xref: /linux/drivers/mtd/nand/raw/brcmnand/brcmnand.c (revision 4232da23d75d173195c6766729e51947b64f83cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2010-2015 Broadcom Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/platform_device.h>
12 #include <linux/platform_data/brcmnand.h>
13 #include <linux/err.h>
14 #include <linux/completion.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/ioport.h>
19 #include <linux/bug.h>
20 #include <linux/kernel.h>
21 #include <linux/bitops.h>
22 #include <linux/mm.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/slab.h>
29 #include <linux/static_key.h>
30 #include <linux/list.h>
31 #include <linux/log2.h>
32 
33 #include "brcmnand.h"
34 
35 /*
36  * This flag controls if WP stays on between erase/write commands to mitigate
37  * flash corruption due to power glitches. Values:
38  * 0: NAND_WP is not used or not available
39  * 1: NAND_WP is set by default, cleared for erase/write operations
40  * 2: NAND_WP is always cleared
41  */
42 static int wp_on = 1;
43 module_param(wp_on, int, 0444);
44 
45 /***********************************************************************
46  * Definitions
47  ***********************************************************************/
48 
49 #define DRV_NAME			"brcmnand"
50 
51 #define CMD_NULL			0x00
52 #define CMD_PAGE_READ			0x01
53 #define CMD_SPARE_AREA_READ		0x02
54 #define CMD_STATUS_READ			0x03
55 #define CMD_PROGRAM_PAGE		0x04
56 #define CMD_PROGRAM_SPARE_AREA		0x05
57 #define CMD_COPY_BACK			0x06
58 #define CMD_DEVICE_ID_READ		0x07
59 #define CMD_BLOCK_ERASE			0x08
60 #define CMD_FLASH_RESET			0x09
61 #define CMD_BLOCKS_LOCK			0x0a
62 #define CMD_BLOCKS_LOCK_DOWN		0x0b
63 #define CMD_BLOCKS_UNLOCK		0x0c
64 #define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
65 #define CMD_PARAMETER_READ		0x0e
66 #define CMD_PARAMETER_CHANGE_COL	0x0f
67 #define CMD_LOW_LEVEL_OP		0x10
68 
69 struct brcm_nand_dma_desc {
70 	u32 next_desc;
71 	u32 next_desc_ext;
72 	u32 cmd_irq;
73 	u32 dram_addr;
74 	u32 dram_addr_ext;
75 	u32 tfr_len;
76 	u32 total_len;
77 	u32 flash_addr;
78 	u32 flash_addr_ext;
79 	u32 cs;
80 	u32 pad2[5];
81 	u32 status_valid;
82 } __packed;
83 
84 /* Bitfields for brcm_nand_dma_desc::status_valid */
85 #define FLASH_DMA_ECC_ERROR	(1 << 8)
86 #define FLASH_DMA_CORR_ERROR	(1 << 9)
87 
88 /* Bitfields for DMA_MODE */
89 #define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
90 #define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
91 #define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
92 						FLASH_DMA_MODE_MODE)
93 
94 /* 512B flash cache in the NAND controller HW */
95 #define FC_SHIFT		9U
96 #define FC_BYTES		512U
97 #define FC_WORDS		(FC_BYTES >> 2)
98 
99 #define BRCMNAND_MIN_PAGESIZE	512
100 #define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
101 #define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
102 
103 #define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
104 #define NAND_POLL_STATUS_TIMEOUT_MS	100
105 
106 #define EDU_CMD_WRITE          0x00
107 #define EDU_CMD_READ           0x01
108 #define EDU_STATUS_ACTIVE      BIT(0)
109 #define EDU_ERR_STATUS_ERRACK  BIT(0)
110 #define EDU_DONE_MASK		GENMASK(1, 0)
111 
112 #define EDU_CONFIG_MODE_NAND   BIT(0)
113 #define EDU_CONFIG_SWAP_BYTE   BIT(1)
114 #ifdef CONFIG_CPU_BIG_ENDIAN
115 #define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
116 #else
117 #define EDU_CONFIG_SWAP_CFG     0
118 #endif
119 
120 /* edu registers */
121 enum edu_reg {
122 	EDU_CONFIG = 0,
123 	EDU_DRAM_ADDR,
124 	EDU_EXT_ADDR,
125 	EDU_LENGTH,
126 	EDU_CMD,
127 	EDU_STOP,
128 	EDU_STATUS,
129 	EDU_DONE,
130 	EDU_ERR_STATUS,
131 };
132 
133 static const u16  edu_regs[] = {
134 	[EDU_CONFIG] = 0x00,
135 	[EDU_DRAM_ADDR] = 0x04,
136 	[EDU_EXT_ADDR] = 0x08,
137 	[EDU_LENGTH] = 0x0c,
138 	[EDU_CMD] = 0x10,
139 	[EDU_STOP] = 0x14,
140 	[EDU_STATUS] = 0x18,
141 	[EDU_DONE] = 0x1c,
142 	[EDU_ERR_STATUS] = 0x20,
143 };
144 
145 /* flash_dma registers */
146 enum flash_dma_reg {
147 	FLASH_DMA_REVISION = 0,
148 	FLASH_DMA_FIRST_DESC,
149 	FLASH_DMA_FIRST_DESC_EXT,
150 	FLASH_DMA_CTRL,
151 	FLASH_DMA_MODE,
152 	FLASH_DMA_STATUS,
153 	FLASH_DMA_INTERRUPT_DESC,
154 	FLASH_DMA_INTERRUPT_DESC_EXT,
155 	FLASH_DMA_ERROR_STATUS,
156 	FLASH_DMA_CURRENT_DESC,
157 	FLASH_DMA_CURRENT_DESC_EXT,
158 };
159 
160 /* flash_dma registers v0*/
161 static const u16 flash_dma_regs_v0[] = {
162 	[FLASH_DMA_REVISION]		= 0x00,
163 	[FLASH_DMA_FIRST_DESC]		= 0x04,
164 	[FLASH_DMA_CTRL]		= 0x08,
165 	[FLASH_DMA_MODE]		= 0x0c,
166 	[FLASH_DMA_STATUS]		= 0x10,
167 	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
168 	[FLASH_DMA_ERROR_STATUS]	= 0x18,
169 	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
170 };
171 
172 /* flash_dma registers v1*/
173 static const u16 flash_dma_regs_v1[] = {
174 	[FLASH_DMA_REVISION]		= 0x00,
175 	[FLASH_DMA_FIRST_DESC]		= 0x04,
176 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
177 	[FLASH_DMA_CTRL]		= 0x0c,
178 	[FLASH_DMA_MODE]		= 0x10,
179 	[FLASH_DMA_STATUS]		= 0x14,
180 	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
181 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
182 	[FLASH_DMA_ERROR_STATUS]	= 0x20,
183 	[FLASH_DMA_CURRENT_DESC]	= 0x24,
184 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
185 };
186 
187 /* flash_dma registers v4 */
188 static const u16 flash_dma_regs_v4[] = {
189 	[FLASH_DMA_REVISION]		= 0x00,
190 	[FLASH_DMA_FIRST_DESC]		= 0x08,
191 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
192 	[FLASH_DMA_CTRL]		= 0x10,
193 	[FLASH_DMA_MODE]		= 0x14,
194 	[FLASH_DMA_STATUS]		= 0x18,
195 	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
196 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
197 	[FLASH_DMA_ERROR_STATUS]	= 0x28,
198 	[FLASH_DMA_CURRENT_DESC]	= 0x30,
199 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
200 };
201 
202 /* Controller feature flags */
203 enum {
204 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
205 	BRCMNAND_HAS_PREFETCH			= BIT(1),
206 	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
207 	BRCMNAND_HAS_WP				= BIT(3),
208 };
209 
210 struct brcmnand_host;
211 
212 static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
213 
214 struct brcmnand_controller {
215 	struct device		*dev;
216 	struct nand_controller	controller;
217 	void __iomem		*nand_base;
218 	void __iomem		*nand_fc; /* flash cache */
219 	void __iomem		*flash_dma_base;
220 	int			irq;
221 	unsigned int		dma_irq;
222 	int			nand_version;
223 
224 	/* Some SoCs provide custom interrupt status register(s) */
225 	struct brcmnand_soc	*soc;
226 
227 	/* Some SoCs have a gateable clock for the controller */
228 	struct clk		*clk;
229 
230 	int			cmd_pending;
231 	bool			dma_pending;
232 	bool                    edu_pending;
233 	struct completion	done;
234 	struct completion	dma_done;
235 	struct completion       edu_done;
236 
237 	/* List of NAND hosts (one for each chip-select) */
238 	struct list_head host_list;
239 
240 	/* EDU info, per-transaction */
241 	const u16               *edu_offsets;
242 	void __iomem            *edu_base;
243 	int			edu_irq;
244 	int                     edu_count;
245 	u64                     edu_dram_addr;
246 	u32                     edu_ext_addr;
247 	u32                     edu_cmd;
248 	u32                     edu_config;
249 	int			sas; /* spare area size, per flash cache */
250 	int			sector_size_1k;
251 	u8			*oob;
252 
253 	/* flash_dma reg */
254 	const u16		*flash_dma_offsets;
255 	struct brcm_nand_dma_desc *dma_desc;
256 	dma_addr_t		dma_pa;
257 
258 	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
259 			 u8 *oob, u32 len, u8 dma_cmd);
260 
261 	/* in-memory cache of the FLASH_CACHE, used only for some commands */
262 	u8			flash_cache[FC_BYTES];
263 
264 	/* Controller revision details */
265 	const u16		*reg_offsets;
266 	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
267 	const u8		*cs_offsets; /* within each chip-select */
268 	const u8		*cs0_offsets; /* within CS0, if different */
269 	unsigned int		max_block_size;
270 	const unsigned int	*block_sizes;
271 	unsigned int		max_page_size;
272 	const unsigned int	*page_sizes;
273 	unsigned int		page_size_shift;
274 	unsigned int		max_oob;
275 	u32			ecc_level_shift;
276 	u32			features;
277 
278 	/* for low-power standby/resume only */
279 	u32			nand_cs_nand_select;
280 	u32			nand_cs_nand_xor;
281 	u32			corr_stat_threshold;
282 	u32			flash_dma_mode;
283 	u32                     flash_edu_mode;
284 	bool			pio_poll_mode;
285 };
286 
287 struct brcmnand_cfg {
288 	u64			device_size;
289 	unsigned int		block_size;
290 	unsigned int		page_size;
291 	unsigned int		spare_area_size;
292 	unsigned int		device_width;
293 	unsigned int		col_adr_bytes;
294 	unsigned int		blk_adr_bytes;
295 	unsigned int		ful_adr_bytes;
296 	unsigned int		sector_size_1k;
297 	unsigned int		ecc_level;
298 	/* use for low-power standby/resume only */
299 	u32			acc_control;
300 	u32			config;
301 	u32			config_ext;
302 	u32			timing_1;
303 	u32			timing_2;
304 };
305 
306 struct brcmnand_host {
307 	struct list_head	node;
308 
309 	struct nand_chip	chip;
310 	struct platform_device	*pdev;
311 	int			cs;
312 
313 	unsigned int		last_cmd;
314 	unsigned int		last_byte;
315 	u64			last_addr;
316 	struct brcmnand_cfg	hwcfg;
317 	struct brcmnand_controller *ctrl;
318 };
319 
320 enum brcmnand_reg {
321 	BRCMNAND_CMD_START = 0,
322 	BRCMNAND_CMD_EXT_ADDRESS,
323 	BRCMNAND_CMD_ADDRESS,
324 	BRCMNAND_INTFC_STATUS,
325 	BRCMNAND_CS_SELECT,
326 	BRCMNAND_CS_XOR,
327 	BRCMNAND_LL_OP,
328 	BRCMNAND_CS0_BASE,
329 	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
330 	BRCMNAND_CORR_THRESHOLD,
331 	BRCMNAND_CORR_THRESHOLD_EXT,
332 	BRCMNAND_UNCORR_COUNT,
333 	BRCMNAND_CORR_COUNT,
334 	BRCMNAND_CORR_EXT_ADDR,
335 	BRCMNAND_CORR_ADDR,
336 	BRCMNAND_UNCORR_EXT_ADDR,
337 	BRCMNAND_UNCORR_ADDR,
338 	BRCMNAND_SEMAPHORE,
339 	BRCMNAND_ID,
340 	BRCMNAND_ID_EXT,
341 	BRCMNAND_LL_RDATA,
342 	BRCMNAND_OOB_READ_BASE,
343 	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
344 	BRCMNAND_OOB_WRITE_BASE,
345 	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
346 	BRCMNAND_FC_BASE,
347 };
348 
349 /* BRCMNAND v2.1-v2.2 */
350 static const u16 brcmnand_regs_v21[] = {
351 	[BRCMNAND_CMD_START]		=  0x04,
352 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
353 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
354 	[BRCMNAND_INTFC_STATUS]		=  0x5c,
355 	[BRCMNAND_CS_SELECT]		=  0x14,
356 	[BRCMNAND_CS_XOR]		=  0x18,
357 	[BRCMNAND_LL_OP]		=     0,
358 	[BRCMNAND_CS0_BASE]		=  0x40,
359 	[BRCMNAND_CS1_BASE]		=     0,
360 	[BRCMNAND_CORR_THRESHOLD]	=     0,
361 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
362 	[BRCMNAND_UNCORR_COUNT]		=     0,
363 	[BRCMNAND_CORR_COUNT]		=     0,
364 	[BRCMNAND_CORR_EXT_ADDR]	=  0x60,
365 	[BRCMNAND_CORR_ADDR]		=  0x64,
366 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x68,
367 	[BRCMNAND_UNCORR_ADDR]		=  0x6c,
368 	[BRCMNAND_SEMAPHORE]		=  0x50,
369 	[BRCMNAND_ID]			=  0x54,
370 	[BRCMNAND_ID_EXT]		=     0,
371 	[BRCMNAND_LL_RDATA]		=     0,
372 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
373 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
374 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
375 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
376 	[BRCMNAND_FC_BASE]		= 0x200,
377 };
378 
379 /* BRCMNAND v3.3-v4.0 */
380 static const u16 brcmnand_regs_v33[] = {
381 	[BRCMNAND_CMD_START]		=  0x04,
382 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
383 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
384 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
385 	[BRCMNAND_CS_SELECT]		=  0x14,
386 	[BRCMNAND_CS_XOR]		=  0x18,
387 	[BRCMNAND_LL_OP]		= 0x178,
388 	[BRCMNAND_CS0_BASE]		=  0x40,
389 	[BRCMNAND_CS1_BASE]		=  0xd0,
390 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
391 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
392 	[BRCMNAND_UNCORR_COUNT]		=     0,
393 	[BRCMNAND_CORR_COUNT]		=     0,
394 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
395 	[BRCMNAND_CORR_ADDR]		=  0x74,
396 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
397 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
398 	[BRCMNAND_SEMAPHORE]		=  0x58,
399 	[BRCMNAND_ID]			=  0x60,
400 	[BRCMNAND_ID_EXT]		=  0x64,
401 	[BRCMNAND_LL_RDATA]		= 0x17c,
402 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
403 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
404 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
405 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
406 	[BRCMNAND_FC_BASE]		= 0x200,
407 };
408 
409 /* BRCMNAND v5.0 */
410 static const u16 brcmnand_regs_v50[] = {
411 	[BRCMNAND_CMD_START]		=  0x04,
