1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7 *
8 * This code is derived from the Stanford/CMU enet packet filter,
9 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11 * Berkeley Laboratory.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 #include "opt_bpf.h"
40 #include "opt_ddb.h"
41 #include "opt_netgraph.h"
42
43 #include <sys/param.h>
44 #include <sys/conf.h>
45 #include <sys/eventhandler.h>
46 #include <sys/fcntl.h>
47 #include <sys/jail.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/mutex.h>
53 #include <sys/time.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/signalvar.h>
57 #include <sys/filio.h>
58 #include <sys/sockio.h>
59 #include <sys/ttycom.h>
60 #include <sys/uio.h>
61 #include <sys/sysent.h>
62 #include <sys/systm.h>
63
64 #include <sys/event.h>
65 #include <sys/file.h>
66 #include <sys/poll.h>
67 #include <sys/proc.h>
68
69 #include <sys/socket.h>
70
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_private.h>
78 #include <net/if_vlan_var.h>
79 #include <net/if_dl.h>
80 #include <net/bpf.h>
81 #include <net/bpf_buffer.h>
82 #ifdef BPF_JITTER
83 #include <net/bpf_jitter.h>
84 #endif
85 #include <net/bpf_zerocopy.h>
86 #include <net/bpfdesc.h>
87 #include <net/route.h>
88 #include <net/vnet.h>
89
90 #include <netinet/in.h>
91 #include <netinet/if_ether.h>
92 #include <sys/kernel.h>
93 #include <sys/sysctl.h>
94
95 #include <net80211/ieee80211_freebsd.h>
96
97 #include <security/mac/mac_framework.h>
98
99 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
100
101 static const struct bpf_if_ext dead_bpf_if = {
102 .bif_dlist = CK_LIST_HEAD_INITIALIZER()
103 };
104
105 struct bpf_if {
106 #define bif_next bif_ext.bif_next
107 #define bif_dlist bif_ext.bif_dlist
108 struct bpf_if_ext bif_ext; /* public members */
109 u_int bif_dlt; /* link layer type */
110 u_int bif_hdrlen; /* length of link header */
111 struct bpfd_list bif_wlist; /* writer-only list */
112 struct ifnet *bif_ifp; /* corresponding interface */
113 struct bpf_if **bif_bpf; /* Pointer to pointer to us */
114 volatile u_int bif_refcnt;
115 struct epoch_context epoch_ctx;
116 };
117
118 CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
119
120 struct bpf_program_buffer {
121 struct epoch_context epoch_ctx;
122 #ifdef BPF_JITTER
123 bpf_jit_filter *func;
124 #endif
125 void *buffer[0];
126 };
127
128 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
129
130 #define PRINET 26 /* interruptible */
131 #define BPF_PRIO_MAX 7
132
133 #define SIZEOF_BPF_HDR(type) \
134 (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
135
136 #ifdef COMPAT_FREEBSD32
137 #include <sys/mount.h>
138 #include <compat/freebsd32/freebsd32.h>
139 #define BPF_ALIGNMENT32 sizeof(int32_t)
140 #define BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
141
142 #ifndef BURN_BRIDGES
143 /*
144 * 32-bit version of structure prepended to each packet. We use this header
145 * instead of the standard one for 32-bit streams. We mark the a stream as
146 * 32-bit the first time we see a 32-bit compat ioctl request.
147 */
148 struct bpf_hdr32 {
149 struct timeval32 bh_tstamp; /* time stamp */
150 uint32_t bh_caplen; /* length of captured portion */
151 uint32_t bh_datalen; /* original length of packet */
152 uint16_t bh_hdrlen; /* length of bpf header (this struct
153 plus alignment padding) */
154 };
155 #endif
156
157 struct bpf_program32 {
158 u_int bf_len;
159 uint32_t bf_insns;
160 };
161
162 struct bpf_dltlist32 {
163 u_int bfl_len;
164 u_int bfl_list;
165 };
166
167 #define BIOCSETF32 _IOW('B', 103, struct bpf_program32)
168 #define BIOCSRTIMEOUT32 _IOW('B', 109, struct timeval32)
169 #define BIOCGRTIMEOUT32 _IOR('B', 110, struct timeval32)
170 #define BIOCGDLTLIST32 _IOWR('B', 121, struct bpf_dltlist32)
171 #define BIOCSETWF32 _IOW('B', 123, struct bpf_program32)
172 #define BIOCSETFNR32 _IOW('B', 130, struct bpf_program32)
173 #endif
174
175 #define BPF_LOCK() sx_xlock(&bpf_sx)
176 #define BPF_UNLOCK() sx_xunlock(&bpf_sx)
177 #define BPF_LOCK_ASSERT() sx_assert(&bpf_sx, SA_XLOCKED)
178 /*
179 * bpf_iflist is a list of BPF interface structures, each corresponding to a
180 * specific DLT. The same network interface might have several BPF interface
181 * structures registered by different layers in the stack (i.e., 802.11
182 * frames, ethernet frames, etc).
183 */
184 CK_LIST_HEAD(bpf_iflist, bpf_if);
185 static struct bpf_iflist bpf_iflist = CK_LIST_HEAD_INITIALIZER();
186 static struct sx bpf_sx; /* bpf global lock */
187 static int bpf_bpfd_cnt;
188
189 static void bpfif_ref(struct bpf_if *);
190 static void bpfif_rele(struct bpf_if *);
191
192 static void bpfd_ref(struct bpf_d *);
193 static void bpfd_rele(struct bpf_d *);
194 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
195 static void bpf_detachd(struct bpf_d *);
196 static void bpf_detachd_locked(struct bpf_d *, bool);
197 static void bpfd_free(epoch_context_t);
198 static int bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
199 struct sockaddr *, int *, struct bpf_d *);
200 static int bpf_setif(struct bpf_d *, struct ifreq *);
201 static void bpf_timed_out(void *);
202 static __inline void
203 bpf_wakeup(struct bpf_d *);
204 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
205 void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
206 struct bintime *);
207 static void reset_d(struct bpf_d *);
208 static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
209 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
210 static int bpf_setdlt(struct bpf_d *, u_int);
211 static void filt_bpfdetach(struct knote *);
212 static int filt_bpfread(struct knote *, long);
213 static int filt_bpfwrite(struct knote *, long);
214 static void bpf_drvinit(void *);
215 static int bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
216
217 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
218 "bpf sysctl");
219 int bpf_maxinsns = BPF_MAXINSNS;
220 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
221 &bpf_maxinsns, 0, "Maximum bpf program instructions");
222 static int bpf_zerocopy_enable = 0;
223 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
224 &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
225 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
226 bpf_stats_sysctl, "bpf statistics portal");
227
228 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
229 #define V_bpf_optimize_writers VNET(bpf_optimize_writers)
230 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN,
231 &VNET_NAME(bpf_optimize_writers), 0,
232 "Do not send packets until BPF program is set");
233
234 static d_open_t bpfopen;
235 static d_read_t bpfread;
236 static d_write_t bpfwrite;
237 static d_ioctl_t bpfioctl;
238 static d_poll_t bpfpoll;
239 static d_kqfilter_t bpfkqfilter;
240
241 static struct cdevsw bpf_cdevsw = {
242 .d_version = D_VERSION,
243 .d_open = bpfopen,
244 .d_read = bpfread,
245 .d_write = bpfwrite,
246 .d_ioctl = bpfioctl,
247 .d_poll = bpfpoll,
248 .d_name = "bpf",
249 .d_kqfilter = bpfkqfilter,
250 };
251
252 static const struct filterops bpfread_filtops = {
253 .f_isfd = 1,
254 .f_detach = filt_bpfdetach,
255 .f_event = filt_bpfread,
256 };
257
258 static const struct filterops bpfwrite_filtops = {
259 .f_isfd = 1,
260 .f_detach = filt_bpfdetach,
261 .f_event = filt_bpfwrite,
262 };
263
264 /*
265 * LOCKING MODEL USED BY BPF
266 *
267 * Locks:
268 * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
269 * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
270 * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
271 * structure fields used by bpf_*tap* code.
272 *
273 * Lock order: global lock, then descriptor lock.
274 *
275 * There are several possible consumers:
276 *
277 * 1. The kernel registers interface pointer with bpfattach().
278 * Each call allocates new bpf_if structure, references ifnet pointer
279 * and links bpf_if into bpf_iflist chain. This is protected with global
280 * lock.
281 *
282 * 2. An userland application uses ioctl() call to bpf_d descriptor.
283 * All such call are serialized with global lock. BPF filters can be
284 * changed, but pointer to old filter will be freed using NET_EPOCH_CALL().
285 * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
286 * filter pointers, even if change will happen during bpf_tap execution.
287 * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL().
288 *
289 * 3. An userland application can write packets into bpf_d descriptor.
290 * There we need to be sure, that ifnet won't disappear during bpfwrite().
291 *
292 * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
293 * bif_dlist is protected with net_epoch_preempt section. So, it should
294 * be safe to make access to bpf_d descriptor inside the section.
295 *
296 * 5. The kernel invokes bpfdetach() on interface destroying. All lists
297 * are modified with global lock held and actual free() is done using
298 * NET_EPOCH_CALL().
299 */
300
301 static void
bpfif_free(epoch_context_t ctx)302 bpfif_free(epoch_context_t ctx)
303 {
304 struct bpf_if *bp;
305
306 bp = __containerof(ctx, struct bpf_if, epoch_ctx);
307 if_rele(bp->bif_ifp);
308 free(bp, M_BPF);
309 }
310
311 static void
bpfif_ref(struct bpf_if * bp)312 bpfif_ref(struct bpf_if *bp)
313 {
314
315 refcount_acquire(&bp->bif_refcnt);
316 }
317
318 static void
bpfif_rele(struct bpf_if * bp)319 bpfif_rele(struct bpf_if *bp)
320 {
321
322 if (!refcount_release(&bp->bif_refcnt))
323 return;
324 NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx);
325 }
326
327 static void
bpfd_ref(struct bpf_d * d)328 bpfd_ref(struct bpf_d *d)
329 {
330
331 refcount_acquire(&d->bd_refcnt);
332 }
333
334 static void
bpfd_rele(struct bpf_d * d)335 bpfd_rele(struct bpf_d *d)
336 {
337
338 if (!refcount_release(&d->bd_refcnt))
339 return;
340 NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx);
341 }
342
343 static struct bpf_program_buffer*
bpf_program_buffer_alloc(size_t size,int flags)344 bpf_program_buffer_alloc(size_t size, int flags)
345 {
346
347 return (malloc(sizeof(struct bpf_program_buffer) + size,
348 M_BPF, flags));
349 }
350
351 static void
bpf_program_buffer_free(epoch_context_t ctx)352 bpf_program_buffer_free(epoch_context_t ctx)
353 {
354 struct bpf_program_buffer *ptr;
355
356 ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
357 #ifdef BPF_JITTER
358 if (ptr->func != NULL)
359 bpf_destroy_jit_filter(ptr->func);
360 #endif
361 free(ptr, M_BPF);
362 }
363
364 /*
365 * Wrapper functions for various buffering methods. If the set of buffer
366 * modes expands, we will probably want to introduce a switch data structure
367 * similar to protosw, et.
368 */
369 static void
bpf_append_bytes(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)370 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
371 u_int len)
372 {
373
374 BPFD_LOCK_ASSERT(d);
375
376 switch (d->bd_bufmode) {
377 case BPF_BUFMODE_BUFFER:
378 return (bpf_buffer_append_bytes(d, buf, offset, src, len));
379
380 case BPF_BUFMODE_ZBUF:
381 counter_u64_add(d->bd_zcopy, 1);
382 return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
383
384 default:
385 panic("bpf_buf_append_bytes");
386 }
387 }
388
389 static void
bpf_append_mbuf(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)390 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
391 u_int len)
392 {
393
394 BPFD_LOCK_ASSERT(d);
395
396 switch (d->bd_bufmode) {
397 case BPF_BUFMODE_BUFFER:
398 return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
399
400 case BPF_BUFMODE_ZBUF:
401 counter_u64_add(d->bd_zcopy, 1);
402 return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
403
404 default:
405 panic("bpf_buf_append_mbuf");
406 }
407 }
408
409 /*
410 * This function gets called when the free buffer is re-assigned.
411 */
412 static void
bpf_buf_reclaimed(struct bpf_d * d)413 bpf_buf_reclaimed(struct bpf_d *d)
414 {
415
416 BPFD_LOCK_ASSERT(d);
417
418 switch (d->bd_bufmode) {
419 case BPF_BUFMODE_BUFFER:
420 return;
421
422 case BPF_BUFMODE_ZBUF:
423 bpf_zerocopy_buf_reclaimed(d);
424 return;
425
426 default:
427 panic("bpf_buf_reclaimed");
428 }
429 }
430
431 /*
432 * If the buffer mechanism has a way to decide that a held buffer can be made
433 * free, then it is exposed via the bpf_canfreebuf() interface. (1) is
434 * returned if the buffer can be discarded, (0) is returned if it cannot.
