xref: /freebsd/sys/net/bpf.c (revision dd49816b0d66697ec80dac256c2973d881c39784)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7  *
8  * This code is derived from the Stanford/CMU enet packet filter,
9  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11  * Berkeley Laboratory.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 #include "opt_bpf.h"
40 #include "opt_ddb.h"
41 #include "opt_netgraph.h"
42 
43 #include <sys/param.h>
44 #include <sys/conf.h>
45 #include <sys/eventhandler.h>
46 #include <sys/fcntl.h>
47 #include <sys/jail.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/mutex.h>
53 #include <sys/time.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/signalvar.h>
57 #include <sys/filio.h>
58 #include <sys/sockio.h>
59 #include <sys/ttycom.h>
60 #include <sys/uio.h>
61 #include <sys/sysent.h>
62 #include <sys/systm.h>
63 
64 #include <sys/event.h>
65 #include <sys/file.h>
66 #include <sys/poll.h>
67 #include <sys/proc.h>
68 
69 #include <sys/socket.h>
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_private.h>
78 #include <net/if_vlan_var.h>
79 #include <net/if_dl.h>
80 #include <net/bpf.h>
81 #include <net/bpf_buffer.h>
82 #ifdef BPF_JITTER
83 #include <net/bpf_jitter.h>
84 #endif
85 #include <net/bpf_zerocopy.h>
86 #include <net/bpfdesc.h>
87 #include <net/route.h>
88 #include <net/vnet.h>
89 
90 #include <netinet/in.h>
91 #include <netinet/if_ether.h>
92 #include <sys/kernel.h>
93 #include <sys/sysctl.h>
94 
95 #include <net80211/ieee80211_freebsd.h>
96 
97 #include <security/mac/mac_framework.h>
98 
99 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
100 
101 static const struct bpf_if_ext dead_bpf_if = {
102 	.bif_dlist = CK_LIST_HEAD_INITIALIZER()
103 };
104 
105 struct bpf_if {
106 #define	bif_next	bif_ext.bif_next
107 #define	bif_dlist	bif_ext.bif_dlist
108 	struct bpf_if_ext bif_ext;	/* public members */
109 	u_int		bif_dlt;	/* link layer type */
110 	u_int		bif_hdrlen;	/* length of link header */
111 	struct bpfd_list bif_wlist;	/* writer-only list */
112 	struct ifnet	*bif_ifp;	/* corresponding interface */
113 	struct bpf_if	**bif_bpf;	/* Pointer to pointer to us */
114 	volatile u_int	bif_refcnt;
115 	struct epoch_context epoch_ctx;
116 };
117 
118 CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
119 
120 struct bpf_program_buffer {
121 	struct epoch_context	epoch_ctx;
122 #ifdef BPF_JITTER
123 	bpf_jit_filter		*func;
124 #endif
125 	void			*buffer[0];
126 };
127 
128 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
129 
130 #define PRINET  26			/* interruptible */
131 #define BPF_PRIO_MAX	7
132 
133 #define	SIZEOF_BPF_HDR(type)	\
134     (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
135 
136 #ifdef COMPAT_FREEBSD32
137 #include <sys/mount.h>
138 #include <compat/freebsd32/freebsd32.h>
139 #define BPF_ALIGNMENT32 sizeof(int32_t)
140 #define	BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
141 
142 #ifndef BURN_BRIDGES
143 /*
144  * 32-bit version of structure prepended to each packet.  We use this header
145  * instead of the standard one for 32-bit streams.  We mark the a stream as
146  * 32-bit the first time we see a 32-bit compat ioctl request.
147  */
148 struct bpf_hdr32 {
149 	struct timeval32 bh_tstamp;	/* time stamp */
150 	uint32_t	bh_caplen;	/* length of captured portion */
151 	uint32_t	bh_datalen;	/* original length of packet */
152 	uint16_t	bh_hdrlen;	/* length of bpf header (this struct
153 					   plus alignment padding) */
154 };
155 #endif
156 
157 struct bpf_program32 {
158 	u_int bf_len;
159 	uint32_t bf_insns;
160 };
161 
162 struct bpf_dltlist32 {
163 	u_int	bfl_len;
164 	u_int	bfl_list;
165 };
166 
167 #define	BIOCSETF32	_IOW('B', 103, struct bpf_program32)
168 #define	BIOCSRTIMEOUT32	_IOW('B', 109, struct timeval32)
169 #define	BIOCGRTIMEOUT32	_IOR('B', 110, struct timeval32)
170 #define	BIOCGDLTLIST32	_IOWR('B', 121, struct bpf_dltlist32)
171 #define	BIOCSETWF32	_IOW('B', 123, struct bpf_program32)
172 #define	BIOCSETFNR32	_IOW('B', 130, struct bpf_program32)
173 #endif
174 
175 #define BPF_LOCK()		sx_xlock(&bpf_sx)
176 #define BPF_UNLOCK()		sx_xunlock(&bpf_sx)
177 #define BPF_LOCK_ASSERT()	sx_assert(&bpf_sx, SA_XLOCKED)
178 /*
179  * bpf_iflist is a list of BPF interface structures, each corresponding to a
180  * specific DLT. The same network interface might have several BPF interface
181  * structures registered by different layers in the stack (i.e., 802.11
182  * frames, ethernet frames, etc).
183  */
184 CK_LIST_HEAD(bpf_iflist, bpf_if);
185 static struct bpf_iflist bpf_iflist = CK_LIST_HEAD_INITIALIZER();
186 static struct sx	bpf_sx;		/* bpf global lock */
187 static int		bpf_bpfd_cnt;
188 
189 static void	bpfif_ref(struct bpf_if *);
190 static void	bpfif_rele(struct bpf_if *);
191 
192 static void	bpfd_ref(struct bpf_d *);
193 static void	bpfd_rele(struct bpf_d *);
194 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
195 static void	bpf_detachd(struct bpf_d *);
196 static void	bpf_detachd_locked(struct bpf_d *, bool);
197 static void	bpfd_free(epoch_context_t);
198 static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
199 		    struct sockaddr *, int *, struct bpf_d *);
200 static int	bpf_setif(struct bpf_d *, struct ifreq *);
201 static void	bpf_timed_out(void *);
202 static __inline void
203 		bpf_wakeup(struct bpf_d *);
204 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
205 		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
206 		    struct bintime *);
207 static void	reset_d(struct bpf_d *);
208 static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
209 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
210 static int	bpf_setdlt(struct bpf_d *, u_int);
211 static void	filt_bpfdetach(struct knote *);
212 static int	filt_bpfread(struct knote *, long);
213 static int	filt_bpfwrite(struct knote *, long);
214 static void	bpf_drvinit(void *);
215 static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
216 
217 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
218     "bpf sysctl");
219 int bpf_maxinsns = BPF_MAXINSNS;
220 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
221     &bpf_maxinsns, 0, "Maximum bpf program instructions");
222 static int bpf_zerocopy_enable = 0;
223 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
224     &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
225 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
226     bpf_stats_sysctl, "bpf statistics portal");
227 
228 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
229 #define	V_bpf_optimize_writers VNET(bpf_optimize_writers)
230 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN,
231     &VNET_NAME(bpf_optimize_writers), 0,
232     "Do not send packets until BPF program is set");
233 
234 static	d_open_t	bpfopen;
235 static	d_read_t	bpfread;
236 static	d_write_t	bpfwrite;
237 static	d_ioctl_t	bpfioctl;
238 static	d_poll_t	bpfpoll;
239 static	d_kqfilter_t	bpfkqfilter;
240 
241 static struct cdevsw bpf_cdevsw = {
242 	.d_version =	D_VERSION,
243 	.d_open =	bpfopen,
244 	.d_read =	bpfread,
245 	.d_write =	bpfwrite,
246 	.d_ioctl =	bpfioctl,
247 	.d_poll =	bpfpoll,
248 	.d_name =	"bpf",
249 	.d_kqfilter =	bpfkqfilter,
250 };
251 
252 static const struct filterops bpfread_filtops = {
253 	.f_isfd = 1,
254 	.f_detach = filt_bpfdetach,
255 	.f_event = filt_bpfread,
256 };
257 
258 static const struct filterops bpfwrite_filtops = {
259 	.f_isfd = 1,
260 	.f_detach = filt_bpfdetach,
261 	.f_event = filt_bpfwrite,
262 };
263 
264 /*
265  * LOCKING MODEL USED BY BPF
266  *
267  * Locks:
268  * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
269  * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
270  * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
271  * structure fields used by bpf_*tap* code.
272  *
273  * Lock order: global lock, then descriptor lock.
274  *
275  * There are several possible consumers:
276  *
277  * 1. The kernel registers interface pointer with bpfattach().
278  * Each call allocates new bpf_if structure, references ifnet pointer
279  * and links bpf_if into bpf_iflist chain. This is protected with global
280  * lock.
281  *
282  * 2. An userland application uses ioctl() call to bpf_d descriptor.
283  * All such call are serialized with global lock. BPF filters can be
284  * changed, but pointer to old filter will be freed using NET_EPOCH_CALL().
285  * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
286  * filter pointers, even if change will happen during bpf_tap execution.
287  * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL().
288  *
289  * 3. An userland application can write packets into bpf_d descriptor.
290  * There we need to be sure, that ifnet won't disappear during bpfwrite().
291  *
292  * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
293  * bif_dlist is protected with net_epoch_preempt section. So, it should
294  * be safe to make access to bpf_d descriptor inside the section.
295  *
296  * 5. The kernel invokes bpfdetach() on interface destroying. All lists
297  * are modified with global lock held and actual free() is done using
298  * NET_EPOCH_CALL().
299  */
300 
301 static void
bpfif_free(epoch_context_t ctx)302 bpfif_free(epoch_context_t ctx)
303 {
304 	struct bpf_if *bp;
305 
306 	bp = __containerof(ctx, struct bpf_if, epoch_ctx);
307 	if_rele(bp->bif_ifp);
308 	free(bp, M_BPF);
309 }
310 
311 static void
bpfif_ref(struct bpf_if * bp)312 bpfif_ref(struct bpf_if *bp)
313 {
314 
315 	refcount_acquire(&bp->bif_refcnt);
316 }
317 
318 static void
bpfif_rele(struct bpf_if * bp)319 bpfif_rele(struct bpf_if *bp)
320 {
321 
322 	if (!refcount_release(&bp->bif_refcnt))
323 		return;
324 	NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx);
325 }
326 
327 static void
bpfd_ref(struct bpf_d * d)328 bpfd_ref(struct bpf_d *d)
329 {
330 
331 	refcount_acquire(&d->bd_refcnt);
332 }
333 
334 static void
bpfd_rele(struct bpf_d * d)335 bpfd_rele(struct bpf_d *d)
336 {
337 
338 	if (!refcount_release(&d->bd_refcnt))
339 		return;
340 	NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx);
341 }
342 
343 static struct bpf_program_buffer*
bpf_program_buffer_alloc(size_t size,int flags)344 bpf_program_buffer_alloc(size_t size, int flags)
345 {
346 
347 	return (malloc(sizeof(struct bpf_program_buffer) + size,
348 	    M_BPF, flags));
349 }
350 
351 static void
bpf_program_buffer_free(epoch_context_t ctx)352 bpf_program_buffer_free(epoch_context_t ctx)
353 {
354 	struct bpf_program_buffer *ptr;
355 
356 	ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
357 #ifdef BPF_JITTER
358 	if (ptr->func != NULL)
359 		bpf_destroy_jit_filter(ptr->func);
360 #endif
361 	free(ptr, M_BPF);
362 }
363 
364 /*
365  * Wrapper functions for various buffering methods.  If the set of buffer
366  * modes expands, we will probably want to introduce a switch data structure
367  * similar to protosw, et.
368  */
369 static void
bpf_append_bytes(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)370 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
371     u_int len)
372 {
373 
374 	BPFD_LOCK_ASSERT(d);
375 
376 	switch (d->bd_bufmode) {
377 	case BPF_BUFMODE_BUFFER:
378 		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
379 
380 	case BPF_BUFMODE_ZBUF:
381 		counter_u64_add(d->bd_zcopy, 1);
382 		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
383 
384 	default:
385 		panic("bpf_buf_append_bytes");
386 	}
387 }
388 
389 static void
bpf_append_mbuf(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)390 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
391     u_int len)
392 {
393 
394 	BPFD_LOCK_ASSERT(d);
395 
396 	switch (d->bd_bufmode) {
397 	case BPF_BUFMODE_BUFFER:
398 		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
399 
400 	case BPF_BUFMODE_ZBUF:
401 		counter_u64_add(d->bd_zcopy, 1);
402 		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
403 
404 	default:
405 		panic("bpf_buf_append_mbuf");
406 	}
407 }
408 
409 /*
410  * This function gets called when the free buffer is re-assigned.
411  */
412 static void
bpf_buf_reclaimed(struct bpf_d * d)413 bpf_buf_reclaimed(struct bpf_d *d)
414 {
415 
416 	BPFD_LOCK_ASSERT(d);
417 
418 	switch (d->bd_bufmode) {
419 	case BPF_BUFMODE_BUFFER:
420 		return;
421 
422 	case BPF_BUFMODE_ZBUF:
423 		bpf_zerocopy_buf_reclaimed(d);
424 		return;
425 
426 	default:
427 		panic("bpf_buf_reclaimed");
428 	}
429 }
430 
431 /*
432  * If the buffer mechanism has a way to decide that a held buffer can be made
433  * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
434  * returned if the buffer can be discarded, (0) is returned if it cannot.
