xref: /linux/arch/x86/net/bpf_jit_comp.c (revision 547c5775a742d9c83891b629b75d1d4c8e88d8c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 #include <asm/unwind.h>
20 #include <asm/cfi.h>
21 
22 static bool all_callee_regs_used[4] = {true, true, true, true};
23 
emit_code(u8 * ptr,u32 bytes,unsigned int len)24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
25 {
26 	if (len == 1)
27 		*ptr = bytes;
28 	else if (len == 2)
29 		*(u16 *)ptr = bytes;
30 	else {
31 		*(u32 *)ptr = bytes;
32 		barrier();
33 	}
34 	return ptr + len;
35 }
36 
37 #define EMIT(bytes, len) \
38 	do { prog = emit_code(prog, bytes, len); } while (0)
39 
40 #define EMIT1(b1)		EMIT(b1, 1)
41 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
42 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
43 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
44 #define EMIT5(b1, b2, b3, b4, b5) \
45 	do { EMIT1(b1); EMIT4(b2, b3, b4, b5); } while (0)
46 
47 #define EMIT1_off32(b1, off) \
48 	do { EMIT1(b1); EMIT(off, 4); } while (0)
49 #define EMIT2_off32(b1, b2, off) \
50 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
51 #define EMIT3_off32(b1, b2, b3, off) \
52 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
53 #define EMIT4_off32(b1, b2, b3, b4, off) \
54 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
55 
56 #ifdef CONFIG_X86_KERNEL_IBT
57 #define EMIT_ENDBR()		EMIT(gen_endbr(), 4)
58 #define EMIT_ENDBR_POISON()	EMIT(gen_endbr_poison(), 4)
59 #else
60 #define EMIT_ENDBR()
61 #define EMIT_ENDBR_POISON()
62 #endif
63 
is_imm8(int value)64 static bool is_imm8(int value)
65 {
66 	return value <= 127 && value >= -128;
67 }
68 
69 /*
70  * Let us limit the positive offset to be <= 123.
71  * This is to ensure eventual jit convergence For the following patterns:
72  * ...
73  * pass4, final_proglen=4391:
74  *   ...
75  *   20e:    48 85 ff                test   rdi,rdi
76  *   211:    74 7d                   je     0x290
77  *   213:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
78  *   ...
79  *   289:    48 85 ff                test   rdi,rdi
80  *   28c:    74 17                   je     0x2a5
81  *   28e:    e9 7f ff ff ff          jmp    0x212
82  *   293:    bf 03 00 00 00          mov    edi,0x3
83  * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
84  * and insn at 0x28e is 5-byte jmp insn with offset -129.
85  *
86  * pass5, final_proglen=4392:
87  *   ...
88  *   20e:    48 85 ff                test   rdi,rdi
89  *   211:    0f 84 80 00 00 00       je     0x297
90  *   217:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
91  *   ...
92  *   28d:    48 85 ff                test   rdi,rdi
93  *   290:    74 1a                   je     0x2ac
94  *   292:    eb 84                   jmp    0x218
95  *   294:    bf 03 00 00 00          mov    edi,0x3
96  * Note that insn at 0x211 is 6-byte cond jump insn now since its offset
97  * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
98  * At the same time, insn at 0x292 is a 2-byte insn since its offset is
99  * -124.
100  *
101  * pass6 will repeat the same code as in pass4 and this will prevent
102  * eventual convergence.
103  *
104  * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
105  * cycle in the above. In the above example je offset <= 0x7c should work.
106  *
107  * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
108  * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
109  * avoid no convergence issue.
110  *
111  * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
112  * to maximum 123 (0x7b). This way, the jit pass can eventually converge.
113  */
is_imm8_jmp_offset(int value)114 static bool is_imm8_jmp_offset(int value)
115 {
116 	return value <= 123 && value >= -128;
117 }
118 
is_simm32(s64 value)119 static bool is_simm32(s64 value)
120 {
121 	return value == (s64)(s32)value;
122 }
123 
is_uimm32(u64 value)124 static bool is_uimm32(u64 value)
125 {
126 	return value == (u64)(u32)value;
127 }
128 
129 /* mov dst, src */
130 #define EMIT_mov(DST, SRC)								 \
131 	do {										 \
132 		if (DST != SRC)								 \
133 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
134 	} while (0)
135 
bpf_size_to_x86_bytes(int bpf_size)136 static int bpf_size_to_x86_bytes(int bpf_size)
137 {
138 	if (bpf_size == BPF_W)
139 		return 4;
140 	else if (bpf_size == BPF_H)
141 		return 2;
142 	else if (bpf_size == BPF_B)
143 		return 1;
144 	else if (bpf_size == BPF_DW)
145 		return 4; /* imm32 */
146 	else
147 		return 0;
148 }
149 
150 /*
151  * List of x86 cond jumps opcodes (. + s8)
152  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
153  */
154 #define X86_JB  0x72
155 #define X86_JAE 0x73
156 #define X86_JE  0x74
157 #define X86_JNE 0x75
158 #define X86_JBE 0x76
159 #define X86_JA  0x77
160 #define X86_JL  0x7C
161 #define X86_JGE 0x7D
162 #define X86_JLE 0x7E
163 #define X86_JG  0x7F
164 
165 /* Pick a register outside of BPF range for JIT internal work */
166 #define AUX_REG (MAX_BPF_JIT_REG + 1)
167 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
168 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3)
169 
170 /*
171  * The following table maps BPF registers to x86-64 registers.
172  *
173  * x86-64 register R12 is unused, since if used as base address
174  * register in load/store instructions, it always needs an
175  * extra byte of encoding and is callee saved.
176  *
177  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
178  * trampoline. x86-64 register R10 is used for blinding (if enabled).