435 */
436 static int
bpf_canfreebuf(struct bpf_d * d)437 bpf_canfreebuf(struct bpf_d *d)
438 {
439
440 BPFD_LOCK_ASSERT(d);
441
442 switch (d->bd_bufmode) {
443 case BPF_BUFMODE_ZBUF:
444 return (bpf_zerocopy_canfreebuf(d));
445 }
446 return (0);
447 }
448
449 /*
450 * Allow the buffer model to indicate that the current store buffer is
451 * immutable, regardless of the appearance of space. Return (1) if the
452 * buffer is writable, and (0) if not.
453 */
454 static int
bpf_canwritebuf(struct bpf_d * d)455 bpf_canwritebuf(struct bpf_d *d)
456 {
457 BPFD_LOCK_ASSERT(d);
458
459 switch (d->bd_bufmode) {
460 case BPF_BUFMODE_ZBUF:
461 return (bpf_zerocopy_canwritebuf(d));
462 }
463 return (1);
464 }
465
466 /*
467 * Notify buffer model that an attempt to write to the store buffer has
468 * resulted in a dropped packet, in which case the buffer may be considered
469 * full.
470 */
471 static void
bpf_buffull(struct bpf_d * d)472 bpf_buffull(struct bpf_d *d)
473 {
474
475 BPFD_LOCK_ASSERT(d);
476
477 switch (d->bd_bufmode) {
478 case BPF_BUFMODE_ZBUF:
479 bpf_zerocopy_buffull(d);
480 break;
481 }
482 }
483
484 /*
485 * Notify the buffer model that a buffer has moved into the hold position.
486 */
487 void
bpf_bufheld(struct bpf_d * d)488 bpf_bufheld(struct bpf_d *d)
489 {
490
491 BPFD_LOCK_ASSERT(d);
492
493 switch (d->bd_bufmode) {
494 case BPF_BUFMODE_ZBUF:
495 bpf_zerocopy_bufheld(d);
496 break;
497 }
498 }
499
500 static void
bpf_free(struct bpf_d * d)501 bpf_free(struct bpf_d *d)
502 {
503
504 switch (d->bd_bufmode) {
505 case BPF_BUFMODE_BUFFER:
506 return (bpf_buffer_free(d));
507
508 case BPF_BUFMODE_ZBUF:
509 return (bpf_zerocopy_free(d));
510
511 default:
512 panic("bpf_buf_free");
513 }
514 }
515
516 static int
bpf_uiomove(struct bpf_d * d,caddr_t buf,u_int len,struct uio * uio)517 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
518 {
519
520 if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
521 return (EOPNOTSUPP);
522 return (bpf_buffer_uiomove(d, buf, len, uio));
523 }
524
525 static int
bpf_ioctl_sblen(struct bpf_d * d,u_int * i)526 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
527 {
528
529 if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
530 return (EOPNOTSUPP);
531 return (bpf_buffer_ioctl_sblen(d, i));
532 }
533
534 static int
bpf_ioctl_getzmax(struct thread * td,struct bpf_d * d,size_t * i)535 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
536 {
537
538 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
539 return (EOPNOTSUPP);
540 return (bpf_zerocopy_ioctl_getzmax(td, d, i));
541 }
542
543 static int
bpf_ioctl_rotzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)544 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
545 {
546
547 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
548 return (EOPNOTSUPP);
549 return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
550 }
551
552 static int
bpf_ioctl_setzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)553 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
554 {
555
556 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
557 return (EOPNOTSUPP);
558 return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
559 }
560
561 /*
562 * General BPF functions.
563 */
564 static int
bpf_movein(struct uio * uio,int linktype,struct ifnet * ifp,struct mbuf ** mp,struct sockaddr * sockp,int * hdrlen,struct bpf_d * d)565 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
566 struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
567 {
568 const struct ieee80211_bpf_params *p;
569 struct ether_header *eh;
570 struct mbuf *m;
571 int error;
572 int len;
573 int hlen;
574 int slen;
575
576 /*
577 * Build a sockaddr based on the data link layer type.
578 * We do this at this level because the ethernet header
579 * is copied directly into the data field of the sockaddr.
580 * In the case of SLIP, there is no header and the packet
581 * is forwarded as is.
582 * Also, we are careful to leave room at the front of the mbuf
583 * for the link level header.
584 */
585 switch (linktype) {
586 case DLT_SLIP:
587 sockp->sa_family = AF_INET;
588 hlen = 0;
589 break;
590
591 case DLT_EN10MB:
592 sockp->sa_family = AF_UNSPEC;
593 /* XXX Would MAXLINKHDR be better? */
594 hlen = ETHER_HDR_LEN;
595 break;
596
597 case DLT_FDDI:
598 sockp->sa_family = AF_IMPLINK;
599 hlen = 0;
600 break;
601
602 case DLT_RAW:
603 sockp->sa_family = AF_UNSPEC;
604 hlen = 0;
605 break;
606
607 case DLT_NULL:
608 /*
609 * null interface types require a 4 byte pseudo header which
610 * corresponds to the address family of the packet.
611 */
612 sockp->sa_family = AF_UNSPEC;
613 hlen = 4;
614 break;
615
616 case DLT_ATM_RFC1483:
617 /*
618 * en atm driver requires 4-byte atm pseudo header.
619 * though it isn't standard, vpi:vci needs to be
620 * specified anyway.
621 */
622 sockp->sa_family = AF_UNSPEC;
623 hlen = 12; /* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
624 break;
625
626 case DLT_PPP:
627 sockp->sa_family = AF_UNSPEC;
628 hlen = 4; /* This should match PPP_HDRLEN */
629 break;
630
631 case DLT_IEEE802_11: /* IEEE 802.11 wireless */
632 sockp->sa_family = AF_IEEE80211;
633 hlen = 0;
634 break;
635
636 case DLT_IEEE802_11_RADIO: /* IEEE 802.11 wireless w/ phy params */
637 sockp->sa_family = AF_IEEE80211;
638 sockp->sa_len = 12; /* XXX != 0 */
639 hlen = sizeof(struct ieee80211_bpf_params);
640 break;
641
642 default:
643 return (EIO);
644 }
645
646 len = uio->uio_resid;
647 if (len < hlen || len - hlen > ifp->if_mtu)
648 return (EMSGSIZE);
649
650 /* Allocate a mbuf, up to MJUM16BYTES bytes, for our write. */
651 m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR);
652 if (m == NULL)
653 return (EIO);
654 m->m_pkthdr.len = m->m_len = len;
655 *mp = m;
656
657 error = uiomove(mtod(m, u_char *), len, uio);
658 if (error)
659 goto bad;
660
661 slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
662 if (slen == 0) {
663 error = EPERM;
664 goto bad;
665 }
666
667 /* Check for multicast destination */
668 switch (linktype) {
669 case DLT_EN10MB:
670 eh = mtod(m, struct ether_header *);
671 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
672 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
673 ETHER_ADDR_LEN) == 0)
674 m->m_flags |= M_BCAST;
675 else
676 m->m_flags |= M_MCAST;
677 }
678 if (d->bd_hdrcmplt == 0) {
679 memcpy(eh->ether_shost, IF_LLADDR(ifp),
680 sizeof(eh->ether_shost));
681 }
682 break;
683 }
684
685 /*
686 * Make room for link header, and copy it to sockaddr
687 */
688 if (hlen != 0) {
689 if (sockp->sa_family == AF_IEEE80211) {
690 /*
691 * Collect true length from the parameter header
692 * NB: sockp is known to be zero'd so if we do a
693 * short copy unspecified parameters will be
694 * zero.
695 * NB: packet may not be aligned after stripping
696 * bpf params
697 * XXX check ibp_vers
698 */
699 p = mtod(m, const struct ieee80211_bpf_params *);
700 hlen = p->ibp_len;
701 if (hlen > sizeof(sockp->sa_data)) {
702 error = EINVAL;
703 goto bad;
704 }
705 }
706 bcopy(mtod(m, const void *), sockp->sa_data, hlen);
707 }
708 *hdrlen = hlen;
709
710 return (0);
711 bad:
712 m_freem(m);
713 return (error);
714 }
715
716 /*
717 * Attach descriptor to the bpf interface, i.e. make d listen on bp,
718 * then reset its buffers and counters with reset_d().
719 */
720 static void
bpf_attachd(struct bpf_d * d,struct bpf_if * bp)721 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
722 {
723 int op_w;
724
725 BPF_LOCK_ASSERT();
726
727 /*
728 * Save sysctl value to protect from sysctl change
729 * between reads
730 */
731 op_w = V_bpf_optimize_writers || d->bd_writer;
732
733 if (d->bd_bif != NULL)
734 bpf_detachd_locked(d, false);
735 /*
736 * Point d at bp, and add d to the interface's list.
737 * Since there are many applications using BPF for
738 * sending raw packets only (dhcpd, cdpd are good examples)
739 * we can delay adding d to the list of active listeners until
740 * some filter is configured.
741 */
742
743 BPFD_LOCK(d);
744 /*
745 * Hold reference to bpif while descriptor uses this interface.
746 */
747 bpfif_ref(bp);
748 d->bd_bif = bp;
749 if (op_w != 0) {
750 /* Add to writers-only list */
751 CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
752 /*
753 * We decrement bd_writer on every filter set operation.
754 * First BIOCSETF is done by pcap_open_live() to set up
755 * snap length. After that appliation usually sets its own
756 * filter.
757 */
758 d->bd_writer = 2;
759 } else
760 CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
761
762 reset_d(d);
763
764 /* Trigger EVFILT_WRITE events. */
765 bpf_wakeup(d);
766
767 BPFD_UNLOCK(d);
768 bpf_bpfd_cnt++;
769
770 CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
771 __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
772
773 if (op_w == 0)
774 EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
775 }
776
777 /*
778 * Check if we need to upgrade our descriptor @d from write-only mode.
779 */
780 static int
bpf_check_upgrade(u_long cmd,struct bpf_d * d,struct bpf_insn * fcode,int flen)781 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
782 int flen)
783 {
784 int is_snap, need_upgrade;
785
786 /*
787 * Check if we've already upgraded or new filter is empty.
788 */
789 if (d->bd_writer == 0 || fcode == NULL)
790 return (0);
791
792 need_upgrade = 0;
793
794 /*
795 * Check if cmd looks like snaplen setting from
796 * pcap_bpf.c:pcap_open_live().
797 * Note we're not checking .k value here:
798 * while pcap_open_live() definitely sets to non-zero value,
799 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
800 * do not consider upgrading immediately
801 */
802 if (cmd == BIOCSETF && flen == 1 &&
803 fcode[0].code == (BPF_RET | BPF_K))
804 is_snap = 1;
805 else
806 is_snap = 0;
807
808 if (is_snap == 0) {
809 /*
810 * We're setting first filter and it doesn't look like
811 * setting snaplen. We're probably using bpf directly.
812 * Upgrade immediately.
813 */
814 need_upgrade = 1;
815 } else {
816 /*
817 * Do not require upgrade by first BIOCSETF
818 * (used to set snaplen) by pcap_open_live().
819 */
820
821 if (--d->bd_writer == 0) {
822 /*
823 * First snaplen filter has already
824 * been set. This is probably catch-all
825 * filter
826 */
827 need_upgrade = 1;
828 }
829 }
830
831 CTR5(KTR_NET,
832 "%s: filter function set by pid %d, "
833 "bd_writer counter %d, snap %d upgrade %d",
834 __func__, d->bd_pid, d->bd_writer,
835 is_snap, need_upgrade);
836
837 return (need_upgrade);
838 }
839
840 /*
841 * Detach a file from its interface.
842 */
843 static void
bpf_detachd(struct bpf_d * d)844 bpf_detachd(struct bpf_d *d)
845 {
846 BPF_LOCK();
847 bpf_detachd_locked(d, false);
848 BPF_UNLOCK();
849 }
850
851 static void
bpf_detachd_locked(struct bpf_d * d,bool detached_ifp)852 bpf_detachd_locked(struct bpf_d *d, bool detached_ifp)
853 {
854 struct bpf_if *bp;
855 struct ifnet *ifp;
856 int error;
857
858 BPF_LOCK_ASSERT();
859 CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
860
861 /* Check if descriptor is attached */
862 if ((bp = d->bd_bif) == NULL)
863 return;
864
865 BPFD_LOCK(d);
866 /* Remove d from the interface's descriptor list. */
867 CK_LIST_REMOVE(d, bd_next);
868 /* Save bd_writer value */
869 error = d->bd_writer;
870 ifp = bp->bif_ifp;
871 d->bd_bif = NULL;
872 if (detached_ifp) {
873 /*
874 * Notify descriptor as it's detached, so that any
875 * sleepers wake up and get ENXIO.