435  */
436 static int
bpf_canfreebuf(struct bpf_d * d)437 bpf_canfreebuf(struct bpf_d *d)
438 {
439 
440 	BPFD_LOCK_ASSERT(d);
441 
442 	switch (d->bd_bufmode) {
443 	case BPF_BUFMODE_ZBUF:
444 		return (bpf_zerocopy_canfreebuf(d));
445 	}
446 	return (0);
447 }
448 
449 /*
450  * Allow the buffer model to indicate that the current store buffer is
451  * immutable, regardless of the appearance of space.  Return (1) if the
452  * buffer is writable, and (0) if not.
453  */
454 static int
bpf_canwritebuf(struct bpf_d * d)455 bpf_canwritebuf(struct bpf_d *d)
456 {
457 	BPFD_LOCK_ASSERT(d);
458 
459 	switch (d->bd_bufmode) {
460 	case BPF_BUFMODE_ZBUF:
461 		return (bpf_zerocopy_canwritebuf(d));
462 	}
463 	return (1);
464 }
465 
466 /*
467  * Notify buffer model that an attempt to write to the store buffer has
468  * resulted in a dropped packet, in which case the buffer may be considered
469  * full.
470  */
471 static void
bpf_buffull(struct bpf_d * d)472 bpf_buffull(struct bpf_d *d)
473 {
474 
475 	BPFD_LOCK_ASSERT(d);
476 
477 	switch (d->bd_bufmode) {
478 	case BPF_BUFMODE_ZBUF:
479 		bpf_zerocopy_buffull(d);
480 		break;
481 	}
482 }
483 
484 /*
485  * Notify the buffer model that a buffer has moved into the hold position.
486  */
487 void
bpf_bufheld(struct bpf_d * d)488 bpf_bufheld(struct bpf_d *d)
489 {
490 
491 	BPFD_LOCK_ASSERT(d);
492 
493 	switch (d->bd_bufmode) {
494 	case BPF_BUFMODE_ZBUF:
495 		bpf_zerocopy_bufheld(d);
496 		break;
497 	}
498 }
499 
500 static void
bpf_free(struct bpf_d * d)501 bpf_free(struct bpf_d *d)
502 {
503 
504 	switch (d->bd_bufmode) {
505 	case BPF_BUFMODE_BUFFER:
506 		return (bpf_buffer_free(d));
507 
508 	case BPF_BUFMODE_ZBUF:
509 		return (bpf_zerocopy_free(d));
510 
511 	default:
512 		panic("bpf_buf_free");
513 	}
514 }
515 
516 static int
bpf_uiomove(struct bpf_d * d,caddr_t buf,u_int len,struct uio * uio)517 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
518 {
519 
520 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
521 		return (EOPNOTSUPP);
522 	return (bpf_buffer_uiomove(d, buf, len, uio));
523 }
524 
525 static int
bpf_ioctl_sblen(struct bpf_d * d,u_int * i)526 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
527 {
528 
529 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
530 		return (EOPNOTSUPP);
531 	return (bpf_buffer_ioctl_sblen(d, i));
532 }
533 
534 static int
bpf_ioctl_getzmax(struct thread * td,struct bpf_d * d,size_t * i)535 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
536 {
537 
538 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
539 		return (EOPNOTSUPP);
540 	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
541 }
542 
543 static int
bpf_ioctl_rotzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)544 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
545 {
546 
547 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
548 		return (EOPNOTSUPP);
549 	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
550 }
551 
552 static int
bpf_ioctl_setzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)553 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
554 {
555 
556 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
557 		return (EOPNOTSUPP);
558 	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
559 }
560 
561 /*
562  * General BPF functions.
563  */
564 static int
bpf_movein(struct uio * uio,int linktype,struct ifnet * ifp,struct mbuf ** mp,struct sockaddr * sockp,int * hdrlen,struct bpf_d * d)565 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
566     struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
567 {
568 	const struct ieee80211_bpf_params *p;
569 	struct ether_header *eh;
570 	struct mbuf *m;
571 	int error;
572 	int len;
573 	int hlen;
574 	int slen;
575 
576 	/*
577 	 * Build a sockaddr based on the data link layer type.
578 	 * We do this at this level because the ethernet header
579 	 * is copied directly into the data field of the sockaddr.
580 	 * In the case of SLIP, there is no header and the packet
581 	 * is forwarded as is.
582 	 * Also, we are careful to leave room at the front of the mbuf
583 	 * for the link level header.
584 	 */
585 	switch (linktype) {
586 	case DLT_SLIP:
587 		sockp->sa_family = AF_INET;
588 		hlen = 0;
589 		break;
590 
591 	case DLT_EN10MB:
592 		sockp->sa_family = AF_UNSPEC;
593 		/* XXX Would MAXLINKHDR be better? */
594 		hlen = ETHER_HDR_LEN;
595 		break;
596 
597 	case DLT_FDDI:
598 		sockp->sa_family = AF_IMPLINK;
599 		hlen = 0;
600 		break;
601 
602 	case DLT_RAW:
603 		sockp->sa_family = AF_UNSPEC;
604 		hlen = 0;
605 		break;
606 
607 	case DLT_NULL:
608 		/*
609 		 * null interface types require a 4 byte pseudo header which
610 		 * corresponds to the address family of the packet.
611 		 */
612 		sockp->sa_family = AF_UNSPEC;
613 		hlen = 4;
614 		break;
615 
616 	case DLT_ATM_RFC1483:
617 		/*
618 		 * en atm driver requires 4-byte atm pseudo header.
619 		 * though it isn't standard, vpi:vci needs to be
620 		 * specified anyway.
621 		 */
622 		sockp->sa_family = AF_UNSPEC;
623 		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
624 		break;
625 
626 	case DLT_PPP:
627 		sockp->sa_family = AF_UNSPEC;
628 		hlen = 4;	/* This should match PPP_HDRLEN */
629 		break;
630 
631 	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
632 		sockp->sa_family = AF_IEEE80211;
633 		hlen = 0;
634 		break;
635 
636 	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
637 		sockp->sa_family = AF_IEEE80211;
638 		sockp->sa_len = 12;	/* XXX != 0 */
639 		hlen = sizeof(struct ieee80211_bpf_params);
640 		break;
641 
642 	default:
643 		return (EIO);
644 	}
645 
646 	len = uio->uio_resid;
647 	if (len < hlen || len - hlen > ifp->if_mtu)
648 		return (EMSGSIZE);
649 
650 	/* Allocate a mbuf, up to MJUM16BYTES bytes, for our write. */
651 	m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR);
652 	if (m == NULL)
653 		return (EIO);
654 	m->m_pkthdr.len = m->m_len = len;
655 	*mp = m;
656 
657 	error = uiomove(mtod(m, u_char *), len, uio);
658 	if (error)
659 		goto bad;
660 
661 	slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
662 	if (slen == 0) {
663 		error = EPERM;
664 		goto bad;
665 	}
666 
667 	/* Check for multicast destination */
668 	switch (linktype) {
669 	case DLT_EN10MB:
670 		eh = mtod(m, struct ether_header *);
671 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
672 			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
673 			    ETHER_ADDR_LEN) == 0)
674 				m->m_flags |= M_BCAST;
675 			else
676 				m->m_flags |= M_MCAST;
677 		}
678 		if (d->bd_hdrcmplt == 0) {
679 			memcpy(eh->ether_shost, IF_LLADDR(ifp),
680 			    sizeof(eh->ether_shost));
681 		}
682 		break;
683 	}
684 
685 	/*
686 	 * Make room for link header, and copy it to sockaddr
687 	 */
688 	if (hlen != 0) {
689 		if (sockp->sa_family == AF_IEEE80211) {
690 			/*
691 			 * Collect true length from the parameter header
692 			 * NB: sockp is known to be zero'd so if we do a
693 			 *     short copy unspecified parameters will be
694 			 *     zero.
695 			 * NB: packet may not be aligned after stripping
696 			 *     bpf params
697 			 * XXX check ibp_vers
698 			 */
699 			p = mtod(m, const struct ieee80211_bpf_params *);
700 			hlen = p->ibp_len;
701 			if (hlen > sizeof(sockp->sa_data)) {
702 				error = EINVAL;
703 				goto bad;
704 			}
705 		}
706 		bcopy(mtod(m, const void *), sockp->sa_data, hlen);
707 	}
708 	*hdrlen = hlen;
709 
710 	return (0);
711 bad:
712 	m_freem(m);
713 	return (error);
714 }
715 
716 /*
717  * Attach descriptor to the bpf interface, i.e. make d listen on bp,
718  * then reset its buffers and counters with reset_d().
719  */
720 static void
bpf_attachd(struct bpf_d * d,struct bpf_if * bp)721 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
722 {
723 	int op_w;
724 
725 	BPF_LOCK_ASSERT();
726 
727 	/*
728 	 * Save sysctl value to protect from sysctl change
729 	 * between reads
730 	 */
731 	op_w = V_bpf_optimize_writers || d->bd_writer;
732 
733 	if (d->bd_bif != NULL)
734 		bpf_detachd_locked(d, false);
735 	/*
736 	 * Point d at bp, and add d to the interface's list.
737 	 * Since there are many applications using BPF for
738 	 * sending raw packets only (dhcpd, cdpd are good examples)
739 	 * we can delay adding d to the list of active listeners until
740 	 * some filter is configured.
741 	 */
742 
743 	BPFD_LOCK(d);
744 	/*
745 	 * Hold reference to bpif while descriptor uses this interface.
746 	 */
747 	bpfif_ref(bp);
748 	d->bd_bif = bp;
749 	if (op_w != 0) {
750 		/* Add to writers-only list */
751 		CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
752 		/*
753 		 * We decrement bd_writer on every filter set operation.
754 		 * First BIOCSETF is done by pcap_open_live() to set up
755 		 * snap length. After that appliation usually sets its own
756 		 * filter.
757 		 */
758 		d->bd_writer = 2;
759 	} else
760 		CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
761 
762 	reset_d(d);
763 
764 	/* Trigger EVFILT_WRITE events. */
765 	bpf_wakeup(d);
766 
767 	BPFD_UNLOCK(d);
768 	bpf_bpfd_cnt++;
769 
770 	CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
771 	    __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
772 
773 	if (op_w == 0)
774 		EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
775 }
776 
777 /*
778  * Check if we need to upgrade our descriptor @d from write-only mode.
779  */
780 static int
bpf_check_upgrade(u_long cmd,struct bpf_d * d,struct bpf_insn * fcode,int flen)781 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
782     int flen)
783 {
784 	int is_snap, need_upgrade;
785 
786 	/*
787 	 * Check if we've already upgraded or new filter is empty.
788 	 */
789 	if (d->bd_writer == 0 || fcode == NULL)
790 		return (0);
791 
792 	need_upgrade = 0;
793 
794 	/*
795 	 * Check if cmd looks like snaplen setting from
796 	 * pcap_bpf.c:pcap_open_live().
797 	 * Note we're not checking .k value here:
798 	 * while pcap_open_live() definitely sets to non-zero value,
799 	 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
800 	 * do not consider upgrading immediately
801 	 */
802 	if (cmd == BIOCSETF && flen == 1 &&
803 	    fcode[0].code == (BPF_RET | BPF_K))
804 		is_snap = 1;
805 	else
806 		is_snap = 0;
807 
808 	if (is_snap == 0) {
809 		/*
810 		 * We're setting first filter and it doesn't look like
811 		 * setting snaplen.  We're probably using bpf directly.
812 		 * Upgrade immediately.
813 		 */
814 		need_upgrade = 1;
815 	} else {
816 		/*
817 		 * Do not require upgrade by first BIOCSETF
818 		 * (used to set snaplen) by pcap_open_live().
819 		 */
820 
821 		if (--d->bd_writer == 0) {
822 			/*
823 			 * First snaplen filter has already
824 			 * been set. This is probably catch-all
825 			 * filter
826 			 */
827 			need_upgrade = 1;
828 		}
829 	}
830 
831 	CTR5(KTR_NET,
832 	    "%s: filter function set by pid %d, "
833 	    "bd_writer counter %d, snap %d upgrade %d",
834 	    __func__, d->bd_pid, d->bd_writer,
835 	    is_snap, need_upgrade);
836 
837 	return (need_upgrade);
838 }
839 
840 /*
841  * Detach a file from its interface.
842  */
843 static void
bpf_detachd(struct bpf_d * d)844 bpf_detachd(struct bpf_d *d)
845 {
846 	BPF_LOCK();
847 	bpf_detachd_locked(d, false);
848 	BPF_UNLOCK();
849 }
850 
851 static void
bpf_detachd_locked(struct bpf_d * d,bool detached_ifp)852 bpf_detachd_locked(struct bpf_d *d, bool detached_ifp)
853 {
854 	struct bpf_if *bp;
855 	struct ifnet *ifp;
856 	int error;
857 
858 	BPF_LOCK_ASSERT();
859 	CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
860 
861 	/* Check if descriptor is attached */
862 	if ((bp = d->bd_bif) == NULL)
863 		return;
864 
865 	BPFD_LOCK(d);
866 	/* Remove d from the interface's descriptor list. */
867 	CK_LIST_REMOVE(d, bd_next);
868 	/* Save bd_writer value */
869 	error = d->bd_writer;
870 	ifp = bp->bif_ifp;
871 	d->bd_bif = NULL;
872 	if (detached_ifp) {
873 		/*
874 		 * Notify descriptor as it's detached, so that any
875 		 * sleepers wake up and get ENXIO.
876 		 */
877 		bpf_wakeup(d);
878 	}
879 	BPFD_UNLOCK(d);
880 	bpf_bpfd_cnt--;
881 
882 	/* Call event handler iff d is attached */
883 	if (error == 0)
884 		EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
885 
886 	/*
887 	 * Check if this descriptor had requested promiscuous mode.