179  */
180 static const int reg2hex[] = {
181 	[BPF_REG_0] = 0,  /* RAX */
182 	[BPF_REG_1] = 7,  /* RDI */
183 	[BPF_REG_2] = 6,  /* RSI */
184 	[BPF_REG_3] = 2,  /* RDX */
185 	[BPF_REG_4] = 1,  /* RCX */
186 	[BPF_REG_5] = 0,  /* R8  */
187 	[BPF_REG_6] = 3,  /* RBX callee saved */
188 	[BPF_REG_7] = 5,  /* R13 callee saved */
189 	[BPF_REG_8] = 6,  /* R14 callee saved */
190 	[BPF_REG_9] = 7,  /* R15 callee saved */
191 	[BPF_REG_FP] = 5, /* RBP readonly */
192 	[BPF_REG_AX] = 2, /* R10 temp register */
193 	[AUX_REG] = 3,    /* R11 temp register */
194 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
195 	[X86_REG_R12] = 4, /* R12 callee saved */
196 };
197 
198 static const int reg2pt_regs[] = {
199 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
200 	[BPF_REG_1] = offsetof(struct pt_regs, di),
201 	[BPF_REG_2] = offsetof(struct pt_regs, si),
202 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
203 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
204 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
205 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
206 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
207 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
208 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
209 };
210 
211 /*
212  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
213  * which need extra byte of encoding.
214  * rax,rcx,...,rbp have simpler encoding
215  */
is_ereg(u32 reg)216 static bool is_ereg(u32 reg)
217 {
218 	return (1 << reg) & (BIT(BPF_REG_5) |
219 			     BIT(AUX_REG) |
220 			     BIT(BPF_REG_7) |
221 			     BIT(BPF_REG_8) |
222 			     BIT(BPF_REG_9) |
223 			     BIT(X86_REG_R9) |
224 			     BIT(X86_REG_R12) |
225 			     BIT(BPF_REG_AX));
226 }
227 
228 /*
229  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
230  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
231  * of encoding. al,cl,dl,bl have simpler encoding.
232  */
is_ereg_8l(u32 reg)233 static bool is_ereg_8l(u32 reg)
234 {
235 	return is_ereg(reg) ||
236 	    (1 << reg) & (BIT(BPF_REG_1) |
237 			  BIT(BPF_REG_2) |
238 			  BIT(BPF_REG_FP));
239 }
240 
is_axreg(u32 reg)241 static bool is_axreg(u32 reg)
242 {
243 	return reg == BPF_REG_0;
244 }
245 
246 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
add_1mod(u8 byte,u32 reg)247 static u8 add_1mod(u8 byte, u32 reg)
248 {
249 	if (is_ereg(reg))
250 		byte |= 1;
251 	return byte;
252 }
253 
add_2mod(u8 byte,u32 r1,u32 r2)254 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
255 {
256 	if (is_ereg(r1))
257 		byte |= 1;
258 	if (is_ereg(r2))
259 		byte |= 4;
260 	return byte;
261 }
262 
add_3mod(u8 byte,u32 r1,u32 r2,u32 index)263 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index)
264 {
265 	if (is_ereg(r1))
266 		byte |= 1;
267 	if (is_ereg(index))
268 		byte |= 2;
269 	if (is_ereg(r2))
270 		byte |= 4;
271 	return byte;
272 }
273 
274 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
add_1reg(u8 byte,u32 dst_reg)275 static u8 add_1reg(u8 byte, u32 dst_reg)
276 {
277 	return byte + reg2hex[dst_reg];
278 }
279 
280 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
add_2reg(u8 byte,u32 dst_reg,u32 src_reg)281 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
282 {
283 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
284 }
285 
286 /* Some 1-byte opcodes for binary ALU operations */
287 static u8 simple_alu_opcodes[] = {
288 	[BPF_ADD] = 0x01,
289 	[BPF_SUB] = 0x29,
290 	[BPF_AND] = 0x21,
291 	[BPF_OR] = 0x09,
292 	[BPF_XOR] = 0x31,
293 	[BPF_LSH] = 0xE0,
294 	[BPF_RSH] = 0xE8,
295 	[BPF_ARSH] = 0xF8,
296 };
297 
jit_fill_hole(void * area,unsigned int size)298 static void jit_fill_hole(void *area, unsigned int size)
299 {
300 	/* Fill whole space with INT3 instructions */
301 	memset(area, 0xcc, size);
302 }
303 
bpf_arch_text_invalidate(void * dst,size_t len)304 int bpf_arch_text_invalidate(void *dst, size_t len)
305 {
306 	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
307 }
308 
309 struct jit_context {
310 	int cleanup_addr; /* Epilogue code offset */
311 
312 	/*
313 	 * Program specific offsets of labels in the code; these rely on the
314 	 * JIT doing at least 2 passes, recording the position on the first
315 	 * pass, only to generate the correct offset on the second pass.
316 	 */
317 	int tail_call_direct_label;
318 	int tail_call_indirect_label;
319 };
320 
321 /* Maximum number of bytes emitted while JITing one eBPF insn */
322 #define BPF_MAX_INSN_SIZE	128
323 #define BPF_INSN_SAFETY		64
324 
325 /* Number of bytes emit_patch() needs to generate instructions */
326 #define X86_PATCH_SIZE		5
327 /* Number of bytes that will be skipped on tailcall */
328 #define X86_TAIL_CALL_OFFSET	(12 + ENDBR_INSN_SIZE)
329 
push_r9(u8 ** pprog)330 static void push_r9(u8 **pprog)
331 {
332 	u8 *prog = *pprog;
333 
334 	EMIT2(0x41, 0x51);   /* push r9 */
335 	*pprog = prog;
336 }
337 
pop_r9(u8 ** pprog)338 static void pop_r9(u8 **pprog)
339 {
340 	u8 *prog = *pprog;
341 
342 	EMIT2(0x41, 0x59);   /* pop r9 */
343 	*pprog = prog;
344 }
345 
push_r12(u8 ** pprog)346 static void push_r12(u8 **pprog)
347 {
348 	u8 *prog = *pprog;
349 
350 	EMIT2(0x41, 0x54);   /* push r12 */
351 	*pprog = prog;
352 }
353 
push_callee_regs(u8 ** pprog,bool * callee_regs_used)354 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
355 {
356 	u8 *prog = *pprog;
357 
358 	if (callee_regs_used[0])
359 		EMIT1(0x53);         /* push rbx */
