1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2020, 2021, 2022 by Pawel Jakub Dawidek
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/brt.h>
32 #include <sys/brt_impl.h>
33 #include <sys/ddt.h>
34 #include <sys/bitmap.h>
35 #include <sys/zap.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc.h>
38 #include <sys/dsl_pool.h>
39 #include <sys/dsl_scan.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/kstat.h>
42 #include <sys/wmsum.h>
43
44 /*
45 * Block Cloning design.
46 *
47 * Block Cloning allows to manually clone a file (or a subset of its blocks)
48 * into another (or the same) file by just creating additional references to
49 * the data blocks without copying the data itself. Those references are kept
50 * in the Block Reference Tables (BRTs).
51 *
52 * In many ways this is similar to the existing deduplication, but there are
53 * some important differences:
54 *
55 * - Deduplication is automatic and Block Cloning is not - one has to use a
56 * dedicated system call(s) to clone the given file/blocks.
57 * - Deduplication keeps all data blocks in its table, even those referenced
58 * just once. Block Cloning creates an entry in its tables only when there
59 * are at least two references to the given data block. If the block was
60 * never explicitly cloned or the second to last reference was dropped,
61 * there will be neither space nor performance overhead.
62 * - Deduplication needs data to work - one needs to pass real data to the
63 * write(2) syscall, so hash can be calculated. Block Cloning doesn't require
64 * data, just block pointers to the data, so it is extremely fast, as we pay
65 * neither the cost of reading the data, nor the cost of writing the data -
66 * we operate exclusively on metadata.
67 * - If the D (dedup) bit is not set in the block pointer, it means that
68 * the block is not in the dedup table (DDT) and we won't consult the DDT
69 * when we need to free the block. Block Cloning must be consulted on every
70 * free, because we cannot modify the source BP (eg. by setting something
71 * similar to the D bit), thus we have no hint if the block is in the
72 * Block Reference Table (BRT), so we need to look into the BRT. There is
73 * an optimization in place that allows us to eliminate the majority of BRT
74 * lookups which is described below in the "Minimizing free penalty" section.
75 * - The BRT entry is much smaller than the DDT entry - for BRT we only store
76 * 64bit offset and 64bit reference counter.
77 * - Dedup keys are cryptographic hashes, so two blocks that are close to each
78 * other on disk are most likely in totally different parts of the DDT.
79 * The BRT entry keys are offsets into a single top-level VDEV, so data blocks
80 * from one file should have BRT entries close to each other.
81 * - Scrub will only do a single pass over a block that is referenced multiple
82 * times in the DDT. Unfortunately it is not currently (if at all) possible
83 * with Block Cloning and block referenced multiple times will be scrubbed
84 * multiple times. The new, sorted scrub should be able to eliminate
85 * duplicated reads given enough memory.
86 * - Deduplication requires cryptographically strong hash as a checksum or
87 * additional data verification. Block Cloning works with any checksum
88 * algorithm or even with checksumming disabled.
89 *
90 * As mentioned above, the BRT entries are much smaller than the DDT entries.
91 * To uniquely identify a block we just need its vdev id and offset. We also
92 * need to maintain a reference counter. The vdev id will often repeat, as there
93 * is a small number of top-level VDEVs and a large number of blocks stored in
94 * each VDEV. We take advantage of that to reduce the BRT entry size further by
95 * maintaining one BRT for each top-level VDEV, so we can then have only offset
96 * and counter as the BRT entry.
97 *
98 * Minimizing free penalty.
99 *
100 * Block Cloning allows creating additional references to any existing block.
101 * When we free a block there is no hint in the block pointer whether the block
102 * was cloned or not, so on each free we have to check if there is a
103 * corresponding entry in the BRT or not. If there is, we need to decrease
104 * the reference counter. Doing BRT lookup on every free can potentially be
105 * expensive by requiring additional I/Os if the BRT doesn't fit into memory.
106 * This is the main problem with deduplication, so we've learned our lesson and
107 * try not to repeat the same mistake here. How do we do that? We divide each
108 * top-level VDEV into 16MB regions. For each region we maintain a counter that
109 * is a sum of all the BRT entries that have offsets within the region. This
110 * creates the entries count array of 16bit numbers for each top-level VDEV.
111 * The entries count array is always kept in memory and updated on disk in the
112 * same transaction group as the BRT updates to keep everything in-sync. We can
113 * keep the array in memory, because it is very small. With 16MB regions and
114 * 1TB VDEV the array requires only 128kB of memory (we may decide to decrease
115 * the region size even further in the future). Now, when we want to free
116 * a block, we first consult the array. If the counter for the whole region is
117 * zero, there is no need to look for the BRT entry, as there isn't one for
118 * sure. If the counter for the region is greater than zero, only then we will
119 * do a BRT lookup and if an entry is found we will decrease the reference
120 * counter in the BRT entry and in the entry counters array.
121 *
122 * The entry counters array is small, but can potentially be larger for very
123 * large VDEVs or smaller regions. In this case we don't want to rewrite entire
124 * array on every change. We then divide the array into 32kB block and keep
125 * a bitmap of dirty blocks within a transaction group. When we sync the
126 * transaction group we can only update the parts of the entry counters array
127 * that were modified. Note: Keeping track of the dirty parts of the entry
128 * counters array is implemented, but updating only parts of the array on disk
129 * is not yet implemented - for now we will update entire array if there was
130 * any change.
131 *
132 * The implementation tries to be economic: if BRT is not used, or no longer
133 * used, there will be no entries in the MOS and no additional memory used (eg.
134 * the entry counters array is only allocated if needed).
135 *
136 * Interaction between Deduplication and Block Cloning.
137 *
138 * If both functionalities are in use, we could end up with a block that is
139 * referenced multiple times in both DDT and BRT. When we free one of the
140 * references we couldn't tell where it belongs, so we would have to decide
141 * what table takes the precedence: do we first clear DDT references or BRT
142 * references? To avoid this dilemma BRT cooperates with DDT - if a given block
143 * is being cloned using BRT and the BP has the D (dedup) bit set, BRT will
144 * lookup DDT entry instead and increase the counter there. No BRT entry
145 * will be created for a block which has the D (dedup) bit set.
146 * BRT may be more efficient for manual deduplication, but if the block is
147 * already in the DDT, then creating additional BRT entry would be less
148 * efficient. This clever idea was proposed by Allan Jude.
149 *
150 * Block Cloning across datasets.
151 *
152 * Block Cloning is not limited to cloning blocks within the same dataset.
153 * It is possible (and very useful) to clone blocks between different datasets.
154 * One use case is recovering files from snapshots. By cloning the files into
155 * dataset we need no additional storage. Without Block Cloning we would need
156 * additional space for those files.
157 * Another interesting use case is moving the files between datasets
158 * (copying the file content to the new dataset and removing the source file).
159 * In that case Block Cloning will only be used briefly, because the BRT entries
160 * will be removed when the source is removed.
161 * Block Cloning across encrypted datasets is supported as long as both
162 * datasets share the same master key (e.g. snapshots and clones)
163 *
164 * Block Cloning flow through ZFS layers.
165 *
166 * Note: Block Cloning can be used both for cloning file system blocks and ZVOL
167 * blocks. As of this writing no interface is implemented that allows for block
168 * cloning within a ZVOL.
169 * FreeBSD and Linux provides copy_file_range(2) system call and we will use it
170 * for blocking cloning.
171 *
172 * ssize_t
173 * copy_file_range(int infd, off_t *inoffp, int outfd, off_t *outoffp,
174 * size_t len, unsigned int flags);
175 *
176 * Even though offsets and length represent bytes, they have to be
177 * block-aligned or we will return an error so the upper layer can
178 * fallback to the generic mechanism that will just copy the data.
179 * Using copy_file_range(2) will call OS-independent zfs_clone_range() function.
180 * This function was implemented based on zfs_write(), but instead of writing
181 * the given data we first read block pointers using the new dmu_read_l0_bps()
182 * function from the source file. Once we have BPs from the source file we call
183 * the dmu_brt_clone() function on the destination file. This function
184 * allocates BPs for us. We iterate over all source BPs. If the given BP is
185 * a hole or an embedded block, we just copy BP as-is. If it points to a real
186 * data we place this BP on a BRT pending list using the brt_pending_add()
187 * function.