888 	 * If so and ifnet is not detached, turn it off.
889 	 */
890 	if (d->bd_promisc && !detached_ifp) {
891 		d->bd_promisc = 0;
892 		CURVNET_SET(ifp->if_vnet);
893 		error = ifpromisc(ifp, 0);
894 		CURVNET_RESTORE();
895 		if (error != 0 && error != ENXIO) {
896 			/*
897 			 * ENXIO can happen if a pccard is unplugged
898 			 * Something is really wrong if we were able to put
899 			 * the driver into promiscuous mode, but can't
900 			 * take it out.
901 			 */
902 			if_printf(bp->bif_ifp,
903 				"bpf_detach: ifpromisc failed (%d)\n", error);
904 		}
905 	}
906 	bpfif_rele(bp);
907 }
908 
909 /*
910  * Close the descriptor by detaching it from its interface,
911  * deallocating its buffers, and marking it free.
912  */
913 static void
bpf_dtor(void * data)914 bpf_dtor(void *data)
915 {
916 	struct bpf_d *d = data;
917 
918 	BPFD_LOCK(d);
919 	if (d->bd_state == BPF_WAITING)
920 		callout_stop(&d->bd_callout);
921 	d->bd_state = BPF_IDLE;
922 	BPFD_UNLOCK(d);
923 	funsetown(&d->bd_sigio);
924 	bpf_detachd(d);
925 #ifdef MAC
926 	mac_bpfdesc_destroy(d);
927 #endif /* MAC */
928 	seldrain(&d->bd_sel);
929 	knlist_destroy(&d->bd_sel.si_note);
930 	callout_drain(&d->bd_callout);
931 	bpfd_rele(d);
932 }
933 
934 /*
935  * Open ethernet device.  Returns ENXIO for illegal minor device number,
936  * EBUSY if file is open by another process.
937  */
938 /* ARGSUSED */
939 static	int
bpfopen(struct cdev * dev,int flags,int fmt,struct thread * td)940 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
941 {
942 	struct bpf_d *d;
943 	int error;
944 
945 	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
946 	error = devfs_set_cdevpriv(d, bpf_dtor);
947 	if (error != 0) {
948 		free(d, M_BPF);
949 		return (error);
950 	}
951 
952 	/* Setup counters */
953 	d->bd_rcount = counter_u64_alloc(M_WAITOK);
954 	d->bd_dcount = counter_u64_alloc(M_WAITOK);
955 	d->bd_fcount = counter_u64_alloc(M_WAITOK);
956 	d->bd_wcount = counter_u64_alloc(M_WAITOK);
957 	d->bd_wfcount = counter_u64_alloc(M_WAITOK);
958 	d->bd_wdcount = counter_u64_alloc(M_WAITOK);
959 	d->bd_zcopy = counter_u64_alloc(M_WAITOK);
960 
961 	/*
962 	 * For historical reasons, perform a one-time initialization call to
963 	 * the buffer routines, even though we're not yet committed to a
964 	 * particular buffer method.
965 	 */
966 	bpf_buffer_init(d);
967 	if ((flags & FREAD) == 0)
968 		d->bd_writer = 2;
969 	d->bd_hbuf_in_use = 0;
970 	d->bd_bufmode = BPF_BUFMODE_BUFFER;
971 	d->bd_sig = SIGIO;
972 	d->bd_direction = BPF_D_INOUT;
973 	refcount_init(&d->bd_refcnt, 1);
974 	BPF_PID_REFRESH(d, td);
975 #ifdef MAC
976 	mac_bpfdesc_init(d);
977 	mac_bpfdesc_create(td->td_ucred, d);
978 #endif
979 	mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
980 	callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
981 	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
982 
983 	/* Disable VLAN pcp tagging. */
984 	d->bd_pcp = 0;
985 
986 	return (0);
987 }
988 
989 /*
990  *  bpfread - read next chunk of packets from buffers
991  */
992 static	int
bpfread(struct cdev * dev,struct uio * uio,int ioflag)993 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
994 {
995 	struct bpf_d *d;
996 	int error;
997 	int non_block;
998 	int timed_out;
999 
1000 	error = devfs_get_cdevpriv((void **)&d);
1001 	if (error != 0)
1002 		return (error);
1003 
1004 	/*
1005 	 * Restrict application to use a buffer the same size as
1006 	 * as kernel buffers.
1007 	 */
1008 	if (uio->uio_resid != d->bd_bufsize)
1009 		return (EINVAL);
1010 
1011 	non_block = ((ioflag & O_NONBLOCK) != 0);
1012 
1013 	BPFD_LOCK(d);
1014 	BPF_PID_REFRESH_CUR(d);
1015 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1016 		BPFD_UNLOCK(d);
1017 		return (EOPNOTSUPP);
1018 	}
1019 	if (d->bd_state == BPF_WAITING)
1020 		callout_stop(&d->bd_callout);
1021 	timed_out = (d->bd_state == BPF_TIMED_OUT);
1022 	d->bd_state = BPF_IDLE;
1023 	while (d->bd_hbuf_in_use) {
1024 		error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1025 		    PRINET | PCATCH, "bd_hbuf", 0);
1026 		if (error != 0) {
1027 			BPFD_UNLOCK(d);
1028 			return (error);
1029 		}
1030 	}
1031 	/*
1032 	 * If the hold buffer is empty, then do a timed sleep, which
1033 	 * ends when the timeout expires or when enough packets
1034 	 * have arrived to fill the store buffer.
1035 	 */
1036 	while (d->bd_hbuf == NULL) {
1037 		if (d->bd_slen != 0) {
1038 			/*
1039 			 * A packet(s) either arrived since the previous
1040 			 * read or arrived while we were asleep.
1041 			 */
1042 			if (d->bd_immediate || non_block || timed_out) {
1043 				/*
1044 				 * Rotate the buffers and return what's here
1045 				 * if we are in immediate mode, non-blocking
1046 				 * flag is set, or this descriptor timed out.
1047 				 */
1048 				ROTATE_BUFFERS(d);
1049 				break;
1050 			}
1051 		}
1052 
1053 		/*
1054 		 * No data is available, check to see if the bpf device
1055 		 * is still pointed at a real interface.  If not, return
1056 		 * ENXIO so that the userland process knows to rebind
1057 		 * it before using it again.
1058 		 */
1059 		if (d->bd_bif == NULL) {
1060 			BPFD_UNLOCK(d);
1061 			return (ENXIO);
1062 		}
1063 
1064 		if (non_block) {
1065 			BPFD_UNLOCK(d);
1066 			return (EWOULDBLOCK);
1067 		}
1068 		error = msleep(d, &d->bd_lock, PRINET | PCATCH,
1069 		     "bpf", d->bd_rtout);
1070 		if (error == EINTR || error == ERESTART) {
1071 			BPFD_UNLOCK(d);
1072 			return (error);
1073 		}
1074 		if (error == EWOULDBLOCK) {
1075 			/*
1076 			 * On a timeout, return what's in the buffer,
1077 			 * which may be nothing.  If there is something
1078 			 * in the store buffer, we can rotate the buffers.
1079 			 */
1080 			if (d->bd_hbuf)
1081 				/*
1082 				 * We filled up the buffer in between
1083 				 * getting the timeout and arriving
1084 				 * here, so we don't need to rotate.
1085 				 */
1086 				break;
1087 
1088 			if (d->bd_slen == 0) {
1089 				BPFD_UNLOCK(d);
1090 				return (0);
1091 			}
1092 			ROTATE_BUFFERS(d);
1093 			break;
1094 		}
1095 	}
1096 	/*
1097 	 * At this point, we know we have something in the hold slot.
1098 	 */
1099 	d->bd_hbuf_in_use = 1;
1100 	BPFD_UNLOCK(d);
1101 
1102 	/*
1103 	 * Move data from hold buffer into user space.
1104 	 * We know the entire buffer is transferred since
1105 	 * we checked above that the read buffer is bpf_bufsize bytes.
1106   	 *
1107 	 * We do not have to worry about simultaneous reads because
1108 	 * we waited for sole access to the hold buffer above.
1109 	 */
1110 	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1111 
1112 	BPFD_LOCK(d);
1113 	if (d->bd_hbuf_in_use) {
1114 		KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1115 		d->bd_fbuf = d->bd_hbuf;
1116 		d->bd_hbuf = NULL;
1117 		d->bd_hlen = 0;
1118 		bpf_buf_reclaimed(d);
1119 		d->bd_hbuf_in_use = 0;
1120 		wakeup(&d->bd_hbuf_in_use);
1121 	}
1122 	BPFD_UNLOCK(d);
1123 
1124 	return (error);
1125 }
1126 
1127 /*
1128  * If there are processes sleeping on this descriptor, wake them up.
1129  */
1130 static __inline void
bpf_wakeup(struct bpf_d * d)1131 bpf_wakeup(struct bpf_d *d)
1132 {
1133 
1134 	BPFD_LOCK_ASSERT(d);
1135 	if (d->bd_state == BPF_WAITING) {
1136 		callout_stop(&d->bd_callout);
1137 		d->bd_state = BPF_IDLE;
1138 	}
1139 	wakeup(d);
1140 	if (d->bd_async && d->bd_sig && d->bd_sigio)
1141 		pgsigio(&d->bd_sigio, d->bd_sig, 0);
1142 
1143 	selwakeuppri(&d->bd_sel, PRINET);
1144 	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1145 }
1146 
1147 static void
bpf_timed_out(void * arg)1148 bpf_timed_out(void *arg)
1149 {
1150 	struct bpf_d *d = (struct bpf_d *)arg;
1151 
1152 	BPFD_LOCK_ASSERT(d);
1153 
1154 	if (callout_pending(&d->bd_callout) ||
1155 	    !callout_active(&d->bd_callout))
1156 		return;
1157 	if (d->bd_state == BPF_WAITING) {
1158 		d->bd_state = BPF_TIMED_OUT;
1159 		if (d->bd_slen != 0)
1160 			bpf_wakeup(d);
1161 	}
1162 }
1163 
1164 static int
bpf_ready(struct bpf_d * d)1165 bpf_ready(struct bpf_d *d)
1166 {
1167 
1168 	BPFD_LOCK_ASSERT(d);
1169 
1170 	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1171 		return (1);
1172 	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1173 	    d->bd_slen != 0)
1174 		return (1);
1175 	return (0);
1176 }
1177 
1178 static int
bpfwrite(struct cdev * dev,struct uio * uio,int ioflag)1179 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1180 {
1181 	struct route ro;
1182 	struct sockaddr dst;
1183 	struct epoch_tracker et;
1184 	struct bpf_if *bp;
1185 	struct bpf_d *d;
1186 	struct ifnet *ifp;
1187 	struct mbuf *m, *mc;
1188 	int error, hlen;
1189 
1190 	error = devfs_get_cdevpriv((void **)&d);
1191 	if (error != 0)
1192 		return (error);
1193 
1194 	NET_EPOCH_ENTER(et);
1195 	BPFD_LOCK(d);
1196 	BPF_PID_REFRESH_CUR(d);
1197 	counter_u64_add(d->bd_wcount, 1);
1198 	if ((bp = d->bd_bif) == NULL) {
1199 		error = ENXIO;
1200 		goto out_locked;
1201 	}
1202 
1203 	ifp = bp->bif_ifp;
1204 	if ((ifp->if_flags & IFF_UP) == 0) {
1205 		error = ENETDOWN;
1206 		goto out_locked;
1207 	}
1208 
1209 	if (uio->uio_resid == 0)
1210 		goto out_locked;
1211 
1212 	bzero(&dst, sizeof(dst));
1213 	m = NULL;
1214 	hlen = 0;
1215 
1216 	/*
1217 	 * Take extra reference, unlock d and exit from epoch section,
1218 	 * since bpf_movein() can sleep.
1219 	 */
1220 	bpfd_ref(d);
1221 	NET_EPOCH_EXIT(et);
1222 	BPFD_UNLOCK(d);
1223 
1224 	error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1225 	    &m, &dst, &hlen, d);
1226 
1227 	if (error != 0) {
1228 		counter_u64_add(d->bd_wdcount, 1);
1229 		bpfd_rele(d);
1230 		return (error);
1231 	}
1232 
1233 	BPFD_LOCK(d);
1234 	/*
1235 	 * Check that descriptor is still attached to the interface.
1236 	 * This can happen on bpfdetach(). To avoid access to detached
1237 	 * ifnet, free mbuf and return ENXIO.