412 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
413 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
414 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
415 	[BRCMNAND_CS_SELECT]		=  0x14,
416 	[BRCMNAND_CS_XOR]		=  0x18,
417 	[BRCMNAND_LL_OP]		= 0x178,
418 	[BRCMNAND_CS0_BASE]		=  0x40,
419 	[BRCMNAND_CS1_BASE]		=  0xd0,
420 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
421 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
422 	[BRCMNAND_UNCORR_COUNT]		=     0,
423 	[BRCMNAND_CORR_COUNT]		=     0,
424 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
425 	[BRCMNAND_CORR_ADDR]		=  0x74,
426 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
427 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
428 	[BRCMNAND_SEMAPHORE]		=  0x58,
429 	[BRCMNAND_ID]			=  0x60,
430 	[BRCMNAND_ID_EXT]		=  0x64,
431 	[BRCMNAND_LL_RDATA]		= 0x17c,
432 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
433 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
434 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
435 	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
436 	[BRCMNAND_FC_BASE]		= 0x200,
437 };
438 
439 /* BRCMNAND v6.0 - v7.1 */
440 static const u16 brcmnand_regs_v60[] = {
441 	[BRCMNAND_CMD_START]		=  0x04,
442 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
443 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
444 	[BRCMNAND_INTFC_STATUS]		=  0x14,
445 	[BRCMNAND_CS_SELECT]		=  0x18,
446 	[BRCMNAND_CS_XOR]		=  0x1c,
447 	[BRCMNAND_LL_OP]		=  0x20,
448 	[BRCMNAND_CS0_BASE]		=  0x50,
449 	[BRCMNAND_CS1_BASE]		=     0,
450 	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
451 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
452 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
453 	[BRCMNAND_CORR_COUNT]		= 0x100,
454 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
455 	[BRCMNAND_CORR_ADDR]		= 0x110,
456 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
457 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
458 	[BRCMNAND_SEMAPHORE]		= 0x150,
459 	[BRCMNAND_ID]			= 0x194,
460 	[BRCMNAND_ID_EXT]		= 0x198,
461 	[BRCMNAND_LL_RDATA]		= 0x19c,
462 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
463 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
464 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
465 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
466 	[BRCMNAND_FC_BASE]		= 0x400,
467 };
468 
469 /* BRCMNAND v7.1 */
470 static const u16 brcmnand_regs_v71[] = {
471 	[BRCMNAND_CMD_START]		=  0x04,
472 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
473 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
474 	[BRCMNAND_INTFC_STATUS]		=  0x14,
475 	[BRCMNAND_CS_SELECT]		=  0x18,
476 	[BRCMNAND_CS_XOR]		=  0x1c,
477 	[BRCMNAND_LL_OP]		=  0x20,
478 	[BRCMNAND_CS0_BASE]		=  0x50,
479 	[BRCMNAND_CS1_BASE]		=     0,
480 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
481 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
482 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
483 	[BRCMNAND_CORR_COUNT]		= 0x100,
484 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
485 	[BRCMNAND_CORR_ADDR]		= 0x110,
486 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
487 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
488 	[BRCMNAND_SEMAPHORE]		= 0x150,
489 	[BRCMNAND_ID]			= 0x194,
490 	[BRCMNAND_ID_EXT]		= 0x198,
491 	[BRCMNAND_LL_RDATA]		= 0x19c,
492 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
493 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
494 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
495 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
496 	[BRCMNAND_FC_BASE]		= 0x400,
497 };
498 
499 /* BRCMNAND v7.2 */
500 static const u16 brcmnand_regs_v72[] = {
501 	[BRCMNAND_CMD_START]		=  0x04,
502 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
503 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
504 	[BRCMNAND_INTFC_STATUS]		=  0x14,
505 	[BRCMNAND_CS_SELECT]		=  0x18,
506 	[BRCMNAND_CS_XOR]		=  0x1c,
507 	[BRCMNAND_LL_OP]		=  0x20,
508 	[BRCMNAND_CS0_BASE]		=  0x50,
509 	[BRCMNAND_CS1_BASE]		=     0,
510 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
511 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
512 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
513 	[BRCMNAND_CORR_COUNT]		= 0x100,
514 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
515 	[BRCMNAND_CORR_ADDR]		= 0x110,
516 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
517 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
518 	[BRCMNAND_SEMAPHORE]		= 0x150,
519 	[BRCMNAND_ID]			= 0x194,
520 	[BRCMNAND_ID_EXT]		= 0x198,
521 	[BRCMNAND_LL_RDATA]		= 0x19c,
522 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
523 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
524 	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
525 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
526 	[BRCMNAND_FC_BASE]		= 0x600,
527 };
528 
529 enum brcmnand_cs_reg {
530 	BRCMNAND_CS_CFG_EXT = 0,
531 	BRCMNAND_CS_CFG,
532 	BRCMNAND_CS_ACC_CONTROL,
533 	BRCMNAND_CS_TIMING1,
534 	BRCMNAND_CS_TIMING2,
535 };
536 
537 /* Per chip-select offsets for v7.1 */
538 static const u8 brcmnand_cs_offsets_v71[] = {
539 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
540 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
541 	[BRCMNAND_CS_CFG]		= 0x08,
542 	[BRCMNAND_CS_TIMING1]		= 0x0c,
543 	[BRCMNAND_CS_TIMING2]		= 0x10,
544 };
545 
546 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
547 static const u8 brcmnand_cs_offsets[] = {
548 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
549 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
550 	[BRCMNAND_CS_CFG]		= 0x04,
551 	[BRCMNAND_CS_TIMING1]		= 0x08,
552 	[BRCMNAND_CS_TIMING2]		= 0x0c,
553 };
554 
555 /* Per chip-select offset for <= v5.0 on CS0 only */
556 static const u8 brcmnand_cs_offsets_cs0[] = {
557 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
558 	[BRCMNAND_CS_CFG_EXT]		= 0x08,
559 	[BRCMNAND_CS_CFG]		= 0x08,
560 	[BRCMNAND_CS_TIMING1]		= 0x10,
561 	[BRCMNAND_CS_TIMING2]		= 0x14,
562 };
563 
564 /*
565  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
566  * one config register, but once the bitfields overflowed, newer controllers
567  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
568  */
569 enum {
570 	CFG_BLK_ADR_BYTES_SHIFT		= 8,
571 	CFG_COL_ADR_BYTES_SHIFT		= 12,
572 	CFG_FUL_ADR_BYTES_SHIFT		= 16,
573 	CFG_BUS_WIDTH_SHIFT		= 23,
574 	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
575 	CFG_DEVICE_SIZE_SHIFT		= 24,
576 
577 	/* Only for v2.1 */
578 	CFG_PAGE_SIZE_SHIFT_v2_1	= 30,
579 
580 	/* Only for pre-v7.1 (with no CFG_EXT register) */
581 	CFG_PAGE_SIZE_SHIFT		= 20,
582 	CFG_BLK_SIZE_SHIFT		= 28,
583 
584 	/* Only for v7.1+ (with CFG_EXT register) */
585 	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
586 	CFG_EXT_BLK_SIZE_SHIFT		= 4,
587 };
588 
589 /* BRCMNAND_INTFC_STATUS */
590 enum {
591 	INTFC_FLASH_STATUS		= GENMASK(7, 0),
592 
593 	INTFC_ERASED			= BIT(27),
594 	INTFC_OOB_VALID			= BIT(28),
595 	INTFC_CACHE_VALID		= BIT(29),
596 	INTFC_FLASH_READY		= BIT(30),
597 	INTFC_CTLR_READY		= BIT(31),
598 };
599 
600 /***********************************************************************
601  * NAND ACC CONTROL bitfield
602  *
603  * Some bits have remained constant throughout hardware revision, while
604  * others have shifted around.
605  ***********************************************************************/
606 
607 /* Constant for all versions (where supported) */
608 enum {
609 	/* See BRCMNAND_HAS_CACHE_MODE */
610 	ACC_CONTROL_CACHE_MODE				= BIT(22),
611 
612 	/* See BRCMNAND_HAS_PREFETCH */
613 	ACC_CONTROL_PREFETCH				= BIT(23),
614 
615 	ACC_CONTROL_PAGE_HIT				= BIT(24),
616 	ACC_CONTROL_WR_PREEMPT				= BIT(25),
617 	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
618 	ACC_CONTROL_RD_ERASED				= BIT(27),
619 	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
620 	ACC_CONTROL_WR_ECC				= BIT(30),
621 	ACC_CONTROL_RD_ECC				= BIT(31),
622 };
623 
624 #define	ACC_CONTROL_ECC_SHIFT			16
625 /* Only for v7.2 */
626 #define	ACC_CONTROL_ECC_EXT_SHIFT		13
627 
628 static int brcmnand_status(struct brcmnand_host *host);
629 
brcmnand_non_mmio_ops(struct brcmnand_controller * ctrl)630 static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
631 {
632 #if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA)
633 	return static_branch_unlikely(&brcmnand_soc_has_ops_key);
634 #else
635 	return false;
636 #endif
637 }
638 
nand_readreg(struct brcmnand_controller * ctrl,u32 offs)639 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
640 {
641 	if (brcmnand_non_mmio_ops(ctrl))
642 		return brcmnand_soc_read(ctrl->soc, offs);
643 	return brcmnand_readl(ctrl->nand_base + offs);
644 }
645 
nand_writereg(struct brcmnand_controller * ctrl,u32 offs,u32 val)646 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
647 				 u32 val)
648 {
649 	if (brcmnand_non_mmio_ops(ctrl))
650 		brcmnand_soc_write(ctrl->soc, val, offs);
651 	else
652 		brcmnand_writel(val, ctrl->nand_base + offs);
653 }
654 
brcmnand_revision_init(struct brcmnand_controller * ctrl)655 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
656 {
657 	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
658 	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
659 	static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
660 	static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
661 	static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
662 	static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
663 	static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
664 
665 	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
666 
667 	/* Only support v2.1+ */
668 	if (ctrl->nand_version < 0x0201) {
669 		dev_err(ctrl->dev, "version %#x not supported\n",
670 			ctrl->nand_version);
671 		return -ENODEV;
672 	}
673 
674 	/* Register offsets */
675 	if (ctrl->nand_version >= 0x0702)
676 		ctrl->reg_offsets = brcmnand_regs_v72;
677 	else if (ctrl->nand_version == 0x0701)
678 		ctrl->reg_offsets = brcmnand_regs_v71;
679 	else if (ctrl->nand_version >= 0x0600)
680 		ctrl->reg_offsets = brcmnand_regs_v60;
681 	else if (ctrl->nand_version >= 0x0500)
682 		ctrl->reg_offsets = brcmnand_regs_v50;
683 	else if (ctrl->nand_version >= 0x0303)
684 		ctrl->reg_offsets = brcmnand_regs_v33;
685 	else if (ctrl->nand_version >= 0x0201)
686 		ctrl->reg_offsets = brcmnand_regs_v21;
687 
688 	/* Chip-select stride */
689 	if (ctrl->nand_version >= 0x0701)
690 		ctrl->reg_spacing = 0x14;
691 	else
692 		ctrl->reg_spacing = 0x10;
693 
694 	/* Per chip-select registers */
695 	if (ctrl->nand_version >= 0x0701) {
696 		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
697 	} else {
698 		ctrl->cs_offsets = brcmnand_cs_offsets;
699 
700 		/* v3.3-5.0 have a different CS0 offset layout */
701 		if (ctrl->nand_version >= 0x0303 &&
702 		    ctrl->nand_version <= 0x0500)
703 			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
704 	}
705 
706 	/* Page / block sizes */
707 	if (ctrl->nand_version >= 0x0701) {
708 		/* >= v7.1 use nice power-of-2 values! */
709 		ctrl->max_page_size = 16 * 1024;
710 		ctrl->max_block_size = 2 * 1024 * 1024;
711 	} else {
712 		if (ctrl->nand_version >= 0x0304)
713 			ctrl->page_sizes = page_sizes_v3_4;
714 		else if (ctrl->nand_version >= 0x0202)
715 			ctrl->page_sizes = page_sizes_v2_2;
716 		else
717 			ctrl->page_sizes = page_sizes_v2_1;
718 
719 		if (ctrl->nand_version >= 0x0202)
720 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
721 		else
722 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
723 
724 		if (ctrl->nand_version >= 0x0600)
725 			ctrl->block_sizes = block_sizes_v6;
726 		else if (ctrl->nand_version >= 0x0400)
727 			ctrl->block_sizes = block_sizes_v4;
728 		else if (ctrl->nand_version >= 0x0202)
729 			ctrl->block_sizes = block_sizes_v2_2;
730 		else
731 			ctrl->block_sizes = block_sizes_v2_1;
732 
733 		if (ctrl->nand_version < 0x0400) {
734 			if (ctrl->nand_version < 0x0202)
735 				ctrl->max_page_size = 2048;
736 			else
737 				ctrl->max_page_size = 4096;
738 			ctrl->max_block_size = 512 * 1024;
739 		}
740 	}
741 
742 	/* Maximum spare area sector size (per 512B) */
743 	if (ctrl->nand_version == 0x0702)
744 		ctrl->max_oob = 128;
745 	else if (ctrl->nand_version >= 0x0600)
746 		ctrl->max_oob = 64;
747 	else if (ctrl->nand_version >= 0x0500)
748 		ctrl->max_oob = 32;
749 	else
750 		ctrl->max_oob = 16;
751 
752 	/* v6.0 and newer (except v6.1) have prefetch support */
753 	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
754 		ctrl->features |= BRCMNAND_HAS_PREFETCH;
755 
756 	/*
757 	 * v6.x has cache mode, but it's implemented differently. Ignore it for
758 	 * now.
