1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 #include "zip.h"
58
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC 0xcafe4a11
61 #endif
62
63 #define MAX_EVENT_NAME_LEN 64
64
65 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
66
67 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
68
69 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
70 * compilation if user enables corresponding warning. Disable it explicitly.
71 */
72 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
73
74 #define __printf(a, b) __attribute__((format(printf, a, b)))
75
76 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
77 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
78 static int map_set_def_max_entries(struct bpf_map *map);
79
80 static const char * const attach_type_name[] = {
81 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
82 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
83 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
84 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
85 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
86 [BPF_CGROUP_DEVICE] = "cgroup_device",
87 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
88 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
89 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
90 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
91 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect",
92 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
93 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
94 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
95 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
96 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername",
97 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
98 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
99 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname",
100 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
101 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
102 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg",
103 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
104 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
105 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
106 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg",
107 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
108 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
109 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
110 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
111 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
112 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
113 [BPF_LIRC_MODE2] = "lirc_mode2",
114 [BPF_FLOW_DISSECTOR] = "flow_dissector",
115 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
116 [BPF_TRACE_FENTRY] = "trace_fentry",
117 [BPF_TRACE_FEXIT] = "trace_fexit",
118 [BPF_MODIFY_RETURN] = "modify_return",
119 [BPF_LSM_MAC] = "lsm_mac",
120 [BPF_LSM_CGROUP] = "lsm_cgroup",
121 [BPF_SK_LOOKUP] = "sk_lookup",
122 [BPF_TRACE_ITER] = "trace_iter",
123 [BPF_XDP_DEVMAP] = "xdp_devmap",
124 [BPF_XDP_CPUMAP] = "xdp_cpumap",
125 [BPF_XDP] = "xdp",
126 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
127 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
128 [BPF_PERF_EVENT] = "perf_event",
129 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
130 [BPF_STRUCT_OPS] = "struct_ops",
131 [BPF_NETFILTER] = "netfilter",
132 [BPF_TCX_INGRESS] = "tcx_ingress",
133 [BPF_TCX_EGRESS] = "tcx_egress",
134 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
135 [BPF_NETKIT_PRIMARY] = "netkit_primary",
136 [BPF_NETKIT_PEER] = "netkit_peer",
137 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session",
138 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session",
139 };
140
141 static const char * const link_type_name[] = {
142 [BPF_LINK_TYPE_UNSPEC] = "unspec",
143 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
144 [BPF_LINK_TYPE_TRACING] = "tracing",
145 [BPF_LINK_TYPE_CGROUP] = "cgroup",
146 [BPF_LINK_TYPE_ITER] = "iter",
147 [BPF_LINK_TYPE_NETNS] = "netns",
148 [BPF_LINK_TYPE_XDP] = "xdp",
149 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
150 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
151 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
152 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
153 [BPF_LINK_TYPE_TCX] = "tcx",
154 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
155 [BPF_LINK_TYPE_NETKIT] = "netkit",
156 [BPF_LINK_TYPE_SOCKMAP] = "sockmap",
157 };
158
159 static const char * const map_type_name[] = {
160 [BPF_MAP_TYPE_UNSPEC] = "unspec",
161 [BPF_MAP_TYPE_HASH] = "hash",
162 [BPF_MAP_TYPE_ARRAY] = "array",
163 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
164 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
165 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
166 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
167 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
168 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
169 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
170 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
171 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
172 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
173 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
174 [BPF_MAP_TYPE_DEVMAP] = "devmap",
175 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
176 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
177 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
178 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
179 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
180 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
181 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
182 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
183 [BPF_MAP_TYPE_QUEUE] = "queue",
184 [BPF_MAP_TYPE_STACK] = "stack",
185 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
186 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
187 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
188 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
189 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
190 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
191 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
192 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
193 [BPF_MAP_TYPE_ARENA] = "arena",
194 };
195
196 static const char * const prog_type_name[] = {
197 [BPF_PROG_TYPE_UNSPEC] = "unspec",
198 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
199 [BPF_PROG_TYPE_KPROBE] = "kprobe",
200 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
201 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
202 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
203 [BPF_PROG_TYPE_XDP] = "xdp",
204 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
205 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
206 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
207 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
208 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
209 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
210 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
211 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
212 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
213 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
214 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
215 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
216 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
217 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
218 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
219 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
220 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
221 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
222 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
223 [BPF_PROG_TYPE_TRACING] = "tracing",
224 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
225 [BPF_PROG_TYPE_EXT] = "ext",
226 [BPF_PROG_TYPE_LSM] = "lsm",
227 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
228 [BPF_PROG_TYPE_SYSCALL] = "syscall",
229 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
230 };
231
__base_pr(enum libbpf_print_level level,const char * format,va_list args)232 static int __base_pr(enum libbpf_print_level level, const char *format,
233 va_list args)
234 {
235 const char *env_var = "LIBBPF_LOG_LEVEL";
236 static enum libbpf_print_level min_level = LIBBPF_INFO;
237 static bool initialized;
238
239 if (!initialized) {
240 char *verbosity;
241
242 initialized = true;
243 verbosity = getenv(env_var);
244 if (verbosity) {
245 if (strcasecmp(verbosity, "warn") == 0)
246 min_level = LIBBPF_WARN;
247 else if (strcasecmp(verbosity, "debug") == 0)
248 min_level = LIBBPF_DEBUG;
249 else if (strcasecmp(verbosity, "info") == 0)
250 min_level = LIBBPF_INFO;
251 else
252 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n",
253 env_var, verbosity);
254 }
255 }
256
257 /* if too verbose, skip logging */
258 if (level > min_level)
259 return 0;
260
261 return vfprintf(stderr, format, args);
262 }
263
264 static libbpf_print_fn_t __libbpf_pr = __base_pr;
265
libbpf_set_print(libbpf_print_fn_t fn)266 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
267 {
268 libbpf_print_fn_t old_print_fn;
269
270 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
271
272 return old_print_fn;
273 }
274
275 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)276 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
277 {
278 va_list args;
279 int old_errno;
280 libbpf_print_fn_t print_fn;
281
282 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
283 if (!print_fn)
284 return;
285
286 old_errno = errno;
287
288 va_start(args, format);
289 print_fn(level, format, args);
290 va_end(args);
291
292 errno = old_errno;
293 }
294
pr_perm_msg(int err)295 static void pr_perm_msg(int err)
296 {
297 struct rlimit limit;
298 char buf[100];
299
300 if (err != -EPERM || geteuid() != 0)
301 return;
302
303 err = getrlimit(RLIMIT_MEMLOCK, &limit);
304 if (err)
305 return;
306
307 if (limit.rlim_cur == RLIM_INFINITY)
308 return;
309
310 if (limit.rlim_cur < 1024)
311 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
312 else if (limit.rlim_cur < 1024*1024)
313 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
314 else
315 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
316
317 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
318 buf);
319 }
320
321 #define STRERR_BUFSIZE 128
322
323 /* Copied from tools/perf/util/util.h */
324 #ifndef zfree
325 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
326 #endif
327
328 #ifndef zclose
329 # define zclose(fd) ({ \
330 int ___err = 0; \
331 if ((fd) >= 0) \
332 ___err = close((fd)); \
333 fd = -1; \
334 ___err; })
335 #endif
336
ptr_to_u64(const void * ptr)337 static inline __u64 ptr_to_u64(const void *ptr)
338 {
339 return (__u64) (unsigned long) ptr;
340 }
341
libbpf_set_strict_mode(enum libbpf_strict_mode mode)342 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
343 {
344 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
345 return 0;
346 }
347
libbpf_major_version(void)348 __u32 libbpf_major_version(void)
349 {
350 return LIBBPF_MAJOR_VERSION;
351 }
352
libbpf_minor_version(void)353 __u32 libbpf_minor_version(void)
354 {
355 return LIBBPF_MINOR_VERSION;
356 }
357
libbpf_version_string(void)358 const char *libbpf_version_string(void)
359 {
360 #define __S(X) #X
361 #define _S(X) __S(X)
362 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
363 #undef _S
364 #undef __S
365 }
366
367 enum reloc_type {
368 RELO_LD64,
369 RELO_CALL,
370 RELO_DATA,
371 RELO_EXTERN_LD64,
372 RELO_EXTERN_CALL,
373 RELO_SUBPROG_ADDR,
374 RELO_CORE,
375 };
376
377 struct reloc_desc {
378 enum reloc_type type;
379 int insn_idx;
380 union {
381 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
382 struct {
383 int map_idx;
384 int sym_off;
385 int ext_idx;
386 };
387 };
388 };
389
390 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
391 enum sec_def_flags {
392 SEC_NONE = 0,
393 /* expected_attach_type is optional, if kernel doesn't support that */
394 SEC_EXP_ATTACH_OPT = 1,
395 /* legacy, only used by libbpf_get_type_names() and
396 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
397 * This used to be associated with cgroup (and few other) BPF programs
398 * that were attachable through BPF_PROG_ATTACH command. Pretty
399 * meaningless nowadays, though.
400 */
401 SEC_ATTACHABLE = 2,
402 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
403 /* attachment target is specified through BTF ID in either kernel or
404 * other BPF program's BTF object
405 */
406 SEC_ATTACH_BTF = 4,
407 /* BPF program type allows sleeping/blocking in kernel */
408 SEC_SLEEPABLE = 8,
409 /* BPF program support non-linear XDP buffer */
410 SEC_XDP_FRAGS = 16,
411 /* Setup proper attach type for usdt probes. */
412 SEC_USDT = 32,
413 };
414
415 struct bpf_sec_def {
416 char *sec;
417 enum bpf_prog_type prog_type;
418 enum bpf_attach_type expected_attach_type;
419 long cookie;
420 int handler_id;
421
422 libbpf_prog_setup_fn_t prog_setup_fn;
423 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
424 libbpf_prog_attach_fn_t prog_attach_fn;
425 };
426
427 /*
428 * bpf_prog should be a better name but it has been used in
429 * linux/filter.h.
430 */
431 struct bpf_program {
432 char *name;
433 char *sec_name;
434 size_t sec_idx;
435 const struct bpf_sec_def *sec_def;
436 /* this program's instruction offset (in number of instructions)
437 * within its containing ELF section
438 */
439 size_t sec_insn_off;
440 /* number of original instructions in ELF section belonging to this
441 * program, not taking into account subprogram instructions possible
442 * appended later during relocation
443 */
444 size_t sec_insn_cnt;
445 /* Offset (in number of instructions) of the start of instruction
446 * belonging to this BPF program within its containing main BPF
447 * program. For the entry-point (main) BPF program, this is always
448 * zero. For a sub-program, this gets reset before each of main BPF
449 * programs are processed and relocated and is used to determined
450 * whether sub-program was already appended to the main program, and
451 * if yes, at which instruction offset.
452 */
453 size_t sub_insn_off;
454
455 /* instructions that belong to BPF program; insns[0] is located at
456 * sec_insn_off instruction within its ELF section in ELF file, so
457 * when mapping ELF file instruction index to the local instruction,
458 * one needs to subtract sec_insn_off; and vice versa.
459 */
460 struct bpf_insn *insns;
461 /* actual number of instruction in this BPF program's image; for
462 * entry-point BPF programs this includes the size of main program
463 * itself plus all the used sub-programs, appended at the end
464 */
465 size_t insns_cnt;
466
467 struct reloc_desc *reloc_desc;
468 int nr_reloc;
469
470 /* BPF verifier log settings */
471 char *log_buf;
472 size_t log_size;
473 __u32 log_level;
474
475 struct bpf_object *obj;
476
477 int fd;
478 bool autoload;
479 bool autoattach;
480 bool sym_global;
481 bool mark_btf_static;
482 enum bpf_prog_type type;
483 enum bpf_attach_type expected_attach_type;
484 int exception_cb_idx;
485
486 int prog_ifindex;
487 __u32 attach_btf_obj_fd;
488 __u32 attach_btf_id;
489 __u32 attach_prog_fd;
490
491 void *func_info;
492 __u32 func_info_rec_size;
493 __u32 func_info_cnt;
494
495 void *line_info;
496 __u32 line_info_rec_size;
497 __u32 line_info_cnt;
498 __u32 prog_flags;
499 };
500
501 struct bpf_struct_ops {
502 struct bpf_program **progs;
503 __u32 *kern_func_off;
504 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
505 void *data;
506 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
507 * btf_vmlinux's format.
508 * struct bpf_struct_ops_tcp_congestion_ops {
509 * [... some other kernel fields ...]
510 * struct tcp_congestion_ops data;
511 * }
512 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
513 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
514 * from "data".
515 */
516 void *kern_vdata;
517 __u32 type_id;
518 };
519
520 #define DATA_SEC ".data"
521 #define BSS_SEC ".bss"
522 #define RODATA_SEC ".rodata"
523 #define KCONFIG_SEC ".kconfig"
524 #define KSYMS_SEC ".ksyms"
525 #define STRUCT_OPS_SEC ".struct_ops"
526 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
527 #define ARENA_SEC ".addr_space.1"
528
529 enum libbpf_map_type {
530 LIBBPF_MAP_UNSPEC,
531 LIBBPF_MAP_DATA,
532 LIBBPF_MAP_BSS,
533 LIBBPF_MAP_RODATA,
534 LIBBPF_MAP_KCONFIG,
535 };
536
537 struct bpf_map_def {
538 unsigned int type;
539 unsigned int key_size;
540 unsigned int value_size;
541 unsigned int max_entries;
542 unsigned int map_flags;
543 };
544
545 struct bpf_map {
546 struct bpf_object *obj;
547 char *name;
548 /* real_name is defined for special internal maps (.rodata*,
549 * .data*, .bss, .kconfig) and preserves their original ELF section
550 * name. This is important to be able to find corresponding BTF
551 * DATASEC information.
552 */
553 char *real_name;
554 int fd;
555 int sec_idx;
556 size_t sec_offset;
557 int map_ifindex;
558 int inner_map_fd;
559 struct bpf_map_def def;
560 __u32 numa_node;
561 __u32 btf_var_idx;
562 int mod_btf_fd;
563 __u32 btf_key_type_id;
564 __u32 btf_value_type_id;
565 __u32 btf_vmlinux_value_type_id;
566 enum libbpf_map_type libbpf_type;
567 void *mmaped;
568 struct bpf_struct_ops *st_ops;
569 struct bpf_map *inner_map;
570 void **init_slots;
571 int init_slots_sz;
572 char *pin_path;
573 bool pinned;
574 bool reused;
575 bool autocreate;
576 bool autoattach;
577 __u64 map_extra;
578 };
579
580 enum extern_type {
581 EXT_UNKNOWN,
582 EXT_KCFG,
583 EXT_KSYM,
584 };
585
586 enum kcfg_type {
587 KCFG_UNKNOWN,
588 KCFG_CHAR,
589 KCFG_BOOL,
590 KCFG_INT,
591 KCFG_TRISTATE,
592 KCFG_CHAR_ARR,
593 };
594
595 struct extern_desc {
596 enum extern_type type;
597 int sym_idx;
598 int btf_id;
599 int sec_btf_id;
600 char *name;
601 char *essent_name;
602 bool is_set;
603 bool is_weak;
604 union {
605 struct {
606 enum kcfg_type type;
607 int sz;
608 int align;
609 int data_off;
610 bool is_signed;
611 } kcfg;
612 struct {
613 unsigned long long addr;
614
615 /* target btf_id of the corresponding kernel var. */
616 int kernel_btf_obj_fd;
617 int kernel_btf_id;
618
619 /* local btf_id of the ksym extern's type. */
620 __u32 type_id;
621 /* BTF fd index to be patched in for insn->off, this is
622 * 0 for vmlinux BTF, index in obj->fd_array for module
623 * BTF
624 */
625 __s16 btf_fd_idx;
626 } ksym;
627 };
628 };
629
630 struct module_btf {
631 struct btf *btf;
632 char *name;
633 __u32 id;
634 int fd;
635 int fd_array_idx;
636 };
637
638 enum sec_type {
639 SEC_UNUSED = 0,
640 SEC_RELO,
641 SEC_BSS,
642 SEC_DATA,
643 SEC_RODATA,
644 SEC_ST_OPS,
645 };
646
647 struct elf_sec_desc {
648 enum sec_type sec_type;
649 Elf64_Shdr *shdr;
650 Elf_Data *data;
651 };
652
653 struct elf_state {
654 int fd;
655 const void *obj_buf;
656 size_t obj_buf_sz;
657 Elf *elf;
658 Elf64_Ehdr *ehdr;
659 Elf_Data *symbols;
660 Elf_Data *arena_data;
661 size_t shstrndx; /* section index for section name strings */
662 size_t strtabidx;
663 struct elf_sec_desc *secs;
664 size_t sec_cnt;
665 int btf_maps_shndx;
666 __u32 btf_maps_sec_btf_id;
667 int text_shndx;
668 int symbols_shndx;
669 bool has_st_ops;
670 int arena_data_shndx;
671 };
672
673 struct usdt_manager;
674
675 enum bpf_object_state {
676 OBJ_OPEN,
677 OBJ_PREPARED,
678 OBJ_LOADED,
679 };
680
681 struct bpf_object {
682 char name[BPF_OBJ_NAME_LEN];
683 char license[64];
684 __u32 kern_version;
685
686 enum bpf_object_state state;
687 struct bpf_program *programs;
688 size_t nr_programs;
689 struct bpf_map *maps;
690 size_t nr_maps;
691 size_t maps_cap;
692
693 char *kconfig;
694 struct extern_desc *externs;
695 int nr_extern;
696 int kconfig_map_idx;
697
698 bool has_subcalls;
699 bool has_rodata;
700
701 struct bpf_gen *gen_loader;
702
703 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
704 struct elf_state efile;
705
706 unsigned char byteorder;
707
708 struct btf *btf;
709 struct btf_ext *btf_ext;
710
711 /* Parse and load BTF vmlinux if any of the programs in the object need
712 * it at load time.
713 */
714 struct btf *btf_vmlinux;
715 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
716 * override for vmlinux BTF.
717 */
718 char *btf_custom_path;
719 /* vmlinux BTF override for CO-RE relocations */
720 struct btf *btf_vmlinux_override;
721 /* Lazily initialized kernel module BTFs */
722 struct module_btf *btf_modules;
723 bool btf_modules_loaded;
724 size_t btf_module_cnt;
725 size_t btf_module_cap;
726
727 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
728 char *log_buf;
729 size_t log_size;
730 __u32 log_level;
731
732 int *fd_array;
733 size_t fd_array_cap;
734 size_t fd_array_cnt;
735
736 struct usdt_manager *usdt_man;
737
738 struct bpf_map *arena_map;
739 void *arena_data;
740 size_t arena_data_sz;
741
742 struct kern_feature_cache *feat_cache;
743 char *token_path;
744 int token_fd;
745
746 char path[];
747 };
748
749 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
750 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
751 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
752 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
753 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
754 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
755 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
756 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
757 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
758
bpf_program__unload(struct bpf_program * prog)759 void bpf_program__unload(struct bpf_program *prog)
760 {
761 if (!prog)
762 return;
763
764 zclose(prog->fd);
765
766 zfree(&prog->func_info);
767 zfree(&prog->line_info);
768 }
769
bpf_program__exit(struct bpf_program * prog)770 static void bpf_program__exit(struct bpf_program *prog)
771 {
772 if (!prog)
773 return;
774
775 bpf_program__unload(prog);
776 zfree(&prog->name);
777 zfree(&prog->sec_name);
778 zfree(&prog->insns);
779 zfree(&prog->reloc_desc);
780
781 prog->nr_reloc = 0;
782 prog->insns_cnt = 0;
783 prog->sec_idx = -1;
784 }
785
insn_is_subprog_call(const struct bpf_insn * insn)786 static bool insn_is_subprog_call(const struct bpf_insn *insn)
787 {
788 return BPF_CLASS(insn->code) == BPF_JMP &&
789 BPF_OP(insn->code) == BPF_CALL &&
790 BPF_SRC(insn->code) == BPF_K &&
791 insn->src_reg == BPF_PSEUDO_CALL &&
792 insn->dst_reg == 0 &&
793 insn->off == 0;
794 }
795
is_call_insn(const struct bpf_insn * insn)796 static bool is_call_insn(const struct bpf_insn *insn)
797 {
798 return insn->code == (BPF_JMP | BPF_CALL);
799 }
800
insn_is_pseudo_func(struct bpf_insn * insn)801 static bool insn_is_pseudo_func(struct bpf_insn *insn)
802 {
803 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
804 }
805
806 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)807 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
808 const char *name, size_t sec_idx, const char *sec_name,
809 size_t sec_off, void *insn_data, size_t insn_data_sz)
810 {
811 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
812 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
813 sec_name, name, sec_off, insn_data_sz);
814 return -EINVAL;
815 }
816
817 memset(prog, 0, sizeof(*prog));
818 prog->obj = obj;
819
820 prog->sec_idx = sec_idx;
821 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
822 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
823 /* insns_cnt can later be increased by appending used subprograms */
824 prog->insns_cnt = prog->sec_insn_cnt;
825
826 prog->type = BPF_PROG_TYPE_UNSPEC;
827 prog->fd = -1;
828 prog->exception_cb_idx = -1;
829
830 /* libbpf's convention for SEC("?abc...") is that it's just like
831 * SEC("abc...") but the corresponding bpf_program starts out with
832 * autoload set to false.
833 */
834 if (sec_name[0] == '?') {
835 prog->autoload = false;
836 /* from now on forget there was ? in section name */
837 sec_name++;
838 } else {
839 prog->autoload = true;
840 }
841
842 prog->autoattach = true;
843
844 /* inherit object's log_level */
845 prog->log_level = obj->log_level;
846
847 prog->sec_name = strdup(sec_name);
848 if (!prog->sec_name)
849 goto errout;
850
851 prog->name = strdup(name);
852 if (!prog->name)
853 goto errout;
854
855 prog->insns = malloc(insn_data_sz);
856 if (!prog->insns)
857 goto errout;
858 memcpy(prog->insns, insn_data, insn_data_sz);
859
860 return 0;
861 errout:
862 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
863 bpf_program__exit(prog);
864 return -ENOMEM;
865 }
866
867 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)868 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
869 const char *sec_name, int sec_idx)
870 {
871 Elf_Data *symbols = obj->efile.symbols;
872 struct bpf_program *prog, *progs;
873 void *data = sec_data->d_buf;
874 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
875 int nr_progs, err, i;
876 const char *name;
877 Elf64_Sym *sym;
878
879 progs = obj->programs;
880 nr_progs = obj->nr_programs;
881 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
882
883 for (i = 0; i < nr_syms; i++) {
884 sym = elf_sym_by_idx(obj, i);
885
886 if (sym->st_shndx != sec_idx)
887 continue;
888 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
889 continue;
890
891 prog_sz = sym->st_size;
892 sec_off = sym->st_value;
893
894 name = elf_sym_str(obj, sym->st_name);
895 if (!name) {
896 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
897 sec_name, sec_off);
898 return -LIBBPF_ERRNO__FORMAT;
899 }
900
901 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) {
902 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
903 sec_name, sec_off);
904 return -LIBBPF_ERRNO__FORMAT;
905 }
906
907 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
908 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
909 return -ENOTSUP;
910 }
911
912 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
913 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
914
915 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
916 if (!progs) {
917 /*
918 * In this case the original obj->programs
919 * is still valid, so don't need special treat for
920 * bpf_close_object().
921 */
922 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
923 sec_name, name);
924 return -ENOMEM;
925 }
926 obj->programs = progs;
927
928 prog = &progs[nr_progs];
929
930 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
931 sec_off, data + sec_off, prog_sz);
932 if (err)
933 return err;
934
935 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
936 prog->sym_global = true;
937
938 /* if function is a global/weak symbol, but has restricted
939 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
940 * as static to enable more permissive BPF verification mode
941 * with more outside context available to BPF verifier
942 */
943 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
944 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
945 prog->mark_btf_static = true;
946
947 nr_progs++;
948 obj->nr_programs = nr_progs;
949 }
950
951 return 0;
952 }
953
bpf_object_bswap_progs(struct bpf_object * obj)954 static void bpf_object_bswap_progs(struct bpf_object *obj)
955 {
956 struct bpf_program *prog = obj->programs;
957 struct bpf_insn *insn;
958 int p, i;
959
960 for (p = 0; p < obj->nr_programs; p++, prog++) {
961 insn = prog->insns;
962 for (i = 0; i < prog->insns_cnt; i++, insn++)
963 bpf_insn_bswap(insn);
964 }
965 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs);
966 }
967
968 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)969 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
970 {
971 struct btf_member *m;
972 int i;
973
974 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
975 if (btf_member_bit_offset(t, i) == bit_offset)
976 return m;
977 }
978
979 return NULL;
980 }
981
982 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)983 find_member_by_name(const struct btf *btf, const struct btf_type *t,
984 const char *name)
985 {
986 struct btf_member *m;
987 int i;
988
989 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
990 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
991 return m;
992 }
993
994 return NULL;
995 }
996
997 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
998 __u16 kind, struct btf **res_btf,
999 struct module_btf **res_mod_btf);
1000
1001 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
1002 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
1003 const char *name, __u32 kind);
1004
1005 static int
find_struct_ops_kern_types(struct bpf_object * obj,const char * tname_raw,struct module_btf ** mod_btf,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)1006 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
1007 struct module_btf **mod_btf,
1008 const struct btf_type **type, __u32 *type_id,
1009 const struct btf_type **vtype, __u32 *vtype_id,
1010 const struct btf_member **data_member)
1011 {
1012 const struct btf_type *kern_type, *kern_vtype;
1013 const struct btf_member *kern_data_member;
1014 struct btf *btf = NULL;
1015 __s32 kern_vtype_id, kern_type_id;
1016 char tname[256];
1017 __u32 i;
1018
1019 snprintf(tname, sizeof(tname), "%.*s",
1020 (int)bpf_core_essential_name_len(tname_raw), tname_raw);
1021
1022 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
1023 &btf, mod_btf);
1024 if (kern_type_id < 0) {
1025 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
1026 tname);
1027 return kern_type_id;
1028 }
1029 kern_type = btf__type_by_id(btf, kern_type_id);
1030
1031 /* Find the corresponding "map_value" type that will be used
1032 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
1033 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
1034 * btf_vmlinux.
1035 */
1036 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
1037 tname, BTF_KIND_STRUCT);
1038 if (kern_vtype_id < 0) {
1039 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
1040 STRUCT_OPS_VALUE_PREFIX, tname);
1041 return kern_vtype_id;
1042 }
1043 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1044
1045 /* Find "struct tcp_congestion_ops" from
1046 * struct bpf_struct_ops_tcp_congestion_ops {
1047 * [ ... ]
1048 * struct tcp_congestion_ops data;
1049 * }
1050 */
1051 kern_data_member = btf_members(kern_vtype);
1052 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1053 if (kern_data_member->type == kern_type_id)
1054 break;
1055 }
1056 if (i == btf_vlen(kern_vtype)) {
1057 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1058 tname, STRUCT_OPS_VALUE_PREFIX, tname);
1059 return -EINVAL;
1060 }
1061
1062 *type = kern_type;
1063 *type_id = kern_type_id;
1064 *vtype = kern_vtype;
1065 *vtype_id = kern_vtype_id;
1066 *data_member = kern_data_member;
1067
1068 return 0;
1069 }
1070
bpf_map__is_struct_ops(const struct bpf_map * map)1071 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1072 {
1073 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1074 }
1075
is_valid_st_ops_program(struct bpf_object * obj,const struct bpf_program * prog)1076 static bool is_valid_st_ops_program(struct bpf_object *obj,
1077 const struct bpf_program *prog)
1078 {
1079 int i;
1080
1081 for (i = 0; i < obj->nr_programs; i++) {
1082 if (&obj->programs[i] == prog)
1083 return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1084 }
1085
1086 return false;
1087 }
1088
1089 /* For each struct_ops program P, referenced from some struct_ops map M,
1090 * enable P.autoload if there are Ms for which M.autocreate is true,
1091 * disable P.autoload if for all Ms M.autocreate is false.
1092 * Don't change P.autoload for programs that are not referenced from any maps.
1093 */
bpf_object_adjust_struct_ops_autoload(struct bpf_object * obj)1094 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1095 {
1096 struct bpf_program *prog, *slot_prog;
1097 struct bpf_map *map;
1098 int i, j, k, vlen;
1099
1100 for (i = 0; i < obj->nr_programs; ++i) {
1101 int should_load = false;
1102 int use_cnt = 0;
1103
1104 prog = &obj->programs[i];
1105 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1106 continue;
1107
1108 for (j = 0; j < obj->nr_maps; ++j) {
1109 const struct btf_type *type;
1110
1111 map = &obj->maps[j];
1112 if (!bpf_map__is_struct_ops(map))
1113 continue;
1114
1115 type = btf__type_by_id(obj->btf, map->st_ops->type_id);
1116 vlen = btf_vlen(type);
1117 for (k = 0; k < vlen; ++k) {
1118 slot_prog = map->st_ops->progs[k];
1119 if (prog != slot_prog)
1120 continue;
1121
1122 use_cnt++;
1123 if (map->autocreate)
1124 should_load = true;
1125 }
1126 }
1127 if (use_cnt)
1128 prog->autoload = should_load;
1129 }
1130
1131 return 0;
1132 }
1133
1134 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map)1135 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1136 {
1137 const struct btf_member *member, *kern_member, *kern_data_member;
1138 const struct btf_type *type, *kern_type, *kern_vtype;
1139 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1140 struct bpf_object *obj = map->obj;
1141 const struct btf *btf = obj->btf;
1142 struct bpf_struct_ops *st_ops;
1143 const struct btf *kern_btf;
1144 struct module_btf *mod_btf = NULL;
1145 void *data, *kern_data;
1146 const char *tname;
1147 int err;
1148
1149 st_ops = map->st_ops;
1150 type = btf__type_by_id(btf, st_ops->type_id);
1151 tname = btf__name_by_offset(btf, type->name_off);
1152 err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1153 &kern_type, &kern_type_id,
1154 &kern_vtype, &kern_vtype_id,
1155 &kern_data_member);
1156 if (err)
1157 return err;
1158
1159 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1160
1161 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1162 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1163
1164 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1165 map->def.value_size = kern_vtype->size;
1166 map->btf_vmlinux_value_type_id = kern_vtype_id;
1167
1168 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1169 if (!st_ops->kern_vdata)
1170 return -ENOMEM;
1171
1172 data = st_ops->data;
1173 kern_data_off = kern_data_member->offset / 8;
1174 kern_data = st_ops->kern_vdata + kern_data_off;
1175
1176 member = btf_members(type);
1177 for (i = 0; i < btf_vlen(type); i++, member++) {
1178 const struct btf_type *mtype, *kern_mtype;
1179 __u32 mtype_id, kern_mtype_id;
1180 void *mdata, *kern_mdata;
1181 struct bpf_program *prog;
1182 __s64 msize, kern_msize;
1183 __u32 moff, kern_moff;
1184 __u32 kern_member_idx;
1185 const char *mname;
1186
1187 mname = btf__name_by_offset(btf, member->name_off);
1188 moff = member->offset / 8;
1189 mdata = data + moff;
1190 msize = btf__resolve_size(btf, member->type);
1191 if (msize < 0) {
1192 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1193 map->name, mname);
1194 return msize;
1195 }
1196
1197 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1198 if (!kern_member) {
1199 if (!libbpf_is_mem_zeroed(mdata, msize)) {
1200 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1201 map->name, mname);
1202 return -ENOTSUP;
1203 }
1204
1205 if (st_ops->progs[i]) {
1206 /* If we had declaratively set struct_ops callback, we need to
1207 * force its autoload to false, because it doesn't have
1208 * a chance of succeeding from POV of the current struct_ops map.
1209 * If this program is still referenced somewhere else, though,
1210 * then bpf_object_adjust_struct_ops_autoload() will update its
1211 * autoload accordingly.
1212 */
1213 st_ops->progs[i]->autoload = false;
1214 st_ops->progs[i] = NULL;
1215 }
1216
1217 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1218 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1219 map->name, mname);
1220 continue;
1221 }
1222
1223 kern_member_idx = kern_member - btf_members(kern_type);
1224 if (btf_member_bitfield_size(type, i) ||
1225 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1226 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1227 map->name, mname);
1228 return -ENOTSUP;
1229 }
1230
1231 kern_moff = kern_member->offset / 8;
1232 kern_mdata = kern_data + kern_moff;
1233
1234 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1235 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1236 &kern_mtype_id);
1237 if (BTF_INFO_KIND(mtype->info) !=
1238 BTF_INFO_KIND(kern_mtype->info)) {
1239 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1240 map->name, mname, BTF_INFO_KIND(mtype->info),
1241 BTF_INFO_KIND(kern_mtype->info));
1242 return -ENOTSUP;
1243 }
1244
1245 if (btf_is_ptr(mtype)) {
1246 prog = *(void **)mdata;
1247 /* just like for !kern_member case above, reset declaratively
1248 * set (at compile time) program's autload to false,
1249 * if user replaced it with another program or NULL
1250 */
1251 if (st_ops->progs[i] && st_ops->progs[i] != prog)
1252 st_ops->progs[i]->autoload = false;
1253
1254 /* Update the value from the shadow type */
1255 st_ops->progs[i] = prog;
1256 if (!prog)
1257 continue;
1258
1259 if (!is_valid_st_ops_program(obj, prog)) {
1260 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1261 map->name, mname);
1262 return -ENOTSUP;
1263 }
1264
1265 kern_mtype = skip_mods_and_typedefs(kern_btf,
1266 kern_mtype->type,
1267 &kern_mtype_id);
1268
1269 /* mtype->type must be a func_proto which was
1270 * guaranteed in bpf_object__collect_st_ops_relos(),
1271 * so only check kern_mtype for func_proto here.
1272 */
1273 if (!btf_is_func_proto(kern_mtype)) {
1274 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1275 map->name, mname);
1276 return -ENOTSUP;
1277 }
1278
1279 if (mod_btf)
1280 prog->attach_btf_obj_fd = mod_btf->fd;
1281
1282 /* if we haven't yet processed this BPF program, record proper
1283 * attach_btf_id and member_idx
1284 */
1285 if (!prog->attach_btf_id) {
1286 prog->attach_btf_id = kern_type_id;
1287 prog->expected_attach_type = kern_member_idx;
1288 }
1289
1290 /* struct_ops BPF prog can be re-used between multiple
1291 * .struct_ops & .struct_ops.link as long as it's the
1292 * same struct_ops struct definition and the same
1293 * function pointer field
1294 */
1295 if (prog->attach_btf_id != kern_type_id) {
1296 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1297 map->name, mname, prog->name, prog->sec_name, prog->type,
1298 prog->attach_btf_id, kern_type_id);
1299 return -EINVAL;
1300 }
1301 if (prog->expected_attach_type != kern_member_idx) {
1302 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1303 map->name, mname, prog->name, prog->sec_name, prog->type,
1304 prog->expected_attach_type, kern_member_idx);
1305 return -EINVAL;
1306 }
1307
1308 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1309
1310 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1311 map->name, mname, prog->name, moff,
1312 kern_moff);
1313
1314 continue;
1315 }
1316
1317 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1318 if (kern_msize < 0 || msize != kern_msize) {
1319 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1320 map->name, mname, (ssize_t)msize,
1321 (ssize_t)kern_msize);
1322 return -ENOTSUP;
1323 }
1324
1325 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1326 map->name, mname, (unsigned int)msize,
1327 moff, kern_moff);
1328 memcpy(kern_mdata, mdata, msize);
1329 }
1330
1331 return 0;
1332 }
1333
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1334 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1335 {
1336 struct bpf_map *map;
1337 size_t i;
1338 int err;
1339
1340 for (i = 0; i < obj->nr_maps; i++) {
1341 map = &obj->maps[i];
1342
1343 if (!bpf_map__is_struct_ops(map))
1344 continue;
1345
1346 if (!map->autocreate)
1347 continue;
1348
1349 err = bpf_map__init_kern_struct_ops(map);
1350 if (err)
1351 return err;
1352 }
1353
1354 return 0;
1355 }
1356
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data)1357 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1358 int shndx, Elf_Data *data)
1359 {
1360 const struct btf_type *type, *datasec;
1361 const struct btf_var_secinfo *vsi;
1362 struct bpf_struct_ops *st_ops;
1363 const char *tname, *var_name;
1364 __s32 type_id, datasec_id;
1365 const struct btf *btf;
1366 struct bpf_map *map;
1367 __u32 i;
1368
1369 if (shndx == -1)
1370 return 0;
1371
1372 btf = obj->btf;
1373 datasec_id = btf__find_by_name_kind(btf, sec_name,
1374 BTF_KIND_DATASEC);
1375 if (datasec_id < 0) {
1376 pr_warn("struct_ops init: DATASEC %s not found\n",
1377 sec_name);
1378 return -EINVAL;
1379 }
1380
1381 datasec = btf__type_by_id(btf, datasec_id);
1382 vsi = btf_var_secinfos(datasec);
1383 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1384 type = btf__type_by_id(obj->btf, vsi->type);
1385 var_name = btf__name_by_offset(obj->btf, type->name_off);
1386
1387 type_id = btf__resolve_type(obj->btf, vsi->type);
1388 if (type_id < 0) {
1389 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1390 vsi->type, sec_name);
1391 return -EINVAL;
1392 }
1393
1394 type = btf__type_by_id(obj->btf, type_id);
1395 tname = btf__name_by_offset(obj->btf, type->name_off);
1396 if (!tname[0]) {
1397 pr_warn("struct_ops init: anonymous type is not supported\n");
1398 return -ENOTSUP;
1399 }
1400 if (!btf_is_struct(type)) {
1401 pr_warn("struct_ops init: %s is not a struct\n", tname);
1402 return -EINVAL;
1403 }
1404
1405 map = bpf_object__add_map(obj);
1406 if (IS_ERR(map))
1407 return PTR_ERR(map);
1408
1409 map->sec_idx = shndx;
1410 map->sec_offset = vsi->offset;
1411 map->name = strdup(var_name);
1412 if (!map->name)
1413 return -ENOMEM;
1414 map->btf_value_type_id = type_id;
1415
1416 /* Follow same convention as for programs autoload:
1417 * SEC("?.struct_ops") means map is not created by default.
1418 */
1419 if (sec_name[0] == '?') {
1420 map->autocreate = false;
1421 /* from now on forget there was ? in section name */
1422 sec_name++;
1423 }
1424
1425 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1426 map->def.key_size = sizeof(int);
1427 map->def.value_size = type->size;
1428 map->def.max_entries = 1;
1429 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1430 map->autoattach = true;
1431
1432 map->st_ops = calloc(1, sizeof(*map->st_ops));
1433 if (!map->st_ops)
1434 return -ENOMEM;
1435 st_ops = map->st_ops;
1436 st_ops->data = malloc(type->size);
1437 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1438 st_ops->kern_func_off = malloc(btf_vlen(type) *
1439 sizeof(*st_ops->kern_func_off));
1440 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1441 return -ENOMEM;
1442
1443 if (vsi->offset + type->size > data->d_size) {
1444 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1445 var_name, sec_name);
1446 return -EINVAL;
1447 }
1448
1449 memcpy(st_ops->data,
1450 data->d_buf + vsi->offset,
1451 type->size);
1452 st_ops->type_id = type_id;
1453
1454 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1455 tname, type_id, var_name, vsi->offset);
1456 }
1457
1458 return 0;
1459 }
1460
bpf_object_init_struct_ops(struct bpf_object * obj)1461 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1462 {
1463 const char *sec_name;
1464 int sec_idx, err;
1465
1466 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1467 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1468
1469 if (desc->sec_type != SEC_ST_OPS)
1470 continue;
1471
1472 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1473 if (!sec_name)
1474 return -LIBBPF_ERRNO__FORMAT;
1475
1476 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1477 if (err)
1478 return err;
1479 }
1480
1481 return 0;
1482 }
1483
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1484 static struct bpf_object *bpf_object__new(const char *path,
1485 const void *obj_buf,
1486 size_t obj_buf_sz,
1487 const char *obj_name)
1488 {
1489 struct bpf_object *obj;
1490 char *end;
1491
1492 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1493 if (!obj) {
1494 pr_warn("alloc memory failed for %s\n", path);
1495 return ERR_PTR(-ENOMEM);
1496 }
1497
1498 strcpy(obj->path, path);
1499 if (obj_name) {
1500 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1501 } else {
1502 /* Using basename() GNU version which doesn't modify arg. */
1503 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1504 end = strchr(obj->name, '.');
1505 if (end)
1506 *end = 0;
1507 }
1508
1509 obj->efile.fd = -1;
1510 /*
1511 * Caller of this function should also call
1512 * bpf_object__elf_finish() after data collection to return
1513 * obj_buf to user. If not, we should duplicate the buffer to
1514 * avoid user freeing them before elf finish.
1515 */
1516 obj->efile.obj_buf = obj_buf;
1517 obj->efile.obj_buf_sz = obj_buf_sz;
1518 obj->efile.btf_maps_shndx = -1;
1519 obj->kconfig_map_idx = -1;
1520
1521 obj->kern_version = get_kernel_version();
1522 obj->state = OBJ_OPEN;
1523
1524 return obj;
1525 }
1526
bpf_object__elf_finish(struct bpf_object * obj)1527 static void bpf_object__elf_finish(struct bpf_object *obj)
1528 {
1529 if (!obj->efile.elf)
1530 return;
1531
1532 elf_end(obj->efile.elf);
1533 obj->efile.elf = NULL;
1534 obj->efile.ehdr = NULL;
1535 obj->efile.symbols = NULL;
1536 obj->efile.arena_data = NULL;
1537
1538 zfree(&obj->efile.secs);
1539 obj->efile.sec_cnt = 0;
1540 zclose(obj->efile.fd);
1541 obj->efile.obj_buf = NULL;
1542 obj->efile.obj_buf_sz = 0;
1543 }
1544
bpf_object__elf_init(struct bpf_object * obj)1545 static int bpf_object__elf_init(struct bpf_object *obj)
1546 {
1547 Elf64_Ehdr *ehdr;
1548 int err = 0;
1549 Elf *elf;
1550
1551 if (obj->efile.elf) {
1552 pr_warn("elf: init internal error\n");
1553 return -LIBBPF_ERRNO__LIBELF;
1554 }
1555
1556 if (obj->efile.obj_buf_sz > 0) {
1557 /* obj_buf should have been validated by bpf_object__open_mem(). */
1558 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1559 } else {
1560 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1561 if (obj->efile.fd < 0) {
1562 err = -errno;
1563 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err));
1564 return err;
1565 }
1566
1567 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1568 }
1569
1570 if (!elf) {
1571 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1572 err = -LIBBPF_ERRNO__LIBELF;
1573 goto errout;
1574 }
1575
1576 obj->efile.elf = elf;
1577
1578 if (elf_kind(elf) != ELF_K_ELF) {
1579 err = -LIBBPF_ERRNO__FORMAT;
1580 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1581 goto errout;
1582 }
1583
1584 if (gelf_getclass(elf) != ELFCLASS64) {
1585 err = -LIBBPF_ERRNO__FORMAT;
1586 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1587 goto errout;
1588 }
1589
1590 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1591 if (!obj->efile.ehdr) {
1592 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1593 err = -LIBBPF_ERRNO__FORMAT;
1594 goto errout;
1595 }
1596
1597 /* Validate ELF object endianness... */
1598 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
1599 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
1600 err = -LIBBPF_ERRNO__ENDIAN;
1601 pr_warn("elf: '%s' has unknown byte order\n", obj->path);
1602 goto errout;
1603 }
1604 /* and save after bpf_object_open() frees ELF data */
1605 obj->byteorder = ehdr->e_ident[EI_DATA];
1606
1607 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1608 pr_warn("elf: failed to get section names section index for %s: %s\n",
1609 obj->path, elf_errmsg(-1));
1610 err = -LIBBPF_ERRNO__FORMAT;
1611 goto errout;
1612 }
1613
1614 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1615 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1616 pr_warn("elf: failed to get section names strings from %s: %s\n",
1617 obj->path, elf_errmsg(-1));
1618 err = -LIBBPF_ERRNO__FORMAT;
1619 goto errout;
1620 }
1621
1622 /* Old LLVM set e_machine to EM_NONE */
1623 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1624 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1625 err = -LIBBPF_ERRNO__FORMAT;
1626 goto errout;
1627 }
1628
1629 return 0;
1630 errout:
1631 bpf_object__elf_finish(obj);
1632 return err;
1633 }
1634
is_native_endianness(struct bpf_object * obj)1635 static bool is_native_endianness(struct bpf_object *obj)
1636 {
1637 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1638 return obj->byteorder == ELFDATA2LSB;
1639 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1640 return obj->byteorder == ELFDATA2MSB;
1641 #else
1642 # error "Unrecognized __BYTE_ORDER__"
1643 #endif
1644 }
1645
1646 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1647 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1648 {
1649 if (!data) {
1650 pr_warn("invalid license section in %s\n", obj->path);
1651 return -LIBBPF_ERRNO__FORMAT;
1652 }
1653 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1654 * go over allowed ELF data section buffer
1655 */
1656 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1657 pr_debug("license of %s is %s\n", obj->path, obj->license);
1658 return 0;
1659 }
1660
1661 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1662 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1663 {
1664 __u32 kver;
1665
1666 if (!data || size != sizeof(kver)) {
1667 pr_warn("invalid kver section in %s\n", obj->path);
1668 return -LIBBPF_ERRNO__FORMAT;
1669 }
1670 memcpy(&kver, data, sizeof(kver));
1671 obj->kern_version = kver;
1672 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1673 return 0;
1674 }
1675
bpf_map_type__is_map_in_map(enum bpf_map_type type)1676 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1677 {
1678 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1679 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1680 return true;
1681 return false;
1682 }
1683
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1684 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1685 {
1686 Elf_Data *data;
1687 Elf_Scn *scn;
1688
1689 if (!name)
1690 return -EINVAL;
1691
1692 scn = elf_sec_by_name(obj, name);
1693 data = elf_sec_data(obj, scn);
1694 if (data) {
1695 *size = data->d_size;
1696 return 0; /* found it */
1697 }
1698
1699 return -ENOENT;
1700 }
1701
find_elf_var_sym(const struct bpf_object * obj,const char * name)1702 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1703 {
1704 Elf_Data *symbols = obj->efile.symbols;
1705 const char *sname;
1706 size_t si;
1707
1708 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1709 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1710
1711 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1712 continue;
1713
1714 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1715 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1716 continue;
1717
1718 sname = elf_sym_str(obj, sym->st_name);
1719 if (!sname) {
1720 pr_warn("failed to get sym name string for var %s\n", name);
1721 return ERR_PTR(-EIO);
1722 }
1723 if (strcmp(name, sname) == 0)
1724 return sym;
1725 }
1726
1727 return ERR_PTR(-ENOENT);
1728 }
1729
1730 #ifndef MFD_CLOEXEC
1731 #define MFD_CLOEXEC 0x0001U
1732 #endif
1733 #ifndef MFD_NOEXEC_SEAL
1734 #define MFD_NOEXEC_SEAL 0x0008U
1735 #endif
1736
create_placeholder_fd(void)1737 static int create_placeholder_fd(void)
1738 {
1739 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL;
1740 const char *name = "libbpf-placeholder-fd";
1741 int fd;
1742
1743 fd = ensure_good_fd(sys_memfd_create(name, flags));
1744 if (fd >= 0)
1745 return fd;
1746 else if (errno != EINVAL)
1747 return -errno;
1748
1749 /* Possibly running on kernel without MFD_NOEXEC_SEAL */
1750 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL));
1751 if (fd < 0)
1752 return -errno;
1753 return fd;
1754 }
1755
bpf_object__add_map(struct bpf_object * obj)1756 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1757 {
1758 struct bpf_map *map;
1759 int err;
1760
1761 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1762 sizeof(*obj->maps), obj->nr_maps + 1);
1763 if (err)
1764 return ERR_PTR(err);
1765
1766 map = &obj->maps[obj->nr_maps++];
1767 map->obj = obj;
1768 /* Preallocate map FD without actually creating BPF map just yet.
1769 * These map FD "placeholders" will be reused later without changing
1770 * FD value when map is actually created in the kernel.
1771 *
1772 * This is useful to be able to perform BPF program relocations
1773 * without having to create BPF maps before that step. This allows us
1774 * to finalize and load BTF very late in BPF object's loading phase,
1775 * right before BPF maps have to be created and BPF programs have to
1776 * be loaded. By having these map FD placeholders we can perform all
1777 * the sanitizations, relocations, and any other adjustments before we
1778 * start creating actual BPF kernel objects (BTF, maps, progs).
1779 */
1780 map->fd = create_placeholder_fd();
1781 if (map->fd < 0)
1782 return ERR_PTR(map->fd);
1783 map->inner_map_fd = -1;
1784 map->autocreate = true;
1785
1786 return map;
1787 }
1788
array_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1789 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1790 {
1791 const long page_sz = sysconf(_SC_PAGE_SIZE);
1792 size_t map_sz;
1793
1794 map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1795 map_sz = roundup(map_sz, page_sz);
1796 return map_sz;
1797 }
1798
bpf_map_mmap_sz(const struct bpf_map * map)1799 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1800 {
1801 const long page_sz = sysconf(_SC_PAGE_SIZE);
1802
1803 switch (map->def.type) {
1804 case BPF_MAP_TYPE_ARRAY:
1805 return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1806 case BPF_MAP_TYPE_ARENA:
1807 return page_sz * map->def.max_entries;
1808 default:
1809 return 0; /* not supported */
1810 }
1811 }
1812
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1813 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1814 {
1815 void *mmaped;
1816
1817 if (!map->mmaped)
1818 return -EINVAL;
1819
1820 if (old_sz == new_sz)
1821 return 0;
1822
1823 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1824 if (mmaped == MAP_FAILED)
1825 return -errno;
1826
1827 memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1828 munmap(map->mmaped, old_sz);
1829 map->mmaped = mmaped;
1830 return 0;
1831 }
1832
internal_map_name(struct bpf_object * obj,const char * real_name)1833 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1834 {
1835 char map_name[BPF_OBJ_NAME_LEN], *p;
1836 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1837
1838 /* This is one of the more confusing parts of libbpf for various
1839 * reasons, some of which are historical. The original idea for naming
1840 * internal names was to include as much of BPF object name prefix as
1841 * possible, so that it can be distinguished from similar internal
1842 * maps of a different BPF object.
1843 * As an example, let's say we have bpf_object named 'my_object_name'
1844 * and internal map corresponding to '.rodata' ELF section. The final
1845 * map name advertised to user and to the kernel will be
1846 * 'my_objec.rodata', taking first 8 characters of object name and
1847 * entire 7 characters of '.rodata'.
1848 * Somewhat confusingly, if internal map ELF section name is shorter
1849 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1850 * for the suffix, even though we only have 4 actual characters, and
1851 * resulting map will be called 'my_objec.bss', not even using all 15
1852 * characters allowed by the kernel. Oh well, at least the truncated
1853 * object name is somewhat consistent in this case. But if the map
1854 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1855 * (8 chars) and thus will be left with only first 7 characters of the
1856 * object name ('my_obje'). Happy guessing, user, that the final map
1857 * name will be "my_obje.kconfig".
1858 * Now, with libbpf starting to support arbitrarily named .rodata.*
1859 * and .data.* data sections, it's possible that ELF section name is
1860 * longer than allowed 15 chars, so we now need to be careful to take
1861 * only up to 15 first characters of ELF name, taking no BPF object
1862 * name characters at all. So '.rodata.abracadabra' will result in
1863 * '.rodata.abracad' kernel and user-visible name.