188 *
189 * We use this pending list to keep track of all BPs that got new references
190 * within this transaction group.
191 *
192 * Some special cases to consider and how we address them:
193 * - The block we want to clone may have been created within the same
194 * transaction group that we are trying to clone. Such block has no BP
195 * allocated yet, so cannot be immediately cloned. We return EAGAIN.
196 * - The block we want to clone may have been modified within the same
197 * transaction group. We return EAGAIN.
198 * - A block may be cloned multiple times during one transaction group (that's
199 * why pending list is actually a tree and not an append-only list - this
200 * way we can figure out faster if this block is cloned for the first time
201 * in this txg or consecutive time).
202 * - A block may be cloned and freed within the same transaction group
203 * (see dbuf_undirty()).
204 * - A block may be cloned and within the same transaction group the clone
205 * can be cloned again (see dmu_read_l0_bps()).
206 * - A file might have been deleted, but the caller still has a file descriptor
207 * open to this file and clones it.
208 *
209 * When we free a block we have an additional step in the ZIO pipeline where we
210 * call the zio_brt_free() function. We then call the brt_entry_decref()
211 * that loads the corresponding BRT entry (if one exists) and decreases
212 * reference counter. If this is not the last reference we will stop ZIO
213 * pipeline here. If this is the last reference or the block is not in the
214 * BRT, we continue the pipeline and free the block as usual.
215 *
216 * At the beginning of spa_sync() where there can be no more block cloning,
217 * but before issuing frees we call brt_pending_apply(). This function applies
218 * all the new clones to the BRT table - we load BRT entries and update
219 * reference counters. To sync new BRT entries to disk, we use brt_sync()
220 * function. This function will sync all dirty per-top-level-vdev BRTs,
221 * the entry counters arrays, etc.
222 *
223 * Block Cloning and ZIL.
224 *
225 * Every clone operation is divided into chunks (similar to write) and each
226 * chunk is cloned in a separate transaction. The chunk size is determined by
227 * how many BPs we can fit into a single ZIL entry.
228 * Replaying clone operation is different from the regular clone operation,
229 * as when we log clone operations we cannot use the source object - it may
230 * reside on a different dataset, so we log BPs we want to clone.
231 * The ZIL is replayed when we mount the given dataset, not when the pool is
232 * imported. Taking this into account it is possible that the pool is imported
233 * without mounting datasets and the source dataset is destroyed before the
234 * destination dataset is mounted and its ZIL replayed.
235 * To address this situation we leverage zil_claim() mechanism where ZFS will
236 * parse all the ZILs on pool import. When we come across TX_CLONE_RANGE
237 * entries, we will bump reference counters for their BPs in the BRT. Then
238 * on mount and ZIL replay we bump the reference counters once more, while the
239 * first references are dropped during ZIL destroy by zil_free_clone_range().
240 * It is possible that after zil_claim() we never mount the destination, so
241 * we never replay its ZIL and just destroy it. In this case the only taken
242 * references will be dropped by zil_free_clone_range(), since the cloning is
243 * not going to ever take place.
244 */
245
246 static kmem_cache_t *brt_entry_cache;
247
248 /*
249 * Enable/disable prefetching of BRT entries that we are going to modify.
250 */
251 static int brt_zap_prefetch = 1;
252
253 #ifdef ZFS_DEBUG
254 #define BRT_DEBUG(...) do { \
255 if ((zfs_flags & ZFS_DEBUG_BRT) != 0) { \
256 __dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__); \
257 } \
258 } while (0)
259 #else
260 #define BRT_DEBUG(...) do { } while (0)
261 #endif
262
263 static int brt_zap_default_bs = 12;
264 static int brt_zap_default_ibs = 12;
265
266 static kstat_t *brt_ksp;
267
268 typedef struct brt_stats {
269 kstat_named_t brt_addref_entry_not_on_disk;
270 kstat_named_t brt_addref_entry_on_disk;
271 kstat_named_t brt_decref_entry_in_memory;
272 kstat_named_t brt_decref_entry_loaded_from_disk;
273 kstat_named_t brt_decref_entry_not_in_memory;
274 kstat_named_t brt_decref_entry_read_lost_race;
275 kstat_named_t brt_decref_entry_still_referenced;
276 kstat_named_t brt_decref_free_data_later;
277 kstat_named_t brt_decref_free_data_now;
278 kstat_named_t brt_decref_no_entry;
279 } brt_stats_t;
280
281 static brt_stats_t brt_stats = {
282 { "addref_entry_not_on_disk", KSTAT_DATA_UINT64 },
283 { "addref_entry_on_disk", KSTAT_DATA_UINT64 },
284 { "decref_entry_in_memory", KSTAT_DATA_UINT64 },
285 { "decref_entry_loaded_from_disk", KSTAT_DATA_UINT64 },
286 { "decref_entry_not_in_memory", KSTAT_DATA_UINT64 },
287 { "decref_entry_read_lost_race", KSTAT_DATA_UINT64 },
288 { "decref_entry_still_referenced", KSTAT_DATA_UINT64 },
289 { "decref_free_data_later", KSTAT_DATA_UINT64 },
290 { "decref_free_data_now", KSTAT_DATA_UINT64 },
291 { "decref_no_entry", KSTAT_DATA_UINT64 }
292 };
293
294 struct {
295 wmsum_t brt_addref_entry_not_on_disk;
296 wmsum_t brt_addref_entry_on_disk;
297 wmsum_t brt_decref_entry_in_memory;
298 wmsum_t brt_decref_entry_loaded_from_disk;
299 wmsum_t brt_decref_entry_not_in_memory;
300 wmsum_t brt_decref_entry_read_lost_race;
301 wmsum_t brt_decref_entry_still_referenced;
302 wmsum_t brt_decref_free_data_later;
303 wmsum_t brt_decref_free_data_now;
304 wmsum_t brt_decref_no_entry;
305 } brt_sums;
306
307 #define BRTSTAT_BUMP(stat) wmsum_add(&brt_sums.stat, 1)
308
309 static int brt_entry_compare(const void *x1, const void *x2);
310 static void brt_vdevs_expand(spa_t *spa, uint64_t nvdevs);
311
312 static void
brt_rlock(spa_t * spa)313 brt_rlock(spa_t *spa)
314 {
315 rw_enter(&spa->spa_brt_lock, RW_READER);
316 }
317
318 static void
brt_wlock(spa_t * spa)319 brt_wlock(spa_t *spa)
320 {
321 rw_enter(&spa->spa_brt_lock, RW_WRITER);