876 */
877 bpf_wakeup(d);
878 }
879 BPFD_UNLOCK(d);
880 bpf_bpfd_cnt--;
881
882 /* Call event handler iff d is attached */
883 if (error == 0)
884 EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
885
886 /*
887 * Check if this descriptor had requested promiscuous mode.
888 * If so and ifnet is not detached, turn it off.
889 */
890 if (d->bd_promisc && !detached_ifp) {
891 d->bd_promisc = 0;
892 CURVNET_SET(ifp->if_vnet);
893 error = ifpromisc(ifp, 0);
894 CURVNET_RESTORE();
895 if (error != 0 && error != ENXIO) {
896 /*
897 * ENXIO can happen if a pccard is unplugged
898 * Something is really wrong if we were able to put
899 * the driver into promiscuous mode, but can't
900 * take it out.
901 */
902 if_printf(bp->bif_ifp,
903 "bpf_detach: ifpromisc failed (%d)\n", error);
904 }
905 }
906 bpfif_rele(bp);
907 }
908
909 /*
910 * Close the descriptor by detaching it from its interface,
911 * deallocating its buffers, and marking it free.
912 */
913 static void
bpf_dtor(void * data)914 bpf_dtor(void *data)
915 {
916 struct bpf_d *d = data;
917
918 BPFD_LOCK(d);
919 if (d->bd_state == BPF_WAITING)
920 callout_stop(&d->bd_callout);
921 d->bd_state = BPF_IDLE;
922 BPFD_UNLOCK(d);
923 funsetown(&d->bd_sigio);
924 bpf_detachd(d);
925 #ifdef MAC
926 mac_bpfdesc_destroy(d);
927 #endif /* MAC */
928 seldrain(&d->bd_sel);
929 knlist_destroy(&d->bd_sel.si_note);
930 callout_drain(&d->bd_callout);
931 bpfd_rele(d);
932 }
933
934 /*
935 * Open ethernet device. Returns ENXIO for illegal minor device number,
936 * EBUSY if file is open by another process.
937 */
938 /* ARGSUSED */
939 static int
bpfopen(struct cdev * dev,int flags,int fmt,struct thread * td)940 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
941 {
942 struct bpf_d *d;
943 int error;
944
945 d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
946 error = devfs_set_cdevpriv(d, bpf_dtor);
947 if (error != 0) {
948 free(d, M_BPF);
949 return (error);
950 }
951
952 /* Setup counters */
953 d->bd_rcount = counter_u64_alloc(M_WAITOK);
954 d->bd_dcount = counter_u64_alloc(M_WAITOK);
955 d->bd_fcount = counter_u64_alloc(M_WAITOK);
956 d->bd_wcount = counter_u64_alloc(M_WAITOK);
957 d->bd_wfcount = counter_u64_alloc(M_WAITOK);
958 d->bd_wdcount = counter_u64_alloc(M_WAITOK);
959 d->bd_zcopy = counter_u64_alloc(M_WAITOK);
960
961 /*
962 * For historical reasons, perform a one-time initialization call to
963 * the buffer routines, even though we're not yet committed to a
964 * particular buffer method.
965 */
966 bpf_buffer_init(d);
967 if ((flags & FREAD) == 0)
968 d->bd_writer = 2;
969 d->bd_hbuf_in_use = 0;
970 d->bd_bufmode = BPF_BUFMODE_BUFFER;
971 d->bd_sig = SIGIO;
972 d->bd_direction = BPF_D_INOUT;
973 refcount_init(&d->bd_refcnt, 1);
974 BPF_PID_REFRESH(d, td);
975 #ifdef MAC
976 mac_bpfdesc_init(d);
977 mac_bpfdesc_create(td->td_ucred, d);
978 #endif
979 mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
980 callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
981 knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
982
983 /* Disable VLAN pcp tagging. */
984 d->bd_pcp = 0;
985
986 return (0);
987 }
988
989 /*
990 * bpfread - read next chunk of packets from buffers
991 */
992 static int
bpfread(struct cdev * dev,struct uio * uio,int ioflag)993 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
994 {
995 struct bpf_d *d;
996 int error;
997 int non_block;
998 int timed_out;
999
1000 error = devfs_get_cdevpriv((void **)&d);
1001 if (error != 0)
1002 return (error);
1003
1004 /*
1005 * Restrict application to use a buffer the same size as
1006 * as kernel buffers.
1007 */
1008 if (uio->uio_resid != d->bd_bufsize)
1009 return (EINVAL);
1010
1011 non_block = ((ioflag & O_NONBLOCK) != 0);
1012
1013 BPFD_LOCK(d);
1014 BPF_PID_REFRESH_CUR(d);
1015 if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1016 BPFD_UNLOCK(d);
1017 return (EOPNOTSUPP);
1018 }
1019 if (d->bd_state == BPF_WAITING)
1020 callout_stop(&d->bd_callout);
1021 timed_out = (d->bd_state == BPF_TIMED_OUT);
1022 d->bd_state = BPF_IDLE;
1023 while (d->bd_hbuf_in_use) {
1024 error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1025 PRINET | PCATCH, "bd_hbuf", 0);
1026 if (error != 0) {
1027 BPFD_UNLOCK(d);
1028 return (error);
1029 }
1030 }
1031 /*
1032 * If the hold buffer is empty, then do a timed sleep, which
1033 * ends when the timeout expires or when enough packets
1034 * have arrived to fill the store buffer.
1035 */
1036 while (d->bd_hbuf == NULL) {
1037 if (d->bd_slen != 0) {
1038 /*
1039 * A packet(s) either arrived since the previous
1040 * read or arrived while we were asleep.
1041 */
1042 if (d->bd_immediate || non_block || timed_out) {
1043 /*
1044 * Rotate the buffers and return what's here
1045 * if we are in immediate mode, non-blocking
1046 * flag is set, or this descriptor timed out.
1047 */
1048 ROTATE_BUFFERS(d);
1049 break;
1050 }
1051 }
1052
1053 /*
1054 * No data is available, check to see if the bpf device
1055 * is still pointed at a real interface. If not, return
1056 * ENXIO so that the userland process knows to rebind
1057 * it before using it again.
1058 */
1059 if (d->bd_bif == NULL) {
1060 BPFD_UNLOCK(d);
1061 return (ENXIO);
1062 }
1063
1064 if (non_block) {
1065 BPFD_UNLOCK(d);
1066 return (EWOULDBLOCK);
1067 }
1068 error = msleep(d, &d->bd_lock, PRINET | PCATCH,
1069 "bpf", d->bd_rtout);
1070 if (error == EINTR || error == ERESTART) {
1071 BPFD_UNLOCK(d);
1072 return (error);
1073 }
1074 if (error == EWOULDBLOCK) {
1075 /*
1076 * On a timeout, return what's in the buffer,
1077 * which may be nothing. If there is something
1078 * in the store buffer, we can rotate the buffers.
1079 */
1080 if (d->bd_hbuf)
1081 /*
1082 * We filled up the buffer in between
1083 * getting the timeout and arriving
1084 * here, so we don't need to rotate.
1085 */
1086 break;
1087
1088 if (d->bd_slen == 0) {
1089 BPFD_UNLOCK(d);
1090 return (0);
1091 }
1092 ROTATE_BUFFERS(d);
1093 break;
1094 }
1095 }
1096 /*
1097 * At this point, we know we have something in the hold slot.
1098 */
1099 d->bd_hbuf_in_use = 1;
1100 BPFD_UNLOCK(d);
1101
1102 /*
1103 * Move data from hold buffer into user space.
1104 * We know the entire buffer is transferred since
1105 * we checked above that the read buffer is bpf_bufsize bytes.
1106 *
1107 * We do not have to worry about simultaneous reads because
1108 * we waited for sole access to the hold buffer above.
1109 */
1110 error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1111
1112 BPFD_LOCK(d);
1113 if (d->bd_hbuf_in_use) {
1114 KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1115 d->bd_fbuf = d->bd_hbuf;
1116 d->bd_hbuf = NULL;
1117 d->bd_hlen = 0;
1118 bpf_buf_reclaimed(d);
1119 d->bd_hbuf_in_use = 0;
1120 wakeup(&d->bd_hbuf_in_use);
1121 }
1122 BPFD_UNLOCK(d);
1123
1124 return (error);
1125 }
1126
1127 /*
1128 * If there are processes sleeping on this descriptor, wake them up.
1129 */
1130 static __inline void
bpf_wakeup(struct bpf_d * d)1131 bpf_wakeup(struct bpf_d *d)
1132 {
1133
1134 BPFD_LOCK_ASSERT(d);
1135 if (d->bd_state == BPF_WAITING) {
1136 callout_stop(&d->bd_callout);
1137 d->bd_state = BPF_IDLE;
1138 }
1139 wakeup(d);
1140 if (d->bd_async && d->bd_sig && d->bd_sigio)
1141 pgsigio(&d->bd_sigio, d->bd_sig, 0);
1142
1143 selwakeuppri(&d->bd_sel, PRINET);
1144 KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1145 }
1146
1147 static void
bpf_timed_out(void * arg)1148 bpf_timed_out(void *arg)
1149 {
1150 struct bpf_d *d = (struct bpf_d *)arg;
1151
1152 BPFD_LOCK_ASSERT(d);
1153
1154 if (callout_pending(&d->bd_callout) ||
1155 !callout_active(&d->bd_callout))
1156 return;
1157 if (d->bd_state == BPF_WAITING) {
1158 d->bd_state = BPF_TIMED_OUT;
1159 if (d->bd_slen != 0)
1160 bpf_wakeup(d);
1161 }
1162 }
1163
1164 static int
bpf_ready(struct bpf_d * d)1165 bpf_ready(struct bpf_d *d)
1166 {
1167
1168 BPFD_LOCK_ASSERT(d);
1169
1170 if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1171 return (1);
1172 if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1173 d->bd_slen != 0)
1174 return (1);
1175 return (0);
1176 }
1177
1178 static int
bpfwrite(struct cdev * dev,struct uio * uio,int ioflag)1179 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1180 {
1181 struct route ro;
1182 struct sockaddr dst;
1183 struct epoch_tracker et;
1184 struct bpf_if *bp;
1185 struct bpf_d *d;
1186 struct ifnet *ifp;
1187 struct mbuf *m, *mc;
1188 int error, hlen;
1189
1190 error = devfs_get_cdevpriv((void **)&d);
1191 if (error != 0)
1192 return (error);
1193
1194 NET_EPOCH_ENTER(et);
1195 BPFD_LOCK(d);
1196 BPF_PID_REFRESH_CUR(d);
1197 counter_u64_add(d->bd_wcount, 1);
1198 if ((bp = d->bd_bif) == NULL) {
1199 error = ENXIO;
1200 goto out_locked;
1201 }
1202
1203 ifp = bp->bif_ifp;
1204 if ((ifp->if_flags & IFF_UP) == 0) {
1205 error = ENETDOWN;
1206 goto out_locked;
1207 }
1208
1209 if (uio->uio_resid == 0)
1210 goto out_locked;
1211
1212 bzero(&dst, sizeof(dst));
1213 m = NULL;
1214 hlen = 0;
1215
1216 /*
1217 * Take extra reference, unlock d and exit from epoch section,
1218 * since bpf_movein() can sleep.
1219 */
1220 bpfd_ref(d);
1221 NET_EPOCH_EXIT(et);
1222 BPFD_UNLOCK(d);
1223
1224 error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1225 &m, &dst, &hlen, d);
1226
1227 if (error != 0) {
1228 counter_u64_add(d->bd_wdcount, 1);
1229 bpfd_rele(d);
1230 return (error);
1231 }
1232
1233 BPFD_LOCK(d);
1234 /*
1235 * Check that descriptor is still attached to the interface.
1236 * This can happen on bpfdetach(). To avoid access to detached
1237 * ifnet, free mbuf and return ENXIO.