1864 * We need to keep this convoluted logic intact for .data, .bss and
1865 * .rodata maps, but for new custom .data.custom and .rodata.custom
1866 * maps we use their ELF names as is, not prepending bpf_object name
1867 * in front. We still need to truncate them to 15 characters for the
1868 * kernel. Full name can be recovered for such maps by using DATASEC
1869 * BTF type associated with such map's value type, though.
1870 */
1871 if (sfx_len >= BPF_OBJ_NAME_LEN)
1872 sfx_len = BPF_OBJ_NAME_LEN - 1;
1873
1874 /* if there are two or more dots in map name, it's a custom dot map */
1875 if (strchr(real_name + 1, '.') != NULL)
1876 pfx_len = 0;
1877 else
1878 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1879
1880 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1881 sfx_len, real_name);
1882
1883 /* sanities map name to characters allowed by kernel */
1884 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1885 if (!isalnum(*p) && *p != '_' && *p != '.')
1886 *p = '_';
1887
1888 return strdup(map_name);
1889 }
1890
1891 static int
1892 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1893
1894 /* Internal BPF map is mmap()'able only if at least one of corresponding
1895 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1896 * variable and it's not marked as __hidden (which turns it into, effectively,
1897 * a STATIC variable).
1898 */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1899 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1900 {
1901 const struct btf_type *t, *vt;
1902 struct btf_var_secinfo *vsi;
1903 int i, n;
1904
1905 if (!map->btf_value_type_id)
1906 return false;
1907
1908 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1909 if (!btf_is_datasec(t))
1910 return false;
1911
1912 vsi = btf_var_secinfos(t);
1913 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1914 vt = btf__type_by_id(obj->btf, vsi->type);
1915 if (!btf_is_var(vt))
1916 continue;
1917
1918 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1919 return true;
1920 }
1921
1922 return false;
1923 }
1924
1925 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1926 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1927 const char *real_name, int sec_idx, void *data, size_t data_sz)
1928 {
1929 struct bpf_map_def *def;
1930 struct bpf_map *map;
1931 size_t mmap_sz;
1932 int err;
1933
1934 map = bpf_object__add_map(obj);
1935 if (IS_ERR(map))
1936 return PTR_ERR(map);
1937
1938 map->libbpf_type = type;
1939 map->sec_idx = sec_idx;
1940 map->sec_offset = 0;
1941 map->real_name = strdup(real_name);
1942 map->name = internal_map_name(obj, real_name);
1943 if (!map->real_name || !map->name) {
1944 zfree(&map->real_name);
1945 zfree(&map->name);
1946 return -ENOMEM;
1947 }
1948
1949 def = &map->def;
1950 def->type = BPF_MAP_TYPE_ARRAY;
1951 def->key_size = sizeof(int);
1952 def->value_size = data_sz;
1953 def->max_entries = 1;
1954 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1955 ? BPF_F_RDONLY_PROG : 0;
1956
1957 /* failures are fine because of maps like .rodata.str1.1 */
1958 (void) map_fill_btf_type_info(obj, map);
1959
1960 if (map_is_mmapable(obj, map))
1961 def->map_flags |= BPF_F_MMAPABLE;
1962
1963 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1964 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1965
1966 mmap_sz = bpf_map_mmap_sz(map);
1967 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1968 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1969 if (map->mmaped == MAP_FAILED) {
1970 err = -errno;
1971 map->mmaped = NULL;
1972 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err));
1973 zfree(&map->real_name);
1974 zfree(&map->name);
1975 return err;
1976 }
1977
1978 if (data)
1979 memcpy(map->mmaped, data, data_sz);
1980
1981 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1982 return 0;
1983 }
1984
bpf_object__init_global_data_maps(struct bpf_object * obj)1985 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1986 {
1987 struct elf_sec_desc *sec_desc;
1988 const char *sec_name;
1989 int err = 0, sec_idx;
1990
1991 /*
1992 * Populate obj->maps with libbpf internal maps.
1993 */
1994 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1995 sec_desc = &obj->efile.secs[sec_idx];
1996
1997 /* Skip recognized sections with size 0. */
1998 if (!sec_desc->data || sec_desc->data->d_size == 0)
1999 continue;
2000
2001 switch (sec_desc->sec_type) {
2002 case SEC_DATA:
2003 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2004 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
2005 sec_name, sec_idx,
2006 sec_desc->data->d_buf,
2007 sec_desc->data->d_size);
2008 break;
2009 case SEC_RODATA:
2010 obj->has_rodata = true;
2011 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2012 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
2013 sec_name, sec_idx,
2014 sec_desc->data->d_buf,
2015 sec_desc->data->d_size);
2016 break;
2017 case SEC_BSS:
2018 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2019 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
2020 sec_name, sec_idx,
2021 NULL,
2022 sec_desc->data->d_size);
2023 break;
2024 default:
2025 /* skip */
2026 break;
2027 }
2028 if (err)
2029 return err;
2030 }
2031 return 0;
2032 }
2033
2034
find_extern_by_name(const struct bpf_object * obj,const void * name)2035 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
2036 const void *name)
2037 {
2038 int i;
2039
2040 for (i = 0; i < obj->nr_extern; i++) {
2041 if (strcmp(obj->externs[i].name, name) == 0)
2042 return &obj->externs[i];
2043 }
2044 return NULL;
2045 }
2046
find_extern_by_name_with_len(const struct bpf_object * obj,const void * name,int len)2047 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj,
2048 const void *name, int len)
2049 {
2050 const char *ext_name;
2051 int i;
2052
2053 for (i = 0; i < obj->nr_extern; i++) {
2054 ext_name = obj->externs[i].name;
2055 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0)
2056 return &obj->externs[i];
2057 }
2058 return NULL;
2059 }
2060
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)2061 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
2062 char value)
2063 {
2064 switch (ext->kcfg.type) {
2065 case KCFG_BOOL:
2066 if (value == 'm') {
2067 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
2068 ext->name, value);
2069 return -EINVAL;
2070 }
2071 *(bool *)ext_val = value == 'y' ? true : false;
2072 break;
2073 case KCFG_TRISTATE:
2074 if (value == 'y')
2075 *(enum libbpf_tristate *)ext_val = TRI_YES;
2076 else if (value == 'm')
2077 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
2078 else /* value == 'n' */
2079 *(enum libbpf_tristate *)ext_val = TRI_NO;
2080 break;
2081 case KCFG_CHAR:
2082 *(char *)ext_val = value;
2083 break;
2084 case KCFG_UNKNOWN:
2085 case KCFG_INT:
2086 case KCFG_CHAR_ARR:
2087 default:
2088 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2089 ext->name, value);
2090 return -EINVAL;
2091 }
2092 ext->is_set = true;
2093 return 0;
2094 }
2095
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)2096 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2097 const char *value)
2098 {
2099 size_t len;
2100
2101 if (ext->kcfg.type != KCFG_CHAR_ARR) {
2102 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2103 ext->name, value);
2104 return -EINVAL;
2105 }
2106
2107 len = strlen(value);
2108 if (len < 2 || value[len - 1] != '"') {
2109 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2110 ext->name, value);
2111 return -EINVAL;
2112 }
2113
2114 /* strip quotes */
2115 len -= 2;
2116 if (len >= ext->kcfg.sz) {
2117 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2118 ext->name, value, len, ext->kcfg.sz - 1);
2119 len = ext->kcfg.sz - 1;
2120 }
2121 memcpy(ext_val, value + 1, len);
2122 ext_val[len] = '\0';
2123 ext->is_set = true;
2124 return 0;
2125 }
2126
parse_u64(const char * value,__u64 * res)2127 static int parse_u64(const char *value, __u64 *res)
2128 {
2129 char *value_end;
2130 int err;
2131
2132 errno = 0;
2133 *res = strtoull(value, &value_end, 0);
2134 if (errno) {
2135 err = -errno;
2136 pr_warn("failed to parse '%s': %s\n", value, errstr(err));
2137 return err;
2138 }
2139 if (*value_end) {
2140 pr_warn("failed to parse '%s' as integer completely\n", value);
2141 return -EINVAL;
2142 }
2143 return 0;
2144 }
2145
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)2146 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2147 {
2148 int bit_sz = ext->kcfg.sz * 8;
2149
2150 if (ext->kcfg.sz == 8)
2151 return true;
2152
2153 /* Validate that value stored in u64 fits in integer of `ext->sz`
2154 * bytes size without any loss of information. If the target integer
2155 * is signed, we rely on the following limits of integer type of
2156 * Y bits and subsequent transformation:
2157 *
2158 * -2^(Y-1) <= X <= 2^(Y-1) - 1
2159 * 0 <= X + 2^(Y-1) <= 2^Y - 1
2160 * 0 <= X + 2^(Y-1) < 2^Y
2161 *
2162 * For unsigned target integer, check that all the (64 - Y) bits are
2163 * zero.
2164 */
2165 if (ext->kcfg.is_signed)
2166 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2167 else
2168 return (v >> bit_sz) == 0;
2169 }
2170
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)2171 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2172 __u64 value)
2173 {
2174 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2175 ext->kcfg.type != KCFG_BOOL) {
2176 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2177 ext->name, (unsigned long long)value);
2178 return -EINVAL;
2179 }
2180 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2181 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2182 ext->name, (unsigned long long)value);
2183 return -EINVAL;
2184
2185 }
2186 if (!is_kcfg_value_in_range(ext, value)) {
2187 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2188 ext->name, (unsigned long long)value, ext->kcfg.sz);
2189 return -ERANGE;
2190 }
2191 switch (ext->kcfg.sz) {
2192 case 1:
2193 *(__u8 *)ext_val = value;
2194 break;
2195 case 2:
2196 *(__u16 *)ext_val = value;
2197 break;
2198 case 4:
2199 *(__u32 *)ext_val = value;
2200 break;
2201 case 8:
2202 *(__u64 *)ext_val = value;
2203 break;
2204 default:
2205 return -EINVAL;
2206 }
2207 ext->is_set = true;
2208 return 0;
2209 }
2210
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)2211 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2212 char *buf, void *data)
2213 {
2214 struct extern_desc *ext;
2215 char *sep, *value;
2216 int len, err = 0;
2217 void *ext_val;
2218 __u64 num;
2219
2220 if (!str_has_pfx(buf, "CONFIG_"))
2221 return 0;
2222
2223 sep = strchr(buf, '=');
2224 if (!sep) {
2225 pr_warn("failed to parse '%s': no separator\n", buf);
2226 return -EINVAL;
2227 }
2228
2229 /* Trim ending '\n' */
2230 len = strlen(buf);
2231 if (buf[len - 1] == '\n')
2232 buf[len - 1] = '\0';
2233 /* Split on '=' and ensure that a value is present. */
2234 *sep = '\0';
2235 if (!sep[1]) {
2236 *sep = '=';
2237 pr_warn("failed to parse '%s': no value\n", buf);
2238 return -EINVAL;
2239 }
2240
2241 ext = find_extern_by_name(obj, buf);
2242 if (!ext || ext->is_set)
2243 return 0;
2244
2245 ext_val = data + ext->kcfg.data_off;
2246 value = sep + 1;
2247
2248 switch (*value) {
2249 case 'y': case 'n': case 'm':
2250 err = set_kcfg_value_tri(ext, ext_val, *value);
2251 break;
2252 case '"':
2253 err = set_kcfg_value_str(ext, ext_val, value);
2254 break;
2255 default:
2256 /* assume integer */
2257 err = parse_u64(value, &num);
2258 if (err) {
2259 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2260 return err;
2261 }
2262 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2263 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2264 return -EINVAL;
2265 }
2266 err = set_kcfg_value_num(ext, ext_val, num);
2267 break;
2268 }
2269 if (err)
2270 return err;
2271 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2272 return 0;
2273 }
2274
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)2275 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2276 {
2277 char buf[PATH_MAX];
2278 struct utsname uts;
2279 int len, err = 0;
2280 gzFile file;
2281
2282 uname(&uts);
2283 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2284 if (len < 0)
2285 return -EINVAL;
2286 else if (len >= PATH_MAX)
2287 return -ENAMETOOLONG;
2288
2289 /* gzopen also accepts uncompressed files. */
2290 file = gzopen(buf, "re");
2291 if (!file)
2292 file = gzopen("/proc/config.gz", "re");
2293
2294 if (!file) {
2295 pr_warn("failed to open system Kconfig\n");
2296 return -ENOENT;
2297 }
2298
2299 while (gzgets(file, buf, sizeof(buf))) {
2300 err = bpf_object__process_kconfig_line(obj, buf, data);
2301 if (err) {
2302 pr_warn("error parsing system Kconfig line '%s': %s\n",
2303 buf, errstr(err));
2304 goto out;
2305 }
2306 }
2307
2308 out:
2309 gzclose(file);
2310 return err;
2311 }
2312
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2313 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2314 const char *config, void *data)
2315 {
2316 char buf[PATH_MAX];
2317 int err = 0;
2318 FILE *file;
2319
2320 file = fmemopen((void *)config, strlen(config), "r");
2321 if (!file) {
2322 err = -errno;
2323 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err));
2324 return err;
2325 }
2326
2327 while (fgets(buf, sizeof(buf), file)) {
2328 err = bpf_object__process_kconfig_line(obj, buf, data);
2329 if (err) {
2330 pr_warn("error parsing in-memory Kconfig line '%s': %s\n",
2331 buf, errstr(err));
2332 break;
2333 }
2334 }
2335
2336 fclose(file);
2337 return err;
2338 }
2339
bpf_object__init_kconfig_map(struct bpf_object * obj)2340 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2341 {
2342 struct extern_desc *last_ext = NULL, *ext;
2343 size_t map_sz;
2344 int i, err;
2345
2346 for (i = 0; i < obj->nr_extern; i++) {
2347 ext = &obj->externs[i];
2348 if (ext->type == EXT_KCFG)
2349 last_ext = ext;
2350 }
2351
2352 if (!last_ext)
2353 return 0;
2354
2355 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2356 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2357 ".kconfig", obj->efile.symbols_shndx,
2358 NULL, map_sz);
2359 if (err)
2360 return err;
2361
2362 obj->kconfig_map_idx = obj->nr_maps - 1;
2363
2364 return 0;
2365 }
2366
2367 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2368 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2369 {
2370 const struct btf_type *t = btf__type_by_id(btf, id);
2371
2372 if (res_id)
2373 *res_id = id;
2374
2375 while (btf_is_mod(t) || btf_is_typedef(t)) {
2376 if (res_id)
2377 *res_id = t->type;
2378 t = btf__type_by_id(btf, t->type);
2379 }
2380
2381 return t;
2382 }
2383
2384 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2385 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2386 {
2387 const struct btf_type *t;
2388
2389 t = skip_mods_and_typedefs(btf, id, NULL);
2390 if (!btf_is_ptr(t))
2391 return NULL;
2392
2393 t = skip_mods_and_typedefs(btf, t->type, res_id);
2394
2395 return btf_is_func_proto(t) ? t : NULL;
2396 }
2397
__btf_kind_str(__u16 kind)2398 static const char *__btf_kind_str(__u16 kind)
2399 {
2400 switch (kind) {
2401 case BTF_KIND_UNKN: return "void";
2402 case BTF_KIND_INT: return "int";
2403 case BTF_KIND_PTR: return "ptr";
2404 case BTF_KIND_ARRAY: return "array";
2405 case BTF_KIND_STRUCT: return "struct";
2406 case BTF_KIND_UNION: return "union";
2407 case BTF_KIND_ENUM: return "enum";
2408 case BTF_KIND_FWD: return "fwd";
2409 case BTF_KIND_TYPEDEF: return "typedef";
2410 case BTF_KIND_VOLATILE: return "volatile";
2411 case BTF_KIND_CONST: return "const";
2412 case BTF_KIND_RESTRICT: return "restrict";
2413 case BTF_KIND_FUNC: return "func";
2414 case BTF_KIND_FUNC_PROTO: return "func_proto";
2415 case BTF_KIND_VAR: return "var";
2416 case BTF_KIND_DATASEC: return "datasec";
2417 case BTF_KIND_FLOAT: return "float";
2418 case BTF_KIND_DECL_TAG: return "decl_tag";
2419 case BTF_KIND_TYPE_TAG: return "type_tag";
2420 case BTF_KIND_ENUM64: return "enum64";
2421 default: return "unknown";
2422 }
2423 }
2424
btf_kind_str(const struct btf_type * t)2425 const char *btf_kind_str(const struct btf_type *t)
2426 {
2427 return __btf_kind_str(btf_kind(t));
2428 }
2429
2430 /*
2431 * Fetch integer attribute of BTF map definition. Such attributes are
2432 * represented using a pointer to an array, in which dimensionality of array
2433 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2434 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2435 * type definition, while using only sizeof(void *) space in ELF data section.
2436 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2437 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2438 const struct btf_member *m, __u32 *res)
2439 {
2440 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2441 const char *name = btf__name_by_offset(btf, m->name_off);
2442 const struct btf_array *arr_info;
2443 const struct btf_type *arr_t;
2444
2445 if (!btf_is_ptr(t)) {
2446 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2447 map_name, name, btf_kind_str(t));
2448 return false;
2449 }
2450
2451 arr_t = btf__type_by_id(btf, t->type);
2452 if (!arr_t) {
2453 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2454 map_name, name, t->type);
2455 return false;
2456 }
2457 if (!btf_is_array(arr_t)) {
2458 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2459 map_name, name, btf_kind_str(arr_t));
2460 return false;
2461 }
2462 arr_info = btf_array(arr_t);
2463 *res = arr_info->nelems;
2464 return true;
2465 }
2466
get_map_field_long(const char * map_name,const struct btf * btf,const struct btf_member * m,__u64 * res)2467 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2468 const struct btf_member *m, __u64 *res)
2469 {
2470 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2471 const char *name = btf__name_by_offset(btf, m->name_off);
2472
2473 if (btf_is_ptr(t)) {
2474 __u32 res32;
2475 bool ret;
2476
2477 ret = get_map_field_int(map_name, btf, m, &res32);
2478 if (ret)
2479 *res = (__u64)res32;
2480 return ret;
2481 }
2482
2483 if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2484 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2485 map_name, name, btf_kind_str(t));
2486 return false;
2487 }
2488
2489 if (btf_vlen(t) != 1) {
2490 pr_warn("map '%s': attr '%s': invalid __ulong\n",
2491 map_name, name);
2492 return false;
2493 }
2494
2495 if (btf_is_enum(t)) {
2496 const struct btf_enum *e = btf_enum(t);
2497
2498 *res = e->val;
2499 } else {
2500 const struct btf_enum64 *e = btf_enum64(t);
2501
2502 *res = btf_enum64_value(e);
2503 }
2504 return true;
2505 }
2506
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2507 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2508 {
2509 int len;
2510
2511 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2512 if (len < 0)
2513 return -EINVAL;
2514 if (len >= buf_sz)
2515 return -ENAMETOOLONG;
2516
2517 return 0;
2518 }
2519
build_map_pin_path(struct bpf_map * map,const char * path)2520 static int build_map_pin_path(struct bpf_map *map, const char *path)
2521 {
2522 char buf[PATH_MAX];
2523 int err;
2524
2525 if (!path)
2526 path = BPF_FS_DEFAULT_PATH;
2527
2528 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2529 if (err)
2530 return err;
2531
2532 return bpf_map__set_pin_path(map, buf);
2533 }
2534
2535 /* should match definition in bpf_helpers.h */
2536 enum libbpf_pin_type {
2537 LIBBPF_PIN_NONE,
2538 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2539 LIBBPF_PIN_BY_NAME,
2540 };
2541
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2542 int parse_btf_map_def(const char *map_name, struct btf *btf,
2543 const struct btf_type *def_t, bool strict,
2544 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2545 {
2546 const struct btf_type *t;
2547 const struct btf_member *m;
2548 bool is_inner = inner_def == NULL;
2549 int vlen, i;
2550
2551 vlen = btf_vlen(def_t);
2552 m = btf_members(def_t);
2553 for (i = 0; i < vlen; i++, m++) {
2554 const char *name = btf__name_by_offset(btf, m->name_off);
2555
2556 if (!name) {
2557 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2558 return -EINVAL;
2559 }
2560 if (strcmp(name, "type") == 0) {
2561 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2562 return -EINVAL;
2563 map_def->parts |= MAP_DEF_MAP_TYPE;
2564 } else if (strcmp(name, "max_entries") == 0) {
2565 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2566 return -EINVAL;
2567 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2568 } else if (strcmp(name, "map_flags") == 0) {
2569 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2570 return -EINVAL;
2571 map_def->parts |= MAP_DEF_MAP_FLAGS;
2572 } else if (strcmp(name, "numa_node") == 0) {
2573 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2574 return -EINVAL;
2575 map_def->parts |= MAP_DEF_NUMA_NODE;
2576 } else if (strcmp(name, "key_size") == 0) {
2577 __u32 sz;
2578
2579 if (!get_map_field_int(map_name, btf, m, &sz))
2580 return -EINVAL;
2581 if (map_def->key_size && map_def->key_size != sz) {
2582 pr_warn("map '%s': conflicting key size %u != %u.\n",
2583 map_name, map_def->key_size, sz);
2584 return -EINVAL;
2585 }
2586 map_def->key_size = sz;
2587 map_def->parts |= MAP_DEF_KEY_SIZE;
2588 } else if (strcmp(name, "key") == 0) {
2589 __s64 sz;
2590
2591 t = btf__type_by_id(btf, m->type);
2592 if (!t) {
2593 pr_warn("map '%s': key type [%d] not found.\n",
2594 map_name, m->type);
2595 return -EINVAL;
2596 }
2597 if (!btf_is_ptr(t)) {
2598 pr_warn("map '%s': key spec is not PTR: %s.\n",
2599 map_name, btf_kind_str(t));
2600 return -EINVAL;
2601 }
2602 sz = btf__resolve_size(btf, t->type);
2603 if (sz < 0) {
2604 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2605 map_name, t->type, (ssize_t)sz);
2606 return sz;
2607 }
2608 if (map_def->key_size && map_def->key_size != sz) {
2609 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2610 map_name, map_def->key_size, (ssize_t)sz);
2611 return -EINVAL;
2612 }
2613 map_def->key_size = sz;
2614 map_def->key_type_id = t->type;
2615 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2616 } else if (strcmp(name, "value_size") == 0) {
2617 __u32 sz;
2618
2619 if (!get_map_field_int(map_name, btf, m, &sz))
2620 return -EINVAL;
2621 if (map_def->value_size && map_def->value_size != sz) {
2622 pr_warn("map '%s': conflicting value size %u != %u.\n",
2623 map_name, map_def->value_size, sz);
2624 return -EINVAL;
2625 }
2626 map_def->value_size = sz;
2627 map_def->parts |= MAP_DEF_VALUE_SIZE;
2628 } else if (strcmp(name, "value") == 0) {
2629 __s64 sz;
2630
2631 t = btf__type_by_id(btf, m->type);
2632 if (!t) {
2633 pr_warn("map '%s': value type [%d] not found.\n",
2634 map_name, m->type);
2635 return -EINVAL;
2636 }
2637 if (!btf_is_ptr(t)) {
2638 pr_warn("map '%s': value spec is not PTR: %s.\n",
2639 map_name, btf_kind_str(t));
2640 return -EINVAL;
2641 }
2642 sz = btf__resolve_size(btf, t->type);
2643 if (sz < 0) {
2644 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2645 map_name, t->type, (ssize_t)sz);
2646 return sz;
2647 }
2648 if (map_def->value_size && map_def->value_size != sz) {
2649 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2650 map_name, map_def->value_size, (ssize_t)sz);
2651 return -EINVAL;
2652 }
2653 map_def->value_size = sz;
2654 map_def->value_type_id = t->type;
2655 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2656 }
2657 else if (strcmp(name, "values") == 0) {
2658 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2659 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2660 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2661 char inner_map_name[128];
2662 int err;
2663
2664 if (is_inner) {
2665 pr_warn("map '%s': multi-level inner maps not supported.\n",
2666 map_name);
2667 return -ENOTSUP;
2668 }
2669 if (i != vlen - 1) {
2670 pr_warn("map '%s': '%s' member should be last.\n",
2671 map_name, name);
2672 return -EINVAL;
2673 }
2674 if (!is_map_in_map && !is_prog_array) {
2675 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2676 map_name);
2677 return -ENOTSUP;
2678 }
2679 if (map_def->value_size && map_def->value_size != 4) {
2680 pr_warn("map '%s': conflicting value size %u != 4.\n",
2681 map_name, map_def->value_size);
2682 return -EINVAL;
2683 }
2684 map_def->value_size = 4;
2685 t = btf__type_by_id(btf, m->type);
2686 if (!t) {
2687 pr_warn("map '%s': %s type [%d] not found.\n",
2688 map_name, desc, m->type);
2689 return -EINVAL;
2690 }
2691 if (!btf_is_array(t) || btf_array(t)->nelems) {
2692 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2693 map_name, desc);
2694 return -EINVAL;
2695 }
2696 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2697 if (!btf_is_ptr(t)) {
2698 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2699 map_name, desc, btf_kind_str(t));
2700 return -EINVAL;
2701 }
2702 t = skip_mods_and_typedefs(btf, t->type, NULL);
2703 if (is_prog_array) {
2704 if (!btf_is_func_proto(t)) {
2705 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2706 map_name, btf_kind_str(t));
2707 return -EINVAL;
2708 }
2709 continue;
2710 }
2711 if (!btf_is_struct(t)) {
2712 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2713 map_name, btf_kind_str(t));
2714 return -EINVAL;
2715 }
2716
2717 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2718 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2719 if (err)
2720 return err;
2721
2722 map_def->parts |= MAP_DEF_INNER_MAP;
2723 } else if (strcmp(name, "pinning") == 0) {
2724 __u32 val;
2725
2726 if (is_inner) {
2727 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2728 return -EINVAL;
2729 }
2730 if (!get_map_field_int(map_name, btf, m, &val))
2731 return -EINVAL;
2732 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2733 pr_warn("map '%s': invalid pinning value %u.\n",
2734 map_name, val);
2735 return -EINVAL;
2736 }
2737 map_def->pinning = val;
2738 map_def->parts |= MAP_DEF_PINNING;
2739 } else if (strcmp(name, "map_extra") == 0) {
2740 __u64 map_extra;
2741
2742 if (!get_map_field_long(map_name, btf, m, &map_extra))
2743 return -EINVAL;
2744 map_def->map_extra = map_extra;
2745 map_def->parts |= MAP_DEF_MAP_EXTRA;
2746 } else {
2747 if (strict) {
2748 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2749 return -ENOTSUP;
2750 }
2751 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2752 }
2753 }
2754
2755 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2756 pr_warn("map '%s': map type isn't specified.\n", map_name);
2757 return -EINVAL;
2758 }
2759
2760 return 0;
2761 }
2762
adjust_ringbuf_sz(size_t sz)2763 static size_t adjust_ringbuf_sz(size_t sz)
2764 {
2765 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2766 __u32 mul;
2767
2768 /* if user forgot to set any size, make sure they see error */
2769 if (sz == 0)
2770 return 0;
2771 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2772 * a power-of-2 multiple of kernel's page size. If user diligently
2773 * satisified these conditions, pass the size through.
2774 */
2775 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2776 return sz;
2777
2778 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2779 * user-set size to satisfy both user size request and kernel
2780 * requirements and substitute correct max_entries for map creation.
2781 */
2782 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2783 if (mul * page_sz > sz)
2784 return mul * page_sz;
2785 }
2786
2787 /* if it's impossible to satisfy the conditions (i.e., user size is
2788 * very close to UINT_MAX but is not a power-of-2 multiple of
2789 * page_size) then just return original size and let kernel reject it
2790 */
2791 return sz;
2792 }
2793
map_is_ringbuf(const struct bpf_map * map)2794 static bool map_is_ringbuf(const struct bpf_map *map)
2795 {
2796 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2797 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2798 }
2799
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2800 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2801 {
2802 map->def.type = def->map_type;
2803 map->def.key_size = def->key_size;
2804 map->def.value_size = def->value_size;
2805 map->def.max_entries = def->max_entries;
2806 map->def.map_flags = def->map_flags;
2807 map->map_extra = def->map_extra;
2808
2809 map->numa_node = def->numa_node;
2810 map->btf_key_type_id = def->key_type_id;
2811 map->btf_value_type_id = def->value_type_id;
2812
2813 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2814 if (map_is_ringbuf(map))
2815 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2816
2817 if (def->parts & MAP_DEF_MAP_TYPE)
2818 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2819
2820 if (def->parts & MAP_DEF_KEY_TYPE)
2821 pr_debug("map '%s': found key [%u], sz = %u.\n",
2822 map->name, def->key_type_id, def->key_size);
2823 else if (def->parts & MAP_DEF_KEY_SIZE)
2824 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2825
2826 if (def->parts & MAP_DEF_VALUE_TYPE)
2827 pr_debug("map '%s': found value [%u], sz = %u.\n",
2828 map->name, def->value_type_id, def->value_size);
2829 else if (def->parts & MAP_DEF_VALUE_SIZE)
2830 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2831
2832 if (def->parts & MAP_DEF_MAX_ENTRIES)
2833 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2834 if (def->parts & MAP_DEF_MAP_FLAGS)
2835 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2836 if (def->parts & MAP_DEF_MAP_EXTRA)
2837 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2838 (unsigned long long)def->map_extra);
2839 if (def->parts & MAP_DEF_PINNING)
2840 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2841 if (def->parts & MAP_DEF_NUMA_NODE)
2842 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2843
2844 if (def->parts & MAP_DEF_INNER_MAP)
2845 pr_debug("map '%s': found inner map definition.\n", map->name);
2846 }
2847
btf_var_linkage_str(__u32 linkage)2848 static const char *btf_var_linkage_str(__u32 linkage)
2849 {
2850 switch (linkage) {
2851 case BTF_VAR_STATIC: return "static";
2852 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2853 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2854 default: return "unknown";
2855 }
2856 }
2857
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2858 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2859 const struct btf_type *sec,
2860 int var_idx, int sec_idx,
2861 const Elf_Data *data, bool strict,
2862 const char *pin_root_path)
2863 {
2864 struct btf_map_def map_def = {}, inner_def = {};
2865 const struct btf_type *var, *def;
2866 const struct btf_var_secinfo *vi;
2867 const struct btf_var *var_extra;
2868 const char *map_name;
2869 struct bpf_map *map;
2870 int err;
2871
2872 vi = btf_var_secinfos(sec) + var_idx;
2873 var = btf__type_by_id(obj->btf, vi->type);
2874 var_extra = btf_var(var);
2875 map_name = btf__name_by_offset(obj->btf, var->name_off);
2876
2877 if (map_name == NULL || map_name[0] == '\0') {
2878 pr_warn("map #%d: empty name.\n", var_idx);
2879 return -EINVAL;
2880 }
2881 if ((__u64)vi->offset + vi->size > data->d_size) {
2882 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2883 return -EINVAL;
2884 }
2885 if (!btf_is_var(var)) {
2886 pr_warn("map '%s': unexpected var kind %s.\n",
2887 map_name, btf_kind_str(var));
2888 return -EINVAL;
2889 }
2890 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2891 pr_warn("map '%s': unsupported map linkage %s.\n",
2892 map_name, btf_var_linkage_str(var_extra->linkage));
2893 return -EOPNOTSUPP;
2894 }
2895
2896 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2897 if (!btf_is_struct(def)) {
2898 pr_warn("map '%s': unexpected def kind %s.\n",
2899 map_name, btf_kind_str(var));
2900 return -EINVAL;
2901 }
2902 if (def->size > vi->size) {
2903 pr_warn("map '%s': invalid def size.\n", map_name);
2904 return -EINVAL;
2905 }
2906
2907 map = bpf_object__add_map(obj);
2908 if (IS_ERR(map))
2909 return PTR_ERR(map);
2910 map->name = strdup(map_name);
2911 if (!map->name) {
2912 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2913 return -ENOMEM;
2914 }
2915 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2916 map->def.type = BPF_MAP_TYPE_UNSPEC;
2917 map->sec_idx = sec_idx;
2918 map->sec_offset = vi->offset;
2919 map->btf_var_idx = var_idx;
2920 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2921 map_name, map->sec_idx, map->sec_offset);
2922
2923 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2924 if (err)
2925 return err;
2926
2927 fill_map_from_def(map, &map_def);
2928
2929 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2930 err = build_map_pin_path(map, pin_root_path);
2931 if (err) {
2932 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2933 return err;
2934 }
2935 }
2936
2937 if (map_def.parts & MAP_DEF_INNER_MAP) {
2938 map->inner_map = calloc(1, sizeof(*map->inner_map));
2939 if (!map->inner_map)
2940 return -ENOMEM;
2941 map->inner_map->fd = create_placeholder_fd();
2942 if (map->inner_map->fd < 0)
2943 return map->inner_map->fd;
2944 map->inner_map->sec_idx = sec_idx;
2945 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2946 if (!map->inner_map->name)
2947 return -ENOMEM;
2948 sprintf(map->inner_map->name, "%s.inner", map_name);
2949
2950 fill_map_from_def(map->inner_map, &inner_def);
2951 }
2952
2953 err = map_fill_btf_type_info(obj, map);
2954 if (err)
2955 return err;
2956
2957 return 0;
2958 }
2959
init_arena_map_data(struct bpf_object * obj,struct bpf_map * map,const char * sec_name,int sec_idx,void * data,size_t data_sz)2960 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2961 const char *sec_name, int sec_idx,
2962 void *data, size_t data_sz)
2963 {
2964 const long page_sz = sysconf(_SC_PAGE_SIZE);
2965 size_t mmap_sz;
2966
2967 mmap_sz = bpf_map_mmap_sz(obj->arena_map);
2968 if (roundup(data_sz, page_sz) > mmap_sz) {
2969 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2970 sec_name, mmap_sz, data_sz);
2971 return -E2BIG;
2972 }
2973
2974 obj->arena_data = malloc(data_sz);
2975 if (!obj->arena_data)
2976 return -ENOMEM;
2977 memcpy(obj->arena_data, data, data_sz);
2978 obj->arena_data_sz = data_sz;
2979
2980 /* make bpf_map__init_value() work for ARENA maps */
2981 map->mmaped = obj->arena_data;
2982
2983 return 0;
2984 }
2985
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2986 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2987 const char *pin_root_path)
2988 {
2989 const struct btf_type *sec = NULL;
2990 int nr_types, i, vlen, err;
2991 const struct btf_type *t;
2992 const char *name;
2993 Elf_Data *data;
2994 Elf_Scn *scn;
2995
2996 if (obj->efile.btf_maps_shndx < 0)
2997 return 0;
2998
2999 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
3000 data = elf_sec_data(obj, scn);
3001 if (!scn || !data) {
3002 pr_warn("elf: failed to get %s map definitions for %s\n",
3003 MAPS_ELF_SEC, obj->path);
3004 return -EINVAL;
3005 }
3006
3007 nr_types = btf__type_cnt(obj->btf);
3008 for (i = 1; i < nr_types; i++) {
3009 t = btf__type_by_id(obj->btf, i);
3010 if (!btf_is_datasec(t))
3011 continue;
3012 name = btf__name_by_offset(obj->btf, t->name_off);
3013 if (strcmp(name, MAPS_ELF_SEC) == 0) {
3014 sec = t;
3015 obj->efile.btf_maps_sec_btf_id = i;
3016 break;
3017 }
3018 }
3019
3020 if (!sec) {
3021 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
3022 return -ENOENT;
3023 }
3024
3025 vlen = btf_vlen(sec);
3026 for (i = 0; i < vlen; i++) {
3027 err = bpf_object__init_user_btf_map(obj, sec, i,
3028 obj->efile.btf_maps_shndx,
3029 data, strict,
3030 pin_root_path);
3031 if (err)
3032 return err;
3033 }
3034
3035 for (i = 0; i < obj->nr_maps; i++) {
3036 struct bpf_map *map = &obj->maps[i];
3037
3038 if (map->def.type != BPF_MAP_TYPE_ARENA)
3039 continue;
3040
3041 if (obj->arena_map) {
3042 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
3043 map->name, obj->arena_map->name);
3044 return -EINVAL;
3045 }
3046 obj->arena_map = map;
3047
3048 if (obj->efile.arena_data) {
3049 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
3050 obj->efile.arena_data->d_buf,
3051 obj->efile.arena_data->d_size);
3052 if (err)
3053 return err;
3054 }
3055 }
3056 if (obj->efile.arena_data && !obj->arena_map) {
3057 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
3058 ARENA_SEC);
3059 return -ENOENT;
3060 }
3061
3062 return 0;
3063 }
3064
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)3065 static int bpf_object__init_maps(struct bpf_object *obj,
3066 const struct bpf_object_open_opts *opts)
3067 {
3068 const char *pin_root_path;
3069 bool strict;
3070 int err = 0;
3071
3072 strict = !OPTS_GET(opts, relaxed_maps, false);
3073 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3074
3075 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3076 err = err ?: bpf_object__init_global_data_maps(obj);
3077 err = err ?: bpf_object__init_kconfig_map(obj);
3078 err = err ?: bpf_object_init_struct_ops(obj);
3079
3080 return err;
3081 }
3082
section_have_execinstr(struct bpf_object * obj,int idx)3083 static bool section_have_execinstr(struct bpf_object *obj, int idx)
3084 {
3085 Elf64_Shdr *sh;
3086
3087 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3088 if (!sh)
3089 return false;
3090
3091 return sh->sh_flags & SHF_EXECINSTR;
3092 }
3093
starts_with_qmark(const char * s)3094 static bool starts_with_qmark(const char *s)
3095 {
3096 return s && s[0] == '?';
3097 }
3098
btf_needs_sanitization(struct bpf_object * obj)3099 static bool btf_needs_sanitization(struct bpf_object *obj)
3100 {
3101 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3102 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3103 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3104 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3105 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3106 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3107 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3108 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3109
3110 return !has_func || !has_datasec || !has_func_global || !has_float ||
3111 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3112 }
3113
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)3114 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3115 {
3116 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3117 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3118 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3119 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3120 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3121 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3122 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3123 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3124 int enum64_placeholder_id = 0;
3125 struct btf_type *t;
3126 int i, j, vlen;
3127
3128 for (i = 1; i < btf__type_cnt(btf); i++) {
3129 t = (struct btf_type *)btf__type_by_id(btf, i);
3130
3131 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3132 /* replace VAR/DECL_TAG with INT */
3133 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3134 /*
3135 * using size = 1 is the safest choice, 4 will be too
3136 * big and cause kernel BTF validation failure if
3137 * original variable took less than 4 bytes
3138 */
3139 t->size = 1;
3140 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3141 } else if (!has_datasec && btf_is_datasec(t)) {
3142 /* replace DATASEC with STRUCT */
3143 const struct btf_var_secinfo *v = btf_var_secinfos(t);
3144 struct btf_member *m = btf_members(t);
3145 struct btf_type *vt;
3146 char *name;
3147
3148 name = (char *)btf__name_by_offset(btf, t->name_off);
3149 while (*name) {
3150 if (*name == '.' || *name == '?')
3151 *name = '_';
3152 name++;
3153 }
3154
3155 vlen = btf_vlen(t);
3156 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3157 for (j = 0; j < vlen; j++, v++, m++) {
3158 /* order of field assignments is important */
3159 m->offset = v->offset * 8;
3160 m->type = v->type;
3161 /* preserve variable name as member name */
3162 vt = (void *)btf__type_by_id(btf, v->type);
3163 m->name_off = vt->name_off;
3164 }
3165 } else if (!has_qmark_datasec && btf_is_datasec(t) &&
3166 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3167 /* replace '?' prefix with '_' for DATASEC names */
3168 char *name;
3169
3170 name = (char *)btf__name_by_offset(btf, t->name_off);
3171 if (name[0] == '?')
3172 name[0] = '_';
3173 } else if (!has_func && btf_is_func_proto(t)) {
3174 /* replace FUNC_PROTO with ENUM */
3175 vlen = btf_vlen(t);
3176 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3177 t->size = sizeof(__u32); /* kernel enforced */
3178 } else if (!has_func && btf_is_func(t)) {
3179 /* replace FUNC with TYPEDEF */
3180 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3181 } else if (!has_func_global && btf_is_func(t)) {
3182 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3183 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3184 } else if (!has_float && btf_is_float(t)) {
3185 /* replace FLOAT with an equally-sized empty STRUCT;
3186 * since C compilers do not accept e.g. "float" as a
3187 * valid struct name, make it anonymous
3188 */
3189 t->name_off = 0;
3190 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3191 } else if (!has_type_tag && btf_is_type_tag(t)) {
3192 /* replace TYPE_TAG with a CONST */
3193 t->name_off = 0;
3194 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3195 } else if (!has_enum64 && btf_is_enum(t)) {
3196 /* clear the kflag */
3197 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3198 } else if (!has_enum64 && btf_is_enum64(t)) {
3199 /* replace ENUM64 with a union */
3200 struct btf_member *m;
3201
3202 if (enum64_placeholder_id == 0) {
3203 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3204 if (enum64_placeholder_id < 0)
3205 return enum64_placeholder_id;
3206
3207 t = (struct btf_type *)btf__type_by_id(btf, i);
3208 }
3209
3210 m = btf_members(t);
3211 vlen = btf_vlen(t);
3212 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3213 for (j = 0; j < vlen; j++, m++) {
3214 m->type = enum64_placeholder_id;
3215 m->offset = 0;
3216 }
3217 }
3218 }
3219
3220 return 0;
3221 }
3222
libbpf_needs_btf(const struct bpf_object * obj)3223 static bool libbpf_needs_btf(const struct bpf_object *obj)
3224 {
3225 return obj->efile.btf_maps_shndx >= 0 ||
3226 obj->efile.has_st_ops ||
3227 obj->nr_extern > 0;
3228 }
3229
kernel_needs_btf(const struct bpf_object * obj)3230 static bool kernel_needs_btf(const struct bpf_object *obj)
3231 {
3232 return obj->efile.has_st_ops;
3233 }
3234
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)3235 static int bpf_object__init_btf(struct bpf_object *obj,
3236 Elf_Data *btf_data,
3237 Elf_Data *btf_ext_data)
3238 {
3239 int err = -ENOENT;
3240
3241 if (btf_data) {
3242 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3243 err = libbpf_get_error(obj->btf);
3244 if (err) {
3245 obj->btf = NULL;
3246 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err));
3247 goto out;
3248 }
3249 /* enforce 8-byte pointers for BPF-targeted BTFs */
3250 btf__set_pointer_size(obj->btf, 8);
3251 }
3252 if (btf_ext_data) {
3253 struct btf_ext_info *ext_segs[3];
3254 int seg_num, sec_num;
3255
3256 if (!obj->btf) {
3257 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3258 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3259 goto out;
3260 }
3261 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3262 err = libbpf_get_error(obj->btf_ext);
3263 if (err) {
3264 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n",
3265 BTF_EXT_ELF_SEC, errstr(err));
3266 obj->btf_ext = NULL;
3267 goto out;
3268 }
3269
3270 /* setup .BTF.ext to ELF section mapping */
3271 ext_segs[0] = &obj->btf_ext->func_info;
3272 ext_segs[1] = &obj->btf_ext->line_info;
3273 ext_segs[2] = &obj->btf_ext->core_relo_info;
3274 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3275 struct btf_ext_info *seg = ext_segs[seg_num];
3276 const struct btf_ext_info_sec *sec;
3277 const char *sec_name;
3278 Elf_Scn *scn;
3279
3280 if (seg->sec_cnt == 0)
3281 continue;
3282
3283 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3284 if (!seg->sec_idxs) {
3285 err = -ENOMEM;
3286 goto out;
3287 }
3288
3289 sec_num = 0;
3290 for_each_btf_ext_sec(seg, sec) {
3291 /* preventively increment index to avoid doing
3292 * this before every continue below
3293 */
3294 sec_num++;
3295
3296 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3297 if (str_is_empty(sec_name))
3298 continue;
3299 scn = elf_sec_by_name(obj, sec_name);
3300 if (!scn)
3301 continue;
3302
3303 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3304 }
3305 }
3306 }
3307 out:
3308 if (err && libbpf_needs_btf(obj)) {
3309 pr_warn("BTF is required, but is missing or corrupted.\n");
3310 return err;
3311 }
3312 return 0;
3313 }
3314
compare_vsi_off(const void * _a,const void * _b)3315 static int compare_vsi_off(const void *_a, const void *_b)
3316 {
3317 const struct btf_var_secinfo *a = _a;
3318 const struct btf_var_secinfo *b = _b;
3319
3320 return a->offset - b->offset;
3321 }
3322
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)3323 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3324 struct btf_type *t)
3325 {
3326 __u32 size = 0, i, vars = btf_vlen(t);
3327 const char *sec_name = btf__name_by_offset(btf, t->name_off);
3328 struct btf_var_secinfo *vsi;
3329 bool fixup_offsets = false;
3330 int err;
3331
3332 if (!sec_name) {
3333 pr_debug("No name found in string section for DATASEC kind.\n");
3334 return -ENOENT;
3335 }
3336
3337 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3338 * variable offsets set at the previous step. Further, not every
3339 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3340 * all fixups altogether for such sections and go straight to sorting
3341 * VARs within their DATASEC.
3342 */
3343 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3344 goto sort_vars;
3345
3346 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3347 * fix this up. But BPF static linker already fixes this up and fills
3348 * all the sizes and offsets during static linking. So this step has
3349 * to be optional. But the STV_HIDDEN handling is non-optional for any
3350 * non-extern DATASEC, so the variable fixup loop below handles both
3351 * functions at the same time, paying the cost of BTF VAR <-> ELF
3352 * symbol matching just once.
3353 */
3354 if (t->size == 0) {
3355 err = find_elf_sec_sz(obj, sec_name, &size);
3356 if (err || !size) {
3357 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n",
3358 sec_name, size, errstr(err));
3359 return -ENOENT;
3360 }
3361
3362 t->size = size;
3363 fixup_offsets = true;
3364 }
3365
3366 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3367 const struct btf_type *t_var;
3368 struct btf_var *var;
3369 const char *var_name;
3370 Elf64_Sym *sym;
3371
3372 t_var = btf__type_by_id(btf, vsi->type);
3373 if (!t_var || !btf_is_var(t_var)) {
3374 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3375 return -EINVAL;
3376 }
3377
3378 var = btf_var(t_var);
3379 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3380 continue;
3381
3382 var_name = btf__name_by_offset(btf, t_var->name_off);
3383 if (!var_name) {
3384 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3385 sec_name, i);
3386 return -ENOENT;
3387 }
3388
3389 sym = find_elf_var_sym(obj, var_name);
3390 if (IS_ERR(sym)) {
3391 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3392 sec_name, var_name);
3393 return -ENOENT;
3394 }
3395
3396 if (fixup_offsets)
3397 vsi->offset = sym->st_value;
3398
3399 /* if variable is a global/weak symbol, but has restricted
3400 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3401 * as static. This follows similar logic for functions (BPF
3402 * subprogs) and influences libbpf's further decisions about
3403 * whether to make global data BPF array maps as
3404 * BPF_F_MMAPABLE.
3405 */
3406 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3407 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3408 var->linkage = BTF_VAR_STATIC;
3409 }
3410
3411 sort_vars:
3412 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3413 return 0;
3414 }
3415
bpf_object_fixup_btf(struct bpf_object * obj)3416 static int bpf_object_fixup_btf(struct bpf_object *obj)
3417 {
3418 int i, n, err = 0;
3419
3420 if (!obj->btf)
3421 return 0;
3422
3423 n = btf__type_cnt(obj->btf);
3424 for (i = 1; i < n; i++) {
3425 struct btf_type *t = btf_type_by_id(obj->btf, i);
3426
3427 /* Loader needs to fix up some of the things compiler
3428 * couldn't get its hands on while emitting BTF. This
3429 * is section size and global variable offset. We use
3430 * the info from the ELF itself for this purpose.
3431 */
3432 if (btf_is_datasec(t)) {
3433 err = btf_fixup_datasec(obj, obj->btf, t);
3434 if (err)
3435 return err;
3436 }
3437 }
3438
3439 return 0;
3440 }
3441
prog_needs_vmlinux_btf(struct bpf_program * prog)3442 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3443 {
3444 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3445 prog->type == BPF_PROG_TYPE_LSM)
3446 return true;
3447
3448 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3449 * also need vmlinux BTF
3450 */
3451 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3452 return true;
3453
3454 return false;
3455 }
3456
map_needs_vmlinux_btf(struct bpf_map * map)3457 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3458 {
3459 return bpf_map__is_struct_ops(map);
3460 }
3461
obj_needs_vmlinux_btf(const struct bpf_object * obj)3462 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3463 {
3464 struct bpf_program *prog;
3465 struct bpf_map *map;
3466 int i;
3467
3468 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3469 * is not specified
3470 */
3471 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3472 return true;
3473
3474 /* Support for typed ksyms needs kernel BTF */
3475 for (i = 0; i < obj->nr_extern; i++) {
3476 const struct extern_desc *ext;
3477
3478 ext = &obj->externs[i];
3479 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3480 return true;
3481 }
3482
3483 bpf_object__for_each_program(prog, obj) {
3484 if (!prog->autoload)
3485 continue;
3486 if (prog_needs_vmlinux_btf(prog))
3487 return true;
3488 }
3489
3490 bpf_object__for_each_map(map, obj) {
3491 if (map_needs_vmlinux_btf(map))
3492 return true;
3493 }
3494
3495 return false;
3496 }
3497
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3498 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3499 {
3500 int err;
3501
3502 /* btf_vmlinux could be loaded earlier */
3503 if (obj->btf_vmlinux || obj->gen_loader)
3504 return 0;
3505
3506 if (!force && !obj_needs_vmlinux_btf(obj))
3507 return 0;
3508
3509 obj->btf_vmlinux = btf__load_vmlinux_btf();
3510 err = libbpf_get_error(obj->btf_vmlinux);
3511 if (err) {
3512 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err));
3513 obj->btf_vmlinux = NULL;
3514 return err;
3515 }
3516 return 0;
3517 }
3518
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3519 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3520 {
3521 struct btf *kern_btf = obj->btf;
3522 bool btf_mandatory, sanitize;
3523 int i, err = 0;
3524
3525 if (!obj->btf)
3526 return 0;
3527
3528 if (!kernel_supports(obj, FEAT_BTF)) {
3529 if (kernel_needs_btf(obj)) {
3530 err = -EOPNOTSUPP;
3531 goto report;
3532 }
3533 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3534 return 0;
3535 }
3536
3537 /* Even though some subprogs are global/weak, user might prefer more
3538 * permissive BPF verification process that BPF verifier performs for
3539 * static functions, taking into account more context from the caller
3540 * functions. In such case, they need to mark such subprogs with
3541 * __attribute__((visibility("hidden"))) and libbpf will adjust
3542 * corresponding FUNC BTF type to be marked as static and trigger more
3543 * involved BPF verification process.