322 }
323
324 static void
brt_unlock(spa_t * spa)325 brt_unlock(spa_t *spa)
326 {
327 rw_exit(&spa->spa_brt_lock);
328 }
329
330 static uint16_t
brt_vdev_entcount_get(const brt_vdev_t * brtvd,uint64_t idx)331 brt_vdev_entcount_get(const brt_vdev_t *brtvd, uint64_t idx)
332 {
333
334 ASSERT3U(idx, <, brtvd->bv_size);
335
336 if (unlikely(brtvd->bv_need_byteswap)) {
337 return (BSWAP_16(brtvd->bv_entcount[idx]));
338 } else {
339 return (brtvd->bv_entcount[idx]);
340 }
341 }
342
343 static void
brt_vdev_entcount_set(brt_vdev_t * brtvd,uint64_t idx,uint16_t entcnt)344 brt_vdev_entcount_set(brt_vdev_t *brtvd, uint64_t idx, uint16_t entcnt)
345 {
346
347 ASSERT3U(idx, <, brtvd->bv_size);
348
349 if (unlikely(brtvd->bv_need_byteswap)) {
350 brtvd->bv_entcount[idx] = BSWAP_16(entcnt);
351 } else {
352 brtvd->bv_entcount[idx] = entcnt;
353 }
354 }
355
356 static void
brt_vdev_entcount_inc(brt_vdev_t * brtvd,uint64_t idx)357 brt_vdev_entcount_inc(brt_vdev_t *brtvd, uint64_t idx)
358 {
359 uint16_t entcnt;
360
361 ASSERT3U(idx, <, brtvd->bv_size);
362
363 entcnt = brt_vdev_entcount_get(brtvd, idx);
364 ASSERT(entcnt < UINT16_MAX);
365
366 brt_vdev_entcount_set(brtvd, idx, entcnt + 1);
367 }
368
369 static void
brt_vdev_entcount_dec(brt_vdev_t * brtvd,uint64_t idx)370 brt_vdev_entcount_dec(brt_vdev_t *brtvd, uint64_t idx)
371 {
372 uint16_t entcnt;
373
374 ASSERT3U(idx, <, brtvd->bv_size);
375
376 entcnt = brt_vdev_entcount_get(brtvd, idx);
377 ASSERT(entcnt > 0);
378
379 brt_vdev_entcount_set(brtvd, idx, entcnt - 1);
380 }
381
382 #ifdef ZFS_DEBUG
383 static void
brt_vdev_dump(brt_vdev_t * brtvd)384 brt_vdev_dump(brt_vdev_t *brtvd)
385 {
386 uint64_t idx;
387
388 uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
389 zfs_dbgmsg(" BRT vdevid=%llu meta_dirty=%d entcount_dirty=%d "
390 "size=%llu totalcount=%llu nblocks=%llu bitmapsize=%zu",
391 (u_longlong_t)brtvd->bv_vdevid,
392 brtvd->bv_meta_dirty, brtvd->bv_entcount_dirty,
393 (u_longlong_t)brtvd->bv_size,
394 (u_longlong_t)brtvd->bv_totalcount,
395 (u_longlong_t)nblocks,
396 (size_t)BT_SIZEOFMAP(nblocks));
397 if (brtvd->bv_totalcount > 0) {
398 zfs_dbgmsg(" entcounts:");
399 for (idx = 0; idx < brtvd->bv_size; idx++) {
400 uint16_t entcnt = brt_vdev_entcount_get(brtvd, idx);
401 if (entcnt > 0) {
402 zfs_dbgmsg(" [%04llu] %hu",
403 (u_longlong_t)idx, entcnt);
404 }
405 }
406 }
407 if (brtvd->bv_entcount_dirty) {
408 char *bitmap;
409
410 bitmap = kmem_alloc(nblocks + 1, KM_SLEEP);
411 for (idx = 0; idx < nblocks; idx++) {
412 bitmap[idx] =
413 BT_TEST(brtvd->bv_bitmap, idx) ? 'x' : '.';
414 }
415 bitmap[idx] = '\0';
416 zfs_dbgmsg(" dirty: %s", bitmap);
417 kmem_free(bitmap, nblocks + 1);
418 }
419 }
420 #endif
421
422 static brt_vdev_t *
brt_vdev(spa_t * spa,uint64_t vdevid,boolean_t alloc)423 brt_vdev(spa_t *spa, uint64_t vdevid, boolean_t alloc)
424 {
425 brt_vdev_t *brtvd = NULL;
426
427 brt_rlock(spa);
428 if (vdevid < spa->spa_brt_nvdevs) {
429 brtvd = spa->spa_brt_vdevs[vdevid];
430 } else if (alloc) {
431 /* New VDEV was added. */
432 brt_unlock(spa);
433 brt_wlock(spa);
434 if (vdevid >= spa->spa_brt_nvdevs)
435 brt_vdevs_expand(spa, vdevid + 1);
436 brtvd = spa->spa_brt_vdevs[vdevid];
437 }
438 brt_unlock(spa);
439 return (brtvd);
440 }
441
442 static void
brt_vdev_create(spa_t * spa,brt_vdev_t * brtvd,dmu_tx_t * tx)443 brt_vdev_create(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
444 {
445 char name[64];
446
447 ASSERT(brtvd->bv_initiated);
448 ASSERT0(brtvd->bv_mos_brtvdev);
449 ASSERT0(brtvd->bv_mos_entries);
450
451 uint64_t mos_entries = zap_create_flags(spa->spa_meta_objset, 0,
452 ZAP_FLAG_HASH64 | ZAP_FLAG_UINT64_KEY, DMU_OTN_ZAP_METADATA,
453 brt_zap_default_bs, brt_zap_default_ibs, DMU_OT_NONE, 0, tx);
454 VERIFY(mos_entries != 0);
455 VERIFY0(dnode_hold(spa->spa_meta_objset, mos_entries, brtvd,
456 &brtvd->bv_mos_entries_dnode));
457 rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
458 brtvd->bv_mos_entries = mos_entries;
459 rw_exit(&brtvd->bv_mos_entries_lock);
460 BRT_DEBUG("MOS entries created, object=%llu",
461 (u_longlong_t)brtvd->bv_mos_entries);
462
463 /*
464 * We allocate DMU buffer to store the bv_entcount[] array.
465 * We will keep array size (bv_size) and cummulative count for all
466 * bv_entcount[]s (bv_totalcount) in the bonus buffer.
467 */
468 brtvd->bv_mos_brtvdev = dmu_object_alloc(spa->spa_meta_objset,
469 DMU_OTN_UINT64_METADATA, BRT_BLOCKSIZE,
470 DMU_OTN_UINT64_METADATA, sizeof (brt_vdev_phys_t), tx);
471 VERIFY(brtvd->bv_mos_brtvdev != 0);
472 BRT_DEBUG("MOS BRT VDEV created, object=%llu",
473 (u_longlong_t)brtvd->bv_mos_brtvdev);
474
475 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
476 (u_longlong_t)brtvd->bv_vdevid);
477 VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name,
478 sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev, tx));
479 BRT_DEBUG("Pool directory object created, object=%s", name);
480
481 spa_feature_incr(spa, SPA_FEATURE_BLOCK_CLONING, tx);
482 }
483
484 static void
brt_vdev_realloc(spa_t * spa,brt_vdev_t * brtvd)485 brt_vdev_realloc(spa_t *spa, brt_vdev_t *brtvd)
486 {
487 vdev_t *vd;
488 uint16_t *entcount;
489 ulong_t *bitmap;
490 uint64_t nblocks, onblocks, size;
491
492 ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
493
494 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
495 vd = vdev_lookup_top(spa, brtvd->bv_vdevid);
496 size = (vdev_get_min_asize(vd) - 1) / spa->spa_brt_rangesize + 1;
497 spa_config_exit(spa, SCL_VDEV, FTAG);
498
499 entcount = vmem_zalloc(sizeof (entcount[0]) * size, KM_SLEEP);
500 nblocks = BRT_RANGESIZE_TO_NBLOCKS(size);
501 bitmap = kmem_zalloc(BT_SIZEOFMAP(nblocks), KM_SLEEP);
502
503 if (!brtvd->bv_initiated) {
504 ASSERT0(brtvd->bv_size);
505 ASSERT0P(brtvd->bv_entcount);
506 ASSERT0P(brtvd->bv_bitmap);
507 } else {
508 ASSERT(brtvd->bv_size > 0);
509 ASSERT(brtvd->bv_entcount != NULL);
510 ASSERT(brtvd->bv_bitmap != NULL);
511 /*
512 * TODO: Allow vdev shrinking. We only need to implement
513 * shrinking the on-disk BRT VDEV object.