360 	if (callee_regs_used[1])
361 		EMIT2(0x41, 0x55);   /* push r13 */
362 	if (callee_regs_used[2])
363 		EMIT2(0x41, 0x56);   /* push r14 */
364 	if (callee_regs_used[3])
365 		EMIT2(0x41, 0x57);   /* push r15 */
366 	*pprog = prog;
367 }
368 
pop_r12(u8 ** pprog)369 static void pop_r12(u8 **pprog)
370 {
371 	u8 *prog = *pprog;
372 
373 	EMIT2(0x41, 0x5C);   /* pop r12 */
374 	*pprog = prog;
375 }
376 
pop_callee_regs(u8 ** pprog,bool * callee_regs_used)377 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
378 {
379 	u8 *prog = *pprog;
380 
381 	if (callee_regs_used[3])
382 		EMIT2(0x41, 0x5F);   /* pop r15 */
383 	if (callee_regs_used[2])
384 		EMIT2(0x41, 0x5E);   /* pop r14 */
385 	if (callee_regs_used[1])
386 		EMIT2(0x41, 0x5D);   /* pop r13 */
387 	if (callee_regs_used[0])
388 		EMIT1(0x5B);         /* pop rbx */
389 	*pprog = prog;
390 }
391 
emit_nops(u8 ** pprog,int len)392 static void emit_nops(u8 **pprog, int len)
393 {
394 	u8 *prog = *pprog;
395 	int i, noplen;
396 
397 	while (len > 0) {
398 		noplen = len;
399 
400 		if (noplen > ASM_NOP_MAX)
401 			noplen = ASM_NOP_MAX;
402 
403 		for (i = 0; i < noplen; i++)
404 			EMIT1(x86_nops[noplen][i]);
405 		len -= noplen;
406 	}
407 
408 	*pprog = prog;
409 }
410 
411 /*
412  * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
413  * in arch/x86/kernel/alternative.c
414  */
415 static int emit_call(u8 **prog, void *func, void *ip);
416 
emit_fineibt(u8 ** pprog,u8 * ip,u32 hash,int arity)417 static void emit_fineibt(u8 **pprog, u8 *ip, u32 hash, int arity)
418 {
419 	u8 *prog = *pprog;
420 
421 	EMIT_ENDBR();
422 	EMIT3_off32(0x41, 0x81, 0xea, hash);		/* subl $hash, %r10d	*/
423 	if (cfi_bhi) {
424 		emit_call(&prog, __bhi_args[arity], ip + 11);
425 	} else {
426 		EMIT2(0x75, 0xf9);			/* jne.d8 .-7		*/
427 		EMIT3(0x0f, 0x1f, 0x00);		/* nop3			*/
428 	}
429 	EMIT_ENDBR_POISON();
430 
431 	*pprog = prog;
432 }
433 
emit_kcfi(u8 ** pprog,u32 hash)434 static void emit_kcfi(u8 **pprog, u32 hash)
435 {
436 	u8 *prog = *pprog;
437 
438 	EMIT1_off32(0xb8, hash);			/* movl $hash, %eax	*/
439 #ifdef CONFIG_CALL_PADDING
440 	EMIT1(0x90);
441 	EMIT1(0x90);
442 	EMIT1(0x90);
443 	EMIT1(0x90);
444 	EMIT1(0x90);
445 	EMIT1(0x90);
446 	EMIT1(0x90);
447 	EMIT1(0x90);
448 	EMIT1(0x90);
449 	EMIT1(0x90);
450 	EMIT1(0x90);
451 #endif
452 	EMIT_ENDBR();
453 
454 	*pprog = prog;
455 }
456 
emit_cfi(u8 ** pprog,u8 * ip,u32 hash,int arity)457 static void emit_cfi(u8 **pprog, u8 *ip, u32 hash, int arity)
458 {
459 	u8 *prog = *pprog;
460 
461 	switch (cfi_mode) {
462 	case CFI_FINEIBT:
463 		emit_fineibt(&prog, ip, hash, arity);
464 		break;
465 
466 	case CFI_KCFI:
467 		emit_kcfi(&prog, hash);
468 		break;
469 
470 	default:
471 		EMIT_ENDBR();
472 		break;
473 	}
474 
475 	*pprog = prog;
476 }
477 
emit_prologue_tail_call(u8 ** pprog,bool is_subprog)478 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog)
479 {
480 	u8 *prog = *pprog;
481 
482 	if (!is_subprog) {
483 		/* cmp rax, MAX_TAIL_CALL_CNT */
484 		EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT);
485 		EMIT2(X86_JA, 6);        /* ja 6 */
486 		/* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT.
487 		 * case1: entry of main prog.
488 		 * case2: tail callee of main prog.
489 		 */
490 		EMIT1(0x50);             /* push rax */
491 		/* Make rax as tail_call_cnt_ptr. */
492 		EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */
493 		EMIT2(0xEB, 1);          /* jmp 1 */
494 		/* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT.
495 		 * case: tail callee of subprog.
496 		 */
497 		EMIT1(0x50);             /* push rax */
498 		/* push tail_call_cnt_ptr */
499 		EMIT1(0x50);             /* push rax */
500 	} else { /* is_subprog */
501 		/* rax is tail_call_cnt_ptr. */
502 		EMIT1(0x50);             /* push rax */
503 		EMIT1(0x50);             /* push rax */
504 	}
505 
506 	*pprog = prog;
507 }
508 
509 /*
510  * Emit x86-64 prologue code for BPF program.
511  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
512  * while jumping to another program
513  */
emit_prologue(u8 ** pprog,u8 * ip,u32 stack_depth,bool ebpf_from_cbpf,bool tail_call_reachable,bool is_subprog,bool is_exception_cb)514 static void emit_prologue(u8 **pprog, u8 *ip, u32 stack_depth, bool ebpf_from_cbpf,
515 			  bool tail_call_reachable, bool is_subprog,
516 			  bool is_exception_cb)
517 {
518 	u8 *prog = *pprog;
519 
520 	if (is_subprog) {
521 		emit_cfi(&prog, ip, cfi_bpf_subprog_hash, 5);
522 	} else {
523 		emit_cfi(&prog, ip, cfi_bpf_hash, 1);
524 	}
525 	/* BPF trampoline can be made to work without these nops,
526 	 * but let's waste 5 bytes for now and optimize later
527 	 */
528 	emit_nops(&prog, X86_PATCH_SIZE);
529 	if (!ebpf_from_cbpf) {
530 		if (tail_call_reachable && !is_subprog)
531 			/* When it's the entry of the whole tailcall context,
532 			 * zeroing rax means initialising tail_call_cnt.
533 			 */
534 			EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */
535 		else
536 			/* Keep the same instruction layout. */
537 			emit_nops(&prog, 3);     /* nop3 */
538 	}
539 	/* Exception callback receives FP as third parameter */
540 	if (is_exception_cb) {
541 		EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
542 		EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
543 		/* The main frame must have exception_boundary as true, so we
544 		 * first restore those callee-saved regs from stack, before
545 		 * reusing the stack frame.