759 	 */
760 	if (ctrl->nand_version >= 0x0700)
761 		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
762 
763 	if (ctrl->nand_version >= 0x0500)
764 		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
765 
766 	if (ctrl->nand_version >= 0x0700)
767 		ctrl->features |= BRCMNAND_HAS_WP;
768 	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
769 		ctrl->features |= BRCMNAND_HAS_WP;
770 
771 	/* v7.2 has different ecc level shift in the acc register */
772 	if (ctrl->nand_version == 0x0702)
773 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
774 	else
775 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
776 
777 	return 0;
778 }
779 
brcmnand_flash_dma_revision_init(struct brcmnand_controller * ctrl)780 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
781 {
782 	/* flash_dma register offsets */
783 	if (ctrl->nand_version >= 0x0703)
784 		ctrl->flash_dma_offsets = flash_dma_regs_v4;
785 	else if (ctrl->nand_version == 0x0602)
786 		ctrl->flash_dma_offsets = flash_dma_regs_v0;
787 	else
788 		ctrl->flash_dma_offsets = flash_dma_regs_v1;
789 }
790 
brcmnand_read_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg)791 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
792 		enum brcmnand_reg reg)
793 {
794 	u16 offs = ctrl->reg_offsets[reg];
795 
796 	if (offs)
797 		return nand_readreg(ctrl, offs);
798 	else
799 		return 0;
800 }
801 
brcmnand_write_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 val)802 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
803 				      enum brcmnand_reg reg, u32 val)
804 {
805 	u16 offs = ctrl->reg_offsets[reg];
806 
807 	if (offs)
808 		nand_writereg(ctrl, offs, val);
809 }
810 
brcmnand_rmw_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 mask,unsigned int shift,u32 val)811 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
812 				    enum brcmnand_reg reg, u32 mask, unsigned
813 				    int shift, u32 val)
814 {
815 	u32 tmp = brcmnand_read_reg(ctrl, reg);
816 
817 	tmp &= ~mask;
818 	tmp |= val << shift;
819 	brcmnand_write_reg(ctrl, reg, tmp);
820 }
821 
brcmnand_read_fc(struct brcmnand_controller * ctrl,int word)822 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
823 {
824 	if (brcmnand_non_mmio_ops(ctrl))
825 		return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
826 	return __raw_readl(ctrl->nand_fc + word * 4);
827 }
828 
brcmnand_write_fc(struct brcmnand_controller * ctrl,int word,u32 val)829 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
830 				     int word, u32 val)
831 {
832 	if (brcmnand_non_mmio_ops(ctrl))
833 		brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
834 	else
835 		__raw_writel(val, ctrl->nand_fc + word * 4);
836 }
837 
edu_writel(struct brcmnand_controller * ctrl,enum edu_reg reg,u32 val)838 static inline void edu_writel(struct brcmnand_controller *ctrl,
839 			      enum edu_reg reg, u32 val)
840 {
841 	u16 offs = ctrl->edu_offsets[reg];
842 
843 	brcmnand_writel(val, ctrl->edu_base + offs);
844 }
845 
edu_readl(struct brcmnand_controller * ctrl,enum edu_reg reg)846 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
847 			    enum edu_reg reg)
848 {
849 	u16 offs = ctrl->edu_offsets[reg];
850 
851 	return brcmnand_readl(ctrl->edu_base + offs);
852 }
853 
brcmnand_read_data_bus(struct brcmnand_controller * ctrl,void __iomem * flash_cache,u32 * buffer,int fc_words)854 static inline void brcmnand_read_data_bus(struct brcmnand_controller *ctrl,
855 					  void __iomem *flash_cache, u32 *buffer, int fc_words)
856 {
857 	struct brcmnand_soc *soc = ctrl->soc;
858 	int i;
859 
860 	if (soc && soc->read_data_bus) {
861 		soc->read_data_bus(soc, flash_cache, buffer, fc_words);
862 	} else {
863 		for (i = 0; i < fc_words; i++)
864 			buffer[i] = brcmnand_read_fc(ctrl, i);
865 	}
866 }
867 
brcmnand_clear_ecc_addr(struct brcmnand_controller * ctrl)868 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
869 {
870 
871 	/* Clear error addresses */
872 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
873 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
874 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
875 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
876 }
877 
brcmnand_get_uncorrecc_addr(struct brcmnand_controller * ctrl)878 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
879 {
880 	u64 err_addr;
881 
882 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
883 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
884 					     BRCMNAND_UNCORR_EXT_ADDR)
885 					     & 0xffff) << 32);
886 
887 	return err_addr;
888 }
889 
brcmnand_get_correcc_addr(struct brcmnand_controller * ctrl)890 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
891 {
892 	u64 err_addr;
893 
894 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
895 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
896 					     BRCMNAND_CORR_EXT_ADDR)
897 					     & 0xffff) << 32);
898 
899 	return err_addr;
900 }
901 
brcmnand_set_cmd_addr(struct mtd_info * mtd,u64 addr)902 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
903 {
904 	struct nand_chip *chip =  mtd_to_nand(mtd);
905 	struct brcmnand_host *host = nand_get_controller_data(chip);
906 	struct brcmnand_controller *ctrl = host->ctrl;
907 
908 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
909 			   (host->cs << 16) | ((addr >> 32) & 0xffff));
910 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
911 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
912 			   lower_32_bits(addr));
913 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
914 }
915 
brcmnand_cs_offset(struct brcmnand_controller * ctrl,int cs,enum brcmnand_cs_reg reg)916 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
917 				     enum brcmnand_cs_reg reg)
918 {
919 	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
920 	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
921 	u8 cs_offs;
922 
923 	if (cs == 0 && ctrl->cs0_offsets)
924 		cs_offs = ctrl->cs0_offsets[reg];
925 	else
926 		cs_offs = ctrl->cs_offsets[reg];
927 
928 	if (cs && offs_cs1)
929 		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
930 
931 	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
932 }
933 
brcmnand_count_corrected(struct brcmnand_controller * ctrl)934 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
935 {
936 	if (ctrl->nand_version < 0x0600)
937 		return 1;
938 	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
939 }
940 
brcmnand_wr_corr_thresh(struct brcmnand_host * host,u8 val)941 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
942 {
943 	struct brcmnand_controller *ctrl = host->ctrl;
944 	unsigned int shift = 0, bits;
945 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
946 	int cs = host->cs;
947 
948 	if (!ctrl->reg_offsets[reg])
949 		return;
950 
951 	if (ctrl->nand_version == 0x0702)
952 		bits = 7;
953 	else if (ctrl->nand_version >= 0x0600)
954 		bits = 6;
955 	else if (ctrl->nand_version >= 0x0500)
956 		bits = 5;
957 	else
958 		bits = 4;
959 
960 	if (ctrl->nand_version >= 0x0702) {
961 		if (cs >= 4)
962 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
963 		shift = (cs % 4) * bits;
964 	} else if (ctrl->nand_version >= 0x0600) {
965 		if (cs >= 5)
966 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
967 		shift = (cs % 5) * bits;
968 	}
969 	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
970 }
971 
brcmnand_cmd_shift(struct brcmnand_controller * ctrl)972 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
973 {
974 	/* Kludge for the BCMA-based NAND controller which does not actually
975 	 * shift the command
976 	 */
977 	if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl))
978 		return 0;
979 
980 	if (ctrl->nand_version < 0x0602)
981 		return 24;
982 	return 0;
983 }
984 
brcmnand_spare_area_mask(struct brcmnand_controller * ctrl)985 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
986 {
987 	if (ctrl->nand_version == 0x0702)
988 		return GENMASK(7, 0);
989 	else if (ctrl->nand_version >= 0x0600)
990 		return GENMASK(6, 0);
991 	else if (ctrl->nand_version >= 0x0303)
992 		return GENMASK(5, 0);
993 	else
994 		return GENMASK(4, 0);
995 }
996 
brcmnand_ecc_level_mask(struct brcmnand_controller * ctrl)997 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
998 {
999 	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
1000 
1001 	mask <<= ACC_CONTROL_ECC_SHIFT;
1002 
1003 	/* v7.2 includes additional ECC levels */
1004 	if (ctrl->nand_version == 0x0702)
1005 		mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
1006 
1007 	return mask;
1008 }
1009 
brcmnand_set_ecc_enabled(struct brcmnand_host * host,int en)1010 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
1011 {
1012 	struct brcmnand_controller *ctrl = host->ctrl;
1013 	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
1014 	u32 acc_control = nand_readreg(ctrl, offs);
1015 	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
1016 
1017 	if (en) {
1018 		acc_control |= ecc_flags; /* enable RD/WR ECC */
1019 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1020 		acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
1021 	} else {
1022 		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
1023 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1024 	}
1025 
1026 	nand_writereg(ctrl, offs, acc_control);
1027 }
1028 
brcmnand_sector_1k_shift(struct brcmnand_controller * ctrl)1029 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
1030 {
1031 	if (ctrl->nand_version >= 0x0702)
1032 		return 9;
1033 	else if (ctrl->nand_version >= 0x0600)
1034 		return 7;
1035 	else if (ctrl->nand_version >= 0x0500)
1036 		return 6;
1037 	else
1038 		return -1;
1039 }
1040 
brcmnand_get_sector_size_1k(struct brcmnand_host * host)1041 static bool brcmnand_get_sector_size_1k(struct brcmnand_host *host)
1042 {
1043 	struct brcmnand_controller *ctrl = host->ctrl;
1044 	int sector_size_bit = brcmnand_sector_1k_shift(ctrl);
1045 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1046 						  BRCMNAND_CS_ACC_CONTROL);
1047 	u32 acc_control;
1048 
1049 	if (sector_size_bit < 0)
1050 		return false;
1051 
1052 	acc_control = nand_readreg(ctrl, acc_control_offs);
1053 
1054 	return ((acc_control & BIT(sector_size_bit)) != 0);
1055 }
1056 
brcmnand_set_sector_size_1k(struct brcmnand_host * host,int val)1057 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1058 {
1059 	struct brcmnand_controller *ctrl = host->ctrl;
1060 	int shift = brcmnand_sector_1k_shift(ctrl);
1061 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1062 						  BRCMNAND_CS_ACC_CONTROL);
1063 	u32 tmp;
1064 
1065 	if (shift < 0)
1066 		return;
1067 
1068 	tmp = nand_readreg(ctrl, acc_control_offs);
1069 	tmp &= ~(1 << shift);
1070 	tmp |= (!!val) << shift;
1071 	nand_writereg(ctrl, acc_control_offs, tmp);
1072 }
1073 
brcmnand_get_spare_size(struct brcmnand_host * host)1074 static int brcmnand_get_spare_size(struct brcmnand_host *host)
1075 {
1076 	struct brcmnand_controller *ctrl = host->ctrl;
1077 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1078 						  BRCMNAND_CS_ACC_CONTROL);
1079 	u32 acc = nand_readreg(ctrl, acc_control_offs);
1080 
1081 	return (acc & brcmnand_spare_area_mask(ctrl));
1082 }
1083 
brcmnand_get_ecc_settings(struct brcmnand_host * host,struct nand_chip * chip)1084 static void brcmnand_get_ecc_settings(struct brcmnand_host *host, struct nand_chip *chip)
1085 {
1086 	struct brcmnand_controller *ctrl = host->ctrl;
1087 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1088 						  BRCMNAND_CS_ACC_CONTROL);
1089 	bool sector_size_1k = brcmnand_get_sector_size_1k(host);
1090 	int spare_area_size, ecc_level;
1091 	u32 acc;
1092 
1093 	spare_area_size = brcmnand_get_spare_size(host);
1094 	acc = nand_readreg(ctrl, acc_control_offs);
1095 	ecc_level = (acc & brcmnand_ecc_level_mask(ctrl)) >> ctrl->ecc_level_shift;
1096 	if (sector_size_1k)
1097 		chip->ecc.strength = ecc_level * 2;
1098 	else if (spare_area_size == 16 && ecc_level == 15)
1099 		chip->ecc.strength = 1; /* hamming */
1100 	else
1101 		chip->ecc.strength = ecc_level;
1102 
1103 	if (chip->ecc.size == 0) {
1104 		if (sector_size_1k)
1105 			chip->ecc.size = 1024;
1106 		else
1107 			chip->ecc.size = 512;
1108 	}
1109 }
1110 
1111 /***********************************************************************
1112  * CS_NAND_SELECT
1113  ***********************************************************************/
1114 
1115 enum {
1116 	CS_SELECT_NAND_WP			= BIT(29),
1117 	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
1118 };
1119 
bcmnand_ctrl_poll_status(struct brcmnand_host * host,u32 mask,u32 expected_val,unsigned long timeout_ms)1120 static int bcmnand_ctrl_poll_status(struct brcmnand_host *host,
1121 				    u32 mask, u32 expected_val,
1122 				    unsigned long timeout_ms)
1123 {
1124 	struct brcmnand_controller *ctrl = host->ctrl;
1125 	unsigned long limit;
1126 	u32 val;
1127 
1128 	if (!timeout_ms)
1129 		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1130 
1131 	limit = jiffies + msecs_to_jiffies(timeout_ms);
1132 	do {
1133 		if (mask & INTFC_FLASH_STATUS)
1134 			brcmnand_status(host);
1135 
1136 		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1137 		if ((val & mask) == expected_val)
1138 			return 0;
1139 
1140 		cpu_relax();
1141 	} while (time_after(limit, jiffies));
1142 
1143 	/*
1144 	 * do a final check after time out in case the CPU was busy and the driver
1145 	 * did not get enough time to perform the polling to avoid false alarms
1146 	 */
1147 	if (mask & INTFC_FLASH_STATUS)
1148 		brcmnand_status(host);
1149 
1150 	val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1151 	if ((val & mask) == expected_val)
1152 		return 0;
1153 
1154 	dev_err(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1155 		expected_val, val & mask);
1156 
1157 	return -ETIMEDOUT;
1158 }
1159 
brcmnand_set_wp(struct brcmnand_controller * ctrl,bool en)1160 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1161 {
1162 	u32 val = en ? CS_SELECT_NAND_WP : 0;
1163 
1164 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1165 }
1166 
1167 /***********************************************************************
1168  * Flash DMA
1169  ***********************************************************************/
1170 
has_flash_dma(struct brcmnand_controller * ctrl)1171 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1172 {
1173 	return ctrl->flash_dma_base;
1174 }
1175 
has_edu(struct brcmnand_controller * ctrl)1176 static inline bool has_edu(struct brcmnand_controller *ctrl)
1177 {
1178 	return ctrl->edu_base;
1179 }
1180 
use_dma(struct brcmnand_controller * ctrl)1181 static inline bool use_dma(struct brcmnand_controller *ctrl)
1182 {
1183 	return has_flash_dma(ctrl) || has_edu(ctrl);
1184 }
1185 
disable_ctrl_irqs(struct brcmnand_controller * ctrl)1186 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1187 {
1188 	if (ctrl->pio_poll_mode)
1189 		return;
1190 
1191 	if (has_flash_dma(ctrl)) {
1192 		ctrl->flash_dma_base = NULL;
1193 		disable_irq(ctrl->dma_irq);
1194 	}
1195 
1196 	disable_irq(ctrl->irq);
1197 	ctrl->pio_poll_mode = true;
1198 }
1199 
flash_dma_buf_ok(const void * buf)1200 static inline bool flash_dma_buf_ok(const void *buf)
1201 {
1202 	return buf && !is_vmalloc_addr(buf) &&
1203 		likely(IS_ALIGNED((uintptr_t)buf, 4));
1204 }
1205 
flash_dma_writel(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg,u32 val)1206 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1207 				    enum flash_dma_reg dma_reg, u32 val)
1208 {
1209 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1210 
1211 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1212 }
1213 
flash_dma_readl(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg)1214 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1215 				  enum flash_dma_reg dma_reg)
1216 {
1217 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1218 
1219 	return brcmnand_readl(ctrl->flash_dma_base + offs);
1220 }
1221 
1222 /* Low-level operation types: command, address, write, or read */
1223 enum brcmnand_llop_type {
1224 	LL_OP_CMD,
1225 	LL_OP_ADDR,
1226 	LL_OP_WR,
1227 	LL_OP_RD,
1228 };
1229 
1230 /***********************************************************************
1231  * Internal support functions
1232  ***********************************************************************/
1233 
is_hamming_ecc(struct brcmnand_controller * ctrl,struct brcmnand_cfg * cfg)1234 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1235 				  struct brcmnand_cfg *cfg)
1236 {
1237 	if (ctrl->nand_version <= 0x0701)
1238 		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1239 			cfg->ecc_level == 15;
1240 	else
1241 		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1242 			cfg->ecc_level == 15) ||
1243 			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1244 }
1245 
1246 /*
1247  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1248  * the layout/configuration.