1238 */
1239 if (d->bd_bif == NULL) {
1240 counter_u64_add(d->bd_wdcount, 1);
1241 BPFD_UNLOCK(d);
1242 bpfd_rele(d);
1243 m_freem(m);
1244 return (ENXIO);
1245 }
1246 counter_u64_add(d->bd_wfcount, 1);
1247 if (d->bd_hdrcmplt)
1248 dst.sa_family = pseudo_AF_HDRCMPLT;
1249
1250 if (d->bd_feedback) {
1251 mc = m_dup(m, M_NOWAIT);
1252 if (mc != NULL)
1253 mc->m_pkthdr.rcvif = ifp;
1254 /* Set M_PROMISC for outgoing packets to be discarded. */
1255 if (d->bd_direction == BPF_D_INOUT)
1256 m->m_flags |= M_PROMISC;
1257 } else
1258 mc = NULL;
1259
1260 m->m_pkthdr.len -= hlen;
1261 m->m_len -= hlen;
1262 m->m_data += hlen; /* XXX */
1263
1264 CURVNET_SET(ifp->if_vnet);
1265 #ifdef MAC
1266 mac_bpfdesc_create_mbuf(d, m);
1267 if (mc != NULL)
1268 mac_bpfdesc_create_mbuf(d, mc);
1269 #endif
1270
1271 bzero(&ro, sizeof(ro));
1272 if (hlen != 0) {
1273 ro.ro_prepend = (u_char *)&dst.sa_data;
1274 ro.ro_plen = hlen;
1275 ro.ro_flags = RT_HAS_HEADER;
1276 }
1277
1278 if (d->bd_pcp != 0)
1279 vlan_set_pcp(m, d->bd_pcp);
1280
1281 /* Avoid possible recursion on BPFD_LOCK(). */
1282 NET_EPOCH_ENTER(et);
1283 BPFD_UNLOCK(d);
1284 error = (*ifp->if_output)(ifp, m, &dst, &ro);
1285 if (error)
1286 counter_u64_add(d->bd_wdcount, 1);
1287
1288 if (mc != NULL) {
1289 if (error == 0)
1290 (*ifp->if_input)(ifp, mc);
1291 else
1292 m_freem(mc);
1293 }
1294 NET_EPOCH_EXIT(et);
1295 CURVNET_RESTORE();
1296 bpfd_rele(d);
1297 return (error);
1298
1299 out_locked:
1300 counter_u64_add(d->bd_wdcount, 1);
1301 NET_EPOCH_EXIT(et);
1302 BPFD_UNLOCK(d);
1303 return (error);
1304 }
1305
1306 /*
1307 * Reset a descriptor by flushing its packet buffer and clearing the receive
1308 * and drop counts. This is doable for kernel-only buffers, but with
1309 * zero-copy buffers, we can't write to (or rotate) buffers that are
1310 * currently owned by userspace. It would be nice if we could encapsulate
1311 * this logic in the buffer code rather than here.
1312 */
1313 static void
reset_d(struct bpf_d * d)1314 reset_d(struct bpf_d *d)
1315 {
1316
1317 BPFD_LOCK_ASSERT(d);
1318
1319 while (d->bd_hbuf_in_use)
1320 mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1321 "bd_hbuf", 0);
1322 if ((d->bd_hbuf != NULL) &&
1323 (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1324 /* Free the hold buffer. */
1325 d->bd_fbuf = d->bd_hbuf;
1326 d->bd_hbuf = NULL;
1327 d->bd_hlen = 0;
1328 bpf_buf_reclaimed(d);
1329 }
1330 if (bpf_canwritebuf(d))
1331 d->bd_slen = 0;
1332 counter_u64_zero(d->bd_rcount);
1333 counter_u64_zero(d->bd_dcount);
1334 counter_u64_zero(d->bd_fcount);
1335 counter_u64_zero(d->bd_wcount);
1336 counter_u64_zero(d->bd_wfcount);
1337 counter_u64_zero(d->bd_wdcount);
1338 counter_u64_zero(d->bd_zcopy);
1339 }
1340
1341 /*
1342 * FIONREAD Check for read packet available.
1343 * BIOCGBLEN Get buffer len [for read()].
1344 * BIOCSETF Set read filter.
1345 * BIOCSETFNR Set read filter without resetting descriptor.
1346 * BIOCSETWF Set write filter.
1347 * BIOCFLUSH Flush read packet buffer.
1348 * BIOCPROMISC Put interface into promiscuous mode.
1349 * BIOCGDLT Get link layer type.
1350 * BIOCGETIF Get interface name.
1351 * BIOCSETIF Set interface.
1352 * BIOCSRTIMEOUT Set read timeout.
1353 * BIOCGRTIMEOUT Get read timeout.
1354 * BIOCGSTATS Get packet stats.
1355 * BIOCIMMEDIATE Set immediate mode.
1356 * BIOCVERSION Get filter language version.
1357 * BIOCGHDRCMPLT Get "header already complete" flag
1358 * BIOCSHDRCMPLT Set "header already complete" flag
1359 * BIOCGDIRECTION Get packet direction flag
1360 * BIOCSDIRECTION Set packet direction flag
1361 * BIOCGTSTAMP Get time stamp format and resolution.
1362 * BIOCSTSTAMP Set time stamp format and resolution.
1363 * BIOCLOCK Set "locked" flag
1364 * BIOCFEEDBACK Set packet feedback mode.
1365 * BIOCSETZBUF Set current zero-copy buffer locations.
1366 * BIOCGETZMAX Get maximum zero-copy buffer size.
1367 * BIOCROTZBUF Force rotation of zero-copy buffer
1368 * BIOCSETBUFMODE Set buffer mode.
1369 * BIOCGETBUFMODE Get current buffer mode.
1370 * BIOCSETVLANPCP Set VLAN PCP tag.
1371 */
1372 /* ARGSUSED */
1373 static int
bpfioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flags,struct thread * td)1374 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1375 struct thread *td)
1376 {
1377 struct bpf_d *d;
1378 int error;
1379
1380 error = devfs_get_cdevpriv((void **)&d);
1381 if (error != 0)
1382 return (error);
1383
1384 /*
1385 * Refresh PID associated with this descriptor.
1386 */
1387 BPFD_LOCK(d);
1388 BPF_PID_REFRESH(d, td);
1389 if (d->bd_state == BPF_WAITING)
1390 callout_stop(&d->bd_callout);
1391 d->bd_state = BPF_IDLE;
1392 BPFD_UNLOCK(d);
1393
1394 if (d->bd_locked == 1) {
1395 switch (cmd) {
1396 case BIOCGBLEN:
1397 case BIOCFLUSH:
1398 case BIOCGDLT:
1399 case BIOCGDLTLIST:
1400 #ifdef COMPAT_FREEBSD32
1401 case BIOCGDLTLIST32:
1402 #endif
1403 case BIOCGETIF:
1404 case BIOCGRTIMEOUT:
1405 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1406 case BIOCGRTIMEOUT32:
1407 #endif
1408 case BIOCGSTATS:
1409 case BIOCVERSION:
1410 case BIOCGRSIG:
1411 case BIOCGHDRCMPLT:
1412 case BIOCSTSTAMP:
1413 case BIOCFEEDBACK:
1414 case FIONREAD:
1415 case BIOCLOCK:
1416 case BIOCSRTIMEOUT:
1417 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1418 case BIOCSRTIMEOUT32:
1419 #endif
1420 case BIOCIMMEDIATE:
1421 case TIOCGPGRP:
1422 case BIOCROTZBUF:
1423 break;
1424 default:
1425 return (EPERM);
1426 }
1427 }
1428 #ifdef COMPAT_FREEBSD32
1429 /*
1430 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1431 * that it will get 32-bit packet headers.
1432 */
1433 switch (cmd) {
1434 case BIOCSETF32:
1435 case BIOCSETFNR32:
1436 case BIOCSETWF32:
1437 case BIOCGDLTLIST32:
1438 case BIOCGRTIMEOUT32:
1439 case BIOCSRTIMEOUT32:
1440 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1441 BPFD_LOCK(d);
1442 d->bd_compat32 = 1;
1443 BPFD_UNLOCK(d);
1444 }
1445 }
1446 #endif
1447
1448 CURVNET_SET(TD_TO_VNET(td));
1449 switch (cmd) {
1450 default:
1451 error = EINVAL;
1452 break;
1453
1454 /*
1455 * Check for read packet available.
1456 */
1457 case FIONREAD:
1458 {
1459 int n;
1460
1461 BPFD_LOCK(d);
1462 n = d->bd_slen;
1463 while (d->bd_hbuf_in_use)
1464 mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1465 PRINET, "bd_hbuf", 0);
1466 if (d->bd_hbuf)
1467 n += d->bd_hlen;
1468 BPFD_UNLOCK(d);
1469
1470 *(int *)addr = n;
1471 break;
1472 }
1473
1474 /*
1475 * Get buffer len [for read()].
1476 */
1477 case BIOCGBLEN:
1478 BPFD_LOCK(d);
1479 *(u_int *)addr = d->bd_bufsize;
1480 BPFD_UNLOCK(d);
1481 break;
1482
1483 /*
1484 * Set buffer length.
1485 */
1486 case BIOCSBLEN:
1487 error = bpf_ioctl_sblen(d, (u_int *)addr);
1488 break;
1489
1490 /*
1491 * Set link layer read filter.
1492 */
1493 case BIOCSETF:
1494 case BIOCSETFNR:
1495 case BIOCSETWF:
1496 #ifdef COMPAT_FREEBSD32
1497 case BIOCSETF32:
1498 case BIOCSETFNR32:
1499 case BIOCSETWF32:
1500 #endif
1501 error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1502 break;
1503
1504 /*
1505 * Flush read packet buffer.
1506 */
1507 case BIOCFLUSH:
1508 BPFD_LOCK(d);
1509 reset_d(d);
1510 BPFD_UNLOCK(d);
1511 break;
1512
1513 /*
1514 * Put interface into promiscuous mode.
1515 */
1516 case BIOCPROMISC:
1517 BPF_LOCK();
1518 if (d->bd_bif == NULL) {
1519 /*
1520 * No interface attached yet.
1521 */
1522 error = EINVAL;
1523 } else if (d->bd_promisc == 0) {
1524 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1525 if (error == 0)
1526 d->bd_promisc = 1;
1527 }
1528 BPF_UNLOCK();
1529 break;
1530
1531 /*
1532 * Get current data link type.
1533 */
1534 case BIOCGDLT:
1535 BPF_LOCK();
1536 if (d->bd_bif == NULL)
1537 error = EINVAL;
1538 else
1539 *(u_int *)addr = d->bd_bif->bif_dlt;
1540 BPF_UNLOCK();
1541 break;
1542
1543 /*
1544 * Get a list of supported data link types.
1545 */
1546 #ifdef COMPAT_FREEBSD32
1547 case BIOCGDLTLIST32:
1548 {
1549 struct bpf_dltlist32 *list32;
1550 struct bpf_dltlist dltlist;
1551
1552 list32 = (struct bpf_dltlist32 *)addr;
1553 dltlist.bfl_len = list32->bfl_len;
1554 dltlist.bfl_list = PTRIN(list32->bfl_list);
1555 BPF_LOCK();
1556 if (d->bd_bif == NULL)
1557 error = EINVAL;
1558 else {
1559 error = bpf_getdltlist(d, &dltlist);
1560 if (error == 0)
1561 list32->bfl_len = dltlist.bfl_len;
1562 }
1563 BPF_UNLOCK();
1564 break;
1565 }
1566 #endif
1567
1568 case BIOCGDLTLIST:
1569 BPF_LOCK();
1570 if (d->bd_bif == NULL)
1571 error = EINVAL;
1572 else
1573 error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1574 BPF_UNLOCK();
1575 break;
1576
1577 /*
1578 * Set data link type.
1579 */
1580 case BIOCSDLT:
1581 BPF_LOCK();
1582 if (d->bd_bif == NULL)
1583 error = EINVAL;
1584 else
1585 error = bpf_setdlt(d, *(u_int *)addr);
1586 BPF_UNLOCK();
1587 break;
1588
1589 /*
1590 * Get interface name.
1591 */
1592 case BIOCGETIF:
1593 BPF_LOCK();
1594 if (d->bd_bif == NULL)
1595 error = EINVAL;
1596 else {
1597 struct ifnet *const ifp = d->bd_bif->bif_ifp;
1598 struct ifreq *const ifr = (struct ifreq *)addr;
1599
1600 strlcpy(ifr->ifr_name, ifp->if_xname,
1601 sizeof(ifr->ifr_name));
1602 }
1603 BPF_UNLOCK();
1604 break;
1605
1606 /*
1607 * Set interface.
1608 */
1609 case BIOCSETIF:
1610 {
1611 int alloc_buf, size;
1612
1613 /*
1614 * Behavior here depends on the buffering model. If
1615 * we're using kernel memory buffers, then we can
1616 * allocate them here. If we're using zero-copy,
1617 * then the user process must have registered buffers
1618 * by the time we get here.
1619 */
1620 alloc_buf = 0;
1621 BPFD_LOCK(d);
1622 if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1623 d->bd_sbuf == NULL)
1624 alloc_buf = 1;
1625 BPFD_UNLOCK(d);
1626 if (alloc_buf) {
1627 size = d->bd_bufsize;
1628 error = bpf_buffer_ioctl_sblen(d, &size);
1629 if (error != 0)
1630 break;
1631 }
1632 BPF_LOCK();
1633 error = bpf_setif(d, (struct ifreq *)addr);
1634 BPF_UNLOCK();
1635 break;
1636 }
1637
1638 /*
1639 * Set read timeout.
