(tx);
1453 }
1454
1455 static void
brt_alloc(spa_t * spa)1456 brt_alloc(spa_t *spa)
1457 {
1458 rw_init(&spa->spa_brt_lock, NULL, RW_DEFAULT, NULL);
1459 spa->spa_brt_vdevs = NULL;
1460 spa->spa_brt_nvdevs = 0;
1461 spa->spa_brt_rangesize = 0;
1462 }
1463
1464 void
brt_create(spa_t * spa)1465 brt_create(spa_t *spa)
1466 {
1467 brt_alloc(spa);
1468 spa->spa_brt_rangesize = BRT_RANGESIZE;
1469 }
1470
1471 int
brt_load(spa_t * spa)1472 brt_load(spa_t *spa)
1473 {
1474 int error = 0;
1475
1476 brt_alloc(spa);
1477 brt_wlock(spa);
1478 for (uint64_t vdevid = 0; vdevid < spa->spa_root_vdev->vdev_children;
1479 vdevid++) {
1480 char name[64];
1481 uint64_t mos_brtvdev;
1482
1483 /* Look if this vdev had active block cloning. */
1484 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
1485 (u_longlong_t)vdevid);
1486 error = zap_lookup(spa->spa_meta_objset,
1487 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1,
1488 &mos_brtvdev);
1489 if (error == ENOENT) {
1490 error = 0;
1491 continue;
1492 }
1493 if (error != 0)
1494 break;
1495
1496 /* If it did, then allocate them all and load this one. */
1497 brt_vdevs_expand(spa, spa->spa_root_vdev->vdev_children);
1498 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
1499 rw_enter(&brtvd->bv_lock, RW_WRITER);
1500 brtvd->bv_mos_brtvdev = mos_brtvdev;
1501 error = brt_vdev_load(spa, brtvd);
1502 rw_exit(&brtvd->bv_lock);
1503 if (error != 0)
1504 break;
1505 }
1506
1507 if (spa->spa_brt_rangesize == 0)
1508 spa->spa_brt_rangesize = BRT_RANGESIZE;
1509 brt_unlock(spa);
1510 return (error);
1511 }
1512
1513 void
brt_prefetch_all(spa_t * spa)1514 brt_prefetch_all(spa_t *spa)
1515 {
1516 /*
1517 * Load all BRT entries for each vdev. This is intended to perform
1518 * a prefetch on all such blocks. For the same reason that brt_prefetch
1519 * (called from brt_pending_add) isn't locked, this is also not locked.
1520 */
1521 brt_rlock(spa);
1522 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
1523 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
1524 brt_unlock(spa);
1525
1526 rw_enter(&brtvd->bv_mos_entries_lock, RW_READER);
1527 if (brtvd->bv_mos_entries != 0) {
1528 (void) zap_prefetch_object(spa->spa_meta_objset,
1529 brtvd->bv_mos_entries);
1530 }
1531 rw_exit(&brtvd->bv_mos_entries_lock);
1532
1533 brt_rlock(spa);
1534 }
1535 brt_unlock(spa);
1536 }
1537
1538 void
brt_unload(spa_t * spa)1539 brt_unload(spa_t *spa)
1540 {
1541 if (spa->spa_brt_rangesize == 0)
1542 return;
1543 brt_vdevs_free(spa);
1544 rw_destroy(&spa->spa_brt_lock);
1545 spa->spa_brt_rangesize = 0;
1546 }
1547
1548 ZFS_MODULE_PARAM(zfs_brt, , brt_zap_prefetch, INT, ZMOD_RW,
1549 "Enable prefetching of BRT ZAP entries");
1550 ZFS_MODULE_PARAM(zfs_brt, , brt_zap_default_bs, UINT, ZMOD_RW,
1551 "BRT ZAP leaf blockshift");
1552 ZFS_MODULE_PARAM(zfs_brt, , brt_zap_default_ibs, UINT, ZMOD_RW,
1553 "BRT ZAP indirect blockshift");
1554