1249  * Returns -ERRCODE on failure.
1250  */
brcmnand_hamming_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1251 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1252 					  struct mtd_oob_region *oobregion)
1253 {
1254 	struct nand_chip *chip = mtd_to_nand(mtd);
1255 	struct brcmnand_host *host = nand_get_controller_data(chip);
1256 	struct brcmnand_cfg *cfg = &host->hwcfg;
1257 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1258 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1259 
1260 	if (section >= sectors)
1261 		return -ERANGE;
1262 
1263 	oobregion->offset = (section * sas) + 6;
1264 	oobregion->length = 3;
1265 
1266 	return 0;
1267 }
1268 
brcmnand_hamming_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1269 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1270 					   struct mtd_oob_region *oobregion)
1271 {
1272 	struct nand_chip *chip = mtd_to_nand(mtd);
1273 	struct brcmnand_host *host = nand_get_controller_data(chip);
1274 	struct brcmnand_cfg *cfg = &host->hwcfg;
1275 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1276 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1277 	u32 next;
1278 
1279 	if (section > sectors)
1280 		return -ERANGE;
1281 
1282 	next = (section * sas);
1283 	if (section < sectors)
1284 		next += 6;
1285 
1286 	if (section) {
1287 		oobregion->offset = ((section - 1) * sas) + 9;
1288 	} else {
1289 		if (cfg->page_size > 512) {
1290 			/* Large page NAND uses first 2 bytes for BBI */
1291 			oobregion->offset = 2;
1292 		} else {
1293 			/* Small page NAND uses last byte before ECC for BBI */
1294 			oobregion->offset = 0;
1295 			next--;
1296 		}
1297 	}
1298 
1299 	oobregion->length = next - oobregion->offset;
1300 
1301 	return 0;
1302 }
1303 
1304 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1305 	.ecc = brcmnand_hamming_ooblayout_ecc,
1306 	.free = brcmnand_hamming_ooblayout_free,
1307 };
1308 
brcmnand_bch_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1309 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1310 				      struct mtd_oob_region *oobregion)
1311 {
1312 	struct nand_chip *chip = mtd_to_nand(mtd);
1313 	struct brcmnand_host *host = nand_get_controller_data(chip);
1314 	struct brcmnand_cfg *cfg = &host->hwcfg;
1315 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1316 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1317 
1318 	if (section >= sectors)
1319 		return -ERANGE;
1320 
1321 	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1322 	oobregion->length = chip->ecc.bytes;
1323 
1324 	return 0;
1325 }
1326 
brcmnand_bch_ooblayout_free_lp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1327 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1328 					  struct mtd_oob_region *oobregion)
1329 {
1330 	struct nand_chip *chip = mtd_to_nand(mtd);
1331 	struct brcmnand_host *host = nand_get_controller_data(chip);
1332 	struct brcmnand_cfg *cfg = &host->hwcfg;
1333 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1334 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1335 
1336 	if (section >= sectors)
1337 		return -ERANGE;
1338 
1339 	if (sas <= chip->ecc.bytes)
1340 		return 0;
1341 
1342 	oobregion->offset = section * sas;
1343 	oobregion->length = sas - chip->ecc.bytes;
1344 
1345 	if (!section) {
1346 		oobregion->offset++;
1347 		oobregion->length--;
1348 	}
1349 
1350 	return 0;
1351 }
1352 
brcmnand_bch_ooblayout_free_sp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1353 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1354 					  struct mtd_oob_region *oobregion)
1355 {
1356 	struct nand_chip *chip = mtd_to_nand(mtd);
1357 	struct brcmnand_host *host = nand_get_controller_data(chip);
1358 	struct brcmnand_cfg *cfg = &host->hwcfg;
1359 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1360 
1361 	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1362 	    (section && sas - chip->ecc.bytes == 6))
1363 		return -ERANGE;
1364 
1365 	if (!section) {
1366 		oobregion->offset = 0;
1367 		oobregion->length = 5;
1368 	} else {
1369 		oobregion->offset = 6;
1370 		oobregion->length = sas - chip->ecc.bytes - 6;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1377 	.ecc = brcmnand_bch_ooblayout_ecc,
1378 	.free = brcmnand_bch_ooblayout_free_lp,
1379 };
1380 
1381 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1382 	.ecc = brcmnand_bch_ooblayout_ecc,
1383 	.free = brcmnand_bch_ooblayout_free_sp,
1384 };
1385 
brcmstb_choose_ecc_layout(struct brcmnand_host * host)1386 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1387 {
1388 	struct brcmnand_cfg *p = &host->hwcfg;
1389 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1390 	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1391 	unsigned int ecc_level = p->ecc_level;
1392 	int sas = p->spare_area_size << p->sector_size_1k;
1393 	int sectors = p->page_size / (512 << p->sector_size_1k);
1394 
1395 	if (p->sector_size_1k)
1396 		ecc_level <<= 1;
1397 
1398 	if (is_hamming_ecc(host->ctrl, p)) {
1399 		ecc->bytes = 3 * sectors;
1400 		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1401 		return 0;
1402 	}
1403 
1404 	/*
1405 	 * CONTROLLER_VERSION:
1406 	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1407 	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1408 	 * But we will just be conservative.
1409 	 */
1410 	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1411 	if (p->page_size == 512)
1412 		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1413 	else
1414 		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1415 
1416 	if (ecc->bytes >= sas) {
1417 		dev_err(&host->pdev->dev,
1418 			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1419 			ecc->bytes, sas);
1420 		return -EINVAL;
1421 	}
1422 
1423 	return 0;
1424 }
1425 
brcmnand_wp(struct mtd_info * mtd,int wp)1426 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1427 {
1428 	struct nand_chip *chip = mtd_to_nand(mtd);
1429 	struct brcmnand_host *host = nand_get_controller_data(chip);
1430 	struct brcmnand_controller *ctrl = host->ctrl;
1431 
1432 	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1433 		static int old_wp = -1;
1434 		int ret;
1435 
1436 		if (old_wp != wp) {
1437 			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1438 			old_wp = wp;
1439 		}
1440 
1441 		/*
1442 		 * make sure ctrl/flash ready before and after
1443 		 * changing state of #WP pin
1444 		 */
1445 		ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY |
1446 					       NAND_STATUS_READY,
1447 					       NAND_CTRL_RDY |
1448 					       NAND_STATUS_READY, 0);
1449 		if (ret)
1450 			return;
1451 
1452 		brcmnand_set_wp(ctrl, wp);
1453 		/* force controller operation to update internal copy of NAND chip status */
1454 		brcmnand_status(host);
1455 		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1456 		ret = bcmnand_ctrl_poll_status(host,
1457 					       NAND_CTRL_RDY |
1458 					       NAND_STATUS_READY |
1459 					       NAND_STATUS_WP,
1460 					       NAND_CTRL_RDY |
1461 					       NAND_STATUS_READY |
1462 					       (wp ? 0 : NAND_STATUS_WP), 0);
1463 
1464 		if (ret)
1465 			dev_err_ratelimited(&host->pdev->dev,
1466 					    "nand #WP expected %s\n",
1467 					    wp ? "on" : "off");
1468 	}
1469 }
1470 
1471 /* Helper functions for reading and writing OOB registers */
oob_reg_read(struct brcmnand_controller * ctrl,u32 offs)1472 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1473 {
1474 	u16 offset0, offset10, reg_offs;
1475 
1476 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1477 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1478 
1479 	if (offs >= ctrl->max_oob)
1480 		return 0x77;
1481 
1482 	if (offs >= 16 && offset10)
1483 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1484 	else
1485 		reg_offs = offset0 + (offs & ~0x03);
1486 
1487 	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1488 }
1489 
oob_reg_write(struct brcmnand_controller * ctrl,u32 offs,u32 data)1490 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1491 				 u32 data)
1492 {
1493 	u16 offset0, offset10, reg_offs;
1494 
1495 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1496 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1497 
1498 	if (offs >= ctrl->max_oob)
1499 		return;
1500 
1501 	if (offs >= 16 && offset10)
1502 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1503 	else
1504 		reg_offs = offset0 + (offs & ~0x03);
1505 
1506 	nand_writereg(ctrl, reg_offs, data);
1507 }
1508 
1509 /*
1510  * read_oob_from_regs - read data from OOB registers
1511  * @ctrl: NAND controller
1512  * @i: sub-page sector index
1513  * @oob: buffer to read to
1514  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1515  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1516  */
read_oob_from_regs(struct brcmnand_controller * ctrl,int i,u8 * oob,int sas,int sector_1k)1517 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1518 			      int sas, int sector_1k)
1519 {
1520 	int tbytes = sas << sector_1k;
1521 	int j;
1522 
1523 	/* Adjust OOB values for 1K sector size */
1524 	if (sector_1k && (i & 0x01))
1525 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1526 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1527 
1528 	for (j = 0; j < tbytes; j++)
1529 		oob[j] = oob_reg_read(ctrl, j);
1530 	return tbytes;
1531 }
1532 
1533 /*
1534  * write_oob_to_regs - write data to OOB registers
1535  * @i: sub-page sector index
1536  * @oob: buffer to write from
1537  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1538  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1539  */
write_oob_to_regs(struct brcmnand_controller * ctrl,int i,const u8 * oob,int sas,int sector_1k)1540 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1541 			     const u8 *oob, int sas, int sector_1k)
1542 {
1543 	int tbytes = sas << sector_1k;
1544 	int j, k = 0;
1545 	u32 last = 0xffffffff;
1546 	u8 *plast = (u8 *)&last;
1547 
1548 	/* Adjust OOB values for 1K sector size */
1549 	if (sector_1k && (i & 0x01))
1550 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1551 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1552 
1553 	/*
1554 	 * tbytes may not be multiple of words. Make sure we don't read out of
1555 	 * the boundary and stop at last word.
1556 	 */
1557 	for (j = 0; (j + 3) < tbytes; j += 4)
1558 		oob_reg_write(ctrl, j,
1559 				(oob[j + 0] << 24) |
1560 				(oob[j + 1] << 16) |
1561 				(oob[j + 2] <<  8) |
1562 				(oob[j + 3] <<  0));
1563 
1564 	/* handle the remaing bytes */
1565 	while (j < tbytes)
1566 		plast[k++] = oob[j++];
1567 
1568 	if (tbytes & 0x3)
1569 		oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
1570 
1571 	return tbytes;
1572 }
1573 
brcmnand_edu_init(struct brcmnand_controller * ctrl)1574 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1575 {
1576 	/* initialize edu */
1577 	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1578 	edu_readl(ctrl, EDU_ERR_STATUS);
1579 	edu_writel(ctrl, EDU_DONE, 0);
1580 	edu_writel(ctrl, EDU_DONE, 0);
1581 	edu_writel(ctrl, EDU_DONE, 0);
1582 	edu_writel(ctrl, EDU_DONE, 0);
1583 	edu_readl(ctrl, EDU_DONE);
1584 }
1585 
1586 /* edu irq */
brcmnand_edu_irq(int irq,void * data)1587 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1588 {
1589 	struct brcmnand_controller *ctrl = data;
1590 
1591 	if (ctrl->edu_count) {
1592 		ctrl->edu_count--;
1593 		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1594 			udelay(1);
1595 		edu_writel(ctrl, EDU_DONE, 0);
1596 		edu_readl(ctrl, EDU_DONE);
1597 	}
1598 
1599 	if (ctrl->edu_count) {
1600 		ctrl->edu_dram_addr += FC_BYTES;
1601 		ctrl->edu_ext_addr += FC_BYTES;
1602 
1603 		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1604 		edu_readl(ctrl, EDU_DRAM_ADDR);
1605 		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1606 		edu_readl(ctrl, EDU_EXT_ADDR);
1607 
1608 		if (ctrl->oob) {
1609 			if (ctrl->edu_cmd == EDU_CMD_READ) {
1610 				ctrl->oob += read_oob_from_regs(ctrl,
1611 							ctrl->edu_count + 1,
1612 							ctrl->oob, ctrl->sas,
1613 							ctrl->sector_size_1k);
1614 			} else {
1615 				brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1616 						   ctrl->edu_ext_addr);
1617 				brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1618 				ctrl->oob += write_oob_to_regs(ctrl,
1619 							       ctrl->edu_count,
1620 							       ctrl->oob, ctrl->sas,
1621 							       ctrl->sector_size_1k);
1622 			}
1623 		}
1624 
1625 		mb(); /* flush previous writes */
1626 		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1627 		edu_readl(ctrl, EDU_CMD);
1628 
1629 		return IRQ_HANDLED;
1630 	}
1631 
1632 	complete(&ctrl->edu_done);
1633 
1634 	return IRQ_HANDLED;
1635 }
1636 
brcmnand_ctlrdy_irq(int irq,void * data)1637 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1638 {
1639 	struct brcmnand_controller *ctrl = data;
1640 
1641 	/* Discard all NAND_CTLRDY interrupts during DMA */
1642 	if (ctrl->dma_pending)
1643 		return IRQ_HANDLED;
1644 
1645 	/* check if you need to piggy back on the ctrlrdy irq */
1646 	if (ctrl->edu_pending) {
1647 		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1648 	/* Discard interrupts while using dedicated edu irq */
1649 			return IRQ_HANDLED;
1650 
1651 	/* no registered edu irq, call handler */
1652 		return brcmnand_edu_irq(irq, data);
1653 	}
1654 
1655 	complete(&ctrl->done);
1656 	return IRQ_HANDLED;
1657 }
1658 
1659 /* Handle SoC-specific interrupt hardware */
brcmnand_irq(int irq,void * data)1660 static irqreturn_t brcmnand_irq(int irq, void *data)
1661 {
1662 	struct brcmnand_controller *ctrl = data;
1663 
1664 	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1665 		return brcmnand_ctlrdy_irq(irq, data);
1666 
1667 	return IRQ_NONE;
1668 }
1669 
brcmnand_dma_irq(int irq,void * data)1670 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1671 {
1672 	struct brcmnand_controller *ctrl = data;
1673 
1674 	complete(&ctrl->dma_done);
1675 
1676 	return IRQ_HANDLED;
1677 }
1678 
brcmnand_send_cmd(struct brcmnand_host * host,int cmd)1679 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1680 {
1681 	struct brcmnand_controller *ctrl = host->ctrl;
1682 	int ret;
1683 	u64 cmd_addr;
1684 
1685 	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1686 
1687 	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1688 
1689 	/*
1690 	 * If we came here through _panic_write and there is a pending
1691 	 * command, try to wait for it. If it times out, rather than
1692 	 * hitting BUG_ON, just return so we don't crash while crashing.