1238 	 */
1239 	if (d->bd_bif == NULL) {
1240 		counter_u64_add(d->bd_wdcount, 1);
1241 		BPFD_UNLOCK(d);
1242 		bpfd_rele(d);
1243 		m_freem(m);
1244 		return (ENXIO);
1245 	}
1246 	counter_u64_add(d->bd_wfcount, 1);
1247 	if (d->bd_hdrcmplt)
1248 		dst.sa_family = pseudo_AF_HDRCMPLT;
1249 
1250 	if (d->bd_feedback) {
1251 		mc = m_dup(m, M_NOWAIT);
1252 		if (mc != NULL)
1253 			mc->m_pkthdr.rcvif = ifp;
1254 		/* Set M_PROMISC for outgoing packets to be discarded. */
1255 		if (d->bd_direction == BPF_D_INOUT)
1256 			m->m_flags |= M_PROMISC;
1257 	} else
1258 		mc = NULL;
1259 
1260 	m->m_pkthdr.len -= hlen;
1261 	m->m_len -= hlen;
1262 	m->m_data += hlen;	/* XXX */
1263 
1264 	CURVNET_SET(ifp->if_vnet);
1265 #ifdef MAC
1266 	mac_bpfdesc_create_mbuf(d, m);
1267 	if (mc != NULL)
1268 		mac_bpfdesc_create_mbuf(d, mc);
1269 #endif
1270 
1271 	bzero(&ro, sizeof(ro));
1272 	if (hlen != 0) {
1273 		ro.ro_prepend = (u_char *)&dst.sa_data;
1274 		ro.ro_plen = hlen;
1275 		ro.ro_flags = RT_HAS_HEADER;
1276 	}
1277 
1278 	if (d->bd_pcp != 0)
1279 		vlan_set_pcp(m, d->bd_pcp);
1280 
1281 	/* Avoid possible recursion on BPFD_LOCK(). */
1282 	NET_EPOCH_ENTER(et);
1283 	BPFD_UNLOCK(d);
1284 	error = (*ifp->if_output)(ifp, m, &dst, &ro);
1285 	if (error)
1286 		counter_u64_add(d->bd_wdcount, 1);
1287 
1288 	if (mc != NULL) {
1289 		if (error == 0)
1290 			(*ifp->if_input)(ifp, mc);
1291 		else
1292 			m_freem(mc);
1293 	}
1294 	NET_EPOCH_EXIT(et);
1295 	CURVNET_RESTORE();
1296 	bpfd_rele(d);
1297 	return (error);
1298 
1299 out_locked:
1300 	counter_u64_add(d->bd_wdcount, 1);
1301 	NET_EPOCH_EXIT(et);
1302 	BPFD_UNLOCK(d);
1303 	return (error);
1304 }
1305 
1306 /*
1307  * Reset a descriptor by flushing its packet buffer and clearing the receive
1308  * and drop counts.  This is doable for kernel-only buffers, but with
1309  * zero-copy buffers, we can't write to (or rotate) buffers that are
1310  * currently owned by userspace.  It would be nice if we could encapsulate
1311  * this logic in the buffer code rather than here.
1312  */
1313 static void
reset_d(struct bpf_d * d)1314 reset_d(struct bpf_d *d)
1315 {
1316 
1317 	BPFD_LOCK_ASSERT(d);
1318 
1319 	while (d->bd_hbuf_in_use)
1320 		mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1321 		    "bd_hbuf", 0);
1322 	if ((d->bd_hbuf != NULL) &&
1323 	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1324 		/* Free the hold buffer. */
1325 		d->bd_fbuf = d->bd_hbuf;
1326 		d->bd_hbuf = NULL;
1327 		d->bd_hlen = 0;
1328 		bpf_buf_reclaimed(d);
1329 	}
1330 	if (bpf_canwritebuf(d))
1331 		d->bd_slen = 0;
1332 	counter_u64_zero(d->bd_rcount);
1333 	counter_u64_zero(d->bd_dcount);
1334 	counter_u64_zero(d->bd_fcount);
1335 	counter_u64_zero(d->bd_wcount);
1336 	counter_u64_zero(d->bd_wfcount);
1337 	counter_u64_zero(d->bd_wdcount);
1338 	counter_u64_zero(d->bd_zcopy);
1339 }
1340 
1341 /*
1342  *  FIONREAD		Check for read packet available.
1343  *  BIOCGBLEN		Get buffer len [for read()].
1344  *  BIOCSETF		Set read filter.
1345  *  BIOCSETFNR		Set read filter without resetting descriptor.
1346  *  BIOCSETWF		Set write filter.
1347  *  BIOCFLUSH		Flush read packet buffer.
1348  *  BIOCPROMISC		Put interface into promiscuous mode.
1349  *  BIOCGDLT		Get link layer type.
1350  *  BIOCGETIF		Get interface name.
1351  *  BIOCSETIF		Set interface.
1352  *  BIOCSRTIMEOUT	Set read timeout.
1353  *  BIOCGRTIMEOUT	Get read timeout.
1354  *  BIOCGSTATS		Get packet stats.
1355  *  BIOCIMMEDIATE	Set immediate mode.
1356  *  BIOCVERSION		Get filter language version.
1357  *  BIOCGHDRCMPLT	Get "header already complete" flag
1358  *  BIOCSHDRCMPLT	Set "header already complete" flag
1359  *  BIOCGDIRECTION	Get packet direction flag
1360  *  BIOCSDIRECTION	Set packet direction flag
1361  *  BIOCGTSTAMP		Get time stamp format and resolution.
1362  *  BIOCSTSTAMP		Set time stamp format and resolution.
1363  *  BIOCLOCK		Set "locked" flag
1364  *  BIOCFEEDBACK	Set packet feedback mode.
1365  *  BIOCSETZBUF		Set current zero-copy buffer locations.
1366  *  BIOCGETZMAX		Get maximum zero-copy buffer size.
1367  *  BIOCROTZBUF		Force rotation of zero-copy buffer
1368  *  BIOCSETBUFMODE	Set buffer mode.
1369  *  BIOCGETBUFMODE	Get current buffer mode.
1370  *  BIOCSETVLANPCP	Set VLAN PCP tag.
1371  */
1372 /* ARGSUSED */
1373 static	int
bpfioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flags,struct thread * td)1374 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1375     struct thread *td)
1376 {
1377 	struct bpf_d *d;
1378 	int error;
1379 
1380 	error = devfs_get_cdevpriv((void **)&d);
1381 	if (error != 0)
1382 		return (error);
1383 
1384 	/*
1385 	 * Refresh PID associated with this descriptor.
1386 	 */
1387 	BPFD_LOCK(d);
1388 	BPF_PID_REFRESH(d, td);
1389 	if (d->bd_state == BPF_WAITING)
1390 		callout_stop(&d->bd_callout);
1391 	d->bd_state = BPF_IDLE;
1392 	BPFD_UNLOCK(d);
1393 
1394 	if (d->bd_locked == 1) {
1395 		switch (cmd) {
1396 		case BIOCGBLEN:
1397 		case BIOCFLUSH:
1398 		case BIOCGDLT:
1399 		case BIOCGDLTLIST:
1400 #ifdef COMPAT_FREEBSD32
1401 		case BIOCGDLTLIST32:
1402 #endif
1403 		case BIOCGETIF:
1404 		case BIOCGRTIMEOUT:
1405 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1406 		case BIOCGRTIMEOUT32:
1407 #endif
1408 		case BIOCGSTATS:
1409 		case BIOCVERSION:
1410 		case BIOCGRSIG:
1411 		case BIOCGHDRCMPLT:
1412 		case BIOCSTSTAMP:
1413 		case BIOCFEEDBACK:
1414 		case FIONREAD:
1415 		case BIOCLOCK:
1416 		case BIOCSRTIMEOUT:
1417 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1418 		case BIOCSRTIMEOUT32:
1419 #endif
1420 		case BIOCIMMEDIATE:
1421 		case TIOCGPGRP:
1422 		case BIOCROTZBUF:
1423 			break;
1424 		default:
1425 			return (EPERM);
1426 		}
1427 	}
1428 #ifdef COMPAT_FREEBSD32
1429 	/*
1430 	 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1431 	 * that it will get 32-bit packet headers.
1432 	 */
1433 	switch (cmd) {
1434 	case BIOCSETF32:
1435 	case BIOCSETFNR32:
1436 	case BIOCSETWF32:
1437 	case BIOCGDLTLIST32:
1438 	case BIOCGRTIMEOUT32:
1439 	case BIOCSRTIMEOUT32:
1440 		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1441 			BPFD_LOCK(d);
1442 			d->bd_compat32 = 1;
1443 			BPFD_UNLOCK(d);
1444 		}
1445 	}
1446 #endif
1447 
1448 	CURVNET_SET(TD_TO_VNET(td));
1449 	switch (cmd) {
1450 	default:
1451 		error = EINVAL;
1452 		break;
1453 
1454 	/*
1455 	 * Check for read packet available.
1456 	 */
1457 	case FIONREAD:
1458 		{
1459 			int n;
1460 
1461 			BPFD_LOCK(d);
1462 			n = d->bd_slen;
1463 			while (d->bd_hbuf_in_use)
1464 				mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1465 				    PRINET, "bd_hbuf", 0);
1466 			if (d->bd_hbuf)
1467 				n += d->bd_hlen;
1468 			BPFD_UNLOCK(d);
1469 
1470 			*(int *)addr = n;
1471 			break;
1472 		}
1473 
1474 	/*
1475 	 * Get buffer len [for read()].
1476 	 */
1477 	case BIOCGBLEN:
1478 		BPFD_LOCK(d);
1479 		*(u_int *)addr = d->bd_bufsize;
1480 		BPFD_UNLOCK(d);
1481 		break;
1482 
1483 	/*
1484 	 * Set buffer length.
1485 	 */
1486 	case BIOCSBLEN:
1487 		error = bpf_ioctl_sblen(d, (u_int *)addr);
1488 		break;
1489 
1490 	/*
1491 	 * Set link layer read filter.
1492 	 */
1493 	case BIOCSETF:
1494 	case BIOCSETFNR:
1495 	case BIOCSETWF:
1496 #ifdef COMPAT_FREEBSD32
1497 	case BIOCSETF32:
1498 	case BIOCSETFNR32:
1499 	case BIOCSETWF32:
1500 #endif
1501 		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1502 		break;
1503 
1504 	/*
1505 	 * Flush read packet buffer.
1506 	 */
1507 	case BIOCFLUSH:
1508 		BPFD_LOCK(d);
1509 		reset_d(d);
1510 		BPFD_UNLOCK(d);
1511 		break;
1512 
1513 	/*
1514 	 * Put interface into promiscuous mode.
1515 	 */
1516 	case BIOCPROMISC:
1517 		BPF_LOCK();
1518 		if (d->bd_bif == NULL) {
1519 			/*
1520 			 * No interface attached yet.
1521 			 */
1522 			error = EINVAL;
1523 		} else if (d->bd_promisc == 0) {
1524 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1525 			if (error == 0)
1526 				d->bd_promisc = 1;
1527 		}
1528 		BPF_UNLOCK();
1529 		break;
1530 
1531 	/*
1532 	 * Get current data link type.
1533 	 */
1534 	case BIOCGDLT:
1535 		BPF_LOCK();
1536 		if (d->bd_bif == NULL)
1537 			error = EINVAL;
1538 		else
1539 			*(u_int *)addr = d->bd_bif->bif_dlt;
1540 		BPF_UNLOCK();
1541 		break;
1542 
1543 	/*
1544 	 * Get a list of supported data link types.
1545 	 */
1546 #ifdef COMPAT_FREEBSD32
1547 	case BIOCGDLTLIST32:
1548 		{
1549 			struct bpf_dltlist32 *list32;
1550 			struct bpf_dltlist dltlist;
1551 
1552 			list32 = (struct bpf_dltlist32 *)addr;
1553 			dltlist.bfl_len = list32->bfl_len;
1554 			dltlist.bfl_list = PTRIN(list32->bfl_list);
1555 			BPF_LOCK();
1556 			if (d->bd_bif == NULL)
1557 				error = EINVAL;
1558 			else {
1559 				error = bpf_getdltlist(d, &dltlist);
1560 				if (error == 0)
1561 					list32->bfl_len = dltlist.bfl_len;
1562 			}
1563 			BPF_UNLOCK();
1564 			break;
1565 		}
1566 #endif
1567 
1568 	case BIOCGDLTLIST:
1569 		BPF_LOCK();
1570 		if (d->bd_bif == NULL)
1571 			error = EINVAL;
1572 		else
1573 			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1574 		BPF_UNLOCK();
1575 		break;
1576 
1577 	/*
1578 	 * Set data link type.
1579 	 */
1580 	case BIOCSDLT:
1581 		BPF_LOCK();
1582 		if (d->bd_bif == NULL)
1583 			error = EINVAL;
1584 		else
1585 			error = bpf_setdlt(d, *(u_int *)addr);
1586 		BPF_UNLOCK();
1587 		break;
1588 
1589 	/*
1590 	 * Get interface name.
1591 	 */
1592 	case BIOCGETIF:
1593 		BPF_LOCK();
1594 		if (d->bd_bif == NULL)
1595 			error = EINVAL;
1596 		else {
1597 			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1598 			struct ifreq *const ifr = (struct ifreq *)addr;
1599 
1600 			strlcpy(ifr->ifr_name, ifp->if_xname,
1601 			    sizeof(ifr->ifr_name));
1602 		}
1603 		BPF_UNLOCK();
1604 		break;
1605 
1606 	/*
1607 	 * Set interface.
1608 	 */
1609 	case BIOCSETIF:
1610 		{
1611 			int alloc_buf, size;
1612 
1613 			/*
1614 			 * Behavior here depends on the buffering model.  If
1615 			 * we're using kernel memory buffers, then we can
1616 			 * allocate them here.  If we're using zero-copy,
1617 			 * then the user process must have registered buffers
1618 			 * by the time we get here.
1619 			 */
1620 			alloc_buf = 0;
1621 			BPFD_LOCK(d);
1622 			if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1623 			    d->bd_sbuf == NULL)
1624 				alloc_buf = 1;
1625 			BPFD_UNLOCK(d);
1626 			if (alloc_buf) {
1627 				size = d->bd_bufsize;
1628 				error = bpf_buffer_ioctl_sblen(d, &size);
1629 				if (error != 0)
1630 					break;
1631 			}
1632 			BPF_LOCK();
1633 			error = bpf_setif(d, (struct ifreq *)addr);
1634 			BPF_UNLOCK();
1635 			break;
1636 		}
1637 
1638 	/*
1639 	 * Set read timeout.