1640 */
1641 case BIOCSRTIMEOUT:
1642 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1643 case BIOCSRTIMEOUT32:
1644 #endif
1645 {
1646 struct timeval *tv = (struct timeval *)addr;
1647 #if defined(COMPAT_FREEBSD32)
1648 struct timeval32 *tv32;
1649 struct timeval tv64;
1650
1651 if (cmd == BIOCSRTIMEOUT32) {
1652 tv32 = (struct timeval32 *)addr;
1653 tv = &tv64;
1654 tv->tv_sec = tv32->tv_sec;
1655 tv->tv_usec = tv32->tv_usec;
1656 } else
1657 #endif
1658 tv = (struct timeval *)addr;
1659
1660 /*
1661 * Subtract 1 tick from tvtohz() since this isn't
1662 * a one-shot timer.
1663 */
1664 if ((error = itimerfix(tv)) == 0)
1665 d->bd_rtout = tvtohz(tv) - 1;
1666 break;
1667 }
1668
1669 /*
1670 * Get read timeout.
1671 */
1672 case BIOCGRTIMEOUT:
1673 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1674 case BIOCGRTIMEOUT32:
1675 #endif
1676 {
1677 struct timeval *tv;
1678 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1679 struct timeval32 *tv32;
1680 struct timeval tv64;
1681
1682 if (cmd == BIOCGRTIMEOUT32)
1683 tv = &tv64;
1684 else
1685 #endif
1686 tv = (struct timeval *)addr;
1687
1688 tv->tv_sec = d->bd_rtout / hz;
1689 tv->tv_usec = (d->bd_rtout % hz) * tick;
1690 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1691 if (cmd == BIOCGRTIMEOUT32) {
1692 tv32 = (struct timeval32 *)addr;
1693 tv32->tv_sec = tv->tv_sec;
1694 tv32->tv_usec = tv->tv_usec;
1695 }
1696 #endif
1697
1698 break;
1699 }
1700
1701 /*
1702 * Get packet stats.
1703 */
1704 case BIOCGSTATS:
1705 {
1706 struct bpf_stat *bs = (struct bpf_stat *)addr;
1707
1708 /* XXXCSJP overflow */
1709 bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1710 bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1711 break;
1712 }
1713
1714 /*
1715 * Set immediate mode.
1716 */
1717 case BIOCIMMEDIATE:
1718 BPFD_LOCK(d);
1719 d->bd_immediate = *(u_int *)addr;
1720 BPFD_UNLOCK(d);
1721 break;
1722
1723 case BIOCVERSION:
1724 {
1725 struct bpf_version *bv = (struct bpf_version *)addr;
1726
1727 bv->bv_major = BPF_MAJOR_VERSION;
1728 bv->bv_minor = BPF_MINOR_VERSION;
1729 break;
1730 }
1731
1732 /*
1733 * Get "header already complete" flag
1734 */
1735 case BIOCGHDRCMPLT:
1736 BPFD_LOCK(d);
1737 *(u_int *)addr = d->bd_hdrcmplt;
1738 BPFD_UNLOCK(d);
1739 break;
1740
1741 /*
1742 * Set "header already complete" flag
1743 */
1744 case BIOCSHDRCMPLT:
1745 BPFD_LOCK(d);
1746 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1747 BPFD_UNLOCK(d);
1748 break;
1749
1750 /*
1751 * Get packet direction flag
1752 */
1753 case BIOCGDIRECTION:
1754 BPFD_LOCK(d);
1755 *(u_int *)addr = d->bd_direction;
1756 BPFD_UNLOCK(d);
1757 break;
1758
1759 /*
1760 * Set packet direction flag
1761 */
1762 case BIOCSDIRECTION:
1763 {
1764 u_int direction;
1765
1766 direction = *(u_int *)addr;
1767 switch (direction) {
1768 case BPF_D_IN:
1769 case BPF_D_INOUT:
1770 case BPF_D_OUT:
1771 BPFD_LOCK(d);
1772 d->bd_direction = direction;
1773 BPFD_UNLOCK(d);
1774 break;
1775 default:
1776 error = EINVAL;
1777 }
1778 }
1779 break;
1780
1781 /*
1782 * Get packet timestamp format and resolution.
1783 */
1784 case BIOCGTSTAMP:
1785 BPFD_LOCK(d);
1786 *(u_int *)addr = d->bd_tstamp;
1787 BPFD_UNLOCK(d);
1788 break;
1789
1790 /*
1791 * Set packet timestamp format and resolution.
1792 */
1793 case BIOCSTSTAMP:
1794 {
1795 u_int func;
1796
1797 func = *(u_int *)addr;
1798 if (BPF_T_VALID(func))
1799 d->bd_tstamp = func;
1800 else
1801 error = EINVAL;
1802 }
1803 break;
1804
1805 case BIOCFEEDBACK:
1806 BPFD_LOCK(d);
1807 d->bd_feedback = *(u_int *)addr;
1808 BPFD_UNLOCK(d);
1809 break;
1810
1811 case BIOCLOCK:
1812 BPFD_LOCK(d);
1813 d->bd_locked = 1;
1814 BPFD_UNLOCK(d);
1815 break;
1816
1817 case FIONBIO: /* Non-blocking I/O */
1818 break;
1819
1820 case FIOASYNC: /* Send signal on receive packets */
1821 BPFD_LOCK(d);
1822 d->bd_async = *(int *)addr;
1823 BPFD_UNLOCK(d);
1824 break;
1825
1826 case FIOSETOWN:
1827 /*
1828 * XXX: Add some sort of locking here?
1829 * fsetown() can sleep.
1830 */
1831 error = fsetown(*(int *)addr, &d->bd_sigio);
1832 break;
1833
1834 case FIOGETOWN:
1835 BPFD_LOCK(d);
1836 *(int *)addr = fgetown(&d->bd_sigio);
1837 BPFD_UNLOCK(d);
1838 break;
1839
1840 /* This is deprecated, FIOSETOWN should be used instead. */
1841 case TIOCSPGRP:
1842 error = fsetown(-(*(int *)addr), &d->bd_sigio);
1843 break;
1844
1845 /* This is deprecated, FIOGETOWN should be used instead. */
1846 case TIOCGPGRP:
1847 *(int *)addr = -fgetown(&d->bd_sigio);
1848 break;
1849
1850 case BIOCSRSIG: /* Set receive signal */
1851 {
1852 u_int sig;
1853
1854 sig = *(u_int *)addr;
1855
1856 if (sig >= NSIG)
1857 error = EINVAL;
1858 else {
1859 BPFD_LOCK(d);
1860 d->bd_sig = sig;
1861 BPFD_UNLOCK(d);
1862 }
1863 break;
1864 }
1865 case BIOCGRSIG:
1866 BPFD_LOCK(d);
1867 *(u_int *)addr = d->bd_sig;
1868 BPFD_UNLOCK(d);
1869 break;
1870
1871 case BIOCGETBUFMODE:
1872 BPFD_LOCK(d);
1873 *(u_int *)addr = d->bd_bufmode;
1874 BPFD_UNLOCK(d);
1875 break;
1876
1877 case BIOCSETBUFMODE:
1878 /*
1879 * Allow the buffering mode to be changed as long as we
1880 * haven't yet committed to a particular mode. Our
1881 * definition of commitment, for now, is whether or not a
1882 * buffer has been allocated or an interface attached, since
1883 * that's the point where things get tricky.
1884 */
1885 switch (*(u_int *)addr) {
1886 case BPF_BUFMODE_BUFFER:
1887 break;
1888
1889 case BPF_BUFMODE_ZBUF:
1890 if (bpf_zerocopy_enable)
1891 break;
1892 /* FALLSTHROUGH */
1893
1894 default:
1895 CURVNET_RESTORE();
1896 return (EINVAL);
1897 }
1898
1899 BPFD_LOCK(d);
1900 if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1901 d->bd_fbuf != NULL || d->bd_bif != NULL) {
1902 BPFD_UNLOCK(d);
1903 CURVNET_RESTORE();
1904 return (EBUSY);
1905 }
1906 d->bd_bufmode = *(u_int *)addr;
1907 BPFD_UNLOCK(d);
1908 break;
1909
1910 case BIOCGETZMAX:
1911 error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1912 break;
1913
1914 case BIOCSETZBUF:
1915 error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1916 break;
1917
1918 case BIOCROTZBUF:
1919 error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1920 break;
1921
1922 case BIOCSETVLANPCP:
1923 {
1924 u_int pcp;
1925
1926 pcp = *(u_int *)addr;
1927 if (pcp > BPF_PRIO_MAX || pcp < 0) {
1928 error = EINVAL;
1929 break;
1930 }
1931 d->bd_pcp = pcp;
1932 break;
1933 }
1934 }
1935 CURVNET_RESTORE();
1936 return (error);
1937 }
1938
1939 /*
1940 * Set d's packet filter program to fp. If this file already has a filter,
1941 * free it and replace it. Returns EINVAL for bogus requests.
1942 *
1943 * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1944 * calls.
1945 */
1946 static int
bpf_setf(struct bpf_d * d,struct bpf_program * fp,u_long cmd)1947 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1948 {
1949 #ifdef COMPAT_FREEBSD32
1950 struct bpf_program fp_swab;
1951 struct bpf_program32 *fp32;
1952 #endif
1953 struct bpf_program_buffer *fcode;
1954 struct bpf_insn *filter;
1955 #ifdef BPF_JITTER
1956 bpf_jit_filter *jfunc;
1957 #endif
1958 size_t size;
1959 u_int flen;
1960 bool track_event;
1961
1962 #ifdef COMPAT_FREEBSD32
1963 switch (cmd) {
1964 case BIOCSETF32:
1965 case BIOCSETWF32:
1966 case BIOCSETFNR32:
1967 fp32 = (struct bpf_program32 *)fp;
1968 fp_swab.bf_len = fp32->bf_len;
1969 fp_swab.bf_insns =
1970 (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1971 fp = &fp_swab;
1972 switch (cmd) {
1973 case BIOCSETF32:
1974 cmd = BIOCSETF;
1975 break;
1976 case BIOCSETWF32:
1977 cmd = BIOCSETWF;
1978 break;
1979 }
1980 break;
1981 }
1982 #endif
1983
1984 filter = NULL;
1985 #ifdef BPF_JITTER
1986 jfunc = NULL;
1987 #endif
1988 /*
1989 * Check new filter validness before acquiring any locks.
1990 * Allocate memory for new filter, if needed.
1991 */
1992 flen = fp->bf_len;
1993 if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1994 return (EINVAL);
1995 size = flen * sizeof(*fp->bf_insns);
1996 if (size > 0) {
1997 /* We're setting up new filter. Copy and check actual data. */
1998 fcode = bpf_program_buffer_alloc(size, M_WAITOK);
1999 filter = (struct bpf_insn *)fcode->buffer;
2000 if (copyin(fp->bf_insns, filter, size) != 0 ||
2001 !bpf_validate(filter, flen)) {
2002 free(fcode, M_BPF);
2003 return (EINVAL);
2004 }
2005 #ifdef BPF_JITTER
2006 if (cmd != BIOCSETWF) {
2007 /*
2008 * Filter is copied inside fcode and is
2009 * perfectly valid.
2010 */
2011 jfunc = bpf_jitter(filter, flen);
2012 }
2013 #endif
2014 }
2015
2016 track_event = false;
2017 fcode = NULL;
2018
2019 BPF_LOCK();
2020 BPFD_LOCK(d);
2021 /* Set up new filter. */
2022 if (cmd == BIOCSETWF) {
2023 if (d->bd_wfilter != NULL) {
2024 fcode = __containerof((void *)d->bd_wfilter,
2025 struct bpf_program_buffer, buffer);
2026 #ifdef BPF_JITTER
2027 fcode->func = NULL;
2028 #endif
2029 }
2030 d->bd_wfilter = filter;
2031 } else {
2032 if (d->bd_rfilter != NULL) {
2033 fcode = __containerof((void *)d->bd_rfilter,
2034 struct bpf_program_buffer, buffer);
2035 #ifdef BPF_JITTER
2036 fcode->func = d->bd_bfilter;
2037 #endif
2038 }
2039 d->bd_rfilter = filter;
2040 #ifdef BPF_JITTER
2041 d->bd_bfilter = jfunc;
2042 #endif
2043 if (cmd == BIOCSETF)
2044 reset_d(d);
2045
2046 if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2047 /*
2048 * Filter can be set several times without
2049 * specifying interface. In this case just mark d
2050 * as reader.
2051 */
2052 d->bd_writer = 0;
2053 if (d->bd_bif != NULL) {
2054 /*
2055 * Remove descriptor from writers-only list
2056 * and add it to active readers list.
2057 */
2058 CK_LIST_REMOVE(d, bd_next);
2059 CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2060 d, bd_next);
2061 CTR2(KTR_NET,
2062 "%s: upgrade required by pid %d",
2063 __func__, d->bd_pid);
2064 track_event = true;
2065 }
2066 }
2067 }
2068 BPFD_UNLOCK(d);
2069
2070 if (fcode != NULL)
2071 NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx);
2072
2073 if (track_event)
2074 EVENTHANDLER_INVOKE(bpf_track,
2075 d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2076
2077 BPF_UNLOCK();
2078 return (0);
2079 }
2080
2081 /*
2082 * Detach a file from its current interface (if attached at all) and attach
2083 * to the interface indicated by the name stored in ifr.