3544 */
3545 for (i = 0; i < obj->nr_programs; i++) {
3546 struct bpf_program *prog = &obj->programs[i];
3547 struct btf_type *t;
3548 const char *name;
3549 int j, n;
3550
3551 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3552 continue;
3553
3554 n = btf__type_cnt(obj->btf);
3555 for (j = 1; j < n; j++) {
3556 t = btf_type_by_id(obj->btf, j);
3557 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3558 continue;
3559
3560 name = btf__str_by_offset(obj->btf, t->name_off);
3561 if (strcmp(name, prog->name) != 0)
3562 continue;
3563
3564 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3565 break;
3566 }
3567 }
3568
3569 sanitize = btf_needs_sanitization(obj);
3570 if (sanitize) {
3571 const void *raw_data;
3572 __u32 sz;
3573
3574 /* clone BTF to sanitize a copy and leave the original intact */
3575 raw_data = btf__raw_data(obj->btf, &sz);
3576 kern_btf = btf__new(raw_data, sz);
3577 err = libbpf_get_error(kern_btf);
3578 if (err)
3579 return err;
3580
3581 /* enforce 8-byte pointers for BPF-targeted BTFs */
3582 btf__set_pointer_size(obj->btf, 8);
3583 err = bpf_object__sanitize_btf(obj, kern_btf);
3584 if (err)
3585 return err;
3586 }
3587
3588 if (obj->gen_loader) {
3589 __u32 raw_size = 0;
3590 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3591
3592 if (!raw_data)
3593 return -ENOMEM;
3594 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3595 /* Pretend to have valid FD to pass various fd >= 0 checks.
3596 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3597 */
3598 btf__set_fd(kern_btf, 0);
3599 } else {
3600 /* currently BPF_BTF_LOAD only supports log_level 1 */
3601 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3602 obj->log_level ? 1 : 0, obj->token_fd);
3603 }
3604 if (sanitize) {
3605 if (!err) {
3606 /* move fd to libbpf's BTF */
3607 btf__set_fd(obj->btf, btf__fd(kern_btf));
3608 btf__set_fd(kern_btf, -1);
3609 }
3610 btf__free(kern_btf);
3611 }
3612 report:
3613 if (err) {
3614 btf_mandatory = kernel_needs_btf(obj);
3615 if (btf_mandatory) {
3616 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n",
3617 errstr(err));
3618 } else {
3619 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n",
3620 errstr(err));
3621 err = 0;
3622 }
3623 }
3624 return err;
3625 }
3626
elf_sym_str(const struct bpf_object * obj,size_t off)3627 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3628 {
3629 const char *name;
3630
3631 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3632 if (!name) {
3633 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3634 off, obj->path, elf_errmsg(-1));
3635 return NULL;
3636 }
3637
3638 return name;
3639 }
3640
elf_sec_str(const struct bpf_object * obj,size_t off)3641 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3642 {
3643 const char *name;
3644
3645 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3646 if (!name) {
3647 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3648 off, obj->path, elf_errmsg(-1));
3649 return NULL;
3650 }
3651
3652 return name;
3653 }
3654
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3655 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3656 {
3657 Elf_Scn *scn;
3658
3659 scn = elf_getscn(obj->efile.elf, idx);
3660 if (!scn) {
3661 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3662 idx, obj->path, elf_errmsg(-1));
3663 return NULL;
3664 }
3665 return scn;
3666 }
3667
elf_sec_by_name(const struct bpf_object * obj,const char * name)3668 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3669 {
3670 Elf_Scn *scn = NULL;
3671 Elf *elf = obj->efile.elf;
3672 const char *sec_name;
3673
3674 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3675 sec_name = elf_sec_name(obj, scn);
3676 if (!sec_name)
3677 return NULL;
3678
3679 if (strcmp(sec_name, name) != 0)
3680 continue;
3681
3682 return scn;
3683 }
3684 return NULL;
3685 }
3686
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3687 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3688 {
3689 Elf64_Shdr *shdr;
3690
3691 if (!scn)
3692 return NULL;
3693
3694 shdr = elf64_getshdr(scn);
3695 if (!shdr) {
3696 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3697 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3698 return NULL;
3699 }
3700
3701 return shdr;
3702 }
3703
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3705 {
3706 const char *name;
3707 Elf64_Shdr *sh;
3708
3709 if (!scn)
3710 return NULL;
3711
3712 sh = elf_sec_hdr(obj, scn);
3713 if (!sh)
3714 return NULL;
3715
3716 name = elf_sec_str(obj, sh->sh_name);
3717 if (!name) {
3718 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3719 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3720 return NULL;
3721 }
3722
3723 return name;
3724 }
3725
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3726 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3727 {
3728 Elf_Data *data;
3729
3730 if (!scn)
3731 return NULL;
3732
3733 data = elf_getdata(scn, 0);
3734 if (!data) {
3735 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3736 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3737 obj->path, elf_errmsg(-1));
3738 return NULL;
3739 }
3740
3741 return data;
3742 }
3743
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3744 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3745 {
3746 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3747 return NULL;
3748
3749 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3750 }
3751
elf_rel_by_idx(Elf_Data * data,size_t idx)3752 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3753 {
3754 if (idx >= data->d_size / sizeof(Elf64_Rel))
3755 return NULL;
3756
3757 return (Elf64_Rel *)data->d_buf + idx;
3758 }
3759
is_sec_name_dwarf(const char * name)3760 static bool is_sec_name_dwarf(const char *name)
3761 {
3762 /* approximation, but the actual list is too long */
3763 return str_has_pfx(name, ".debug_");
3764 }
3765
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3766 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3767 {
3768 /* no special handling of .strtab */
3769 if (hdr->sh_type == SHT_STRTAB)
3770 return true;
3771
3772 /* ignore .llvm_addrsig section as well */
3773 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3774 return true;
3775
3776 /* no subprograms will lead to an empty .text section, ignore it */
3777 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3778 strcmp(name, ".text") == 0)
3779 return true;
3780
3781 /* DWARF sections */
3782 if (is_sec_name_dwarf(name))
3783 return true;
3784
3785 if (str_has_pfx(name, ".rel")) {
3786 name += sizeof(".rel") - 1;
3787 /* DWARF section relocations */
3788 if (is_sec_name_dwarf(name))
3789 return true;
3790
3791 /* .BTF and .BTF.ext don't need relocations */
3792 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3793 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3794 return true;
3795 }
3796
3797 return false;
3798 }
3799
cmp_progs(const void * _a,const void * _b)3800 static int cmp_progs(const void *_a, const void *_b)
3801 {
3802 const struct bpf_program *a = _a;
3803 const struct bpf_program *b = _b;
3804
3805 if (a->sec_idx != b->sec_idx)
3806 return a->sec_idx < b->sec_idx ? -1 : 1;
3807
3808 /* sec_insn_off can't be the same within the section */
3809 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3810 }
3811
bpf_object__elf_collect(struct bpf_object * obj)3812 static int bpf_object__elf_collect(struct bpf_object *obj)
3813 {
3814 struct elf_sec_desc *sec_desc;
3815 Elf *elf = obj->efile.elf;
3816 Elf_Data *btf_ext_data = NULL;
3817 Elf_Data *btf_data = NULL;
3818 int idx = 0, err = 0;
3819 const char *name;
3820 Elf_Data *data;
3821 Elf_Scn *scn;
3822 Elf64_Shdr *sh;
3823
3824 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3825 * section. Since section count retrieved by elf_getshdrnum() does
3826 * include sec #0, it is already the necessary size of an array to keep
3827 * all the sections.
3828 */
3829 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3830 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3831 obj->path, elf_errmsg(-1));
3832 return -LIBBPF_ERRNO__FORMAT;
3833 }
3834 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3835 if (!obj->efile.secs)
3836 return -ENOMEM;
3837
3838 /* a bunch of ELF parsing functionality depends on processing symbols,
3839 * so do the first pass and find the symbol table
3840 */
3841 scn = NULL;
3842 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3843 sh = elf_sec_hdr(obj, scn);
3844 if (!sh)
3845 return -LIBBPF_ERRNO__FORMAT;
3846
3847 if (sh->sh_type == SHT_SYMTAB) {
3848 if (obj->efile.symbols) {
3849 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3850 return -LIBBPF_ERRNO__FORMAT;
3851 }
3852
3853 data = elf_sec_data(obj, scn);
3854 if (!data)
3855 return -LIBBPF_ERRNO__FORMAT;
3856
3857 idx = elf_ndxscn(scn);
3858
3859 obj->efile.symbols = data;
3860 obj->efile.symbols_shndx = idx;
3861 obj->efile.strtabidx = sh->sh_link;
3862 }
3863 }
3864
3865 if (!obj->efile.symbols) {
3866 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3867 obj->path);
3868 return -ENOENT;
3869 }
3870
3871 scn = NULL;
3872 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3873 idx = elf_ndxscn(scn);
3874 sec_desc = &obj->efile.secs[idx];
3875
3876 sh = elf_sec_hdr(obj, scn);
3877 if (!sh)
3878 return -LIBBPF_ERRNO__FORMAT;
3879
3880 name = elf_sec_str(obj, sh->sh_name);
3881 if (!name)
3882 return -LIBBPF_ERRNO__FORMAT;
3883
3884 if (ignore_elf_section(sh, name))
3885 continue;
3886
3887 data = elf_sec_data(obj, scn);
3888 if (!data)
3889 return -LIBBPF_ERRNO__FORMAT;
3890
3891 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3892 idx, name, (unsigned long)data->d_size,
3893 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3894 (int)sh->sh_type);
3895
3896 if (strcmp(name, "license") == 0) {
3897 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3898 if (err)
3899 return err;
3900 } else if (strcmp(name, "version") == 0) {
3901 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3902 if (err)
3903 return err;
3904 } else if (strcmp(name, "maps") == 0) {
3905 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3906 return -ENOTSUP;
3907 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3908 obj->efile.btf_maps_shndx = idx;
3909 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3910 if (sh->sh_type != SHT_PROGBITS)
3911 return -LIBBPF_ERRNO__FORMAT;
3912 btf_data = data;
3913 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3914 if (sh->sh_type != SHT_PROGBITS)
3915 return -LIBBPF_ERRNO__FORMAT;
3916 btf_ext_data = data;
3917 } else if (sh->sh_type == SHT_SYMTAB) {
3918 /* already processed during the first pass above */
3919 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3920 if (sh->sh_flags & SHF_EXECINSTR) {
3921 if (strcmp(name, ".text") == 0)
3922 obj->efile.text_shndx = idx;
3923 err = bpf_object__add_programs(obj, data, name, idx);
3924 if (err)
3925 return err;
3926 } else if (strcmp(name, DATA_SEC) == 0 ||
3927 str_has_pfx(name, DATA_SEC ".")) {
3928 sec_desc->sec_type = SEC_DATA;
3929 sec_desc->shdr = sh;
3930 sec_desc->data = data;
3931 } else if (strcmp(name, RODATA_SEC) == 0 ||
3932 str_has_pfx(name, RODATA_SEC ".")) {
3933 sec_desc->sec_type = SEC_RODATA;
3934 sec_desc->shdr = sh;
3935 sec_desc->data = data;
3936 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3937 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3938 strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3939 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3940 sec_desc->sec_type = SEC_ST_OPS;
3941 sec_desc->shdr = sh;
3942 sec_desc->data = data;
3943 obj->efile.has_st_ops = true;
3944 } else if (strcmp(name, ARENA_SEC) == 0) {
3945 obj->efile.arena_data = data;
3946 obj->efile.arena_data_shndx = idx;
3947 } else {
3948 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3949 idx, name);
3950 }
3951 } else if (sh->sh_type == SHT_REL) {
3952 int targ_sec_idx = sh->sh_info; /* points to other section */
3953
3954 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3955 targ_sec_idx >= obj->efile.sec_cnt)
3956 return -LIBBPF_ERRNO__FORMAT;
3957
3958 /* Only do relo for section with exec instructions */
3959 if (!section_have_execinstr(obj, targ_sec_idx) &&
3960 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3961 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3962 strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3963 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3964 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3965 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3966 idx, name, targ_sec_idx,
3967 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3968 continue;
3969 }
3970
3971 sec_desc->sec_type = SEC_RELO;
3972 sec_desc->shdr = sh;
3973 sec_desc->data = data;
3974 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3975 str_has_pfx(name, BSS_SEC "."))) {
3976 sec_desc->sec_type = SEC_BSS;
3977 sec_desc->shdr = sh;
3978 sec_desc->data = data;
3979 } else {
3980 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3981 (size_t)sh->sh_size);
3982 }
3983 }
3984
3985 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3986 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3987 return -LIBBPF_ERRNO__FORMAT;
3988 }
3989
3990 /* change BPF program insns to native endianness for introspection */
3991 if (!is_native_endianness(obj))
3992 bpf_object_bswap_progs(obj);
3993
3994 /* sort BPF programs by section name and in-section instruction offset
3995 * for faster search
3996 */
3997 if (obj->nr_programs)
3998 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3999
4000 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
4001 }
4002
sym_is_extern(const Elf64_Sym * sym)4003 static bool sym_is_extern(const Elf64_Sym *sym)
4004 {
4005 int bind = ELF64_ST_BIND(sym->st_info);
4006 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
4007 return sym->st_shndx == SHN_UNDEF &&
4008 (bind == STB_GLOBAL || bind == STB_WEAK) &&
4009 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
4010 }
4011
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)4012 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
4013 {
4014 int bind = ELF64_ST_BIND(sym->st_info);
4015 int type = ELF64_ST_TYPE(sym->st_info);
4016
4017 /* in .text section */
4018 if (sym->st_shndx != text_shndx)
4019 return false;
4020
4021 /* local function */
4022 if (bind == STB_LOCAL && type == STT_SECTION)
4023 return true;
4024
4025 /* global function */
4026 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC;
4027 }
4028
find_extern_btf_id(const struct btf * btf,const char * ext_name)4029 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
4030 {
4031 const struct btf_type *t;
4032 const char *tname;
4033 int i, n;
4034
4035 if (!btf)
4036 return -ESRCH;
4037
4038 n = btf__type_cnt(btf);
4039 for (i = 1; i < n; i++) {
4040 t = btf__type_by_id(btf, i);
4041
4042 if (!btf_is_var(t) && !btf_is_func(t))
4043 continue;
4044
4045 tname = btf__name_by_offset(btf, t->name_off);
4046 if (strcmp(tname, ext_name))
4047 continue;
4048
4049 if (btf_is_var(t) &&
4050 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
4051 return -EINVAL;
4052
4053 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
4054 return -EINVAL;
4055
4056 return i;
4057 }
4058
4059 return -ENOENT;
4060 }
4061
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)4062 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4063 const struct btf_var_secinfo *vs;
4064 const struct btf_type *t;
4065 int i, j, n;
4066
4067 if (!btf)
4068 return -ESRCH;
4069
4070 n = btf__type_cnt(btf);
4071 for (i = 1; i < n; i++) {
4072 t = btf__type_by_id(btf, i);
4073
4074 if (!btf_is_datasec(t))
4075 continue;
4076
4077 vs = btf_var_secinfos(t);
4078 for (j = 0; j < btf_vlen(t); j++, vs++) {
4079 if (vs->type == ext_btf_id)
4080 return i;
4081 }
4082 }
4083
4084 return -ENOENT;
4085 }
4086
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)4087 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4088 bool *is_signed)
4089 {
4090 const struct btf_type *t;
4091 const char *name;
4092
4093 t = skip_mods_and_typedefs(btf, id, NULL);
4094 name = btf__name_by_offset(btf, t->name_off);
4095
4096 if (is_signed)
4097 *is_signed = false;
4098 switch (btf_kind(t)) {
4099 case BTF_KIND_INT: {
4100 int enc = btf_int_encoding(t);
4101
4102 if (enc & BTF_INT_BOOL)
4103 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4104 if (is_signed)
4105 *is_signed = enc & BTF_INT_SIGNED;
4106 if (t->size == 1)
4107 return KCFG_CHAR;
4108 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4109 return KCFG_UNKNOWN;
4110 return KCFG_INT;
4111 }
4112 case BTF_KIND_ENUM:
4113 if (t->size != 4)
4114 return KCFG_UNKNOWN;
4115 if (strcmp(name, "libbpf_tristate"))
4116 return KCFG_UNKNOWN;
4117 return KCFG_TRISTATE;
4118 case BTF_KIND_ENUM64:
4119 if (strcmp(name, "libbpf_tristate"))
4120 return KCFG_UNKNOWN;
4121 return KCFG_TRISTATE;
4122 case BTF_KIND_ARRAY:
4123 if (btf_array(t)->nelems == 0)
4124 return KCFG_UNKNOWN;
4125 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4126 return KCFG_UNKNOWN;
4127 return KCFG_CHAR_ARR;
4128 default:
4129 return KCFG_UNKNOWN;
4130 }
4131 }
4132
cmp_externs(const void * _a,const void * _b)4133 static int cmp_externs(const void *_a, const void *_b)
4134 {
4135 const struct extern_desc *a = _a;
4136 const struct extern_desc *b = _b;
4137
4138 if (a->type != b->type)
4139 return a->type < b->type ? -1 : 1;
4140
4141 if (a->type == EXT_KCFG) {
4142 /* descending order by alignment requirements */
4143 if (a->kcfg.align != b->kcfg.align)
4144 return a->kcfg.align > b->kcfg.align ? -1 : 1;
4145 /* ascending order by size, within same alignment class */
4146 if (a->kcfg.sz != b->kcfg.sz)
4147 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4148 }
4149
4150 /* resolve ties by name */
4151 return strcmp(a->name, b->name);
4152 }
4153
find_int_btf_id(const struct btf * btf)4154 static int find_int_btf_id(const struct btf *btf)
4155 {
4156 const struct btf_type *t;
4157 int i, n;
4158
4159 n = btf__type_cnt(btf);
4160 for (i = 1; i < n; i++) {
4161 t = btf__type_by_id(btf, i);
4162
4163 if (btf_is_int(t) && btf_int_bits(t) == 32)
4164 return i;
4165 }
4166
4167 return 0;
4168 }
4169
add_dummy_ksym_var(struct btf * btf)4170 static int add_dummy_ksym_var(struct btf *btf)
4171 {
4172 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4173 const struct btf_var_secinfo *vs;
4174 const struct btf_type *sec;
4175
4176 if (!btf)
4177 return 0;
4178
4179 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4180 BTF_KIND_DATASEC);
4181 if (sec_btf_id < 0)
4182 return 0;
4183
4184 sec = btf__type_by_id(btf, sec_btf_id);
4185 vs = btf_var_secinfos(sec);
4186 for (i = 0; i < btf_vlen(sec); i++, vs++) {
4187 const struct btf_type *vt;
4188
4189 vt = btf__type_by_id(btf, vs->type);
4190 if (btf_is_func(vt))
4191 break;
4192 }
4193
4194 /* No func in ksyms sec. No need to add dummy var. */
4195 if (i == btf_vlen(sec))
4196 return 0;
4197
4198 int_btf_id = find_int_btf_id(btf);
4199 dummy_var_btf_id = btf__add_var(btf,
4200 "dummy_ksym",
4201 BTF_VAR_GLOBAL_ALLOCATED,
4202 int_btf_id);
4203 if (dummy_var_btf_id < 0)
4204 pr_warn("cannot create a dummy_ksym var\n");
4205
4206 return dummy_var_btf_id;
4207 }
4208
bpf_object__collect_externs(struct bpf_object * obj)4209 static int bpf_object__collect_externs(struct bpf_object *obj)
4210 {
4211 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4212 const struct btf_type *t;
4213 struct extern_desc *ext;
4214 int i, n, off, dummy_var_btf_id;
4215 const char *ext_name, *sec_name;
4216 size_t ext_essent_len;
4217 Elf_Scn *scn;
4218 Elf64_Shdr *sh;
4219
4220 if (!obj->efile.symbols)
4221 return 0;
4222
4223 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4224 sh = elf_sec_hdr(obj, scn);
4225 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4226 return -LIBBPF_ERRNO__FORMAT;
4227
4228 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4229 if (dummy_var_btf_id < 0)
4230 return dummy_var_btf_id;
4231
4232 n = sh->sh_size / sh->sh_entsize;
4233 pr_debug("looking for externs among %d symbols...\n", n);
4234
4235 for (i = 0; i < n; i++) {
4236 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4237
4238 if (!sym)
4239 return -LIBBPF_ERRNO__FORMAT;
4240 if (!sym_is_extern(sym))
4241 continue;
4242 ext_name = elf_sym_str(obj, sym->st_name);
4243 if (!ext_name || !ext_name[0])
4244 continue;
4245
4246 ext = obj->externs;
4247 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4248 if (!ext)
4249 return -ENOMEM;
4250 obj->externs = ext;
4251 ext = &ext[obj->nr_extern];
4252 memset(ext, 0, sizeof(*ext));
4253 obj->nr_extern++;
4254
4255 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4256 if (ext->btf_id <= 0) {
4257 pr_warn("failed to find BTF for extern '%s': %d\n",
4258 ext_name, ext->btf_id);
4259 return ext->btf_id;
4260 }
4261 t = btf__type_by_id(obj->btf, ext->btf_id);
4262 ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off));
4263 if (!ext->name)
4264 return -ENOMEM;
4265 ext->sym_idx = i;
4266 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4267
4268 ext_essent_len = bpf_core_essential_name_len(ext->name);
4269 ext->essent_name = NULL;
4270 if (ext_essent_len != strlen(ext->name)) {
4271 ext->essent_name = strndup(ext->name, ext_essent_len);
4272 if (!ext->essent_name)
4273 return -ENOMEM;
4274 }
4275
4276 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4277 if (ext->sec_btf_id <= 0) {
4278 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4279 ext_name, ext->btf_id, ext->sec_btf_id);
4280 return ext->sec_btf_id;
4281 }
4282 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4283 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4284
4285 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4286 if (btf_is_func(t)) {
4287 pr_warn("extern function %s is unsupported under %s section\n",
4288 ext->name, KCONFIG_SEC);
4289 return -ENOTSUP;
4290 }
4291 kcfg_sec = sec;
4292 ext->type = EXT_KCFG;
4293 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4294 if (ext->kcfg.sz <= 0) {
4295 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4296 ext_name, ext->kcfg.sz);
4297 return ext->kcfg.sz;
4298 }
4299 ext->kcfg.align = btf__align_of(obj->btf, t->type);
4300 if (ext->kcfg.align <= 0) {
4301 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4302 ext_name, ext->kcfg.align);
4303 return -EINVAL;
4304 }
4305 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4306 &ext->kcfg.is_signed);
4307 if (ext->kcfg.type == KCFG_UNKNOWN) {
4308 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4309 return -ENOTSUP;
4310 }
4311 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4312 ksym_sec = sec;
4313 ext->type = EXT_KSYM;
4314 skip_mods_and_typedefs(obj->btf, t->type,
4315 &ext->ksym.type_id);
4316 } else {
4317 pr_warn("unrecognized extern section '%s'\n", sec_name);
4318 return -ENOTSUP;
4319 }
4320 }
4321 pr_debug("collected %d externs total\n", obj->nr_extern);
4322
4323 if (!obj->nr_extern)
4324 return 0;
4325
4326 /* sort externs by type, for kcfg ones also by (align, size, name) */
4327 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4328
4329 /* for .ksyms section, we need to turn all externs into allocated
4330 * variables in BTF to pass kernel verification; we do this by
4331 * pretending that each extern is a 8-byte variable
4332 */
4333 if (ksym_sec) {
4334 /* find existing 4-byte integer type in BTF to use for fake
4335 * extern variables in DATASEC
4336 */
4337 int int_btf_id = find_int_btf_id(obj->btf);
4338 /* For extern function, a dummy_var added earlier
4339 * will be used to replace the vs->type and
4340 * its name string will be used to refill
4341 * the missing param's name.
4342 */
4343 const struct btf_type *dummy_var;
4344
4345 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4346 for (i = 0; i < obj->nr_extern; i++) {
4347 ext = &obj->externs[i];
4348 if (ext->type != EXT_KSYM)
4349 continue;
4350 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4351 i, ext->sym_idx, ext->name);
4352 }
4353
4354 sec = ksym_sec;
4355 n = btf_vlen(sec);
4356 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4357 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4358 struct btf_type *vt;
4359
4360 vt = (void *)btf__type_by_id(obj->btf, vs->type);
4361 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4362 ext = find_extern_by_name(obj, ext_name);
4363 if (!ext) {
4364 pr_warn("failed to find extern definition for BTF %s '%s'\n",
4365 btf_kind_str(vt), ext_name);
4366 return -ESRCH;
4367 }
4368 if (btf_is_func(vt)) {
4369 const struct btf_type *func_proto;
4370 struct btf_param *param;
4371 int j;
4372
4373 func_proto = btf__type_by_id(obj->btf,
4374 vt->type);
4375 param = btf_params(func_proto);
4376 /* Reuse the dummy_var string if the
4377 * func proto does not have param name.
4378 */
4379 for (j = 0; j < btf_vlen(func_proto); j++)
4380 if (param[j].type && !param[j].name_off)
4381 param[j].name_off =
4382 dummy_var->name_off;
4383 vs->type = dummy_var_btf_id;
4384 vt->info &= ~0xffff;
4385 vt->info |= BTF_FUNC_GLOBAL;
4386 } else {
4387 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4388 vt->type = int_btf_id;
4389 }
4390 vs->offset = off;
4391 vs->size = sizeof(int);
4392 }
4393 sec->size = off;
4394 }
4395
4396 if (kcfg_sec) {
4397 sec = kcfg_sec;
4398 /* for kcfg externs calculate their offsets within a .kconfig map */
4399 off = 0;
4400 for (i = 0; i < obj->nr_extern; i++) {
4401 ext = &obj->externs[i];
4402 if (ext->type != EXT_KCFG)
4403 continue;
4404
4405 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4406 off = ext->kcfg.data_off + ext->kcfg.sz;
4407 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4408 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4409 }
4410 sec->size = off;
4411 n = btf_vlen(sec);
4412 for (i = 0; i < n; i++) {
4413 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4414
4415 t = btf__type_by_id(obj->btf, vs->type);
4416 ext_name = btf__name_by_offset(obj->btf, t->name_off);
4417 ext = find_extern_by_name(obj, ext_name);
4418 if (!ext) {
4419 pr_warn("failed to find extern definition for BTF var '%s'\n",
4420 ext_name);
4421 return -ESRCH;
4422 }
4423 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4424 vs->offset = ext->kcfg.data_off;
4425 }
4426 }
4427 return 0;
4428 }
4429
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)4430 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4431 {
4432 return prog->sec_idx == obj->efile.text_shndx;
4433 }
4434
4435 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)4436 bpf_object__find_program_by_name(const struct bpf_object *obj,
4437 const char *name)
4438 {
4439 struct bpf_program *prog;
4440
4441 bpf_object__for_each_program(prog, obj) {
4442 if (prog_is_subprog(obj, prog))
4443 continue;
4444 if (!strcmp(prog->name, name))
4445 return prog;
4446 }
4447 return errno = ENOENT, NULL;
4448 }
4449
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4450 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4451 int shndx)
4452 {
4453 switch (obj->efile.secs[shndx].sec_type) {
4454 case SEC_BSS:
4455 case SEC_DATA:
4456 case SEC_RODATA:
4457 return true;
4458 default:
4459 return false;
4460 }
4461 }
4462
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4463 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4464 int shndx)
4465 {
4466 return shndx == obj->efile.btf_maps_shndx;
4467 }
4468
4469 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4470 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4471 {
4472 if (shndx == obj->efile.symbols_shndx)
4473 return LIBBPF_MAP_KCONFIG;
4474
4475 switch (obj->efile.secs[shndx].sec_type) {
4476 case SEC_BSS:
4477 return LIBBPF_MAP_BSS;
4478 case SEC_DATA:
4479 return LIBBPF_MAP_DATA;
4480 case SEC_RODATA:
4481 return LIBBPF_MAP_RODATA;
4482 default:
4483 return LIBBPF_MAP_UNSPEC;
4484 }
4485 }
4486
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4487 static int bpf_program__record_reloc(struct bpf_program *prog,
4488 struct reloc_desc *reloc_desc,
4489 __u32 insn_idx, const char *sym_name,
4490 const Elf64_Sym *sym, const Elf64_Rel *rel)
4491 {
4492 struct bpf_insn *insn = &prog->insns[insn_idx];
4493 size_t map_idx, nr_maps = prog->obj->nr_maps;
4494 struct bpf_object *obj = prog->obj;
4495 __u32 shdr_idx = sym->st_shndx;
4496 enum libbpf_map_type type;
4497 const char *sym_sec_name;
4498 struct bpf_map *map;
4499
4500 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4501 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4502 prog->name, sym_name, insn_idx, insn->code);
4503 return -LIBBPF_ERRNO__RELOC;
4504 }
4505
4506 if (sym_is_extern(sym)) {
4507 int sym_idx = ELF64_R_SYM(rel->r_info);
4508 int i, n = obj->nr_extern;
4509 struct extern_desc *ext;
4510
4511 for (i = 0; i < n; i++) {
4512 ext = &obj->externs[i];
4513 if (ext->sym_idx == sym_idx)
4514 break;
4515 }
4516 if (i >= n) {
4517 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4518 prog->name, sym_name, sym_idx);
4519 return -LIBBPF_ERRNO__RELOC;
4520 }
4521 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4522 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4523 if (insn->code == (BPF_JMP | BPF_CALL))
4524 reloc_desc->type = RELO_EXTERN_CALL;
4525 else
4526 reloc_desc->type = RELO_EXTERN_LD64;
4527 reloc_desc->insn_idx = insn_idx;
4528 reloc_desc->ext_idx = i;
4529 return 0;
4530 }
4531
4532 /* sub-program call relocation */
4533 if (is_call_insn(insn)) {
4534 if (insn->src_reg != BPF_PSEUDO_CALL) {
4535 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4536 return -LIBBPF_ERRNO__RELOC;
4537 }
4538 /* text_shndx can be 0, if no default "main" program exists */
4539 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4540 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4541 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4542 prog->name, sym_name, sym_sec_name);
4543 return -LIBBPF_ERRNO__RELOC;
4544 }
4545 if (sym->st_value % BPF_INSN_SZ) {
4546 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4547 prog->name, sym_name, (size_t)sym->st_value);
4548 return -LIBBPF_ERRNO__RELOC;
4549 }
4550 reloc_desc->type = RELO_CALL;
4551 reloc_desc->insn_idx = insn_idx;
4552 reloc_desc->sym_off = sym->st_value;
4553 return 0;
4554 }
4555
4556 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4557 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4558 prog->name, sym_name, shdr_idx);
4559 return -LIBBPF_ERRNO__RELOC;
4560 }
4561
4562 /* loading subprog addresses */
4563 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4564 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4565 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4566 */
4567 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4568 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4569 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4570 return -LIBBPF_ERRNO__RELOC;
4571 }
4572
4573 reloc_desc->type = RELO_SUBPROG_ADDR;
4574 reloc_desc->insn_idx = insn_idx;
4575 reloc_desc->sym_off = sym->st_value;
4576 return 0;
4577 }
4578
4579 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4580 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4581
4582 /* arena data relocation */
4583 if (shdr_idx == obj->efile.arena_data_shndx) {
4584 reloc_desc->type = RELO_DATA;
4585 reloc_desc->insn_idx = insn_idx;
4586 reloc_desc->map_idx = obj->arena_map - obj->maps;
4587 reloc_desc->sym_off = sym->st_value;
4588 return 0;
4589 }
4590
4591 /* generic map reference relocation */
4592 if (type == LIBBPF_MAP_UNSPEC) {
4593 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4594 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4595 prog->name, sym_name, sym_sec_name);
4596 return -LIBBPF_ERRNO__RELOC;
4597 }
4598 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4599 map = &obj->maps[map_idx];
4600 if (map->libbpf_type != type ||
4601 map->sec_idx != sym->st_shndx ||
4602 map->sec_offset != sym->st_value)
4603 continue;
4604 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4605 prog->name, map_idx, map->name, map->sec_idx,
4606 map->sec_offset, insn_idx);
4607 break;
4608 }
4609 if (map_idx >= nr_maps) {
4610 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4611 prog->name, sym_sec_name, (size_t)sym->st_value);
4612 return -LIBBPF_ERRNO__RELOC;
4613 }
4614 reloc_desc->type = RELO_LD64;
4615 reloc_desc->insn_idx = insn_idx;
4616 reloc_desc->map_idx = map_idx;
4617 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4618 return 0;
4619 }
4620
4621 /* global data map relocation */
4622 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4623 pr_warn("prog '%s': bad data relo against section '%s'\n",
4624 prog->name, sym_sec_name);
4625 return -LIBBPF_ERRNO__RELOC;
4626 }
4627 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4628 map = &obj->maps[map_idx];
4629 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4630 continue;
4631 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4632 prog->name, map_idx, map->name, map->sec_idx,
4633 map->sec_offset, insn_idx);
4634 break;
4635 }
4636 if (map_idx >= nr_maps) {
4637 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4638 prog->name, sym_sec_name);
4639 return -LIBBPF_ERRNO__RELOC;
4640 }
4641
4642 reloc_desc->type = RELO_DATA;
4643 reloc_desc->insn_idx = insn_idx;
4644 reloc_desc->map_idx = map_idx;
4645 reloc_desc->sym_off = sym->st_value;
4646 return 0;
4647 }
4648
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4649 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4650 {
4651 return insn_idx >= prog->sec_insn_off &&
4652 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4653 }
4654
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4655 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4656 size_t sec_idx, size_t insn_idx)
4657 {
4658 int l = 0, r = obj->nr_programs - 1, m;
4659 struct bpf_program *prog;
4660
4661 if (!obj->nr_programs)
4662 return NULL;
4663
4664 while (l < r) {
4665 m = l + (r - l + 1) / 2;
4666 prog = &obj->programs[m];
4667
4668 if (prog->sec_idx < sec_idx ||
4669 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4670 l = m;
4671 else
4672 r = m - 1;
4673 }
4674 /* matching program could be at index l, but it still might be the
4675 * wrong one, so we need to double check conditions for the last time
4676 */
4677 prog = &obj->programs[l];
4678 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4679 return prog;
4680 return NULL;
4681 }
4682
4683 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4684 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4685 {
4686 const char *relo_sec_name, *sec_name;
4687 size_t sec_idx = shdr->sh_info, sym_idx;
4688 struct bpf_program *prog;
4689 struct reloc_desc *relos;
4690 int err, i, nrels;
4691 const char *sym_name;
4692 __u32 insn_idx;
4693 Elf_Scn *scn;
4694 Elf_Data *scn_data;
4695 Elf64_Sym *sym;
4696 Elf64_Rel *rel;
4697
4698 if (sec_idx >= obj->efile.sec_cnt)
4699 return -EINVAL;
4700
4701 scn = elf_sec_by_idx(obj, sec_idx);
4702 scn_data = elf_sec_data(obj, scn);
4703 if (!scn_data)
4704 return -LIBBPF_ERRNO__FORMAT;
4705
4706 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4707 sec_name = elf_sec_name(obj, scn);
4708 if (!relo_sec_name || !sec_name)
4709 return -EINVAL;
4710
4711 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4712 relo_sec_name, sec_idx, sec_name);
4713 nrels = shdr->sh_size / shdr->sh_entsize;
4714
4715 for (i = 0; i < nrels; i++) {
4716 rel = elf_rel_by_idx(data, i);
4717 if (!rel) {
4718 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4719 return -LIBBPF_ERRNO__FORMAT;
4720 }
4721
4722 sym_idx = ELF64_R_SYM(rel->r_info);
4723 sym = elf_sym_by_idx(obj, sym_idx);
4724 if (!sym) {
4725 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4726 relo_sec_name, sym_idx, i);
4727 return -LIBBPF_ERRNO__FORMAT;
4728 }
4729
4730 if (sym->st_shndx >= obj->efile.sec_cnt) {
4731 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4732 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4733 return -LIBBPF_ERRNO__FORMAT;
4734 }
4735
4736 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4737 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4738 relo_sec_name, (size_t)rel->r_offset, i);
4739 return -LIBBPF_ERRNO__FORMAT;
4740 }
4741
4742 insn_idx = rel->r_offset / BPF_INSN_SZ;
4743 /* relocations against static functions are recorded as
4744 * relocations against the section that contains a function;
4745 * in such case, symbol will be STT_SECTION and sym.st_name
4746 * will point to empty string (0), so fetch section name
4747 * instead
4748 */
4749 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4750 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4751 else
4752 sym_name = elf_sym_str(obj, sym->st_name);
4753 sym_name = sym_name ?: "<?";
4754
4755 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4756 relo_sec_name, i, insn_idx, sym_name);
4757
4758 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4759 if (!prog) {
4760 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4761 relo_sec_name, i, sec_name, insn_idx);
4762 continue;
4763 }
4764
4765 relos = libbpf_reallocarray(prog->reloc_desc,
4766 prog->nr_reloc + 1, sizeof(*relos));
4767 if (!relos)
4768 return -ENOMEM;
4769 prog->reloc_desc = relos;
4770
4771 /* adjust insn_idx to local BPF program frame of reference */
4772 insn_idx -= prog->sec_insn_off;
4773 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4774 insn_idx, sym_name, sym, rel);
4775 if (err)
4776 return err;
4777
4778 prog->nr_reloc++;
4779 }
4780 return 0;
4781 }
4782
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4783 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4784 {
4785 int id;
4786
4787 if (!obj->btf)
4788 return -ENOENT;
4789
4790 /* if it's BTF-defined map, we don't need to search for type IDs.
4791 * For struct_ops map, it does not need btf_key_type_id and
4792 * btf_value_type_id.
4793 */
4794 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4795 return 0;
4796
4797 /*
4798 * LLVM annotates global data differently in BTF, that is,
4799 * only as '.data', '.bss' or '.rodata'.
4800 */
4801 if (!bpf_map__is_internal(map))
4802 return -ENOENT;
4803
4804 id = btf__find_by_name(obj->btf, map->real_name);
4805 if (id < 0)
4806 return id;
4807
4808 map->btf_key_type_id = 0;
4809 map->btf_value_type_id = id;
4810 return 0;
4811 }
4812
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4813 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4814 {
4815 char file[PATH_MAX], buff[4096];
4816 FILE *fp;
4817 __u32 val;
4818 int err;
4819
4820 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4821 memset(info, 0, sizeof(*info));
4822
4823 fp = fopen(file, "re");
4824 if (!fp) {
4825 err = -errno;
4826 pr_warn("failed to open %s: %s. No procfs support?\n", file,
4827 errstr(err));
4828 return err;
4829 }
4830
4831 while (fgets(buff, sizeof(buff), fp)) {
4832 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4833 info->type = val;
4834 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4835 info->key_size = val;
4836 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4837 info->value_size = val;
4838 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4839 info->max_entries = val;
4840 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4841 info->map_flags = val;
4842 }
4843
4844 fclose(fp);
4845
4846 return 0;
4847 }
4848
map_is_created(const struct bpf_map * map)4849 static bool map_is_created(const struct bpf_map *map)
4850 {
4851 return map->obj->state >= OBJ_PREPARED || map->reused;
4852 }
4853
bpf_map__autocreate(const struct bpf_map * map)4854 bool bpf_map__autocreate(const struct bpf_map *map)
4855 {
4856 return map->autocreate;
4857 }
4858
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4859 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4860 {
4861 if (map_is_created(map))
4862 return libbpf_err(-EBUSY);
4863
4864 map->autocreate = autocreate;
4865 return 0;
4866 }
4867
bpf_map__set_autoattach(struct bpf_map * map,bool autoattach)4868 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach)
4869 {
4870 if (!bpf_map__is_struct_ops(map))
4871 return libbpf_err(-EINVAL);
4872
4873 map->autoattach = autoattach;
4874 return 0;
4875 }
4876
bpf_map__autoattach(const struct bpf_map * map)4877 bool bpf_map__autoattach(const struct bpf_map *map)
4878 {
4879 return map->autoattach;
4880 }
4881
bpf_map__reuse_fd(struct bpf_map * map,int fd)4882 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4883 {
4884 struct bpf_map_info info;
4885 __u32 len = sizeof(info), name_len;
4886 int new_fd, err;
4887 char *new_name;
4888
4889 memset(&info, 0, len);
4890 err = bpf_map_get_info_by_fd(fd, &info, &len);
4891 if (err && errno == EINVAL)
4892 err = bpf_get_map_info_from_fdinfo(fd, &info);
4893 if (err)
4894 return libbpf_err(err);
4895
4896 name_len = strlen(info.name);
4897 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4898 new_name = strdup(map->name);
4899 else
4900 new_name = strdup(info.name);
4901
4902 if (!new_name)
4903 return libbpf_err(-errno);
4904
4905 /*
4906 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4907 * This is similar to what we do in ensure_good_fd(), but without
4908 * closing original FD.
4909 */
4910 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4911 if (new_fd < 0) {
4912 err = -errno;
4913 goto err_free_new_name;
4914 }
4915
4916 err = reuse_fd(map->fd, new_fd);
4917 if (err)
4918 goto err_free_new_name;
4919
4920 free(map->name);
4921
4922 map->name = new_name;
4923 map->def.type = info.type;
4924 map->def.key_size = info.key_size;
4925 map->def.value_size = info.value_size;
4926 map->def.max_entries = info.max_entries;
4927 map->def.map_flags = info.map_flags;
4928 map->btf_key_type_id = info.btf_key_type_id;
4929 map->btf_value_type_id = info.btf_value_type_id;
4930 map->reused = true;
4931 map->map_extra = info.map_extra;
4932
4933 return 0;
4934
4935 err_free_new_name:
4936 free(new_name);
4937 return libbpf_err(err);
4938 }
4939
bpf_map__max_entries(const struct bpf_map * map)4940 __u32 bpf_map__max_entries(const struct bpf_map *map)
4941 {
4942 return map->def.max_entries;
4943 }
4944
bpf_map__inner_map(struct bpf_map * map)4945 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4946 {
4947 if (!bpf_map_type__is_map_in_map(map->def.type))
4948 return errno = EINVAL, NULL;
4949
4950 return map->inner_map;
4951 }
4952
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4953 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4954 {
4955 if (map_is_created(map))
4956 return libbpf_err(-EBUSY);
4957
4958 map->def.max_entries = max_entries;
4959
4960 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4961 if (map_is_ringbuf(map))
4962 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4963
4964 return 0;
4965 }
4966
bpf_object_prepare_token(struct bpf_object * obj)4967 static int bpf_object_prepare_token(struct bpf_object *obj)
4968 {
4969 const char *bpffs_path;
4970 int bpffs_fd = -1, token_fd, err;
4971 bool mandatory;
4972 enum libbpf_print_level level;
4973
4974 /* token is explicitly prevented */
4975 if (obj->token_path && obj->token_path[0] == '\0') {
4976 pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4977 return 0;
4978 }
4979
4980 mandatory = obj->token_path != NULL;
4981 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4982
4983 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4984 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4985 if (bpffs_fd < 0) {
4986 err = -errno;
4987 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n",
4988 obj->name, errstr(err), bpffs_path,
4989 mandatory ? "" : ", skipping optional step...");
4990 return mandatory ? err : 0;
4991 }
4992
4993 token_fd = bpf_token_create(bpffs_fd, 0);
4994 close(bpffs_fd);
4995 if (token_fd < 0) {
4996 if (!mandatory && token_fd == -ENOENT) {
4997 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
4998 obj->name, bpffs_path);
4999 return 0;
5000 }
5001 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
5002 obj->name, token_fd, bpffs_path,
5003 mandatory ? "" : ", skipping optional step...");
5004 return mandatory ? token_fd : 0;
5005 }
5006
5007 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
5008 if (!obj->feat_cache) {
5009 close(token_fd);
5010 return -ENOMEM;
5011 }
5012
5013 obj->token_fd = token_fd;
5014 obj->feat_cache->token_fd = token_fd;
5015
5016 return 0;
5017 }
5018
5019 static int
bpf_object__probe_loading(struct bpf_object * obj)5020 bpf_object__probe_loading(struct bpf_object *obj)
5021 {
5022 struct bpf_insn insns[] = {
5023 BPF_MOV64_IMM(BPF_REG_0, 0),
5024 BPF_EXIT_INSN(),
5025 };
5026 int ret, insn_cnt = ARRAY_SIZE(insns);
5027 LIBBPF_OPTS(bpf_prog_load_opts, opts,
5028 .token_fd = obj->token_fd,
5029 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
5030 );
5031
5032 if (obj->gen_loader)
5033 return 0;
5034
5035 ret = bump_rlimit_memlock();
5036 if (ret)
5037 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n",
5038 errstr(ret));
5039
5040 /* make sure basic loading works */
5041 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
5042 if (ret < 0)
5043 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
5044 if (ret < 0) {
5045 ret = errno;
5046 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n",
5047 __func__, errstr(ret));
5048 return -ret;
5049 }
5050 close(ret);
5051
5052 return 0;
5053 }
5054
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)5055 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5056 {
5057 if (obj->gen_loader)
5058 /* To generate loader program assume the latest kernel
5059 * to avoid doing extra prog_load, map_create syscalls.
5060 */
5061 return true;
5062
5063 if (obj->token_fd)
5064 return feat_supported(obj->feat_cache, feat_id);
5065
5066 return feat_supported(NULL, feat_id);
5067 }
5068
map_is_reuse_compat(const struct bpf_map * map,int map_fd)5069 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5070 {
5071 struct bpf_map_info map_info;
5072 __u32 map_info_len = sizeof(map_info);
5073 int err;
5074
5075 memset(&map_info, 0, map_info_len);
5076 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5077 if (err && errno == EINVAL)
5078 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5079 if (err) {
5080 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5081 errstr(err));
5082 return false;
5083 }
5084
5085 return (map_info.type == map->def.type &&
5086 map_info.key_size == map->def.key_size &&
5087 map_info.value_size == map->def.value_size &&
5088 map_info.max_entries == map->def.max_entries &&
5089 map_info.map_flags == map->def.map_flags &&
5090 map_info.map_extra == map->map_extra);
5091 }
5092
5093 static int
bpf_object__reuse_map(struct bpf_map * map)5094 bpf_object__reuse_map(struct bpf_map *map)
5095 {
5096 int err, pin_fd;
5097
5098 pin_fd = bpf_obj_get(map->pin_path);
5099 if (pin_fd < 0) {
5100 err = -errno;
5101 if (err == -ENOENT) {
5102 pr_debug("found no pinned map to reuse at '%s'\n",
5103 map->pin_path);
5104 return 0;
5105 }
5106
5107 pr_warn("couldn't retrieve pinned map '%s': %s\n",
5108 map->pin_path, errstr(err));
5109 return err;
5110 }
5111
5112 if (!map_is_reuse_compat(map, pin_fd)) {
5113 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5114 map->pin_path);
5115 close(pin_fd);
5116 return -EINVAL;
5117 }
5118
5119 err = bpf_map__reuse_fd(map, pin_fd);
5120 close(pin_fd);
5121 if (err)
5122 return err;
5123
5124 map->pinned = true;
5125 pr_debug("reused pinned map at '%s'\n", map->pin_path);
5126
5127 return 0;
5128 }
5129
5130 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5131 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5132 {
5133 enum libbpf_map_type map_type = map->libbpf_type;
5134 int err, zero = 0;
5135 size_t mmap_sz;
5136
5137 if (obj->gen_loader) {
5138 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5139 map->mmaped, map->def.value_size);
5140 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5141 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5142 return 0;
5143 }
5144
5145 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5146 if (err) {
5147 err = -errno;
5148 pr_warn("map '%s': failed to set initial contents: %s\n",
5149 bpf_map__name(map), errstr(err));
5150 return err;
5151 }
5152
5153 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5154 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5155 err = bpf_map_freeze(map->fd);
5156 if (err) {
5157 err = -errno;
5158 pr_warn("map '%s': failed to freeze as read-only: %s\n",
5159 bpf_map__name(map), errstr(err));
5160 return err;
5161 }
5162 }
5163
5164 /* Remap anonymous mmap()-ed "map initialization image" as
5165 * a BPF map-backed mmap()-ed memory, but preserving the same
5166 * memory address. This will cause kernel to change process'
5167 * page table to point to a different piece of kernel memory,
5168 * but from userspace point of view memory address (and its
5169 * contents, being identical at this point) will stay the
5170 * same. This mapping will be released by bpf_object__close()
5171 * as per normal clean up procedure.
5172 */
5173 mmap_sz = bpf_map_mmap_sz(map);
5174 if (map->def.map_flags & BPF_F_MMAPABLE) {
5175 void *mmaped;
5176 int prot;
5177
5178 if (map->def.map_flags & BPF_F_RDONLY_PROG)
5179 prot = PROT_READ;
5180 else
5181 prot = PROT_READ | PROT_WRITE;
5182 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0);
5183 if (mmaped == MAP_FAILED) {
5184 err = -errno;
5185 pr_warn("map '%s': failed to re-mmap() contents: %s\n",
5186 bpf_map__name(map), errstr(err));
5187 return err;
5188 }
5189 map->mmaped = mmaped;
5190 } else if (map->mmaped) {
5191 munmap(map->mmaped, mmap_sz);
5192 map->mmaped = NULL;
5193 }
5194
5195 return 0;
5196 }
5197
5198 static void bpf_map__destroy(struct bpf_map *map);
5199
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5200 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5201 {
5202 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5203 struct bpf_map_def *def = &map->def;
5204 const char *map_name = NULL;
5205 int err = 0, map_fd;
5206
5207 if (kernel_supports(obj, FEAT_PROG_NAME))
5208 map_name = map->name;
5209 create_attr.map_ifindex = map->map_ifindex;
5210 create_attr.map_flags = def->map_flags;
5211 create_attr.numa_node = map->numa_node;
5212 create_attr.map_extra = map->map_extra;
5213 create_attr.token_fd = obj->token_fd;
5214 if (obj->token_fd)
5215 create_attr.map_flags |= BPF_F_TOKEN_FD;
5216
5217 if (bpf_map__is_struct_ops(map)) {
5218 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5219 if (map->mod_btf_fd >= 0) {
5220 create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5221 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5222 }
5223 }
5224
5225 if (obj->btf && btf__fd(obj->btf) >= 0) {
5226 create_attr.btf_fd = btf__fd(obj->btf);
5227 create_attr.btf_key_type_id = map->btf_key_type_id;
5228 create_attr.btf_value_type_id = map->btf_value_type_id;
5229 }
5230
5231 if (bpf_map_type__is_map_in_map(def->type)) {
5232 if (map->inner_map) {
5233 err = map_set_def_max_entries(map->inner_map);
5234 if (err)
5235 return err;
5236 err = bpf_object__create_map(obj, map->inner_map, true);
5237 if (err) {
5238 pr_warn("map '%s': failed to create inner map: %s\n",
5239 map->name, errstr(err));
5240 return err;
5241 }
5242 map->inner_map_fd = map->inner_map->fd;
5243 }
5244 if (map->inner_map_fd >= 0)
5245 create_attr.inner_map_fd = map->inner_map_fd;
5246 }
5247
5248 switch (def->type) {
5249 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5250 case BPF_MAP_TYPE_CGROUP_ARRAY:
5251 case BPF_MAP_TYPE_STACK_TRACE:
5252 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5253 case BPF_MAP_TYPE_HASH_OF_MAPS:
5254 case BPF_MAP_TYPE_DEVMAP:
5255 case BPF_MAP_TYPE_DEVMAP_HASH:
5256 case BPF_MAP_TYPE_CPUMAP:
5257 case BPF_MAP_TYPE_XSKMAP:
5258 case BPF_MAP_TYPE_SOCKMAP:
5259 case BPF_MAP_TYPE_SOCKHASH:
5260 case BPF_MAP_TYPE_QUEUE:
5261 case BPF_MAP_TYPE_STACK:
5262 case BPF_MAP_TYPE_ARENA:
5263 create_attr.btf_fd = 0;
5264 create_attr.btf_key_type_id = 0;
5265 create_attr.btf_value_type_id = 0;
5266 map->btf_key_type_id = 0;
5267 map->btf_value_type_id = 0;
5268 break;
5269 case BPF_MAP_TYPE_STRUCT_OPS:
5270 create_attr.btf_value_type_id = 0;
5271 break;
5272 default:
5273 break;
5274 }
5275
5276 if (obj->gen_loader) {
5277 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5278 def->key_size, def->value_size, def->max_entries,
5279 &create_attr, is_inner ? -1 : map - obj->maps);
5280 /* We keep pretenting we have valid FD to pass various fd >= 0
5281 * checks by just keeping original placeholder FDs in place.