514 * dmu_free_range(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
515 * offset, size, tx);
516 */
517 ASSERT3U(brtvd->bv_size, <=, size);
518
519 memcpy(entcount, brtvd->bv_entcount,
520 sizeof (entcount[0]) * MIN(size, brtvd->bv_size));
521 vmem_free(brtvd->bv_entcount,
522 sizeof (entcount[0]) * brtvd->bv_size);
523 onblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
524 memcpy(bitmap, brtvd->bv_bitmap, MIN(BT_SIZEOFMAP(nblocks),
525 BT_SIZEOFMAP(onblocks)));
526 kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(onblocks));
527 }
528
529 brtvd->bv_size = size;
530 brtvd->bv_entcount = entcount;
531 brtvd->bv_bitmap = bitmap;
532 if (!brtvd->bv_initiated) {
533 brtvd->bv_need_byteswap = FALSE;
534 brtvd->bv_initiated = TRUE;
535 BRT_DEBUG("BRT VDEV %llu initiated.",
536 (u_longlong_t)brtvd->bv_vdevid);
537 }
538 }
539
540 static int
brt_vdev_load(spa_t * spa,brt_vdev_t * brtvd)541 brt_vdev_load(spa_t *spa, brt_vdev_t *brtvd)
542 {
543 dmu_buf_t *db;
544 brt_vdev_phys_t *bvphys;
545 int error;
546
547 ASSERT(!brtvd->bv_initiated);
548 ASSERT(brtvd->bv_mos_brtvdev != 0);
549
550 error = dmu_bonus_hold(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
551 FTAG, &db);
552 if (error != 0)
553 return (error);
554
555 bvphys = db->db_data;
556 if (spa->spa_brt_rangesize == 0) {
557 spa->spa_brt_rangesize = bvphys->bvp_rangesize;
558 } else {
559 ASSERT3U(spa->spa_brt_rangesize, ==, bvphys->bvp_rangesize);
560 }
561
562 brt_vdev_realloc(spa, brtvd);
563
564 /* TODO: We don't support VDEV shrinking. */
565 ASSERT3U(bvphys->bvp_size, <=, brtvd->bv_size);
566
567 /*
568 * If VDEV grew, we will leave new bv_entcount[] entries zeroed out.
569 */
570 error = dmu_read(spa->spa_meta_objset, brtvd->bv_mos_brtvdev, 0,
571 MIN(brtvd->bv_size, bvphys->bvp_size) * sizeof (uint16_t),
572 brtvd->bv_entcount, DMU_READ_NO_PREFETCH);
573 if (error != 0)
574 return (error);
575
576 ASSERT(bvphys->bvp_mos_entries != 0);
577 VERIFY0(dnode_hold(spa->spa_meta_objset, bvphys->bvp_mos_entries, brtvd,
578 &brtvd->bv_mos_entries_dnode));
579 rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
580 brtvd->bv_mos_entries = bvphys->bvp_mos_entries;
581 rw_exit(&brtvd->bv_mos_entries_lock);
582 brtvd->bv_need_byteswap =
583 (bvphys->bvp_byteorder != BRT_NATIVE_BYTEORDER);
584 brtvd->bv_totalcount = bvphys->bvp_totalcount;
585 brtvd->bv_usedspace = bvphys->bvp_usedspace;
586 brtvd->bv_savedspace = bvphys->bvp_savedspace;
587
588 dmu_buf_rele(db, FTAG);
589
590 BRT_DEBUG("BRT VDEV %llu loaded: mos_brtvdev=%llu, mos_entries=%llu",
591 (u_longlong_t)brtvd->bv_vdevid,
592 (u_longlong_t)brtvd->bv_mos_brtvdev,
593 (u_longlong_t)brtvd->bv_mos_entries);
594 return (0);
595 }
596
597 static void
brt_vdev_dealloc(brt_vdev_t * brtvd)598 brt_vdev_dealloc(brt_vdev_t *brtvd)
599 {
600 ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
601 ASSERT(brtvd->bv_initiated);
602 ASSERT0(avl_numnodes(&brtvd->bv_tree));
603
604 vmem_free(brtvd->bv_entcount, sizeof (uint16_t) * brtvd->bv_size);
605 brtvd->bv_entcount = NULL;
606 uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
607 kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(nblocks));
608 brtvd->bv_bitmap = NULL;
609
610 brtvd->bv_size = 0;
611
612 brtvd->bv_initiated = FALSE;
613 BRT_DEBUG("BRT VDEV %llu deallocated.", (u_longlong_t)brtvd->bv_vdevid);
614 }
615
616 static void
brt_vdev_destroy(spa_t * spa,brt_vdev_t * brtvd,dmu_tx_t * tx)617 brt_vdev_destroy(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
618 {
619 char name[64];
620 uint64_t count;
621
622 ASSERT(brtvd->bv_initiated);
623 ASSERT(brtvd->bv_mos_brtvdev != 0);
624 ASSERT(brtvd->bv_mos_entries != 0);
625 ASSERT0(brtvd->bv_totalcount);
626 ASSERT0(brtvd->bv_usedspace);
627 ASSERT0(brtvd->bv_savedspace);
628
629 uint64_t mos_entries = brtvd->bv_mos_entries;
630 rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
631 brtvd->bv_mos_entries = 0;
632 rw_exit(&brtvd->bv_mos_entries_lock);
633 dnode_rele(brtvd->bv_mos_entries_dnode, brtvd);
634 brtvd->bv_mos_entries_dnode = NULL;
635 ASSERT0(zap_count(spa->spa_meta_objset, mos_entries, &count));
636 ASSERT0(count);
637 VERIFY0(zap_destroy(spa->spa_meta_objset, mos_entries, tx));
638 BRT_DEBUG("MOS entries destroyed, object=%llu",
639 (u_longlong_t)mos_entries);
640
641 VERIFY0(dmu_object_free(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
642 tx));
643 BRT_DEBUG("MOS BRT VDEV destroyed, object=%llu",
644 (u_longlong_t)brtvd->bv_mos_brtvdev);
645 brtvd->bv_mos_brtvdev = 0;
646 brtvd->bv_entcount_dirty = FALSE;
647
648 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
649 (u_longlong_t)brtvd->bv_vdevid);
650 VERIFY0(zap_remove(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
651 name, tx));
652 BRT_DEBUG("Pool directory object removed, object=%s", name);
653
654 brtvd->bv_meta_dirty = FALSE;
655
656 rw_enter(&brtvd->bv_lock, RW_WRITER);
657 brt_vdev_dealloc(brtvd);
658 rw_exit(&brtvd->bv_lock);
659
660 spa_feature_decr(spa, SPA_FEATURE_BLOCK_CLONING, tx);
661 }
662
663 static void
brt_vdevs_expand(spa_t * spa,uint64_t nvdevs)664 brt_vdevs_expand(spa_t *spa, uint64_t nvdevs)
665 {
666 brt_vdev_t **vdevs;
667
668 ASSERT(RW_WRITE_HELD(&spa->spa_brt_lock));
669 ASSERT3U(nvdevs, >=, spa->spa_brt_nvdevs);
670
671 if (nvdevs == spa->spa_brt_nvdevs)
672 return;
673
674 vdevs = kmem_zalloc(sizeof (*spa->spa_brt_vdevs) * nvdevs, KM_SLEEP);
675 if (spa->spa_brt_nvdevs > 0) {
676 ASSERT(spa->spa_brt_vdevs != NULL);
677
678 memcpy(vdevs, spa->spa_brt_vdevs,
679 sizeof (*spa->spa_brt_vdevs) * spa->spa_brt_nvdevs);
680 kmem_free(spa->spa_brt_vdevs,
681 sizeof (*spa->spa_brt_vdevs) * spa->spa_brt_nvdevs);
682 }
683 spa->spa_brt_vdevs = vdevs;
684
685 for (uint64_t vdevid = spa->spa_brt_nvdevs; vdevid < nvdevs; vdevid++) {
686 brt_vdev_t *brtvd = kmem_zalloc(sizeof (*brtvd), KM_SLEEP);
687 rw_init(&brtvd->bv_lock, NULL, RW_DEFAULT, NULL);
688 brtvd->bv_vdevid = vdevid;
689 brtvd->bv_initiated = FALSE;
690 rw_init(&brtvd->bv_mos_entries_lock, NULL, RW_DEFAULT, NULL);
691 avl_create(&brtvd->bv_tree, brt_entry_compare,
692 sizeof (brt_entry_t), offsetof(brt_entry_t, bre_node));
693 for (int i = 0; i < TXG_SIZE; i++) {
694 avl_create(&brtvd->bv_pending_tree[i],
695 brt_entry_compare, sizeof (brt_entry_t),