2084 * Return an errno or 0.
2085 */
2086 static int
bpf_setif(struct bpf_d * d,struct ifreq * ifr)2087 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2088 {
2089 struct bpf_if *bp;
2090 struct ifnet *theywant;
2091
2092 BPF_LOCK_ASSERT();
2093
2094 theywant = ifunit(ifr->ifr_name);
2095 if (theywant == NULL)
2096 return (ENXIO);
2097 /*
2098 * Look through attached interfaces for the named one.
2099 */
2100 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2101 if (bp->bif_ifp == theywant &&
2102 bp->bif_bpf == &theywant->if_bpf)
2103 break;
2104 }
2105 if (bp == NULL)
2106 return (ENXIO);
2107
2108 MPASS(bp == theywant->if_bpf);
2109 /*
2110 * At this point, we expect the buffer is already allocated. If not,
2111 * return an error.
2112 */
2113 switch (d->bd_bufmode) {
2114 case BPF_BUFMODE_BUFFER:
2115 case BPF_BUFMODE_ZBUF:
2116 if (d->bd_sbuf == NULL)
2117 return (EINVAL);
2118 break;
2119
2120 default:
2121 panic("bpf_setif: bufmode %d", d->bd_bufmode);
2122 }
2123 if (bp != d->bd_bif)
2124 bpf_attachd(d, bp);
2125 else {
2126 BPFD_LOCK(d);
2127 reset_d(d);
2128 BPFD_UNLOCK(d);
2129 }
2130 return (0);
2131 }
2132
2133 /*
2134 * Support for select() and poll() system calls
2135 *
2136 * Return true iff the specific operation will not block indefinitely.
2137 * Otherwise, return false but make a note that a selwakeup() must be done.
2138 */
2139 static int
bpfpoll(struct cdev * dev,int events,struct thread * td)2140 bpfpoll(struct cdev *dev, int events, struct thread *td)
2141 {
2142 struct bpf_d *d;
2143 int revents;
2144
2145 if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2146 return (events &
2147 (POLLHUP | POLLIN | POLLRDNORM | POLLOUT | POLLWRNORM));
2148
2149 /*
2150 * Refresh PID associated with this descriptor.
2151 */
2152 revents = events & (POLLOUT | POLLWRNORM);
2153 BPFD_LOCK(d);
2154 BPF_PID_REFRESH(d, td);
2155 if (events & (POLLIN | POLLRDNORM)) {
2156 if (bpf_ready(d))
2157 revents |= events & (POLLIN | POLLRDNORM);
2158 else {
2159 selrecord(td, &d->bd_sel);
2160 /* Start the read timeout if necessary. */
2161 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2162 callout_reset(&d->bd_callout, d->bd_rtout,
2163 bpf_timed_out, d);
2164 d->bd_state = BPF_WAITING;
2165 }
2166 }
2167 }
2168 BPFD_UNLOCK(d);
2169 return (revents);
2170 }
2171
2172 /*
2173 * Support for kevent() system call. Register EVFILT_READ filters and
2174 * reject all others.
2175 */
2176 int
bpfkqfilter(struct cdev * dev,struct knote * kn)2177 bpfkqfilter(struct cdev *dev, struct knote *kn)
2178 {
2179 struct bpf_d *d;
2180
2181 if (devfs_get_cdevpriv((void **)&d) != 0)
2182 return (1);
2183
2184 switch (kn->kn_filter) {
2185 case EVFILT_READ:
2186 kn->kn_fop = &bpfread_filtops;
2187 break;
2188
2189 case EVFILT_WRITE:
2190 kn->kn_fop = &bpfwrite_filtops;
2191 break;
2192
2193 default:
2194 return (1);
2195 }
2196
2197 /*
2198 * Refresh PID associated with this descriptor.
2199 */
2200 BPFD_LOCK(d);
2201 BPF_PID_REFRESH_CUR(d);
2202 kn->kn_hook = d;
2203 knlist_add(&d->bd_sel.si_note, kn, 1);
2204 BPFD_UNLOCK(d);
2205
2206 return (0);
2207 }
2208
2209 static void
filt_bpfdetach(struct knote * kn)2210 filt_bpfdetach(struct knote *kn)
2211 {
2212 struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2213
2214 knlist_remove(&d->bd_sel.si_note, kn, 0);
2215 }
2216
2217 static int
filt_bpfread(struct knote * kn,long hint)2218 filt_bpfread(struct knote *kn, long hint)
2219 {
2220 struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2221 int ready;
2222
2223 BPFD_LOCK_ASSERT(d);
2224 ready = bpf_ready(d);
2225 if (ready) {
2226 kn->kn_data = d->bd_slen;
2227 /*
2228 * Ignore the hold buffer if it is being copied to user space.
2229 */
2230 if (!d->bd_hbuf_in_use && d->bd_hbuf)
2231 kn->kn_data += d->bd_hlen;
2232 } else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2233 callout_reset(&d->bd_callout, d->bd_rtout,
2234 bpf_timed_out, d);
2235 d->bd_state = BPF_WAITING;
2236 }
2237
2238 return (ready);
2239 }
2240
2241 static int
filt_bpfwrite(struct knote * kn,long hint)2242 filt_bpfwrite(struct knote *kn, long hint)
2243 {
2244 struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2245
2246 BPFD_LOCK_ASSERT(d);
2247
2248 if (d->bd_bif == NULL) {
2249 kn->kn_data = 0;
2250 return (0);
2251 } else {
2252 kn->kn_data = d->bd_bif->bif_ifp->if_mtu;
2253 return (1);
2254 }
2255 }
2256
2257 #define BPF_TSTAMP_NONE 0
2258 #define BPF_TSTAMP_FAST 1
2259 #define BPF_TSTAMP_NORMAL 2
2260 #define BPF_TSTAMP_EXTERN 3
2261
2262 static int
bpf_ts_quality(int tstype)2263 bpf_ts_quality(int tstype)
2264 {
2265
2266 if (tstype == BPF_T_NONE)
2267 return (BPF_TSTAMP_NONE);
2268 if ((tstype & BPF_T_FAST) != 0)
2269 return (BPF_TSTAMP_FAST);
2270
2271 return (BPF_TSTAMP_NORMAL);
2272 }
2273
2274 static int
bpf_gettime(struct bintime * bt,int tstype,struct mbuf * m)2275 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2276 {
2277 struct timespec ts;
2278 struct m_tag *tag;
2279 int quality;
2280
2281 quality = bpf_ts_quality(tstype);
2282 if (quality == BPF_TSTAMP_NONE)
2283 return (quality);
2284
2285 if (m != NULL) {
2286 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) {
2287 mbuf_tstmp2timespec(m, &ts);
2288 timespec2bintime(&ts, bt);
2289 return (BPF_TSTAMP_EXTERN);
2290 }
2291 tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2292 if (tag != NULL) {
2293 *bt = *(struct bintime *)(tag + 1);
2294 return (BPF_TSTAMP_EXTERN);
2295 }
2296 }
2297 if (quality == BPF_TSTAMP_NORMAL)
2298 binuptime(bt);
2299 else
2300 getbinuptime(bt);
2301
2302 return (quality);
2303 }
2304
2305 /*
2306 * Incoming linkage from device drivers. Process the packet pkt, of length
2307 * pktlen, which is stored in a contiguous buffer. The packet is parsed
2308 * by each process' filter, and if accepted, stashed into the corresponding
2309 * buffer.
2310 */
2311 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)2312 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2313 {
2314 struct epoch_tracker et;
2315 struct bintime bt;
2316 struct bpf_d *d;
2317 #ifdef BPF_JITTER
2318 bpf_jit_filter *bf;
2319 #endif
2320 u_int slen;
2321 int gottime;
2322
2323 gottime = BPF_TSTAMP_NONE;
2324 NET_EPOCH_ENTER(et);
2325 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2326 counter_u64_add(d->bd_rcount, 1);
2327 /*
2328 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2329 * is no way for the caller to indiciate to us whether this
2330 * packet is inbound or outbound. In the bpf_mtap() routines,
2331 * we use the interface pointers on the mbuf to figure it out.
2332 */
2333 #ifdef BPF_JITTER
2334 bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2335 if (bf != NULL)
2336 slen = (*(bf->func))(pkt, pktlen, pktlen);
2337 else
2338 #endif
2339 slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2340 if (slen != 0) {
2341 /*
2342 * Filter matches. Let's to acquire write lock.
2343 */
2344 BPFD_LOCK(d);
2345 counter_u64_add(d->bd_fcount, 1);
2346 if (gottime < bpf_ts_quality(d->bd_tstamp))
2347 gottime = bpf_gettime(&bt, d->bd_tstamp,
2348 NULL);
2349 #ifdef MAC
2350 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2351 #endif
2352 catchpacket(d, pkt, pktlen, slen,
2353 bpf_append_bytes, &bt);
2354 BPFD_UNLOCK(d);
2355 }
2356 }
2357 NET_EPOCH_EXIT(et);
2358 }
2359
2360 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)2361 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
2362 {
2363 if (bpf_peers_present(ifp->if_bpf))
2364 bpf_tap(ifp->if_bpf, pkt, pktlen);
2365 }
2366
2367 #define BPF_CHECK_DIRECTION(d, r, i) \
2368 (((d)->bd_direction == BPF_D_IN && (r) != (i)) || \
2369 ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2370
2371 /*
2372 * Incoming linkage from device drivers, when packet is in an mbuf chain.
2373 * Locking model is explained in bpf_tap().
2374 */
2375 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)2376 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2377 {
2378 struct epoch_tracker et;
2379 struct bintime bt;
2380 struct bpf_d *d;
2381 #ifdef BPF_JITTER
2382 bpf_jit_filter *bf;
2383 #endif
2384 u_int pktlen, slen;
2385 int gottime;
2386
2387 /* Skip outgoing duplicate packets. */
2388 if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) {
2389 m->m_flags &= ~M_PROMISC;
2390 return;
2391 }
2392
2393 pktlen = m_length(m, NULL);
2394 gottime = BPF_TSTAMP_NONE;
2395
2396 NET_EPOCH_ENTER(et);
2397 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2398 if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp))
2399 continue;
2400 counter_u64_add(d->bd_rcount, 1);
2401 #ifdef BPF_JITTER
2402 bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2403 /* XXX We cannot handle multiple mbufs. */
2404 if (bf != NULL && m->m_next == NULL)
2405 slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2406 pktlen);
2407 else
2408 #endif
2409 slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2410 if (slen != 0) {
2411 BPFD_LOCK(d);
2412
2413 counter_u64_add(d->bd_fcount, 1);
2414 if (gottime < bpf_ts_quality(d->bd_tstamp))
2415 gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2416 #ifdef MAC
2417 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2418 #endif
2419 catchpacket(d, (u_char *)m, pktlen, slen,
2420 bpf_append_mbuf, &bt);
2421 BPFD_UNLOCK(d);
2422 }
2423 }
2424 NET_EPOCH_EXIT(et);
2425 }
2426
2427 void
bpf_mtap_if(if_t ifp,struct mbuf * m)2428 bpf_mtap_if(if_t ifp, struct mbuf *m)
2429 {
2430 if (bpf_peers_present(ifp->if_bpf)) {
2431 M_ASSERTVALID(m);
2432 bpf_mtap(ifp->if_bpf, m);
2433 }
2434 }
2435
2436 /*
2437 * Incoming linkage from device drivers, when packet is in
2438 * an mbuf chain and to be prepended by a contiguous header.
2439 */
2440 void
bpf_mtap2(struct bpf_if * bp,void * data,u_int dlen,struct mbuf * m)2441 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2442 {
2443 struct epoch_tracker et;
2444 struct bintime bt;
2445 struct mbuf mb;
2446 struct bpf_d *d;
2447 u_int pktlen, slen;
2448 int gottime;
2449
2450 /* Skip outgoing duplicate packets. */
2451 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2452 m->m_flags &= ~M_PROMISC;
2453 return;
2454 }
2455
2456 pktlen = m_length(m, NULL);
2457 /*
2458 * Craft on-stack mbuf suitable for passing to bpf_filter.
2459 * Note that we cut corners here; we only setup what's
2460 * absolutely needed--this mbuf should never go anywhere else.