5282 * See bpf_object__add_map() comment.
5283 * This placeholder fd will not be used with any syscall and
5284 * will be reset to -1 eventually.
5285 */
5286 map_fd = map->fd;
5287 } else {
5288 map_fd = bpf_map_create(def->type, map_name,
5289 def->key_size, def->value_size,
5290 def->max_entries, &create_attr);
5291 }
5292 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5293 err = -errno;
5294 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n",
5295 map->name, errstr(err));
5296 create_attr.btf_fd = 0;
5297 create_attr.btf_key_type_id = 0;
5298 create_attr.btf_value_type_id = 0;
5299 map->btf_key_type_id = 0;
5300 map->btf_value_type_id = 0;
5301 map_fd = bpf_map_create(def->type, map_name,
5302 def->key_size, def->value_size,
5303 def->max_entries, &create_attr);
5304 }
5305
5306 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5307 if (obj->gen_loader)
5308 map->inner_map->fd = -1;
5309 bpf_map__destroy(map->inner_map);
5310 zfree(&map->inner_map);
5311 }
5312
5313 if (map_fd < 0)
5314 return map_fd;
5315
5316 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5317 if (map->fd == map_fd)
5318 return 0;
5319
5320 /* Keep placeholder FD value but now point it to the BPF map object.
5321 * This way everything that relied on this map's FD (e.g., relocated
5322 * ldimm64 instructions) will stay valid and won't need adjustments.
5323 * map->fd stays valid but now point to what map_fd points to.
5324 */
5325 return reuse_fd(map->fd, map_fd);
5326 }
5327
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5328 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5329 {
5330 const struct bpf_map *targ_map;
5331 unsigned int i;
5332 int fd, err = 0;
5333
5334 for (i = 0; i < map->init_slots_sz; i++) {
5335 if (!map->init_slots[i])
5336 continue;
5337
5338 targ_map = map->init_slots[i];
5339 fd = targ_map->fd;
5340
5341 if (obj->gen_loader) {
5342 bpf_gen__populate_outer_map(obj->gen_loader,
5343 map - obj->maps, i,
5344 targ_map - obj->maps);
5345 } else {
5346 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5347 }
5348 if (err) {
5349 err = -errno;
5350 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n",
5351 map->name, i, targ_map->name, fd, errstr(err));
5352 return err;
5353 }
5354 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5355 map->name, i, targ_map->name, fd);
5356 }
5357
5358 zfree(&map->init_slots);
5359 map->init_slots_sz = 0;
5360
5361 return 0;
5362 }
5363
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5364 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5365 {
5366 const struct bpf_program *targ_prog;
5367 unsigned int i;
5368 int fd, err;
5369
5370 if (obj->gen_loader)
5371 return -ENOTSUP;
5372
5373 for (i = 0; i < map->init_slots_sz; i++) {
5374 if (!map->init_slots[i])
5375 continue;
5376
5377 targ_prog = map->init_slots[i];
5378 fd = bpf_program__fd(targ_prog);
5379
5380 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5381 if (err) {
5382 err = -errno;
5383 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n",
5384 map->name, i, targ_prog->name, fd, errstr(err));
5385 return err;
5386 }
5387 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5388 map->name, i, targ_prog->name, fd);
5389 }
5390
5391 zfree(&map->init_slots);
5392 map->init_slots_sz = 0;
5393
5394 return 0;
5395 }
5396
bpf_object_init_prog_arrays(struct bpf_object * obj)5397 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5398 {
5399 struct bpf_map *map;
5400 int i, err;
5401
5402 for (i = 0; i < obj->nr_maps; i++) {
5403 map = &obj->maps[i];
5404
5405 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5406 continue;
5407
5408 err = init_prog_array_slots(obj, map);
5409 if (err < 0)
5410 return err;
5411 }
5412 return 0;
5413 }
5414
map_set_def_max_entries(struct bpf_map * map)5415 static int map_set_def_max_entries(struct bpf_map *map)
5416 {
5417 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5418 int nr_cpus;
5419
5420 nr_cpus = libbpf_num_possible_cpus();
5421 if (nr_cpus < 0) {
5422 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5423 map->name, nr_cpus);
5424 return nr_cpus;
5425 }
5426 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5427 map->def.max_entries = nr_cpus;
5428 }
5429
5430 return 0;
5431 }
5432
5433 static int
bpf_object__create_maps(struct bpf_object * obj)5434 bpf_object__create_maps(struct bpf_object *obj)
5435 {
5436 struct bpf_map *map;
5437 unsigned int i, j;
5438 int err;
5439 bool retried;
5440
5441 for (i = 0; i < obj->nr_maps; i++) {
5442 map = &obj->maps[i];
5443
5444 /* To support old kernels, we skip creating global data maps
5445 * (.rodata, .data, .kconfig, etc); later on, during program
5446 * loading, if we detect that at least one of the to-be-loaded
5447 * programs is referencing any global data map, we'll error
5448 * out with program name and relocation index logged.
5449 * This approach allows to accommodate Clang emitting
5450 * unnecessary .rodata.str1.1 sections for string literals,
5451 * but also it allows to have CO-RE applications that use
5452 * global variables in some of BPF programs, but not others.
5453 * If those global variable-using programs are not loaded at
5454 * runtime due to bpf_program__set_autoload(prog, false),
5455 * bpf_object loading will succeed just fine even on old
5456 * kernels.
5457 */
5458 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5459 map->autocreate = false;
5460
5461 if (!map->autocreate) {
5462 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5463 continue;
5464 }
5465
5466 err = map_set_def_max_entries(map);
5467 if (err)
5468 goto err_out;
5469
5470 retried = false;
5471 retry:
5472 if (map->pin_path) {
5473 err = bpf_object__reuse_map(map);
5474 if (err) {
5475 pr_warn("map '%s': error reusing pinned map\n",
5476 map->name);
5477 goto err_out;
5478 }
5479 if (retried && map->fd < 0) {
5480 pr_warn("map '%s': cannot find pinned map\n",
5481 map->name);
5482 err = -ENOENT;
5483 goto err_out;
5484 }
5485 }
5486
5487 if (map->reused) {
5488 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5489 map->name, map->fd);
5490 } else {
5491 err = bpf_object__create_map(obj, map, false);
5492 if (err)
5493 goto err_out;
5494
5495 pr_debug("map '%s': created successfully, fd=%d\n",
5496 map->name, map->fd);
5497
5498 if (bpf_map__is_internal(map)) {
5499 err = bpf_object__populate_internal_map(obj, map);
5500 if (err < 0)
5501 goto err_out;
5502 } else if (map->def.type == BPF_MAP_TYPE_ARENA) {
5503 map->mmaped = mmap((void *)(long)map->map_extra,
5504 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5505 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5506 map->fd, 0);
5507 if (map->mmaped == MAP_FAILED) {
5508 err = -errno;
5509 map->mmaped = NULL;
5510 pr_warn("map '%s': failed to mmap arena: %s\n",
5511 map->name, errstr(err));
5512 return err;
5513 }
5514 if (obj->arena_data) {
5515 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5516 zfree(&obj->arena_data);
5517 }
5518 }
5519 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5520 err = init_map_in_map_slots(obj, map);
5521 if (err < 0)
5522 goto err_out;
5523 }
5524 }
5525
5526 if (map->pin_path && !map->pinned) {
5527 err = bpf_map__pin(map, NULL);
5528 if (err) {
5529 if (!retried && err == -EEXIST) {
5530 retried = true;
5531 goto retry;
5532 }
5533 pr_warn("map '%s': failed to auto-pin at '%s': %s\n",
5534 map->name, map->pin_path, errstr(err));
5535 goto err_out;
5536 }
5537 }
5538 }
5539
5540 return 0;
5541
5542 err_out:
5543 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err));
5544 pr_perm_msg(err);
5545 for (j = 0; j < i; j++)
5546 zclose(obj->maps[j].fd);
5547 return err;
5548 }
5549
bpf_core_is_flavor_sep(const char * s)5550 static bool bpf_core_is_flavor_sep(const char *s)
5551 {
5552 /* check X___Y name pattern, where X and Y are not underscores */
5553 return s[0] != '_' && /* X */
5554 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5555 s[4] != '_'; /* Y */
5556 }
5557
5558 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5559 * before last triple underscore. Struct name part after last triple
5560 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5561 */
bpf_core_essential_name_len(const char * name)5562 size_t bpf_core_essential_name_len(const char *name)
5563 {
5564 size_t n = strlen(name);
5565 int i;
5566
5567 for (i = n - 5; i >= 0; i--) {
5568 if (bpf_core_is_flavor_sep(name + i))
5569 return i + 1;
5570 }
5571 return n;
5572 }
5573
bpf_core_free_cands(struct bpf_core_cand_list * cands)5574 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5575 {
5576 if (!cands)
5577 return;
5578
5579 free(cands->cands);
5580 free(cands);
5581 }
5582
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5583 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5584 size_t local_essent_len,
5585 const struct btf *targ_btf,
5586 const char *targ_btf_name,
5587 int targ_start_id,
5588 struct bpf_core_cand_list *cands)
5589 {
5590 struct bpf_core_cand *new_cands, *cand;
5591 const struct btf_type *t, *local_t;
5592 const char *targ_name, *local_name;
5593 size_t targ_essent_len;
5594 int n, i;
5595
5596 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5597 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5598
5599 n = btf__type_cnt(targ_btf);
5600 for (i = targ_start_id; i < n; i++) {
5601 t = btf__type_by_id(targ_btf, i);
5602 if (!btf_kind_core_compat(t, local_t))
5603 continue;
5604
5605 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5606 if (str_is_empty(targ_name))
5607 continue;
5608
5609 targ_essent_len = bpf_core_essential_name_len(targ_name);
5610 if (targ_essent_len != local_essent_len)
5611 continue;
5612
5613 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5614 continue;
5615
5616 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5617 local_cand->id, btf_kind_str(local_t),
5618 local_name, i, btf_kind_str(t), targ_name,
5619 targ_btf_name);
5620 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5621 sizeof(*cands->cands));
5622 if (!new_cands)
5623 return -ENOMEM;
5624
5625 cand = &new_cands[cands->len];
5626 cand->btf = targ_btf;
5627 cand->id = i;
5628
5629 cands->cands = new_cands;
5630 cands->len++;
5631 }
5632 return 0;
5633 }
5634
load_module_btfs(struct bpf_object * obj)5635 static int load_module_btfs(struct bpf_object *obj)
5636 {
5637 struct bpf_btf_info info;
5638 struct module_btf *mod_btf;
5639 struct btf *btf;
5640 char name[64];
5641 __u32 id = 0, len;
5642 int err, fd;
5643
5644 if (obj->btf_modules_loaded)
5645 return 0;
5646
5647 if (obj->gen_loader)
5648 return 0;
5649
5650 /* don't do this again, even if we find no module BTFs */
5651 obj->btf_modules_loaded = true;
5652
5653 /* kernel too old to support module BTFs */
5654 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5655 return 0;
5656
5657 while (true) {
5658 err = bpf_btf_get_next_id(id, &id);
5659 if (err && errno == ENOENT)
5660 return 0;
5661 if (err && errno == EPERM) {
5662 pr_debug("skipping module BTFs loading, missing privileges\n");
5663 return 0;
5664 }
5665 if (err) {
5666 err = -errno;
5667 pr_warn("failed to iterate BTF objects: %s\n", errstr(err));
5668 return err;
5669 }
5670
5671 fd = bpf_btf_get_fd_by_id(id);
5672 if (fd < 0) {
5673 if (errno == ENOENT)
5674 continue; /* expected race: BTF was unloaded */
5675 err = -errno;
5676 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err));
5677 return err;
5678 }
5679
5680 len = sizeof(info);
5681 memset(&info, 0, sizeof(info));
5682 info.name = ptr_to_u64(name);
5683 info.name_len = sizeof(name);
5684
5685 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5686 if (err) {
5687 err = -errno;
5688 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err));
5689 goto err_out;
5690 }
5691
5692 /* ignore non-module BTFs */
5693 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5694 close(fd);
5695 continue;
5696 }
5697
5698 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5699 err = libbpf_get_error(btf);
5700 if (err) {
5701 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n",
5702 name, id, errstr(err));
5703 goto err_out;
5704 }
5705
5706 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5707 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5708 if (err)
5709 goto err_out;
5710
5711 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5712
5713 mod_btf->btf = btf;
5714 mod_btf->id = id;
5715 mod_btf->fd = fd;
5716 mod_btf->name = strdup(name);
5717 if (!mod_btf->name) {
5718 err = -ENOMEM;
5719 goto err_out;
5720 }
5721 continue;
5722
5723 err_out:
5724 close(fd);
5725 return err;
5726 }
5727
5728 return 0;
5729 }
5730
5731 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5732 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5733 {
5734 struct bpf_core_cand local_cand = {};
5735 struct bpf_core_cand_list *cands;
5736 const struct btf *main_btf;
5737 const struct btf_type *local_t;
5738 const char *local_name;
5739 size_t local_essent_len;
5740 int err, i;
5741
5742 local_cand.btf = local_btf;
5743 local_cand.id = local_type_id;
5744 local_t = btf__type_by_id(local_btf, local_type_id);
5745 if (!local_t)
5746 return ERR_PTR(-EINVAL);
5747
5748 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5749 if (str_is_empty(local_name))
5750 return ERR_PTR(-EINVAL);
5751 local_essent_len = bpf_core_essential_name_len(local_name);
5752
5753 cands = calloc(1, sizeof(*cands));
5754 if (!cands)
5755 return ERR_PTR(-ENOMEM);
5756
5757 /* Attempt to find target candidates in vmlinux BTF first */
5758 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5759 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5760 if (err)
5761 goto err_out;
5762
5763 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5764 if (cands->len)
5765 return cands;
5766
5767 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5768 if (obj->btf_vmlinux_override)
5769 return cands;
5770
5771 /* now look through module BTFs, trying to still find candidates */
5772 err = load_module_btfs(obj);
5773 if (err)
5774 goto err_out;
5775
5776 for (i = 0; i < obj->btf_module_cnt; i++) {
5777 err = bpf_core_add_cands(&local_cand, local_essent_len,
5778 obj->btf_modules[i].btf,
5779 obj->btf_modules[i].name,
5780 btf__type_cnt(obj->btf_vmlinux),
5781 cands);
5782 if (err)
5783 goto err_out;
5784 }
5785
5786 return cands;
5787 err_out:
5788 bpf_core_free_cands(cands);
5789 return ERR_PTR(err);
5790 }
5791
5792 /* Check local and target types for compatibility. This check is used for
5793 * type-based CO-RE relocations and follow slightly different rules than
5794 * field-based relocations. This function assumes that root types were already
5795 * checked for name match. Beyond that initial root-level name check, names
5796 * are completely ignored. Compatibility rules are as follows:
5797 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5798 * kind should match for local and target types (i.e., STRUCT is not
5799 * compatible with UNION);
5800 * - for ENUMs, the size is ignored;
5801 * - for INT, size and signedness are ignored;
5802 * - for ARRAY, dimensionality is ignored, element types are checked for
5803 * compatibility recursively;
5804 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5805 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5806 * - FUNC_PROTOs are compatible if they have compatible signature: same
5807 * number of input args and compatible return and argument types.
5808 * These rules are not set in stone and probably will be adjusted as we get
5809 * more experience with using BPF CO-RE relocations.
5810 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5811 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5812 const struct btf *targ_btf, __u32 targ_id)
5813 {
5814 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5815 }
5816
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5817 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5818 const struct btf *targ_btf, __u32 targ_id)
5819 {
5820 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5821 }
5822
bpf_core_hash_fn(const long key,void * ctx)5823 static size_t bpf_core_hash_fn(const long key, void *ctx)
5824 {
5825 return key;
5826 }
5827
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5828 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5829 {
5830 return k1 == k2;
5831 }
5832
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5833 static int record_relo_core(struct bpf_program *prog,
5834 const struct bpf_core_relo *core_relo, int insn_idx)
5835 {
5836 struct reloc_desc *relos, *relo;
5837
5838 relos = libbpf_reallocarray(prog->reloc_desc,
5839 prog->nr_reloc + 1, sizeof(*relos));
5840 if (!relos)
5841 return -ENOMEM;
5842 relo = &relos[prog->nr_reloc];
5843 relo->type = RELO_CORE;
5844 relo->insn_idx = insn_idx;
5845 relo->core_relo = core_relo;
5846 prog->reloc_desc = relos;
5847 prog->nr_reloc++;
5848 return 0;
5849 }
5850
find_relo_core(struct bpf_program * prog,int insn_idx)5851 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5852 {
5853 struct reloc_desc *relo;
5854 int i;
5855
5856 for (i = 0; i < prog->nr_reloc; i++) {
5857 relo = &prog->reloc_desc[i];
5858 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5859 continue;
5860
5861 return relo->core_relo;
5862 }
5863
5864 return NULL;
5865 }
5866
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5867 static int bpf_core_resolve_relo(struct bpf_program *prog,
5868 const struct bpf_core_relo *relo,
5869 int relo_idx,
5870 const struct btf *local_btf,
5871 struct hashmap *cand_cache,
5872 struct bpf_core_relo_res *targ_res)
5873 {
5874 struct bpf_core_spec specs_scratch[3] = {};
5875 struct bpf_core_cand_list *cands = NULL;
5876 const char *prog_name = prog->name;
5877 const struct btf_type *local_type;
5878 const char *local_name;
5879 __u32 local_id = relo->type_id;
5880 int err;
5881
5882 local_type = btf__type_by_id(local_btf, local_id);
5883 if (!local_type)
5884 return -EINVAL;
5885
5886 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5887 if (!local_name)
5888 return -EINVAL;
5889
5890 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5891 !hashmap__find(cand_cache, local_id, &cands)) {
5892 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5893 if (IS_ERR(cands)) {
5894 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5895 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5896 local_name, PTR_ERR(cands));
5897 return PTR_ERR(cands);
5898 }
5899 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5900 if (err) {
5901 bpf_core_free_cands(cands);
5902 return err;
5903 }
5904 }
5905
5906 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5907 targ_res);
5908 }
5909
5910 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5911 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5912 {
5913 const struct btf_ext_info_sec *sec;
5914 struct bpf_core_relo_res targ_res;
5915 const struct bpf_core_relo *rec;
5916 const struct btf_ext_info *seg;
5917 struct hashmap_entry *entry;
5918 struct hashmap *cand_cache = NULL;
5919 struct bpf_program *prog;
5920 struct bpf_insn *insn;
5921 const char *sec_name;
5922 int i, err = 0, insn_idx, sec_idx, sec_num;
5923
5924 if (obj->btf_ext->core_relo_info.len == 0)
5925 return 0;
5926
5927 if (targ_btf_path) {
5928 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5929 err = libbpf_get_error(obj->btf_vmlinux_override);
5930 if (err) {
5931 pr_warn("failed to parse target BTF: %s\n", errstr(err));
5932 return err;
5933 }
5934 }
5935
5936 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5937 if (IS_ERR(cand_cache)) {
5938 err = PTR_ERR(cand_cache);
5939 goto out;
5940 }
5941
5942 seg = &obj->btf_ext->core_relo_info;
5943 sec_num = 0;
5944 for_each_btf_ext_sec(seg, sec) {
5945 sec_idx = seg->sec_idxs[sec_num];
5946 sec_num++;
5947
5948 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5949 if (str_is_empty(sec_name)) {
5950 err = -EINVAL;
5951 goto out;
5952 }
5953
5954 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5955
5956 for_each_btf_ext_rec(seg, sec, i, rec) {
5957 if (rec->insn_off % BPF_INSN_SZ)
5958 return -EINVAL;
5959 insn_idx = rec->insn_off / BPF_INSN_SZ;
5960 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5961 if (!prog) {
5962 /* When __weak subprog is "overridden" by another instance
5963 * of the subprog from a different object file, linker still
5964 * appends all the .BTF.ext info that used to belong to that
5965 * eliminated subprogram.
5966 * This is similar to what x86-64 linker does for relocations.
5967 * So just ignore such relocations just like we ignore
5968 * subprog instructions when discovering subprograms.
5969 */
5970 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5971 sec_name, i, insn_idx);
5972 continue;
5973 }
5974 /* no need to apply CO-RE relocation if the program is
5975 * not going to be loaded
5976 */
5977 if (!prog->autoload)
5978 continue;
5979
5980 /* adjust insn_idx from section frame of reference to the local
5981 * program's frame of reference; (sub-)program code is not yet
5982 * relocated, so it's enough to just subtract in-section offset
5983 */
5984 insn_idx = insn_idx - prog->sec_insn_off;
5985 if (insn_idx >= prog->insns_cnt)
5986 return -EINVAL;
5987 insn = &prog->insns[insn_idx];
5988
5989 err = record_relo_core(prog, rec, insn_idx);
5990 if (err) {
5991 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n",
5992 prog->name, i, errstr(err));
5993 goto out;
5994 }
5995
5996 if (prog->obj->gen_loader)
5997 continue;
5998
5999 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
6000 if (err) {
6001 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n",
6002 prog->name, i, errstr(err));
6003 goto out;
6004 }
6005
6006 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
6007 if (err) {
6008 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n",
6009 prog->name, i, insn_idx, errstr(err));
6010 goto out;
6011 }
6012 }
6013 }
6014
6015 out:
6016 /* obj->btf_vmlinux and module BTFs are freed after object load */
6017 btf__free(obj->btf_vmlinux_override);
6018 obj->btf_vmlinux_override = NULL;
6019
6020 if (!IS_ERR_OR_NULL(cand_cache)) {
6021 hashmap__for_each_entry(cand_cache, entry, i) {
6022 bpf_core_free_cands(entry->pvalue);
6023 }
6024 hashmap__free(cand_cache);
6025 }
6026 return err;
6027 }
6028
6029 /* base map load ldimm64 special constant, used also for log fixup logic */
6030 #define POISON_LDIMM64_MAP_BASE 2001000000
6031 #define POISON_LDIMM64_MAP_PFX "200100"
6032
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)6033 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6034 int insn_idx, struct bpf_insn *insn,
6035 int map_idx, const struct bpf_map *map)
6036 {
6037 int i;
6038
6039 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6040 prog->name, relo_idx, insn_idx, map_idx, map->name);
6041
6042 /* we turn single ldimm64 into two identical invalid calls */
6043 for (i = 0; i < 2; i++) {
6044 insn->code = BPF_JMP | BPF_CALL;
6045 insn->dst_reg = 0;
6046 insn->src_reg = 0;
6047 insn->off = 0;
6048 /* if this instruction is reachable (not a dead code),
6049 * verifier will complain with something like:
6050 * invalid func unknown#2001000123
6051 * where lower 123 is map index into obj->maps[] array
6052 */
6053 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6054
6055 insn++;
6056 }
6057 }
6058
6059 /* unresolved kfunc call special constant, used also for log fixup logic */
6060 #define POISON_CALL_KFUNC_BASE 2002000000
6061 #define POISON_CALL_KFUNC_PFX "2002"
6062
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)6063 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6064 int insn_idx, struct bpf_insn *insn,
6065 int ext_idx, const struct extern_desc *ext)
6066 {
6067 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6068 prog->name, relo_idx, insn_idx, ext->name);
6069
6070 /* we turn kfunc call into invalid helper call with identifiable constant */
6071 insn->code = BPF_JMP | BPF_CALL;
6072 insn->dst_reg = 0;
6073 insn->src_reg = 0;
6074 insn->off = 0;
6075 /* if this instruction is reachable (not a dead code),
6076 * verifier will complain with something like:
6077 * invalid func unknown#2001000123
6078 * where lower 123 is extern index into obj->externs[] array
6079 */
6080 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6081 }
6082
6083 /* Relocate data references within program code:
6084 * - map references;
6085 * - global variable references;
6086 * - extern references.
6087 */
6088 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)6089 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6090 {
6091 int i;
6092
6093 for (i = 0; i < prog->nr_reloc; i++) {
6094 struct reloc_desc *relo = &prog->reloc_desc[i];
6095 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6096 const struct bpf_map *map;
6097 struct extern_desc *ext;
6098
6099 switch (relo->type) {
6100 case RELO_LD64:
6101 map = &obj->maps[relo->map_idx];
6102 if (obj->gen_loader) {
6103 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6104 insn[0].imm = relo->map_idx;
6105 } else if (map->autocreate) {
6106 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6107 insn[0].imm = map->fd;
6108 } else {
6109 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6110 relo->map_idx, map);
6111 }
6112 break;
6113 case RELO_DATA:
6114 map = &obj->maps[relo->map_idx];
6115 insn[1].imm = insn[0].imm + relo->sym_off;
6116 if (obj->gen_loader) {
6117 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6118 insn[0].imm = relo->map_idx;
6119 } else if (map->autocreate) {
6120 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6121 insn[0].imm = map->fd;
6122 } else {
6123 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6124 relo->map_idx, map);
6125 }
6126 break;
6127 case RELO_EXTERN_LD64:
6128 ext = &obj->externs[relo->ext_idx];
6129 if (ext->type == EXT_KCFG) {
6130 if (obj->gen_loader) {
6131 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6132 insn[0].imm = obj->kconfig_map_idx;
6133 } else {
6134 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6135 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6136 }
6137 insn[1].imm = ext->kcfg.data_off;
6138 } else /* EXT_KSYM */ {
6139 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6140 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6141 insn[0].imm = ext->ksym.kernel_btf_id;
6142 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6143 } else { /* typeless ksyms or unresolved typed ksyms */
6144 insn[0].imm = (__u32)ext->ksym.addr;
6145 insn[1].imm = ext->ksym.addr >> 32;
6146 }
6147 }
6148 break;
6149 case RELO_EXTERN_CALL:
6150 ext = &obj->externs[relo->ext_idx];
6151 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6152 if (ext->is_set) {
6153 insn[0].imm = ext->ksym.kernel_btf_id;
6154 insn[0].off = ext->ksym.btf_fd_idx;
6155 } else { /* unresolved weak kfunc call */
6156 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6157 relo->ext_idx, ext);
6158 }
6159 break;
6160 case RELO_SUBPROG_ADDR:
6161 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6162 pr_warn("prog '%s': relo #%d: bad insn\n",
6163 prog->name, i);
6164 return -EINVAL;
6165 }
6166 /* handled already */
6167 break;
6168 case RELO_CALL:
6169 /* handled already */
6170 break;
6171 case RELO_CORE:
6172 /* will be handled by bpf_program_record_relos() */
6173 break;
6174 default:
6175 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6176 prog->name, i, relo->type);
6177 return -EINVAL;
6178 }
6179 }
6180
6181 return 0;
6182 }
6183
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6184 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6185 const struct bpf_program *prog,
6186 const struct btf_ext_info *ext_info,
6187 void **prog_info, __u32 *prog_rec_cnt,
6188 __u32 *prog_rec_sz)
6189 {
6190 void *copy_start = NULL, *copy_end = NULL;
6191 void *rec, *rec_end, *new_prog_info;
6192 const struct btf_ext_info_sec *sec;
6193 size_t old_sz, new_sz;
6194 int i, sec_num, sec_idx, off_adj;
6195
6196 sec_num = 0;
6197 for_each_btf_ext_sec(ext_info, sec) {
6198 sec_idx = ext_info->sec_idxs[sec_num];
6199 sec_num++;
6200 if (prog->sec_idx != sec_idx)
6201 continue;
6202
6203 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6204 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6205
6206 if (insn_off < prog->sec_insn_off)
6207 continue;
6208 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6209 break;
6210
6211 if (!copy_start)
6212 copy_start = rec;
6213 copy_end = rec + ext_info->rec_size;
6214 }
6215
6216 if (!copy_start)
6217 return -ENOENT;
6218
6219 /* append func/line info of a given (sub-)program to the main
6220 * program func/line info
6221 */
6222 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6223 new_sz = old_sz + (copy_end - copy_start);
6224 new_prog_info = realloc(*prog_info, new_sz);
6225 if (!new_prog_info)
6226 return -ENOMEM;
6227 *prog_info = new_prog_info;
6228 *prog_rec_cnt = new_sz / ext_info->rec_size;
6229 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6230
6231 /* Kernel instruction offsets are in units of 8-byte
6232 * instructions, while .BTF.ext instruction offsets generated
6233 * by Clang are in units of bytes. So convert Clang offsets
6234 * into kernel offsets and adjust offset according to program
6235 * relocated position.
6236 */
6237 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6238 rec = new_prog_info + old_sz;
6239 rec_end = new_prog_info + new_sz;
6240 for (; rec < rec_end; rec += ext_info->rec_size) {
6241 __u32 *insn_off = rec;
6242
6243 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6244 }
6245 *prog_rec_sz = ext_info->rec_size;
6246 return 0;
6247 }
6248
6249 return -ENOENT;
6250 }
6251
6252 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6253 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6254 struct bpf_program *main_prog,
6255 const struct bpf_program *prog)
6256 {
6257 int err;
6258
6259 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6260 * support func/line info
6261 */
6262 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6263 return 0;
6264
6265 /* only attempt func info relocation if main program's func_info
6266 * relocation was successful
6267 */
6268 if (main_prog != prog && !main_prog->func_info)
6269 goto line_info;
6270
6271 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6272 &main_prog->func_info,
6273 &main_prog->func_info_cnt,
6274 &main_prog->func_info_rec_size);
6275 if (err) {
6276 if (err != -ENOENT) {
6277 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n",
6278 prog->name, errstr(err));
6279 return err;
6280 }
6281 if (main_prog->func_info) {
6282 /*
6283 * Some info has already been found but has problem
6284 * in the last btf_ext reloc. Must have to error out.
6285 */
6286 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6287 return err;
6288 }
6289 /* Have problem loading the very first info. Ignore the rest. */
6290 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6291 prog->name);
6292 }
6293
6294 line_info:
6295 /* don't relocate line info if main program's relocation failed */
6296 if (main_prog != prog && !main_prog->line_info)
6297 return 0;
6298
6299 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6300 &main_prog->line_info,
6301 &main_prog->line_info_cnt,
6302 &main_prog->line_info_rec_size);
6303 if (err) {
6304 if (err != -ENOENT) {
6305 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n",
6306 prog->name, errstr(err));
6307 return err;
6308 }
6309 if (main_prog->line_info) {
6310 /*
6311 * Some info has already been found but has problem
6312 * in the last btf_ext reloc. Must have to error out.
6313 */
6314 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6315 return err;
6316 }
6317 /* Have problem loading the very first info. Ignore the rest. */
6318 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6319 prog->name);
6320 }
6321 return 0;
6322 }
6323
cmp_relo_by_insn_idx(const void * key,const void * elem)6324 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6325 {
6326 size_t insn_idx = *(const size_t *)key;
6327 const struct reloc_desc *relo = elem;
6328
6329 if (insn_idx == relo->insn_idx)
6330 return 0;
6331 return insn_idx < relo->insn_idx ? -1 : 1;
6332 }
6333
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6334 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6335 {
6336 if (!prog->nr_reloc)
6337 return NULL;
6338 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6339 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6340 }
6341
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6342 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6343 {
6344 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6345 struct reloc_desc *relos;
6346 int i;
6347
6348 if (main_prog == subprog)
6349 return 0;
6350 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6351 /* if new count is zero, reallocarray can return a valid NULL result;
6352 * in this case the previous pointer will be freed, so we *have to*
6353 * reassign old pointer to the new value (even if it's NULL)
6354 */
6355 if (!relos && new_cnt)
6356 return -ENOMEM;
6357 if (subprog->nr_reloc)
6358 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6359 sizeof(*relos) * subprog->nr_reloc);
6360
6361 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6362 relos[i].insn_idx += subprog->sub_insn_off;
6363 /* After insn_idx adjustment the 'relos' array is still sorted
6364 * by insn_idx and doesn't break bsearch.
6365 */
6366 main_prog->reloc_desc = relos;
6367 main_prog->nr_reloc = new_cnt;
6368 return 0;
6369 }
6370
6371 static int
bpf_object__append_subprog_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * subprog)6372 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6373 struct bpf_program *subprog)
6374 {
6375 struct bpf_insn *insns;
6376 size_t new_cnt;
6377 int err;
6378
6379 subprog->sub_insn_off = main_prog->insns_cnt;
6380
6381 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6382 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6383 if (!insns) {
6384 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6385 return -ENOMEM;
6386 }
6387 main_prog->insns = insns;
6388 main_prog->insns_cnt = new_cnt;
6389
6390 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6391 subprog->insns_cnt * sizeof(*insns));
6392
6393 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6394 main_prog->name, subprog->insns_cnt, subprog->name);
6395
6396 /* The subprog insns are now appended. Append its relos too. */
6397 err = append_subprog_relos(main_prog, subprog);
6398 if (err)
6399 return err;
6400 return 0;
6401 }
6402
6403 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6404 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6405 struct bpf_program *prog)
6406 {
6407 size_t sub_insn_idx, insn_idx;
6408 struct bpf_program *subprog;
6409 struct reloc_desc *relo;
6410 struct bpf_insn *insn;
6411 int err;
6412
6413 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6414 if (err)
6415 return err;
6416
6417 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6418 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6419 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6420 continue;
6421
6422 relo = find_prog_insn_relo(prog, insn_idx);
6423 if (relo && relo->type == RELO_EXTERN_CALL)
6424 /* kfunc relocations will be handled later
6425 * in bpf_object__relocate_data()
6426 */
6427 continue;
6428 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6429 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6430 prog->name, insn_idx, relo->type);
6431 return -LIBBPF_ERRNO__RELOC;
6432 }
6433 if (relo) {
6434 /* sub-program instruction index is a combination of
6435 * an offset of a symbol pointed to by relocation and
6436 * call instruction's imm field; for global functions,
6437 * call always has imm = -1, but for static functions
6438 * relocation is against STT_SECTION and insn->imm
6439 * points to a start of a static function
6440 *
6441 * for subprog addr relocation, the relo->sym_off + insn->imm is
6442 * the byte offset in the corresponding section.
6443 */
6444 if (relo->type == RELO_CALL)
6445 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6446 else
6447 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6448 } else if (insn_is_pseudo_func(insn)) {
6449 /*
6450 * RELO_SUBPROG_ADDR relo is always emitted even if both
6451 * functions are in the same section, so it shouldn't reach here.
6452 */
6453 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6454 prog->name, insn_idx);
6455 return -LIBBPF_ERRNO__RELOC;
6456 } else {
6457 /* if subprogram call is to a static function within
6458 * the same ELF section, there won't be any relocation
6459 * emitted, but it also means there is no additional
6460 * offset necessary, insns->imm is relative to
6461 * instruction's original position within the section
6462 */
6463 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6464 }
6465
6466 /* we enforce that sub-programs should be in .text section */
6467 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6468 if (!subprog) {
6469 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6470 prog->name);
6471 return -LIBBPF_ERRNO__RELOC;
6472 }
6473
6474 /* if it's the first call instruction calling into this
6475 * subprogram (meaning this subprog hasn't been processed
6476 * yet) within the context of current main program:
6477 * - append it at the end of main program's instructions blog;
6478 * - process is recursively, while current program is put on hold;
6479 * - if that subprogram calls some other not yet processes
6480 * subprogram, same thing will happen recursively until
6481 * there are no more unprocesses subprograms left to append
6482 * and relocate.
6483 */
6484 if (subprog->sub_insn_off == 0) {
6485 err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6486 if (err)
6487 return err;
6488 err = bpf_object__reloc_code(obj, main_prog, subprog);
6489 if (err)
6490 return err;
6491 }
6492
6493 /* main_prog->insns memory could have been re-allocated, so
6494 * calculate pointer again
6495 */
6496 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6497 /* calculate correct instruction position within current main
6498 * prog; each main prog can have a different set of
6499 * subprograms appended (potentially in different order as
6500 * well), so position of any subprog can be different for
6501 * different main programs
6502 */
6503 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6504
6505 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6506 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6507 }
6508
6509 return 0;
6510 }
6511
6512 /*
6513 * Relocate sub-program calls.
6514 *
6515 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6516 * main prog) is processed separately. For each subprog (non-entry functions,
6517 * that can be called from either entry progs or other subprogs) gets their
6518 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6519 * hasn't been yet appended and relocated within current main prog. Once its
6520 * relocated, sub_insn_off will point at the position within current main prog
6521 * where given subprog was appended. This will further be used to relocate all
6522 * the call instructions jumping into this subprog.
6523 *
6524 * We start with main program and process all call instructions. If the call
6525 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6526 * is zero), subprog instructions are appended at the end of main program's
6527 * instruction array. Then main program is "put on hold" while we recursively
6528 * process newly appended subprogram. If that subprogram calls into another
6529 * subprogram that hasn't been appended, new subprogram is appended again to
6530 * the *main* prog's instructions (subprog's instructions are always left
6531 * untouched, as they need to be in unmodified state for subsequent main progs
6532 * and subprog instructions are always sent only as part of a main prog) and
6533 * the process continues recursively. Once all the subprogs called from a main
6534 * prog or any of its subprogs are appended (and relocated), all their
6535 * positions within finalized instructions array are known, so it's easy to
6536 * rewrite call instructions with correct relative offsets, corresponding to
6537 * desired target subprog.
6538 *
6539 * Its important to realize that some subprogs might not be called from some
6540 * main prog and any of its called/used subprogs. Those will keep their
6541 * subprog->sub_insn_off as zero at all times and won't be appended to current
6542 * main prog and won't be relocated within the context of current main prog.
6543 * They might still be used from other main progs later.
6544 *
6545 * Visually this process can be shown as below. Suppose we have two main
6546 * programs mainA and mainB and BPF object contains three subprogs: subA,
6547 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6548 * subC both call subB:
6549 *
6550 * +--------+ +-------+
6551 * | v v |
6552 * +--+---+ +--+-+-+ +---+--+
6553 * | subA | | subB | | subC |
6554 * +--+---+ +------+ +---+--+
6555 * ^ ^
6556 * | |
6557 * +---+-------+ +------+----+
6558 * | mainA | | mainB |
6559 * +-----------+ +-----------+
6560 *
6561 * We'll start relocating mainA, will find subA, append it and start
6562 * processing sub A recursively:
6563 *
6564 * +-----------+------+
6565 * | mainA | subA |
6566 * +-----------+------+
6567 *
6568 * At this point we notice that subB is used from subA, so we append it and
6569 * relocate (there are no further subcalls from subB):
6570 *
6571 * +-----------+------+------+
6572 * | mainA | subA | subB |
6573 * +-----------+------+------+
6574 *
6575 * At this point, we relocate subA calls, then go one level up and finish with
6576 * relocatin mainA calls. mainA is done.
6577 *
6578 * For mainB process is similar but results in different order. We start with
6579 * mainB and skip subA and subB, as mainB never calls them (at least
6580 * directly), but we see subC is needed, so we append and start processing it:
6581 *
6582 * +-----------+------+
6583 * | mainB | subC |
6584 * +-----------+------+
6585 * Now we see subC needs subB, so we go back to it, append and relocate it:
6586 *
6587 * +-----------+------+------+
6588 * | mainB | subC | subB |
6589 * +-----------+------+------+
6590 *
6591 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6592 */
6593 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6594 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6595 {
6596 struct bpf_program *subprog;
6597 int i, err;
6598
6599 /* mark all subprogs as not relocated (yet) within the context of
6600 * current main program
6601 */
6602 for (i = 0; i < obj->nr_programs; i++) {
6603 subprog = &obj->programs[i];
6604 if (!prog_is_subprog(obj, subprog))
6605 continue;
6606
6607 subprog->sub_insn_off = 0;
6608 }
6609
6610 err = bpf_object__reloc_code(obj, prog, prog);
6611 if (err)
6612 return err;
6613
6614 return 0;
6615 }
6616
6617 static void
bpf_object__free_relocs(struct bpf_object * obj)6618 bpf_object__free_relocs(struct bpf_object *obj)
6619 {
6620 struct bpf_program *prog;
6621 int i;
6622
6623 /* free up relocation descriptors */
6624 for (i = 0; i < obj->nr_programs; i++) {
6625 prog = &obj->programs[i];
6626 zfree(&prog->reloc_desc);
6627 prog->nr_reloc = 0;
6628 }
6629 }
6630
cmp_relocs(const void * _a,const void * _b)6631 static int cmp_relocs(const void *_a, const void *_b)
6632 {
6633 const struct reloc_desc *a = _a;
6634 const struct reloc_desc *b = _b;
6635
6636 if (a->insn_idx != b->insn_idx)
6637 return a->insn_idx < b->insn_idx ? -1 : 1;
6638
6639 /* no two relocations should have the same insn_idx, but ... */
6640 if (a->type != b->type)
6641 return a->type < b->type ? -1 : 1;
6642
6643 return 0;
6644 }
6645
bpf_object__sort_relos(struct bpf_object * obj)6646 static void bpf_object__sort_relos(struct bpf_object *obj)
6647 {
6648 int i;
6649
6650 for (i = 0; i < obj->nr_programs; i++) {
6651 struct bpf_program *p = &obj->programs[i];
6652
6653 if (!p->nr_reloc)
6654 continue;
6655
6656 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6657 }
6658 }
6659
bpf_prog_assign_exc_cb(struct bpf_object * obj,struct bpf_program * prog)6660 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6661 {
6662 const char *str = "exception_callback:";
6663 size_t pfx_len = strlen(str);
6664 int i, j, n;
6665
6666 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6667 return 0;
6668
6669 n = btf__type_cnt(obj->btf);
6670 for (i = 1; i < n; i++) {
6671 const char *name;
6672 struct btf_type *t;
6673
6674 t = btf_type_by_id(obj->btf, i);
6675 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6676 continue;
6677
6678 name = btf__str_by_offset(obj->btf, t->name_off);
6679 if (strncmp(name, str, pfx_len) != 0)
6680 continue;
6681
6682 t = btf_type_by_id(obj->btf, t->type);
6683 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6684 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6685 prog->name);
6686 return -EINVAL;
6687 }
6688 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6689 continue;
6690 /* Multiple callbacks are specified for the same prog,
6691 * the verifier will eventually return an error for this
6692 * case, hence simply skip appending a subprog.
6693 */
6694 if (prog->exception_cb_idx >= 0) {
6695 prog->exception_cb_idx = -1;
6696 break;
6697 }
6698
6699 name += pfx_len;
6700 if (str_is_empty(name)) {
6701 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6702 prog->name);
6703 return -EINVAL;
6704 }
6705
6706 for (j = 0; j < obj->nr_programs; j++) {
6707 struct bpf_program *subprog = &obj->programs[j];
6708
6709 if (!prog_is_subprog(obj, subprog))
6710 continue;
6711 if (strcmp(name, subprog->name) != 0)
6712 continue;
6713 /* Enforce non-hidden, as from verifier point of
6714 * view it expects global functions, whereas the
6715 * mark_btf_static fixes up linkage as static.
6716 */
6717 if (!subprog->sym_global || subprog->mark_btf_static) {
6718 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6719 prog->name, subprog->name);
6720 return -EINVAL;
6721 }
6722 /* Let's see if we already saw a static exception callback with the same name */
6723 if (prog->exception_cb_idx >= 0) {
6724 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6725 prog->name, subprog->name);
6726 return -EINVAL;
6727 }
6728 prog->exception_cb_idx = j;
6729 break;
6730 }
6731
6732 if (prog->exception_cb_idx >= 0)
6733 continue;
6734
6735 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6736 return -ENOENT;
6737 }
6738
6739 return 0;
6740 }
6741
6742 static struct {
6743 enum bpf_prog_type prog_type;
6744 const char *ctx_name;
6745 } global_ctx_map[] = {
6746 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" },
6747 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" },
6748 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" },
6749 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" },
6750 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" },
6751 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" },
6752 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" },
6753 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" },
6754 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" },
6755 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" },
6756 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" },
6757 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" },
6758 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" },
6759 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" },
6760 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" },
6761 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6762 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" },
6763 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" },
6764 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" },
6765 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" },
6766 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" },
6767 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" },
6768 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" },
6769 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" },
6770 { BPF_PROG_TYPE_XDP, "xdp_md" },
6771 /* all other program types don't have "named" context structs */
6772 };
6773
6774 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6775 * for below __builtin_types_compatible_p() checks;
6776 * with this approach we don't need any extra arch-specific #ifdef guards
6777 */
6778 struct pt_regs;
6779 struct user_pt_regs;
6780 struct user_regs_struct;
6781
need_func_arg_type_fixup(const struct btf * btf,const struct bpf_program * prog,const char * subprog_name,int arg_idx,int arg_type_id,const char * ctx_name)6782 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6783 const char *subprog_name, int arg_idx,
6784 int arg_type_id, const char *ctx_name)
6785 {
6786 const struct btf_type *t;
6787 const char *tname;
6788
6789 /* check if existing parameter already matches verifier expectations */
6790 t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6791 if (!btf_is_ptr(t))
6792 goto out_warn;
6793
6794 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6795 * and perf_event programs, so check this case early on and forget
6796 * about it for subsequent checks
6797 */
6798 while (btf_is_mod(t))
6799 t = btf__type_by_id(btf, t->type);
6800 if (btf_is_typedef(t) &&
6801 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6802 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6803 if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6804 return false; /* canonical type for kprobe/perf_event */
6805 }
6806
6807 /* now we can ignore typedefs moving forward */
6808 t = skip_mods_and_typedefs(btf, t->type, NULL);
6809
6810 /* if it's `void *`, definitely fix up BTF info */
6811 if (btf_is_void(t))
6812 return true;
6813
6814 /* if it's already proper canonical type, no need to fix up */
6815 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6816 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6817 return false;
6818
6819 /* special cases */
6820 switch (prog->type) {
6821 case BPF_PROG_TYPE_KPROBE:
6822 /* `struct pt_regs *` is expected, but we need to fix up */
6823 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6824 return true;
6825 break;
6826 case BPF_PROG_TYPE_PERF_EVENT:
6827 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6828 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6829 return true;
6830 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6831 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6832 return true;
6833 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6834 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6835 return true;
6836 break;
6837 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6838 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6839 /* allow u64* as ctx */
6840 if (btf_is_int(t) && t->size == 8)
6841 return true;
6842 break;
6843 default:
6844 break;
6845 }
6846
6847 out_warn:
6848 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6849 prog->name, subprog_name, arg_idx, ctx_name);
6850 return false;
6851 }
6852
clone_func_btf_info(struct btf * btf,int orig_fn_id,struct bpf_program * prog)6853 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6854 {
6855 int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6856 int i, err, arg_cnt, fn_name_off, linkage;
6857 struct btf_type *fn_t, *fn_proto_t, *t;
6858 struct btf_param *p;
6859
6860 /* caller already validated FUNC -> FUNC_PROTO validity */
6861 fn_t = btf_type_by_id(btf, orig_fn_id);
6862 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6863
6864 /* Note that each btf__add_xxx() operation invalidates
6865 * all btf_type and string pointers, so we need to be
6866 * very careful when cloning BTF types. BTF type
6867 * pointers have to be always refetched. And to avoid
6868 * problems with invalidated string pointers, we
6869 * add empty strings initially, then just fix up
6870 * name_off offsets in place. Offsets are stable for
6871 * existing strings, so that works out.
6872 */
6873 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6874 linkage = btf_func_linkage(fn_t);
6875 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6876 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6877 arg_cnt = btf_vlen(fn_proto_t);
6878
6879 /* clone FUNC_PROTO and its params */
6880 fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6881 if (fn_proto_id < 0)
6882 return -EINVAL;
6883
6884 for (i = 0; i < arg_cnt; i++) {
6885 int name_off;
6886
6887 /* copy original parameter data */
6888 t = btf_type_by_id(btf, orig_proto_id);
6889 p = &btf_params(t)[i];
6890 name_off = p->name_off;
6891
6892 err = btf__add_func_param(btf, "", p->type);
6893 if (err)
6894 return err;
6895
6896 fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6897 p = &btf_params(fn_proto_t)[i];
6898 p->name_off = name_off; /* use remembered str offset */
6899 }
6900
6901 /* clone FUNC now, btf__add_func() enforces non-empty name, so use
6902 * entry program's name as a placeholder, which we replace immediately
6903 * with original name_off
6904 */
6905 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6906 if (fn_id < 0)
6907 return -EINVAL;
6908
6909 fn_t = btf_type_by_id(btf, fn_id);
6910 fn_t->name_off = fn_name_off; /* reuse original string */
6911
6912 return fn_id;
6913 }
6914
6915 /* Check if main program or global subprog's function prototype has `arg:ctx`
6916 * argument tags, and, if necessary, substitute correct type to match what BPF
6917 * verifier would expect, taking into account specific program type. This
6918 * allows to support __arg_ctx tag transparently on old kernels that don't yet
6919 * have a native support for it in the verifier, making user's life much
6920 * easier.