1693 	 */
1694 	if (oops_in_progress) {
1695 		if (ctrl->cmd_pending &&
1696 			bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
1697 			return;
1698 	} else
1699 		BUG_ON(ctrl->cmd_pending != 0);
1700 	ctrl->cmd_pending = cmd;
1701 
1702 	ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1703 	WARN_ON(ret);
1704 
1705 	mb(); /* flush previous writes */
1706 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1707 			   cmd << brcmnand_cmd_shift(ctrl));
1708 }
1709 
brcmstb_nand_wait_for_completion(struct nand_chip * chip)1710 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1711 {
1712 	struct brcmnand_host *host = nand_get_controller_data(chip);
1713 	struct brcmnand_controller *ctrl = host->ctrl;
1714 	struct mtd_info *mtd = nand_to_mtd(chip);
1715 	bool err = false;
1716 	int sts;
1717 
1718 	if (mtd->oops_panic_write || ctrl->irq < 0) {
1719 		/* switch to interrupt polling and PIO mode */
1720 		disable_ctrl_irqs(ctrl);
1721 		sts = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY,
1722 					       NAND_CTRL_RDY, 0);
1723 		err = sts < 0;
1724 	} else {
1725 		unsigned long timeo = msecs_to_jiffies(
1726 						NAND_POLL_STATUS_TIMEOUT_MS);
1727 		/* wait for completion interrupt */
1728 		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1729 		err = !sts;
1730 	}
1731 
1732 	return err;
1733 }
1734 
brcmnand_waitfunc(struct nand_chip * chip)1735 static int brcmnand_waitfunc(struct nand_chip *chip)
1736 {
1737 	struct brcmnand_host *host = nand_get_controller_data(chip);
1738 	struct brcmnand_controller *ctrl = host->ctrl;
1739 	bool err = false;
1740 
1741 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1742 	if (ctrl->cmd_pending)
1743 		err = brcmstb_nand_wait_for_completion(chip);
1744 
1745 	ctrl->cmd_pending = 0;
1746 	if (err) {
1747 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1748 					>> brcmnand_cmd_shift(ctrl);
1749 
1750 		dev_err_ratelimited(ctrl->dev,
1751 			"timeout waiting for command %#02x\n", cmd);
1752 		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1753 			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1754 		return -ETIMEDOUT;
1755 	}
1756 	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1757 				 INTFC_FLASH_STATUS;
1758 }
1759 
brcmnand_status(struct brcmnand_host * host)1760 static int brcmnand_status(struct brcmnand_host *host)
1761 {
1762 	struct nand_chip *chip = &host->chip;
1763 	struct mtd_info *mtd = nand_to_mtd(chip);
1764 
1765 	brcmnand_set_cmd_addr(mtd, 0);
1766 	brcmnand_send_cmd(host, CMD_STATUS_READ);
1767 
1768 	return brcmnand_waitfunc(chip);
1769 }
1770 
brcmnand_reset(struct brcmnand_host * host)1771 static int brcmnand_reset(struct brcmnand_host *host)
1772 {
1773 	struct nand_chip *chip = &host->chip;
1774 
1775 	brcmnand_send_cmd(host, CMD_FLASH_RESET);
1776 
1777 	return brcmnand_waitfunc(chip);
1778 }
1779 
1780 enum {
1781 	LLOP_RE				= BIT(16),
1782 	LLOP_WE				= BIT(17),
1783 	LLOP_ALE			= BIT(18),
1784 	LLOP_CLE			= BIT(19),
1785 	LLOP_RETURN_IDLE		= BIT(31),
1786 
1787 	LLOP_DATA_MASK			= GENMASK(15, 0),
1788 };
1789 
brcmnand_low_level_op(struct brcmnand_host * host,enum brcmnand_llop_type type,u32 data,bool last_op)1790 static int brcmnand_low_level_op(struct brcmnand_host *host,
1791 				 enum brcmnand_llop_type type, u32 data,
1792 				 bool last_op)
1793 {
1794 	struct nand_chip *chip = &host->chip;
1795 	struct brcmnand_controller *ctrl = host->ctrl;
1796 	u32 tmp;
1797 
1798 	tmp = data & LLOP_DATA_MASK;
1799 	switch (type) {
1800 	case LL_OP_CMD:
1801 		tmp |= LLOP_WE | LLOP_CLE;
1802 		break;
1803 	case LL_OP_ADDR:
1804 		/* WE | ALE */
1805 		tmp |= LLOP_WE | LLOP_ALE;
1806 		break;
1807 	case LL_OP_WR:
1808 		/* WE */
1809 		tmp |= LLOP_WE;
1810 		break;
1811 	case LL_OP_RD:
1812 		/* RE */
1813 		tmp |= LLOP_RE;
1814 		break;
1815 	}
1816 	if (last_op)
1817 		/* RETURN_IDLE */
1818 		tmp |= LLOP_RETURN_IDLE;
1819 
1820 	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1821 
1822 	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1823 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1824 
1825 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1826 	return brcmnand_waitfunc(chip);
1827 }
1828 
1829 /*
1830  *  Kick EDU engine
1831  */
brcmnand_edu_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u8 * oob,u32 len,u8 cmd)1832 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1833 			      u8 *oob, u32 len, u8 cmd)
1834 {
1835 	struct brcmnand_controller *ctrl = host->ctrl;
1836 	struct brcmnand_cfg *cfg = &host->hwcfg;
1837 	unsigned long timeo = msecs_to_jiffies(200);
1838 	int ret = 0;
1839 	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1840 	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1841 	unsigned int trans = len >> FC_SHIFT;
1842 	dma_addr_t pa;
1843 
1844 	dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ?
1845 					      "read" : "write"), buf, oob);
1846 
1847 	pa = dma_map_single(ctrl->dev, buf, len, dir);
1848 	if (dma_mapping_error(ctrl->dev, pa)) {
1849 		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1850 		return -ENOMEM;
1851 	}
1852 
1853 	ctrl->edu_pending = true;
1854 	ctrl->edu_dram_addr = pa;
1855 	ctrl->edu_ext_addr = addr;
1856 	ctrl->edu_cmd = edu_cmd;
1857 	ctrl->edu_count = trans;
1858 	ctrl->sas = cfg->spare_area_size;
1859 	ctrl->oob = oob;
1860 
1861 	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1862 	edu_readl(ctrl,  EDU_DRAM_ADDR);
1863 	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1864 	edu_readl(ctrl, EDU_EXT_ADDR);
1865 	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1866 	edu_readl(ctrl, EDU_LENGTH);
1867 
1868 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
1869 		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1870 				   ctrl->edu_ext_addr);
1871 		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1872 		ctrl->oob += write_oob_to_regs(ctrl,
1873 					       1,
1874 					       ctrl->oob, ctrl->sas,
1875 					       ctrl->sector_size_1k);
1876 	}
1877 
1878 	/* Start edu engine */
1879 	mb(); /* flush previous writes */
1880 	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1881 	edu_readl(ctrl, EDU_CMD);
1882 
1883 	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1884 		dev_err(ctrl->dev,
1885 			"timeout waiting for EDU; status %#x, error status %#x\n",
1886 			edu_readl(ctrl, EDU_STATUS),
1887 			edu_readl(ctrl, EDU_ERR_STATUS));
1888 	}
1889 
1890 	dma_unmap_single(ctrl->dev, pa, len, dir);
1891 
1892 	/* read last subpage oob */
1893 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
1894 		ctrl->oob += read_oob_from_regs(ctrl,
1895 						1,
1896 						ctrl->oob, ctrl->sas,
1897 						ctrl->sector_size_1k);
1898 	}
1899 
1900 	/* for program page check NAND status */
1901 	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1902 	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1903 	    edu_cmd == EDU_CMD_WRITE) {
1904 		dev_info(ctrl->dev, "program failed at %llx\n",
1905 			 (unsigned long long)addr);
1906 		ret = -EIO;
1907 	}
1908 
1909 	/* Make sure the EDU status is clean */
1910 	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1911 		dev_warn(ctrl->dev, "EDU still active: %#x\n",
1912 			 edu_readl(ctrl, EDU_STATUS));
1913 
1914 	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1915 		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1916 			 (unsigned long long)addr);
1917 		ret = -EIO;
1918 	}
1919 
1920 	ctrl->edu_pending = false;
1921 	brcmnand_edu_init(ctrl);
1922 	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1923 	edu_readl(ctrl, EDU_STOP);
1924 
1925 	if (!ret && edu_cmd == EDU_CMD_READ) {
1926 		u64 err_addr = 0;
1927 
1928 		/*
1929 		 * check for ECC errors here, subpage ECC errors are
1930 		 * retained in ECC error address register
1931 		 */
1932 		err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1933 		if (!err_addr) {
1934 			err_addr = brcmnand_get_correcc_addr(ctrl);
1935 			if (err_addr)
1936 				ret = -EUCLEAN;
1937 		} else
1938 			ret = -EBADMSG;
1939 	}
1940 
1941 	return ret;
1942 }
1943 
1944 /*
1945  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1946  * following ahead of time:
1947  *  - Is this descriptor the beginning or end of a linked list?
1948  *  - What is the (DMA) address of the next descriptor in the linked list?
1949  */
brcmnand_fill_dma_desc(struct brcmnand_host * host,struct brcm_nand_dma_desc * desc,u64 addr,dma_addr_t buf,u32 len,u8 dma_cmd,bool begin,bool end,dma_addr_t next_desc)1950 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1951 				  struct brcm_nand_dma_desc *desc, u64 addr,
1952 				  dma_addr_t buf, u32 len, u8 dma_cmd,
1953 				  bool begin, bool end,
1954 				  dma_addr_t next_desc)
1955 {
1956 	memset(desc, 0, sizeof(*desc));
1957 	/* Descriptors are written in native byte order (wordwise) */
1958 	desc->next_desc = lower_32_bits(next_desc);
1959 	desc->next_desc_ext = upper_32_bits(next_desc);
1960 	desc->cmd_irq = (dma_cmd << 24) |
1961 		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1962 		(!!begin) | ((!!end) << 1); /* head, tail */
1963 #ifdef CONFIG_CPU_BIG_ENDIAN
1964 	desc->cmd_irq |= 0x01 << 12;
1965 #endif
1966 	desc->dram_addr = lower_32_bits(buf);
1967 	desc->dram_addr_ext = upper_32_bits(buf);
1968 	desc->tfr_len = len;
1969 	desc->total_len = len;
1970 	desc->flash_addr = lower_32_bits(addr);
1971 	desc->flash_addr_ext = upper_32_bits(addr);
1972 	desc->cs = host->cs;
1973 	desc->status_valid = 0x01;
1974 	return 0;
1975 }
1976 
1977 /*
1978  * Kick the FLASH_DMA engine, with a given DMA descriptor
1979  */
brcmnand_dma_run(struct brcmnand_host * host,dma_addr_t desc)1980 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1981 {
1982 	struct brcmnand_controller *ctrl = host->ctrl;
1983 	unsigned long timeo = msecs_to_jiffies(100);
1984 
1985 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1986 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1987 	if (ctrl->nand_version > 0x0602) {
1988 		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
1989 				 upper_32_bits(desc));
1990 		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1991 	}
1992 
1993 	/* Start FLASH_DMA engine */
1994 	ctrl->dma_pending = true;
1995 	mb(); /* flush previous writes */
1996 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1997 
1998 	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1999 		dev_err(ctrl->dev,
2000 				"timeout waiting for DMA; status %#x, error status %#x\n",
2001 				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
2002 				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
2003 	}
2004 	ctrl->dma_pending = false;
2005 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2006 }
2007 
brcmnand_dma_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u8 * oob,u32 len,u8 dma_cmd)2008 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2009 			      u8 *oob, u32 len, u8 dma_cmd)
2010 {
2011 	struct brcmnand_controller *ctrl = host->ctrl;
2012 	dma_addr_t buf_pa;
2013 	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2014 
2015 	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2016 	if (dma_mapping_error(ctrl->dev, buf_pa)) {
2017 		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2018 		return -ENOMEM;
2019 	}
2020 
2021 	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2022 				   dma_cmd, true, true, 0);
2023 
2024 	brcmnand_dma_run(host, ctrl->dma_pa);
2025 
2026 	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2027 
2028 	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2029 		return -EBADMSG;
2030 	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2031 		return -EUCLEAN;
2032 
2033 	return 0;
2034 }
2035 
2036 /*
2037  * Assumes proper CS is already set
2038  */
brcmnand_read_by_pio(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob,u64 * err_addr)2039 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2040 				u64 addr, unsigned int trans, u32 *buf,
2041 				u8 *oob, u64 *err_addr)
2042 {
2043 	struct brcmnand_host *host = nand_get_controller_data(chip);
2044 	struct brcmnand_controller *ctrl = host->ctrl;
2045 	int i, ret = 0;
2046 
2047 	brcmnand_clear_ecc_addr(ctrl);
2048 
2049 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2050 		brcmnand_set_cmd_addr(mtd, addr);
2051 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2052 		brcmnand_send_cmd(host, CMD_PAGE_READ);
2053 		brcmnand_waitfunc(chip);
2054 
2055 		if (likely(buf)) {
2056 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2057 
2058 			brcmnand_read_data_bus(ctrl, ctrl->nand_fc, buf, FC_WORDS);
2059 			buf += FC_WORDS;
2060 
2061 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2062 		}
2063 
2064 		if (oob)
2065 			oob += read_oob_from_regs(ctrl, i, oob,
2066 					mtd->oobsize / trans,
2067 					host->hwcfg.sector_size_1k);
2068 
2069 		if (ret != -EBADMSG) {
2070 			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2071 
2072 			if (*err_addr)
2073 				ret = -EBADMSG;
2074 		}
2075 
2076 		if (!ret) {
2077 			*err_addr = brcmnand_get_correcc_addr(ctrl);
2078 
2079 			if (*err_addr)
2080 				ret = -EUCLEAN;
2081 		}
2082 	}
2083 
2084 	return ret;
2085 }
2086 
2087 /*
2088  * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2089  * error
2090  *
2091  * Because the HW ECC signals an ECC error if an erase paged has even a single
2092  * bitflip, we must check each ECC error to see if it is actually an erased
2093  * page with bitflips, not a truly corrupted page.