1640 	 */
1641 	case BIOCSRTIMEOUT:
1642 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1643 	case BIOCSRTIMEOUT32:
1644 #endif
1645 		{
1646 			struct timeval *tv = (struct timeval *)addr;
1647 #if defined(COMPAT_FREEBSD32)
1648 			struct timeval32 *tv32;
1649 			struct timeval tv64;
1650 
1651 			if (cmd == BIOCSRTIMEOUT32) {
1652 				tv32 = (struct timeval32 *)addr;
1653 				tv = &tv64;
1654 				tv->tv_sec = tv32->tv_sec;
1655 				tv->tv_usec = tv32->tv_usec;
1656 			} else
1657 #endif
1658 				tv = (struct timeval *)addr;
1659 
1660 			/*
1661 			 * Subtract 1 tick from tvtohz() since this isn't
1662 			 * a one-shot timer.
1663 			 */
1664 			if ((error = itimerfix(tv)) == 0)
1665 				d->bd_rtout = tvtohz(tv) - 1;
1666 			break;
1667 		}
1668 
1669 	/*
1670 	 * Get read timeout.
1671 	 */
1672 	case BIOCGRTIMEOUT:
1673 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1674 	case BIOCGRTIMEOUT32:
1675 #endif
1676 		{
1677 			struct timeval *tv;
1678 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1679 			struct timeval32 *tv32;
1680 			struct timeval tv64;
1681 
1682 			if (cmd == BIOCGRTIMEOUT32)
1683 				tv = &tv64;
1684 			else
1685 #endif
1686 				tv = (struct timeval *)addr;
1687 
1688 			tv->tv_sec = d->bd_rtout / hz;
1689 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1690 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1691 			if (cmd == BIOCGRTIMEOUT32) {
1692 				tv32 = (struct timeval32 *)addr;
1693 				tv32->tv_sec = tv->tv_sec;
1694 				tv32->tv_usec = tv->tv_usec;
1695 			}
1696 #endif
1697 
1698 			break;
1699 		}
1700 
1701 	/*
1702 	 * Get packet stats.
1703 	 */
1704 	case BIOCGSTATS:
1705 		{
1706 			struct bpf_stat *bs = (struct bpf_stat *)addr;
1707 
1708 			/* XXXCSJP overflow */
1709 			bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1710 			bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1711 			break;
1712 		}
1713 
1714 	/*
1715 	 * Set immediate mode.
1716 	 */
1717 	case BIOCIMMEDIATE:
1718 		BPFD_LOCK(d);
1719 		d->bd_immediate = *(u_int *)addr;
1720 		BPFD_UNLOCK(d);
1721 		break;
1722 
1723 	case BIOCVERSION:
1724 		{
1725 			struct bpf_version *bv = (struct bpf_version *)addr;
1726 
1727 			bv->bv_major = BPF_MAJOR_VERSION;
1728 			bv->bv_minor = BPF_MINOR_VERSION;
1729 			break;
1730 		}
1731 
1732 	/*
1733 	 * Get "header already complete" flag
1734 	 */
1735 	case BIOCGHDRCMPLT:
1736 		BPFD_LOCK(d);
1737 		*(u_int *)addr = d->bd_hdrcmplt;
1738 		BPFD_UNLOCK(d);
1739 		break;
1740 
1741 	/*
1742 	 * Set "header already complete" flag
1743 	 */
1744 	case BIOCSHDRCMPLT:
1745 		BPFD_LOCK(d);
1746 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1747 		BPFD_UNLOCK(d);
1748 		break;
1749 
1750 	/*
1751 	 * Get packet direction flag
1752 	 */
1753 	case BIOCGDIRECTION:
1754 		BPFD_LOCK(d);
1755 		*(u_int *)addr = d->bd_direction;
1756 		BPFD_UNLOCK(d);
1757 		break;
1758 
1759 	/*
1760 	 * Set packet direction flag
1761 	 */
1762 	case BIOCSDIRECTION:
1763 		{
1764 			u_int	direction;
1765 
1766 			direction = *(u_int *)addr;
1767 			switch (direction) {
1768 			case BPF_D_IN:
1769 			case BPF_D_INOUT:
1770 			case BPF_D_OUT:
1771 				BPFD_LOCK(d);
1772 				d->bd_direction = direction;
1773 				BPFD_UNLOCK(d);
1774 				break;
1775 			default:
1776 				error = EINVAL;
1777 			}
1778 		}
1779 		break;
1780 
1781 	/*
1782 	 * Get packet timestamp format and resolution.
1783 	 */
1784 	case BIOCGTSTAMP:
1785 		BPFD_LOCK(d);
1786 		*(u_int *)addr = d->bd_tstamp;
1787 		BPFD_UNLOCK(d);
1788 		break;
1789 
1790 	/*
1791 	 * Set packet timestamp format and resolution.
1792 	 */
1793 	case BIOCSTSTAMP:
1794 		{
1795 			u_int	func;
1796 
1797 			func = *(u_int *)addr;
1798 			if (BPF_T_VALID(func))
1799 				d->bd_tstamp = func;
1800 			else
1801 				error = EINVAL;
1802 		}
1803 		break;
1804 
1805 	case BIOCFEEDBACK:
1806 		BPFD_LOCK(d);
1807 		d->bd_feedback = *(u_int *)addr;
1808 		BPFD_UNLOCK(d);
1809 		break;
1810 
1811 	case BIOCLOCK:
1812 		BPFD_LOCK(d);
1813 		d->bd_locked = 1;
1814 		BPFD_UNLOCK(d);
1815 		break;
1816 
1817 	case FIONBIO:		/* Non-blocking I/O */
1818 		break;
1819 
1820 	case FIOASYNC:		/* Send signal on receive packets */
1821 		BPFD_LOCK(d);
1822 		d->bd_async = *(int *)addr;
1823 		BPFD_UNLOCK(d);
1824 		break;
1825 
1826 	case FIOSETOWN:
1827 		/*
1828 		 * XXX: Add some sort of locking here?
1829 		 * fsetown() can sleep.
1830 		 */
1831 		error = fsetown(*(int *)addr, &d->bd_sigio);
1832 		break;
1833 
1834 	case FIOGETOWN:
1835 		BPFD_LOCK(d);
1836 		*(int *)addr = fgetown(&d->bd_sigio);
1837 		BPFD_UNLOCK(d);
1838 		break;
1839 
1840 	/* This is deprecated, FIOSETOWN should be used instead. */
1841 	case TIOCSPGRP:
1842 		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1843 		break;
1844 
1845 	/* This is deprecated, FIOGETOWN should be used instead. */
1846 	case TIOCGPGRP:
1847 		*(int *)addr = -fgetown(&d->bd_sigio);
1848 		break;
1849 
1850 	case BIOCSRSIG:		/* Set receive signal */
1851 		{
1852 			u_int sig;
1853 
1854 			sig = *(u_int *)addr;
1855 
1856 			if (sig >= NSIG)
1857 				error = EINVAL;
1858 			else {
1859 				BPFD_LOCK(d);
1860 				d->bd_sig = sig;
1861 				BPFD_UNLOCK(d);
1862 			}
1863 			break;
1864 		}
1865 	case BIOCGRSIG:
1866 		BPFD_LOCK(d);
1867 		*(u_int *)addr = d->bd_sig;
1868 		BPFD_UNLOCK(d);
1869 		break;
1870 
1871 	case BIOCGETBUFMODE:
1872 		BPFD_LOCK(d);
1873 		*(u_int *)addr = d->bd_bufmode;
1874 		BPFD_UNLOCK(d);
1875 		break;
1876 
1877 	case BIOCSETBUFMODE:
1878 		/*
1879 		 * Allow the buffering mode to be changed as long as we
1880 		 * haven't yet committed to a particular mode.  Our
1881 		 * definition of commitment, for now, is whether or not a
1882 		 * buffer has been allocated or an interface attached, since
1883 		 * that's the point where things get tricky.
1884 		 */
1885 		switch (*(u_int *)addr) {
1886 		case BPF_BUFMODE_BUFFER:
1887 			break;
1888 
1889 		case BPF_BUFMODE_ZBUF:
1890 			if (bpf_zerocopy_enable)
1891 				break;
1892 			/* FALLSTHROUGH */
1893 
1894 		default:
1895 			CURVNET_RESTORE();
1896 			return (EINVAL);
1897 		}
1898 
1899 		BPFD_LOCK(d);
1900 		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1901 		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1902 			BPFD_UNLOCK(d);
1903 			CURVNET_RESTORE();
1904 			return (EBUSY);
1905 		}
1906 		d->bd_bufmode = *(u_int *)addr;
1907 		BPFD_UNLOCK(d);
1908 		break;
1909 
1910 	case BIOCGETZMAX:
1911 		error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1912 		break;
1913 
1914 	case BIOCSETZBUF:
1915 		error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1916 		break;
1917 
1918 	case BIOCROTZBUF:
1919 		error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1920 		break;
1921 
1922 	case BIOCSETVLANPCP:
1923 		{
1924 			u_int pcp;
1925 
1926 			pcp = *(u_int *)addr;
1927 			if (pcp > BPF_PRIO_MAX || pcp < 0) {
1928 				error = EINVAL;
1929 				break;
1930 			}
1931 			d->bd_pcp = pcp;
1932 			break;
1933 		}
1934 	}
1935 	CURVNET_RESTORE();
1936 	return (error);
1937 }
1938 
1939 /*
1940  * Set d's packet filter program to fp. If this file already has a filter,
1941  * free it and replace it. Returns EINVAL for bogus requests.
1942  *
1943  * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1944  * calls.
1945  */
1946 static int
bpf_setf(struct bpf_d * d,struct bpf_program * fp,u_long cmd)1947 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1948 {
1949 #ifdef COMPAT_FREEBSD32
1950 	struct bpf_program fp_swab;
1951 	struct bpf_program32 *fp32;
1952 #endif
1953 	struct bpf_program_buffer *fcode;
1954 	struct bpf_insn *filter;
1955 #ifdef BPF_JITTER
1956 	bpf_jit_filter *jfunc;
1957 #endif
1958 	size_t size;
1959 	u_int flen;
1960 	bool track_event;
1961 
1962 #ifdef COMPAT_FREEBSD32
1963 	switch (cmd) {
1964 	case BIOCSETF32:
1965 	case BIOCSETWF32:
1966 	case BIOCSETFNR32:
1967 		fp32 = (struct bpf_program32 *)fp;
1968 		fp_swab.bf_len = fp32->bf_len;
1969 		fp_swab.bf_insns =
1970 		    (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1971 		fp = &fp_swab;
1972 		switch (cmd) {
1973 		case BIOCSETF32:
1974 			cmd = BIOCSETF;
1975 			break;
1976 		case BIOCSETWF32:
1977 			cmd = BIOCSETWF;
1978 			break;
1979 		}
1980 		break;
1981 	}
1982 #endif
1983 
1984 	filter = NULL;
1985 #ifdef BPF_JITTER
1986 	jfunc = NULL;
1987 #endif
1988 	/*
1989 	 * Check new filter validness before acquiring any locks.
1990 	 * Allocate memory for new filter, if needed.
1991 	 */
1992 	flen = fp->bf_len;
1993 	if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1994 		return (EINVAL);
1995 	size = flen * sizeof(*fp->bf_insns);
1996 	if (size > 0) {
1997 		/* We're setting up new filter. Copy and check actual data. */
1998 		fcode = bpf_program_buffer_alloc(size, M_WAITOK);
1999 		filter = (struct bpf_insn *)fcode->buffer;
2000 		if (copyin(fp->bf_insns, filter, size) != 0 ||
2001 		    !bpf_validate(filter, flen)) {
2002 			free(fcode, M_BPF);
2003 			return (EINVAL);
2004 		}
2005 #ifdef BPF_JITTER
2006 		if (cmd != BIOCSETWF) {
2007 			/*
2008 			 * Filter is copied inside fcode and is
2009 			 * perfectly valid.
2010 			 */
2011 			jfunc = bpf_jitter(filter, flen);
2012 		}
2013 #endif
2014 	}
2015 
2016 	track_event = false;
2017 	fcode = NULL;
2018 
2019 	BPF_LOCK();
2020 	BPFD_LOCK(d);
2021 	/* Set up new filter. */
2022 	if (cmd == BIOCSETWF) {
2023 		if (d->bd_wfilter != NULL) {
2024 			fcode = __containerof((void *)d->bd_wfilter,
2025 			    struct bpf_program_buffer, buffer);
2026 #ifdef BPF_JITTER
2027 			fcode->func = NULL;
2028 #endif
2029 		}
2030 		d->bd_wfilter = filter;
2031 	} else {
2032 		if (d->bd_rfilter != NULL) {
2033 			fcode = __containerof((void *)d->bd_rfilter,
2034 			    struct bpf_program_buffer, buffer);
2035 #ifdef BPF_JITTER
2036 			fcode->func = d->bd_bfilter;
2037 #endif
2038 		}
2039 		d->bd_rfilter = filter;
2040 #ifdef BPF_JITTER
2041 		d->bd_bfilter = jfunc;
2042 #endif
2043 		if (cmd == BIOCSETF)
2044 			reset_d(d);
2045 
2046 		if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2047 			/*
2048 			 * Filter can be set several times without
2049 			 * specifying interface. In this case just mark d
2050 			 * as reader.
2051 			 */
2052 			d->bd_writer = 0;
2053 			if (d->bd_bif != NULL) {
2054 				/*
2055 				 * Remove descriptor from writers-only list
2056 				 * and add it to active readers list.