6921 */
bpf_program_fixup_func_info(struct bpf_object * obj,struct bpf_program * prog)6922 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6923 {
6924 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6925 struct bpf_func_info_min *func_rec;
6926 struct btf_type *fn_t, *fn_proto_t;
6927 struct btf *btf = obj->btf;
6928 const struct btf_type *t;
6929 struct btf_param *p;
6930 int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6931 int i, n, arg_idx, arg_cnt, err, rec_idx;
6932 int *orig_ids;
6933
6934 /* no .BTF.ext, no problem */
6935 if (!obj->btf_ext || !prog->func_info)
6936 return 0;
6937
6938 /* don't do any fix ups if kernel natively supports __arg_ctx */
6939 if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6940 return 0;
6941
6942 /* some BPF program types just don't have named context structs, so
6943 * this fallback mechanism doesn't work for them
6944 */
6945 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6946 if (global_ctx_map[i].prog_type != prog->type)
6947 continue;
6948 ctx_name = global_ctx_map[i].ctx_name;
6949 break;
6950 }
6951 if (!ctx_name)
6952 return 0;
6953
6954 /* remember original func BTF IDs to detect if we already cloned them */
6955 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6956 if (!orig_ids)
6957 return -ENOMEM;
6958 for (i = 0; i < prog->func_info_cnt; i++) {
6959 func_rec = prog->func_info + prog->func_info_rec_size * i;
6960 orig_ids[i] = func_rec->type_id;
6961 }
6962
6963 /* go through each DECL_TAG with "arg:ctx" and see if it points to one
6964 * of our subprogs; if yes and subprog is global and needs adjustment,
6965 * clone and adjust FUNC -> FUNC_PROTO combo
6966 */
6967 for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6968 /* only DECL_TAG with "arg:ctx" value are interesting */
6969 t = btf__type_by_id(btf, i);
6970 if (!btf_is_decl_tag(t))
6971 continue;
6972 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6973 continue;
6974
6975 /* only global funcs need adjustment, if at all */
6976 orig_fn_id = t->type;
6977 fn_t = btf_type_by_id(btf, orig_fn_id);
6978 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6979 continue;
6980
6981 /* sanity check FUNC -> FUNC_PROTO chain, just in case */
6982 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6983 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6984 continue;
6985
6986 /* find corresponding func_info record */
6987 func_rec = NULL;
6988 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6989 if (orig_ids[rec_idx] == t->type) {
6990 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6991 break;
6992 }
6993 }
6994 /* current main program doesn't call into this subprog */
6995 if (!func_rec)
6996 continue;
6997
6998 /* some more sanity checking of DECL_TAG */
6999 arg_cnt = btf_vlen(fn_proto_t);
7000 arg_idx = btf_decl_tag(t)->component_idx;
7001 if (arg_idx < 0 || arg_idx >= arg_cnt)
7002 continue;
7003
7004 /* check if we should fix up argument type */
7005 p = &btf_params(fn_proto_t)[arg_idx];
7006 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
7007 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
7008 continue;
7009
7010 /* clone fn/fn_proto, unless we already did it for another arg */
7011 if (func_rec->type_id == orig_fn_id) {
7012 int fn_id;
7013
7014 fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
7015 if (fn_id < 0) {
7016 err = fn_id;
7017 goto err_out;
7018 }
7019
7020 /* point func_info record to a cloned FUNC type */
7021 func_rec->type_id = fn_id;
7022 }
7023
7024 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
7025 * we do it just once per main BPF program, as all global
7026 * funcs share the same program type, so need only PTR ->
7027 * STRUCT type chain
7028 */
7029 if (ptr_id == 0) {
7030 struct_id = btf__add_struct(btf, ctx_name, 0);
7031 ptr_id = btf__add_ptr(btf, struct_id);
7032 if (ptr_id < 0 || struct_id < 0) {
7033 err = -EINVAL;
7034 goto err_out;
7035 }
7036 }
7037
7038 /* for completeness, clone DECL_TAG and point it to cloned param */
7039 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7040 if (tag_id < 0) {
7041 err = -EINVAL;
7042 goto err_out;
7043 }
7044
7045 /* all the BTF manipulations invalidated pointers, refetch them */
7046 fn_t = btf_type_by_id(btf, func_rec->type_id);
7047 fn_proto_t = btf_type_by_id(btf, fn_t->type);
7048
7049 /* fix up type ID pointed to by param */
7050 p = &btf_params(fn_proto_t)[arg_idx];
7051 p->type = ptr_id;
7052 }
7053
7054 free(orig_ids);
7055 return 0;
7056 err_out:
7057 free(orig_ids);
7058 return err;
7059 }
7060
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)7061 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7062 {
7063 struct bpf_program *prog;
7064 size_t i, j;
7065 int err;
7066
7067 if (obj->btf_ext) {
7068 err = bpf_object__relocate_core(obj, targ_btf_path);
7069 if (err) {
7070 pr_warn("failed to perform CO-RE relocations: %s\n",
7071 errstr(err));
7072 return err;
7073 }
7074 bpf_object__sort_relos(obj);
7075 }
7076
7077 /* Before relocating calls pre-process relocations and mark
7078 * few ld_imm64 instructions that points to subprogs.
7079 * Otherwise bpf_object__reloc_code() later would have to consider
7080 * all ld_imm64 insns as relocation candidates. That would
7081 * reduce relocation speed, since amount of find_prog_insn_relo()
7082 * would increase and most of them will fail to find a relo.
7083 */
7084 for (i = 0; i < obj->nr_programs; i++) {
7085 prog = &obj->programs[i];
7086 for (j = 0; j < prog->nr_reloc; j++) {
7087 struct reloc_desc *relo = &prog->reloc_desc[j];
7088 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7089
7090 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
7091 if (relo->type == RELO_SUBPROG_ADDR)
7092 insn[0].src_reg = BPF_PSEUDO_FUNC;
7093 }
7094 }
7095
7096 /* relocate subprogram calls and append used subprograms to main
7097 * programs; each copy of subprogram code needs to be relocated
7098 * differently for each main program, because its code location might
7099 * have changed.
7100 * Append subprog relos to main programs to allow data relos to be
7101 * processed after text is completely relocated.
7102 */
7103 for (i = 0; i < obj->nr_programs; i++) {
7104 prog = &obj->programs[i];
7105 /* sub-program's sub-calls are relocated within the context of
7106 * its main program only
7107 */
7108 if (prog_is_subprog(obj, prog))
7109 continue;
7110 if (!prog->autoload)
7111 continue;
7112
7113 err = bpf_object__relocate_calls(obj, prog);
7114 if (err) {
7115 pr_warn("prog '%s': failed to relocate calls: %s\n",
7116 prog->name, errstr(err));
7117 return err;
7118 }
7119
7120 err = bpf_prog_assign_exc_cb(obj, prog);
7121 if (err)
7122 return err;
7123 /* Now, also append exception callback if it has not been done already. */
7124 if (prog->exception_cb_idx >= 0) {
7125 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7126
7127 /* Calling exception callback directly is disallowed, which the
7128 * verifier will reject later. In case it was processed already,
7129 * we can skip this step, otherwise for all other valid cases we
7130 * have to append exception callback now.
7131 */
7132 if (subprog->sub_insn_off == 0) {
7133 err = bpf_object__append_subprog_code(obj, prog, subprog);
7134 if (err)
7135 return err;
7136 err = bpf_object__reloc_code(obj, prog, subprog);
7137 if (err)
7138 return err;
7139 }
7140 }
7141 }
7142 for (i = 0; i < obj->nr_programs; i++) {
7143 prog = &obj->programs[i];
7144 if (prog_is_subprog(obj, prog))
7145 continue;
7146 if (!prog->autoload)
7147 continue;
7148
7149 /* Process data relos for main programs */
7150 err = bpf_object__relocate_data(obj, prog);
7151 if (err) {
7152 pr_warn("prog '%s': failed to relocate data references: %s\n",
7153 prog->name, errstr(err));
7154 return err;
7155 }
7156
7157 /* Fix up .BTF.ext information, if necessary */
7158 err = bpf_program_fixup_func_info(obj, prog);
7159 if (err) {
7160 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n",
7161 prog->name, errstr(err));
7162 return err;
7163 }
7164 }
7165
7166 return 0;
7167 }
7168
7169 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7170 Elf64_Shdr *shdr, Elf_Data *data);
7171
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)7172 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7173 Elf64_Shdr *shdr, Elf_Data *data)
7174 {
7175 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7176 int i, j, nrels, new_sz;
7177 const struct btf_var_secinfo *vi = NULL;
7178 const struct btf_type *sec, *var, *def;
7179 struct bpf_map *map = NULL, *targ_map = NULL;
7180 struct bpf_program *targ_prog = NULL;
7181 bool is_prog_array, is_map_in_map;
7182 const struct btf_member *member;
7183 const char *name, *mname, *type;
7184 unsigned int moff;
7185 Elf64_Sym *sym;
7186 Elf64_Rel *rel;
7187 void *tmp;
7188
7189 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7190 return -EINVAL;
7191 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7192 if (!sec)
7193 return -EINVAL;
7194
7195 nrels = shdr->sh_size / shdr->sh_entsize;
7196 for (i = 0; i < nrels; i++) {
7197 rel = elf_rel_by_idx(data, i);
7198 if (!rel) {
7199 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7200 return -LIBBPF_ERRNO__FORMAT;
7201 }
7202
7203 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7204 if (!sym) {
7205 pr_warn(".maps relo #%d: symbol %zx not found\n",
7206 i, (size_t)ELF64_R_SYM(rel->r_info));
7207 return -LIBBPF_ERRNO__FORMAT;
7208 }
7209 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7210
7211 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7212 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7213 (size_t)rel->r_offset, sym->st_name, name);
7214
7215 for (j = 0; j < obj->nr_maps; j++) {
7216 map = &obj->maps[j];
7217 if (map->sec_idx != obj->efile.btf_maps_shndx)
7218 continue;
7219
7220 vi = btf_var_secinfos(sec) + map->btf_var_idx;
7221 if (vi->offset <= rel->r_offset &&
7222 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7223 break;
7224 }
7225 if (j == obj->nr_maps) {
7226 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7227 i, name, (size_t)rel->r_offset);
7228 return -EINVAL;
7229 }
7230
7231 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7232 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7233 type = is_map_in_map ? "map" : "prog";
7234 if (is_map_in_map) {
7235 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7236 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7237 i, name);
7238 return -LIBBPF_ERRNO__RELOC;
7239 }
7240 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7241 map->def.key_size != sizeof(int)) {
7242 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7243 i, map->name, sizeof(int));
7244 return -EINVAL;
7245 }
7246 targ_map = bpf_object__find_map_by_name(obj, name);
7247 if (!targ_map) {
7248 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7249 i, name);
7250 return -ESRCH;
7251 }
7252 } else if (is_prog_array) {
7253 targ_prog = bpf_object__find_program_by_name(obj, name);
7254 if (!targ_prog) {
7255 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7256 i, name);
7257 return -ESRCH;
7258 }
7259 if (targ_prog->sec_idx != sym->st_shndx ||
7260 targ_prog->sec_insn_off * 8 != sym->st_value ||
7261 prog_is_subprog(obj, targ_prog)) {
7262 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7263 i, name);
7264 return -LIBBPF_ERRNO__RELOC;
7265 }
7266 } else {
7267 return -EINVAL;
7268 }
7269
7270 var = btf__type_by_id(obj->btf, vi->type);
7271 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7272 if (btf_vlen(def) == 0)
7273 return -EINVAL;
7274 member = btf_members(def) + btf_vlen(def) - 1;
7275 mname = btf__name_by_offset(obj->btf, member->name_off);
7276 if (strcmp(mname, "values"))
7277 return -EINVAL;
7278
7279 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7280 if (rel->r_offset - vi->offset < moff)
7281 return -EINVAL;
7282
7283 moff = rel->r_offset - vi->offset - moff;
7284 /* here we use BPF pointer size, which is always 64 bit, as we
7285 * are parsing ELF that was built for BPF target
7286 */
7287 if (moff % bpf_ptr_sz)
7288 return -EINVAL;
7289 moff /= bpf_ptr_sz;
7290 if (moff >= map->init_slots_sz) {
7291 new_sz = moff + 1;
7292 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7293 if (!tmp)
7294 return -ENOMEM;
7295 map->init_slots = tmp;
7296 memset(map->init_slots + map->init_slots_sz, 0,
7297 (new_sz - map->init_slots_sz) * host_ptr_sz);
7298 map->init_slots_sz = new_sz;
7299 }
7300 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7301
7302 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7303 i, map->name, moff, type, name);
7304 }
7305
7306 return 0;
7307 }
7308
bpf_object__collect_relos(struct bpf_object * obj)7309 static int bpf_object__collect_relos(struct bpf_object *obj)
7310 {
7311 int i, err;
7312
7313 for (i = 0; i < obj->efile.sec_cnt; i++) {
7314 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7315 Elf64_Shdr *shdr;
7316 Elf_Data *data;
7317 int idx;
7318
7319 if (sec_desc->sec_type != SEC_RELO)
7320 continue;
7321
7322 shdr = sec_desc->shdr;
7323 data = sec_desc->data;
7324 idx = shdr->sh_info;
7325
7326 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7327 pr_warn("internal error at %d\n", __LINE__);
7328 return -LIBBPF_ERRNO__INTERNAL;
7329 }
7330
7331 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7332 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7333 else if (idx == obj->efile.btf_maps_shndx)
7334 err = bpf_object__collect_map_relos(obj, shdr, data);
7335 else
7336 err = bpf_object__collect_prog_relos(obj, shdr, data);
7337 if (err)
7338 return err;
7339 }
7340
7341 bpf_object__sort_relos(obj);
7342 return 0;
7343 }
7344
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)7345 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7346 {
7347 if (BPF_CLASS(insn->code) == BPF_JMP &&
7348 BPF_OP(insn->code) == BPF_CALL &&
7349 BPF_SRC(insn->code) == BPF_K &&
7350 insn->src_reg == 0 &&
7351 insn->dst_reg == 0) {
7352 *func_id = insn->imm;
7353 return true;
7354 }
7355 return false;
7356 }
7357
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)7358 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7359 {
7360 struct bpf_insn *insn = prog->insns;
7361 enum bpf_func_id func_id;
7362 int i;
7363
7364 if (obj->gen_loader)
7365 return 0;
7366
7367 for (i = 0; i < prog->insns_cnt; i++, insn++) {
7368 if (!insn_is_helper_call(insn, &func_id))
7369 continue;
7370
7371 /* on kernels that don't yet support
7372 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7373 * to bpf_probe_read() which works well for old kernels
7374 */
7375 switch (func_id) {
7376 case BPF_FUNC_probe_read_kernel:
7377 case BPF_FUNC_probe_read_user:
7378 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7379 insn->imm = BPF_FUNC_probe_read;
7380 break;
7381 case BPF_FUNC_probe_read_kernel_str:
7382 case BPF_FUNC_probe_read_user_str:
7383 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7384 insn->imm = BPF_FUNC_probe_read_str;
7385 break;
7386 default:
7387 break;
7388 }
7389 }
7390 return 0;
7391 }
7392
7393 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7394 int *btf_obj_fd, int *btf_type_id);
7395
7396 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)7397 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7398 struct bpf_prog_load_opts *opts, long cookie)
7399 {
7400 enum sec_def_flags def = cookie;
7401
7402 /* old kernels might not support specifying expected_attach_type */
7403 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7404 opts->expected_attach_type = 0;
7405
7406 if (def & SEC_SLEEPABLE)
7407 opts->prog_flags |= BPF_F_SLEEPABLE;
7408
7409 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7410 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7411
7412 /* special check for usdt to use uprobe_multi link */
7413 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) {
7414 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type
7415 * in prog, and expected_attach_type we set in kernel is from opts, so we
7416 * update both.
7417 */
7418 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7419 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7420 }
7421
7422 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7423 int btf_obj_fd = 0, btf_type_id = 0, err;
7424 const char *attach_name;
7425
7426 attach_name = strchr(prog->sec_name, '/');
7427 if (!attach_name) {
7428 /* if BPF program is annotated with just SEC("fentry")
7429 * (or similar) without declaratively specifying
7430 * target, then it is expected that target will be
7431 * specified with bpf_program__set_attach_target() at
7432 * runtime before BPF object load step. If not, then
7433 * there is nothing to load into the kernel as BPF
7434 * verifier won't be able to validate BPF program
7435 * correctness anyways.
7436 */
7437 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7438 prog->name);
7439 return -EINVAL;
7440 }
7441 attach_name++; /* skip over / */
7442
7443 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7444 if (err)
7445 return err;
7446
7447 /* cache resolved BTF FD and BTF type ID in the prog */
7448 prog->attach_btf_obj_fd = btf_obj_fd;
7449 prog->attach_btf_id = btf_type_id;
7450
7451 /* but by now libbpf common logic is not utilizing
7452 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7453 * this callback is called after opts were populated by
7454 * libbpf, so this callback has to update opts explicitly here
7455 */
7456 opts->attach_btf_obj_fd = btf_obj_fd;
7457 opts->attach_btf_id = btf_type_id;
7458 }
7459 return 0;
7460 }
7461
7462 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7463
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)7464 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7465 struct bpf_insn *insns, int insns_cnt,
7466 const char *license, __u32 kern_version, int *prog_fd)
7467 {
7468 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7469 const char *prog_name = NULL;
7470 size_t log_buf_size = 0;
7471 char *log_buf = NULL, *tmp;
7472 bool own_log_buf = true;
7473 __u32 log_level = prog->log_level;
7474 int ret, err;
7475
7476 /* Be more helpful by rejecting programs that can't be validated early
7477 * with more meaningful and actionable error message.
7478 */
7479 switch (prog->type) {
7480 case BPF_PROG_TYPE_UNSPEC:
7481 /*
7482 * The program type must be set. Most likely we couldn't find a proper
7483 * section definition at load time, and thus we didn't infer the type.
7484 */
7485 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7486 prog->name, prog->sec_name);
7487 return -EINVAL;
7488 case BPF_PROG_TYPE_STRUCT_OPS:
7489 if (prog->attach_btf_id == 0) {
7490 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7491 prog->name);
7492 return -EINVAL;
7493 }
7494 break;
7495 default:
7496 break;
7497 }
7498
7499 if (!insns || !insns_cnt)
7500 return -EINVAL;
7501
7502 if (kernel_supports(obj, FEAT_PROG_NAME))
7503 prog_name = prog->name;
7504 load_attr.attach_prog_fd = prog->attach_prog_fd;
7505 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7506 load_attr.attach_btf_id = prog->attach_btf_id;
7507 load_attr.kern_version = kern_version;
7508 load_attr.prog_ifindex = prog->prog_ifindex;
7509 load_attr.expected_attach_type = prog->expected_attach_type;
7510
7511 /* specify func_info/line_info only if kernel supports them */
7512 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7513 load_attr.prog_btf_fd = btf__fd(obj->btf);
7514 load_attr.func_info = prog->func_info;
7515 load_attr.func_info_rec_size = prog->func_info_rec_size;
7516 load_attr.func_info_cnt = prog->func_info_cnt;
7517 load_attr.line_info = prog->line_info;
7518 load_attr.line_info_rec_size = prog->line_info_rec_size;
7519 load_attr.line_info_cnt = prog->line_info_cnt;
7520 }
7521 load_attr.log_level = log_level;
7522 load_attr.prog_flags = prog->prog_flags;
7523 load_attr.fd_array = obj->fd_array;
7524
7525 load_attr.token_fd = obj->token_fd;
7526 if (obj->token_fd)
7527 load_attr.prog_flags |= BPF_F_TOKEN_FD;
7528
7529 /* adjust load_attr if sec_def provides custom preload callback */
7530 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7531 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7532 if (err < 0) {
7533 pr_warn("prog '%s': failed to prepare load attributes: %s\n",
7534 prog->name, errstr(err));
7535 return err;
7536 }
7537 insns = prog->insns;
7538 insns_cnt = prog->insns_cnt;
7539 }
7540
7541 if (obj->gen_loader) {
7542 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7543 license, insns, insns_cnt, &load_attr,
7544 prog - obj->programs);
7545 *prog_fd = -1;
7546 return 0;
7547 }
7548
7549 retry_load:
7550 /* if log_level is zero, we don't request logs initially even if
7551 * custom log_buf is specified; if the program load fails, then we'll
7552 * bump log_level to 1 and use either custom log_buf or we'll allocate
7553 * our own and retry the load to get details on what failed
7554 */
7555 if (log_level) {
7556 if (prog->log_buf) {
7557 log_buf = prog->log_buf;
7558 log_buf_size = prog->log_size;
7559 own_log_buf = false;
7560 } else if (obj->log_buf) {
7561 log_buf = obj->log_buf;
7562 log_buf_size = obj->log_size;
7563 own_log_buf = false;
7564 } else {
7565 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7566 tmp = realloc(log_buf, log_buf_size);
7567 if (!tmp) {
7568 ret = -ENOMEM;
7569 goto out;
7570 }
7571 log_buf = tmp;
7572 log_buf[0] = '\0';
7573 own_log_buf = true;
7574 }
7575 }
7576
7577 load_attr.log_buf = log_buf;
7578 load_attr.log_size = log_buf_size;
7579 load_attr.log_level = log_level;
7580
7581 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7582 if (ret >= 0) {
7583 if (log_level && own_log_buf) {
7584 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7585 prog->name, log_buf);
7586 }
7587
7588 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7589 struct bpf_map *map;
7590 int i;
7591
7592 for (i = 0; i < obj->nr_maps; i++) {
7593 map = &prog->obj->maps[i];
7594 if (map->libbpf_type != LIBBPF_MAP_RODATA)
7595 continue;
7596
7597 if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7598 pr_warn("prog '%s': failed to bind map '%s': %s\n",
7599 prog->name, map->real_name, errstr(errno));
7600 /* Don't fail hard if can't bind rodata. */
7601 }
7602 }
7603 }
7604
7605 *prog_fd = ret;
7606 ret = 0;
7607 goto out;
7608 }
7609
7610 if (log_level == 0) {
7611 log_level = 1;
7612 goto retry_load;
7613 }
7614 /* On ENOSPC, increase log buffer size and retry, unless custom
7615 * log_buf is specified.
7616 * Be careful to not overflow u32, though. Kernel's log buf size limit
7617 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7618 * multiply by 2 unless we are sure we'll fit within 32 bits.
7619 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7620 */
7621 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7622 goto retry_load;
7623
7624 ret = -errno;
7625
7626 /* post-process verifier log to improve error descriptions */
7627 fixup_verifier_log(prog, log_buf, log_buf_size);
7628
7629 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno));
7630 pr_perm_msg(ret);
7631
7632 if (own_log_buf && log_buf && log_buf[0] != '\0') {
7633 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7634 prog->name, log_buf);
7635 }
7636
7637 out:
7638 if (own_log_buf)
7639 free(log_buf);
7640 return ret;
7641 }
7642
find_prev_line(char * buf,char * cur)7643 static char *find_prev_line(char *buf, char *cur)
7644 {
7645 char *p;
7646
7647 if (cur == buf) /* end of a log buf */
7648 return NULL;
7649
7650 p = cur - 1;
7651 while (p - 1 >= buf && *(p - 1) != '\n')
7652 p--;
7653
7654 return p;
7655 }
7656
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7657 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7658 char *orig, size_t orig_sz, const char *patch)
7659 {
7660 /* size of the remaining log content to the right from the to-be-replaced part */
7661 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7662 size_t patch_sz = strlen(patch);
7663
7664 if (patch_sz != orig_sz) {
7665 /* If patch line(s) are longer than original piece of verifier log,
7666 * shift log contents by (patch_sz - orig_sz) bytes to the right
7667 * starting from after to-be-replaced part of the log.
7668 *
7669 * If patch line(s) are shorter than original piece of verifier log,
7670 * shift log contents by (orig_sz - patch_sz) bytes to the left
7671 * starting from after to-be-replaced part of the log
7672 *
7673 * We need to be careful about not overflowing available
7674 * buf_sz capacity. If that's the case, we'll truncate the end
7675 * of the original log, as necessary.
7676 */
7677 if (patch_sz > orig_sz) {
7678 if (orig + patch_sz >= buf + buf_sz) {
7679 /* patch is big enough to cover remaining space completely */
7680 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7681 rem_sz = 0;
7682 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7683 /* patch causes part of remaining log to be truncated */
7684 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7685 }
7686 }
7687 /* shift remaining log to the right by calculated amount */
7688 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7689 }
7690
7691 memcpy(orig, patch, patch_sz);
7692 }
7693
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7694 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7695 char *buf, size_t buf_sz, size_t log_sz,
7696 char *line1, char *line2, char *line3)
7697 {
7698 /* Expected log for failed and not properly guarded CO-RE relocation:
7699 * line1 -> 123: (85) call unknown#195896080
7700 * line2 -> invalid func unknown#195896080
7701 * line3 -> <anything else or end of buffer>
7702 *
7703 * "123" is the index of the instruction that was poisoned. We extract
7704 * instruction index to find corresponding CO-RE relocation and
7705 * replace this part of the log with more relevant information about
7706 * failed CO-RE relocation.
7707 */
7708 const struct bpf_core_relo *relo;
7709 struct bpf_core_spec spec;
7710 char patch[512], spec_buf[256];
7711 int insn_idx, err, spec_len;
7712
7713 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7714 return;
7715
7716 relo = find_relo_core(prog, insn_idx);
7717 if (!relo)
7718 return;
7719
7720 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7721 if (err)
7722 return;
7723
7724 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7725 snprintf(patch, sizeof(patch),
7726 "%d: <invalid CO-RE relocation>\n"
7727 "failed to resolve CO-RE relocation %s%s\n",
7728 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7729
7730 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7731 }
7732
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7733 static void fixup_log_missing_map_load(struct bpf_program *prog,
7734 char *buf, size_t buf_sz, size_t log_sz,
7735 char *line1, char *line2, char *line3)
7736 {
7737 /* Expected log for failed and not properly guarded map reference:
7738 * line1 -> 123: (85) call unknown#2001000345
7739 * line2 -> invalid func unknown#2001000345
7740 * line3 -> <anything else or end of buffer>
7741 *
7742 * "123" is the index of the instruction that was poisoned.
7743 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7744 */
7745 struct bpf_object *obj = prog->obj;
7746 const struct bpf_map *map;
7747 int insn_idx, map_idx;
7748 char patch[128];
7749
7750 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7751 return;
7752
7753 map_idx -= POISON_LDIMM64_MAP_BASE;
7754 if (map_idx < 0 || map_idx >= obj->nr_maps)
7755 return;
7756 map = &obj->maps[map_idx];
7757
7758 snprintf(patch, sizeof(patch),
7759 "%d: <invalid BPF map reference>\n"
7760 "BPF map '%s' is referenced but wasn't created\n",
7761 insn_idx, map->name);
7762
7763 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7764 }
7765
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7766 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7767 char *buf, size_t buf_sz, size_t log_sz,
7768 char *line1, char *line2, char *line3)
7769 {
7770 /* Expected log for failed and not properly guarded kfunc call:
7771 * line1 -> 123: (85) call unknown#2002000345
7772 * line2 -> invalid func unknown#2002000345
7773 * line3 -> <anything else or end of buffer>
7774 *
7775 * "123" is the index of the instruction that was poisoned.
7776 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7777 */
7778 struct bpf_object *obj = prog->obj;
7779 const struct extern_desc *ext;
7780 int insn_idx, ext_idx;
7781 char patch[128];
7782
7783 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7784 return;
7785
7786 ext_idx -= POISON_CALL_KFUNC_BASE;
7787 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7788 return;
7789 ext = &obj->externs[ext_idx];
7790
7791 snprintf(patch, sizeof(patch),
7792 "%d: <invalid kfunc call>\n"
7793 "kfunc '%s' is referenced but wasn't resolved\n",
7794 insn_idx, ext->name);
7795
7796 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7797 }
7798
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7799 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7800 {
7801 /* look for familiar error patterns in last N lines of the log */
7802 const size_t max_last_line_cnt = 10;
7803 char *prev_line, *cur_line, *next_line;
7804 size_t log_sz;
7805 int i;
7806
7807 if (!buf)
7808 return;
7809
7810 log_sz = strlen(buf) + 1;
7811 next_line = buf + log_sz - 1;
7812
7813 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7814 cur_line = find_prev_line(buf, next_line);
7815 if (!cur_line)
7816 return;
7817
7818 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7819 prev_line = find_prev_line(buf, cur_line);
7820 if (!prev_line)
7821 continue;
7822
7823 /* failed CO-RE relocation case */
7824 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7825 prev_line, cur_line, next_line);
7826 return;
7827 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7828 prev_line = find_prev_line(buf, cur_line);
7829 if (!prev_line)
7830 continue;
7831
7832 /* reference to uncreated BPF map */
7833 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7834 prev_line, cur_line, next_line);
7835 return;
7836 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7837 prev_line = find_prev_line(buf, cur_line);
7838 if (!prev_line)
7839 continue;
7840
7841 /* reference to unresolved kfunc */
7842 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7843 prev_line, cur_line, next_line);
7844 return;
7845 }
7846 }
7847 }
7848
bpf_program_record_relos(struct bpf_program * prog)7849 static int bpf_program_record_relos(struct bpf_program *prog)
7850 {
7851 struct bpf_object *obj = prog->obj;
7852 int i;
7853
7854 for (i = 0; i < prog->nr_reloc; i++) {
7855 struct reloc_desc *relo = &prog->reloc_desc[i];
7856 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7857 int kind;
7858
7859 switch (relo->type) {
7860 case RELO_EXTERN_LD64:
7861 if (ext->type != EXT_KSYM)
7862 continue;
7863 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7864 BTF_KIND_VAR : BTF_KIND_FUNC;
7865 bpf_gen__record_extern(obj->gen_loader, ext->name,
7866 ext->is_weak, !ext->ksym.type_id,
7867 true, kind, relo->insn_idx);
7868 break;
7869 case RELO_EXTERN_CALL:
7870 bpf_gen__record_extern(obj->gen_loader, ext->name,
7871 ext->is_weak, false, false, BTF_KIND_FUNC,
7872 relo->insn_idx);
7873 break;
7874 case RELO_CORE: {
7875 struct bpf_core_relo cr = {
7876 .insn_off = relo->insn_idx * 8,
7877 .type_id = relo->core_relo->type_id,
7878 .access_str_off = relo->core_relo->access_str_off,
7879 .kind = relo->core_relo->kind,
7880 };
7881
7882 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7883 break;
7884 }
7885 default:
7886 continue;
7887 }
7888 }
7889 return 0;
7890 }
7891
7892 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7893 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7894 {
7895 struct bpf_program *prog;
7896 size_t i;
7897 int err;
7898
7899 for (i = 0; i < obj->nr_programs; i++) {
7900 prog = &obj->programs[i];
7901 if (prog_is_subprog(obj, prog))
7902 continue;
7903 if (!prog->autoload) {
7904 pr_debug("prog '%s': skipped loading\n", prog->name);
7905 continue;
7906 }
7907 prog->log_level |= log_level;
7908
7909 if (obj->gen_loader)
7910 bpf_program_record_relos(prog);
7911
7912 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7913 obj->license, obj->kern_version, &prog->fd);
7914 if (err) {
7915 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err));
7916 return err;
7917 }
7918 }
7919
7920 bpf_object__free_relocs(obj);
7921 return 0;
7922 }
7923
bpf_object_prepare_progs(struct bpf_object * obj)7924 static int bpf_object_prepare_progs(struct bpf_object *obj)
7925 {
7926 struct bpf_program *prog;
7927 size_t i;
7928 int err;
7929
7930 for (i = 0; i < obj->nr_programs; i++) {
7931 prog = &obj->programs[i];
7932 err = bpf_object__sanitize_prog(obj, prog);
7933 if (err)
7934 return err;
7935 }
7936 return 0;
7937 }
7938
7939 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7940
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7941 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7942 {
7943 struct bpf_program *prog;
7944 int err;
7945
7946 bpf_object__for_each_program(prog, obj) {
7947 prog->sec_def = find_sec_def(prog->sec_name);
7948 if (!prog->sec_def) {
7949 /* couldn't guess, but user might manually specify */
7950 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7951 prog->name, prog->sec_name);
7952 continue;
7953 }
7954
7955 prog->type = prog->sec_def->prog_type;
7956 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7957
7958 /* sec_def can have custom callback which should be called
7959 * after bpf_program is initialized to adjust its properties
7960 */
7961 if (prog->sec_def->prog_setup_fn) {
7962 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7963 if (err < 0) {
7964 pr_warn("prog '%s': failed to initialize: %s\n",
7965 prog->name, errstr(err));
7966 return err;
7967 }
7968 }
7969 }
7970
7971 return 0;
7972 }
7973
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name,const struct bpf_object_open_opts * opts)7974 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7975 const char *obj_name,
7976 const struct bpf_object_open_opts *opts)
7977 {
7978 const char *kconfig, *btf_tmp_path, *token_path;
7979 struct bpf_object *obj;
7980 int err;
7981 char *log_buf;
7982 size_t log_size;
7983 __u32 log_level;
7984
7985 if (obj_buf && !obj_name)
7986 return ERR_PTR(-EINVAL);
7987
7988 if (elf_version(EV_CURRENT) == EV_NONE) {
7989 pr_warn("failed to init libelf for %s\n",
7990 path ? : "(mem buf)");
7991 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7992 }
7993
7994 if (!OPTS_VALID(opts, bpf_object_open_opts))
7995 return ERR_PTR(-EINVAL);
7996
7997 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name;
7998 if (obj_buf) {
7999 path = obj_name;
8000 pr_debug("loading object '%s' from buffer\n", obj_name);
8001 } else {
8002 pr_debug("loading object from %s\n", path);
8003 }
8004
8005 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
8006 log_size = OPTS_GET(opts, kernel_log_size, 0);
8007 log_level = OPTS_GET(opts, kernel_log_level, 0);
8008 if (log_size > UINT_MAX)
8009 return ERR_PTR(-EINVAL);
8010 if (log_size && !log_buf)
8011 return ERR_PTR(-EINVAL);
8012
8013 token_path = OPTS_GET(opts, bpf_token_path, NULL);
8014 /* if user didn't specify bpf_token_path explicitly, check if
8015 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
8016 * option
8017 */
8018 if (!token_path)
8019 token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
8020 if (token_path && strlen(token_path) >= PATH_MAX)
8021 return ERR_PTR(-ENAMETOOLONG);
8022
8023 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
8024 if (IS_ERR(obj))
8025 return obj;
8026
8027 obj->log_buf = log_buf;
8028 obj->log_size = log_size;
8029 obj->log_level = log_level;
8030
8031 if (token_path) {
8032 obj->token_path = strdup(token_path);
8033 if (!obj->token_path) {
8034 err = -ENOMEM;
8035 goto out;
8036 }
8037 }
8038
8039 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
8040 if (btf_tmp_path) {
8041 if (strlen(btf_tmp_path) >= PATH_MAX) {
8042 err = -ENAMETOOLONG;
8043 goto out;
8044 }
8045 obj->btf_custom_path = strdup(btf_tmp_path);
8046 if (!obj->btf_custom_path) {
8047 err = -ENOMEM;
8048 goto out;
8049 }
8050 }
8051
8052 kconfig = OPTS_GET(opts, kconfig, NULL);
8053 if (kconfig) {
8054 obj->kconfig = strdup(kconfig);
8055 if (!obj->kconfig) {
8056 err = -ENOMEM;
8057 goto out;
8058 }
8059 }
8060
8061 err = bpf_object__elf_init(obj);
8062 err = err ? : bpf_object__elf_collect(obj);
8063 err = err ? : bpf_object__collect_externs(obj);
8064 err = err ? : bpf_object_fixup_btf(obj);
8065 err = err ? : bpf_object__init_maps(obj, opts);
8066 err = err ? : bpf_object_init_progs(obj, opts);
8067 err = err ? : bpf_object__collect_relos(obj);
8068 if (err)
8069 goto out;
8070
8071 bpf_object__elf_finish(obj);
8072
8073 return obj;
8074 out:
8075 bpf_object__close(obj);
8076 return ERR_PTR(err);
8077 }
8078
8079 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)8080 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8081 {
8082 if (!path)
8083 return libbpf_err_ptr(-EINVAL);
8084
8085 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts));
8086 }
8087
bpf_object__open(const char * path)8088 struct bpf_object *bpf_object__open(const char *path)
8089 {
8090 return bpf_object__open_file(path, NULL);
8091 }
8092
8093 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)8094 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8095 const struct bpf_object_open_opts *opts)
8096 {
8097 char tmp_name[64];
8098
8099 if (!obj_buf || obj_buf_sz == 0)
8100 return libbpf_err_ptr(-EINVAL);
8101
8102 /* create a (quite useless) default "name" for this memory buffer object */
8103 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz);
8104
8105 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts));
8106 }
8107
bpf_object_unload(struct bpf_object * obj)8108 static int bpf_object_unload(struct bpf_object *obj)
8109 {
8110 size_t i;
8111
8112 if (!obj)
8113 return libbpf_err(-EINVAL);
8114
8115 for (i = 0; i < obj->nr_maps; i++) {
8116 zclose(obj->maps[i].fd);
8117 if (obj->maps[i].st_ops)
8118 zfree(&obj->maps[i].st_ops->kern_vdata);
8119 }
8120
8121 for (i = 0; i < obj->nr_programs; i++)
8122 bpf_program__unload(&obj->programs[i]);
8123
8124 return 0;
8125 }
8126
bpf_object__sanitize_maps(struct bpf_object * obj)8127 static int bpf_object__sanitize_maps(struct bpf_object *obj)
8128 {
8129 struct bpf_map *m;
8130
8131 bpf_object__for_each_map(m, obj) {
8132 if (!bpf_map__is_internal(m))
8133 continue;
8134 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8135 m->def.map_flags &= ~BPF_F_MMAPABLE;
8136 }
8137
8138 return 0;
8139 }
8140
8141 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type,
8142 const char *sym_name, void *ctx);
8143
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)8144 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8145 {
8146 char sym_type, sym_name[500];
8147 unsigned long long sym_addr;
8148 int ret, err = 0;
8149 FILE *f;
8150
8151 f = fopen("/proc/kallsyms", "re");
8152 if (!f) {
8153 err = -errno;
8154 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err));
8155 return err;
8156 }
8157
8158 while (true) {
8159 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8160 &sym_addr, &sym_type, sym_name);
8161 if (ret == EOF && feof(f))
8162 break;
8163 if (ret != 3) {
8164 pr_warn("failed to read kallsyms entry: %d\n", ret);
8165 err = -EINVAL;
8166 break;
8167 }
8168
8169 err = cb(sym_addr, sym_type, sym_name, ctx);
8170 if (err)
8171 break;
8172 }
8173
8174 fclose(f);
8175 return err;
8176 }
8177
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)8178 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8179 const char *sym_name, void *ctx)
8180 {
8181 struct bpf_object *obj = ctx;
8182 const struct btf_type *t;
8183 struct extern_desc *ext;
8184 char *res;
8185
8186 res = strstr(sym_name, ".llvm.");
8187 if (sym_type == 'd' && res)
8188 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name);
8189 else
8190 ext = find_extern_by_name(obj, sym_name);
8191 if (!ext || ext->type != EXT_KSYM)
8192 return 0;
8193
8194 t = btf__type_by_id(obj->btf, ext->btf_id);
8195 if (!btf_is_var(t))
8196 return 0;
8197
8198 if (ext->is_set && ext->ksym.addr != sym_addr) {
8199 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8200 sym_name, ext->ksym.addr, sym_addr);
8201 return -EINVAL;
8202 }
8203 if (!ext->is_set) {
8204 ext->is_set = true;
8205 ext->ksym.addr = sym_addr;
8206 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8207 }
8208 return 0;
8209 }
8210
bpf_object__read_kallsyms_file(struct bpf_object * obj)8211 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8212 {
8213 return libbpf_kallsyms_parse(kallsyms_cb, obj);
8214 }
8215
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)8216 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8217 __u16 kind, struct btf **res_btf,
8218 struct module_btf **res_mod_btf)
8219 {
8220 struct module_btf *mod_btf;
8221 struct btf *btf;
8222 int i, id, err;
8223
8224 btf = obj->btf_vmlinux;
8225 mod_btf = NULL;
8226 id = btf__find_by_name_kind(btf, ksym_name, kind);
8227
8228 if (id == -ENOENT) {
8229 err = load_module_btfs(obj);
8230 if (err)
8231 return err;
8232
8233 for (i = 0; i < obj->btf_module_cnt; i++) {
8234 /* we assume module_btf's BTF FD is always >0 */
8235 mod_btf = &obj->btf_modules[i];
8236 btf = mod_btf->btf;
8237 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8238 if (id != -ENOENT)
8239 break;
8240 }
8241 }
8242 if (id <= 0)
8243 return -ESRCH;
8244
8245 *res_btf = btf;
8246 *res_mod_btf = mod_btf;
8247 return id;
8248 }
8249
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)8250 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8251 struct extern_desc *ext)
8252 {
8253 const struct btf_type *targ_var, *targ_type;
8254 __u32 targ_type_id, local_type_id;
8255 struct module_btf *mod_btf = NULL;
8256 const char *targ_var_name;
8257 struct btf *btf = NULL;
8258 int id, err;
8259
8260 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8261 if (id < 0) {
8262 if (id == -ESRCH && ext->is_weak)
8263 return 0;
8264 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8265 ext->name);
8266 return id;
8267 }
8268
8269 /* find local type_id */
8270 local_type_id = ext->ksym.type_id;
8271
8272 /* find target type_id */
8273 targ_var = btf__type_by_id(btf, id);
8274 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8275 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8276
8277 err = bpf_core_types_are_compat(obj->btf, local_type_id,
8278 btf, targ_type_id);
8279 if (err <= 0) {
8280 const struct btf_type *local_type;
8281 const char *targ_name, *local_name;
8282
8283 local_type = btf__type_by_id(obj->btf, local_type_id);
8284 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8285 targ_name = btf__name_by_offset(btf, targ_type->name_off);
8286
8287 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8288 ext->name, local_type_id,
8289 btf_kind_str(local_type), local_name, targ_type_id,
8290 btf_kind_str(targ_type), targ_name);
8291 return -EINVAL;
8292 }
8293
8294 ext->is_set = true;
8295 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8296 ext->ksym.kernel_btf_id = id;
8297 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8298 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8299
8300 return 0;
8301 }
8302
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)8303 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8304 struct extern_desc *ext)
8305 {
8306 int local_func_proto_id, kfunc_proto_id, kfunc_id;
8307 struct module_btf *mod_btf = NULL;
8308 const struct btf_type *kern_func;
8309 struct btf *kern_btf = NULL;
8310 int ret;
8311
8312 local_func_proto_id = ext->ksym.type_id;
8313
8314 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8315 &mod_btf);
8316 if (kfunc_id < 0) {
8317 if (kfunc_id == -ESRCH && ext->is_weak)
8318 return 0;
8319 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8320 ext->name);
8321 return kfunc_id;
8322 }
8323
8324 kern_func = btf__type_by_id(kern_btf, kfunc_id);
8325 kfunc_proto_id = kern_func->type;
8326
8327 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8328 kern_btf, kfunc_proto_id);
8329 if (ret <= 0) {
8330 if (ext->is_weak)
8331 return 0;
8332
8333 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8334 ext->name, local_func_proto_id,
8335 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8336 return -EINVAL;
8337 }
8338
8339 /* set index for module BTF fd in fd_array, if unset */
8340 if (mod_btf && !mod_btf->fd_array_idx) {
8341 /* insn->off is s16 */
8342 if (obj->fd_array_cnt == INT16_MAX) {
8343 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8344 ext->name, mod_btf->fd_array_idx);
8345 return -E2BIG;
8346 }
8347 /* Cannot use index 0 for module BTF fd */
8348 if (!obj->fd_array_cnt)
8349 obj->fd_array_cnt = 1;
8350
8351 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8352 obj->fd_array_cnt + 1);
8353 if (ret)
8354 return ret;
8355 mod_btf->fd_array_idx = obj->fd_array_cnt;
8356 /* we assume module BTF FD is always >0 */
8357 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8358 }
8359
8360 ext->is_set = true;
8361 ext->ksym.kernel_btf_id = kfunc_id;
8362 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8363 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8364 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8365 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8366 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8367 */
8368 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8369 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8370 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8371
8372 return 0;
8373 }
8374
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)8375 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8376 {
8377 const struct btf_type *t;
8378 struct extern_desc *ext;
8379 int i, err;
8380
8381 for (i = 0; i < obj->nr_extern; i++) {
8382 ext = &obj->externs[i];
8383 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8384 continue;
8385
8386 if (obj->gen_loader) {
8387 ext->is_set = true;
8388 ext->ksym.kernel_btf_obj_fd = 0;
8389 ext->ksym.kernel_btf_id = 0;
8390 continue;
8391 }
8392 t = btf__type_by_id(obj->btf, ext->btf_id);
8393 if (btf_is_var(t))
8394 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8395 else
8396 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8397 if (err)
8398 return err;
8399 }
8400 return 0;
8401 }
8402
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)8403 static int bpf_object__resolve_externs(struct bpf_object *obj,
8404 const char *extra_kconfig)
8405 {
8406 bool need_config = false, need_kallsyms = false;
8407 bool need_vmlinux_btf = false;
8408 struct extern_desc *ext;
8409 void *kcfg_data = NULL;
8410 int err, i;
8411
8412 if (obj->nr_extern == 0)
8413 return 0;
8414
8415 if (obj->kconfig_map_idx >= 0)
8416 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8417
8418 for (i = 0; i < obj->nr_extern; i++) {
8419 ext = &obj->externs[i];
8420
8421 if (ext->type == EXT_KSYM) {
8422 if (ext->ksym.type_id)
8423 need_vmlinux_btf = true;
8424 else
8425 need_kallsyms = true;
8426 continue;
8427 } else if (ext->type == EXT_KCFG) {
8428 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8429 __u64 value = 0;
8430
8431 /* Kconfig externs need actual /proc/config.gz */
8432 if (str_has_pfx(ext->name, "CONFIG_")) {
8433 need_config = true;
8434 continue;
8435 }
8436
8437 /* Virtual kcfg externs are customly handled by libbpf */
8438 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8439 value = get_kernel_version();
8440 if (!value) {
8441 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8442 return -EINVAL;
8443 }
8444 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8445 value = kernel_supports(obj, FEAT_BPF_COOKIE);
8446 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8447 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8448 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8449 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8450 * __kconfig externs, where LINUX_ ones are virtual and filled out
8451 * customly by libbpf (their values don't come from Kconfig).
8452 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8453 * __weak, it defaults to zero value, just like for CONFIG_xxx
8454 * externs.
8455 */
8456 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8457 return -EINVAL;
8458 }
8459
8460 err = set_kcfg_value_num(ext, ext_ptr, value);
8461 if (err)
8462 return err;
8463 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8464 ext->name, (long long)value);
8465 } else {
8466 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8467 return -EINVAL;
8468 }
8469 }
8470 if (need_config && extra_kconfig) {
8471 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8472 if (err)
8473 return -EINVAL;
8474 need_config = false;
8475 for (i = 0; i < obj->nr_extern; i++) {
8476 ext = &obj->externs[i];
8477 if (ext->type == EXT_KCFG && !ext->is_set) {
8478 need_config = true;
8479 break;
8480 }
8481 }
8482 }
8483 if (need_config) {
8484 err = bpf_object__read_kconfig_file(obj, kcfg_data);
8485 if (err)
8486 return -EINVAL;
8487 }
8488 if (need_kallsyms) {
8489 err = bpf_object__read_kallsyms_file(obj);
8490 if (err)
8491 return -EINVAL;
8492 }
8493 if (need_vmlinux_btf) {
8494 err = bpf_object__resolve_ksyms_btf_id(obj);
8495 if (err)
8496 return -EINVAL;
8497 }
8498 for (i = 0; i < obj->nr_extern; i++) {
8499 ext = &obj->externs[i];
8500
8501 if (!ext->is_set && !ext->is_weak) {
8502 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8503 return -ESRCH;
8504 } else if (!ext->is_set) {
8505 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8506 ext->name);
8507 }
8508 }
8509
8510 return 0;
8511 }
8512
bpf_map_prepare_vdata(const struct bpf_map * map)8513 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8514 {
8515 const struct btf_type *type;
8516 struct bpf_struct_ops *st_ops;
8517 __u32 i;
8518
8519 st_ops = map->st_ops;
8520 type = btf__type_by_id(map->obj->btf, st_ops->type_id);
8521 for (i = 0; i < btf_vlen(type); i++) {
8522 struct bpf_program *prog = st_ops->progs[i];
8523 void *kern_data;
8524 int prog_fd;
8525
8526 if (!prog)
8527 continue;
8528
8529 prog_fd = bpf_program__fd(prog);
8530 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8531 *(unsigned long *)kern_data = prog_fd;
8532 }
8533 }
8534
bpf_object_prepare_struct_ops(struct bpf_object * obj)8535 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8536 {
8537 struct bpf_map *map;
8538 int i;
8539
8540 for (i = 0; i < obj->nr_maps; i++) {
8541 map = &obj->maps[i];
8542
8543 if (!bpf_map__is_struct_ops(map))
8544 continue;
8545
8546 if (!map->autocreate)
8547 continue;
8548
8549 bpf_map_prepare_vdata(map);
8550 }
8551
8552 return 0;
8553 }
8554
bpf_object_unpin(struct bpf_object * obj)8555 static void bpf_object_unpin(struct bpf_object *obj)
8556 {
8557 int i;
8558
8559 /* unpin any maps that were auto-pinned during load */
8560 for (i = 0; i < obj->nr_maps; i++)
8561 if (obj->maps[i].pinned && !obj->maps[i].reused)
8562 bpf_map__unpin(&obj->maps[i], NULL);
8563 }
8564
bpf_object_post_load_cleanup(struct bpf_object * obj)8565 static void bpf_object_post_load_cleanup(struct bpf_object *obj)
8566 {
8567 int i;
8568
8569 /* clean up fd_array */
8570 zfree(&obj->fd_array);
8571
8572 /* clean up module BTFs */
8573 for (i = 0; i < obj->btf_module_cnt; i++) {
8574 close(obj->btf_modules[i].fd);
8575 btf__free(obj->btf_modules[i].btf);
8576 free(obj->btf_modules[i].name);
8577 }
8578 obj->btf_module_cnt = 0;
8579 zfree(&obj->btf_modules);
8580
8581 /* clean up vmlinux BTF */
8582 btf__free(obj->btf_vmlinux);
8583 obj->btf_vmlinux = NULL;
8584 }
8585
bpf_object_prepare(struct bpf_object * obj,const char * target_btf_path)8586 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path)
8587 {
8588 int err;
8589
8590 if (obj->state >= OBJ_PREPARED) {
8591 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name);
8592 return -EINVAL;
8593 }
8594
8595 err = bpf_object_prepare_token(obj);
8596 err = err ? : bpf_object__probe_loading(obj);
8597 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8598 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8599 err = err ? : bpf_object__sanitize_maps(obj);
8600 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8601 err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8602 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8603 err = err ? : bpf_object__sanitize_and_load_btf(obj);
8604 err = err ? : bpf_object__create_maps(obj);
8605 err = err ? : bpf_object_prepare_progs(obj);
8606
8607 if (err) {
8608 bpf_object_unpin(obj);
8609 bpf_object_unload(obj);
8610 obj->state = OBJ_LOADED;
8611 return err;
8612 }
8613
8614 obj->state = OBJ_PREPARED;
8615 return 0;
8616 }
8617
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)8618 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8619 {
8620 int err;
8621
8622 if (!obj)
8623 return libbpf_err(-EINVAL);
8624
8625 if (obj->state >= OBJ_LOADED) {
8626 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8627 return libbpf_err(-EINVAL);
8628 }
8629
8630 /* Disallow kernel loading programs of non-native endianness but
8631 * permit cross-endian creation of "light skeleton".