2094  *
2095  * On a real error, return a negative error code (-EBADMSG for ECC error), and
2096  * buf will contain raw data.
2097  * Otherwise, buf gets filled with 0xffs and return the maximum number of
2098  * bitflips-per-ECC-sector to the caller.
2099  *
2100  */
brcmstb_nand_verify_erased_page(struct mtd_info * mtd,struct nand_chip * chip,void * buf,u64 addr)2101 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2102 		  struct nand_chip *chip, void *buf, u64 addr)
2103 {
2104 	struct mtd_oob_region ecc;
2105 	int i;
2106 	int bitflips = 0;
2107 	int page = addr >> chip->page_shift;
2108 	int ret;
2109 	void *ecc_bytes;
2110 	void *ecc_chunk;
2111 
2112 	if (!buf)
2113 		buf = nand_get_data_buf(chip);
2114 
2115 	/* read without ecc for verification */
2116 	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2117 	if (ret)
2118 		return ret;
2119 
2120 	for (i = 0; i < chip->ecc.steps; i++) {
2121 		ecc_chunk = buf + chip->ecc.size * i;
2122 
2123 		mtd_ooblayout_ecc(mtd, i, &ecc);
2124 		ecc_bytes = chip->oob_poi + ecc.offset;
2125 
2126 		ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2127 						  ecc_bytes, ecc.length,
2128 						  NULL, 0,
2129 						  chip->ecc.strength);
2130 		if (ret < 0)
2131 			return ret;
2132 
2133 		bitflips = max(bitflips, ret);
2134 	}
2135 
2136 	return bitflips;
2137 }
2138 
brcmnand_read(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob)2139 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2140 			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2141 {
2142 	struct brcmnand_host *host = nand_get_controller_data(chip);
2143 	struct brcmnand_controller *ctrl = host->ctrl;
2144 	u64 err_addr = 0;
2145 	int err;
2146 	bool retry = true;
2147 	bool edu_err = false;
2148 
2149 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2150 
2151 try_dmaread:
2152 	brcmnand_clear_ecc_addr(ctrl);
2153 
2154 	if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
2155 	    flash_dma_buf_ok(buf)) {
2156 		err = ctrl->dma_trans(host, addr, buf, oob,
2157 				      trans * FC_BYTES,
2158 				      CMD_PAGE_READ);
2159 
2160 		if (err) {
2161 			if (mtd_is_bitflip_or_eccerr(err))
2162 				err_addr = addr;
2163 			else
2164 				return -EIO;
2165 		}
2166 
2167 		if (has_edu(ctrl) && err_addr)
2168 			edu_err = true;
2169 
2170 	} else {
2171 		if (oob)
2172 			memset(oob, 0x99, mtd->oobsize);
2173 
2174 		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2175 					       oob, &err_addr);
2176 	}
2177 
2178 	if (mtd_is_eccerr(err)) {
2179 		/*
2180 		 * On controller version and 7.0, 7.1 , DMA read after a
2181 		 * prior PIO read that reported uncorrectable error,
2182 		 * the DMA engine captures this error following DMA read
2183 		 * cleared only on subsequent DMA read, so just retry once
2184 		 * to clear a possible false error reported for current DMA
2185 		 * read
2186 		 */
2187 		if ((ctrl->nand_version == 0x0700) ||
2188 		    (ctrl->nand_version == 0x0701)) {
2189 			if (retry) {
2190 				retry = false;
2191 				goto try_dmaread;
2192 			}
2193 		}
2194 
2195 		/*
2196 		 * Controller version 7.2 has hw encoder to detect erased page
2197 		 * bitflips, apply sw verification for older controllers only
2198 		 */
2199 		if (ctrl->nand_version < 0x0702) {
2200 			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2201 							      addr);
2202 			/* erased page bitflips corrected */
2203 			if (err >= 0)
2204 				return err;
2205 		}
2206 
2207 		dev_err(ctrl->dev, "uncorrectable error at 0x%llx\n",
2208 			(unsigned long long)err_addr);
2209 		mtd->ecc_stats.failed++;
2210 		/* NAND layer expects zero on ECC errors */
2211 		return 0;
2212 	}
2213 
2214 	if (mtd_is_bitflip(err)) {
2215 		unsigned int corrected = brcmnand_count_corrected(ctrl);
2216 
2217 		/* in case of EDU correctable error we read again using PIO */
2218 		if (edu_err)
2219 			err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2220 						   oob, &err_addr);
2221 
2222 		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2223 			(unsigned long long)err_addr);
2224 		mtd->ecc_stats.corrected += corrected;
2225 		/* Always exceed the software-imposed threshold */
2226 		return max(mtd->bitflip_threshold, corrected);
2227 	}
2228 
2229 	return 0;
2230 }
2231 
brcmnand_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2232 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2233 			      int oob_required, int page)
2234 {
2235 	struct mtd_info *mtd = nand_to_mtd(chip);
2236 	struct brcmnand_host *host = nand_get_controller_data(chip);
2237 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2238 	u64 addr = (u64)page << chip->page_shift;
2239 
2240 	host->last_addr = addr;
2241 
2242 	return brcmnand_read(mtd, chip, host->last_addr,
2243 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2244 }
2245 
brcmnand_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2246 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2247 				  int oob_required, int page)
2248 {
2249 	struct brcmnand_host *host = nand_get_controller_data(chip);
2250 	struct mtd_info *mtd = nand_to_mtd(chip);
2251 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2252 	int ret;
2253 	u64 addr = (u64)page << chip->page_shift;
2254 
2255 	host->last_addr = addr;
2256 
2257 	brcmnand_set_ecc_enabled(host, 0);
2258 	ret = brcmnand_read(mtd, chip, host->last_addr,
2259 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2260 	brcmnand_set_ecc_enabled(host, 1);
2261 	return ret;
2262 }
2263 
brcmnand_read_oob(struct nand_chip * chip,int page)2264 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2265 {
2266 	struct mtd_info *mtd = nand_to_mtd(chip);
2267 
2268 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2269 			mtd->writesize >> FC_SHIFT,
2270 			NULL, (u8 *)chip->oob_poi);
2271 }
2272 
brcmnand_read_oob_raw(struct nand_chip * chip,int page)2273 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2274 {
2275 	struct mtd_info *mtd = nand_to_mtd(chip);
2276 	struct brcmnand_host *host = nand_get_controller_data(chip);
2277 
2278 	brcmnand_set_ecc_enabled(host, 0);
2279 	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2280 		mtd->writesize >> FC_SHIFT,
2281 		NULL, (u8 *)chip->oob_poi);
2282 	brcmnand_set_ecc_enabled(host, 1);
2283 	return 0;
2284 }
2285 
brcmnand_write(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,const u32 * buf,u8 * oob)2286 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2287 			  u64 addr, const u32 *buf, u8 *oob)
2288 {
2289 	struct brcmnand_host *host = nand_get_controller_data(chip);
2290 	struct brcmnand_controller *ctrl = host->ctrl;
2291 	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2292 	int status, ret = 0;
2293 
2294 	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2295 
2296 	if (unlikely((unsigned long)buf & 0x03)) {
2297 		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2298 		buf = (u32 *)((unsigned long)buf & ~0x03);
2299 	}
2300 
2301 	brcmnand_wp(mtd, 0);
2302 
2303 	for (i = 0; i < ctrl->max_oob; i += 4)
2304 		oob_reg_write(ctrl, i, 0xffffffff);
2305 
2306 	if (mtd->oops_panic_write)
2307 		/* switch to interrupt polling and PIO mode */
2308 		disable_ctrl_irqs(ctrl);
2309 
2310 	if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
2311 		if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
2312 				    CMD_PROGRAM_PAGE))
2313 
2314 			ret = -EIO;
2315 
2316 		goto out;
2317 	}
2318 
2319 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2320 		/* full address MUST be set before populating FC */
2321 		brcmnand_set_cmd_addr(mtd, addr);
2322 
2323 		if (buf) {
2324 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2325 
2326 			for (j = 0; j < FC_WORDS; j++, buf++)
2327 				brcmnand_write_fc(ctrl, j, *buf);
2328 
2329 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2330 		} else if (oob) {
2331 			for (j = 0; j < FC_WORDS; j++)
2332 				brcmnand_write_fc(ctrl, j, 0xffffffff);
2333 		}
2334 
2335 		if (oob) {
2336 			oob += write_oob_to_regs(ctrl, i, oob,
2337 					mtd->oobsize / trans,
2338 					host->hwcfg.sector_size_1k);
2339 		}
2340 
2341 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2342 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2343 		status = brcmnand_waitfunc(chip);
2344 
2345 		if (status & NAND_STATUS_FAIL) {
2346 			dev_info(ctrl->dev, "program failed at %llx\n",
2347 				(unsigned long long)addr);
2348 			ret = -EIO;
2349 			goto out;
2350 		}
2351 	}
2352 out:
2353 	brcmnand_wp(mtd, 1);
2354 	return ret;
2355 }
2356 
brcmnand_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2357 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2358 			       int oob_required, int page)
2359 {
2360 	struct mtd_info *mtd = nand_to_mtd(chip);
2361 	struct brcmnand_host *host = nand_get_controller_data(chip);
2362 	void *oob = oob_required ? chip->oob_poi : NULL;
2363 	u64 addr = (u64)page << chip->page_shift;
2364 
2365 	host->last_addr = addr;
2366 
2367 	return brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2368 }
2369 
brcmnand_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2370 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2371 				   int oob_required, int page)
2372 {
2373 	struct mtd_info *mtd = nand_to_mtd(chip);
2374 	struct brcmnand_host *host = nand_get_controller_data(chip);
2375 	void *oob = oob_required ? chip->oob_poi : NULL;
2376 	u64 addr = (u64)page << chip->page_shift;
2377 	int ret = 0;
2378 
2379 	host->last_addr = addr;
2380 	brcmnand_set_ecc_enabled(host, 0);
2381 	ret = brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2382 	brcmnand_set_ecc_enabled(host, 1);
2383 
2384 	return ret;
2385 }
2386 
brcmnand_write_oob(struct nand_chip * chip,int page)2387 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2388 {
2389 	return brcmnand_write(nand_to_mtd(chip), chip,
2390 			      (u64)page << chip->page_shift, NULL,
2391 			      chip->oob_poi);
2392 }
2393 
brcmnand_write_oob_raw(struct nand_chip * chip,int page)2394 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2395 {
2396 	struct mtd_info *mtd = nand_to_mtd(chip);
2397 	struct brcmnand_host *host = nand_get_controller_data(chip);
2398 	int ret;
2399 
2400 	brcmnand_set_ecc_enabled(host, 0);
2401 	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2402 				 (u8 *)chip->oob_poi);
2403 	brcmnand_set_ecc_enabled(host, 1);
2404 
2405 	return ret;
2406 }
2407 
brcmnand_exec_instr(struct brcmnand_host * host,int i,const struct nand_operation * op)2408 static int brcmnand_exec_instr(struct brcmnand_host *host, int i,
2409 		const struct nand_operation *op)
2410 {
2411 	const struct nand_op_instr *instr = &op->instrs[i];
2412 	struct brcmnand_controller *ctrl = host->ctrl;
2413 	const u8 *out;
2414 	bool last_op;
2415 	int ret = 0;
2416 	u8 *in;
2417 
2418 	/*
2419 	 * The controller needs to be aware of the last command in the operation
2420 	 * (WAITRDY excepted).