696 offsetof(brt_entry_t, bre_node));
697 }
698 mutex_init(&brtvd->bv_pending_lock, NULL, MUTEX_DEFAULT, NULL);
699 spa->spa_brt_vdevs[vdevid] = brtvd;
700 }
701
702 BRT_DEBUG("BRT VDEVs expanded from %llu to %llu.",
703 (u_longlong_t)spa->spa_brt_nvdevs, (u_longlong_t)nvdevs);
704 spa->spa_brt_nvdevs = nvdevs;
705 }
706
707 static boolean_t
brt_vdev_lookup(spa_t * spa,brt_vdev_t * brtvd,uint64_t offset)708 brt_vdev_lookup(spa_t *spa, brt_vdev_t *brtvd, uint64_t offset)
709 {
710 uint64_t idx = offset / spa->spa_brt_rangesize;
711 if (idx < brtvd->bv_size) {
712 /* VDEV wasn't expanded. */
713 return (brt_vdev_entcount_get(brtvd, idx) > 0);
714 }
715 return (FALSE);
716 }
717
718 static void
brt_vdev_addref(spa_t * spa,brt_vdev_t * brtvd,const brt_entry_t * bre,uint64_t dsize,uint64_t count)719 brt_vdev_addref(spa_t *spa, brt_vdev_t *brtvd, const brt_entry_t *bre,
720 uint64_t dsize, uint64_t count)
721 {
722 uint64_t idx;
723
724 ASSERT(brtvd->bv_initiated);
725
726 brtvd->bv_savedspace += dsize * count;
727 brtvd->bv_meta_dirty = TRUE;
728
729 if (bre->bre_count > 0)
730 return;
731
732 brtvd->bv_usedspace += dsize;
733
734 idx = BRE_OFFSET(bre) / spa->spa_brt_rangesize;
735 if (idx >= brtvd->bv_size) {
736 /* VDEV has been expanded. */
737 rw_enter(&brtvd->bv_lock, RW_WRITER);
738 brt_vdev_realloc(spa, brtvd);
739 rw_exit(&brtvd->bv_lock);
740 }
741
742 ASSERT3U(idx, <, brtvd->bv_size);
743
744 brtvd->bv_totalcount++;
745 brt_vdev_entcount_inc(brtvd, idx);
746 brtvd->bv_entcount_dirty = TRUE;
747 idx = idx / BRT_BLOCKSIZE / 8;
748 BT_SET(brtvd->bv_bitmap, idx);
749 }
750
751 static void
brt_vdev_decref(spa_t * spa,brt_vdev_t * brtvd,const brt_entry_t * bre,uint64_t dsize)752 brt_vdev_decref(spa_t *spa, brt_vdev_t *brtvd, const brt_entry_t *bre,
753 uint64_t dsize)
754 {
755 uint64_t idx;
756
757 ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
758 ASSERT(brtvd->bv_initiated);
759
760 brtvd->bv_savedspace -= dsize;
761 brtvd->bv_meta_dirty = TRUE;
762
763 if (bre->bre_count > 0)
764 return;
765
766 brtvd->bv_usedspace -= dsize;
767
768 idx = BRE_OFFSET(bre) / spa->spa_brt_rangesize;
769 ASSERT3U(idx, <, brtvd->bv_size);
770
771 ASSERT(brtvd->bv_totalcount > 0);
772 brtvd->bv_totalcount--;
773 brt_vdev_entcount_dec(brtvd, idx);
774 brtvd->bv_entcount_dirty = TRUE;
775 idx = idx / BRT_BLOCKSIZE / 8;
776 BT_SET(brtvd->bv_bitmap, idx);
777 }
778
779 static void
brt_vdev_sync(spa_t * spa,brt_vdev_t * brtvd,dmu_tx_t * tx)780 brt_vdev_sync(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
781 {
782 dmu_buf_t *db;
783 brt_vdev_phys_t *bvphys;
784
785 ASSERT(brtvd->bv_meta_dirty);
786 ASSERT(brtvd->bv_mos_brtvdev != 0);
787 ASSERT(dmu_tx_is_syncing(tx));
788
789 VERIFY0(dmu_bonus_hold(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
790 FTAG, &db));
791
792 if (brtvd->bv_entcount_dirty) {
793 /*
794 * TODO: Walk brtvd->bv_bitmap and write only the dirty blocks.
795 */
796 dmu_write(spa->spa_meta_objset, brtvd->bv_mos_brtvdev, 0,
797 brtvd->bv_size * sizeof (brtvd->bv_entcount[0]),
798 brtvd->bv_entcount, tx);
799 uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
800 memset(brtvd->bv_bitmap, 0, BT_SIZEOFMAP(nblocks));
801 brtvd->bv_entcount_dirty = FALSE;
802 }
803
804 dmu_buf_will_dirty(db, tx);
805 bvphys = db->db_data;
806 bvphys->bvp_mos_entries = brtvd->bv_mos_entries;
807 bvphys->bvp_size = brtvd->bv_size;
808 if (brtvd->bv_need_byteswap) {
809 bvphys->bvp_byteorder = BRT_NON_NATIVE_BYTEORDER;
810 } else {
811 bvphys->bvp_byteorder = BRT_NATIVE_BYTEORDER;
812 }
813 bvphys->bvp_totalcount = brtvd->bv_totalcount;
814 bvphys->bvp_rangesize = spa->spa_brt_rangesize;
815 bvphys->bvp_usedspace = brtvd->bv_usedspace;
816 bvphys->bvp_savedspace = brtvd->bv_savedspace;
817 dmu_buf_rele(db, FTAG);
818
819 brtvd->bv_meta_dirty = FALSE;
820 }
821
822 static void
brt_vdevs_free(spa_t * spa)823 brt_vdevs_free(spa_t *spa)
824 {
825 if (spa->spa_brt_vdevs == 0)
826 return;
827 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
828 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
829 rw_enter(&brtvd->bv_lock, RW_WRITER);
830 if (brtvd->bv_initiated)
831 brt_vdev_dealloc(brtvd);
832 rw_exit(&brtvd->bv_lock);
833 rw_destroy(&brtvd->bv_lock);
834 if (brtvd->bv_mos_entries != 0)
835 dnode_rele(brtvd->bv_mos_entries_dnode, brtvd);
836 rw_destroy(&brtvd->bv_mos_entries_lock);
837 avl_destroy(&brtvd->bv_tree);
838 for (int i = 0; i < TXG_SIZE; i++)
839 avl_destroy(&brtvd->bv_pending_tree[i]);
840 mutex_destroy(&brtvd->bv_pending_lock);
841 kmem_free(brtvd, sizeof (*brtvd));
842 }
843 kmem_free(spa->spa_brt_vdevs, sizeof (*spa->spa_brt_vdevs) *
844 spa->spa_brt_nvdevs);
845 }
846
847 static void
brt_entry_fill(const blkptr_t * bp,brt_entry_t * bre,uint64_t * vdevidp)848 brt_entry_fill(const blkptr_t *bp, brt_entry_t *bre, uint64_t *vdevidp)
849 {
850
851 bre->bre_bp = *bp;
852 bre->bre_count = 0;
853 bre->bre_pcount = 0;
854
855 *vdevidp = DVA_GET_VDEV(&bp->blk_dva[0]);
856 }
857
858 static int
brt_entry_lookup(brt_vdev_t * brtvd,brt_entry_t * bre)859 brt_entry_lookup(brt_vdev_t *brtvd, brt_entry_t *bre)
860 {
861 uint64_t off = BRE_OFFSET(bre);
862
863 if (brtvd->bv_mos_entries == 0)
864 return (SET_ERROR(ENOENT));
865
866 return (zap_lookup_uint64_by_dnode(brtvd->bv_mos_entries_dnode,
867 &off, BRT_KEY_WORDS, 1, sizeof (bre->bre_count), &bre->bre_count));
868 }
869
870 /*
871 * Return TRUE if we _can_ have BRT entry for this bp. It might be false
872 * positive, but gives us quick answer if we should look into BRT, which
873 * may require reads and thus will be more expensive.
874 */
875 boolean_t
brt_maybe_exists(spa_t * spa,const blkptr_t * bp)876 brt_maybe_exists(spa_t *spa, const blkptr_t *bp)
877 {
878
879 if (spa->spa_brt_nvdevs == 0)
880 return (B_FALSE);
881
882 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
883 brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
884 if (brtvd == NULL || !brtvd->bv_initiated)
885 return (FALSE);
886
887 /*
888 * We don't need locks here, since bv_entcount pointer must be
889 * stable at this point, and we don't care about false positive
890 * races here, while false negative should be impossible, since
891 * all brt_vdev_addref() have already completed by this point.