8632 */
8633 if (obj->gen_loader) {
8634 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8635 } else if (!is_native_endianness(obj)) {
8636 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name);
8637 return libbpf_err(-LIBBPF_ERRNO__ENDIAN);
8638 }
8639
8640 if (obj->state < OBJ_PREPARED) {
8641 err = bpf_object_prepare(obj, target_btf_path);
8642 if (err)
8643 return libbpf_err(err);
8644 }
8645 err = bpf_object__load_progs(obj, extra_log_level);
8646 err = err ? : bpf_object_init_prog_arrays(obj);
8647 err = err ? : bpf_object_prepare_struct_ops(obj);
8648
8649 if (obj->gen_loader) {
8650 /* reset FDs */
8651 if (obj->btf)
8652 btf__set_fd(obj->btf, -1);
8653 if (!err)
8654 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8655 }
8656
8657 bpf_object_post_load_cleanup(obj);
8658 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */
8659
8660 if (err) {
8661 bpf_object_unpin(obj);
8662 bpf_object_unload(obj);
8663 pr_warn("failed to load object '%s'\n", obj->path);
8664 return libbpf_err(err);
8665 }
8666
8667 return 0;
8668 }
8669
bpf_object__prepare(struct bpf_object * obj)8670 int bpf_object__prepare(struct bpf_object *obj)
8671 {
8672 return libbpf_err(bpf_object_prepare(obj, NULL));
8673 }
8674
bpf_object__load(struct bpf_object * obj)8675 int bpf_object__load(struct bpf_object *obj)
8676 {
8677 return bpf_object_load(obj, 0, NULL);
8678 }
8679
make_parent_dir(const char * path)8680 static int make_parent_dir(const char *path)
8681 {
8682 char *dname, *dir;
8683 int err = 0;
8684
8685 dname = strdup(path);
8686 if (dname == NULL)
8687 return -ENOMEM;
8688
8689 dir = dirname(dname);
8690 if (mkdir(dir, 0700) && errno != EEXIST)
8691 err = -errno;
8692
8693 free(dname);
8694 if (err) {
8695 pr_warn("failed to mkdir %s: %s\n", path, errstr(err));
8696 }
8697 return err;
8698 }
8699
check_path(const char * path)8700 static int check_path(const char *path)
8701 {
8702 struct statfs st_fs;
8703 char *dname, *dir;
8704 int err = 0;
8705
8706 if (path == NULL)
8707 return -EINVAL;
8708
8709 dname = strdup(path);
8710 if (dname == NULL)
8711 return -ENOMEM;
8712
8713 dir = dirname(dname);
8714 if (statfs(dir, &st_fs)) {
8715 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno));
8716 err = -errno;
8717 }
8718 free(dname);
8719
8720 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8721 pr_warn("specified path %s is not on BPF FS\n", path);
8722 err = -EINVAL;
8723 }
8724
8725 return err;
8726 }
8727
bpf_program__pin(struct bpf_program * prog,const char * path)8728 int bpf_program__pin(struct bpf_program *prog, const char *path)
8729 {
8730 int err;
8731
8732 if (prog->fd < 0) {
8733 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8734 return libbpf_err(-EINVAL);
8735 }
8736
8737 err = make_parent_dir(path);
8738 if (err)
8739 return libbpf_err(err);
8740
8741 err = check_path(path);
8742 if (err)
8743 return libbpf_err(err);
8744
8745 if (bpf_obj_pin(prog->fd, path)) {
8746 err = -errno;
8747 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err));
8748 return libbpf_err(err);
8749 }
8750
8751 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8752 return 0;
8753 }
8754
bpf_program__unpin(struct bpf_program * prog,const char * path)8755 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8756 {
8757 int err;
8758
8759 if (prog->fd < 0) {
8760 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8761 return libbpf_err(-EINVAL);
8762 }
8763
8764 err = check_path(path);
8765 if (err)
8766 return libbpf_err(err);
8767
8768 err = unlink(path);
8769 if (err)
8770 return libbpf_err(-errno);
8771
8772 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8773 return 0;
8774 }
8775
bpf_map__pin(struct bpf_map * map,const char * path)8776 int bpf_map__pin(struct bpf_map *map, const char *path)
8777 {
8778 int err;
8779
8780 if (map == NULL) {
8781 pr_warn("invalid map pointer\n");
8782 return libbpf_err(-EINVAL);
8783 }
8784
8785 if (map->fd < 0) {
8786 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
8787 return libbpf_err(-EINVAL);
8788 }
8789
8790 if (map->pin_path) {
8791 if (path && strcmp(path, map->pin_path)) {
8792 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8793 bpf_map__name(map), map->pin_path, path);
8794 return libbpf_err(-EINVAL);
8795 } else if (map->pinned) {
8796 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8797 bpf_map__name(map), map->pin_path);
8798 return 0;
8799 }
8800 } else {
8801 if (!path) {
8802 pr_warn("missing a path to pin map '%s' at\n",
8803 bpf_map__name(map));
8804 return libbpf_err(-EINVAL);
8805 } else if (map->pinned) {
8806 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8807 return libbpf_err(-EEXIST);
8808 }
8809
8810 map->pin_path = strdup(path);
8811 if (!map->pin_path) {
8812 err = -errno;
8813 goto out_err;
8814 }
8815 }
8816
8817 err = make_parent_dir(map->pin_path);
8818 if (err)
8819 return libbpf_err(err);
8820
8821 err = check_path(map->pin_path);
8822 if (err)
8823 return libbpf_err(err);
8824
8825 if (bpf_obj_pin(map->fd, map->pin_path)) {
8826 err = -errno;
8827 goto out_err;
8828 }
8829
8830 map->pinned = true;
8831 pr_debug("pinned map '%s'\n", map->pin_path);
8832
8833 return 0;
8834
8835 out_err:
8836 pr_warn("failed to pin map: %s\n", errstr(err));
8837 return libbpf_err(err);
8838 }
8839
bpf_map__unpin(struct bpf_map * map,const char * path)8840 int bpf_map__unpin(struct bpf_map *map, const char *path)
8841 {
8842 int err;
8843
8844 if (map == NULL) {
8845 pr_warn("invalid map pointer\n");
8846 return libbpf_err(-EINVAL);
8847 }
8848
8849 if (map->pin_path) {
8850 if (path && strcmp(path, map->pin_path)) {
8851 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8852 bpf_map__name(map), map->pin_path, path);
8853 return libbpf_err(-EINVAL);
8854 }
8855 path = map->pin_path;
8856 } else if (!path) {
8857 pr_warn("no path to unpin map '%s' from\n",
8858 bpf_map__name(map));
8859 return libbpf_err(-EINVAL);
8860 }
8861
8862 err = check_path(path);
8863 if (err)
8864 return libbpf_err(err);
8865
8866 err = unlink(path);
8867 if (err != 0)
8868 return libbpf_err(-errno);
8869
8870 map->pinned = false;
8871 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8872
8873 return 0;
8874 }
8875
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8876 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8877 {
8878 char *new = NULL;
8879
8880 if (path) {
8881 new = strdup(path);
8882 if (!new)
8883 return libbpf_err(-errno);
8884 }
8885
8886 free(map->pin_path);
8887 map->pin_path = new;
8888 return 0;
8889 }
8890
8891 __alias(bpf_map__pin_path)
8892 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8893
bpf_map__pin_path(const struct bpf_map * map)8894 const char *bpf_map__pin_path(const struct bpf_map *map)
8895 {
8896 return map->pin_path;
8897 }
8898
bpf_map__is_pinned(const struct bpf_map * map)8899 bool bpf_map__is_pinned(const struct bpf_map *map)
8900 {
8901 return map->pinned;
8902 }
8903
sanitize_pin_path(char * s)8904 static void sanitize_pin_path(char *s)
8905 {
8906 /* bpffs disallows periods in path names */
8907 while (*s) {
8908 if (*s == '.')
8909 *s = '_';
8910 s++;
8911 }
8912 }
8913
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8914 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8915 {
8916 struct bpf_map *map;
8917 int err;
8918
8919 if (!obj)
8920 return libbpf_err(-ENOENT);
8921
8922 if (obj->state < OBJ_PREPARED) {
8923 pr_warn("object not yet loaded; load it first\n");
8924 return libbpf_err(-ENOENT);
8925 }
8926
8927 bpf_object__for_each_map(map, obj) {
8928 char *pin_path = NULL;
8929 char buf[PATH_MAX];
8930
8931 if (!map->autocreate)
8932 continue;
8933
8934 if (path) {
8935 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8936 if (err)
8937 goto err_unpin_maps;
8938 sanitize_pin_path(buf);
8939 pin_path = buf;
8940 } else if (!map->pin_path) {
8941 continue;
8942 }
8943
8944 err = bpf_map__pin(map, pin_path);
8945 if (err)
8946 goto err_unpin_maps;
8947 }
8948
8949 return 0;
8950
8951 err_unpin_maps:
8952 while ((map = bpf_object__prev_map(obj, map))) {
8953 if (!map->pin_path)
8954 continue;
8955
8956 bpf_map__unpin(map, NULL);
8957 }
8958
8959 return libbpf_err(err);
8960 }
8961
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8962 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8963 {
8964 struct bpf_map *map;
8965 int err;
8966
8967 if (!obj)
8968 return libbpf_err(-ENOENT);
8969
8970 bpf_object__for_each_map(map, obj) {
8971 char *pin_path = NULL;
8972 char buf[PATH_MAX];
8973
8974 if (path) {
8975 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8976 if (err)
8977 return libbpf_err(err);
8978 sanitize_pin_path(buf);
8979 pin_path = buf;
8980 } else if (!map->pin_path) {
8981 continue;
8982 }
8983
8984 err = bpf_map__unpin(map, pin_path);
8985 if (err)
8986 return libbpf_err(err);
8987 }
8988
8989 return 0;
8990 }
8991
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8992 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8993 {
8994 struct bpf_program *prog;
8995 char buf[PATH_MAX];
8996 int err;
8997
8998 if (!obj)
8999 return libbpf_err(-ENOENT);
9000
9001 if (obj->state < OBJ_LOADED) {
9002 pr_warn("object not yet loaded; load it first\n");
9003 return libbpf_err(-ENOENT);
9004 }
9005
9006 bpf_object__for_each_program(prog, obj) {
9007 err = pathname_concat(buf, sizeof(buf), path, prog->name);
9008 if (err)
9009 goto err_unpin_programs;
9010
9011 err = bpf_program__pin(prog, buf);
9012 if (err)
9013 goto err_unpin_programs;
9014 }
9015
9016 return 0;
9017
9018 err_unpin_programs:
9019 while ((prog = bpf_object__prev_program(obj, prog))) {
9020 if (pathname_concat(buf, sizeof(buf), path, prog->name))
9021 continue;
9022
9023 bpf_program__unpin(prog, buf);
9024 }
9025
9026 return libbpf_err(err);
9027 }
9028
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)9029 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
9030 {
9031 struct bpf_program *prog;
9032 int err;
9033
9034 if (!obj)
9035 return libbpf_err(-ENOENT);
9036
9037 bpf_object__for_each_program(prog, obj) {
9038 char buf[PATH_MAX];
9039
9040 err = pathname_concat(buf, sizeof(buf), path, prog->name);
9041 if (err)
9042 return libbpf_err(err);
9043
9044 err = bpf_program__unpin(prog, buf);
9045 if (err)
9046 return libbpf_err(err);
9047 }
9048
9049 return 0;
9050 }
9051
bpf_object__pin(struct bpf_object * obj,const char * path)9052 int bpf_object__pin(struct bpf_object *obj, const char *path)
9053 {
9054 int err;
9055
9056 err = bpf_object__pin_maps(obj, path);
9057 if (err)
9058 return libbpf_err(err);
9059
9060 err = bpf_object__pin_programs(obj, path);
9061 if (err) {
9062 bpf_object__unpin_maps(obj, path);
9063 return libbpf_err(err);
9064 }
9065
9066 return 0;
9067 }
9068
bpf_object__unpin(struct bpf_object * obj,const char * path)9069 int bpf_object__unpin(struct bpf_object *obj, const char *path)
9070 {
9071 int err;
9072
9073 err = bpf_object__unpin_programs(obj, path);
9074 if (err)
9075 return libbpf_err(err);
9076
9077 err = bpf_object__unpin_maps(obj, path);
9078 if (err)
9079 return libbpf_err(err);
9080
9081 return 0;
9082 }
9083
bpf_map__destroy(struct bpf_map * map)9084 static void bpf_map__destroy(struct bpf_map *map)
9085 {
9086 if (map->inner_map) {
9087 bpf_map__destroy(map->inner_map);
9088 zfree(&map->inner_map);
9089 }
9090
9091 zfree(&map->init_slots);
9092 map->init_slots_sz = 0;
9093
9094 if (map->mmaped && map->mmaped != map->obj->arena_data)
9095 munmap(map->mmaped, bpf_map_mmap_sz(map));
9096 map->mmaped = NULL;
9097
9098 if (map->st_ops) {
9099 zfree(&map->st_ops->data);
9100 zfree(&map->st_ops->progs);
9101 zfree(&map->st_ops->kern_func_off);
9102 zfree(&map->st_ops);
9103 }
9104
9105 zfree(&map->name);
9106 zfree(&map->real_name);
9107 zfree(&map->pin_path);
9108
9109 if (map->fd >= 0)
9110 zclose(map->fd);
9111 }
9112
bpf_object__close(struct bpf_object * obj)9113 void bpf_object__close(struct bpf_object *obj)
9114 {
9115 size_t i;
9116
9117 if (IS_ERR_OR_NULL(obj))
9118 return;
9119
9120 /*
9121 * if user called bpf_object__prepare() without ever getting to
9122 * bpf_object__load(), we need to clean up stuff that is normally
9123 * cleaned up at the end of loading step
9124 */
9125 bpf_object_post_load_cleanup(obj);
9126
9127 usdt_manager_free(obj->usdt_man);
9128 obj->usdt_man = NULL;
9129
9130 bpf_gen__free(obj->gen_loader);
9131 bpf_object__elf_finish(obj);
9132 bpf_object_unload(obj);
9133 btf__free(obj->btf);
9134 btf__free(obj->btf_vmlinux);
9135 btf_ext__free(obj->btf_ext);
9136
9137 for (i = 0; i < obj->nr_maps; i++)
9138 bpf_map__destroy(&obj->maps[i]);
9139
9140 zfree(&obj->btf_custom_path);
9141 zfree(&obj->kconfig);
9142
9143 for (i = 0; i < obj->nr_extern; i++) {
9144 zfree(&obj->externs[i].name);
9145 zfree(&obj->externs[i].essent_name);
9146 }
9147
9148 zfree(&obj->externs);
9149 obj->nr_extern = 0;
9150
9151 zfree(&obj->maps);
9152 obj->nr_maps = 0;
9153
9154 if (obj->programs && obj->nr_programs) {
9155 for (i = 0; i < obj->nr_programs; i++)
9156 bpf_program__exit(&obj->programs[i]);
9157 }
9158 zfree(&obj->programs);
9159
9160 zfree(&obj->feat_cache);
9161 zfree(&obj->token_path);
9162 if (obj->token_fd > 0)
9163 close(obj->token_fd);
9164
9165 zfree(&obj->arena_data);
9166
9167 free(obj);
9168 }
9169
bpf_object__name(const struct bpf_object * obj)9170 const char *bpf_object__name(const struct bpf_object *obj)
9171 {
9172 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9173 }
9174
bpf_object__kversion(const struct bpf_object * obj)9175 unsigned int bpf_object__kversion(const struct bpf_object *obj)
9176 {
9177 return obj ? obj->kern_version : 0;
9178 }
9179
bpf_object__token_fd(const struct bpf_object * obj)9180 int bpf_object__token_fd(const struct bpf_object *obj)
9181 {
9182 return obj->token_fd ?: -1;
9183 }
9184
bpf_object__btf(const struct bpf_object * obj)9185 struct btf *bpf_object__btf(const struct bpf_object *obj)
9186 {
9187 return obj ? obj->btf : NULL;
9188 }
9189
bpf_object__btf_fd(const struct bpf_object * obj)9190 int bpf_object__btf_fd(const struct bpf_object *obj)
9191 {
9192 return obj->btf ? btf__fd(obj->btf) : -1;
9193 }
9194
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)9195 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9196 {
9197 if (obj->state >= OBJ_LOADED)
9198 return libbpf_err(-EINVAL);
9199
9200 obj->kern_version = kern_version;
9201
9202 return 0;
9203 }
9204
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)9205 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9206 {
9207 struct bpf_gen *gen;
9208
9209 if (!opts)
9210 return libbpf_err(-EFAULT);
9211 if (!OPTS_VALID(opts, gen_loader_opts))
9212 return libbpf_err(-EINVAL);
9213 gen = calloc(sizeof(*gen), 1);
9214 if (!gen)
9215 return libbpf_err(-ENOMEM);
9216 gen->opts = opts;
9217 gen->swapped_endian = !is_native_endianness(obj);
9218 obj->gen_loader = gen;
9219 return 0;
9220 }
9221
9222 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)9223 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9224 bool forward)
9225 {
9226 size_t nr_programs = obj->nr_programs;
9227 ssize_t idx;
9228
9229 if (!nr_programs)
9230 return NULL;
9231
9232 if (!p)
9233 /* Iter from the beginning */
9234 return forward ? &obj->programs[0] :
9235 &obj->programs[nr_programs - 1];
9236
9237 if (p->obj != obj) {
9238 pr_warn("error: program handler doesn't match object\n");
9239 return errno = EINVAL, NULL;
9240 }
9241
9242 idx = (p - obj->programs) + (forward ? 1 : -1);
9243 if (idx >= obj->nr_programs || idx < 0)
9244 return NULL;
9245 return &obj->programs[idx];
9246 }
9247
9248 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)9249 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9250 {
9251 struct bpf_program *prog = prev;
9252
9253 do {
9254 prog = __bpf_program__iter(prog, obj, true);
9255 } while (prog && prog_is_subprog(obj, prog));
9256
9257 return prog;
9258 }
9259
9260 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)9261 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9262 {
9263 struct bpf_program *prog = next;
9264
9265 do {
9266 prog = __bpf_program__iter(prog, obj, false);
9267 } while (prog && prog_is_subprog(obj, prog));
9268
9269 return prog;
9270 }
9271
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)9272 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9273 {
9274 prog->prog_ifindex = ifindex;
9275 }
9276
bpf_program__name(const struct bpf_program * prog)9277 const char *bpf_program__name(const struct bpf_program *prog)
9278 {
9279 return prog->name;
9280 }
9281
bpf_program__section_name(const struct bpf_program * prog)9282 const char *bpf_program__section_name(const struct bpf_program *prog)
9283 {
9284 return prog->sec_name;
9285 }
9286
bpf_program__autoload(const struct bpf_program * prog)9287 bool bpf_program__autoload(const struct bpf_program *prog)
9288 {
9289 return prog->autoload;
9290 }
9291
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)9292 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9293 {
9294 if (prog->obj->state >= OBJ_LOADED)
9295 return libbpf_err(-EINVAL);
9296
9297 prog->autoload = autoload;
9298 return 0;
9299 }
9300
bpf_program__autoattach(const struct bpf_program * prog)9301 bool bpf_program__autoattach(const struct bpf_program *prog)
9302 {
9303 return prog->autoattach;
9304 }
9305
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)9306 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9307 {
9308 prog->autoattach = autoattach;
9309 }
9310
bpf_program__insns(const struct bpf_program * prog)9311 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9312 {
9313 return prog->insns;
9314 }
9315
bpf_program__insn_cnt(const struct bpf_program * prog)9316 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9317 {
9318 return prog->insns_cnt;
9319 }
9320
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)9321 int bpf_program__set_insns(struct bpf_program *prog,
9322 struct bpf_insn *new_insns, size_t new_insn_cnt)
9323 {
9324 struct bpf_insn *insns;
9325
9326 if (prog->obj->state >= OBJ_LOADED)
9327 return libbpf_err(-EBUSY);
9328
9329 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9330 /* NULL is a valid return from reallocarray if the new count is zero */
9331 if (!insns && new_insn_cnt) {
9332 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9333 return libbpf_err(-ENOMEM);
9334 }
9335 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9336
9337 prog->insns = insns;
9338 prog->insns_cnt = new_insn_cnt;
9339 return 0;
9340 }
9341
bpf_program__fd(const struct bpf_program * prog)9342 int bpf_program__fd(const struct bpf_program *prog)
9343 {
9344 if (!prog)
9345 return libbpf_err(-EINVAL);
9346
9347 if (prog->fd < 0)
9348 return libbpf_err(-ENOENT);
9349
9350 return prog->fd;
9351 }
9352
9353 __alias(bpf_program__type)
9354 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9355
bpf_program__type(const struct bpf_program * prog)9356 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9357 {
9358 return prog->type;
9359 }
9360
9361 static size_t custom_sec_def_cnt;
9362 static struct bpf_sec_def *custom_sec_defs;
9363 static struct bpf_sec_def custom_fallback_def;
9364 static bool has_custom_fallback_def;
9365 static int last_custom_sec_def_handler_id;
9366
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)9367 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9368 {
9369 if (prog->obj->state >= OBJ_LOADED)
9370 return libbpf_err(-EBUSY);
9371
9372 /* if type is not changed, do nothing */
9373 if (prog->type == type)
9374 return 0;
9375
9376 prog->type = type;
9377
9378 /* If a program type was changed, we need to reset associated SEC()
9379 * handler, as it will be invalid now. The only exception is a generic
9380 * fallback handler, which by definition is program type-agnostic and
9381 * is a catch-all custom handler, optionally set by the application,
9382 * so should be able to handle any type of BPF program.
9383 */
9384 if (prog->sec_def != &custom_fallback_def)
9385 prog->sec_def = NULL;
9386 return 0;
9387 }
9388
9389 __alias(bpf_program__expected_attach_type)
9390 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9391
bpf_program__expected_attach_type(const struct bpf_program * prog)9392 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9393 {
9394 return prog->expected_attach_type;
9395 }
9396
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)9397 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9398 enum bpf_attach_type type)
9399 {
9400 if (prog->obj->state >= OBJ_LOADED)
9401 return libbpf_err(-EBUSY);
9402
9403 prog->expected_attach_type = type;
9404 return 0;
9405 }
9406
bpf_program__flags(const struct bpf_program * prog)9407 __u32 bpf_program__flags(const struct bpf_program *prog)
9408 {
9409 return prog->prog_flags;
9410 }
9411
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)9412 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9413 {
9414 if (prog->obj->state >= OBJ_LOADED)
9415 return libbpf_err(-EBUSY);
9416
9417 prog->prog_flags = flags;
9418 return 0;
9419 }
9420
bpf_program__log_level(const struct bpf_program * prog)9421 __u32 bpf_program__log_level(const struct bpf_program *prog)
9422 {
9423 return prog->log_level;
9424 }
9425
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)9426 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9427 {
9428 if (prog->obj->state >= OBJ_LOADED)
9429 return libbpf_err(-EBUSY);
9430
9431 prog->log_level = log_level;
9432 return 0;
9433 }
9434
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)9435 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9436 {
9437 *log_size = prog->log_size;
9438 return prog->log_buf;
9439 }
9440
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)9441 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9442 {
9443 if (log_size && !log_buf)
9444 return libbpf_err(-EINVAL);
9445 if (prog->log_size > UINT_MAX)
9446 return libbpf_err(-EINVAL);
9447 if (prog->obj->state >= OBJ_LOADED)
9448 return libbpf_err(-EBUSY);
9449
9450 prog->log_buf = log_buf;
9451 prog->log_size = log_size;
9452 return 0;
9453 }
9454
bpf_program__func_info(const struct bpf_program * prog)9455 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog)
9456 {
9457 if (prog->func_info_rec_size != sizeof(struct bpf_func_info))
9458 return libbpf_err_ptr(-EOPNOTSUPP);
9459 return prog->func_info;
9460 }
9461
bpf_program__func_info_cnt(const struct bpf_program * prog)9462 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog)
9463 {
9464 return prog->func_info_cnt;
9465 }
9466
bpf_program__line_info(const struct bpf_program * prog)9467 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog)
9468 {
9469 if (prog->line_info_rec_size != sizeof(struct bpf_line_info))
9470 return libbpf_err_ptr(-EOPNOTSUPP);
9471 return prog->line_info;
9472 }
9473
bpf_program__line_info_cnt(const struct bpf_program * prog)9474 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog)
9475 {
9476 return prog->line_info_cnt;
9477 }
9478
9479 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
9480 .sec = (char *)sec_pfx, \
9481 .prog_type = BPF_PROG_TYPE_##ptype, \
9482 .expected_attach_type = atype, \
9483 .cookie = (long)(flags), \
9484 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
9485 __VA_ARGS__ \
9486 }
9487
9488 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9489 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9490 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9491 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9492 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9493 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9494 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9495 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9496 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9497 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9498 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9499 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9500
9501 static const struct bpf_sec_def section_defs[] = {
9502 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
9503 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9504 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9505 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9506 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9507 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9508 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9509 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9510 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9511 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9512 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9513 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session),
9514 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9515 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9516 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi),
9517 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9518 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9519 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi),
9520 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9521 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9522 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt),
9523 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9524 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9525 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
9526 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9527 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9528 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9529 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9530 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9531 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9532 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9533 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9534 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9535 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9536 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9537 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9538 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9539 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9540 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9541 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9542 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9543 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9544 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9545 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9546 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
9547 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9548 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9549 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9550 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9551 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9552 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
9553 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9554 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9555 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9556 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9557 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
9558 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9559 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
9560 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
9561 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
9562 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
9563 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
9564 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9565 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9566 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9567 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9568 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
9569 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9570 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9571 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9572 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9573 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9574 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
9575 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9576 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9577 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9578 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9579 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9580 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9581 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9582 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9583 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9584 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9585 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9586 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9587 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9588 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9589 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9590 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9591 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9592 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9593 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9594 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9595 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9596 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9597 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9598 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9599 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9600 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9601 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
9602 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
9603 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9604 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
9605 };
9606
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)9607 int libbpf_register_prog_handler(const char *sec,
9608 enum bpf_prog_type prog_type,
9609 enum bpf_attach_type exp_attach_type,
9610 const struct libbpf_prog_handler_opts *opts)
9611 {
9612 struct bpf_sec_def *sec_def;
9613
9614 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9615 return libbpf_err(-EINVAL);
9616
9617 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9618 return libbpf_err(-E2BIG);
9619
9620 if (sec) {
9621 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9622 sizeof(*sec_def));
9623 if (!sec_def)
9624 return libbpf_err(-ENOMEM);
9625
9626 custom_sec_defs = sec_def;
9627 sec_def = &custom_sec_defs[custom_sec_def_cnt];
9628 } else {
9629 if (has_custom_fallback_def)
9630 return libbpf_err(-EBUSY);
9631
9632 sec_def = &custom_fallback_def;
9633 }
9634
9635 sec_def->sec = sec ? strdup(sec) : NULL;
9636 if (sec && !sec_def->sec)
9637 return libbpf_err(-ENOMEM);
9638
9639 sec_def->prog_type = prog_type;
9640 sec_def->expected_attach_type = exp_attach_type;
9641 sec_def->cookie = OPTS_GET(opts, cookie, 0);
9642
9643 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9644 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9645 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9646
9647 sec_def->handler_id = ++last_custom_sec_def_handler_id;
9648
9649 if (sec)
9650 custom_sec_def_cnt++;
9651 else
9652 has_custom_fallback_def = true;
9653
9654 return sec_def->handler_id;
9655 }
9656
libbpf_unregister_prog_handler(int handler_id)9657 int libbpf_unregister_prog_handler(int handler_id)
9658 {
9659 struct bpf_sec_def *sec_defs;
9660 int i;
9661
9662 if (handler_id <= 0)
9663 return libbpf_err(-EINVAL);
9664
9665 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9666 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9667 has_custom_fallback_def = false;
9668 return 0;
9669 }
9670
9671 for (i = 0; i < custom_sec_def_cnt; i++) {
9672 if (custom_sec_defs[i].handler_id == handler_id)
9673 break;
9674 }
9675
9676 if (i == custom_sec_def_cnt)
9677 return libbpf_err(-ENOENT);
9678
9679 free(custom_sec_defs[i].sec);
9680 for (i = i + 1; i < custom_sec_def_cnt; i++)
9681 custom_sec_defs[i - 1] = custom_sec_defs[i];
9682 custom_sec_def_cnt--;
9683
9684 /* try to shrink the array, but it's ok if we couldn't */
9685 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9686 /* if new count is zero, reallocarray can return a valid NULL result;
9687 * in this case the previous pointer will be freed, so we *have to*
9688 * reassign old pointer to the new value (even if it's NULL)
9689 */
9690 if (sec_defs || custom_sec_def_cnt == 0)
9691 custom_sec_defs = sec_defs;
9692
9693 return 0;
9694 }
9695
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)9696 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9697 {
9698 size_t len = strlen(sec_def->sec);
9699
9700 /* "type/" always has to have proper SEC("type/extras") form */
9701 if (sec_def->sec[len - 1] == '/') {
9702 if (str_has_pfx(sec_name, sec_def->sec))
9703 return true;
9704 return false;
9705 }
9706
9707 /* "type+" means it can be either exact SEC("type") or
9708 * well-formed SEC("type/extras") with proper '/' separator
9709 */
9710 if (sec_def->sec[len - 1] == '+') {
9711 len--;
9712 /* not even a prefix */
9713 if (strncmp(sec_name, sec_def->sec, len) != 0)
9714 return false;
9715 /* exact match or has '/' separator */
9716 if (sec_name[len] == '\0' || sec_name[len] == '/')
9717 return true;
9718 return false;
9719 }
9720
9721 return strcmp(sec_name, sec_def->sec) == 0;
9722 }
9723
find_sec_def(const char * sec_name)9724 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9725 {
9726 const struct bpf_sec_def *sec_def;
9727 int i, n;
9728
9729 n = custom_sec_def_cnt;
9730 for (i = 0; i < n; i++) {
9731 sec_def = &custom_sec_defs[i];
9732 if (sec_def_matches(sec_def, sec_name))
9733 return sec_def;
9734 }
9735
9736 n = ARRAY_SIZE(section_defs);
9737 for (i = 0; i < n; i++) {
9738 sec_def = §ion_defs[i];
9739 if (sec_def_matches(sec_def, sec_name))
9740 return sec_def;
9741 }
9742
9743 if (has_custom_fallback_def)
9744 return &custom_fallback_def;
9745
9746 return NULL;
9747 }
9748
9749 #define MAX_TYPE_NAME_SIZE 32
9750
libbpf_get_type_names(bool attach_type)9751 static char *libbpf_get_type_names(bool attach_type)
9752 {
9753 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9754 char *buf;
9755
9756 buf = malloc(len);
9757 if (!buf)
9758 return NULL;
9759
9760 buf[0] = '\0';
9761 /* Forge string buf with all available names */
9762 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9763 const struct bpf_sec_def *sec_def = §ion_defs[i];
9764
9765 if (attach_type) {
9766 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9767 continue;
9768
9769 if (!(sec_def->cookie & SEC_ATTACHABLE))
9770 continue;
9771 }
9772
9773 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9774 free(buf);
9775 return NULL;
9776 }
9777 strcat(buf, " ");
9778 strcat(buf, section_defs[i].sec);
9779 }
9780
9781 return buf;
9782 }
9783
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9784 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9785 enum bpf_attach_type *expected_attach_type)
9786 {
9787 const struct bpf_sec_def *sec_def;
9788 char *type_names;
9789
9790 if (!name)
9791 return libbpf_err(-EINVAL);
9792
9793 sec_def = find_sec_def(name);
9794 if (sec_def) {
9795 *prog_type = sec_def->prog_type;
9796 *expected_attach_type = sec_def->expected_attach_type;
9797 return 0;
9798 }
9799
9800 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9801 type_names = libbpf_get_type_names(false);
9802 if (type_names != NULL) {
9803 pr_debug("supported section(type) names are:%s\n", type_names);
9804 free(type_names);
9805 }
9806
9807 return libbpf_err(-ESRCH);
9808 }
9809
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9810 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9811 {
9812 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9813 return NULL;
9814
9815 return attach_type_name[t];
9816 }
9817
libbpf_bpf_link_type_str(enum bpf_link_type t)9818 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9819 {
9820 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9821 return NULL;
9822
9823 return link_type_name[t];
9824 }
9825
libbpf_bpf_map_type_str(enum bpf_map_type t)9826 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9827 {
9828 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9829 return NULL;
9830
9831 return map_type_name[t];
9832 }
9833
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9834 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9835 {
9836 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9837 return NULL;
9838
9839 return prog_type_name[t];
9840 }
9841
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9842 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9843 int sec_idx,
9844 size_t offset)
9845 {
9846 struct bpf_map *map;
9847 size_t i;
9848
9849 for (i = 0; i < obj->nr_maps; i++) {
9850 map = &obj->maps[i];
9851 if (!bpf_map__is_struct_ops(map))
9852 continue;
9853 if (map->sec_idx == sec_idx &&
9854 map->sec_offset <= offset &&
9855 offset - map->sec_offset < map->def.value_size)
9856 return map;
9857 }
9858
9859 return NULL;
9860 }
9861
9862 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
9863 * st_ops->data for shadow type.
9864 */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9865 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9866 Elf64_Shdr *shdr, Elf_Data *data)
9867 {
9868 const struct btf_type *type;
9869 const struct btf_member *member;
9870 struct bpf_struct_ops *st_ops;
9871 struct bpf_program *prog;
9872 unsigned int shdr_idx;
9873 const struct btf *btf;
9874 struct bpf_map *map;
9875 unsigned int moff, insn_idx;
9876 const char *name;
9877 __u32 member_idx;
9878 Elf64_Sym *sym;
9879 Elf64_Rel *rel;
9880 int i, nrels;
9881
9882 btf = obj->btf;
9883 nrels = shdr->sh_size / shdr->sh_entsize;
9884 for (i = 0; i < nrels; i++) {
9885 rel = elf_rel_by_idx(data, i);
9886 if (!rel) {
9887 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9888 return -LIBBPF_ERRNO__FORMAT;
9889 }
9890
9891 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9892 if (!sym) {
9893 pr_warn("struct_ops reloc: symbol %zx not found\n",
9894 (size_t)ELF64_R_SYM(rel->r_info));
9895 return -LIBBPF_ERRNO__FORMAT;
9896 }
9897
9898 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9899 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9900 if (!map) {
9901 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9902 (size_t)rel->r_offset);
9903 return -EINVAL;
9904 }
9905
9906 moff = rel->r_offset - map->sec_offset;
9907 shdr_idx = sym->st_shndx;
9908 st_ops = map->st_ops;
9909 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9910 map->name,
9911 (long long)(rel->r_info >> 32),
9912 (long long)sym->st_value,
9913 shdr_idx, (size_t)rel->r_offset,
9914 map->sec_offset, sym->st_name, name);
9915
9916 if (shdr_idx >= SHN_LORESERVE) {
9917 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9918 map->name, (size_t)rel->r_offset, shdr_idx);
9919 return -LIBBPF_ERRNO__RELOC;
9920 }
9921 if (sym->st_value % BPF_INSN_SZ) {
9922 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9923 map->name, (unsigned long long)sym->st_value);
9924 return -LIBBPF_ERRNO__FORMAT;
9925 }
9926 insn_idx = sym->st_value / BPF_INSN_SZ;
9927
9928 type = btf__type_by_id(btf, st_ops->type_id);
9929 member = find_member_by_offset(type, moff * 8);
9930 if (!member) {
9931 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9932 map->name, moff);
9933 return -EINVAL;
9934 }
9935 member_idx = member - btf_members(type);
9936 name = btf__name_by_offset(btf, member->name_off);
9937
9938 if (!resolve_func_ptr(btf, member->type, NULL)) {
9939 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9940 map->name, name);
9941 return -EINVAL;
9942 }
9943
9944 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9945 if (!prog) {
9946 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9947 map->name, shdr_idx, name);
9948 return -EINVAL;
9949 }
9950
9951 /* prevent the use of BPF prog with invalid type */
9952 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9953 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9954 map->name, prog->name);
9955 return -EINVAL;
9956 }
9957
9958 st_ops->progs[member_idx] = prog;
9959
9960 /* st_ops->data will be exposed to users, being returned by
9961 * bpf_map__initial_value() as a pointer to the shadow
9962 * type. All function pointers in the original struct type
9963 * should be converted to a pointer to struct bpf_program
9964 * in the shadow type.
9965 */
9966 *((struct bpf_program **)(st_ops->data + moff)) = prog;
9967 }
9968
9969 return 0;
9970 }
9971
9972 #define BTF_TRACE_PREFIX "btf_trace_"
9973 #define BTF_LSM_PREFIX "bpf_lsm_"
9974 #define BTF_ITER_PREFIX "bpf_iter_"
9975 #define BTF_MAX_NAME_SIZE 128
9976
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9977 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9978 const char **prefix, int *kind)
9979 {
9980 switch (attach_type) {
9981 case BPF_TRACE_RAW_TP:
9982 *prefix = BTF_TRACE_PREFIX;
9983 *kind = BTF_KIND_TYPEDEF;
9984 break;
9985 case BPF_LSM_MAC:
9986 case BPF_LSM_CGROUP:
9987 *prefix = BTF_LSM_PREFIX;
9988 *kind = BTF_KIND_FUNC;
9989 break;
9990 case BPF_TRACE_ITER:
9991 *prefix = BTF_ITER_PREFIX;
9992 *kind = BTF_KIND_FUNC;
9993 break;
9994 default:
9995 *prefix = "";
9996 *kind = BTF_KIND_FUNC;
9997 }
9998 }
9999
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)10000 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
10001 const char *name, __u32 kind)
10002 {
10003 char btf_type_name[BTF_MAX_NAME_SIZE];
10004 int ret;
10005
10006 ret = snprintf(btf_type_name, sizeof(btf_type_name),
10007 "%s%s", prefix, name);
10008 /* snprintf returns the number of characters written excluding the
10009 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
10010 * indicates truncation.
10011 */
10012 if (ret < 0 || ret >= sizeof(btf_type_name))
10013 return -ENAMETOOLONG;
10014 return btf__find_by_name_kind(btf, btf_type_name, kind);
10015 }
10016
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)10017 static inline int find_attach_btf_id(struct btf *btf, const char *name,
10018 enum bpf_attach_type attach_type)
10019 {
10020 const char *prefix;
10021 int kind;
10022
10023 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
10024 return find_btf_by_prefix_kind(btf, prefix, name, kind);
10025 }
10026
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)10027 int libbpf_find_vmlinux_btf_id(const char *name,
10028 enum bpf_attach_type attach_type)
10029 {
10030 struct btf *btf;
10031 int err;
10032
10033 btf = btf__load_vmlinux_btf();
10034 err = libbpf_get_error(btf);
10035 if (err) {
10036 pr_warn("vmlinux BTF is not found\n");
10037 return libbpf_err(err);
10038 }
10039
10040 err = find_attach_btf_id(btf, name, attach_type);
10041 if (err <= 0)
10042 pr_warn("%s is not found in vmlinux BTF\n", name);
10043
10044 btf__free(btf);
10045 return libbpf_err(err);
10046 }
10047
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd,int token_fd)10048 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd)
10049 {
10050 struct bpf_prog_info info;
10051 __u32 info_len = sizeof(info);
10052 struct btf *btf;
10053 int err;
10054
10055 memset(&info, 0, info_len);
10056 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
10057 if (err) {
10058 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n",
10059 attach_prog_fd, errstr(err));
10060 return err;
10061 }
10062
10063 err = -EINVAL;
10064 if (!info.btf_id) {
10065 pr_warn("The target program doesn't have BTF\n");
10066 goto out;
10067 }
10068 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd);
10069 err = libbpf_get_error(btf);
10070 if (err) {
10071 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err));
10072 goto out;
10073 }
10074 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
10075 btf__free(btf);
10076 if (err <= 0) {
10077 pr_warn("%s is not found in prog's BTF\n", name);
10078 goto out;
10079 }
10080 out:
10081 return err;
10082 }
10083
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)10084 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
10085 enum bpf_attach_type attach_type,
10086 int *btf_obj_fd, int *btf_type_id)
10087 {
10088 int ret, i, mod_len;
10089 const char *fn_name, *mod_name = NULL;
10090
10091 fn_name = strchr(attach_name, ':');
10092 if (fn_name) {
10093 mod_name = attach_name;
10094 mod_len = fn_name - mod_name;
10095 fn_name++;
10096 }
10097
10098 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) {
10099 ret = find_attach_btf_id(obj->btf_vmlinux,
10100 mod_name ? fn_name : attach_name,
10101 attach_type);
10102 if (ret > 0) {
10103 *btf_obj_fd = 0; /* vmlinux BTF */
10104 *btf_type_id = ret;
10105 return 0;
10106 }
10107 if (ret != -ENOENT)
10108 return ret;
10109 }
10110
10111 ret = load_module_btfs(obj);
10112 if (ret)
10113 return ret;
10114
10115 for (i = 0; i < obj->btf_module_cnt; i++) {
10116 const struct module_btf *mod = &obj->btf_modules[i];
10117
10118 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0)
10119 continue;
10120
10121 ret = find_attach_btf_id(mod->btf,
10122 mod_name ? fn_name : attach_name,
10123 attach_type);
10124 if (ret > 0) {
10125 *btf_obj_fd = mod->fd;
10126 *btf_type_id = ret;
10127 return 0;
10128 }
10129 if (ret == -ENOENT)
10130 continue;
10131
10132 return ret;
10133 }
10134
10135 return -ESRCH;
10136 }
10137
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)10138 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
10139 int *btf_obj_fd, int *btf_type_id)
10140 {
10141 enum bpf_attach_type attach_type = prog->expected_attach_type;
10142 __u32 attach_prog_fd = prog->attach_prog_fd;
10143 int err = 0;
10144
10145 /* BPF program's BTF ID */
10146 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
10147 if (!attach_prog_fd) {
10148 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
10149 return -EINVAL;
10150 }
10151 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd);
10152 if (err < 0) {
10153 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n",
10154 prog->name, attach_prog_fd, attach_name, errstr(err));
10155 return err;
10156 }
10157 *btf_obj_fd = 0;
10158 *btf_type_id = err;
10159 return 0;
10160 }
10161
10162 /* kernel/module BTF ID */
10163 if (prog->obj->gen_loader) {
10164 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
10165 *btf_obj_fd = 0;
10166 *btf_type_id = 1;
10167 } else {
10168 err = find_kernel_btf_id(prog->obj, attach_name,
10169 attach_type, btf_obj_fd,
10170 btf_type_id);
10171 }
10172 if (err) {
10173 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n",
10174 prog->name, attach_name, errstr(err));
10175 return err;
10176 }
10177 return 0;
10178 }
10179
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)10180 int libbpf_attach_type_by_name(const char *name,
10181 enum bpf_attach_type *attach_type)
10182 {
10183 char *type_names;
10184 const struct bpf_sec_def *sec_def;
10185
10186 if (!name)
10187 return libbpf_err(-EINVAL);
10188
10189 sec_def = find_sec_def(name);
10190 if (!sec_def) {
10191 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
10192 type_names = libbpf_get_type_names(true);
10193 if (type_names != NULL) {
10194 pr_debug("attachable section(type) names are:%s\n", type_names);
10195 free(type_names);
10196 }
10197
10198 return libbpf_err(-EINVAL);
10199 }
10200
10201 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10202 return libbpf_err(-EINVAL);
10203 if (!(sec_def->cookie & SEC_ATTACHABLE))
10204 return libbpf_err(-EINVAL);
10205
10206 *attach_type = sec_def->expected_attach_type;
10207 return 0;
10208 }
10209
bpf_map__fd(const struct bpf_map * map)10210 int bpf_map__fd(const struct bpf_map *map)
10211 {
10212 if (!map)
10213 return libbpf_err(-EINVAL);
10214 if (!map_is_created(map))
10215 return -1;
10216 return map->fd;
10217 }
10218
map_uses_real_name(const struct bpf_map * map)10219 static bool map_uses_real_name(const struct bpf_map *map)
10220 {
10221 /* Since libbpf started to support custom .data.* and .rodata.* maps,
10222 * their user-visible name differs from kernel-visible name. Users see
10223 * such map's corresponding ELF section name as a map name.
10224 * This check distinguishes .data/.rodata from .data.* and .rodata.*
10225 * maps to know which name has to be returned to the user.
10226 */
10227 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10228 return true;
10229 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10230 return true;
10231 return false;
10232 }
10233
bpf_map__name(const struct bpf_map * map)10234 const char *bpf_map__name(const struct bpf_map *map)
10235 {
10236 if (!map)
10237 return NULL;
10238
10239 if (map_uses_real_name(map))
10240 return map->real_name;
10241
10242 return map->name;
10243 }
10244
bpf_map__type(const struct bpf_map * map)10245 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10246 {
10247 return map->def.type;
10248 }
10249
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)10250 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10251 {
10252 if (map_is_created(map))
10253 return libbpf_err(-EBUSY);
10254 map->def.type = type;
10255 return 0;
10256 }
10257
bpf_map__map_flags(const struct bpf_map * map)10258 __u32 bpf_map__map_flags(const struct bpf_map *map)
10259 {
10260 return map->def.map_flags;
10261 }
10262
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)10263 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10264 {
10265 if (map_is_created(map))
10266 return libbpf_err(-EBUSY);
10267 map->def.map_flags = flags;
10268 return 0;
10269 }
10270
bpf_map__map_extra(const struct bpf_map * map)10271 __u64 bpf_map__map_extra(const struct bpf_map *map)
10272 {
10273 return map->map_extra;
10274 }
10275
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)10276 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10277 {
10278 if (map_is_created(map))
10279 return libbpf_err(-EBUSY);
10280 map->map_extra = map_extra;
10281 return 0;
10282 }
10283
bpf_map__numa_node(const struct bpf_map * map)10284 __u32 bpf_map__numa_node(const struct bpf_map *map)
10285 {
10286 return map->numa_node;
10287 }
10288
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)10289 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10290 {
10291 if (map_is_created(map))
10292 return libbpf_err(-EBUSY);
10293 map->numa_node = numa_node;
10294 return 0;
10295 }
10296
bpf_map__key_size(const struct bpf_map * map)10297 __u32 bpf_map__key_size(const struct bpf_map *map)
10298 {
10299 return map->def.key_size;
10300 }
10301
bpf_map__set_key_size(struct bpf_map * map,__u32 size)10302 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10303 {
10304 if (map_is_created(map))
10305 return libbpf_err(-EBUSY);
10306 map->def.key_size = size;
10307 return 0;
10308 }
10309
bpf_map__value_size(const struct bpf_map * map)10310 __u32 bpf_map__value_size(const struct bpf_map *map)
10311 {
10312 return map->def.value_size;
10313 }
10314
map_btf_datasec_resize(struct bpf_map * map,__u32 size)10315 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10316 {
10317 struct btf *btf;
10318 struct btf_type *datasec_type, *var_type;
10319 struct btf_var_secinfo *var;
10320 const struct btf_type *array_type;
10321 const struct btf_array *array;
10322 int vlen, element_sz, new_array_id;
10323 __u32 nr_elements;
10324
10325 /* check btf existence */
10326 btf = bpf_object__btf(map->obj);
10327 if (!btf)
10328 return -ENOENT;
10329
10330 /* verify map is datasec */
10331 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10332 if (!btf_is_datasec(datasec_type)) {
10333 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10334 bpf_map__name(map));
10335 return -EINVAL;
10336 }
10337
10338 /* verify datasec has at least one var */
10339 vlen = btf_vlen(datasec_type);
10340 if (vlen == 0) {
10341 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10342 bpf_map__name(map));
10343 return -EINVAL;
10344 }
10345
10346 /* verify last var in the datasec is an array */
10347 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10348 var_type = btf_type_by_id(btf, var->type);
10349 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10350 if (!btf_is_array(array_type)) {
10351 pr_warn("map '%s': cannot be resized, last var must be an array\n",
10352 bpf_map__name(map));
10353 return -EINVAL;
10354 }
10355
10356 /* verify request size aligns with array */
10357 array = btf_array(array_type);
10358 element_sz = btf__resolve_size(btf, array->type);
10359 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10360 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10361 bpf_map__name(map), element_sz, size);
10362 return -EINVAL;
10363 }
10364
10365 /* create a new array based on the existing array, but with new length */
10366 nr_elements = (size - var->offset) / element_sz;
10367 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10368 if (new_array_id < 0)
10369 return new_array_id;
10370
10371 /* adding a new btf type invalidates existing pointers to btf objects,
10372 * so refresh pointers before proceeding
10373 */
10374 datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10375 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10376 var_type = btf_type_by_id(btf, var->type);
10377
10378 /* finally update btf info */
10379 datasec_type->size = size;
10380 var->size = size - var->offset;
10381 var_type->type = new_array_id;
10382
10383 return 0;
10384 }
10385
bpf_map__set_value_size(struct bpf_map * map,__u32 size)10386 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10387 {
10388 if (map_is_created(map))
10389 return libbpf_err(-EBUSY);
10390
10391 if (map->mmaped) {
10392 size_t mmap_old_sz, mmap_new_sz;
10393 int err;
10394
10395 if (map->def.type != BPF_MAP_TYPE_ARRAY)
10396 return libbpf_err(-EOPNOTSUPP);
10397
10398 mmap_old_sz = bpf_map_mmap_sz(map);
10399 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10400 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10401 if (err) {
10402 pr_warn("map '%s': failed to resize memory-mapped region: %s\n",
10403 bpf_map__name(map), errstr(err));
10404 return libbpf_err(err);
10405 }
10406 err = map_btf_datasec_resize(map, size);
10407 if (err && err != -ENOENT) {
10408 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n",
10409 bpf_map__name(map), errstr(err));
10410 map->btf_value_type_id = 0;
10411 map->btf_key_type_id = 0;
10412 }
10413 }
10414
10415 map->def.value_size = size;
10416 return 0;
10417 }
10418
bpf_map__btf_key_type_id(const struct bpf_map * map)10419 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10420 {
10421 return map ? map->btf_key_type_id : 0;
10422 }
10423
bpf_map__btf_value_type_id(const struct bpf_map * map)10424 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10425 {
10426 return map ? map->btf_value_type_id : 0;
10427 }
10428
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)10429 int bpf_map__set_initial_value(struct bpf_map *map,
10430 const void *data, size_t size)
10431 {
10432 size_t actual_sz;
10433
10434 if (map_is_created(map))
10435 return libbpf_err(-EBUSY);
10436
10437 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10438 return libbpf_err(-EINVAL);
10439
10440 if (map->def.type == BPF_MAP_TYPE_ARENA)
10441 actual_sz = map->obj->arena_data_sz;
10442 else
10443 actual_sz = map->def.value_size;
10444 if (size != actual_sz)
10445 return libbpf_err(-EINVAL);
10446
10447 memcpy(map->mmaped, data, size);
10448 return 0;
10449 }
10450
bpf_map__initial_value(const struct bpf_map * map,size_t * psize)10451 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10452 {
10453 if (bpf_map__is_struct_ops(map)) {
10454 if (psize)
10455 *psize = map->def.value_size;
10456 return map->st_ops->data;
10457 }
10458
10459 if (!map->mmaped)
10460 return NULL;
10461
10462 if (map->def.type == BPF_MAP_TYPE_ARENA)
10463 *psize = map->obj->arena_data_sz;
10464 else
10465 *psize = map->def.value_size;
10466
10467 return map->mmaped;
10468 }
10469
bpf_map__is_internal(const struct bpf_map * map)10470 bool bpf_map__is_internal(const struct bpf_map *map)
10471 {
10472 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10473 }
10474
bpf_map__ifindex(const struct bpf_map * map)10475 __u32 bpf_map__ifindex(const struct bpf_map *map)
10476 {
10477 return map->map_ifindex;
10478 }
10479
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)10480 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10481 {
10482 if (map_is_created(map))
10483 return libbpf_err(-EBUSY);
10484 map->map_ifindex = ifindex;
10485 return 0;
10486 }
10487
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)10488 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10489 {
10490 if (!bpf_map_type__is_map_in_map(map->def.type)) {
10491 pr_warn("error: unsupported map type\n");
10492 return libbpf_err(-EINVAL);
10493 }
10494 if (map->inner_map_fd != -1) {
10495 pr_warn("error: inner_map_fd already specified\n");
10496 return libbpf_err(-EINVAL);
10497 }
10498 if (map->inner_map) {
10499 bpf_map__destroy(map->inner_map);
10500 zfree(&map->inner_map);
10501 }
10502 map->inner_map_fd = fd;
10503 return 0;
10504 }
10505
10506 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)10507 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10508 {
10509 ssize_t idx;
10510 struct bpf_map *s, *e;
10511
10512 if (!obj || !obj->maps)
10513 return errno = EINVAL, NULL;
10514
10515 s = obj->maps;
10516 e = obj->maps + obj->nr_maps;
10517
10518 if ((m < s) || (m >= e)) {
10519 pr_warn("error in %s: map handler doesn't belong to object\n",
10520 __func__);
10521 return errno = EINVAL, NULL;
10522 }
10523
10524 idx = (m - obj->maps) + i;
10525 if (idx >= obj->nr_maps || idx < 0)
10526 return NULL;
10527 return &obj->maps[idx];
10528 }
10529
10530 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)10531 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10532 {
10533 if (prev == NULL && obj != NULL)
10534 return obj->maps;
10535
10536 return __bpf_map__iter(prev, obj, 1);
10537 }
10538
10539 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)10540 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10541 {
10542 if (next == NULL && obj != NULL) {
10543 if (!obj->nr_maps)
10544 return NULL;
10545 return obj->maps + obj->nr_maps - 1;
10546 }
10547
10548 return __bpf_map__iter(next, obj, -1);
10549 }
10550
10551 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)10552 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10553 {
10554 struct bpf_map *pos;
10555
10556 bpf_object__for_each_map(pos, obj) {
10557 /* if it's a special internal map name (which always starts
10558 * with dot) then check if that special name matches the
10559 * real map name (ELF section name)
10560 */
10561 if (name[0] == '.') {
10562 if (pos->real_name && strcmp(pos->real_name, name) == 0)
10563 return pos;
10564 continue;
10565 }
10566 /* otherwise map name has to be an exact match */
10567 if (map_uses_real_name(pos)) {
10568 if (strcmp(pos->real_name, name) == 0)
10569 return pos;
10570 continue;
10571 }
10572 if (strcmp(pos->name, name) == 0)
10573 return pos;
10574 }
10575 return errno = ENOENT, NULL;
10576 }
10577
10578 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)10579 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10580 {
10581 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10582 }
10583
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)10584 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10585 size_t value_sz, bool check_value_sz)
10586 {
10587 if (!map_is_created(map)) /* map is not yet created */
10588 return -ENOENT;
10589
10590 if (map->def.key_size != key_sz) {
10591 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10592 map->name, key_sz, map->def.key_size);
10593 return -EINVAL;
10594 }
10595
10596 if (map->fd < 0) {
10597 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10598 return -EINVAL;
10599 }
10600
10601 if (!check_value_sz)
10602 return 0;
10603
10604 switch (map->def.type) {
10605 case BPF_MAP_TYPE_PERCPU_ARRAY:
10606 case BPF_MAP_TYPE_PERCPU_HASH:
10607 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10608 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10609 int num_cpu = libbpf_num_possible_cpus();
10610 size_t elem_sz = roundup(map->def.value_size, 8);
10611
10612 if (value_sz != num_cpu * elem_sz) {
10613 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10614 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10615 return -EINVAL;
10616 }
10617 break;
10618 }
10619 default:
10620 if (map->def.value_size != value_sz) {
10621 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10622 map->name, value_sz, map->def.value_size);
10623 return -EINVAL;
10624 }
10625 break;
10626 }
10627 return 0;
10628 }
10629
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10630 int bpf_map__lookup_elem(const struct bpf_map *map,
10631 const void *key, size_t key_sz,
10632 void *value, size_t value_sz, __u64 flags)
10633 {
10634 int err;
10635
10636 err = validate_map_op(map, key_sz, value_sz, true);
10637 if (err)
10638 return libbpf_err(err);
10639
10640 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10641 }
10642
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)10643 int bpf_map__update_elem(const struct bpf_map *map,
10644 const void *key, size_t key_sz,
10645 const void *value, size_t value_sz, __u64 flags)
10646 {
10647 int err;
10648
10649 err = validate_map_op(map, key_sz, value_sz, true);
10650 if (err)
10651 return libbpf_err(err);
10652
10653 return bpf_map_update_elem(map->fd, key, value, flags);
10654 }
10655
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)10656 int bpf_map__delete_elem(const struct bpf_map *map,
10657 const void *key, size_t key_sz, __u64 flags)
10658 {
10659 int err;
10660
10661 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10662 if (err)
10663 return libbpf_err(err);
10664
10665 return bpf_map_delete_elem_flags(map->fd, key, flags);
10666 }
10667
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10668 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10669 const void *key, size_t key_sz,
10670 void *value, size_t value_sz, __u64 flags)
10671 {
10672 int err;
10673
10674 err = validate_map_op(map, key_sz, value_sz, true);
10675 if (err)
10676 return libbpf_err(err);
10677
10678 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10679 }
10680
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)10681 int bpf_map__get_next_key(const struct bpf_map *map,
10682 const void *cur_key, void *next_key, size_t key_sz)
10683 {
10684 int err;
10685
10686 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10687 if (err)
10688 return libbpf_err(err);
10689
10690 return bpf_map_get_next_key(map->fd, cur_key, next_key);
10691 }
10692
libbpf_get_error(const void * ptr)10693 long libbpf_get_error(const void *ptr)
10694 {
10695 if (!IS_ERR_OR_NULL(ptr))
10696 return 0;
10697
10698 if (IS_ERR(ptr))
10699 errno = -PTR_ERR(ptr);
10700
10701 /* If ptr == NULL, then errno should be already set by the failing
10702 * API, because libbpf never returns NULL on success and it now always
10703 * sets errno on error. So no extra errno handling for ptr == NULL
10704 * case.