2421 	 */
2422 	last_op = ((i == (op->ninstrs - 1)) && (instr->type != NAND_OP_WAITRDY_INSTR)) ||
2423 		  ((i == (op->ninstrs - 2)) && (op->instrs[i + 1].type == NAND_OP_WAITRDY_INSTR));
2424 
2425 	switch (instr->type) {
2426 	case NAND_OP_CMD_INSTR:
2427 		brcmnand_low_level_op(host, LL_OP_CMD, instr->ctx.cmd.opcode, last_op);
2428 		break;
2429 
2430 	case NAND_OP_ADDR_INSTR:
2431 		for (i = 0; i < instr->ctx.addr.naddrs; i++)
2432 			brcmnand_low_level_op(host, LL_OP_ADDR, instr->ctx.addr.addrs[i],
2433 					      last_op && (i == (instr->ctx.addr.naddrs - 1)));
2434 		break;
2435 
2436 	case NAND_OP_DATA_IN_INSTR:
2437 		in = instr->ctx.data.buf.in;
2438 		for (i = 0; i < instr->ctx.data.len; i++) {
2439 			brcmnand_low_level_op(host, LL_OP_RD, 0,
2440 					      last_op && (i == (instr->ctx.data.len - 1)));
2441 			in[i] = brcmnand_read_reg(host->ctrl, BRCMNAND_LL_RDATA);
2442 		}
2443 		break;
2444 
2445 	case NAND_OP_DATA_OUT_INSTR:
2446 		out = instr->ctx.data.buf.out;
2447 		for (i = 0; i < instr->ctx.data.len; i++)
2448 			brcmnand_low_level_op(host, LL_OP_WR, out[i],
2449 					      last_op && (i == (instr->ctx.data.len - 1)));
2450 		break;
2451 
2452 	case NAND_OP_WAITRDY_INSTR:
2453 		ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
2454 		break;
2455 
2456 	default:
2457 		dev_err(ctrl->dev, "unsupported instruction type: %d\n",
2458 			instr->type);
2459 		ret = -EINVAL;
2460 		break;
2461 	}
2462 
2463 	return ret;
2464 }
2465 
brcmnand_op_is_status(const struct nand_operation * op)2466 static int brcmnand_op_is_status(const struct nand_operation *op)
2467 {
2468 	if (op->ninstrs == 2 &&
2469 	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
2470 	    op->instrs[0].ctx.cmd.opcode == NAND_CMD_STATUS &&
2471 	    op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
2472 		return 1;
2473 
2474 	return 0;
2475 }
2476 
brcmnand_op_is_reset(const struct nand_operation * op)2477 static int brcmnand_op_is_reset(const struct nand_operation *op)
2478 {
2479 	if (op->ninstrs == 2 &&
2480 	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
2481 	    op->instrs[0].ctx.cmd.opcode == NAND_CMD_RESET &&
2482 	    op->instrs[1].type == NAND_OP_WAITRDY_INSTR)
2483 		return 1;
2484 
2485 	return 0;
2486 }
2487 
brcmnand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2488 static int brcmnand_exec_op(struct nand_chip *chip,
2489 			    const struct nand_operation *op,
2490 			    bool check_only)
2491 {
2492 	struct brcmnand_host *host = nand_get_controller_data(chip);
2493 	struct mtd_info *mtd = nand_to_mtd(chip);
2494 	u8 *status;
2495 	unsigned int i;
2496 	int ret = 0;
2497 
2498 	if (check_only)
2499 		return 0;
2500 
2501 	if (brcmnand_op_is_status(op)) {
2502 		status = op->instrs[1].ctx.data.buf.in;
2503 		ret = brcmnand_status(host);
2504 		if (ret < 0)
2505 			return ret;
2506 
2507 		*status = ret & 0xFF;
2508 
2509 		return 0;
2510 	} else if (brcmnand_op_is_reset(op)) {
2511 		ret = brcmnand_reset(host);
2512 		if (ret < 0)
2513 			return ret;
2514 
2515 		brcmnand_wp(mtd, 1);
2516 
2517 		return 0;
2518 	}
2519 
2520 	if (op->deassert_wp)
2521 		brcmnand_wp(mtd, 0);
2522 
2523 	for (i = 0; i < op->ninstrs; i++) {
2524 		ret = brcmnand_exec_instr(host, i, op);
2525 		if (ret)
2526 			break;
2527 	}
2528 
2529 	if (op->deassert_wp)
2530 		brcmnand_wp(mtd, 1);
2531 
2532 	return ret;
2533 }
2534 
2535 /***********************************************************************
2536  * Per-CS setup (1 NAND device)
2537  ***********************************************************************/
2538 
brcmnand_set_cfg(struct brcmnand_host * host,struct brcmnand_cfg * cfg)2539 static int brcmnand_set_cfg(struct brcmnand_host *host,
2540 			    struct brcmnand_cfg *cfg)
2541 {
2542 	struct brcmnand_controller *ctrl = host->ctrl;
2543 	struct nand_chip *chip = &host->chip;
2544 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2545 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2546 			BRCMNAND_CS_CFG_EXT);
2547 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2548 			BRCMNAND_CS_ACC_CONTROL);
2549 	u8 block_size = 0, page_size = 0, device_size = 0;
2550 	u32 tmp;
2551 
2552 	if (ctrl->block_sizes) {
2553 		int i, found;
2554 
2555 		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2556 			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2557 				block_size = i;
2558 				found = 1;
2559 			}
2560 		if (!found) {
2561 			dev_warn(ctrl->dev, "invalid block size %u\n",
2562 					cfg->block_size);
2563 			return -EINVAL;
2564 		}
2565 	} else {
2566 		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2567 	}
2568 
2569 	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2570 				cfg->block_size > ctrl->max_block_size)) {
2571 		dev_warn(ctrl->dev, "invalid block size %u\n",
2572 				cfg->block_size);
2573 		block_size = 0;
2574 	}
2575 
2576 	if (ctrl->page_sizes) {
2577 		int i, found;
2578 
2579 		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2580 			if (ctrl->page_sizes[i] == cfg->page_size) {
2581 				page_size = i;
2582 				found = 1;
2583 			}
2584 		if (!found) {
2585 			dev_warn(ctrl->dev, "invalid page size %u\n",
2586 					cfg->page_size);
2587 			return -EINVAL;
2588 		}
2589 	} else {
2590 		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2591 	}
2592 
2593 	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2594 				cfg->page_size > ctrl->max_page_size)) {
2595 		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2596 		return -EINVAL;
2597 	}
2598 
2599 	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2600 		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2601 			(unsigned long long)cfg->device_size);
2602 		return -EINVAL;
2603 	}
2604 	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2605 
2606 	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2607 		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2608 		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2609 		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2610 		(device_size << CFG_DEVICE_SIZE_SHIFT);
2611 	if (cfg_offs == cfg_ext_offs) {
2612 		tmp |= (page_size << ctrl->page_size_shift) |
2613 		       (block_size << CFG_BLK_SIZE_SHIFT);
2614 		nand_writereg(ctrl, cfg_offs, tmp);
2615 	} else {
2616 		nand_writereg(ctrl, cfg_offs, tmp);
2617 		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2618 		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2619 		nand_writereg(ctrl, cfg_ext_offs, tmp);
2620 	}
2621 
2622 	tmp = nand_readreg(ctrl, acc_control_offs);
2623 	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2624 	tmp &= ~brcmnand_spare_area_mask(ctrl);
2625 	if (ctrl->nand_version >= 0x0302) {
2626 		tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
2627 		tmp |= cfg->spare_area_size;
2628 	}
2629 	nand_writereg(ctrl, acc_control_offs, tmp);
2630 
2631 	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2632 
2633 	/* threshold = ceil(BCH-level * 0.75) */
2634 	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2635 
2636 	return 0;
2637 }
2638 
brcmnand_print_cfg(struct brcmnand_host * host,char * buf,struct brcmnand_cfg * cfg)2639 static void brcmnand_print_cfg(struct brcmnand_host *host,
2640 			       char *buf, struct brcmnand_cfg *cfg)
2641 {
2642 	buf += sprintf(buf,
2643 		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2644 		(unsigned long long)cfg->device_size >> 20,
2645 		cfg->block_size >> 10,
2646 		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2647 		cfg->page_size >= 1024 ? "KiB" : "B",
2648 		cfg->spare_area_size, cfg->device_width);
2649 
2650 	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2651 	if (is_hamming_ecc(host->ctrl, cfg))
2652 		sprintf(buf, ", Hamming ECC");
2653 	else if (cfg->sector_size_1k)
2654 		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2655 	else
2656 		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2657 }
2658 
2659 /*
2660  * Minimum number of bytes to address a page. Calculated as:
2661  *     roundup(log2(size / page-size) / 8)
2662  *
2663  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2664  *     OK because many other things will break if 'size' is irregular...
2665  */
get_blk_adr_bytes(u64 size,u32 writesize)2666 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2667 {
2668 	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2669 }
2670 
brcmnand_setup_dev(struct brcmnand_host * host)2671 static int brcmnand_setup_dev(struct brcmnand_host *host)
2672 {
2673 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2674 	struct nand_chip *chip = &host->chip;
2675 	const struct nand_ecc_props *requirements =
2676 		nanddev_get_ecc_requirements(&chip->base);
2677 	struct nand_memory_organization *memorg =
2678 		nanddev_get_memorg(&chip->base);
2679 	struct brcmnand_controller *ctrl = host->ctrl;
2680 	struct brcmnand_cfg *cfg = &host->hwcfg;
2681 	struct device_node *np = nand_get_flash_node(chip);
2682 	u32 offs, tmp, oob_sector;
2683 	bool use_strap = false;
2684 	char msg[128];
2685 	int ret;
2686 
2687 	memset(cfg, 0, sizeof(*cfg));
2688 	use_strap = of_property_read_bool(np, "brcm,nand-ecc-use-strap");
2689 
2690 	/*
2691 	 * Either nand-ecc-xxx or brcm,nand-ecc-use-strap can be set. Error out
2692 	 * if both exist.
2693 	 */
2694 	if (chip->ecc.strength && use_strap) {
2695 		dev_err(ctrl->dev,
2696 			"ECC strap and DT ECC configuration properties are mutually exclusive\n");
2697 		return -EINVAL;
2698 	}
2699 
2700 	if (use_strap)
2701 		brcmnand_get_ecc_settings(host, chip);
2702 
2703 	ret = of_property_read_u32(np, "brcm,nand-oob-sector-size",
2704 				   &oob_sector);
2705 	if (ret) {
2706 		if (use_strap)
2707 			cfg->spare_area_size = brcmnand_get_spare_size(host);
2708 		else
2709 			/* Use detected size */
2710 			cfg->spare_area_size = mtd->oobsize /
2711 						(mtd->writesize >> FC_SHIFT);
2712 	} else {
2713 		cfg->spare_area_size = oob_sector;
2714 	}
2715 	if (cfg->spare_area_size > ctrl->max_oob)
2716 		cfg->spare_area_size = ctrl->max_oob;
2717 	/*
2718 	 * Set mtd and memorg oobsize to be consistent with controller's
2719 	 * spare_area_size, as the rest is inaccessible.
2720 	 */
2721 	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2722 	memorg->oobsize = mtd->oobsize;
2723 
2724 	cfg->device_size = mtd->size;
2725 	cfg->block_size = mtd->erasesize;
2726 	cfg->page_size = mtd->writesize;
2727 	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2728 	cfg->col_adr_bytes = 2;
2729 	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2730 
2731 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2732 		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2733 			chip->ecc.engine_type);
2734 		return -EINVAL;
2735 	}
2736 
2737 	if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2738 		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2739 			/* Default to Hamming for 1-bit ECC, if unspecified */
2740 			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2741 		else
2742 			/* Otherwise, BCH */
2743 			chip->ecc.algo = NAND_ECC_ALGO_BCH;
2744 	}
2745 
2746 	if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2747 	    (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2748 		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2749 			chip->ecc.strength, chip->ecc.size);
2750 		return -EINVAL;
2751 	}
2752 
2753 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2754 	    (!chip->ecc.size || !chip->ecc.strength)) {
2755 		if (requirements->step_size && requirements->strength) {
2756 			/* use detected ECC parameters */
2757 			chip->ecc.size = requirements->step_size;
2758 			chip->ecc.strength = requirements->strength;
2759 			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2760 				chip->ecc.size, chip->ecc.strength);
2761 		}
2762 	}
2763 
2764 	switch (chip->ecc.size) {
2765 	case 512:
2766 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2767 			cfg->ecc_level = 15;
2768 		else
2769 			cfg->ecc_level = chip->ecc.strength;
2770 		cfg->sector_size_1k = 0;
2771 		break;
2772 	case 1024:
2773 		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2774 			dev_err(ctrl->dev, "1KB sectors not supported\n");
2775 			return -EINVAL;
2776 		}
2777 		if (chip->ecc.strength & 0x1) {
2778 			dev_err(ctrl->dev,
2779 				"odd ECC not supported with 1KB sectors\n");
2780 			return -EINVAL;
2781 		}
2782 
2783 		cfg->ecc_level = chip->ecc.strength >> 1;
2784 		cfg->sector_size_1k = 1;
2785 		break;
2786 	default:
2787 		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2788 			chip->ecc.size);
2789 		return -EINVAL;
2790 	}
2791 
2792 	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2793 	if (mtd->writesize > 512)
2794 		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2795 	else
2796 		cfg->ful_adr_bytes += 1;
2797 
2798 	ret = brcmnand_set_cfg(host, cfg);
2799 	if (ret)
2800 		return ret;
2801 
2802 	brcmnand_set_ecc_enabled(host, 1);
2803 
2804 	brcmnand_print_cfg(host, msg, cfg);
2805 	dev_info(ctrl->dev, "detected %s\n", msg);
2806 
2807 	/* Configure ACC_CONTROL */
2808 	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2809 	tmp = nand_readreg(ctrl, offs);
2810 	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2811 	tmp &= ~ACC_CONTROL_RD_ERASED;
2812 
2813 	/* We need to turn on Read from erased paged protected by ECC */
2814 	if (ctrl->nand_version >= 0x0702)
2815 		tmp |= ACC_CONTROL_RD_ERASED;
2816 	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2817 	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2818 		tmp &= ~ACC_CONTROL_PREFETCH;
2819 
2820 	nand_writereg(ctrl, offs, tmp);
2821 
2822 	return 0;
2823 }
2824 
brcmnand_attach_chip(struct nand_chip * chip)2825 static int brcmnand_attach_chip(struct nand_chip *chip)
2826 {
2827 	struct mtd_info *mtd = nand_to_mtd(chip);
2828 	struct brcmnand_host *host = nand_get_controller_data(chip);
2829 	int ret;
2830 
2831 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2832 	/*
2833 	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2834 	 * to/from, and have nand_base pass us a bounce buffer instead, as
2835 	 * needed.
2836 	 */
2837 	chip->options |= NAND_USES_DMA;
2838 
2839 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
2840 		chip->bbt_options |= NAND_BBT_NO_OOB;
2841 
2842 	if (brcmnand_setup_dev(host))
2843 		return -ENXIO;
2844 
2845 	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2846 
2847 	/* only use our internal HW threshold */
2848 	mtd->bitflip_threshold = 1;
2849 
2850 	ret = brcmstb_choose_ecc_layout(host);
2851 
2852 	/* If OOB is written with ECC enabled it will cause ECC errors */
2853 	if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
2854 		chip->ecc.write_oob = brcmnand_write_oob_raw;
2855 		chip->ecc.read_oob = brcmnand_read_oob_raw;
2856 	}
2857 
2858 	return ret;
2859 }
2860 
2861 static const struct nand_controller_ops brcmnand_controller_ops = {
2862 	.attach_chip = brcmnand_attach_chip,
2863 	.exec_op = brcmnand_exec_op,
2864 };
2865 
brcmnand_init_cs(struct brcmnand_host * host,const char * const * part_probe_types)2866 static int brcmnand_init_cs(struct brcmnand_host *host,
2867 			    const char * const *part_probe_types)
2868 {
2869 	struct brcmnand_controller *ctrl = host->ctrl;
2870 	struct device *dev = ctrl->dev;
2871 	struct mtd_info *mtd;
2872 	struct nand_chip *chip;
2873 	int ret;
2874 	u16 cfg_offs;
2875 
2876 	mtd = nand_to_mtd(&host->chip);
2877 	chip = &host->chip;
2878 
2879 	nand_set_controller_data(chip, host);
2880 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d",
2881 				   host->cs);
2882 	if (!mtd->name)
2883 		return -ENOMEM;
2884 
2885 	mtd->owner = THIS_MODULE;
2886 	mtd->dev.parent = dev;
2887 
2888 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2889 	chip->ecc.read_page = brcmnand_read_page;
2890 	chip->ecc.write_page = brcmnand_write_page;
2891 	chip->ecc.read_page_raw = brcmnand_read_page_raw;
2892 	chip->ecc.write_page_raw = brcmnand_write_page_raw;
2893 	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2894 	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2895 	chip->ecc.read_oob = brcmnand_read_oob;
2896 	chip->ecc.write_oob = brcmnand_write_oob;
2897 
2898 	chip->controller = &ctrl->controller;
2899 	ctrl->controller.controller_wp = 1;
2900 
2901 	/*
2902 	 * The bootloader might have configured 16bit mode but
2903 	 * NAND READID command only works in 8bit mode. We force
2904 	 * 8bit mode here to ensure that NAND READID commands works.