2461 */
2462 mb.m_flags = 0;
2463 mb.m_next = m;
2464 mb.m_data = data;
2465 mb.m_len = dlen;
2466 pktlen += dlen;
2467
2468 gottime = BPF_TSTAMP_NONE;
2469
2470 NET_EPOCH_ENTER(et);
2471 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2472 if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2473 continue;
2474 counter_u64_add(d->bd_rcount, 1);
2475 slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2476 if (slen != 0) {
2477 BPFD_LOCK(d);
2478
2479 counter_u64_add(d->bd_fcount, 1);
2480 if (gottime < bpf_ts_quality(d->bd_tstamp))
2481 gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2482 #ifdef MAC
2483 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2484 #endif
2485 catchpacket(d, (u_char *)&mb, pktlen, slen,
2486 bpf_append_mbuf, &bt);
2487 BPFD_UNLOCK(d);
2488 }
2489 }
2490 NET_EPOCH_EXIT(et);
2491 }
2492
2493 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)2494 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
2495 {
2496 if (bpf_peers_present(ifp->if_bpf)) {
2497 M_ASSERTVALID(m);
2498 bpf_mtap2(ifp->if_bpf, data, dlen, m);
2499 }
2500 }
2501
2502 #undef BPF_CHECK_DIRECTION
2503 #undef BPF_TSTAMP_NONE
2504 #undef BPF_TSTAMP_FAST
2505 #undef BPF_TSTAMP_NORMAL
2506 #undef BPF_TSTAMP_EXTERN
2507
2508 static int
bpf_hdrlen(struct bpf_d * d)2509 bpf_hdrlen(struct bpf_d *d)
2510 {
2511 int hdrlen;
2512
2513 hdrlen = d->bd_bif->bif_hdrlen;
2514 #ifndef BURN_BRIDGES
2515 if (d->bd_tstamp == BPF_T_NONE ||
2516 BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2517 #ifdef COMPAT_FREEBSD32
2518 if (d->bd_compat32)
2519 hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2520 else
2521 #endif
2522 hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2523 else
2524 #endif
2525 hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2526 #ifdef COMPAT_FREEBSD32
2527 if (d->bd_compat32)
2528 hdrlen = BPF_WORDALIGN32(hdrlen);
2529 else
2530 #endif
2531 hdrlen = BPF_WORDALIGN(hdrlen);
2532
2533 return (hdrlen - d->bd_bif->bif_hdrlen);
2534 }
2535
2536 static void
bpf_bintime2ts(struct bintime * bt,struct bpf_ts * ts,int tstype)2537 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2538 {
2539 struct bintime bt2, boottimebin;
2540 struct timeval tsm;
2541 struct timespec tsn;
2542
2543 if ((tstype & BPF_T_MONOTONIC) == 0) {
2544 bt2 = *bt;
2545 getboottimebin(&boottimebin);
2546 bintime_add(&bt2, &boottimebin);
2547 bt = &bt2;
2548 }
2549 switch (BPF_T_FORMAT(tstype)) {
2550 case BPF_T_MICROTIME:
2551 bintime2timeval(bt, &tsm);
2552 ts->bt_sec = tsm.tv_sec;
2553 ts->bt_frac = tsm.tv_usec;
2554 break;
2555 case BPF_T_NANOTIME:
2556 bintime2timespec(bt, &tsn);
2557 ts->bt_sec = tsn.tv_sec;
2558 ts->bt_frac = tsn.tv_nsec;
2559 break;
2560 case BPF_T_BINTIME:
2561 ts->bt_sec = bt->sec;
2562 ts->bt_frac = bt->frac;
2563 break;
2564 }
2565 }
2566
2567 /*
2568 * Move the packet data from interface memory (pkt) into the
2569 * store buffer. "cpfn" is the routine called to do the actual data
2570 * transfer. bcopy is passed in to copy contiguous chunks, while
2571 * bpf_append_mbuf is passed in to copy mbuf chains. In the latter case,
2572 * pkt is really an mbuf.
2573 */
2574 static void
catchpacket(struct bpf_d * d,u_char * pkt,u_int pktlen,u_int snaplen,void (* cpfn)(struct bpf_d *,caddr_t,u_int,void *,u_int),struct bintime * bt)2575 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2576 void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2577 struct bintime *bt)
2578 {
2579 static char zeroes[BPF_ALIGNMENT];
2580 struct bpf_xhdr hdr;
2581 #ifndef BURN_BRIDGES
2582 struct bpf_hdr hdr_old;
2583 #ifdef COMPAT_FREEBSD32
2584 struct bpf_hdr32 hdr32_old;
2585 #endif
2586 #endif
2587 int caplen, curlen, hdrlen, pad, totlen;
2588 int do_wakeup = 0;
2589 int do_timestamp;
2590 int tstype;
2591
2592 BPFD_LOCK_ASSERT(d);
2593 if (d->bd_bif == NULL) {
2594 /* Descriptor was detached in concurrent thread */
2595 counter_u64_add(d->bd_dcount, 1);
2596 return;
2597 }
2598
2599 /*
2600 * Detect whether user space has released a buffer back to us, and if
2601 * so, move it from being a hold buffer to a free buffer. This may
2602 * not be the best place to do it (for example, we might only want to
2603 * run this check if we need the space), but for now it's a reliable
2604 * spot to do it.
2605 */
2606 if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2607 d->bd_fbuf = d->bd_hbuf;
2608 d->bd_hbuf = NULL;
2609 d->bd_hlen = 0;
2610 bpf_buf_reclaimed(d);
2611 }
2612
2613 /*
2614 * Figure out how many bytes to move. If the packet is
2615 * greater or equal to the snapshot length, transfer that
2616 * much. Otherwise, transfer the whole packet (unless
2617 * we hit the buffer size limit).
2618 */
2619 hdrlen = bpf_hdrlen(d);
2620 totlen = hdrlen + min(snaplen, pktlen);
2621 if (totlen > d->bd_bufsize)
2622 totlen = d->bd_bufsize;
2623
2624 /*
2625 * Round up the end of the previous packet to the next longword.
2626 *
2627 * Drop the packet if there's no room and no hope of room
2628 * If the packet would overflow the storage buffer or the storage
2629 * buffer is considered immutable by the buffer model, try to rotate
2630 * the buffer and wakeup pending processes.
2631 */
2632 #ifdef COMPAT_FREEBSD32
2633 if (d->bd_compat32)
2634 curlen = BPF_WORDALIGN32(d->bd_slen);
2635 else
2636 #endif
2637 curlen = BPF_WORDALIGN(d->bd_slen);
2638 if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2639 if (d->bd_fbuf == NULL) {
2640 /*
2641 * There's no room in the store buffer, and no
2642 * prospect of room, so drop the packet. Notify the
2643 * buffer model.
2644 */
2645 bpf_buffull(d);
2646 counter_u64_add(d->bd_dcount, 1);
2647 return;
2648 }
2649 KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2650 ROTATE_BUFFERS(d);
2651 do_wakeup = 1;
2652 curlen = 0;
2653 } else {
2654 if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2655 /*
2656 * Immediate mode is set, or the read timeout has
2657 * already expired during a select call. A packet
2658 * arrived, so the reader should be woken up.
2659 */
2660 do_wakeup = 1;
2661 }
2662 pad = curlen - d->bd_slen;
2663 KASSERT(pad >= 0 && pad <= sizeof(zeroes),
2664 ("%s: invalid pad byte count %d", __func__, pad));
2665 if (pad > 0) {
2666 /* Zero pad bytes. */
2667 bpf_append_bytes(d, d->bd_sbuf, d->bd_slen, zeroes,
2668 pad);
2669 }
2670 }
2671
2672 caplen = totlen - hdrlen;
2673 tstype = d->bd_tstamp;
2674 do_timestamp = tstype != BPF_T_NONE;
2675 #ifndef BURN_BRIDGES
2676 if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2677 struct bpf_ts ts;
2678 if (do_timestamp)
2679 bpf_bintime2ts(bt, &ts, tstype);
2680 #ifdef COMPAT_FREEBSD32
2681 if (d->bd_compat32) {
2682 bzero(&hdr32_old, sizeof(hdr32_old));
2683 if (do_timestamp) {
2684 hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2685 hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2686 }
2687 hdr32_old.bh_datalen = pktlen;
2688 hdr32_old.bh_hdrlen = hdrlen;
2689 hdr32_old.bh_caplen = caplen;
2690 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2691 sizeof(hdr32_old));
2692 goto copy;
2693 }
2694 #endif
2695 bzero(&hdr_old, sizeof(hdr_old));
2696 if (do_timestamp) {
2697 hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2698 hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2699 }
2700 hdr_old.bh_datalen = pktlen;
2701 hdr_old.bh_hdrlen = hdrlen;
2702 hdr_old.bh_caplen = caplen;
2703 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2704 sizeof(hdr_old));
2705 goto copy;
2706 }
2707 #endif
2708
2709 /*
2710 * Append the bpf header. Note we append the actual header size, but
2711 * move forward the length of the header plus padding.
2712 */
2713 bzero(&hdr, sizeof(hdr));
2714 if (do_timestamp)
2715 bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2716 hdr.bh_datalen = pktlen;
2717 hdr.bh_hdrlen = hdrlen;
2718 hdr.bh_caplen = caplen;
2719 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2720
2721 /*
2722 * Copy the packet data into the store buffer and update its length.
2723 */
2724 #ifndef BURN_BRIDGES
2725 copy:
2726 #endif
2727 (*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2728 d->bd_slen = curlen + totlen;
2729
2730 if (do_wakeup)
2731 bpf_wakeup(d);
2732 }
2733
2734 /*
2735 * Free buffers currently in use by a descriptor.
2736 * Called on close.
2737 */
2738 static void
bpfd_free(epoch_context_t ctx)2739 bpfd_free(epoch_context_t ctx)
2740 {
2741 struct bpf_d *d;
2742 struct bpf_program_buffer *p;
2743
2744 /*
2745 * We don't need to lock out interrupts since this descriptor has
2746 * been detached from its interface and it yet hasn't been marked
2747 * free.
2748 */
2749 d = __containerof(ctx, struct bpf_d, epoch_ctx);
2750 bpf_free(d);
2751 if (d->bd_rfilter != NULL) {
2752 p = __containerof((void *)d->bd_rfilter,
2753 struct bpf_program_buffer, buffer);
2754 #ifdef BPF_JITTER
2755 p->func = d->bd_bfilter;
2756 #endif
2757 bpf_program_buffer_free(&p->epoch_ctx);
2758 }
2759 if (d->bd_wfilter != NULL) {
2760 p = __containerof((void *)d->bd_wfilter,
2761 struct bpf_program_buffer, buffer);
2762 #ifdef BPF_JITTER
2763 p->func = NULL;
2764 #endif
2765 bpf_program_buffer_free(&p->epoch_ctx);
2766 }
2767
2768 mtx_destroy(&d->bd_lock);
2769 counter_u64_free(d->bd_rcount);
2770 counter_u64_free(d->bd_dcount);
2771 counter_u64_free(d->bd_fcount);
2772 counter_u64_free(d->bd_wcount);
2773 counter_u64_free(d->bd_wfcount);
2774 counter_u64_free(d->bd_wdcount);
2775 counter_u64_free(d->bd_zcopy);
2776 free(d, M_BPF);
2777 }
2778
2779 /*
2780 * Attach an interface to bpf. dlt is the link layer type; hdrlen is the
2781 * fixed size of the link header (variable length headers not yet supported).
2782 */
2783 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)2784 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2785 {
2786
2787 bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2788 }
2789
2790 /*
2791 * Attach an interface to bpf. ifp is a pointer to the structure
2792 * defining the interface to be attached, dlt is the link layer type,
2793 * and hdrlen is the fixed size of the link header (variable length
2794 * headers are not yet supporrted).
2795 */
2796 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)2797 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2798 struct bpf_if **driverp)
2799 {
2800 struct bpf_if *bp;
2801
2802 KASSERT(*driverp == NULL,
2803 ("bpfattach2: driverp already initialized"));
2804
2805 bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2806
2807 CK_LIST_INIT(&bp->bif_dlist);
2808 CK_LIST_INIT(&bp->bif_wlist);
2809 bp->bif_ifp = ifp;
2810 bp->bif_dlt = dlt;
2811 bp->bif_hdrlen = hdrlen;
2812 bp->bif_bpf = driverp;
2813 refcount_init(&bp->bif_refcnt, 1);
2814 *driverp = bp;
2815 /*
2816 * Reference ifnet pointer, so it won't freed until
2817 * we release it.
2818 */
2819 if_ref(ifp);
2820 BPF_LOCK();
2821 CK_LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2822 BPF_UNLOCK();
2823
2824 if (bootverbose && IS_DEFAULT_VNET(curvnet))
2825 if_printf(ifp, "bpf attached\n");
2826 }
2827
2828 #ifdef VIMAGE
2829 /*
2830 * When moving interfaces between vnet instances we need a way to
2831 * query the dlt and hdrlen before detach so we can re-attch the if_bpf
2832 * after the vmove. We unfortunately have no device driver infrastructure
2833 * to query the interface for these values after creation/attach, thus
2834 * add this as a workaround.