10705 */
10706 return -errno;
10707 }
10708
10709 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)10710 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10711 {
10712 int ret;
10713 int prog_fd = bpf_program__fd(prog);
10714
10715 if (prog_fd < 0) {
10716 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
10717 prog->name);
10718 return libbpf_err(-EINVAL);
10719 }
10720
10721 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
10722 return libbpf_err_errno(ret);
10723 }
10724
10725 /* Release "ownership" of underlying BPF resource (typically, BPF program
10726 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10727 * link, when destructed through bpf_link__destroy() call won't attempt to
10728 * detach/unregisted that BPF resource. This is useful in situations where,
10729 * say, attached BPF program has to outlive userspace program that attached it
10730 * in the system. Depending on type of BPF program, though, there might be
10731 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10732 * exit of userspace program doesn't trigger automatic detachment and clean up
10733 * inside the kernel.
10734 */
bpf_link__disconnect(struct bpf_link * link)10735 void bpf_link__disconnect(struct bpf_link *link)
10736 {
10737 link->disconnected = true;
10738 }
10739
bpf_link__destroy(struct bpf_link * link)10740 int bpf_link__destroy(struct bpf_link *link)
10741 {
10742 int err = 0;
10743
10744 if (IS_ERR_OR_NULL(link))
10745 return 0;
10746
10747 if (!link->disconnected && link->detach)
10748 err = link->detach(link);
10749 if (link->pin_path)
10750 free(link->pin_path);
10751 if (link->dealloc)
10752 link->dealloc(link);
10753 else
10754 free(link);
10755
10756 return libbpf_err(err);
10757 }
10758
bpf_link__fd(const struct bpf_link * link)10759 int bpf_link__fd(const struct bpf_link *link)
10760 {
10761 return link->fd;
10762 }
10763
bpf_link__pin_path(const struct bpf_link * link)10764 const char *bpf_link__pin_path(const struct bpf_link *link)
10765 {
10766 return link->pin_path;
10767 }
10768
bpf_link__detach_fd(struct bpf_link * link)10769 static int bpf_link__detach_fd(struct bpf_link *link)
10770 {
10771 return libbpf_err_errno(close(link->fd));
10772 }
10773
bpf_link__open(const char * path)10774 struct bpf_link *bpf_link__open(const char *path)
10775 {
10776 struct bpf_link *link;
10777 int fd;
10778
10779 fd = bpf_obj_get(path);
10780 if (fd < 0) {
10781 fd = -errno;
10782 pr_warn("failed to open link at %s: %d\n", path, fd);
10783 return libbpf_err_ptr(fd);
10784 }
10785
10786 link = calloc(1, sizeof(*link));
10787 if (!link) {
10788 close(fd);
10789 return libbpf_err_ptr(-ENOMEM);
10790 }
10791 link->detach = &bpf_link__detach_fd;
10792 link->fd = fd;
10793
10794 link->pin_path = strdup(path);
10795 if (!link->pin_path) {
10796 bpf_link__destroy(link);
10797 return libbpf_err_ptr(-ENOMEM);
10798 }
10799
10800 return link;
10801 }
10802
bpf_link__detach(struct bpf_link * link)10803 int bpf_link__detach(struct bpf_link *link)
10804 {
10805 return bpf_link_detach(link->fd) ? -errno : 0;
10806 }
10807
bpf_link__pin(struct bpf_link * link,const char * path)10808 int bpf_link__pin(struct bpf_link *link, const char *path)
10809 {
10810 int err;
10811
10812 if (link->pin_path)
10813 return libbpf_err(-EBUSY);
10814 err = make_parent_dir(path);
10815 if (err)
10816 return libbpf_err(err);
10817 err = check_path(path);
10818 if (err)
10819 return libbpf_err(err);
10820
10821 link->pin_path = strdup(path);
10822 if (!link->pin_path)
10823 return libbpf_err(-ENOMEM);
10824
10825 if (bpf_obj_pin(link->fd, link->pin_path)) {
10826 err = -errno;
10827 zfree(&link->pin_path);
10828 return libbpf_err(err);
10829 }
10830
10831 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10832 return 0;
10833 }
10834
bpf_link__unpin(struct bpf_link * link)10835 int bpf_link__unpin(struct bpf_link *link)
10836 {
10837 int err;
10838
10839 if (!link->pin_path)
10840 return libbpf_err(-EINVAL);
10841
10842 err = unlink(link->pin_path);
10843 if (err != 0)
10844 return -errno;
10845
10846 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10847 zfree(&link->pin_path);
10848 return 0;
10849 }
10850
10851 struct bpf_link_perf {
10852 struct bpf_link link;
10853 int perf_event_fd;
10854 /* legacy kprobe support: keep track of probe identifier and type */
10855 char *legacy_probe_name;
10856 bool legacy_is_kprobe;
10857 bool legacy_is_retprobe;
10858 };
10859
10860 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10861 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10862
bpf_link_perf_detach(struct bpf_link * link)10863 static int bpf_link_perf_detach(struct bpf_link *link)
10864 {
10865 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10866 int err = 0;
10867
10868 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10869 err = -errno;
10870
10871 if (perf_link->perf_event_fd != link->fd)
10872 close(perf_link->perf_event_fd);
10873 close(link->fd);
10874
10875 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10876 if (perf_link->legacy_probe_name) {
10877 if (perf_link->legacy_is_kprobe) {
10878 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10879 perf_link->legacy_is_retprobe);
10880 } else {
10881 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10882 perf_link->legacy_is_retprobe);
10883 }
10884 }
10885
10886 return err;
10887 }
10888
bpf_link_perf_dealloc(struct bpf_link * link)10889 static void bpf_link_perf_dealloc(struct bpf_link *link)
10890 {
10891 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10892
10893 free(perf_link->legacy_probe_name);
10894 free(perf_link);
10895 }
10896
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10897 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10898 const struct bpf_perf_event_opts *opts)
10899 {
10900 struct bpf_link_perf *link;
10901 int prog_fd, link_fd = -1, err;
10902 bool force_ioctl_attach;
10903
10904 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10905 return libbpf_err_ptr(-EINVAL);
10906
10907 if (pfd < 0) {
10908 pr_warn("prog '%s': invalid perf event FD %d\n",
10909 prog->name, pfd);
10910 return libbpf_err_ptr(-EINVAL);
10911 }
10912 prog_fd = bpf_program__fd(prog);
10913 if (prog_fd < 0) {
10914 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
10915 prog->name);
10916 return libbpf_err_ptr(-EINVAL);
10917 }
10918
10919 link = calloc(1, sizeof(*link));
10920 if (!link)
10921 return libbpf_err_ptr(-ENOMEM);
10922 link->link.detach = &bpf_link_perf_detach;
10923 link->link.dealloc = &bpf_link_perf_dealloc;
10924 link->perf_event_fd = pfd;
10925
10926 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10927 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10928 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10929 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10930
10931 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10932 if (link_fd < 0) {
10933 err = -errno;
10934 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n",
10935 prog->name, pfd, errstr(err));
10936 goto err_out;
10937 }
10938 link->link.fd = link_fd;
10939 } else {
10940 if (OPTS_GET(opts, bpf_cookie, 0)) {
10941 pr_warn("prog '%s': user context value is not supported\n", prog->name);
10942 err = -EOPNOTSUPP;
10943 goto err_out;
10944 }
10945
10946 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10947 err = -errno;
10948 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10949 prog->name, pfd, errstr(err));
10950 if (err == -EPROTO)
10951 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10952 prog->name, pfd);
10953 goto err_out;
10954 }
10955 link->link.fd = pfd;
10956 }
10957 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10958 err = -errno;
10959 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10960 prog->name, pfd, errstr(err));
10961 goto err_out;
10962 }
10963
10964 return &link->link;
10965 err_out:
10966 if (link_fd >= 0)
10967 close(link_fd);
10968 free(link);
10969 return libbpf_err_ptr(err);
10970 }
10971
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10972 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10973 {
10974 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10975 }
10976
10977 /*
10978 * this function is expected to parse integer in the range of [0, 2^31-1] from
10979 * given file using scanf format string fmt. If actual parsed value is
10980 * negative, the result might be indistinguishable from error
10981 */
parse_uint_from_file(const char * file,const char * fmt)10982 static int parse_uint_from_file(const char *file, const char *fmt)
10983 {
10984 int err, ret;
10985 FILE *f;
10986
10987 f = fopen(file, "re");
10988 if (!f) {
10989 err = -errno;
10990 pr_debug("failed to open '%s': %s\n", file, errstr(err));
10991 return err;
10992 }
10993 err = fscanf(f, fmt, &ret);
10994 if (err != 1) {
10995 err = err == EOF ? -EIO : -errno;
10996 pr_debug("failed to parse '%s': %s\n", file, errstr(err));
10997 fclose(f);
10998 return err;
10999 }
11000 fclose(f);
11001 return ret;
11002 }
11003
determine_kprobe_perf_type(void)11004 static int determine_kprobe_perf_type(void)
11005 {
11006 const char *file = "/sys/bus/event_source/devices/kprobe/type";
11007
11008 return parse_uint_from_file(file, "%d\n");
11009 }
11010
determine_uprobe_perf_type(void)11011 static int determine_uprobe_perf_type(void)
11012 {
11013 const char *file = "/sys/bus/event_source/devices/uprobe/type";
11014
11015 return parse_uint_from_file(file, "%d\n");
11016 }
11017
determine_kprobe_retprobe_bit(void)11018 static int determine_kprobe_retprobe_bit(void)
11019 {
11020 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
11021
11022 return parse_uint_from_file(file, "config:%d\n");
11023 }
11024
determine_uprobe_retprobe_bit(void)11025 static int determine_uprobe_retprobe_bit(void)
11026 {
11027 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
11028
11029 return parse_uint_from_file(file, "config:%d\n");
11030 }
11031
11032 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
11033 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
11034
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)11035 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
11036 uint64_t offset, int pid, size_t ref_ctr_off)
11037 {
11038 const size_t attr_sz = sizeof(struct perf_event_attr);
11039 struct perf_event_attr attr;
11040 int type, pfd;
11041
11042 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
11043 return -EINVAL;
11044
11045 memset(&attr, 0, attr_sz);
11046
11047 type = uprobe ? determine_uprobe_perf_type()
11048 : determine_kprobe_perf_type();
11049 if (type < 0) {
11050 pr_warn("failed to determine %s perf type: %s\n",
11051 uprobe ? "uprobe" : "kprobe",
11052 errstr(type));
11053 return type;
11054 }
11055 if (retprobe) {
11056 int bit = uprobe ? determine_uprobe_retprobe_bit()
11057 : determine_kprobe_retprobe_bit();
11058
11059 if (bit < 0) {
11060 pr_warn("failed to determine %s retprobe bit: %s\n",
11061 uprobe ? "uprobe" : "kprobe",
11062 errstr(bit));
11063 return bit;
11064 }
11065 attr.config |= 1 << bit;
11066 }
11067 attr.size = attr_sz;
11068 attr.type = type;
11069 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11070 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
11071 attr.config2 = offset; /* kprobe_addr or probe_offset */
11072
11073 /* pid filter is meaningful only for uprobes */
11074 pfd = syscall(__NR_perf_event_open, &attr,
11075 pid < 0 ? -1 : pid /* pid */,
11076 pid == -1 ? 0 : -1 /* cpu */,
11077 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11078 return pfd >= 0 ? pfd : -errno;
11079 }
11080
append_to_file(const char * file,const char * fmt,...)11081 static int append_to_file(const char *file, const char *fmt, ...)
11082 {
11083 int fd, n, err = 0;
11084 va_list ap;
11085 char buf[1024];
11086
11087 va_start(ap, fmt);
11088 n = vsnprintf(buf, sizeof(buf), fmt, ap);
11089 va_end(ap);
11090
11091 if (n < 0 || n >= sizeof(buf))
11092 return -EINVAL;
11093
11094 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
11095 if (fd < 0)
11096 return -errno;
11097
11098 if (write(fd, buf, n) < 0)
11099 err = -errno;
11100
11101 close(fd);
11102 return err;
11103 }
11104
11105 #define DEBUGFS "/sys/kernel/debug/tracing"
11106 #define TRACEFS "/sys/kernel/tracing"
11107
use_debugfs(void)11108 static bool use_debugfs(void)
11109 {
11110 static int has_debugfs = -1;
11111
11112 if (has_debugfs < 0)
11113 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
11114
11115 return has_debugfs == 1;
11116 }
11117
tracefs_path(void)11118 static const char *tracefs_path(void)
11119 {
11120 return use_debugfs() ? DEBUGFS : TRACEFS;
11121 }
11122
tracefs_kprobe_events(void)11123 static const char *tracefs_kprobe_events(void)
11124 {
11125 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
11126 }
11127
tracefs_uprobe_events(void)11128 static const char *tracefs_uprobe_events(void)
11129 {
11130 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
11131 }
11132
tracefs_available_filter_functions(void)11133 static const char *tracefs_available_filter_functions(void)
11134 {
11135 return use_debugfs() ? DEBUGFS"/available_filter_functions"
11136 : TRACEFS"/available_filter_functions";
11137 }
11138
tracefs_available_filter_functions_addrs(void)11139 static const char *tracefs_available_filter_functions_addrs(void)
11140 {
11141 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
11142 : TRACEFS"/available_filter_functions_addrs";
11143 }
11144
gen_probe_legacy_event_name(char * buf,size_t buf_sz,const char * name,size_t offset)11145 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz,
11146 const char *name, size_t offset)
11147 {
11148 static int index = 0;
11149 int i;
11150
11151 snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(),
11152 __sync_fetch_and_add(&index, 1), name, offset);
11153
11154 /* sanitize name in the probe name */
11155 for (i = 0; buf[i]; i++) {
11156 if (!isalnum(buf[i]))
11157 buf[i] = '_';
11158 }
11159 }
11160
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)11161 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
11162 const char *kfunc_name, size_t offset)
11163 {
11164 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
11165 retprobe ? 'r' : 'p',
11166 retprobe ? "kretprobes" : "kprobes",
11167 probe_name, kfunc_name, offset);
11168 }
11169
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)11170 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
11171 {
11172 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
11173 retprobe ? "kretprobes" : "kprobes", probe_name);
11174 }
11175
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)11176 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11177 {
11178 char file[256];
11179
11180 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11181 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
11182
11183 return parse_uint_from_file(file, "%d\n");
11184 }
11185
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)11186 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
11187 const char *kfunc_name, size_t offset, int pid)
11188 {
11189 const size_t attr_sz = sizeof(struct perf_event_attr);
11190 struct perf_event_attr attr;
11191 int type, pfd, err;
11192
11193 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
11194 if (err < 0) {
11195 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
11196 kfunc_name, offset,
11197 errstr(err));
11198 return err;
11199 }
11200 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
11201 if (type < 0) {
11202 err = type;
11203 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
11204 kfunc_name, offset,
11205 errstr(err));
11206 goto err_clean_legacy;
11207 }
11208
11209 memset(&attr, 0, attr_sz);
11210 attr.size = attr_sz;
11211 attr.config = type;
11212 attr.type = PERF_TYPE_TRACEPOINT;
11213
11214 pfd = syscall(__NR_perf_event_open, &attr,
11215 pid < 0 ? -1 : pid, /* pid */
11216 pid == -1 ? 0 : -1, /* cpu */
11217 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11218 if (pfd < 0) {
11219 err = -errno;
11220 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
11221 errstr(err));
11222 goto err_clean_legacy;
11223 }
11224 return pfd;
11225
11226 err_clean_legacy:
11227 /* Clear the newly added legacy kprobe_event */
11228 remove_kprobe_event_legacy(probe_name, retprobe);
11229 return err;
11230 }
11231
arch_specific_syscall_pfx(void)11232 static const char *arch_specific_syscall_pfx(void)
11233 {
11234 #if defined(__x86_64__)
11235 return "x64";
11236 #elif defined(__i386__)
11237 return "ia32";
11238 #elif defined(__s390x__)
11239 return "s390x";
11240 #elif defined(__s390__)
11241 return "s390";
11242 #elif defined(__arm__)
11243 return "arm";
11244 #elif defined(__aarch64__)
11245 return "arm64";
11246 #elif defined(__mips__)
11247 return "mips";
11248 #elif defined(__riscv)
11249 return "riscv";
11250 #elif defined(__powerpc__)
11251 return "powerpc";
11252 #elif defined(__powerpc64__)
11253 return "powerpc64";
11254 #else
11255 return NULL;
11256 #endif
11257 }
11258
probe_kern_syscall_wrapper(int token_fd)11259 int probe_kern_syscall_wrapper(int token_fd)
11260 {
11261 char syscall_name[64];
11262 const char *ksys_pfx;
11263
11264 ksys_pfx = arch_specific_syscall_pfx();
11265 if (!ksys_pfx)
11266 return 0;
11267
11268 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11269
11270 if (determine_kprobe_perf_type() >= 0) {
11271 int pfd;
11272
11273 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11274 if (pfd >= 0)
11275 close(pfd);
11276
11277 return pfd >= 0 ? 1 : 0;
11278 } else { /* legacy mode */
11279 char probe_name[MAX_EVENT_NAME_LEN];
11280
11281 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11282 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11283 return 0;
11284
11285 (void)remove_kprobe_event_legacy(probe_name, false);
11286 return 1;
11287 }
11288 }
11289
11290 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)11291 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11292 const char *func_name,
11293 const struct bpf_kprobe_opts *opts)
11294 {
11295 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11296 enum probe_attach_mode attach_mode;
11297 char *legacy_probe = NULL;
11298 struct bpf_link *link;
11299 size_t offset;
11300 bool retprobe, legacy;
11301 int pfd, err;
11302
11303 if (!OPTS_VALID(opts, bpf_kprobe_opts))
11304 return libbpf_err_ptr(-EINVAL);
11305
11306 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11307 retprobe = OPTS_GET(opts, retprobe, false);
11308 offset = OPTS_GET(opts, offset, 0);
11309 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11310
11311 legacy = determine_kprobe_perf_type() < 0;
11312 switch (attach_mode) {
11313 case PROBE_ATTACH_MODE_LEGACY:
11314 legacy = true;
11315 pe_opts.force_ioctl_attach = true;
11316 break;
11317 case PROBE_ATTACH_MODE_PERF:
11318 if (legacy)
11319 return libbpf_err_ptr(-ENOTSUP);
11320 pe_opts.force_ioctl_attach = true;
11321 break;
11322 case PROBE_ATTACH_MODE_LINK:
11323 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11324 return libbpf_err_ptr(-ENOTSUP);
11325 break;
11326 case PROBE_ATTACH_MODE_DEFAULT:
11327 break;
11328 default:
11329 return libbpf_err_ptr(-EINVAL);
11330 }
11331
11332 if (!legacy) {
11333 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11334 func_name, offset,
11335 -1 /* pid */, 0 /* ref_ctr_off */);
11336 } else {
11337 char probe_name[MAX_EVENT_NAME_LEN];
11338
11339 gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
11340 func_name, offset);
11341
11342 legacy_probe = strdup(probe_name);
11343 if (!legacy_probe)
11344 return libbpf_err_ptr(-ENOMEM);
11345
11346 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11347 offset, -1 /* pid */);
11348 }
11349 if (pfd < 0) {
11350 err = -errno;
11351 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11352 prog->name, retprobe ? "kretprobe" : "kprobe",
11353 func_name, offset,
11354 errstr(err));
11355 goto err_out;
11356 }
11357 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11358 err = libbpf_get_error(link);
11359 if (err) {
11360 close(pfd);
11361 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11362 prog->name, retprobe ? "kretprobe" : "kprobe",
11363 func_name, offset,
11364 errstr(err));
11365 goto err_clean_legacy;
11366 }
11367 if (legacy) {
11368 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11369
11370 perf_link->legacy_probe_name = legacy_probe;
11371 perf_link->legacy_is_kprobe = true;
11372 perf_link->legacy_is_retprobe = retprobe;
11373 }
11374
11375 return link;
11376
11377 err_clean_legacy:
11378 if (legacy)
11379 remove_kprobe_event_legacy(legacy_probe, retprobe);
11380 err_out:
11381 free(legacy_probe);
11382 return libbpf_err_ptr(err);
11383 }
11384
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)11385 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11386 bool retprobe,
11387 const char *func_name)
11388 {
11389 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11390 .retprobe = retprobe,
11391 );
11392
11393 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11394 }
11395
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)11396 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11397 const char *syscall_name,
11398 const struct bpf_ksyscall_opts *opts)
11399 {
11400 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11401 char func_name[128];
11402
11403 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11404 return libbpf_err_ptr(-EINVAL);
11405
11406 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11407 /* arch_specific_syscall_pfx() should never return NULL here
11408 * because it is guarded by kernel_supports(). However, since
11409 * compiler does not know that we have an explicit conditional
11410 * as well.
11411 */
11412 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11413 arch_specific_syscall_pfx() ? : "", syscall_name);
11414 } else {
11415 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11416 }
11417
11418 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11419 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11420
11421 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11422 }
11423
11424 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)11425 bool glob_match(const char *str, const char *pat)
11426 {
11427 while (*str && *pat && *pat != '*') {
11428 if (*pat == '?') { /* Matches any single character */
11429 str++;
11430 pat++;
11431 continue;
11432 }
11433 if (*str != *pat)
11434 return false;
11435 str++;
11436 pat++;
11437 }
11438 /* Check wild card */
11439 if (*pat == '*') {
11440 while (*pat == '*')
11441 pat++;
11442 if (!*pat) /* Tail wild card matches all */
11443 return true;
11444 while (*str)
11445 if (glob_match(str++, pat))
11446 return true;
11447 }
11448 return !*str && !*pat;
11449 }
11450
11451 struct kprobe_multi_resolve {
11452 const char *pattern;
11453 unsigned long *addrs;
11454 size_t cap;
11455 size_t cnt;
11456 };
11457
11458 struct avail_kallsyms_data {
11459 char **syms;
11460 size_t cnt;
11461 struct kprobe_multi_resolve *res;
11462 };
11463
avail_func_cmp(const void * a,const void * b)11464 static int avail_func_cmp(const void *a, const void *b)
11465 {
11466 return strcmp(*(const char **)a, *(const char **)b);
11467 }
11468
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)11469 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11470 const char *sym_name, void *ctx)
11471 {
11472 struct avail_kallsyms_data *data = ctx;
11473 struct kprobe_multi_resolve *res = data->res;
11474 int err;
11475
11476 if (!glob_match(sym_name, res->pattern))
11477 return 0;
11478
11479 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) {
11480 /* Some versions of kernel strip out .llvm.<hash> suffix from
11481 * function names reported in available_filter_functions, but
11482 * don't do so for kallsyms. While this is clearly a kernel
11483 * bug (fixed by [0]) we try to accommodate that in libbpf to
11484 * make multi-kprobe usability a bit better: if no match is
11485 * found, we will strip .llvm. suffix and try one more time.
11486 *
11487 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG")
11488 */
11489 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx;
11490
11491 if (!(sym_sfx = strstr(sym_name, ".llvm.")))
11492 return 0;
11493
11494 /* psym_trim vs sym_trim dance is done to avoid pointer vs array
11495 * coercion differences and get proper `const char **` pointer
11496 * which avail_func_cmp() expects
11497 */
11498 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name);
11499 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11500 return 0;
11501 }
11502
11503 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11504 if (err)
11505 return err;
11506
11507 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11508 return 0;
11509 }
11510
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)11511 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11512 {
11513 const char *available_functions_file = tracefs_available_filter_functions();
11514 struct avail_kallsyms_data data;
11515 char sym_name[500];
11516 FILE *f;
11517 int err = 0, ret, i;
11518 char **syms = NULL;
11519 size_t cap = 0, cnt = 0;
11520
11521 f = fopen(available_functions_file, "re");
11522 if (!f) {
11523 err = -errno;
11524 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err));
11525 return err;
11526 }
11527
11528 while (true) {
11529 char *name;
11530
11531 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11532 if (ret == EOF && feof(f))
11533 break;
11534
11535 if (ret != 1) {
11536 pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11537 err = -EINVAL;
11538 goto cleanup;
11539 }
11540
11541 if (!glob_match(sym_name, res->pattern))
11542 continue;
11543
11544 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11545 if (err)
11546 goto cleanup;
11547
11548 name = strdup(sym_name);
11549 if (!name) {
11550 err = -errno;
11551 goto cleanup;
11552 }
11553
11554 syms[cnt++] = name;
11555 }
11556
11557 /* no entries found, bail out */
11558 if (cnt == 0) {
11559 err = -ENOENT;
11560 goto cleanup;
11561 }
11562
11563 /* sort available functions */
11564 qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11565
11566 data.syms = syms;
11567 data.res = res;
11568 data.cnt = cnt;
11569 libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11570
11571 if (res->cnt == 0)
11572 err = -ENOENT;
11573
11574 cleanup:
11575 for (i = 0; i < cnt; i++)
11576 free((char *)syms[i]);
11577 free(syms);
11578
11579 fclose(f);
11580 return err;
11581 }
11582
has_available_filter_functions_addrs(void)11583 static bool has_available_filter_functions_addrs(void)
11584 {
11585 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11586 }
11587
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)11588 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11589 {
11590 const char *available_path = tracefs_available_filter_functions_addrs();
11591 char sym_name[500];
11592 FILE *f;
11593 int ret, err = 0;
11594 unsigned long long sym_addr;
11595
11596 f = fopen(available_path, "re");
11597 if (!f) {
11598 err = -errno;
11599 pr_warn("failed to open %s: %s\n", available_path, errstr(err));
11600 return err;
11601 }
11602
11603 while (true) {
11604 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11605 if (ret == EOF && feof(f))
11606 break;
11607
11608 if (ret != 2) {
11609 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11610 ret);
11611 err = -EINVAL;
11612 goto cleanup;
11613 }
11614
11615 if (!glob_match(sym_name, res->pattern))
11616 continue;
11617
11618 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11619 sizeof(*res->addrs), res->cnt + 1);
11620 if (err)
11621 goto cleanup;
11622
11623 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11624 }
11625
11626 if (res->cnt == 0)
11627 err = -ENOENT;
11628
11629 cleanup:
11630 fclose(f);
11631 return err;
11632 }
11633
11634 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)11635 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11636 const char *pattern,
11637 const struct bpf_kprobe_multi_opts *opts)
11638 {
11639 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11640 struct kprobe_multi_resolve res = {
11641 .pattern = pattern,
11642 };
11643 enum bpf_attach_type attach_type;
11644 struct bpf_link *link = NULL;
11645 const unsigned long *addrs;
11646 int err, link_fd, prog_fd;
11647 bool retprobe, session, unique_match;
11648 const __u64 *cookies;
11649 const char **syms;
11650 size_t cnt;
11651
11652 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11653 return libbpf_err_ptr(-EINVAL);
11654
11655 prog_fd = bpf_program__fd(prog);
11656 if (prog_fd < 0) {
11657 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11658 prog->name);
11659 return libbpf_err_ptr(-EINVAL);
11660 }
11661
11662 syms = OPTS_GET(opts, syms, false);
11663 addrs = OPTS_GET(opts, addrs, false);
11664 cnt = OPTS_GET(opts, cnt, false);
11665 cookies = OPTS_GET(opts, cookies, false);
11666 unique_match = OPTS_GET(opts, unique_match, false);
11667
11668 if (!pattern && !addrs && !syms)
11669 return libbpf_err_ptr(-EINVAL);
11670 if (pattern && (addrs || syms || cookies || cnt))
11671 return libbpf_err_ptr(-EINVAL);
11672 if (!pattern && !cnt)
11673 return libbpf_err_ptr(-EINVAL);
11674 if (!pattern && unique_match)
11675 return libbpf_err_ptr(-EINVAL);
11676 if (addrs && syms)
11677 return libbpf_err_ptr(-EINVAL);
11678
11679 if (pattern) {
11680 if (has_available_filter_functions_addrs())
11681 err = libbpf_available_kprobes_parse(&res);
11682 else
11683 err = libbpf_available_kallsyms_parse(&res);
11684 if (err)
11685 goto error;
11686
11687 if (unique_match && res.cnt != 1) {
11688 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n",
11689 prog->name, pattern, res.cnt);
11690 err = -EINVAL;
11691 goto error;
11692 }
11693
11694 addrs = res.addrs;
11695 cnt = res.cnt;
11696 }
11697
11698 retprobe = OPTS_GET(opts, retprobe, false);
11699 session = OPTS_GET(opts, session, false);
11700
11701 if (retprobe && session)
11702 return libbpf_err_ptr(-EINVAL);
11703
11704 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI;
11705
11706 lopts.kprobe_multi.syms = syms;
11707 lopts.kprobe_multi.addrs = addrs;
11708 lopts.kprobe_multi.cookies = cookies;
11709 lopts.kprobe_multi.cnt = cnt;
11710 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11711
11712 link = calloc(1, sizeof(*link));
11713 if (!link) {
11714 err = -ENOMEM;
11715 goto error;
11716 }
11717 link->detach = &bpf_link__detach_fd;
11718
11719 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
11720 if (link_fd < 0) {
11721 err = -errno;
11722 pr_warn("prog '%s': failed to attach: %s\n",
11723 prog->name, errstr(err));
11724 goto error;
11725 }
11726 link->fd = link_fd;
11727 free(res.addrs);
11728 return link;
11729
11730 error:
11731 free(link);
11732 free(res.addrs);
11733 return libbpf_err_ptr(err);
11734 }
11735
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11736 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11737 {
11738 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11739 unsigned long offset = 0;
11740 const char *func_name;
11741 char *func;
11742 int n;
11743
11744 *link = NULL;
11745
11746 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11747 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11748 return 0;
11749
11750 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11751 if (opts.retprobe)
11752 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11753 else
11754 func_name = prog->sec_name + sizeof("kprobe/") - 1;
11755
11756 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11757 if (n < 1) {
11758 pr_warn("kprobe name is invalid: %s\n", func_name);
11759 return -EINVAL;
11760 }
11761 if (opts.retprobe && offset != 0) {
11762 free(func);
11763 pr_warn("kretprobes do not support offset specification\n");
11764 return -EINVAL;
11765 }
11766
11767 opts.offset = offset;
11768 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11769 free(func);
11770 return libbpf_get_error(*link);
11771 }
11772
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11773 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11774 {
11775 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11776 const char *syscall_name;
11777
11778 *link = NULL;
11779
11780 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11781 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11782 return 0;
11783
11784 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11785 if (opts.retprobe)
11786 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11787 else
11788 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11789
11790 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11791 return *link ? 0 : -errno;
11792 }
11793
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11794 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11795 {
11796 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11797 const char *spec;
11798 char *pattern;
11799 int n;
11800
11801 *link = NULL;
11802
11803 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11804 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11805 strcmp(prog->sec_name, "kretprobe.multi") == 0)
11806 return 0;
11807
11808 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11809 if (opts.retprobe)
11810 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11811 else
11812 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11813
11814 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11815 if (n < 1) {
11816 pr_warn("kprobe multi pattern is invalid: %s\n", spec);
11817 return -EINVAL;
11818 }
11819
11820 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11821 free(pattern);
11822 return libbpf_get_error(*link);
11823 }
11824
attach_kprobe_session(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11825 static int attach_kprobe_session(const struct bpf_program *prog, long cookie,
11826 struct bpf_link **link)
11827 {
11828 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true);
11829 const char *spec;
11830 char *pattern;
11831 int n;
11832
11833 *link = NULL;
11834
11835 /* no auto-attach for SEC("kprobe.session") */
11836 if (strcmp(prog->sec_name, "kprobe.session") == 0)
11837 return 0;
11838
11839 spec = prog->sec_name + sizeof("kprobe.session/") - 1;
11840 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11841 if (n < 1) {
11842 pr_warn("kprobe session pattern is invalid: %s\n", spec);
11843 return -EINVAL;
11844 }
11845
11846 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11847 free(pattern);
11848 return *link ? 0 : -errno;
11849 }
11850
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11851 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11852 {
11853 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11854 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11855 int n, ret = -EINVAL;
11856
11857 *link = NULL;
11858
11859 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11860 &probe_type, &binary_path, &func_name);
11861 switch (n) {
11862 case 1:
11863 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11864 ret = 0;
11865 break;
11866 case 3:
11867 opts.session = str_has_pfx(probe_type, "uprobe.session");
11868 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi");
11869
11870 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11871 ret = libbpf_get_error(*link);
11872 break;
11873 default:
11874 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11875 prog->sec_name);
11876 break;
11877 }
11878 free(probe_type);
11879 free(binary_path);
11880 free(func_name);
11881 return ret;
11882 }
11883
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11884 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11885 const char *binary_path, size_t offset)
11886 {
11887 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11888 retprobe ? 'r' : 'p',
11889 retprobe ? "uretprobes" : "uprobes",
11890 probe_name, binary_path, offset);
11891 }
11892
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11893 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11894 {
11895 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11896 retprobe ? "uretprobes" : "uprobes", probe_name);
11897 }
11898
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11899 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11900 {
11901 char file[512];
11902
11903 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11904 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11905
11906 return parse_uint_from_file(file, "%d\n");
11907 }
11908
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11909 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11910 const char *binary_path, size_t offset, int pid)
11911 {
11912 const size_t attr_sz = sizeof(struct perf_event_attr);
11913 struct perf_event_attr attr;
11914 int type, pfd, err;
11915
11916 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11917 if (err < 0) {
11918 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n",
11919 binary_path, (size_t)offset, errstr(err));
11920 return err;
11921 }
11922 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11923 if (type < 0) {
11924 err = type;
11925 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n",
11926 binary_path, offset, errstr(err));
11927 goto err_clean_legacy;
11928 }
11929
11930 memset(&attr, 0, attr_sz);
11931 attr.size = attr_sz;
11932 attr.config = type;
11933 attr.type = PERF_TYPE_TRACEPOINT;
11934
11935 pfd = syscall(__NR_perf_event_open, &attr,
11936 pid < 0 ? -1 : pid, /* pid */
11937 pid == -1 ? 0 : -1, /* cpu */
11938 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11939 if (pfd < 0) {
11940 err = -errno;
11941 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err));
11942 goto err_clean_legacy;
11943 }
11944 return pfd;
11945
11946 err_clean_legacy:
11947 /* Clear the newly added legacy uprobe_event */
11948 remove_uprobe_event_legacy(probe_name, retprobe);
11949 return err;
11950 }
11951
11952 /* Find offset of function name in archive specified by path. Currently
11953 * supported are .zip files that do not compress their contents, as used on
11954 * Android in the form of APKs, for example. "file_name" is the name of the ELF
11955 * file inside the archive. "func_name" matches symbol name or name@@LIB for
11956 * library functions.
11957 *
11958 * An overview of the APK format specifically provided here:
11959 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11960 */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11961 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11962 const char *func_name)
11963 {
11964 struct zip_archive *archive;
11965 struct zip_entry entry;
11966 long ret;
11967 Elf *elf;
11968
11969 archive = zip_archive_open(archive_path);
11970 if (IS_ERR(archive)) {
11971 ret = PTR_ERR(archive);
11972 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11973 return ret;
11974 }
11975
11976 ret = zip_archive_find_entry(archive, file_name, &entry);
11977 if (ret) {
11978 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11979 archive_path, ret);
11980 goto out;
11981 }
11982 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11983 (unsigned long)entry.data_offset);
11984
11985 if (entry.compression) {
11986 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11987 archive_path);
11988 ret = -LIBBPF_ERRNO__FORMAT;
11989 goto out;
11990 }
11991
11992 elf = elf_memory((void *)entry.data, entry.data_length);
11993 if (!elf) {
11994 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11995 elf_errmsg(-1));
11996 ret = -LIBBPF_ERRNO__LIBELF;
11997 goto out;
11998 }
11999
12000 ret = elf_find_func_offset(elf, file_name, func_name);
12001 if (ret > 0) {
12002 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
12003 func_name, file_name, archive_path, entry.data_offset, ret,
12004 ret + entry.data_offset);
12005 ret += entry.data_offset;
12006 }
12007 elf_end(elf);
12008
12009 out:
12010 zip_archive_close(archive);
12011 return ret;
12012 }
12013
arch_specific_lib_paths(void)12014 static const char *arch_specific_lib_paths(void)
12015 {
12016 /*
12017 * Based on https://packages.debian.org/sid/libc6.
12018 *
12019 * Assume that the traced program is built for the same architecture
12020 * as libbpf, which should cover the vast majority of cases.
12021 */
12022 #if defined(__x86_64__)
12023 return "/lib/x86_64-linux-gnu";
12024 #elif defined(__i386__)
12025 return "/lib/i386-linux-gnu";
12026 #elif defined(__s390x__)
12027 return "/lib/s390x-linux-gnu";
12028 #elif defined(__s390__)
12029 return "/lib/s390-linux-gnu";
12030 #elif defined(__arm__) && defined(__SOFTFP__)
12031 return "/lib/arm-linux-gnueabi";
12032 #elif defined(__arm__) && !defined(__SOFTFP__)
12033 return "/lib/arm-linux-gnueabihf";
12034 #elif defined(__aarch64__)
12035 return "/lib/aarch64-linux-gnu";
12036 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
12037 return "/lib/mips64el-linux-gnuabi64";
12038 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
12039 return "/lib/mipsel-linux-gnu";
12040 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
12041 return "/lib/powerpc64le-linux-gnu";
12042 #elif defined(__sparc__) && defined(__arch64__)
12043 return "/lib/sparc64-linux-gnu";
12044 #elif defined(__riscv) && __riscv_xlen == 64
12045 return "/lib/riscv64-linux-gnu";
12046 #else
12047 return NULL;
12048 #endif
12049 }
12050
12051 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)12052 static int resolve_full_path(const char *file, char *result, size_t result_sz)
12053 {
12054 const char *search_paths[3] = {};
12055 int i, perm;
12056
12057 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
12058 search_paths[0] = getenv("LD_LIBRARY_PATH");
12059 search_paths[1] = "/usr/lib64:/usr/lib";
12060 search_paths[2] = arch_specific_lib_paths();
12061 perm = R_OK;
12062 } else {
12063 search_paths[0] = getenv("PATH");
12064 search_paths[1] = "/usr/bin:/usr/sbin";
12065 perm = R_OK | X_OK;
12066 }
12067
12068 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
12069 const char *s;
12070
12071 if (!search_paths[i])
12072 continue;
12073 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
12074 char *next_path;
12075 int seg_len;
12076
12077 if (s[0] == ':')
12078 s++;
12079 next_path = strchr(s, ':');
12080 seg_len = next_path ? next_path - s : strlen(s);
12081 if (!seg_len)
12082 continue;
12083 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
12084 /* ensure it has required permissions */
12085 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
12086 continue;
12087 pr_debug("resolved '%s' to '%s'\n", file, result);
12088 return 0;
12089 }
12090 }
12091 return -ENOENT;
12092 }
12093
12094 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)12095 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
12096 pid_t pid,
12097 const char *path,
12098 const char *func_pattern,
12099 const struct bpf_uprobe_multi_opts *opts)
12100 {
12101 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
12102 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12103 unsigned long *resolved_offsets = NULL;
12104 enum bpf_attach_type attach_type;
12105 int err = 0, link_fd, prog_fd;
12106 struct bpf_link *link = NULL;
12107 char full_path[PATH_MAX];
12108 bool retprobe, session;
12109 const __u64 *cookies;
12110 const char **syms;
12111 size_t cnt;
12112
12113 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
12114 return libbpf_err_ptr(-EINVAL);
12115
12116 prog_fd = bpf_program__fd(prog);
12117 if (prog_fd < 0) {
12118 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12119 prog->name);
12120 return libbpf_err_ptr(-EINVAL);
12121 }
12122
12123 syms = OPTS_GET(opts, syms, NULL);
12124 offsets = OPTS_GET(opts, offsets, NULL);
12125 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
12126 cookies = OPTS_GET(opts, cookies, NULL);
12127 cnt = OPTS_GET(opts, cnt, 0);
12128 retprobe = OPTS_GET(opts, retprobe, false);
12129 session = OPTS_GET(opts, session, false);
12130
12131 /*
12132 * User can specify 2 mutually exclusive set of inputs:
12133 *
12134 * 1) use only path/func_pattern/pid arguments
12135 *
12136 * 2) use path/pid with allowed combinations of:
12137 * syms/offsets/ref_ctr_offsets/cookies/cnt
12138 *
12139 * - syms and offsets are mutually exclusive
12140 * - ref_ctr_offsets and cookies are optional
12141 *
12142 * Any other usage results in error.
12143 */
12144
12145 if (!path)
12146 return libbpf_err_ptr(-EINVAL);
12147 if (!func_pattern && cnt == 0)
12148 return libbpf_err_ptr(-EINVAL);
12149
12150 if (func_pattern) {
12151 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
12152 return libbpf_err_ptr(-EINVAL);
12153 } else {
12154 if (!!syms == !!offsets)
12155 return libbpf_err_ptr(-EINVAL);
12156 }
12157
12158 if (retprobe && session)
12159 return libbpf_err_ptr(-EINVAL);
12160
12161 if (func_pattern) {
12162 if (!strchr(path, '/')) {
12163 err = resolve_full_path(path, full_path, sizeof(full_path));
12164 if (err) {
12165 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12166 prog->name, path, errstr(err));
12167 return libbpf_err_ptr(err);
12168 }
12169 path = full_path;
12170 }
12171
12172 err = elf_resolve_pattern_offsets(path, func_pattern,
12173 &resolved_offsets, &cnt);
12174 if (err < 0)
12175 return libbpf_err_ptr(err);
12176 offsets = resolved_offsets;
12177 } else if (syms) {
12178 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
12179 if (err < 0)
12180 return libbpf_err_ptr(err);
12181 offsets = resolved_offsets;
12182 }
12183
12184 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI;
12185
12186 lopts.uprobe_multi.path = path;
12187 lopts.uprobe_multi.offsets = offsets;
12188 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
12189 lopts.uprobe_multi.cookies = cookies;
12190 lopts.uprobe_multi.cnt = cnt;
12191 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0;
12192
12193 if (pid == 0)
12194 pid = getpid();
12195 if (pid > 0)
12196 lopts.uprobe_multi.pid = pid;
12197
12198 link = calloc(1, sizeof(*link));
12199 if (!link) {
12200 err = -ENOMEM;
12201 goto error;
12202 }
12203 link->detach = &bpf_link__detach_fd;
12204
12205 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
12206 if (link_fd < 0) {
12207 err = -errno;
12208 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
12209 prog->name, errstr(err));
12210 goto error;
12211 }
12212 link->fd = link_fd;
12213 free(resolved_offsets);
12214 return link;
12215
12216 error:
12217 free(resolved_offsets);
12218 free(link);
12219 return libbpf_err_ptr(err);
12220 }
12221
12222 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)12223 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
12224 const char *binary_path, size_t func_offset,
12225 const struct bpf_uprobe_opts *opts)
12226 {
12227 const char *archive_path = NULL, *archive_sep = NULL;
12228 char *legacy_probe = NULL;
12229 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12230 enum probe_attach_mode attach_mode;
12231 char full_path[PATH_MAX];
12232 struct bpf_link *link;
12233 size_t ref_ctr_off;
12234 int pfd, err;
12235 bool retprobe, legacy;
12236 const char *func_name;
12237
12238 if (!OPTS_VALID(opts, bpf_uprobe_opts))
12239 return libbpf_err_ptr(-EINVAL);
12240
12241 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
12242 retprobe = OPTS_GET(opts, retprobe, false);
12243 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
12244 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12245
12246 if (!binary_path)
12247 return libbpf_err_ptr(-EINVAL);
12248
12249 /* Check if "binary_path" refers to an archive. */
12250 archive_sep = strstr(binary_path, "!/");
12251 if (archive_sep) {
12252 full_path[0] = '\0';
12253 libbpf_strlcpy(full_path, binary_path,
12254 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
12255 archive_path = full_path;
12256 binary_path = archive_sep + 2;
12257 } else if (!strchr(binary_path, '/')) {
12258 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
12259 if (err) {
12260 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12261 prog->name, binary_path, errstr(err));
12262 return libbpf_err_ptr(err);
12263 }
12264 binary_path = full_path;
12265 }
12266 func_name = OPTS_GET(opts, func_name, NULL);
12267 if (func_name) {
12268 long sym_off;
12269
12270 if (archive_path) {
12271 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
12272 func_name);
12273 binary_path = archive_path;
12274 } else {
12275 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
12276 }
12277 if (sym_off < 0)
12278 return libbpf_err_ptr(sym_off);
12279 func_offset += sym_off;
12280 }
12281
12282 legacy = determine_uprobe_perf_type() < 0;
12283 switch (attach_mode) {
12284 case PROBE_ATTACH_MODE_LEGACY:
12285 legacy = true;
12286 pe_opts.force_ioctl_attach = true;
12287 break;
12288 case PROBE_ATTACH_MODE_PERF:
12289 if (legacy)
12290 return libbpf_err_ptr(-ENOTSUP);
12291 pe_opts.force_ioctl_attach = true;
12292 break;
12293 case PROBE_ATTACH_MODE_LINK:
12294 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12295 return libbpf_err_ptr(-ENOTSUP);
12296 break;
12297 case PROBE_ATTACH_MODE_DEFAULT:
12298 break;
12299 default:
12300 return libbpf_err_ptr(-EINVAL);
12301 }
12302
12303 if (!legacy) {
12304 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12305 func_offset, pid, ref_ctr_off);
12306 } else {
12307 char probe_name[MAX_EVENT_NAME_LEN];
12308
12309 if (ref_ctr_off)
12310 return libbpf_err_ptr(-EINVAL);
12311
12312 gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
12313 strrchr(binary_path, '/') ? : binary_path,
12314 func_offset);
12315
12316 legacy_probe = strdup(probe_name);
12317 if (!legacy_probe)
12318 return libbpf_err_ptr(-ENOMEM);
12319
12320 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12321 binary_path, func_offset, pid);
12322 }
12323 if (pfd < 0) {
12324 err = -errno;
12325 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12326 prog->name, retprobe ? "uretprobe" : "uprobe",
12327 binary_path, func_offset,
12328 errstr(err));
12329 goto err_out;
12330 }
12331
12332 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12333 err = libbpf_get_error(link);
12334 if (err) {
12335 close(pfd);
12336 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12337 prog->name, retprobe ? "uretprobe" : "uprobe",
12338 binary_path, func_offset,
12339 errstr(err));
12340 goto err_clean_legacy;
12341 }
12342 if (legacy) {
12343 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12344
12345 perf_link->legacy_probe_name = legacy_probe;
12346 perf_link->legacy_is_kprobe = false;
12347 perf_link->legacy_is_retprobe = retprobe;
12348 }
12349 return link;
12350
12351 err_clean_legacy:
12352 if (legacy)
12353 remove_uprobe_event_legacy(legacy_probe, retprobe);
12354 err_out:
12355 free(legacy_probe);
12356 return libbpf_err_ptr(err);
12357 }
12358
12359 /* Format of u[ret]probe section definition supporting auto-attach:
12360 * u[ret]probe/binary:function[+offset]
12361 *
12362 * binary can be an absolute/relative path or a filename; the latter is resolved to a
12363 * full binary path via bpf_program__attach_uprobe_opts.