546 		 */
547 		pop_callee_regs(&prog, all_callee_regs_used);
548 		pop_r12(&prog);
549 		/* Reset the stack frame. */
550 		EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
551 	} else {
552 		EMIT1(0x55);             /* push rbp */
553 		EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
554 	}
555 
556 	/* X86_TAIL_CALL_OFFSET is here */
557 	EMIT_ENDBR();
558 
559 	/* sub rsp, rounded_stack_depth */
560 	if (stack_depth)
561 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
562 	if (tail_call_reachable)
563 		emit_prologue_tail_call(&prog, is_subprog);
564 	*pprog = prog;
565 }
566 
emit_patch(u8 ** pprog,void * func,void * ip,u8 opcode)567 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
568 {
569 	u8 *prog = *pprog;
570 	s64 offset;
571 
572 	offset = func - (ip + X86_PATCH_SIZE);
573 	if (!is_simm32(offset)) {
574 		pr_err("Target call %p is out of range\n", func);
575 		return -ERANGE;
576 	}
577 	EMIT1_off32(opcode, offset);
578 	*pprog = prog;
579 	return 0;
580 }
581 
emit_call(u8 ** pprog,void * func,void * ip)582 static int emit_call(u8 **pprog, void *func, void *ip)
583 {
584 	return emit_patch(pprog, func, ip, 0xE8);
585 }
586 
emit_rsb_call(u8 ** pprog,void * func,void * ip)587 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
588 {
589 	OPTIMIZER_HIDE_VAR(func);
590 	ip += x86_call_depth_emit_accounting(pprog, func, ip);
591 	return emit_patch(pprog, func, ip, 0xE8);
592 }
593 
emit_jump(u8 ** pprog,void * func,void * ip)594 static int emit_jump(u8 **pprog, void *func, void *ip)
595 {
596 	return emit_patch(pprog, func, ip, 0xE9);
597 }
598 
__bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)599 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
600 				void *old_addr, void *new_addr)
601 {
602 	const u8 *nop_insn = x86_nops[5];
603 	u8 old_insn[X86_PATCH_SIZE];
604 	u8 new_insn[X86_PATCH_SIZE];
605 	u8 *prog;
606 	int ret;
607 
608 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
609 	if (old_addr) {
610 		prog = old_insn;
611 		ret = t == BPF_MOD_CALL ?
612 		      emit_call(&prog, old_addr, ip) :
613 		      emit_jump(&prog, old_addr, ip);
614 		if (ret)
615 			return ret;
616 	}
617 
618 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
619 	if (new_addr) {
620 		prog = new_insn;
621 		ret = t == BPF_MOD_CALL ?
622 		      emit_call(&prog, new_addr, ip) :
623 		      emit_jump(&prog, new_addr, ip);
624 		if (ret)
625 			return ret;
626 	}
627 
628 	ret = -EBUSY;
629 	mutex_lock(&text_mutex);
630 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
631 		goto out;
632 	ret = 1;
633 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
634 		smp_text_poke_single(ip, new_insn, X86_PATCH_SIZE, NULL);
635 		ret = 0;
636 	}
637 out:
638 	mutex_unlock(&text_mutex);
639 	return ret;
640 }
641 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)642 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
643 		       void *old_addr, void *new_addr)
644 {
645 	if (!is_kernel_text((long)ip) &&
646 	    !is_bpf_text_address((long)ip))
647 		/* BPF poking in modules is not supported */
648 		return -EINVAL;
649 
650 	/*
651 	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
652 	 * with an ENDBR instruction.
653 	 */
654 	if (is_endbr(ip))
655 		ip += ENDBR_INSN_SIZE;
656 
657 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
658 }
659 
660 #define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
661 
emit_indirect_jump(u8 ** pprog,int reg,u8 * ip)662 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
663 {
664 	u8 *prog = *pprog;
665 
666 	if (cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) {
667 		OPTIMIZER_HIDE_VAR(reg);
668 		emit_jump(&prog, its_static_thunk(reg), ip);
669 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
670 		EMIT_LFENCE();
671 		EMIT2(0xFF, 0xE0 + reg);
672 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
673 		OPTIMIZER_HIDE_VAR(reg);
674 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
675 			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
676 		else
677 			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
678 	} else {
679 		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
680 		if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
681 			EMIT1(0xCC);		/* int3 */
682 	}
683 
684 	*pprog = prog;
685 }
686 
emit_return(u8 ** pprog,u8 * ip)687 static void emit_return(u8 **pprog, u8 *ip)
688 {
689 	u8 *prog = *pprog;
690 
691 	if (cpu_wants_rethunk()) {
692 		emit_jump(&prog, x86_return_thunk, ip);
693 	} else {
694 		EMIT1(0xC3);		/* ret */
695 		if (IS_ENABLED(CONFIG_MITIGATION_SLS))
696 			EMIT1(0xCC);	/* int3 */
697 	}
698 
699 	*pprog = prog;
700 }
701 
702 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack)	(-16 - round_up(stack, 8))
703 
704 /*
705  * Generate the following code:
706  *
707  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
708  *   if (index >= array->map.max_entries)
709  *     goto out;
710  *   if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
711  *     goto out;
712  *   prog = array->ptrs[index];
713  *   if (prog == NULL)
714  *     goto out;
715  *   goto *(prog->bpf_func + prologue_size);
716  * out:
717  */
emit_bpf_tail_call_indirect(struct bpf_prog * bpf_prog,u8 ** pprog,bool * callee_regs_used,u32 stack_depth,u8 * ip,struct jit_context * ctx)718 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
719 					u8 **pprog, bool *callee_regs_used,
720 					u32 stack_depth, u8 *ip,
721 					struct jit_context *ctx)
722 {
723 	int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
724 	u8 *prog = *pprog, *start = *pprog;
725 	int offset;
726 
727 	/*
728 	 * rdi - pointer to ctx
729 	 * rsi - pointer to bpf_array
730 	 * rdx - index in bpf_array
731 	 */
732 
733 	/*
734 	 * if (index >= array->map.max_entries)
735 	 *	goto out;
736 	 */
737 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
738 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
739 	      offsetof(struct bpf_array, map.max_entries));
740 
741 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
742 	EMIT2(X86_JBE, offset);                   /* jbe out */
743 
744 	/*
745 	 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
746 	 *	goto out;
747 	 */
748 	EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
749 	EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
750 
751 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
752 	EMIT2(X86_JAE, offset);                   /* jae out */
753 
754 	/* prog = array->ptrs[index]; */
755 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
756 		    offsetof(struct bpf_array, ptrs));
757 
758 	/*
759 	 * if (prog == NULL)
760 	 *	goto out;
761 	 */
762 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
763 
764 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
765 	EMIT2(X86_JE, offset);                    /* je out */
766 
767 	/* Inc tail_call_cnt if the slot is populated. */
768 	EMIT4(0x48, 0x83, 0x00, 0x01);            /* add qword ptr [rax], 1 */
769 
770 	if (bpf_prog->aux->exception_boundary) {
771 		pop_callee_regs(&prog, all_callee_regs_used);
772 		pop_r12(&prog);
773 	} else {
774 		pop_callee_regs(&prog, callee_regs_used);
775 		if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
776 			pop_r12(&prog);
777 	}
778 
779 	/* Pop tail_call_cnt_ptr. */
780 	EMIT1(0x58);                              /* pop rax */
781 	/* Pop tail_call_cnt, if it's main prog.