892 */
893 uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[0]);
894 return (brt_vdev_lookup(spa, brtvd, off));
895 }
896
897 uint64_t
brt_get_dspace(spa_t * spa)898 brt_get_dspace(spa_t *spa)
899 {
900 if (spa->spa_brt_nvdevs == 0)
901 return (0);
902
903 brt_rlock(spa);
904 uint64_t s = 0;
905 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++)
906 s += spa->spa_brt_vdevs[vdevid]->bv_savedspace;
907 brt_unlock(spa);
908 return (s);
909 }
910
911 uint64_t
brt_get_used(spa_t * spa)912 brt_get_used(spa_t *spa)
913 {
914 if (spa->spa_brt_nvdevs == 0)
915 return (0);
916
917 brt_rlock(spa);
918 uint64_t s = 0;
919 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++)
920 s += spa->spa_brt_vdevs[vdevid]->bv_usedspace;
921 brt_unlock(spa);
922 return (s);
923 }
924
925 uint64_t
brt_get_saved(spa_t * spa)926 brt_get_saved(spa_t *spa)
927 {
928 return (brt_get_dspace(spa));
929 }
930
931 uint64_t
brt_get_ratio(spa_t * spa)932 brt_get_ratio(spa_t *spa)
933 {
934 uint64_t used = brt_get_used(spa);
935 if (used == 0)
936 return (100);
937 return ((used + brt_get_saved(spa)) * 100 / used);
938 }
939
940 static int
brt_kstats_update(kstat_t * ksp,int rw)941 brt_kstats_update(kstat_t *ksp, int rw)
942 {
943 brt_stats_t *bs = ksp->ks_data;
944
945 if (rw == KSTAT_WRITE)
946 return (EACCES);
947
948 bs->brt_addref_entry_not_on_disk.value.ui64 =
949 wmsum_value(&brt_sums.brt_addref_entry_not_on_disk);
950 bs->brt_addref_entry_on_disk.value.ui64 =
951 wmsum_value(&brt_sums.brt_addref_entry_on_disk);
952 bs->brt_decref_entry_in_memory.value.ui64 =
953 wmsum_value(&brt_sums.brt_decref_entry_in_memory);
954 bs->brt_decref_entry_loaded_from_disk.value.ui64 =
955 wmsum_value(&brt_sums.brt_decref_entry_loaded_from_disk);
956 bs->brt_decref_entry_not_in_memory.value.ui64 =
957 wmsum_value(&brt_sums.brt_decref_entry_not_in_memory);
958 bs->brt_decref_entry_read_lost_race.value.ui64 =
959 wmsum_value(&brt_sums.brt_decref_entry_read_lost_race);
960 bs->brt_decref_entry_still_referenced.value.ui64 =
961 wmsum_value(&brt_sums.brt_decref_entry_still_referenced);
962 bs->brt_decref_free_data_later.value.ui64 =
963 wmsum_value(&brt_sums.brt_decref_free_data_later);
964 bs->brt_decref_free_data_now.value.ui64 =
965 wmsum_value(&brt_sums.brt_decref_free_data_now);
966 bs->brt_decref_no_entry.value.ui64 =
967 wmsum_value(&brt_sums.brt_decref_no_entry);
968
969 return (0);
970 }
971
972 static void
brt_stat_init(void)973 brt_stat_init(void)
974 {
975
976 wmsum_init(&brt_sums.brt_addref_entry_not_on_disk, 0);
977 wmsum_init(&brt_sums.brt_addref_entry_on_disk, 0);
978 wmsum_init(&brt_sums.brt_decref_entry_in_memory, 0);
979 wmsum_init(&brt_sums.brt_decref_entry_loaded_from_disk, 0);
980 wmsum_init(&brt_sums.brt_decref_entry_not_in_memory, 0);
981 wmsum_init(&brt_sums.brt_decref_entry_read_lost_race, 0);
982 wmsum_init(&brt_sums.brt_decref_entry_still_referenced, 0);
983 wmsum_init(&brt_sums.brt_decref_free_data_later, 0);
984 wmsum_init(&brt_sums.brt_decref_free_data_now, 0);
985 wmsum_init(&brt_sums.brt_decref_no_entry, 0);
986
987 brt_ksp = kstat_create("zfs", 0, "brtstats", "misc", KSTAT_TYPE_NAMED,
988 sizeof (brt_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
989 if (brt_ksp != NULL) {
990 brt_ksp->ks_data = &brt_stats;
991 brt_ksp->ks_update = brt_kstats_update;
992 kstat_install(brt_ksp);
993 }
994 }
995
996 static void
brt_stat_fini(void)997 brt_stat_fini(void)
998 {
999 if (brt_ksp != NULL) {
1000 kstat_delete(brt_ksp);
1001 brt_ksp = NULL;
1002 }
1003
1004 wmsum_fini(&brt_sums.brt_addref_entry_not_on_disk);
1005 wmsum_fini(&brt_sums.brt_addref_entry_on_disk);
1006 wmsum_fini(&brt_sums.brt_decref_entry_in_memory);
1007 wmsum_fini(&brt_sums.brt_decref_entry_loaded_from_disk);
1008 wmsum_fini(&brt_sums.brt_decref_entry_not_in_memory);
1009 wmsum_fini(&brt_sums.brt_decref_entry_read_lost_race);
1010 wmsum_fini(&brt_sums.brt_decref_entry_still_referenced);
1011 wmsum_fini(&brt_sums.brt_decref_free_data_later);
1012 wmsum_fini(&brt_sums.brt_decref_free_data_now);
1013 wmsum_fini(&brt_sums.brt_decref_no_entry);
1014 }
1015
1016 void
brt_init(void)1017 brt_init(void)
1018 {
1019 brt_entry_cache = kmem_cache_create("brt_entry_cache",
1020 sizeof (brt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
1021
1022 brt_stat_init();
1023 }
1024
1025 void
brt_fini(void)1026 brt_fini(void)
1027 {
1028 brt_stat_fini();
1029
1030 kmem_cache_destroy(brt_entry_cache);
1031 }
1032
1033 /* Return TRUE if block should be freed immediately. */
1034 boolean_t
brt_entry_decref(spa_t * spa,const blkptr_t * bp)1035 brt_entry_decref(spa_t *spa, const blkptr_t *bp)
1036 {
1037 brt_entry_t *bre, *racebre;
1038 brt_entry_t bre_search;
1039 avl_index_t where;
1040 uint64_t vdevid;
1041 int error;
1042
1043 brt_entry_fill(bp, &bre_search, &vdevid);
1044
1045 brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
1046 ASSERT(brtvd != NULL);
1047
1048 rw_enter(&brtvd->bv_lock, RW_WRITER);
1049 ASSERT(brtvd->bv_initiated);
1050 bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1051 if (bre != NULL) {
1052 BRTSTAT_BUMP(brt_decref_entry_in_memory);
1053 goto out;
1054 } else {
1055 BRTSTAT_BUMP(brt_decref_entry_not_in_memory);
1056 }
1057 rw_exit(&brtvd->bv_lock);
1058
1059 error = brt_entry_lookup(brtvd, &bre_search);
1060 /* bre_search now contains correct bre_count */
1061 if (error == ENOENT) {
1062 BRTSTAT_BUMP(brt_decref_no_entry);
1063 return (B_TRUE);
1064 }
1065 ASSERT0(error);
1066
1067 rw_enter(&brtvd->bv_lock, RW_WRITER);
1068 racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
1069 if (racebre != NULL) {
1070 /* The entry was added when the lock was dropped. */
1071 BRTSTAT_BUMP(brt_decref_entry_read_lost_race);
1072 bre = racebre;
1073 goto out;
1074 }
1075
1076 BRTSTAT_BUMP(brt_decref_entry_loaded_from_disk);
1077 bre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
1078 bre->bre_bp = bre_search.bre_bp;
1079 bre->bre_count = bre_search.bre_count;
1080 bre->bre_pcount = 0;
1081 avl_insert(&brtvd->bv_tree, bre, where);
1082
1083 out:
1084 if (bre->bre_count == 0) {
1085 rw_exit(&brtvd->bv_lock);