2057 				 */
2058 				CK_LIST_REMOVE(d, bd_next);
2059 				CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2060 				    d, bd_next);
2061 				CTR2(KTR_NET,
2062 				    "%s: upgrade required by pid %d",
2063 				    __func__, d->bd_pid);
2064 				track_event = true;
2065 			}
2066 		}
2067 	}
2068 	BPFD_UNLOCK(d);
2069 
2070 	if (fcode != NULL)
2071 		NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx);
2072 
2073 	if (track_event)
2074 		EVENTHANDLER_INVOKE(bpf_track,
2075 		    d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2076 
2077 	BPF_UNLOCK();
2078 	return (0);
2079 }
2080 
2081 /*
2082  * Detach a file from its current interface (if attached at all) and attach
2083  * to the interface indicated by the name stored in ifr.
2084  * Return an errno or 0.
2085  */
2086 static int
bpf_setif(struct bpf_d * d,struct ifreq * ifr)2087 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2088 {
2089 	struct bpf_if *bp;
2090 	struct ifnet *theywant;
2091 
2092 	BPF_LOCK_ASSERT();
2093 
2094 	theywant = ifunit(ifr->ifr_name);
2095 	if (theywant == NULL)
2096 		return (ENXIO);
2097 	/*
2098 	 * Look through attached interfaces for the named one.
2099 	 */
2100 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2101 		if (bp->bif_ifp == theywant &&
2102 		    bp->bif_bpf == &theywant->if_bpf)
2103 			break;
2104 	}
2105 	if (bp == NULL)
2106 		return (ENXIO);
2107 
2108 	MPASS(bp == theywant->if_bpf);
2109 	/*
2110 	 * At this point, we expect the buffer is already allocated.  If not,
2111 	 * return an error.
2112 	 */
2113 	switch (d->bd_bufmode) {
2114 	case BPF_BUFMODE_BUFFER:
2115 	case BPF_BUFMODE_ZBUF:
2116 		if (d->bd_sbuf == NULL)
2117 			return (EINVAL);
2118 		break;
2119 
2120 	default:
2121 		panic("bpf_setif: bufmode %d", d->bd_bufmode);
2122 	}
2123 	if (bp != d->bd_bif)
2124 		bpf_attachd(d, bp);
2125 	else {
2126 		BPFD_LOCK(d);
2127 		reset_d(d);
2128 		BPFD_UNLOCK(d);
2129 	}
2130 	return (0);
2131 }
2132 
2133 /*
2134  * Support for select() and poll() system calls
2135  *
2136  * Return true iff the specific operation will not block indefinitely.
2137  * Otherwise, return false but make a note that a selwakeup() must be done.
2138  */
2139 static int
bpfpoll(struct cdev * dev,int events,struct thread * td)2140 bpfpoll(struct cdev *dev, int events, struct thread *td)
2141 {
2142 	struct bpf_d *d;
2143 	int revents;
2144 
2145 	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2146 		return (events &
2147 		    (POLLHUP | POLLIN | POLLRDNORM | POLLOUT | POLLWRNORM));
2148 
2149 	/*
2150 	 * Refresh PID associated with this descriptor.
2151 	 */
2152 	revents = events & (POLLOUT | POLLWRNORM);
2153 	BPFD_LOCK(d);
2154 	BPF_PID_REFRESH(d, td);
2155 	if (events & (POLLIN | POLLRDNORM)) {
2156 		if (bpf_ready(d))
2157 			revents |= events & (POLLIN | POLLRDNORM);
2158 		else {
2159 			selrecord(td, &d->bd_sel);
2160 			/* Start the read timeout if necessary. */
2161 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2162 				callout_reset(&d->bd_callout, d->bd_rtout,
2163 				    bpf_timed_out, d);
2164 				d->bd_state = BPF_WAITING;
2165 			}
2166 		}
2167 	}
2168 	BPFD_UNLOCK(d);
2169 	return (revents);
2170 }
2171 
2172 /*
2173  * Support for kevent() system call.  Register EVFILT_READ filters and
2174  * reject all others.
2175  */
2176 int
bpfkqfilter(struct cdev * dev,struct knote * kn)2177 bpfkqfilter(struct cdev *dev, struct knote *kn)
2178 {
2179 	struct bpf_d *d;
2180 
2181 	if (devfs_get_cdevpriv((void **)&d) != 0)
2182 		return (1);
2183 
2184 	switch (kn->kn_filter) {
2185 	case EVFILT_READ:
2186 		kn->kn_fop = &bpfread_filtops;
2187 		break;
2188 
2189 	case EVFILT_WRITE:
2190 		kn->kn_fop = &bpfwrite_filtops;
2191 		break;
2192 
2193 	default:
2194 		return (1);
2195 	}
2196 
2197 	/*
2198 	 * Refresh PID associated with this descriptor.
2199 	 */
2200 	BPFD_LOCK(d);
2201 	BPF_PID_REFRESH_CUR(d);
2202 	kn->kn_hook = d;
2203 	knlist_add(&d->bd_sel.si_note, kn, 1);
2204 	BPFD_UNLOCK(d);
2205 
2206 	return (0);
2207 }
2208 
2209 static void
filt_bpfdetach(struct knote * kn)2210 filt_bpfdetach(struct knote *kn)
2211 {
2212 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2213 
2214 	knlist_remove(&d->bd_sel.si_note, kn, 0);
2215 }
2216 
2217 static int
filt_bpfread(struct knote * kn,long hint)2218 filt_bpfread(struct knote *kn, long hint)
2219 {
2220 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2221 	int ready;
2222 
2223 	BPFD_LOCK_ASSERT(d);
2224 	ready = bpf_ready(d);
2225 	if (ready) {
2226 		kn->kn_data = d->bd_slen;
2227 		/*
2228 		 * Ignore the hold buffer if it is being copied to user space.
2229 		 */
2230 		if (!d->bd_hbuf_in_use && d->bd_hbuf)
2231 			kn->kn_data += d->bd_hlen;
2232 	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2233 		callout_reset(&d->bd_callout, d->bd_rtout,
2234 		    bpf_timed_out, d);
2235 		d->bd_state = BPF_WAITING;
2236 	}
2237 
2238 	return (ready);
2239 }
2240 
2241 static int
filt_bpfwrite(struct knote * kn,long hint)2242 filt_bpfwrite(struct knote *kn, long hint)
2243 {
2244 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2245 
2246 	BPFD_LOCK_ASSERT(d);
2247 
2248 	if (d->bd_bif == NULL) {
2249 		kn->kn_data = 0;
2250 		return (0);
2251 	} else {
2252 		kn->kn_data = d->bd_bif->bif_ifp->if_mtu;
2253 		return (1);
2254 	}
2255 }
2256 
2257 #define	BPF_TSTAMP_NONE		0
2258 #define	BPF_TSTAMP_FAST		1
2259 #define	BPF_TSTAMP_NORMAL	2
2260 #define	BPF_TSTAMP_EXTERN	3
2261 
2262 static int
bpf_ts_quality(int tstype)2263 bpf_ts_quality(int tstype)
2264 {
2265 
2266 	if (tstype == BPF_T_NONE)
2267 		return (BPF_TSTAMP_NONE);
2268 	if ((tstype & BPF_T_FAST) != 0)
2269 		return (BPF_TSTAMP_FAST);
2270 
2271 	return (BPF_TSTAMP_NORMAL);
2272 }
2273 
2274 static int
bpf_gettime(struct bintime * bt,int tstype,struct mbuf * m)2275 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2276 {
2277 	struct timespec ts;
2278 	struct m_tag *tag;
2279 	int quality;
2280 
2281 	quality = bpf_ts_quality(tstype);
2282 	if (quality == BPF_TSTAMP_NONE)
2283 		return (quality);
2284 
2285 	if (m != NULL) {
2286 		if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) {
2287 			mbuf_tstmp2timespec(m, &ts);
2288 			timespec2bintime(&ts, bt);
2289 			return (BPF_TSTAMP_EXTERN);
2290 		}
2291 		tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2292 		if (tag != NULL) {
2293 			*bt = *(struct bintime *)(tag + 1);
2294 			return (BPF_TSTAMP_EXTERN);
2295 		}
2296 	}
2297 	if (quality == BPF_TSTAMP_NORMAL)
2298 		binuptime(bt);
2299 	else
2300 		getbinuptime(bt);
2301 
2302 	return (quality);
2303 }
2304 
2305 /*
2306  * Incoming linkage from device drivers.  Process the packet pkt, of length
2307  * pktlen, which is stored in a contiguous buffer.  The packet is parsed
2308  * by each process' filter, and if accepted, stashed into the corresponding
2309  * buffer.
2310  */
2311 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)2312 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2313 {
2314 	struct epoch_tracker et;
2315 	struct bintime bt;
2316 	struct bpf_d *d;
2317 #ifdef BPF_JITTER
2318 	bpf_jit_filter *bf;
2319 #endif
2320 	u_int slen;
2321 	int gottime;
2322 
2323 	gottime = BPF_TSTAMP_NONE;
2324 	NET_EPOCH_ENTER(et);
2325 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2326 		counter_u64_add(d->bd_rcount, 1);
2327 		/*
2328 		 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2329 		 * is no way for the caller to indiciate to us whether this
2330 		 * packet is inbound or outbound. In the bpf_mtap() routines,
2331 		 * we use the interface pointers on the mbuf to figure it out.
2332 		 */
2333 #ifdef BPF_JITTER
2334 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2335 		if (bf != NULL)
2336 			slen = (*(bf->func))(pkt, pktlen, pktlen);
2337 		else
2338 #endif
2339 		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2340 		if (slen != 0) {
2341 			/*
2342 			 * Filter matches. Let's to acquire write lock.
2343 			 */
2344 			BPFD_LOCK(d);
2345 			counter_u64_add(d->bd_fcount, 1);
2346 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2347 				gottime = bpf_gettime(&bt, d->bd_tstamp,
2348 				    NULL);
2349 #ifdef MAC
2350 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2351 #endif
2352 				catchpacket(d, pkt, pktlen, slen,
2353 				    bpf_append_bytes, &bt);
2354 			BPFD_UNLOCK(d);
2355 		}
2356 	}
2357 	NET_EPOCH_EXIT(et);
2358 }
2359 
2360 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)2361 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
2362 {
2363 	if (bpf_peers_present(ifp->if_bpf))
2364 		bpf_tap(ifp->if_bpf, pkt, pktlen);
2365 }
2366 
2367 #define	BPF_CHECK_DIRECTION(d, r, i)				\
2368 	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
2369 	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2370 
2371 /*
2372  * Incoming linkage from device drivers, when packet is in an mbuf chain.
2373  * Locking model is explained in bpf_tap().
2374  */
2375 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)2376 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2377 {
2378 	struct epoch_tracker et;
2379 	struct bintime bt;
2380 	struct bpf_d *d;
2381 #ifdef BPF_JITTER
2382 	bpf_jit_filter *bf;
2383 #endif
2384 	u_int pktlen, slen;
2385 	int gottime;
2386 
2387 	/* Skip outgoing duplicate packets. */
2388 	if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) {
2389 		m->m_flags &= ~M_PROMISC;
2390 		return;
2391 	}
2392 
2393 	pktlen = m_length(m, NULL);
2394 	gottime = BPF_TSTAMP_NONE;
2395 
2396 	NET_EPOCH_ENTER(et);
2397 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2398 		if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp))
2399 			continue;
2400 		counter_u64_add(d->bd_rcount, 1);
2401 #ifdef BPF_JITTER
2402 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2403 		/* XXX We cannot handle multiple mbufs. */
2404 		if (bf != NULL && m->m_next == NULL)
2405 			slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2406 			    pktlen);
2407 		else
2408 #endif
2409 		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2410 		if (slen != 0) {
2411 			BPFD_LOCK(d);
2412 
2413 			counter_u64_add(d->bd_fcount, 1);
2414 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2415 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2416 #ifdef MAC
2417 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2418 #endif
2419 				catchpacket(d, (u_char *)m, pktlen, slen,
2420 				    bpf_append_mbuf, &bt);
2421 			BPFD_UNLOCK(d);
2422 		}
2423 	}
2424 	NET_EPOCH_EXIT(et);
2425 }
2426 
2427 void
bpf_mtap_if(if_t ifp,struct mbuf * m)2428 bpf_mtap_if(if_t ifp, struct mbuf *m)
2429 {
2430 	if (bpf_peers_present(ifp->if_bpf)) {
2431 		M_ASSERTVALID(m);
2432 		bpf_mtap(ifp->if_bpf, m);
2433 	}
2434 }
2435 
2436 /*
2437  * Incoming linkage from device drivers, when packet is in
2438  * an mbuf chain and to be prepended by a contiguous header.
2439  */
2440 void
bpf_mtap2(struct bpf_if * bp,void * data,u_int dlen,struct mbuf * m)2441 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2442 {
2443 	struct epoch_tracker et;
2444 	struct bintime bt;
2445 	struct mbuf mb;
2446 	struct bpf_d *d;
2447 	u_int pktlen, slen;
2448 	int gottime;
2449 
2450 	/* Skip outgoing duplicate packets. */
2451 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2452 		m->m_flags &= ~M_PROMISC;
2453 		return;
2454 	}
2455 
2456 	pktlen = m_length(m, NULL);
2457 	/*
2458 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
2459 	 * Note that we cut corners here; we only setup what's
2460 	 * absolutely needed--this mbuf should never go anywhere else.