782 	 * Pop tail_call_cnt_ptr, if it's subprog.
783 	 */
784 	EMIT1(0x58);                              /* pop rax */
785 	if (stack_depth)
786 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
787 			    round_up(stack_depth, 8));
788 
789 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
790 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
791 	      offsetof(struct bpf_prog, bpf_func));
792 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
793 	      X86_TAIL_CALL_OFFSET);
794 	/*
795 	 * Now we're ready to jump into next BPF program
796 	 * rdi == ctx (1st arg)
797 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
798 	 */
799 	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
800 
801 	/* out: */
802 	ctx->tail_call_indirect_label = prog - start;
803 	*pprog = prog;
804 }
805 
emit_bpf_tail_call_direct(struct bpf_prog * bpf_prog,struct bpf_jit_poke_descriptor * poke,u8 ** pprog,u8 * ip,bool * callee_regs_used,u32 stack_depth,struct jit_context * ctx)806 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
807 				      struct bpf_jit_poke_descriptor *poke,
808 				      u8 **pprog, u8 *ip,
809 				      bool *callee_regs_used, u32 stack_depth,
810 				      struct jit_context *ctx)
811 {
812 	int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
813 	u8 *prog = *pprog, *start = *pprog;
814 	int offset;
815 
816 	/*
817 	 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
818 	 *	goto out;
819 	 */
820 	EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off);   /* mov rax, qword ptr [rbp - tcc_ptr_off] */
821 	EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT);   /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
822 
823 	offset = ctx->tail_call_direct_label - (prog + 2 - start);
824 	EMIT2(X86_JAE, offset);                       /* jae out */
825 
826 	poke->tailcall_bypass = ip + (prog - start);
827 	poke->adj_off = X86_TAIL_CALL_OFFSET;
828 	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
829 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
830 
831 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
832 		  poke->tailcall_bypass);
833 
834 	/* Inc tail_call_cnt if the slot is populated. */
835 	EMIT4(0x48, 0x83, 0x00, 0x01);                /* add qword ptr [rax], 1 */
836 
837 	if (bpf_prog->aux->exception_boundary) {
838 		pop_callee_regs(&prog, all_callee_regs_used);
839 		pop_r12(&prog);
840 	} else {
841 		pop_callee_regs(&prog, callee_regs_used);
842 		if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
843 			pop_r12(&prog);
844 	}
845 
846 	/* Pop tail_call_cnt_ptr. */
847 	EMIT1(0x58);                                  /* pop rax */
848 	/* Pop tail_call_cnt, if it's main prog.
849 	 * Pop tail_call_cnt_ptr, if it's subprog.
850 	 */
851 	EMIT1(0x58);                                  /* pop rax */
852 	if (stack_depth)
853 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
854 
855 	emit_nops(&prog, X86_PATCH_SIZE);
856 
857 	/* out: */
858 	ctx->tail_call_direct_label = prog - start;
859 
860 	*pprog = prog;
861 }
862 
bpf_tail_call_direct_fixup(struct bpf_prog * prog)863 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
864 {
865 	struct bpf_jit_poke_descriptor *poke;
866 	struct bpf_array *array;
867 	struct bpf_prog *target;
868 	int i, ret;
869 
870 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
871 		poke = &prog->aux->poke_tab[i];
872 		if (poke->aux && poke->aux != prog->aux)
873 			continue;
874 
875 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
876 
877 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
878 			continue;
879 
880 		array = container_of(poke->tail_call.map, struct bpf_array, map);
881 		mutex_lock(&array->aux->poke_mutex);
882 		target = array->ptrs[poke->tail_call.key];
883 		if (target) {
884 			ret = __bpf_arch_text_poke(poke->tailcall_target,
885 						   BPF_MOD_JUMP, NULL,
886 						   (u8 *)target->bpf_func +
887 						   poke->adj_off);
888 			BUG_ON(ret < 0);
889 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
890 						   BPF_MOD_JUMP,
891 						   (u8 *)poke->tailcall_target +
892 						   X86_PATCH_SIZE, NULL);
893 			BUG_ON(ret < 0);
894 		}
895 		WRITE_ONCE(poke->tailcall_target_stable, true);
896 		mutex_unlock(&array->aux->poke_mutex);
897 	}
898 }
899 
emit_mov_imm32(u8 ** pprog,bool sign_propagate,u32 dst_reg,const u32 imm32)900 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
901 			   u32 dst_reg, const u32 imm32)
902 {
903 	u8 *prog = *pprog;
904 	u8 b1, b2, b3;
905 
906 	/*
907 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
908 	 * (which zero-extends imm32) to save 2 bytes.
909 	 */
910 	if (sign_propagate && (s32)imm32 < 0) {
911 		/* 'mov %rax, imm32' sign extends imm32 */
912 		b1 = add_1mod(0x48, dst_reg);
913 		b2 = 0xC7;
914 		b3 = 0xC0;
915 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
916 		goto done;
917 	}
918 
919 	/*
920 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
921 	 * to save 3 bytes.