12364 *
12365 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12366 * specified (and auto-attach is not possible) or the above format is specified for
12367 * auto-attach.
12368 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12369 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12370 {
12371 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12372 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12373 int n, c, ret = -EINVAL;
12374 long offset = 0;
12375
12376 *link = NULL;
12377
12378 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12379 &probe_type, &binary_path, &func_name);
12380 switch (n) {
12381 case 1:
12382 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12383 ret = 0;
12384 break;
12385 case 2:
12386 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12387 prog->name, prog->sec_name);
12388 break;
12389 case 3:
12390 /* check if user specifies `+offset`, if yes, this should be
12391 * the last part of the string, make sure sscanf read to EOL
12392 */
12393 func_off = strrchr(func_name, '+');
12394 if (func_off) {
12395 n = sscanf(func_off, "+%li%n", &offset, &c);
12396 if (n == 1 && *(func_off + c) == '\0')
12397 func_off[0] = '\0';
12398 else
12399 offset = 0;
12400 }
12401 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12402 strcmp(probe_type, "uretprobe.s") == 0;
12403 if (opts.retprobe && offset != 0) {
12404 pr_warn("prog '%s': uretprobes do not support offset specification\n",
12405 prog->name);
12406 break;
12407 }
12408 opts.func_name = func_name;
12409 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12410 ret = libbpf_get_error(*link);
12411 break;
12412 default:
12413 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12414 prog->sec_name);
12415 break;
12416 }
12417 free(probe_type);
12418 free(binary_path);
12419 free(func_name);
12420
12421 return ret;
12422 }
12423
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)12424 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12425 bool retprobe, pid_t pid,
12426 const char *binary_path,
12427 size_t func_offset)
12428 {
12429 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12430
12431 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12432 }
12433
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)12434 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12435 pid_t pid, const char *binary_path,
12436 const char *usdt_provider, const char *usdt_name,
12437 const struct bpf_usdt_opts *opts)
12438 {
12439 char resolved_path[512];
12440 struct bpf_object *obj = prog->obj;
12441 struct bpf_link *link;
12442 __u64 usdt_cookie;
12443 int err;
12444
12445 if (!OPTS_VALID(opts, bpf_uprobe_opts))
12446 return libbpf_err_ptr(-EINVAL);
12447
12448 if (bpf_program__fd(prog) < 0) {
12449 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12450 prog->name);
12451 return libbpf_err_ptr(-EINVAL);
12452 }
12453
12454 if (!binary_path)
12455 return libbpf_err_ptr(-EINVAL);
12456
12457 if (!strchr(binary_path, '/')) {
12458 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12459 if (err) {
12460 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12461 prog->name, binary_path, errstr(err));
12462 return libbpf_err_ptr(err);
12463 }
12464 binary_path = resolved_path;
12465 }
12466
12467 /* USDT manager is instantiated lazily on first USDT attach. It will
12468 * be destroyed together with BPF object in bpf_object__close().
12469 */
12470 if (IS_ERR(obj->usdt_man))
12471 return libbpf_ptr(obj->usdt_man);
12472 if (!obj->usdt_man) {
12473 obj->usdt_man = usdt_manager_new(obj);
12474 if (IS_ERR(obj->usdt_man))
12475 return libbpf_ptr(obj->usdt_man);
12476 }
12477
12478 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12479 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12480 usdt_provider, usdt_name, usdt_cookie);
12481 err = libbpf_get_error(link);
12482 if (err)
12483 return libbpf_err_ptr(err);
12484 return link;
12485 }
12486
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12487 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12488 {
12489 char *path = NULL, *provider = NULL, *name = NULL;
12490 const char *sec_name;
12491 int n, err;
12492
12493 sec_name = bpf_program__section_name(prog);
12494 if (strcmp(sec_name, "usdt") == 0) {
12495 /* no auto-attach for just SEC("usdt") */
12496 *link = NULL;
12497 return 0;
12498 }
12499
12500 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12501 if (n != 3) {
12502 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12503 sec_name);
12504 err = -EINVAL;
12505 } else {
12506 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12507 provider, name, NULL);
12508 err = libbpf_get_error(*link);
12509 }
12510 free(path);
12511 free(provider);
12512 free(name);
12513 return err;
12514 }
12515
determine_tracepoint_id(const char * tp_category,const char * tp_name)12516 static int determine_tracepoint_id(const char *tp_category,
12517 const char *tp_name)
12518 {
12519 char file[PATH_MAX];
12520 int ret;
12521
12522 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12523 tracefs_path(), tp_category, tp_name);
12524 if (ret < 0)
12525 return -errno;
12526 if (ret >= sizeof(file)) {
12527 pr_debug("tracepoint %s/%s path is too long\n",
12528 tp_category, tp_name);
12529 return -E2BIG;
12530 }
12531 return parse_uint_from_file(file, "%d\n");
12532 }
12533
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)12534 static int perf_event_open_tracepoint(const char *tp_category,
12535 const char *tp_name)
12536 {
12537 const size_t attr_sz = sizeof(struct perf_event_attr);
12538 struct perf_event_attr attr;
12539 int tp_id, pfd, err;
12540
12541 tp_id = determine_tracepoint_id(tp_category, tp_name);
12542 if (tp_id < 0) {
12543 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12544 tp_category, tp_name,
12545 errstr(tp_id));
12546 return tp_id;
12547 }
12548
12549 memset(&attr, 0, attr_sz);
12550 attr.type = PERF_TYPE_TRACEPOINT;
12551 attr.size = attr_sz;
12552 attr.config = tp_id;
12553
12554 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12555 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12556 if (pfd < 0) {
12557 err = -errno;
12558 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12559 tp_category, tp_name,
12560 errstr(err));
12561 return err;
12562 }
12563 return pfd;
12564 }
12565
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)12566 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12567 const char *tp_category,
12568 const char *tp_name,
12569 const struct bpf_tracepoint_opts *opts)
12570 {
12571 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12572 struct bpf_link *link;
12573 int pfd, err;
12574
12575 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12576 return libbpf_err_ptr(-EINVAL);
12577
12578 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12579
12580 pfd = perf_event_open_tracepoint(tp_category, tp_name);
12581 if (pfd < 0) {
12582 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12583 prog->name, tp_category, tp_name,
12584 errstr(pfd));
12585 return libbpf_err_ptr(pfd);
12586 }
12587 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12588 err = libbpf_get_error(link);
12589 if (err) {
12590 close(pfd);
12591 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12592 prog->name, tp_category, tp_name,
12593 errstr(err));
12594 return libbpf_err_ptr(err);
12595 }
12596 return link;
12597 }
12598
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)12599 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12600 const char *tp_category,
12601 const char *tp_name)
12602 {
12603 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12604 }
12605
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12606 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12607 {
12608 char *sec_name, *tp_cat, *tp_name;
12609
12610 *link = NULL;
12611
12612 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
12613 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12614 return 0;
12615
12616 sec_name = strdup(prog->sec_name);
12617 if (!sec_name)
12618 return -ENOMEM;
12619
12620 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12621 if (str_has_pfx(prog->sec_name, "tp/"))
12622 tp_cat = sec_name + sizeof("tp/") - 1;
12623 else
12624 tp_cat = sec_name + sizeof("tracepoint/") - 1;
12625 tp_name = strchr(tp_cat, '/');
12626 if (!tp_name) {
12627 free(sec_name);
12628 return -EINVAL;
12629 }
12630 *tp_name = '\0';
12631 tp_name++;
12632
12633 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12634 free(sec_name);
12635 return libbpf_get_error(*link);
12636 }
12637
12638 struct bpf_link *
bpf_program__attach_raw_tracepoint_opts(const struct bpf_program * prog,const char * tp_name,struct bpf_raw_tracepoint_opts * opts)12639 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12640 const char *tp_name,
12641 struct bpf_raw_tracepoint_opts *opts)
12642 {
12643 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12644 struct bpf_link *link;
12645 int prog_fd, pfd;
12646
12647 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12648 return libbpf_err_ptr(-EINVAL);
12649
12650 prog_fd = bpf_program__fd(prog);
12651 if (prog_fd < 0) {
12652 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12653 return libbpf_err_ptr(-EINVAL);
12654 }
12655
12656 link = calloc(1, sizeof(*link));
12657 if (!link)
12658 return libbpf_err_ptr(-ENOMEM);
12659 link->detach = &bpf_link__detach_fd;
12660
12661 raw_opts.tp_name = tp_name;
12662 raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12663 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12664 if (pfd < 0) {
12665 pfd = -errno;
12666 free(link);
12667 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12668 prog->name, tp_name, errstr(pfd));
12669 return libbpf_err_ptr(pfd);
12670 }
12671 link->fd = pfd;
12672 return link;
12673 }
12674
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)12675 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12676 const char *tp_name)
12677 {
12678 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
12679 }
12680
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12681 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12682 {
12683 static const char *const prefixes[] = {
12684 "raw_tp",
12685 "raw_tracepoint",
12686 "raw_tp.w",
12687 "raw_tracepoint.w",
12688 };
12689 size_t i;
12690 const char *tp_name = NULL;
12691
12692 *link = NULL;
12693
12694 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12695 size_t pfx_len;
12696
12697 if (!str_has_pfx(prog->sec_name, prefixes[i]))
12698 continue;
12699
12700 pfx_len = strlen(prefixes[i]);
12701 /* no auto-attach case of, e.g., SEC("raw_tp") */
12702 if (prog->sec_name[pfx_len] == '\0')
12703 return 0;
12704
12705 if (prog->sec_name[pfx_len] != '/')
12706 continue;
12707
12708 tp_name = prog->sec_name + pfx_len + 1;
12709 break;
12710 }
12711
12712 if (!tp_name) {
12713 pr_warn("prog '%s': invalid section name '%s'\n",
12714 prog->name, prog->sec_name);
12715 return -EINVAL;
12716 }
12717
12718 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12719 return libbpf_get_error(*link);
12720 }
12721
12722 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12723 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12724 const struct bpf_trace_opts *opts)
12725 {
12726 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12727 struct bpf_link *link;
12728 int prog_fd, pfd;
12729
12730 if (!OPTS_VALID(opts, bpf_trace_opts))
12731 return libbpf_err_ptr(-EINVAL);
12732
12733 prog_fd = bpf_program__fd(prog);
12734 if (prog_fd < 0) {
12735 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12736 return libbpf_err_ptr(-EINVAL);
12737 }
12738
12739 link = calloc(1, sizeof(*link));
12740 if (!link)
12741 return libbpf_err_ptr(-ENOMEM);
12742 link->detach = &bpf_link__detach_fd;
12743
12744 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12745 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12746 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12747 if (pfd < 0) {
12748 pfd = -errno;
12749 free(link);
12750 pr_warn("prog '%s': failed to attach: %s\n",
12751 prog->name, errstr(pfd));
12752 return libbpf_err_ptr(pfd);
12753 }
12754 link->fd = pfd;
12755 return link;
12756 }
12757
bpf_program__attach_trace(const struct bpf_program * prog)12758 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12759 {
12760 return bpf_program__attach_btf_id(prog, NULL);
12761 }
12762
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12763 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12764 const struct bpf_trace_opts *opts)
12765 {
12766 return bpf_program__attach_btf_id(prog, opts);
12767 }
12768
bpf_program__attach_lsm(const struct bpf_program * prog)12769 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12770 {
12771 return bpf_program__attach_btf_id(prog, NULL);
12772 }
12773
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12774 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12775 {
12776 *link = bpf_program__attach_trace(prog);
12777 return libbpf_get_error(*link);
12778 }
12779
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12780 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12781 {
12782 *link = bpf_program__attach_lsm(prog);
12783 return libbpf_get_error(*link);
12784 }
12785
12786 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)12787 bpf_program_attach_fd(const struct bpf_program *prog,
12788 int target_fd, const char *target_name,
12789 const struct bpf_link_create_opts *opts)
12790 {
12791 enum bpf_attach_type attach_type;
12792 struct bpf_link *link;
12793 int prog_fd, link_fd;
12794
12795 prog_fd = bpf_program__fd(prog);
12796 if (prog_fd < 0) {
12797 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12798 return libbpf_err_ptr(-EINVAL);
12799 }
12800
12801 link = calloc(1, sizeof(*link));
12802 if (!link)
12803 return libbpf_err_ptr(-ENOMEM);
12804 link->detach = &bpf_link__detach_fd;
12805
12806 attach_type = bpf_program__expected_attach_type(prog);
12807 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12808 if (link_fd < 0) {
12809 link_fd = -errno;
12810 free(link);
12811 pr_warn("prog '%s': failed to attach to %s: %s\n",
12812 prog->name, target_name,
12813 errstr(link_fd));
12814 return libbpf_err_ptr(link_fd);
12815 }
12816 link->fd = link_fd;
12817 return link;
12818 }
12819
12820 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)12821 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12822 {
12823 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12824 }
12825
12826 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)12827 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12828 {
12829 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12830 }
12831
12832 struct bpf_link *
bpf_program__attach_sockmap(const struct bpf_program * prog,int map_fd)12833 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd)
12834 {
12835 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL);
12836 }
12837
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)12838 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12839 {
12840 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12841 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12842 }
12843
12844 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)12845 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12846 const struct bpf_tcx_opts *opts)
12847 {
12848 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12849 __u32 relative_id;
12850 int relative_fd;
12851
12852 if (!OPTS_VALID(opts, bpf_tcx_opts))
12853 return libbpf_err_ptr(-EINVAL);
12854
12855 relative_id = OPTS_GET(opts, relative_id, 0);
12856 relative_fd = OPTS_GET(opts, relative_fd, 0);
12857
12858 /* validate we don't have unexpected combinations of non-zero fields */
12859 if (!ifindex) {
12860 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12861 prog->name);
12862 return libbpf_err_ptr(-EINVAL);
12863 }
12864 if (relative_fd && relative_id) {
12865 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12866 prog->name);
12867 return libbpf_err_ptr(-EINVAL);
12868 }
12869
12870 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12871 link_create_opts.tcx.relative_fd = relative_fd;
12872 link_create_opts.tcx.relative_id = relative_id;
12873 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12874
12875 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12876 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12877 }
12878
12879 struct bpf_link *
bpf_program__attach_netkit(const struct bpf_program * prog,int ifindex,const struct bpf_netkit_opts * opts)12880 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12881 const struct bpf_netkit_opts *opts)
12882 {
12883 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12884 __u32 relative_id;
12885 int relative_fd;
12886
12887 if (!OPTS_VALID(opts, bpf_netkit_opts))
12888 return libbpf_err_ptr(-EINVAL);
12889
12890 relative_id = OPTS_GET(opts, relative_id, 0);
12891 relative_fd = OPTS_GET(opts, relative_fd, 0);
12892
12893 /* validate we don't have unexpected combinations of non-zero fields */
12894 if (!ifindex) {
12895 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12896 prog->name);
12897 return libbpf_err_ptr(-EINVAL);
12898 }
12899 if (relative_fd && relative_id) {
12900 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12901 prog->name);
12902 return libbpf_err_ptr(-EINVAL);
12903 }
12904
12905 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12906 link_create_opts.netkit.relative_fd = relative_fd;
12907 link_create_opts.netkit.relative_id = relative_id;
12908 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12909
12910 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12911 }
12912
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)12913 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12914 int target_fd,
12915 const char *attach_func_name)
12916 {
12917 int btf_id;
12918
12919 if (!!target_fd != !!attach_func_name) {
12920 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12921 prog->name);
12922 return libbpf_err_ptr(-EINVAL);
12923 }
12924
12925 if (prog->type != BPF_PROG_TYPE_EXT) {
12926 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n",
12927 prog->name);
12928 return libbpf_err_ptr(-EINVAL);
12929 }
12930
12931 if (target_fd) {
12932 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12933
12934 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd);
12935 if (btf_id < 0)
12936 return libbpf_err_ptr(btf_id);
12937
12938 target_opts.target_btf_id = btf_id;
12939
12940 return bpf_program_attach_fd(prog, target_fd, "freplace",
12941 &target_opts);
12942 } else {
12943 /* no target, so use raw_tracepoint_open for compatibility
12944 * with old kernels
12945 */
12946 return bpf_program__attach_trace(prog);
12947 }
12948 }
12949
12950 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12951 bpf_program__attach_iter(const struct bpf_program *prog,
12952 const struct bpf_iter_attach_opts *opts)
12953 {
12954 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12955 struct bpf_link *link;
12956 int prog_fd, link_fd;
12957 __u32 target_fd = 0;
12958
12959 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12960 return libbpf_err_ptr(-EINVAL);
12961
12962 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12963 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12964
12965 prog_fd = bpf_program__fd(prog);
12966 if (prog_fd < 0) {
12967 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12968 return libbpf_err_ptr(-EINVAL);
12969 }
12970
12971 link = calloc(1, sizeof(*link));
12972 if (!link)
12973 return libbpf_err_ptr(-ENOMEM);
12974 link->detach = &bpf_link__detach_fd;
12975
12976 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12977 &link_create_opts);
12978 if (link_fd < 0) {
12979 link_fd = -errno;
12980 free(link);
12981 pr_warn("prog '%s': failed to attach to iterator: %s\n",
12982 prog->name, errstr(link_fd));
12983 return libbpf_err_ptr(link_fd);
12984 }
12985 link->fd = link_fd;
12986 return link;
12987 }
12988
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12989 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12990 {
12991 *link = bpf_program__attach_iter(prog, NULL);
12992 return libbpf_get_error(*link);
12993 }
12994
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)12995 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12996 const struct bpf_netfilter_opts *opts)
12997 {
12998 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12999 struct bpf_link *link;
13000 int prog_fd, link_fd;
13001
13002 if (!OPTS_VALID(opts, bpf_netfilter_opts))
13003 return libbpf_err_ptr(-EINVAL);
13004
13005 prog_fd = bpf_program__fd(prog);
13006 if (prog_fd < 0) {
13007 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13008 return libbpf_err_ptr(-EINVAL);
13009 }
13010
13011 link = calloc(1, sizeof(*link));
13012 if (!link)
13013 return libbpf_err_ptr(-ENOMEM);
13014
13015 link->detach = &bpf_link__detach_fd;
13016
13017 lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
13018 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
13019 lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
13020 lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
13021
13022 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
13023 if (link_fd < 0) {
13024 link_fd = -errno;
13025 free(link);
13026 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
13027 prog->name, errstr(link_fd));
13028 return libbpf_err_ptr(link_fd);
13029 }
13030 link->fd = link_fd;
13031
13032 return link;
13033 }
13034
bpf_program__attach(const struct bpf_program * prog)13035 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
13036 {
13037 struct bpf_link *link = NULL;
13038 int err;
13039
13040 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13041 return libbpf_err_ptr(-EOPNOTSUPP);
13042
13043 if (bpf_program__fd(prog) < 0) {
13044 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
13045 prog->name);
13046 return libbpf_err_ptr(-EINVAL);
13047 }
13048
13049 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
13050 if (err)
13051 return libbpf_err_ptr(err);
13052
13053 /* When calling bpf_program__attach() explicitly, auto-attach support
13054 * is expected to work, so NULL returned link is considered an error.
13055 * This is different for skeleton's attach, see comment in
13056 * bpf_object__attach_skeleton().
13057 */
13058 if (!link)
13059 return libbpf_err_ptr(-EOPNOTSUPP);
13060
13061 return link;
13062 }
13063
13064 struct bpf_link_struct_ops {
13065 struct bpf_link link;
13066 int map_fd;
13067 };
13068
bpf_link__detach_struct_ops(struct bpf_link * link)13069 static int bpf_link__detach_struct_ops(struct bpf_link *link)
13070 {
13071 struct bpf_link_struct_ops *st_link;
13072 __u32 zero = 0;
13073
13074 st_link = container_of(link, struct bpf_link_struct_ops, link);
13075
13076 if (st_link->map_fd < 0)
13077 /* w/o a real link */
13078 return bpf_map_delete_elem(link->fd, &zero);
13079
13080 return close(link->fd);
13081 }
13082
bpf_map__attach_struct_ops(const struct bpf_map * map)13083 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
13084 {
13085 struct bpf_link_struct_ops *link;
13086 __u32 zero = 0;
13087 int err, fd;
13088
13089 if (!bpf_map__is_struct_ops(map)) {
13090 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name);
13091 return libbpf_err_ptr(-EINVAL);
13092 }
13093
13094 if (map->fd < 0) {
13095 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
13096 return libbpf_err_ptr(-EINVAL);
13097 }
13098
13099 link = calloc(1, sizeof(*link));
13100 if (!link)
13101 return libbpf_err_ptr(-EINVAL);
13102
13103 /* kern_vdata should be prepared during the loading phase. */
13104 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13105 /* It can be EBUSY if the map has been used to create or
13106 * update a link before. We don't allow updating the value of
13107 * a struct_ops once it is set. That ensures that the value
13108 * never changed. So, it is safe to skip EBUSY.
13109 */
13110 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
13111 free(link);
13112 return libbpf_err_ptr(err);
13113 }
13114
13115 link->link.detach = bpf_link__detach_struct_ops;
13116
13117 if (!(map->def.map_flags & BPF_F_LINK)) {
13118 /* w/o a real link */
13119 link->link.fd = map->fd;
13120 link->map_fd = -1;
13121 return &link->link;
13122 }
13123
13124 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
13125 if (fd < 0) {
13126 free(link);
13127 return libbpf_err_ptr(fd);
13128 }
13129
13130 link->link.fd = fd;
13131 link->map_fd = map->fd;
13132
13133 return &link->link;
13134 }
13135
13136 /*
13137 * Swap the back struct_ops of a link with a new struct_ops map.
13138 */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)13139 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
13140 {
13141 struct bpf_link_struct_ops *st_ops_link;
13142 __u32 zero = 0;
13143 int err;
13144
13145 if (!bpf_map__is_struct_ops(map))
13146 return libbpf_err(-EINVAL);
13147
13148 if (map->fd < 0) {
13149 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
13150 return libbpf_err(-EINVAL);
13151 }
13152
13153 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
13154 /* Ensure the type of a link is correct */
13155 if (st_ops_link->map_fd < 0)
13156 return libbpf_err(-EINVAL);
13157
13158 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13159 /* It can be EBUSY if the map has been used to create or
13160 * update a link before. We don't allow updating the value of
13161 * a struct_ops once it is set. That ensures that the value
13162 * never changed. So, it is safe to skip EBUSY.
13163 */
13164 if (err && err != -EBUSY)
13165 return err;
13166
13167 err = bpf_link_update(link->fd, map->fd, NULL);
13168 if (err < 0)
13169 return err;
13170
13171 st_ops_link->map_fd = map->fd;
13172
13173 return 0;
13174 }
13175
13176 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
13177 void *private_data);
13178
13179 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)13180 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
13181 void **copy_mem, size_t *copy_size,
13182 bpf_perf_event_print_t fn, void *private_data)
13183 {
13184 struct perf_event_mmap_page *header = mmap_mem;
13185 __u64 data_head = ring_buffer_read_head(header);
13186 __u64 data_tail = header->data_tail;
13187 void *base = ((__u8 *)header) + page_size;
13188 int ret = LIBBPF_PERF_EVENT_CONT;
13189 struct perf_event_header *ehdr;
13190 size_t ehdr_size;
13191
13192 while (data_head != data_tail) {
13193 ehdr = base + (data_tail & (mmap_size - 1));
13194 ehdr_size = ehdr->size;
13195
13196 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
13197 void *copy_start = ehdr;
13198 size_t len_first = base + mmap_size - copy_start;
13199 size_t len_secnd = ehdr_size - len_first;
13200
13201 if (*copy_size < ehdr_size) {
13202 free(*copy_mem);
13203 *copy_mem = malloc(ehdr_size);
13204 if (!*copy_mem) {
13205 *copy_size = 0;
13206 ret = LIBBPF_PERF_EVENT_ERROR;
13207 break;
13208 }
13209 *copy_size = ehdr_size;
13210 }
13211
13212 memcpy(*copy_mem, copy_start, len_first);
13213 memcpy(*copy_mem + len_first, base, len_secnd);
13214 ehdr = *copy_mem;
13215 }
13216
13217 ret = fn(ehdr, private_data);
13218 data_tail += ehdr_size;
13219 if (ret != LIBBPF_PERF_EVENT_CONT)
13220 break;
13221 }
13222
13223 ring_buffer_write_tail(header, data_tail);
13224 return libbpf_err(ret);
13225 }
13226
13227 struct perf_buffer;
13228
13229 struct perf_buffer_params {
13230 struct perf_event_attr *attr;
13231 /* if event_cb is specified, it takes precendence */
13232 perf_buffer_event_fn event_cb;
13233 /* sample_cb and lost_cb are higher-level common-case callbacks */
13234 perf_buffer_sample_fn sample_cb;
13235 perf_buffer_lost_fn lost_cb;
13236 void *ctx;
13237 int cpu_cnt;
13238 int *cpus;
13239 int *map_keys;
13240 };
13241
13242 struct perf_cpu_buf {
13243 struct perf_buffer *pb;
13244 void *base; /* mmap()'ed memory */
13245 void *buf; /* for reconstructing segmented data */
13246 size_t buf_size;
13247 int fd;
13248 int cpu;
13249 int map_key;
13250 };
13251
13252 struct perf_buffer {
13253 perf_buffer_event_fn event_cb;
13254 perf_buffer_sample_fn sample_cb;
13255 perf_buffer_lost_fn lost_cb;
13256 void *ctx; /* passed into callbacks */
13257
13258 size_t page_size;
13259 size_t mmap_size;
13260 struct perf_cpu_buf **cpu_bufs;
13261 struct epoll_event *events;
13262 int cpu_cnt; /* number of allocated CPU buffers */
13263 int epoll_fd; /* perf event FD */
13264 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
13265 };
13266
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13267 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
13268 struct perf_cpu_buf *cpu_buf)
13269 {
13270 if (!cpu_buf)
13271 return;
13272 if (cpu_buf->base &&
13273 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
13274 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
13275 if (cpu_buf->fd >= 0) {
13276 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
13277 close(cpu_buf->fd);
13278 }
13279 free(cpu_buf->buf);
13280 free(cpu_buf);
13281 }
13282
perf_buffer__free(struct perf_buffer * pb)13283 void perf_buffer__free(struct perf_buffer *pb)
13284 {
13285 int i;
13286
13287 if (IS_ERR_OR_NULL(pb))
13288 return;
13289 if (pb->cpu_bufs) {
13290 for (i = 0; i < pb->cpu_cnt; i++) {
13291 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13292
13293 if (!cpu_buf)
13294 continue;
13295
13296 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13297 perf_buffer__free_cpu_buf(pb, cpu_buf);
13298 }
13299 free(pb->cpu_bufs);
13300 }
13301 if (pb->epoll_fd >= 0)
13302 close(pb->epoll_fd);
13303 free(pb->events);
13304 free(pb);
13305 }
13306
13307 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)13308 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13309 int cpu, int map_key)
13310 {
13311 struct perf_cpu_buf *cpu_buf;
13312 int err;
13313
13314 cpu_buf = calloc(1, sizeof(*cpu_buf));
13315 if (!cpu_buf)
13316 return ERR_PTR(-ENOMEM);
13317
13318 cpu_buf->pb = pb;
13319 cpu_buf->cpu = cpu;
13320 cpu_buf->map_key = map_key;
13321
13322 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13323 -1, PERF_FLAG_FD_CLOEXEC);
13324 if (cpu_buf->fd < 0) {
13325 err = -errno;
13326 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13327 cpu, errstr(err));
13328 goto error;
13329 }
13330
13331 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13332 PROT_READ | PROT_WRITE, MAP_SHARED,
13333 cpu_buf->fd, 0);
13334 if (cpu_buf->base == MAP_FAILED) {
13335 cpu_buf->base = NULL;
13336 err = -errno;
13337 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13338 cpu, errstr(err));
13339 goto error;
13340 }
13341
13342 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13343 err = -errno;
13344 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13345 cpu, errstr(err));
13346 goto error;
13347 }
13348
13349 return cpu_buf;
13350
13351 error:
13352 perf_buffer__free_cpu_buf(pb, cpu_buf);
13353 return (struct perf_cpu_buf *)ERR_PTR(err);
13354 }
13355
13356 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13357 struct perf_buffer_params *p);
13358
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)13359 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13360 perf_buffer_sample_fn sample_cb,
13361 perf_buffer_lost_fn lost_cb,
13362 void *ctx,
13363 const struct perf_buffer_opts *opts)
13364 {
13365 const size_t attr_sz = sizeof(struct perf_event_attr);
13366 struct perf_buffer_params p = {};
13367 struct perf_event_attr attr;
13368 __u32 sample_period;
13369
13370 if (!OPTS_VALID(opts, perf_buffer_opts))
13371 return libbpf_err_ptr(-EINVAL);
13372
13373 sample_period = OPTS_GET(opts, sample_period, 1);
13374 if (!sample_period)
13375 sample_period = 1;
13376
13377 memset(&attr, 0, attr_sz);
13378 attr.size = attr_sz;
13379 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13380 attr.type = PERF_TYPE_SOFTWARE;
13381 attr.sample_type = PERF_SAMPLE_RAW;
13382 attr.wakeup_events = sample_period;
13383
13384 p.attr = &attr;
13385 p.sample_cb = sample_cb;
13386 p.lost_cb = lost_cb;
13387 p.ctx = ctx;
13388
13389 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13390 }
13391
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)13392 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13393 struct perf_event_attr *attr,
13394 perf_buffer_event_fn event_cb, void *ctx,
13395 const struct perf_buffer_raw_opts *opts)
13396 {
13397 struct perf_buffer_params p = {};
13398
13399 if (!attr)
13400 return libbpf_err_ptr(-EINVAL);
13401
13402 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13403 return libbpf_err_ptr(-EINVAL);
13404
13405 p.attr = attr;
13406 p.event_cb = event_cb;
13407 p.ctx = ctx;
13408 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13409 p.cpus = OPTS_GET(opts, cpus, NULL);
13410 p.map_keys = OPTS_GET(opts, map_keys, NULL);
13411
13412 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13413 }
13414
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)13415 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13416 struct perf_buffer_params *p)
13417 {
13418 const char *online_cpus_file = "/sys/devices/system/cpu/online";
13419 struct bpf_map_info map;
13420 struct perf_buffer *pb;
13421 bool *online = NULL;
13422 __u32 map_info_len;
13423 int err, i, j, n;
13424
13425 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13426 pr_warn("page count should be power of two, but is %zu\n",
13427 page_cnt);
13428 return ERR_PTR(-EINVAL);
13429 }
13430
13431 /* best-effort sanity checks */
13432 memset(&map, 0, sizeof(map));
13433 map_info_len = sizeof(map);
13434 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13435 if (err) {
13436 err = -errno;
13437 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13438 * -EBADFD, -EFAULT, or -E2BIG on real error
13439 */
13440 if (err != -EINVAL) {
13441 pr_warn("failed to get map info for map FD %d: %s\n",
13442 map_fd, errstr(err));
13443 return ERR_PTR(err);
13444 }
13445 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13446 map_fd);
13447 } else {
13448 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13449 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13450 map.name);
13451 return ERR_PTR(-EINVAL);
13452 }
13453 }
13454
13455 pb = calloc(1, sizeof(*pb));
13456 if (!pb)
13457 return ERR_PTR(-ENOMEM);
13458
13459 pb->event_cb = p->event_cb;
13460 pb->sample_cb = p->sample_cb;
13461 pb->lost_cb = p->lost_cb;
13462 pb->ctx = p->ctx;
13463
13464 pb->page_size = getpagesize();
13465 pb->mmap_size = pb->page_size * page_cnt;
13466 pb->map_fd = map_fd;
13467
13468 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13469 if (pb->epoll_fd < 0) {
13470 err = -errno;
13471 pr_warn("failed to create epoll instance: %s\n",
13472 errstr(err));
13473 goto error;
13474 }
13475
13476 if (p->cpu_cnt > 0) {
13477 pb->cpu_cnt = p->cpu_cnt;
13478 } else {
13479 pb->cpu_cnt = libbpf_num_possible_cpus();
13480 if (pb->cpu_cnt < 0) {
13481 err = pb->cpu_cnt;
13482 goto error;
13483 }
13484 if (map.max_entries && map.max_entries < pb->cpu_cnt)
13485 pb->cpu_cnt = map.max_entries;
13486 }
13487
13488 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13489 if (!pb->events) {
13490 err = -ENOMEM;
13491 pr_warn("failed to allocate events: out of memory\n");
13492 goto error;
13493 }
13494 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13495 if (!pb->cpu_bufs) {
13496 err = -ENOMEM;
13497 pr_warn("failed to allocate buffers: out of memory\n");
13498 goto error;
13499 }
13500
13501 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13502 if (err) {
13503 pr_warn("failed to get online CPU mask: %s\n", errstr(err));
13504 goto error;
13505 }
13506
13507 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13508 struct perf_cpu_buf *cpu_buf;
13509 int cpu, map_key;
13510
13511 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13512 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13513
13514 /* in case user didn't explicitly requested particular CPUs to
13515 * be attached to, skip offline/not present CPUs
13516 */
13517 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13518 continue;
13519
13520 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13521 if (IS_ERR(cpu_buf)) {
13522 err = PTR_ERR(cpu_buf);
13523 goto error;
13524 }
13525
13526 pb->cpu_bufs[j] = cpu_buf;
13527
13528 err = bpf_map_update_elem(pb->map_fd, &map_key,
13529 &cpu_buf->fd, 0);
13530 if (err) {
13531 err = -errno;
13532 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13533 cpu, map_key, cpu_buf->fd,
13534 errstr(err));
13535 goto error;
13536 }
13537
13538 pb->events[j].events = EPOLLIN;
13539 pb->events[j].data.ptr = cpu_buf;
13540 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13541 &pb->events[j]) < 0) {
13542 err = -errno;
13543 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13544 cpu, cpu_buf->fd,
13545 errstr(err));
13546 goto error;
13547 }
13548 j++;
13549 }
13550 pb->cpu_cnt = j;
13551 free(online);
13552
13553 return pb;
13554
13555 error:
13556 free(online);
13557 if (pb)
13558 perf_buffer__free(pb);
13559 return ERR_PTR(err);
13560 }
13561
13562 struct perf_sample_raw {
13563 struct perf_event_header header;
13564 uint32_t size;
13565 char data[];
13566 };
13567
13568 struct perf_sample_lost {
13569 struct perf_event_header header;
13570 uint64_t id;
13571 uint64_t lost;
13572 uint64_t sample_id;
13573 };
13574
13575 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)13576 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13577 {
13578 struct perf_cpu_buf *cpu_buf = ctx;
13579 struct perf_buffer *pb = cpu_buf->pb;
13580 void *data = e;
13581
13582 /* user wants full control over parsing perf event */
13583 if (pb->event_cb)
13584 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13585
13586 switch (e->type) {
13587 case PERF_RECORD_SAMPLE: {
13588 struct perf_sample_raw *s = data;
13589
13590 if (pb->sample_cb)
13591 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13592 break;
13593 }
13594 case PERF_RECORD_LOST: {
13595 struct perf_sample_lost *s = data;
13596
13597 if (pb->lost_cb)
13598 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13599 break;
13600 }
13601 default:
13602 pr_warn("unknown perf sample type %d\n", e->type);
13603 return LIBBPF_PERF_EVENT_ERROR;
13604 }
13605 return LIBBPF_PERF_EVENT_CONT;
13606 }
13607
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13608 static int perf_buffer__process_records(struct perf_buffer *pb,
13609 struct perf_cpu_buf *cpu_buf)
13610 {
13611 enum bpf_perf_event_ret ret;
13612
13613 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13614 pb->page_size, &cpu_buf->buf,
13615 &cpu_buf->buf_size,
13616 perf_buffer__process_record, cpu_buf);
13617 if (ret != LIBBPF_PERF_EVENT_CONT)
13618 return ret;
13619 return 0;
13620 }
13621
perf_buffer__epoll_fd(const struct perf_buffer * pb)13622 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13623 {
13624 return pb->epoll_fd;
13625 }
13626
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)13627 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13628 {
13629 int i, cnt, err;
13630
13631 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13632 if (cnt < 0)
13633 return -errno;
13634
13635 for (i = 0; i < cnt; i++) {
13636 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13637
13638 err = perf_buffer__process_records(pb, cpu_buf);
13639 if (err) {
13640 pr_warn("error while processing records: %s\n", errstr(err));
13641 return libbpf_err(err);
13642 }
13643 }
13644 return cnt;
13645 }
13646
13647 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13648 * manager.
13649 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)13650 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13651 {
13652 return pb->cpu_cnt;
13653 }
13654
13655 /*
13656 * Return perf_event FD of a ring buffer in *buf_idx* slot of
13657 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13658 * select()/poll()/epoll() Linux syscalls.
13659 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)13660 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13661 {
13662 struct perf_cpu_buf *cpu_buf;
13663
13664 if (buf_idx >= pb->cpu_cnt)
13665 return libbpf_err(-EINVAL);
13666
13667 cpu_buf = pb->cpu_bufs[buf_idx];
13668 if (!cpu_buf)
13669 return libbpf_err(-ENOENT);
13670
13671 return cpu_buf->fd;
13672 }
13673
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)13674 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13675 {
13676 struct perf_cpu_buf *cpu_buf;
13677
13678 if (buf_idx >= pb->cpu_cnt)
13679 return libbpf_err(-EINVAL);
13680
13681 cpu_buf = pb->cpu_bufs[buf_idx];
13682 if (!cpu_buf)
13683 return libbpf_err(-ENOENT);
13684
13685 *buf = cpu_buf->base;
13686 *buf_size = pb->mmap_size;
13687 return 0;
13688 }
13689
13690 /*
13691 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13692 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13693 * consume, do nothing and return success.
13694 * Returns:
13695 * - 0 on success;
13696 * - <0 on failure.
13697 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)13698 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13699 {
13700 struct perf_cpu_buf *cpu_buf;
13701
13702 if (buf_idx >= pb->cpu_cnt)
13703 return libbpf_err(-EINVAL);
13704
13705 cpu_buf = pb->cpu_bufs[buf_idx];
13706 if (!cpu_buf)
13707 return libbpf_err(-ENOENT);
13708
13709 return perf_buffer__process_records(pb, cpu_buf);
13710 }
13711
perf_buffer__consume(struct perf_buffer * pb)13712 int perf_buffer__consume(struct perf_buffer *pb)
13713 {
13714 int i, err;
13715
13716 for (i = 0; i < pb->cpu_cnt; i++) {
13717 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13718
13719 if (!cpu_buf)
13720 continue;
13721
13722 err = perf_buffer__process_records(pb, cpu_buf);
13723 if (err) {
13724 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n",
13725 i, errstr(err));
13726 return libbpf_err(err);
13727 }
13728 }
13729 return 0;
13730 }
13731
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)13732 int bpf_program__set_attach_target(struct bpf_program *prog,
13733 int attach_prog_fd,
13734 const char *attach_func_name)
13735 {
13736 int btf_obj_fd = 0, btf_id = 0, err;
13737
13738 if (!prog || attach_prog_fd < 0)
13739 return libbpf_err(-EINVAL);
13740
13741 if (prog->obj->state >= OBJ_LOADED)
13742 return libbpf_err(-EINVAL);
13743
13744 if (attach_prog_fd && !attach_func_name) {
13745 /* remember attach_prog_fd and let bpf_program__load() find
13746 * BTF ID during the program load
13747 */
13748 prog->attach_prog_fd = attach_prog_fd;
13749 return 0;
13750 }
13751
13752 if (attach_prog_fd) {
13753 btf_id = libbpf_find_prog_btf_id(attach_func_name,
13754 attach_prog_fd, prog->obj->token_fd);
13755 if (btf_id < 0)
13756 return libbpf_err(btf_id);
13757 } else {
13758 if (!attach_func_name)
13759 return libbpf_err(-EINVAL);
13760
13761 /* load btf_vmlinux, if not yet */
13762 err = bpf_object__load_vmlinux_btf(prog->obj, true);
13763 if (err)
13764 return libbpf_err(err);
13765 err = find_kernel_btf_id(prog->obj, attach_func_name,
13766 prog->expected_attach_type,
13767 &btf_obj_fd, &btf_id);
13768 if (err)
13769 return libbpf_err(err);
13770 }
13771
13772 prog->attach_btf_id = btf_id;
13773 prog->attach_btf_obj_fd = btf_obj_fd;
13774 prog->attach_prog_fd = attach_prog_fd;
13775 return 0;
13776 }
13777
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)13778 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13779 {
13780 int err = 0, n, len, start, end = -1;
13781 bool *tmp;
13782
13783 *mask = NULL;
13784 *mask_sz = 0;
13785
13786 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13787 while (*s) {
13788 if (*s == ',' || *s == '\n') {
13789 s++;
13790 continue;
13791 }
13792 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13793 if (n <= 0 || n > 2) {
13794 pr_warn("Failed to get CPU range %s: %d\n", s, n);
13795 err = -EINVAL;
13796 goto cleanup;
13797 } else if (n == 1) {
13798 end = start;
13799 }
13800 if (start < 0 || start > end) {
13801 pr_warn("Invalid CPU range [%d,%d] in %s\n",
13802 start, end, s);
13803 err = -EINVAL;
13804 goto cleanup;
13805 }
13806 tmp = realloc(*mask, end + 1);
13807 if (!tmp) {
13808 err = -ENOMEM;
13809 goto cleanup;
13810 }
13811 *mask = tmp;
13812 memset(tmp + *mask_sz, 0, start - *mask_sz);
13813 memset(tmp + start, 1, end - start + 1);
13814 *mask_sz = end + 1;
13815 s += len;
13816 }
13817 if (!*mask_sz) {
13818 pr_warn("Empty CPU range\n");
13819 return -EINVAL;
13820 }
13821 return 0;
13822 cleanup:
13823 free(*mask);
13824 *mask = NULL;
13825 return err;
13826 }
13827
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)13828 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13829 {
13830 int fd, err = 0, len;
13831 char buf[128];
13832
13833 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13834 if (fd < 0) {
13835 err = -errno;
13836 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err));
13837 return err;
13838 }
13839 len = read(fd, buf, sizeof(buf));
13840 close(fd);
13841 if (len <= 0) {
13842 err = len ? -errno : -EINVAL;
13843 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err));
13844 return err;
13845 }
13846 if (len >= sizeof(buf)) {
13847 pr_warn("CPU mask is too big in file %s\n", fcpu);
13848 return -E2BIG;
13849 }
13850 buf[len] = '\0';
13851
13852 return parse_cpu_mask_str(buf, mask, mask_sz);
13853 }
13854
libbpf_num_possible_cpus(void)13855 int libbpf_num_possible_cpus(void)
13856 {
13857 static const char *fcpu = "/sys/devices/system/cpu/possible";
13858 static int cpus;
13859 int err, n, i, tmp_cpus;
13860 bool *mask;
13861
13862 tmp_cpus = READ_ONCE(cpus);
13863 if (tmp_cpus > 0)
13864 return tmp_cpus;
13865
13866 err = parse_cpu_mask_file(fcpu, &mask, &n);
13867 if (err)
13868 return libbpf_err(err);
13869
13870 tmp_cpus = 0;
13871 for (i = 0; i < n; i++) {
13872 if (mask[i])
13873 tmp_cpus++;
13874 }
13875 free(mask);
13876
13877 WRITE_ONCE(cpus, tmp_cpus);
13878 return tmp_cpus;
13879 }
13880
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt,size_t map_skel_sz)13881 static int populate_skeleton_maps(const struct bpf_object *obj,
13882 struct bpf_map_skeleton *maps,
13883 size_t map_cnt, size_t map_skel_sz)
13884 {
13885 int i;
13886
13887 for (i = 0; i < map_cnt; i++) {
13888 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz;
13889 struct bpf_map **map = map_skel->map;
13890 const char *name = map_skel->name;
13891 void **mmaped = map_skel->mmaped;
13892
13893 *map = bpf_object__find_map_by_name(obj, name);
13894 if (!*map) {
13895 pr_warn("failed to find skeleton map '%s'\n", name);
13896 return -ESRCH;
13897 }
13898
13899 /* externs shouldn't be pre-setup from user code */
13900 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13901 *mmaped = (*map)->mmaped;
13902 }
13903 return 0;
13904 }
13905
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt,size_t prog_skel_sz)13906 static int populate_skeleton_progs(const struct bpf_object *obj,
13907 struct bpf_prog_skeleton *progs,
13908 size_t prog_cnt, size_t prog_skel_sz)
13909 {
13910 int i;
13911
13912 for (i = 0; i < prog_cnt; i++) {
13913 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz;
13914 struct bpf_program **prog = prog_skel->prog;
13915 const char *name = prog_skel->name;
13916
13917 *prog = bpf_object__find_program_by_name(obj, name);
13918 if (!*prog) {
13919 pr_warn("failed to find skeleton program '%s'\n", name);
13920 return -ESRCH;
13921 }
13922 }
13923 return 0;
13924 }
13925
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)13926 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13927 const struct bpf_object_open_opts *opts)
13928 {
13929 struct bpf_object *obj;
13930 int err;
13931
13932 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts);
13933 if (IS_ERR(obj)) {
13934 err = PTR_ERR(obj);
13935 pr_warn("failed to initialize skeleton BPF object '%s': %s\n",
13936 s->name, errstr(err));
13937 return libbpf_err(err);
13938 }
13939
13940 *s->obj = obj;
13941 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz);
13942 if (err) {
13943 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err));
13944 return libbpf_err(err);
13945 }
13946
13947 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13948 if (err) {
13949 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err));
13950 return libbpf_err(err);
13951 }
13952
13953 return 0;
13954 }
13955
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13956 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13957 {
13958 int err, len, var_idx, i;
13959 const char *var_name;
13960 const struct bpf_map *map;
13961 struct btf *btf;
13962 __u32 map_type_id;
13963 const struct btf_type *map_type, *var_type;
13964 const struct bpf_var_skeleton *var_skel;
13965 struct btf_var_secinfo *var;
13966
13967 if (!s->obj)
13968 return libbpf_err(-EINVAL);
13969
13970 btf = bpf_object__btf(s->obj);
13971 if (!btf) {
13972 pr_warn("subskeletons require BTF at runtime (object %s)\n",
13973 bpf_object__name(s->obj));
13974 return libbpf_err(-errno);
13975 }
13976
13977 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz);
13978 if (err) {
13979 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
13980 return libbpf_err(err);
13981 }
13982
13983 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13984 if (err) {
13985 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
13986 return libbpf_err(err);
13987 }
13988
13989 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13990 var_skel = (void *)s->vars + var_idx * s->var_skel_sz;
13991 map = *var_skel->map;
13992 map_type_id = bpf_map__btf_value_type_id(map);
13993 map_type = btf__type_by_id(btf, map_type_id);
13994
13995 if (!btf_is_datasec(map_type)) {
13996 pr_warn("type for map '%1$s' is not a datasec: %2$s\n",
13997 bpf_map__name(map),
13998 __btf_kind_str(btf_kind(map_type)));
13999 return libbpf_err(-EINVAL);
14000 }
14001
14002 len = btf_vlen(map_type);
14003 var = btf_var_secinfos(map_type);
14004 for (i = 0; i < len; i++, var++) {
14005 var_type = btf__type_by_id(btf, var->type);
14006 var_name = btf__name_by_offset(btf, var_type->name_off);
14007 if (strcmp(var_name, var_skel->name) == 0) {
14008 *var_skel->addr = map->mmaped + var->offset;
14009 break;
14010 }
14011 }
14012 }
14013 return 0;
14014 }
14015
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)14016 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
14017 {
14018 if (!s)
14019 return;
14020 free(s->maps);
14021 free(s->progs);
14022 free(s->vars);
14023 free(s);
14024 }
14025
bpf_object__load_skeleton(struct bpf_object_skeleton * s)14026 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
14027 {
14028 int i, err;
14029
14030 err = bpf_object__load(*s->obj);
14031 if (err) {
14032 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err));
14033 return libbpf_err(err);
14034 }
14035
14036 for (i = 0; i < s->map_cnt; i++) {
14037 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14038 struct bpf_map *map = *map_skel->map;
14039
14040 if (!map_skel->mmaped)
14041 continue;
14042
14043 *map_skel->mmaped = map->mmaped;
14044 }
14045
14046 return 0;
14047 }
14048
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)14049 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
14050 {
14051 int i, err;
14052
14053 for (i = 0; i < s->prog_cnt; i++) {
14054 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14055 struct bpf_program *prog = *prog_skel->prog;
14056 struct bpf_link **link = prog_skel->link;
14057
14058 if (!prog->autoload || !prog->autoattach)
14059 continue;
14060
14061 /* auto-attaching not supported for this program */
14062 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
14063 continue;
14064
14065 /* if user already set the link manually, don't attempt auto-attach */
14066 if (*link)
14067 continue;
14068
14069 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
14070 if (err) {
14071 pr_warn("prog '%s': failed to auto-attach: %s\n",
14072 bpf_program__name(prog), errstr(err));
14073 return libbpf_err(err);
14074 }
14075
14076 /* It's possible that for some SEC() definitions auto-attach
14077 * is supported in some cases (e.g., if definition completely
14078 * specifies target information), but is not in other cases.
14079 * SEC("uprobe") is one such case. If user specified target
14080 * binary and function name, such BPF program can be
14081 * auto-attached. But if not, it shouldn't trigger skeleton's
14082 * attach to fail. It should just be skipped.
14083 * attach_fn signals such case with returning 0 (no error) and
14084 * setting link to NULL.
14085 */
14086 }
14087
14088
14089 for (i = 0; i < s->map_cnt; i++) {
14090 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14091 struct bpf_map *map = *map_skel->map;
14092 struct bpf_link **link;
14093
14094 if (!map->autocreate || !map->autoattach)
14095 continue;
14096
14097 /* only struct_ops maps can be attached */
14098 if (!bpf_map__is_struct_ops(map))
14099 continue;
14100
14101 /* skeleton is created with earlier version of bpftool, notify user */
14102 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) {
14103 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n",
14104 bpf_map__name(map));
14105 continue;
14106 }
14107
14108 link = map_skel->link;
14109 if (!link) {
14110 pr_warn("map '%s': BPF map skeleton link is uninitialized\n",
14111 bpf_map__name(map));
14112 continue;
14113 }
14114
14115 if (*link)
14116 continue;
14117
14118 *link = bpf_map__attach_struct_ops(map);
14119 if (!*link) {
14120 err = -errno;
14121 pr_warn("map '%s': failed to auto-attach: %s\n",
14122 bpf_map__name(map), errstr(err));
14123 return libbpf_err(err);
14124 }
14125 }
14126
14127 return 0;
14128 }
14129
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)14130 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
14131 {
14132 int i;
14133
14134 for (i = 0; i < s->prog_cnt; i++) {
14135 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14136 struct bpf_link **link = prog_skel->link;
14137
14138 bpf_link__destroy(*link);
14139 *link = NULL;
14140 }
14141
14142 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton))
14143 return;
14144
14145 for (i = 0; i < s->map_cnt; i++) {
14146 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14147 struct bpf_link **link = map_skel->link;
14148
14149 if (link) {
14150 bpf_link__destroy(*link);
14151 *link = NULL;
14152 }
14153 }
14154 }
14155
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)14156 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
14157 {
14158 if (!s)
14159 return;
14160
14161 bpf_object__detach_skeleton(s);
14162 if (s->obj)
14163 bpf_object__close(*s->obj);
14164 free(s->maps);
14165 free(s->progs);
14166 free(s);
14167 }
14168