2461 	 */
2462 	mb.m_flags = 0;
2463 	mb.m_next = m;
2464 	mb.m_data = data;
2465 	mb.m_len = dlen;
2466 	pktlen += dlen;
2467 
2468 	gottime = BPF_TSTAMP_NONE;
2469 
2470 	NET_EPOCH_ENTER(et);
2471 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2472 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2473 			continue;
2474 		counter_u64_add(d->bd_rcount, 1);
2475 		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2476 		if (slen != 0) {
2477 			BPFD_LOCK(d);
2478 
2479 			counter_u64_add(d->bd_fcount, 1);
2480 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2481 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2482 #ifdef MAC
2483 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2484 #endif
2485 				catchpacket(d, (u_char *)&mb, pktlen, slen,
2486 				    bpf_append_mbuf, &bt);
2487 			BPFD_UNLOCK(d);
2488 		}
2489 	}
2490 	NET_EPOCH_EXIT(et);
2491 }
2492 
2493 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)2494 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
2495 {
2496 	if (bpf_peers_present(ifp->if_bpf)) {
2497 		M_ASSERTVALID(m);
2498 		bpf_mtap2(ifp->if_bpf, data, dlen, m);
2499 	}
2500 }
2501 
2502 #undef	BPF_CHECK_DIRECTION
2503 #undef	BPF_TSTAMP_NONE
2504 #undef	BPF_TSTAMP_FAST
2505 #undef	BPF_TSTAMP_NORMAL
2506 #undef	BPF_TSTAMP_EXTERN
2507 
2508 static int
bpf_hdrlen(struct bpf_d * d)2509 bpf_hdrlen(struct bpf_d *d)
2510 {
2511 	int hdrlen;
2512 
2513 	hdrlen = d->bd_bif->bif_hdrlen;
2514 #ifndef BURN_BRIDGES
2515 	if (d->bd_tstamp == BPF_T_NONE ||
2516 	    BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2517 #ifdef COMPAT_FREEBSD32
2518 		if (d->bd_compat32)
2519 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2520 		else
2521 #endif
2522 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2523 	else
2524 #endif
2525 		hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2526 #ifdef COMPAT_FREEBSD32
2527 	if (d->bd_compat32)
2528 		hdrlen = BPF_WORDALIGN32(hdrlen);
2529 	else
2530 #endif
2531 		hdrlen = BPF_WORDALIGN(hdrlen);
2532 
2533 	return (hdrlen - d->bd_bif->bif_hdrlen);
2534 }
2535 
2536 static void
bpf_bintime2ts(struct bintime * bt,struct bpf_ts * ts,int tstype)2537 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2538 {
2539 	struct bintime bt2, boottimebin;
2540 	struct timeval tsm;
2541 	struct timespec tsn;
2542 
2543 	if ((tstype & BPF_T_MONOTONIC) == 0) {
2544 		bt2 = *bt;
2545 		getboottimebin(&boottimebin);
2546 		bintime_add(&bt2, &boottimebin);
2547 		bt = &bt2;
2548 	}
2549 	switch (BPF_T_FORMAT(tstype)) {
2550 	case BPF_T_MICROTIME:
2551 		bintime2timeval(bt, &tsm);
2552 		ts->bt_sec = tsm.tv_sec;
2553 		ts->bt_frac = tsm.tv_usec;
2554 		break;
2555 	case BPF_T_NANOTIME:
2556 		bintime2timespec(bt, &tsn);
2557 		ts->bt_sec = tsn.tv_sec;
2558 		ts->bt_frac = tsn.tv_nsec;
2559 		break;
2560 	case BPF_T_BINTIME:
2561 		ts->bt_sec = bt->sec;
2562 		ts->bt_frac = bt->frac;
2563 		break;
2564 	}
2565 }
2566 
2567 /*
2568  * Move the packet data from interface memory (pkt) into the
2569  * store buffer.  "cpfn" is the routine called to do the actual data
2570  * transfer.  bcopy is passed in to copy contiguous chunks, while
2571  * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
2572  * pkt is really an mbuf.
2573  */
2574 static void
catchpacket(struct bpf_d * d,u_char * pkt,u_int pktlen,u_int snaplen,void (* cpfn)(struct bpf_d *,caddr_t,u_int,void *,u_int),struct bintime * bt)2575 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2576     void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2577     struct bintime *bt)
2578 {
2579 	static char zeroes[BPF_ALIGNMENT];
2580 	struct bpf_xhdr hdr;
2581 #ifndef BURN_BRIDGES
2582 	struct bpf_hdr hdr_old;
2583 #ifdef COMPAT_FREEBSD32
2584 	struct bpf_hdr32 hdr32_old;
2585 #endif
2586 #endif
2587 	int caplen, curlen, hdrlen, pad, totlen;
2588 	int do_wakeup = 0;
2589 	int do_timestamp;
2590 	int tstype;
2591 
2592 	BPFD_LOCK_ASSERT(d);
2593 	if (d->bd_bif == NULL) {
2594 		/* Descriptor was detached in concurrent thread */
2595 		counter_u64_add(d->bd_dcount, 1);
2596 		return;
2597 	}
2598 
2599 	/*
2600 	 * Detect whether user space has released a buffer back to us, and if
2601 	 * so, move it from being a hold buffer to a free buffer.  This may
2602 	 * not be the best place to do it (for example, we might only want to
2603 	 * run this check if we need the space), but for now it's a reliable
2604 	 * spot to do it.
2605 	 */
2606 	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2607 		d->bd_fbuf = d->bd_hbuf;
2608 		d->bd_hbuf = NULL;
2609 		d->bd_hlen = 0;
2610 		bpf_buf_reclaimed(d);
2611 	}
2612 
2613 	/*
2614 	 * Figure out how many bytes to move.  If the packet is
2615 	 * greater or equal to the snapshot length, transfer that
2616 	 * much.  Otherwise, transfer the whole packet (unless
2617 	 * we hit the buffer size limit).
2618 	 */
2619 	hdrlen = bpf_hdrlen(d);
2620 	totlen = hdrlen + min(snaplen, pktlen);
2621 	if (totlen > d->bd_bufsize)
2622 		totlen = d->bd_bufsize;
2623 
2624 	/*
2625 	 * Round up the end of the previous packet to the next longword.
2626 	 *
2627 	 * Drop the packet if there's no room and no hope of room
2628 	 * If the packet would overflow the storage buffer or the storage
2629 	 * buffer is considered immutable by the buffer model, try to rotate
2630 	 * the buffer and wakeup pending processes.
2631 	 */
2632 #ifdef COMPAT_FREEBSD32
2633 	if (d->bd_compat32)
2634 		curlen = BPF_WORDALIGN32(d->bd_slen);
2635 	else
2636 #endif
2637 		curlen = BPF_WORDALIGN(d->bd_slen);
2638 	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2639 		if (d->bd_fbuf == NULL) {
2640 			/*
2641 			 * There's no room in the store buffer, and no
2642 			 * prospect of room, so drop the packet.  Notify the
2643 			 * buffer model.
2644 			 */
2645 			bpf_buffull(d);
2646 			counter_u64_add(d->bd_dcount, 1);
2647 			return;
2648 		}
2649 		KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2650 		ROTATE_BUFFERS(d);
2651 		do_wakeup = 1;
2652 		curlen = 0;
2653 	} else {
2654 		if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2655 			/*
2656 			 * Immediate mode is set, or the read timeout has
2657 			 * already expired during a select call.  A packet
2658 			 * arrived, so the reader should be woken up.
2659 			 */
2660 			do_wakeup = 1;
2661 		}
2662 		pad = curlen - d->bd_slen;
2663 		KASSERT(pad >= 0 && pad <= sizeof(zeroes),
2664 		    ("%s: invalid pad byte count %d", __func__, pad));
2665 		if (pad > 0) {
2666 			/* Zero pad bytes. */
2667 			bpf_append_bytes(d, d->bd_sbuf, d->bd_slen, zeroes,
2668 			    pad);
2669 		}
2670 	}
2671 
2672 	caplen = totlen - hdrlen;
2673 	tstype = d->bd_tstamp;
2674 	do_timestamp = tstype != BPF_T_NONE;
2675 #ifndef BURN_BRIDGES
2676 	if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2677 		struct bpf_ts ts;
2678 		if (do_timestamp)
2679 			bpf_bintime2ts(bt, &ts, tstype);
2680 #ifdef COMPAT_FREEBSD32
2681 		if (d->bd_compat32) {
2682 			bzero(&hdr32_old, sizeof(hdr32_old));
2683 			if (do_timestamp) {
2684 				hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2685 				hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2686 			}
2687 			hdr32_old.bh_datalen = pktlen;
2688 			hdr32_old.bh_hdrlen = hdrlen;
2689 			hdr32_old.bh_caplen = caplen;
2690 			bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2691 			    sizeof(hdr32_old));
2692 			goto copy;
2693 		}
2694 #endif
2695 		bzero(&hdr_old, sizeof(hdr_old));
2696 		if (do_timestamp) {
2697 			hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2698 			hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2699 		}
2700 		hdr_old.bh_datalen = pktlen;
2701 		hdr_old.bh_hdrlen = hdrlen;
2702 		hdr_old.bh_caplen = caplen;
2703 		bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2704 		    sizeof(hdr_old));
2705 		goto copy;
2706 	}
2707 #endif
2708 
2709 	/*
2710 	 * Append the bpf header.  Note we append the actual header size, but
2711 	 * move forward the length of the header plus padding.
2712 	 */
2713 	bzero(&hdr, sizeof(hdr));
2714 	if (do_timestamp)
2715 		bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2716 	hdr.bh_datalen = pktlen;
2717 	hdr.bh_hdrlen = hdrlen;
2718 	hdr.bh_caplen = caplen;
2719 	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2720 
2721 	/*
2722 	 * Copy the packet data into the store buffer and update its length.
2723 	 */
2724 #ifndef BURN_BRIDGES
2725 copy:
2726 #endif
2727 	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2728 	d->bd_slen = curlen + totlen;
2729 
2730 	if (do_wakeup)
2731 		bpf_wakeup(d);
2732 }
2733 
2734 /*
2735  * Free buffers currently in use by a descriptor.
2736  * Called on close.
2737  */
2738 static void
bpfd_free(epoch_context_t ctx)2739 bpfd_free(epoch_context_t ctx)
2740 {
2741 	struct bpf_d *d;
2742 	struct bpf_program_buffer *p;
2743 
2744 	/*
2745 	 * We don't need to lock out interrupts since this descriptor has
2746 	 * been detached from its interface and it yet hasn't been marked
2747 	 * free.
2748 	 */
2749 	d = __containerof(ctx, struct bpf_d, epoch_ctx);
2750 	bpf_free(d);
2751 	if (d->bd_rfilter != NULL) {
2752 		p = __containerof((void *)d->bd_rfilter,
2753 		    struct bpf_program_buffer, buffer);
2754 #ifdef BPF_JITTER
2755 		p->func = d->bd_bfilter;
2756 #endif
2757 		bpf_program_buffer_free(&p->epoch_ctx);
2758 	}
2759 	if (d->bd_wfilter != NULL) {
2760 		p = __containerof((void *)d->bd_wfilter,
2761 		    struct bpf_program_buffer, buffer);
2762 #ifdef BPF_JITTER
2763 		p->func = NULL;
2764 #endif
2765 		bpf_program_buffer_free(&p->epoch_ctx);
2766 	}
2767 
2768 	mtx_destroy(&d->bd_lock);
2769 	counter_u64_free(d->bd_rcount);
2770 	counter_u64_free(d->bd_dcount);
2771 	counter_u64_free(d->bd_fcount);
2772 	counter_u64_free(d->bd_wcount);
2773 	counter_u64_free(d->bd_wfcount);
2774 	counter_u64_free(d->bd_wdcount);
2775 	counter_u64_free(d->bd_zcopy);
2776 	free(d, M_BPF);
2777 }
2778 
2779 /*
2780  * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
2781  * fixed size of the link header (variable length headers not yet supported).
2782  */
2783 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)2784 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2785 {
2786 
2787 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2788 }
2789 
2790 /*
2791  * Attach an interface to bpf.  ifp is a pointer to the structure
2792  * defining the interface to be attached, dlt is the link layer type,
2793  * and hdrlen is the fixed size of the link header (variable length
2794  * headers are not yet supporrted).
2795  */
2796 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)2797 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2798     struct bpf_if **driverp)
2799 {
2800 	struct bpf_if *bp;
2801 
2802 	KASSERT(*driverp == NULL,
2803 	    ("bpfattach2: driverp already initialized"));
2804 
2805 	bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2806 
2807 	CK_LIST_INIT(&bp->bif_dlist);
2808 	CK_LIST_INIT(&bp->bif_wlist);
2809 	bp->bif_ifp = ifp;
2810 	bp->bif_dlt = dlt;
2811 	bp->bif_hdrlen = hdrlen;
2812 	bp->bif_bpf = driverp;
2813 	refcount_init(&bp->bif_refcnt, 1);
2814 	*driverp = bp;
2815 	/*
2816 	 * Reference ifnet pointer, so it won't freed until
2817 	 * we release it.
2818 	 */
2819 	if_ref(ifp);
2820 	BPF_LOCK();
2821 	CK_LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2822 	BPF_UNLOCK();
2823 
2824 	if (bootverbose && IS_DEFAULT_VNET(curvnet))
2825 		if_printf(ifp, "bpf attached\n");
2826 }
2827 
2828 #ifdef VIMAGE
2829 /*
2830  * When moving interfaces between vnet instances we need a way to
2831  * query the dlt and hdrlen before detach so we can re-attch the if_bpf
2832  * after the vmove.  We unfortunately have no device driver infrastructure
2833  * to query the interface for these values after creation/attach, thus
2834  * add this as a workaround.