922 	 */
923 	if (imm32 == 0) {
924 		if (is_ereg(dst_reg))
925 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
926 		b2 = 0x31; /* xor */
927 		b3 = 0xC0;
928 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
929 		goto done;
930 	}
931 
932 	/* mov %eax, imm32 */
933 	if (is_ereg(dst_reg))
934 		EMIT1(add_1mod(0x40, dst_reg));
935 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
936 done:
937 	*pprog = prog;
938 }
939 
emit_mov_imm64(u8 ** pprog,u32 dst_reg,const u32 imm32_hi,const u32 imm32_lo)940 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
941 			   const u32 imm32_hi, const u32 imm32_lo)
942 {
943 	u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo;
944 	u8 *prog = *pprog;
945 
946 	if (is_uimm32(imm64)) {
947 		/*
948 		 * For emitting plain u32, where sign bit must not be
949 		 * propagated LLVM tends to load imm64 over mov32
950 		 * directly, so save couple of bytes by just doing
951 		 * 'mov %eax, imm32' instead.
952 		 */
953 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
954 	} else if (is_simm32(imm64)) {
955 		emit_mov_imm32(&prog, true, dst_reg, imm32_lo);
956 	} else {
957 		/* movabsq rax, imm64 */
958 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
959 		EMIT(imm32_lo, 4);
960 		EMIT(imm32_hi, 4);
961 	}
962 
963 	*pprog = prog;
964 }
965 
emit_mov_reg(u8 ** pprog,bool is64,u32 dst_reg,u32 src_reg)966 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
967 {
968 	u8 *prog = *pprog;
969 
970 	if (is64) {
971 		/* mov dst, src */
972 		EMIT_mov(dst_reg, src_reg);
973 	} else {
974 		/* mov32 dst, src */
975 		if (is_ereg(dst_reg) || is_ereg(src_reg))
976 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
977 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
978 	}
979 
980 	*pprog = prog;
981 }
982 
emit_movsx_reg(u8 ** pprog,int num_bits,bool is64,u32 dst_reg,u32 src_reg)983 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
984 			   u32 src_reg)
985 {
986 	u8 *prog = *pprog;
987 
988 	if (is64) {
989 		/* movs[b,w,l]q dst, src */
990 		if (num_bits == 8)
991 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
992 			      add_2reg(0xC0, src_reg, dst_reg));
993 		else if (num_bits == 16)
994 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
995 			      add_2reg(0xC0, src_reg, dst_reg));
996 		else if (num_bits == 32)
997 			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
998 			      add_2reg(0xC0, src_reg, dst_reg));
999 	} else {
1000 		/* movs[b,w]l dst, src */
1001 		if (num_bits == 8) {
1002 			EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
1003 			      add_2reg(0xC0, src_reg, dst_reg));
1004 		} else if (num_bits == 16) {
1005 			if (is_ereg(dst_reg) || is_ereg(src_reg))
1006 				EMIT1(add_2mod(0x40, src_reg, dst_reg));
1007 			EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
1008 			      add_2reg(0xC0, src_reg, dst_reg));
1009 		}
1010 	}
1011 
1012 	*pprog = prog;
1013 }
1014 
1015 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
emit_insn_suffix(u8 ** pprog,u32 ptr_reg,u32 val_reg,int off)1016 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
1017 {
1018 	u8 *prog = *pprog;
1019 
1020 	if (is_imm8(off)) {
1021 		/* 1-byte signed displacement.
1022 		 *
1023 		 * If off == 0 we could skip this and save one extra byte, but
1024 		 * special case of x86 R13 which always needs an offset is not
1025 		 * worth the hassle
1026 		 */
1027 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
1028 	} else {
1029 		/* 4-byte signed displacement */
1030 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
1031 	}
1032 	*pprog = prog;
1033 }
1034 
emit_insn_suffix_SIB(u8 ** pprog,u32 ptr_reg,u32 val_reg,u32 index_reg,int off)1035 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off)
1036 {
1037 	u8 *prog = *pprog;
1038 
1039 	if (is_imm8(off)) {
1040 		EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1041 	} else {
1042 		EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1043 	}
1044 	*pprog = prog;
1045 }
1046 
1047 /*
1048  * Emit a REX byte if it will be necessary to address these registers
1049  */
maybe_emit_mod(u8 ** pprog,u32 dst_reg,u32 src_reg,bool is64)1050 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
1051 {
1052 	u8 *prog = *pprog;
1053 
1054 	if (is64)
1055 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
1056 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
1057 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
1058 	*pprog = prog;
1059 }
1060 
1061 /*
1062  * Similar version of maybe_emit_mod() for a single register
1063  */
maybe_emit_1mod(u8 ** pprog,u32 reg,bool is64)1064 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
1065 {
1066 	u8 *prog = *pprog;
1067 
1068 	if (is64)
1069 		EMIT1(add_1mod(0x48, reg));
1070 	else if (is_ereg(reg))
1071 		EMIT1(add_1mod(0x40, reg));
1072 	*pprog = prog;
1073 }
1074 
1075 /* LDX: dst_reg = *(u8*)(src_reg + off) */
emit_ldx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1076 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1077 {
1078 	u8 *prog = *pprog;
1079 
1080 	switch (size) {
1081 	case BPF_B:
1082 		/* Emit 'movzx rax, byte ptr [rax + off]' */
1083 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
1084 		break;
1085 	case BPF_H:
1086 		/* Emit 'movzx rax, word ptr [rax + off]' */
1087 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
1088 		break;
1089 	case BPF_W:
1090 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
1091 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1092 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
1093 		else
1094 			EMIT1(0x8B);
1095 		break;
1096 	case BPF_DW:
1097 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
1098 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
1099 		break;
1100 	}
1101 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
1102 	*pprog = prog;
1103 }
1104 
1105 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
emit_ldsx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1106 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1107 {
1108 	u8 *prog = *pprog;
1109 
1110 	switch (size) {
1111 	case BPF_B:
1112 		/* Emit 'movsx rax, byte ptr [rax + off]' */
1113 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
1114 		break;
1115 	case BPF_H:
1116 		/* Emit 'movsx rax, word ptr [rax + off]' */
1117 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
1118 		break;
1119 	case BPF_W:
1120 		/* Emit 'movsx rax, dword ptr [rax+0x14]' */
1121 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