1086 BRTSTAT_BUMP(brt_decref_free_data_now);
1087 return (B_TRUE);
1088 }
1089
1090 bre->bre_pcount--;
1091 ASSERT(bre->bre_count > 0);
1092 bre->bre_count--;
1093 if (bre->bre_count == 0)
1094 BRTSTAT_BUMP(brt_decref_free_data_later);
1095 else
1096 BRTSTAT_BUMP(brt_decref_entry_still_referenced);
1097 brt_vdev_decref(spa, brtvd, bre, bp_get_dsize_sync(spa, bp));
1098
1099 rw_exit(&brtvd->bv_lock);
1100
1101 return (B_FALSE);
1102 }
1103
1104 uint64_t
brt_entry_get_refcount(spa_t * spa,const blkptr_t * bp)1105 brt_entry_get_refcount(spa_t *spa, const blkptr_t *bp)
1106 {
1107 brt_entry_t bre_search, *bre;
1108 uint64_t vdevid, refcnt;
1109 int error;
1110
1111 brt_entry_fill(bp, &bre_search, &vdevid);
1112
1113 brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
1114 ASSERT(brtvd != NULL);
1115
1116 rw_enter(&brtvd->bv_lock, RW_READER);
1117 ASSERT(brtvd->bv_initiated);
1118 bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1119 if (bre == NULL) {
1120 rw_exit(&brtvd->bv_lock);
1121 error = brt_entry_lookup(brtvd, &bre_search);
1122 if (error == ENOENT) {
1123 refcnt = 0;
1124 } else {
1125 ASSERT0(error);
1126 refcnt = bre_search.bre_count;
1127 }
1128 } else {
1129 refcnt = bre->bre_count;
1130 rw_exit(&brtvd->bv_lock);
1131 }
1132
1133 return (refcnt);
1134 }
1135
1136 static void
brt_prefetch(brt_vdev_t * brtvd,const blkptr_t * bp)1137 brt_prefetch(brt_vdev_t *brtvd, const blkptr_t *bp)
1138 {
1139 if (!brt_zap_prefetch || brtvd->bv_mos_entries == 0)
1140 return;
1141
1142 uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[0]);
1143 rw_enter(&brtvd->bv_mos_entries_lock, RW_READER);
1144 if (brtvd->bv_mos_entries != 0) {
1145 (void) zap_prefetch_uint64_by_dnode(brtvd->bv_mos_entries_dnode,
1146 &off, BRT_KEY_WORDS);
1147 }
1148 rw_exit(&brtvd->bv_mos_entries_lock);
1149 }
1150
1151 static int
brt_entry_compare(const void * x1,const void * x2)1152 brt_entry_compare(const void *x1, const void *x2)
1153 {
1154 const brt_entry_t *bre1 = x1, *bre2 = x2;
1155 const blkptr_t *bp1 = &bre1->bre_bp, *bp2 = &bre2->bre_bp;
1156
1157 return (TREE_CMP(DVA_GET_OFFSET(&bp1->blk_dva[0]),
1158 DVA_GET_OFFSET(&bp2->blk_dva[0])));
1159 }
1160
1161 void
brt_pending_add(spa_t * spa,const blkptr_t * bp,dmu_tx_t * tx)1162 brt_pending_add(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
1163 {
1164 brt_entry_t *bre, *newbre;
1165 avl_index_t where;
1166 uint64_t txg;
1167
1168 txg = dmu_tx_get_txg(tx);
1169 ASSERT3U(txg, !=, 0);
1170
1171 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
1172 brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_TRUE);
1173 avl_tree_t *pending_tree = &brtvd->bv_pending_tree[txg & TXG_MASK];
1174
1175 newbre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
1176 newbre->bre_bp = *bp;
1177 newbre->bre_count = 0;
1178 newbre->bre_pcount = 1;
1179
1180 mutex_enter(&brtvd->bv_pending_lock);
1181 bre = avl_find(pending_tree, newbre, &where);
1182 if (bre == NULL) {
1183 avl_insert(pending_tree, newbre, where);
1184 newbre = NULL;
1185 } else {
1186 bre->bre_pcount++;
1187 }
1188 mutex_exit(&brtvd->bv_pending_lock);
1189
1190 if (newbre != NULL) {
1191 ASSERT(bre != NULL);
1192 ASSERT(bre != newbre);
1193 kmem_cache_free(brt_entry_cache, newbre);
1194 } else {
1195 ASSERT0P(bre);
1196
1197 /* Prefetch BRT entry for the syncing context. */
1198 brt_prefetch(brtvd, bp);
1199 }
1200 }
1201
1202 void
brt_pending_remove(spa_t * spa,const blkptr_t * bp,dmu_tx_t * tx)1203 brt_pending_remove(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
1204 {
1205 brt_entry_t *bre, bre_search;
1206 uint64_t txg;
1207
1208 txg = dmu_tx_get_txg(tx);
1209 ASSERT3U(txg, !=, 0);
1210
1211 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
1212 brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
1213 ASSERT(brtvd != NULL);
1214 avl_tree_t *pending_tree = &brtvd->bv_pending_tree[txg & TXG_MASK];
1215
1216 bre_search.bre_bp = *bp;
1217
1218 mutex_enter(&brtvd->bv_pending_lock);
1219 bre = avl_find(pending_tree, &bre_search, NULL);
1220 ASSERT(bre != NULL);
1221 ASSERT(bre->bre_pcount > 0);
1222 bre->bre_pcount--;
1223 if (bre->bre_pcount == 0)
1224 avl_remove(pending_tree, bre);
1225 else
1226 bre = NULL;
1227 mutex_exit(&brtvd->bv_pending_lock);
1228
1229 if (bre)
1230 kmem_cache_free(brt_entry_cache, bre);
1231 }
1232
1233 static void
brt_pending_apply_vdev(spa_t * spa,brt_vdev_t * brtvd,uint64_t txg)1234 brt_pending_apply_vdev(spa_t *spa, brt_vdev_t *brtvd, uint64_t txg)
1235 {
1236 brt_entry_t *bre, *nbre;
1237
1238 /*
1239 * We are in syncing context, so no other bv_pending_tree accesses
1240 * are possible for the TXG. So we don't need bv_pending_lock.
1241 */
1242 ASSERT(avl_is_empty(&brtvd->bv_tree));
1243 avl_swap(&brtvd->bv_tree, &brtvd->bv_pending_tree[txg & TXG_MASK]);
1244
1245 for (bre = avl_first(&brtvd->bv_tree); bre; bre = nbre) {
1246 nbre = AVL_NEXT(&brtvd->bv_tree, bre);
1247
1248 /*
1249 * If the block has DEDUP bit set, it means that it
1250 * already exists in the DEDUP table, so we can just
1251 * use that instead of creating new entry in the BRT.
1252 */
1253 if (BP_GET_DEDUP(&bre->bre_bp)) {
1254 while (bre->bre_pcount > 0) {
1255 if (!ddt_addref(spa, &bre->bre_bp))
1256 break;
1257 bre->bre_pcount--;
1258 }
1259 if (bre->bre_pcount == 0) {
1260 avl_remove(&brtvd->bv_tree, bre);
1261 kmem_cache_free(brt_entry_cache, bre);
1262 continue;
1263 }
1264 }
1265
1266 /*
1267 * Unless we know that the block is definitely not in ZAP,
1268 * try to get its reference count from there.
1269 */
1270 uint64_t off = BRE_OFFSET(bre);
1271 if (brtvd->bv_mos_entries != 0 &&
1272 brt_vdev_lookup(spa, brtvd, off)) {
1273 int error = zap_lookup_uint64_by_dnode(
1274 brtvd->bv_mos_entries_dnode, &off,
1275 BRT_KEY_WORDS, 1, sizeof (bre->bre_count),
1276 &bre->bre_count);
1277 if (error == 0) {
1278 BRTSTAT_BUMP(brt_addref_entry_on_disk);
1279 } else {
1280 ASSERT3U(error, ==, ENOENT);
1281 BRTSTAT_BUMP(brt_addref_entry_not_on_disk);
1282 }
1283 }
1284 }
1285
1286 /*
1287 * If all the cloned blocks we had were handled by DDT, we don't need
1288 * to initiate the vdev.