2835  */
2836 int
bpf_get_bp_params(struct bpf_if * bp,u_int * bif_dlt,u_int * bif_hdrlen)2837 bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
2838 {
2839 
2840 	if (bp == NULL)
2841 		return (ENXIO);
2842 	if (bif_dlt == NULL && bif_hdrlen == NULL)
2843 		return (0);
2844 
2845 	if (bif_dlt != NULL)
2846 		*bif_dlt = bp->bif_dlt;
2847 	if (bif_hdrlen != NULL)
2848 		*bif_hdrlen = bp->bif_hdrlen;
2849 
2850 	return (0);
2851 }
2852 
2853 /*
2854  * Detach descriptors on interface's vmove event.
2855  */
2856 void
bpf_ifdetach(struct ifnet * ifp)2857 bpf_ifdetach(struct ifnet *ifp)
2858 {
2859 	struct bpf_if *bp;
2860 	struct bpf_d *d;
2861 
2862 	BPF_LOCK();
2863 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2864 		if (bp->bif_ifp != ifp)
2865 			continue;
2866 
2867 		/* Detach common descriptors */
2868 		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2869 			bpf_detachd_locked(d, true);
2870 		}
2871 
2872 		/* Detach writer-only descriptors */
2873 		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2874 			bpf_detachd_locked(d, true);
2875 		}
2876 	}
2877 	BPF_UNLOCK();
2878 }
2879 #endif
2880 
2881 /*
2882  * Detach bpf from an interface. This involves detaching each descriptor
2883  * associated with the interface. Notify each descriptor as it's detached
2884  * so that any sleepers wake up and get ENXIO.
2885  */
2886 void
bpfdetach(struct ifnet * ifp)2887 bpfdetach(struct ifnet *ifp)
2888 {
2889 	struct bpf_if *bp, *bp_temp;
2890 	struct bpf_d *d;
2891 
2892 	BPF_LOCK();
2893 	/* Find all bpf_if struct's which reference ifp and detach them. */
2894 	CK_LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2895 		if (ifp != bp->bif_ifp)
2896 			continue;
2897 
2898 		CK_LIST_REMOVE(bp, bif_next);
2899 		*bp->bif_bpf = __DECONST(struct bpf_if *, &dead_bpf_if);
2900 
2901 		CTR4(KTR_NET,
2902 		    "%s: sheduling free for encap %d (%p) for if %p",
2903 		    __func__, bp->bif_dlt, bp, ifp);
2904 
2905 		/* Detach common descriptors */
2906 		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2907 			bpf_detachd_locked(d, true);
2908 		}
2909 
2910 		/* Detach writer-only descriptors */
2911 		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2912 			bpf_detachd_locked(d, true);
2913 		}
2914 		bpfif_rele(bp);
2915 	}
2916 	BPF_UNLOCK();
2917 }
2918 
2919 bool
bpf_peers_present_if(struct ifnet * ifp)2920 bpf_peers_present_if(struct ifnet *ifp)
2921 {
2922 	return (bpf_peers_present(ifp->if_bpf));
2923 }
2924 
2925 /*
2926  * Get a list of available data link type of the interface.
2927  */
2928 static int
bpf_getdltlist(struct bpf_d * d,struct bpf_dltlist * bfl)2929 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2930 {
2931 	struct ifnet *ifp;
2932 	struct bpf_if *bp;
2933 	u_int *lst;
2934 	int error, n, n1;
2935 
2936 	BPF_LOCK_ASSERT();
2937 
2938 	ifp = d->bd_bif->bif_ifp;
2939 	n1 = 0;
2940 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2941 		if (bp->bif_ifp == ifp)
2942 			n1++;
2943 	}
2944 	if (bfl->bfl_list == NULL) {
2945 		bfl->bfl_len = n1;
2946 		return (0);
2947 	}
2948 	if (n1 > bfl->bfl_len)
2949 		return (ENOMEM);
2950 
2951 	lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2952 	n = 0;
2953 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2954 		if (bp->bif_ifp != ifp)
2955 			continue;
2956 		lst[n++] = bp->bif_dlt;
2957 	}
2958 	error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2959 	free(lst, M_TEMP);
2960 	bfl->bfl_len = n;
2961 	return (error);
2962 }
2963 
2964 /*
2965  * Set the data link type of a BPF instance.
2966  */
2967 static int
bpf_setdlt(struct bpf_d * d,u_int dlt)2968 bpf_setdlt(struct bpf_d *d, u_int dlt)
2969 {
2970 	int error, opromisc;
2971 	struct ifnet *ifp;
2972 	struct bpf_if *bp;
2973 
2974 	BPF_LOCK_ASSERT();
2975 	MPASS(d->bd_bif != NULL);
2976 
2977 	/*
2978 	 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2979 	 * changed while we hold global lock.
2980 	 */
2981 	if (d->bd_bif->bif_dlt == dlt)
2982 		return (0);
2983 
2984 	ifp = d->bd_bif->bif_ifp;
2985 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2986 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2987 			break;
2988 	}
2989 	if (bp == NULL)
2990 		return (EINVAL);
2991 
2992 	opromisc = d->bd_promisc;
2993 	bpf_attachd(d, bp);
2994 	if (opromisc) {
2995 		error = ifpromisc(bp->bif_ifp, 1);
2996 		if (error)
2997 			if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
2998 			    __func__, error);
2999 		else
3000 			d->bd_promisc = 1;
3001 	}
3002 	return (0);
3003 }
3004 
3005 static void
bpf_drvinit(void * unused)3006 bpf_drvinit(void *unused)
3007 {
3008 	struct cdev *dev;
3009 
3010 	sx_init(&bpf_sx, "bpf global lock");
3011 	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
3012 	/* For compatibility */
3013 	make_dev_alias(dev, "bpf0");
3014 }
3015 
3016 /*
3017  * Zero out the various packet counters associated with all of the bpf
3018  * descriptors.  At some point, we will probably want to get a bit more
3019  * granular and allow the user to specify descriptors to be zeroed.
3020  */
3021 static void
bpf_zero_counters(void)3022 bpf_zero_counters(void)
3023 {
3024 	struct bpf_if *bp;
3025 	struct bpf_d *bd;
3026 
3027 	BPF_LOCK();
3028 	/*
3029 	 * We are protected by global lock here, interfaces and
3030 	 * descriptors can not be deleted while we hold it.
3031 	 */
3032 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3033 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3034 			counter_u64_zero(bd->bd_rcount);
3035 			counter_u64_zero(bd->bd_dcount);
3036 			counter_u64_zero(bd->bd_fcount);
3037 			counter_u64_zero(bd->bd_wcount);
3038 			counter_u64_zero(bd->bd_wfcount);
3039 			counter_u64_zero(bd->bd_zcopy);
3040 		}
3041 	}
3042 	BPF_UNLOCK();
3043 }
3044 
3045 /*
3046  * Fill filter statistics
3047  */
3048 static void
bpfstats_fill_xbpf(struct xbpf_d * d,struct bpf_d * bd)3049 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
3050 {
3051 
3052 	BPF_LOCK_ASSERT();
3053 	bzero(d, sizeof(*d));
3054 	d->bd_structsize = sizeof(*d);
3055 	d->bd_immediate = bd->bd_immediate;
3056 	d->bd_promisc = bd->bd_promisc;
3057 	d->bd_hdrcmplt = bd->bd_hdrcmplt;
3058 	d->bd_direction = bd->bd_direction;
3059 	d->bd_feedback = bd->bd_feedback;
3060 	d->bd_async = bd->bd_async;
3061 	d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
3062 	d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
3063 	d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
3064 	d->bd_sig = bd->bd_sig;
3065 	d->bd_slen = bd->bd_slen;
3066 	d->bd_hlen = bd->bd_hlen;
3067 	d->bd_bufsize = bd->bd_bufsize;
3068 	d->bd_pid = bd->bd_pid;
3069 	strlcpy(d->bd_ifname,
3070 	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
3071 	d->bd_locked = bd->bd_locked;
3072 	d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
3073 	d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
3074 	d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
3075 	d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
3076 	d->bd_bufmode = bd->bd_bufmode;
3077 }
3078 
3079 /*
3080  * Handle `netstat -B' stats request
3081  */
3082 static int
bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)3083 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
3084 {
3085 	static const struct xbpf_d zerostats;
3086 	struct xbpf_d *xbdbuf, *xbd, tempstats;
3087 	int index, error;
3088 	struct bpf_if *bp;
3089 	struct bpf_d *bd;
3090 
3091 	/*
3092 	 * XXX This is not technically correct. It is possible for non
3093 	 * privileged users to open bpf devices. It would make sense
3094 	 * if the users who opened the devices were able to retrieve
3095 	 * the statistics for them, too.
3096 	 */
3097 	error = priv_check(req->td, PRIV_NET_BPF);
3098 	if (error)
3099 		return (error);
3100 	/*
3101 	 * Check to see if the user is requesting that the counters be
3102 	 * zeroed out.  Explicitly check that the supplied data is zeroed,
3103 	 * as we aren't allowing the user to set the counters currently.
3104 	 */
3105 	if (req->newptr != NULL) {
3106 		if (req->newlen != sizeof(tempstats))
3107 			return (EINVAL);
3108 		memset(&tempstats, 0, sizeof(tempstats));
3109 		error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
3110 		if (error)
3111 			return (error);
3112 		if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
3113 			return (EINVAL);
3114 		bpf_zero_counters();
3115 		return (0);
3116 	}
3117 	if (req->oldptr == NULL)
3118 		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
3119 	if (bpf_bpfd_cnt == 0)
3120 		return (SYSCTL_OUT(req, 0, 0));
3121 	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
3122 	BPF_LOCK();
3123 	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
3124 		BPF_UNLOCK();
3125 		free(xbdbuf, M_BPF);
3126 		return (ENOMEM);
3127 	}
3128 	index = 0;
3129 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3130 		/* Send writers-only first */
3131 		CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
3132 			xbd = &xbdbuf[index++];
3133 			bpfstats_fill_xbpf(xbd, bd);
3134 		}
3135 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3136 			xbd = &xbdbuf[index++];
3137 			bpfstats_fill_xbpf(xbd, bd);
3138 		}
3139 	}
3140 	BPF_UNLOCK();
3141 	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
3142 	free(xbdbuf, M_BPF);
3143 	return (error);
3144 }
3145 
3146 SYSINIT(bpfdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, bpf_drvinit, NULL);
3147 
3148 #else /* !DEV_BPF && !NETGRAPH_BPF */
3149 
3150 /*
3151  * NOP stubs to allow bpf-using drivers to load and function.
3152  *
3153  * A 'better' implementation would allow the core bpf functionality
3154  * to be loaded at runtime.
3155  */
3156 
3157 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)3158 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3159 {
3160 }
3161 
3162 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)3163 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
3164 {
3165 }
3166 
3167 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)3168 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3169 {
3170 }
3171 
3172 void
bpf_mtap_if(if_t ifp,struct mbuf * m)3173 bpf_mtap_if(if_t ifp, struct mbuf *m)
3174 {
3175 }
3176 
3177 void
bpf_mtap2(struct bpf_if * bp,void * d,u_int l,struct mbuf * m)3178 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3179 {
3180 }
3181 
3182 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)3183 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
3184 {
3185 }
3186 
3187 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)3188 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3189 {
3190 
3191 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3192 }
3193 
3194 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)3195 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3196 {
3197 
3198 	*driverp = __DECONST(struct bpf_if *, &dead_bpf_if);
3199 }
3200 
3201 void
bpfdetach(struct ifnet * ifp)3202 bpfdetach(struct ifnet *ifp)
3203 {
3204 }
3205 
3206 bool
bpf_peers_present_if(struct ifnet * ifp)3207 bpf_peers_present_if(struct ifnet *ifp)
3208 {
3209 	return (false);
3210 }
3211 
3212 u_int
bpf_filter(const struct bpf_insn * pc,u_char * p,u_int wirelen,u_int buflen)3213 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3214 {
3215 	return (-1);	/* "no filter" behaviour */
3216 }
3217 
3218 int
bpf_validate(const struct bpf_insn * f,int len)3219 bpf_validate(const struct bpf_insn *f, int len)
3220 {
3221 	return (0);	/* false */
3222 }
3223 
3224 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3225 
3226 #ifdef DDB
3227 static void
bpf_show_bpf_if(struct bpf_if * bpf_if)3228 bpf_show_bpf_if(struct bpf_if *bpf_if)
3229 {
3230 
3231 	if (bpf_if == NULL)
3232 		return;
3233 	db_printf("%p:\n", bpf_if);
3234 #define	BPF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, bpf_if->e);
3235 #define	BPF_DB_PRINTF_RAW(f, e)	db_printf("   %s = " f "\n", #e, e);
3236 	/* bif_ext.bif_next */
3237 	/* bif_ext.bif_dlist */
3238 	BPF_DB_PRINTF("%#x", bif_dlt);
3239 	BPF_DB_PRINTF("%u", bif_hdrlen);
3240 	/* bif_wlist */
3241 	BPF_DB_PRINTF("%p", bif_ifp);
3242 	BPF_DB_PRINTF("%p", bif_bpf);
3243 	BPF_DB_PRINTF_RAW("%u", refcount_load(&bpf_if->bif_refcnt));
3244 }
3245 
DB_SHOW_COMMAND(bpf_if,db_show_bpf_if)3246 DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
3247 {
3248 
3249 	if (!have_addr) {
3250 		db_printf("usage: show bpf_if <struct bpf_if *>\n");
3251 		return;
3252 	}
3253 
3254 	bpf_show_bpf_if((struct bpf_if *)addr);
3255 }
3256 #endif
3257