1122 		break;
1123 	}
1124 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
1125 	*pprog = prog;
1126 }
1127 
emit_ldx_index(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1128 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1129 {
1130 	u8 *prog = *pprog;
1131 
1132 	switch (size) {
1133 	case BPF_B:
1134 		/* movzx rax, byte ptr [rax + r12 + off] */
1135 		EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6);
1136 		break;
1137 	case BPF_H:
1138 		/* movzx rax, word ptr [rax + r12 + off] */
1139 		EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7);
1140 		break;
1141 	case BPF_W:
1142 		/* mov eax, dword ptr [rax + r12 + off] */
1143 		EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B);
1144 		break;
1145 	case BPF_DW:
1146 		/* mov rax, qword ptr [rax + r12 + off] */
1147 		EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B);
1148 		break;
1149 	}
1150 	emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1151 	*pprog = prog;
1152 }
1153 
emit_ldx_r12(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1154 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1155 {
1156 	emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1157 }
1158 
1159 /* STX: *(u8*)(dst_reg + off) = src_reg */
emit_stx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1160 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1161 {
1162 	u8 *prog = *pprog;
1163 
1164 	switch (size) {
1165 	case BPF_B:
1166 		/* Emit 'mov byte ptr [rax + off], al' */
1167 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
1168 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
1169 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
1170 		else
1171 			EMIT1(0x88);
1172 		break;
1173 	case BPF_H:
1174 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1175 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
1176 		else
1177 			EMIT2(0x66, 0x89);
1178 		break;
1179 	case BPF_W:
1180 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1181 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
1182 		else
1183 			EMIT1(0x89);
1184 		break;
1185 	case BPF_DW:
1186 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
1187 		break;
1188 	}
1189 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1190 	*pprog = prog;
1191 }
1192 
1193 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */
emit_stx_index(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1194 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1195 {
1196 	u8 *prog = *pprog;
1197 
1198 	switch (size) {
1199 	case BPF_B:
1200 		/* mov byte ptr [rax + r12 + off], al */
1201 		EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88);
1202 		break;
1203 	case BPF_H:
1204 		/* mov word ptr [rax + r12 + off], ax */
1205 		EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1206 		break;
1207 	case BPF_W:
1208 		/* mov dword ptr [rax + r12 + 1], eax */
1209 		EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1210 		break;
1211 	case BPF_DW:
1212 		/* mov qword ptr [rax + r12 + 1], rax */
1213 		EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89);
1214 		break;
1215 	}
1216 	emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1217 	*pprog = prog;
1218 }
1219 
emit_stx_r12(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1220 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1221 {
1222 	emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1223 }
1224 
1225 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */
emit_st_index(u8 ** pprog,u32 size,u32 dst_reg,u32 index_reg,int off,int imm)1226 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm)
1227 {
1228 	u8 *prog = *pprog;
1229 
1230 	switch (size) {
1231 	case BPF_B:
1232 		/* mov byte ptr [rax + r12 + off], imm8 */
1233 		EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6);
1234 		break;
1235 	case BPF_H:
1236 		/* mov word ptr [rax + r12 + off], imm16 */
1237 		EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1238 		break;
1239 	case BPF_W:
1240 		/* mov dword ptr [rax + r12 + 1], imm32 */
1241 		EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1242 		break;
1243 	case BPF_DW:
1244 		/* mov qword ptr [rax + r12 + 1], imm32 */
1245 		EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7);
1246 		break;
1247 	}
1248 	emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off);
1249 	EMIT(imm, bpf_size_to_x86_bytes(size));
1250 	*pprog = prog;
1251 }
1252 
emit_st_r12(u8 ** pprog,u32 size,u32 dst_reg,int off,int imm)1253 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm)
1254 {
1255 	emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm);
1256 }
1257 
emit_atomic_rmw(u8 ** pprog,u32 atomic_op,u32 dst_reg,u32 src_reg,s16 off,u8 bpf_size)1258 static int emit_atomic_rmw(u8 **pprog, u32 atomic_op,
1259 			   u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1260 {
1261 	u8 *prog = *pprog;
1262 
1263 	EMIT1(0xF0); /* lock prefix */
1264 
1265 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1266 
1267 	/* emit opcode */
1268 	switch (atomic_op) {
1269 	case BPF_ADD:
1270 	case BPF_AND:
1271 	case BPF_OR:
1272 	case BPF_XOR:
1273 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1274 		EMIT1(simple_alu_opcodes[atomic_op]);
1275 		break;
1276 	case BPF_ADD | BPF_FETCH:
1277 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1278 		EMIT2(0x0F, 0xC1);
1279 		break;
1280 	case BPF_XCHG:
1281 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1282 		EMIT1(0x87);
1283 		break;
1284 	case BPF_CMPXCHG:
1285 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1286 		EMIT2(0x0F, 0xB1);
1287 		break;
1288 	default:
1289 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1290 		return -EFAULT;
1291 	}
1292 
1293 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1294 
1295 	*pprog = prog;
1296 	return 0;
1297 }
1298 
emit_atomic_rmw_index(u8 ** pprog,u32 atomic_op,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1299 static int emit_atomic_rmw_index(u8 **pprog, u32 atomic_op, u32 size,
1300 				 u32 dst_reg, u32 src_reg, u32 index_reg,
1301 				 int off)
1302 {
1303 	u8 *prog = *pprog;
1304 
1305 	EMIT1(0xF0); /* lock prefix */
1306 	switch (size) {
1307 	case BPF_W:
1308 		EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg));
1309 		break;
1310 	case BPF_DW:
1311 		EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg));
1312 		break;
1313 	default:
1314 		pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
1315 		return -EFAULT;
1316 	}
1317 
1318 	/* emit opcode */
1319 	switch (atomic_op) {