1289 */
1290 if (avl_is_empty(&brtvd->bv_tree))
1291 return;
1292
1293 if (!brtvd->bv_initiated) {
1294 rw_enter(&brtvd->bv_lock, RW_WRITER);
1295 brt_vdev_realloc(spa, brtvd);
1296 rw_exit(&brtvd->bv_lock);
1297 }
1298
1299 /*
1300 * Convert pending references into proper ones. This has to be a
1301 * separate loop, since entcount modifications would cause false
1302 * positives for brt_vdev_lookup() on following iterations.
1303 */
1304 for (bre = avl_first(&brtvd->bv_tree); bre;
1305 bre = AVL_NEXT(&brtvd->bv_tree, bre)) {
1306 brt_vdev_addref(spa, brtvd, bre,
1307 bp_get_dsize(spa, &bre->bre_bp), bre->bre_pcount);
1308 bre->bre_count += bre->bre_pcount;
1309 }
1310 }
1311
1312 void
brt_pending_apply(spa_t * spa,uint64_t txg)1313 brt_pending_apply(spa_t *spa, uint64_t txg)
1314 {
1315
1316 brt_rlock(spa);
1317 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
1318 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
1319 brt_unlock(spa);
1320
1321 brt_pending_apply_vdev(spa, brtvd, txg);
1322
1323 brt_rlock(spa);
1324 }
1325 brt_unlock(spa);
1326 }
1327
1328 static void
brt_sync_entry(dnode_t * dn,brt_entry_t * bre,dmu_tx_t * tx)1329 brt_sync_entry(dnode_t *dn, brt_entry_t *bre, dmu_tx_t *tx)
1330 {
1331 uint64_t off = BRE_OFFSET(bre);
1332
1333 if (bre->bre_pcount == 0) {
1334 /* The net change is zero, nothing to do in ZAP. */
1335 } else if (bre->bre_count == 0) {
1336 int error = zap_remove_uint64_by_dnode(dn, &off,
1337 BRT_KEY_WORDS, tx);
1338 VERIFY(error == 0 || error == ENOENT);
1339 } else {
1340 VERIFY0(zap_update_uint64_by_dnode(dn, &off,
1341 BRT_KEY_WORDS, 1, sizeof (bre->bre_count),
1342 &bre->bre_count, tx));
1343 }
1344 }
1345
1346 static void
brt_sync_table(spa_t * spa,dmu_tx_t * tx)1347 brt_sync_table(spa_t *spa, dmu_tx_t *tx)
1348 {
1349 brt_entry_t *bre;
1350
1351 brt_rlock(spa);
1352 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
1353 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
1354 brt_unlock(spa);
1355
1356 if (!brtvd->bv_meta_dirty) {
1357 ASSERT(!brtvd->bv_entcount_dirty);
1358 ASSERT0(avl_numnodes(&brtvd->bv_tree));
1359 brt_rlock(spa);
1360 continue;
1361 }
1362
1363 ASSERT(!brtvd->bv_entcount_dirty ||
1364 avl_numnodes(&brtvd->bv_tree) != 0);
1365
1366 if (brtvd->bv_mos_brtvdev == 0)
1367 brt_vdev_create(spa, brtvd, tx);
1368
1369 void *c = NULL;
1370 while ((bre = avl_destroy_nodes(&brtvd->bv_tree, &c)) != NULL) {
1371 brt_sync_entry(brtvd->bv_mos_entries_dnode, bre, tx);
1372 kmem_cache_free(brt_entry_cache, bre);
1373 }
1374
1375 #ifdef ZFS_DEBUG
1376 if (zfs_flags & ZFS_DEBUG_BRT)
1377 brt_vdev_dump(brtvd);
1378 #endif
1379 if (brtvd->bv_totalcount == 0)
1380 brt_vdev_destroy(spa, brtvd, tx);
1381 else
1382 brt_vdev_sync(spa, brtvd, tx);
1383 brt_rlock(spa);
1384 }
1385 brt_unlock(spa);
1386 }
1387
1388 void
brt_sync(spa_t * spa,uint64_t txg)1389 brt_sync(spa_t *spa, uint64_t txg)
1390 {
1391 dmu_tx_t *tx;
1392 uint64_t vdevid;
1393
1394 ASSERT3U(spa_syncing_txg(spa), ==, txg);
1395
1396 brt_rlock(spa);
1397 for (vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
1398 if (spa->spa_brt_vdevs[vdevid]->bv_meta_dirty)
1399 break;
1400 }
1401 if (vdevid >= spa->spa_brt_nvdevs) {
1402 brt_unlock(spa);
1403 return;
1404 }
1405 brt_unlock(spa);
1406
1407 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1408 brt_sync_table(spa, tx);
1409 dmu_tx_commit(tx);
1410 }
1411
1412 static void
brt_alloc(spa_t * spa)1413 brt_alloc(spa_t *spa)
1414 {
1415 rw_init(&spa->spa_brt_lock, NULL, RW_DEFAULT, NULL);
1416 spa->spa_brt_vdevs = NULL;
1417 spa->spa_brt_nvdevs = 0;
1418 spa->spa_brt_rangesize = 0;
1419 }
1420
1421 void
brt_create(spa_t * spa)1422 brt_create(spa_t *spa)
1423 {
1424 brt_alloc(spa);
1425 spa->spa_brt_rangesize = BRT_RANGESIZE;
1426 }
1427
1428 int
brt_load(spa_t * spa)1429 brt_load(spa_t *spa)
1430 {
1431 int error = 0;
1432
1433 brt_alloc(spa);
1434 brt_wlock(spa);
1435 for (uint64_t vdevid = 0; vdevid < spa->spa_root_vdev->vdev_children;
1436 vdevid++) {
1437 char name[64];
1438 uint64_t mos_brtvdev;
1439
1440 /* Look if this vdev had active block cloning. */
1441 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
1442 (u_longlong_t)vdevid);
1443 error = zap_lookup(spa->spa_meta_objset,
1444 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1,
1445 &mos_brtvdev);
1446 if (error == ENOENT) {
1447 error = 0;
1448 continue;
1449 }
1450 if (error != 0)
1451 break;
1452
1453 /* If it did, then allocate them all and load this one. */
1454 brt_vdevs_expand(spa, spa->spa_root_vdev->vdev_children);
1455 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
1456 rw_enter(&brtvd->bv_lock, RW_WRITER);
1457 brtvd->bv_mos_brtvdev = mos_brtvdev;
1458 error = brt_vdev_load(spa, brtvd);
1459 rw_exit(&brtvd->bv_lock);
1460 if (error != 0)
1461 break;
1462 }
1463
1464 if (spa->spa_brt_rangesize == 0)
1465 spa->spa_brt_rangesize = BRT_RANGESIZE;
1466 brt_unlock(spa);
1467 return (error);
1468 }
1469
1470 void
brt_unload(spa_t * spa)1471 brt_unload(spa_t *spa)
1472 {
1473 if (spa->spa_brt_rangesize == 0)
1474 return;
1475 brt_vdevs_free(spa);
1476 rw_destroy(&spa->spa_brt_lock);
1477 spa->spa_brt_rangesize = 0;
1478 }
1479
1480 ZFS_MODULE_PARAM(zfs_brt, , brt_zap_prefetch, INT, ZMOD_RW,
1481 "Enable prefetching of BRT ZAP entries");
1482 ZFS_MODULE_PARAM(zfs_brt, , brt_zap_default_bs, UINT, ZMOD_RW,
1483 "BRT ZAP leaf blockshift");
1484 ZFS_MODULE_PARAM(zfs_brt, , brt_zap_default_ibs, UINT, ZMOD_RW,
1485 "BRT ZAP indirect blockshift");
1486