2835 */
2836 int
bpf_get_bp_params(struct bpf_if * bp,u_int * bif_dlt,u_int * bif_hdrlen)2837 bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
2838 {
2839
2840 if (bp == NULL)
2841 return (ENXIO);
2842 if (bif_dlt == NULL && bif_hdrlen == NULL)
2843 return (0);
2844
2845 if (bif_dlt != NULL)
2846 *bif_dlt = bp->bif_dlt;
2847 if (bif_hdrlen != NULL)
2848 *bif_hdrlen = bp->bif_hdrlen;
2849
2850 return (0);
2851 }
2852
2853 /*
2854 * Detach descriptors on interface's vmove event.
2855 */
2856 void
bpf_ifdetach(struct ifnet * ifp)2857 bpf_ifdetach(struct ifnet *ifp)
2858 {
2859 struct bpf_if *bp;
2860 struct bpf_d *d;
2861
2862 BPF_LOCK();
2863 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2864 if (bp->bif_ifp != ifp)
2865 continue;
2866
2867 /* Detach common descriptors */
2868 while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2869 bpf_detachd_locked(d, true);
2870 }
2871
2872 /* Detach writer-only descriptors */
2873 while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2874 bpf_detachd_locked(d, true);
2875 }
2876 }
2877 BPF_UNLOCK();
2878 }
2879 #endif
2880
2881 /*
2882 * Detach bpf from an interface. This involves detaching each descriptor
2883 * associated with the interface. Notify each descriptor as it's detached
2884 * so that any sleepers wake up and get ENXIO.
2885 */
2886 void
bpfdetach(struct ifnet * ifp)2887 bpfdetach(struct ifnet *ifp)
2888 {
2889 struct bpf_if *bp, *bp_temp;
2890 struct bpf_d *d;
2891
2892 BPF_LOCK();
2893 /* Find all bpf_if struct's which reference ifp and detach them. */
2894 CK_LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2895 if (ifp != bp->bif_ifp)
2896 continue;
2897
2898 CK_LIST_REMOVE(bp, bif_next);
2899 *bp->bif_bpf = __DECONST(struct bpf_if *, &dead_bpf_if);
2900
2901 CTR4(KTR_NET,
2902 "%s: sheduling free for encap %d (%p) for if %p",
2903 __func__, bp->bif_dlt, bp, ifp);
2904
2905 /* Detach common descriptors */
2906 while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2907 bpf_detachd_locked(d, true);
2908 }
2909
2910 /* Detach writer-only descriptors */
2911 while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2912 bpf_detachd_locked(d, true);
2913 }
2914 bpfif_rele(bp);
2915 }
2916 BPF_UNLOCK();
2917 }
2918
2919 bool
bpf_peers_present_if(struct ifnet * ifp)2920 bpf_peers_present_if(struct ifnet *ifp)
2921 {
2922 return (bpf_peers_present(ifp->if_bpf));
2923 }
2924
2925 /*
2926 * Get a list of available data link type of the interface.
2927 */
2928 static int
bpf_getdltlist(struct bpf_d * d,struct bpf_dltlist * bfl)2929 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2930 {
2931 struct ifnet *ifp;
2932 struct bpf_if *bp;
2933 u_int *lst;
2934 int error, n, n1;
2935
2936 BPF_LOCK_ASSERT();
2937
2938 ifp = d->bd_bif->bif_ifp;
2939 n1 = 0;
2940 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2941 if (bp->bif_ifp == ifp)
2942 n1++;
2943 }
2944 if (bfl->bfl_list == NULL) {
2945 bfl->bfl_len = n1;
2946 return (0);
2947 }
2948 if (n1 > bfl->bfl_len)
2949 return (ENOMEM);
2950
2951 lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2952 n = 0;
2953 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2954 if (bp->bif_ifp != ifp)
2955 continue;
2956 lst[n++] = bp->bif_dlt;
2957 }
2958 error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2959 free(lst, M_TEMP);
2960 bfl->bfl_len = n;
2961 return (error);
2962 }
2963
2964 /*
2965 * Set the data link type of a BPF instance.
2966 */
2967 static int
bpf_setdlt(struct bpf_d * d,u_int dlt)2968 bpf_setdlt(struct bpf_d *d, u_int dlt)
2969 {
2970 int error, opromisc;
2971 struct ifnet *ifp;
2972 struct bpf_if *bp;
2973
2974 BPF_LOCK_ASSERT();
2975 MPASS(d->bd_bif != NULL);
2976
2977 /*
2978 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2979 * changed while we hold global lock.
2980 */
2981 if (d->bd_bif->bif_dlt == dlt)
2982 return (0);
2983
2984 ifp = d->bd_bif->bif_ifp;
2985 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2986 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2987 break;
2988 }
2989 if (bp == NULL)
2990 return (EINVAL);
2991
2992 opromisc = d->bd_promisc;
2993 bpf_attachd(d, bp);
2994 if (opromisc) {
2995 error = ifpromisc(bp->bif_ifp, 1);
2996 if (error)
2997 if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
2998 __func__, error);
2999 else
3000 d->bd_promisc = 1;
3001 }
3002 return (0);
3003 }
3004
3005 static void
bpf_drvinit(void * unused)3006 bpf_drvinit(void *unused)
3007 {
3008 struct cdev *dev;
3009
3010 sx_init(&bpf_sx, "bpf global lock");
3011 dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
3012 /* For compatibility */
3013 make_dev_alias(dev, "bpf0");
3014 }
3015
3016 /*
3017 * Zero out the various packet counters associated with all of the bpf
3018 * descriptors. At some point, we will probably want to get a bit more
3019 * granular and allow the user to specify descriptors to be zeroed.
3020 */
3021 static void
bpf_zero_counters(void)3022 bpf_zero_counters(void)
3023 {
3024 struct bpf_if *bp;
3025 struct bpf_d *bd;
3026
3027 BPF_LOCK();
3028 /*
3029 * We are protected by global lock here, interfaces and
3030 * descriptors can not be deleted while we hold it.
3031 */
3032 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3033 CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3034 counter_u64_zero(bd->bd_rcount);
3035 counter_u64_zero(bd->bd_dcount);
3036 counter_u64_zero(bd->bd_fcount);
3037 counter_u64_zero(bd->bd_wcount);
3038 counter_u64_zero(bd->bd_wfcount);
3039 counter_u64_zero(bd->bd_zcopy);
3040 }
3041 }
3042 BPF_UNLOCK();
3043 }
3044
3045 /*
3046 * Fill filter statistics
3047 */
3048 static void
bpfstats_fill_xbpf(struct xbpf_d * d,struct bpf_d * bd)3049 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
3050 {
3051
3052 BPF_LOCK_ASSERT();
3053 bzero(d, sizeof(*d));
3054 d->bd_structsize = sizeof(*d);
3055 d->bd_immediate = bd->bd_immediate;
3056 d->bd_promisc = bd->bd_promisc;
3057 d->bd_hdrcmplt = bd->bd_hdrcmplt;
3058 d->bd_direction = bd->bd_direction;
3059 d->bd_feedback = bd->bd_feedback;
3060 d->bd_async = bd->bd_async;
3061 d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
3062 d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
3063 d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
3064 d->bd_sig = bd->bd_sig;
3065 d->bd_slen = bd->bd_slen;
3066 d->bd_hlen = bd->bd_hlen;
3067 d->bd_bufsize = bd->bd_bufsize;
3068 d->bd_pid = bd->bd_pid;
3069 strlcpy(d->bd_ifname,
3070 bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
3071 d->bd_locked = bd->bd_locked;
3072 d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
3073 d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
3074 d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
3075 d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
3076 d->bd_bufmode = bd->bd_bufmode;
3077 }
3078
3079 /*
3080 * Handle `netstat -B' stats request
3081 */
3082 static int
bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)3083 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
3084 {
3085 static const struct xbpf_d zerostats;
3086 struct xbpf_d *xbdbuf, *xbd, tempstats;
3087 int index, error;
3088 struct bpf_if *bp;
3089 struct bpf_d *bd;
3090
3091 /*
3092 * XXX This is not technically correct. It is possible for non
3093 * privileged users to open bpf devices. It would make sense
3094 * if the users who opened the devices were able to retrieve
3095 * the statistics for them, too.
3096 */
3097 error = priv_check(req->td, PRIV_NET_BPF);
3098 if (error)
3099 return (error);
3100 /*
3101 * Check to see if the user is requesting that the counters be
3102 * zeroed out. Explicitly check that the supplied data is zeroed,
3103 * as we aren't allowing the user to set the counters currently.
3104 */
3105 if (req->newptr != NULL) {
3106 if (req->newlen != sizeof(tempstats))
3107 return (EINVAL);
3108 memset(&tempstats, 0, sizeof(tempstats));
3109 error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
3110 if (error)
3111 return (error);
3112 if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
3113 return (EINVAL);
3114 bpf_zero_counters();
3115 return (0);
3116 }
3117 if (req->oldptr == NULL)
3118 return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
3119 if (bpf_bpfd_cnt == 0)
3120 return (SYSCTL_OUT(req, 0, 0));
3121 xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
3122 BPF_LOCK();
3123 if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
3124 BPF_UNLOCK();
3125 free(xbdbuf, M_BPF);
3126 return (ENOMEM);
3127 }
3128 index = 0;
3129 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3130 /* Send writers-only first */
3131 CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
3132 xbd = &xbdbuf[index++];
3133 bpfstats_fill_xbpf(xbd, bd);
3134 }
3135 CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3136 xbd = &xbdbuf[index++];
3137 bpfstats_fill_xbpf(xbd, bd);
3138 }
3139 }
3140 BPF_UNLOCK();
3141 error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
3142 free(xbdbuf, M_BPF);
3143 return (error);
3144 }
3145
3146 SYSINIT(bpfdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, bpf_drvinit, NULL);
3147
3148 #else /* !DEV_BPF && !NETGRAPH_BPF */
3149
3150 /*
3151 * NOP stubs to allow bpf-using drivers to load and function.
3152 *
3153 * A 'better' implementation would allow the core bpf functionality
3154 * to be loaded at runtime.
3155 */
3156
3157 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)3158 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3159 {
3160 }
3161
3162 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)3163 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
3164 {
3165 }
3166
3167 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)3168 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3169 {
3170 }
3171
3172 void
bpf_mtap_if(if_t ifp,struct mbuf * m)3173 bpf_mtap_if(if_t ifp, struct mbuf *m)
3174 {
3175 }
3176
3177 void
bpf_mtap2(struct bpf_if * bp,void * d,u_int l,struct mbuf * m)3178 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3179 {
3180 }
3181
3182 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)3183 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
3184 {
3185 }
3186
3187 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)3188 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3189 {
3190
3191 bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3192 }
3193
3194 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)3195 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3196 {
3197
3198 *driverp = __DECONST(struct bpf_if *, &dead_bpf_if);
3199 }
3200
3201 void
bpfdetach(struct ifnet * ifp)3202 bpfdetach(struct ifnet *ifp)
3203 {
3204 }
3205
3206 bool
bpf_peers_present_if(struct ifnet * ifp)3207 bpf_peers_present_if(struct ifnet *ifp)
3208 {
3209 return (false);
3210 }
3211
3212 u_int
bpf_filter(const struct bpf_insn * pc,u_char * p,u_int wirelen,u_int buflen)3213 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3214 {
3215 return (-1); /* "no filter" behaviour */
3216 }
3217
3218 int
bpf_validate(const struct bpf_insn * f,int len)3219 bpf_validate(const struct bpf_insn *f, int len)
3220 {
3221 return (0); /* false */
3222 }
3223
3224 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3225
3226 #ifdef DDB
3227 static void
bpf_show_bpf_if(struct bpf_if * bpf_if)3228 bpf_show_bpf_if(struct bpf_if *bpf_if)
3229 {
3230
3231 if (bpf_if == NULL)
3232 return;
3233 db_printf("%p:\n", bpf_if);
3234 #define BPF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, bpf_if->e);
3235 #define BPF_DB_PRINTF_RAW(f, e) db_printf(" %s = " f "\n", #e, e);
3236 /* bif_ext.bif_next */
3237 /* bif_ext.bif_dlist */
3238 BPF_DB_PRINTF("%#x", bif_dlt);
3239 BPF_DB_PRINTF("%u", bif_hdrlen);
3240 /* bif_wlist */
3241 BPF_DB_PRINTF("%p", bif_ifp);
3242 BPF_DB_PRINTF("%p", bif_bpf);
3243 BPF_DB_PRINTF_RAW("%u", refcount_load(&bpf_if->bif_refcnt));
3244 }
3245
DB_SHOW_COMMAND(bpf_if,db_show_bpf_if)3246 DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
3247 {
3248
3249 if (!have_addr) {
3250 db_printf("usage: show bpf_if <struct bpf_if *>\n");
3251 return;
3252 }
3253
3254 bpf_show_bpf_if((struct bpf_if *)addr);
3255 }
3256 #endif
3257