2905 	 */
2906 	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2907 	nand_writereg(ctrl, cfg_offs,
2908 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2909 
2910 	ret = nand_scan(chip, 1);
2911 	if (ret)
2912 		return ret;
2913 
2914 	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
2915 	if (ret)
2916 		nand_cleanup(chip);
2917 
2918 	return ret;
2919 }
2920 
brcmnand_save_restore_cs_config(struct brcmnand_host * host,int restore)2921 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2922 					    int restore)
2923 {
2924 	struct brcmnand_controller *ctrl = host->ctrl;
2925 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2926 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2927 			BRCMNAND_CS_CFG_EXT);
2928 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2929 			BRCMNAND_CS_ACC_CONTROL);
2930 	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2931 	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2932 
2933 	if (restore) {
2934 		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2935 		if (cfg_offs != cfg_ext_offs)
2936 			nand_writereg(ctrl, cfg_ext_offs,
2937 				      host->hwcfg.config_ext);
2938 		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2939 		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2940 		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2941 	} else {
2942 		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2943 		if (cfg_offs != cfg_ext_offs)
2944 			host->hwcfg.config_ext =
2945 				nand_readreg(ctrl, cfg_ext_offs);
2946 		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2947 		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2948 		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2949 	}
2950 }
2951 
brcmnand_suspend(struct device * dev)2952 static int brcmnand_suspend(struct device *dev)
2953 {
2954 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2955 	struct brcmnand_host *host;
2956 
2957 	list_for_each_entry(host, &ctrl->host_list, node)
2958 		brcmnand_save_restore_cs_config(host, 0);
2959 
2960 	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2961 	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2962 	ctrl->corr_stat_threshold =
2963 		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2964 
2965 	if (has_flash_dma(ctrl))
2966 		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2967 	else if (has_edu(ctrl))
2968 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2969 
2970 	return 0;
2971 }
2972 
brcmnand_resume(struct device * dev)2973 static int brcmnand_resume(struct device *dev)
2974 {
2975 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2976 	struct brcmnand_host *host;
2977 
2978 	if (has_flash_dma(ctrl)) {
2979 		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2980 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2981 	}
2982 
2983 	if (has_edu(ctrl)) {
2984 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2985 		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2986 		edu_readl(ctrl, EDU_CONFIG);
2987 		brcmnand_edu_init(ctrl);
2988 	}
2989 
2990 	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2991 	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2992 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2993 			ctrl->corr_stat_threshold);
2994 	if (ctrl->soc) {
2995 		/* Clear/re-enable interrupt */
2996 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2997 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2998 	}
2999 
3000 	list_for_each_entry(host, &ctrl->host_list, node) {
3001 		struct nand_chip *chip = &host->chip;
3002 
3003 		brcmnand_save_restore_cs_config(host, 1);
3004 
3005 		/* Reset the chip, required by some chips after power-up */
3006 		nand_reset_op(chip);
3007 	}
3008 
3009 	return 0;
3010 }
3011 
3012 const struct dev_pm_ops brcmnand_pm_ops = {
3013 	.suspend		= brcmnand_suspend,
3014 	.resume			= brcmnand_resume,
3015 };
3016 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
3017 
3018 static const struct of_device_id __maybe_unused brcmnand_of_match[] = {
3019 	{ .compatible = "brcm,brcmnand-v2.1" },
3020 	{ .compatible = "brcm,brcmnand-v2.2" },
3021 	{ .compatible = "brcm,brcmnand-v4.0" },
3022 	{ .compatible = "brcm,brcmnand-v5.0" },
3023 	{ .compatible = "brcm,brcmnand-v6.0" },
3024 	{ .compatible = "brcm,brcmnand-v6.1" },
3025 	{ .compatible = "brcm,brcmnand-v6.2" },
3026 	{ .compatible = "brcm,brcmnand-v7.0" },
3027 	{ .compatible = "brcm,brcmnand-v7.1" },
3028 	{ .compatible = "brcm,brcmnand-v7.2" },
3029 	{ .compatible = "brcm,brcmnand-v7.3" },
3030 	{},
3031 };
3032 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
3033 
3034 /***********************************************************************
3035  * Platform driver setup (per controller)
3036  ***********************************************************************/
brcmnand_edu_setup(struct platform_device * pdev)3037 static int brcmnand_edu_setup(struct platform_device *pdev)
3038 {
3039 	struct device *dev = &pdev->dev;
3040 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3041 	struct resource *res;
3042 	int ret;
3043 
3044 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
3045 	if (res) {
3046 		ctrl->edu_base = devm_ioremap_resource(dev, res);
3047 		if (IS_ERR(ctrl->edu_base))
3048 			return PTR_ERR(ctrl->edu_base);
3049 
3050 		ctrl->edu_offsets = edu_regs;
3051 
3052 		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
3053 			   EDU_CONFIG_SWAP_CFG);
3054 		edu_readl(ctrl, EDU_CONFIG);
3055 
3056 		/* initialize edu */
3057 		brcmnand_edu_init(ctrl);
3058 
3059 		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
3060 		if (ctrl->edu_irq < 0) {
3061 			dev_warn(dev,
3062 				 "FLASH EDU enabled, using ctlrdy irq\n");
3063 		} else {
3064 			ret = devm_request_irq(dev, ctrl->edu_irq,
3065 					       brcmnand_edu_irq, 0,
3066 					       "brcmnand-edu", ctrl);
3067 			if (ret < 0) {
3068 				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
3069 					ctrl->edu_irq, ret);
3070 				return ret;
3071 			}
3072 
3073 			dev_info(dev, "FLASH EDU enabled using irq %u\n",
3074 				 ctrl->edu_irq);
3075 		}
3076 	}
3077 
3078 	return 0;
3079 }
3080 
brcmnand_probe(struct platform_device * pdev,struct brcmnand_soc * soc)3081 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
3082 {
3083 	struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev);
3084 	struct device *dev = &pdev->dev;
3085 	struct device_node *dn = dev->of_node, *child;
3086 	struct brcmnand_controller *ctrl;
3087 	struct brcmnand_host *host;
3088 	struct resource *res;
3089 	int ret;
3090 
3091 	if (dn && !of_match_node(brcmnand_of_match, dn))
3092 		return -ENODEV;
3093 
3094 	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
3095 	if (!ctrl)
3096 		return -ENOMEM;
3097 
3098 	dev_set_drvdata(dev, ctrl);
3099 	ctrl->dev = dev;
3100 	ctrl->soc = soc;
3101 
3102 	/* Enable the static key if the soc provides I/O operations indicating
3103 	 * that a non-memory mapped IO access path must be used
3104 	 */
3105 	if (brcmnand_soc_has_ops(ctrl->soc))
3106 		static_branch_enable(&brcmnand_soc_has_ops_key);
3107 
3108 	init_completion(&ctrl->done);
3109 	init_completion(&ctrl->dma_done);
3110 	init_completion(&ctrl->edu_done);
3111 	nand_controller_init(&ctrl->controller);
3112 	ctrl->controller.ops = &brcmnand_controller_ops;
3113 	INIT_LIST_HEAD(&ctrl->host_list);
3114 
3115 	/* NAND register range */
3116 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3117 	ctrl->nand_base = devm_ioremap_resource(dev, res);
3118 	if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc))
3119 		return PTR_ERR(ctrl->nand_base);
3120 
3121 	/* Enable clock before using NAND registers */
3122 	ctrl->clk = devm_clk_get(dev, "nand");
3123 	if (!IS_ERR(ctrl->clk)) {
3124 		ret = clk_prepare_enable(ctrl->clk);
3125 		if (ret)
3126 			return ret;
3127 	} else {
3128 		ret = PTR_ERR(ctrl->clk);
3129 		if (ret == -EPROBE_DEFER)
3130 			return ret;
3131 
3132 		ctrl->clk = NULL;
3133 	}
3134 
3135 	/* Initialize NAND revision */
3136 	ret = brcmnand_revision_init(ctrl);
3137 	if (ret)
3138 		goto err;
3139 
3140 	/*
3141 	 * Most chips have this cache at a fixed offset within 'nand' block.
3142 	 * Some must specify this region separately.
3143 	 */
3144 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3145 	if (res) {
3146 		ctrl->nand_fc = devm_ioremap_resource(dev, res);
3147 		if (IS_ERR(ctrl->nand_fc)) {
3148 			ret = PTR_ERR(ctrl->nand_fc);
3149 			goto err;
3150 		}
3151 	} else {
3152 		ctrl->nand_fc = ctrl->nand_base +
3153 				ctrl->reg_offsets[BRCMNAND_FC_BASE];
3154 	}
3155 
3156 	/* FLASH_DMA */
3157 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3158 	if (res) {
3159 		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3160 		if (IS_ERR(ctrl->flash_dma_base)) {
3161 			ret = PTR_ERR(ctrl->flash_dma_base);
3162 			goto err;
3163 		}
3164 
3165 		/* initialize the dma version */
3166 		brcmnand_flash_dma_revision_init(ctrl);
3167 
3168 		ret = -EIO;
3169 		if (ctrl->nand_version >= 0x0700)
3170 			ret = dma_set_mask_and_coherent(&pdev->dev,
3171 							DMA_BIT_MASK(40));
3172 		if (ret)
3173 			ret = dma_set_mask_and_coherent(&pdev->dev,
3174 							DMA_BIT_MASK(32));
3175 		if (ret)
3176 			goto err;
3177 
3178 		/* linked-list and stop on error */
3179 		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3180 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3181 
3182 		/* Allocate descriptor(s) */
3183 		ctrl->dma_desc = dmam_alloc_coherent(dev,
3184 						     sizeof(*ctrl->dma_desc),
3185 						     &ctrl->dma_pa, GFP_KERNEL);
3186 		if (!ctrl->dma_desc) {
3187 			ret = -ENOMEM;
3188 			goto err;
3189 		}
3190 
3191 		ctrl->dma_irq = platform_get_irq(pdev, 1);
3192 		if ((int)ctrl->dma_irq < 0) {
3193 			dev_err(dev, "missing FLASH_DMA IRQ\n");
3194 			ret = -ENODEV;
3195 			goto err;
3196 		}
3197 
3198 		ret = devm_request_irq(dev, ctrl->dma_irq,
3199 				brcmnand_dma_irq, 0, DRV_NAME,
3200 				ctrl);
3201 		if (ret < 0) {
3202 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3203 					ctrl->dma_irq, ret);
3204 			goto err;
3205 		}
3206 
3207 		dev_info(dev, "enabling FLASH_DMA\n");
3208 		/* set flash dma transfer function to call */
3209 		ctrl->dma_trans = brcmnand_dma_trans;
3210 	} else	{
3211 		ret = brcmnand_edu_setup(pdev);
3212 		if (ret < 0)
3213 			goto err;
3214 
3215 		if (has_edu(ctrl))
3216 			/* set edu transfer function to call */
3217 			ctrl->dma_trans = brcmnand_edu_trans;
3218 	}
3219 
3220 	/* Disable automatic device ID config, direct addressing */
3221 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3222 			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3223 	/* Disable XOR addressing */
3224 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3225 
3226 	/* Check if the board connects the WP pin */
3227 	if (of_property_read_bool(dn, "brcm,wp-not-connected"))
3228 		wp_on = 0;
3229 
3230 	if (ctrl->features & BRCMNAND_HAS_WP) {
3231 		/* Permanently disable write protection */
3232 		if (wp_on == 2)
3233 			brcmnand_set_wp(ctrl, false);
3234 	} else {
3235 		wp_on = 0;
3236 	}
3237 
3238 	/* IRQ */
3239 	ctrl->irq = platform_get_irq_optional(pdev, 0);
3240 	if (ctrl->irq > 0) {
3241 		/*
3242 		 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3243 		 * interesting ways
3244 		 */
3245 		if (soc) {
3246 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3247 					       DRV_NAME, ctrl);
3248 
3249 			/* Enable interrupt */
3250 			ctrl->soc->ctlrdy_ack(ctrl->soc);
3251 			ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3252 		} else {
3253 			/* Use standard interrupt infrastructure */
3254 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3255 					       DRV_NAME, ctrl);
3256 		}
3257 		if (ret < 0) {
3258 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3259 				ctrl->irq, ret);
3260 			goto err;
3261 		}
3262 	}
3263 
3264 	for_each_available_child_of_node(dn, child) {
3265 		if (of_device_is_compatible(child, "brcm,nandcs")) {
3266 
3267 			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3268 			if (!host) {
3269 				of_node_put(child);
3270 				ret = -ENOMEM;
3271 				goto err;
3272 			}
3273 			host->pdev = pdev;
3274 			host->ctrl = ctrl;
3275 
3276 			ret = of_property_read_u32(child, "reg", &host->cs);
3277 			if (ret) {
3278 				dev_err(dev, "can't get chip-select\n");
3279 				devm_kfree(dev, host);
3280 				continue;
3281 			}
3282 
3283 			nand_set_flash_node(&host->chip, child);
3284 
3285 			ret = brcmnand_init_cs(host, NULL);
3286 			if (ret) {
3287 				if (ret == -EPROBE_DEFER) {
3288 					of_node_put(child);
3289 					goto err;
3290 				}
3291 				devm_kfree(dev, host);
3292 				continue; /* Try all chip-selects */
3293 			}
3294 
3295 			list_add_tail(&host->node, &ctrl->host_list);
3296 		}
3297 	}
3298 
3299 	if (!list_empty(&ctrl->host_list))
3300 		return 0;
3301 
3302 	if (!pd) {
3303 		ret = -ENODEV;
3304 		goto err;
3305 	}
3306 
3307 	/* If we got there we must have been probing via platform data */
3308 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3309 	if (!host) {
3310 		ret = -ENOMEM;
3311 		goto err;
3312 	}
3313 	host->pdev = pdev;
3314 	host->ctrl = ctrl;
3315 	host->cs = pd->chip_select;
3316 	host->chip.ecc.size = pd->ecc_stepsize;
3317 	host->chip.ecc.strength = pd->ecc_strength;
3318 
3319 	ret = brcmnand_init_cs(host, pd->part_probe_types);
3320 	if (ret)
3321 		goto err;
3322 
3323 	list_add_tail(&host->node, &ctrl->host_list);
3324 
3325 	/* No chip-selects could initialize properly */
3326 	if (list_empty(&ctrl->host_list)) {
3327 		ret = -ENODEV;
3328 		goto err;
3329 	}
3330 
3331 	return 0;
3332 
3333 err:
3334 	clk_disable_unprepare(ctrl->clk);
3335 	return ret;
3336 
3337 }
3338 EXPORT_SYMBOL_GPL(brcmnand_probe);
3339 
brcmnand_remove(struct platform_device * pdev)3340 void brcmnand_remove(struct platform_device *pdev)
3341 {
3342 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3343 	struct brcmnand_host *host;
3344 	struct nand_chip *chip;
3345 	int ret;
3346 
3347 	list_for_each_entry(host, &ctrl->host_list, node) {
3348 		chip = &host->chip;
3349 		ret = mtd_device_unregister(nand_to_mtd(chip));
3350 		WARN_ON(ret);
3351 		nand_cleanup(chip);
3352 	}
3353 
3354 	clk_disable_unprepare(ctrl->clk);
3355 
3356 	dev_set_drvdata(&pdev->dev, NULL);
3357 }
3358 EXPORT_SYMBOL_GPL(brcmnand_remove);
3359 
3360 MODULE_LICENSE("GPL v2");
3361 MODULE_AUTHOR("Kevin Cernekee");
3362 MODULE_AUTHOR("Brian Norris");
3363 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3364 MODULE_ALIAS("platform:brcmnand");
3365