1320 	case BPF_ADD:
1321 	case BPF_AND:
1322 	case BPF_OR:
1323 	case BPF_XOR:
1324 		/* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */
1325 		EMIT1(simple_alu_opcodes[atomic_op]);
1326 		break;
1327 	case BPF_ADD | BPF_FETCH:
1328 		/* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */
1329 		EMIT2(0x0F, 0xC1);
1330 		break;
1331 	case BPF_XCHG:
1332 		/* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */
1333 		EMIT1(0x87);
1334 		break;
1335 	case BPF_CMPXCHG:
1336 		/* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */
1337 		EMIT2(0x0F, 0xB1);
1338 		break;
1339 	default:
1340 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1341 		return -EFAULT;
1342 	}
1343 	emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1344 	*pprog = prog;
1345 	return 0;
1346 }
1347 
emit_atomic_ld_st(u8 ** pprog,u32 atomic_op,u32 dst_reg,u32 src_reg,s16 off,u8 bpf_size)1348 static int emit_atomic_ld_st(u8 **pprog, u32 atomic_op, u32 dst_reg,
1349 			     u32 src_reg, s16 off, u8 bpf_size)
1350 {
1351 	switch (atomic_op) {
1352 	case BPF_LOAD_ACQ:
1353 		/* dst_reg = smp_load_acquire(src_reg + off16) */
1354 		emit_ldx(pprog, bpf_size, dst_reg, src_reg, off);
1355 		break;
1356 	case BPF_STORE_REL:
1357 		/* smp_store_release(dst_reg + off16, src_reg) */
1358 		emit_stx(pprog, bpf_size, dst_reg, src_reg, off);
1359 		break;
1360 	default:
1361 		pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1362 		       atomic_op);
1363 		return -EFAULT;
1364 	}
1365 
1366 	return 0;
1367 }
1368 
emit_atomic_ld_st_index(u8 ** pprog,u32 atomic_op,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1369 static int emit_atomic_ld_st_index(u8 **pprog, u32 atomic_op, u32 size,
1370 				   u32 dst_reg, u32 src_reg, u32 index_reg,
1371 				   int off)
1372 {
1373 	switch (atomic_op) {
1374 	case BPF_LOAD_ACQ:
1375 		/* dst_reg = smp_load_acquire(src_reg + idx_reg + off16) */
1376 		emit_ldx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1377 		break;
1378 	case BPF_STORE_REL:
1379 		/* smp_store_release(dst_reg + idx_reg + off16, src_reg) */
1380 		emit_stx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1381 		break;
1382 	default:
1383 		pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1384 		       atomic_op);
1385 		return -EFAULT;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 #define DONT_CLEAR 1
1392 
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)1393 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1394 {
1395 	u32 reg = x->fixup >> 8;
1396 
1397 	/* jump over faulting load and clear dest register */
1398 	if (reg != DONT_CLEAR)
1399 		*(unsigned long *)((void *)regs + reg) = 0;
1400 	regs->ip += x->fixup & 0xff;
1401 	return true;
1402 }
1403 
detect_reg_usage(struct bpf_insn * insn,int insn_cnt,bool * regs_used)1404 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1405 			     bool *regs_used)
1406 {
1407 	int i;
1408 
1409 	for (i = 1; i <= insn_cnt; i++, insn++) {
1410 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1411 			regs_used[0] = true;
1412 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1413 			regs_used[1] = true;
1414 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1415 			regs_used[2] = true;
1416 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1417 			regs_used[3] = true;
1418 	}
1419 }
1420 
1421 /* emit the 3-byte VEX prefix
1422  *
1423  * r: same as rex.r, extra bit for ModRM reg field
1424  * x: same as rex.x, extra bit for SIB index field
1425  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1426  * m: opcode map select, encoding escape bytes e.g. 0x0f38
1427  * w: same as rex.w (32 bit or 64 bit) or opcode specific
1428  * src_reg2: additional source reg (encoded as BPF reg)
1429  * l: vector length (128 bit or 256 bit) or reserved
1430  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1431  */
emit_3vex(u8 ** pprog,bool r,bool x,bool b,u8 m,bool w,u8 src_reg2,bool l,u8 pp)1432 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1433 		      bool w, u8 src_reg2, bool l, u8 pp)
1434 {
1435 	u8 *prog = *pprog;
1436 	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1437 	u8 b1, b2;
1438 	u8 vvvv = reg2hex[src_reg2];
1439 
1440 	/* reg2hex gives only the lower 3 bit of vvvv */
1441 	if (is_ereg(src_reg2))
1442 		vvvv |= 1 << 3;
1443 
1444 	/*
1445 	 * 2nd byte of 3-byte VEX prefix
1446 	 * ~ means bit inverted encoding
1447 	 *
1448 	 *    7                           0
1449 	 *  +---+---+---+---+---+---+---+---+
1450 	 *  |~R |~X |~B |         m         |
1451 	 *  +---+---+---+---+---+---+---+---+
1452 	 */
1453 	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1454 	/*
1455 	 * 3rd byte of 3-byte VEX prefix
1456 	 *
1457 	 *    7                           0
1458 	 *  +---+---+---+---+---+---+---+---+
1459 	 *  | W |     ~vvvv     | L |   pp  |
1460 	 *  +---+---+---+---+---+---+---+---+
1461 	 */
1462 	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1463 
1464 	EMIT3(b0, b1, b2);
1465 	*pprog = prog;
1466 }
1467 
1468 /* emit BMI2 shift instruction */
emit_shiftx(u8 ** pprog,u32 dst_reg,u8 src_reg,bool is64,u8 op)1469 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1470 {
1471 	u8 *prog = *pprog;
1472 	bool r = is_ereg(dst_reg);
1473 	u8 m = 2; /* escape code 0f38 */
1474 
1475 	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1476 	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1477 	*pprog = prog;
1478 }
1479 
emit_priv_frame_ptr(u8 ** pprog,void __percpu * priv_frame_ptr)1480 static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr)
1481 {
1482 	u8 *prog = *pprog;
1483 
1484 	/* movabs r9, priv_frame_ptr */
1485 	emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32,
1486 		       (u32) (__force long) priv_frame_ptr);
1487 
1488 #ifdef CONFIG_SMP
1489 	/* add <r9>, gs:[<off>] */
1490 	EMIT2(0x65, 0x4c);
1491 	EMIT3(0x03, 0x0c, 0x25);
1492 	EMIT((u32)(unsigned long)&this_cpu_off, 4);
1493 #endif
1494 
1495 	*pprog = prog;
1496 }
1497 
1498 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1499 
1500 #define __LOAD_TCC_PTR(off)			\
1501 	EMIT3_off32(0x48, 0x8B, 0x85, off)
1502 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */
1503 #define LOAD_TAIL_CALL_CNT_PTR(stack)				\
1504 	__LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack))
1505 
1506 /* Memory size/value to protect private stack overflow/underflow */
1507 #define PRIV_STACK_GUARD_SZ    8
1508 #define PRIV_STACK_GUARD_VAL   0xEB9F12345678eb9fULL
1509 
emit_spectre_bhb_barrier(u8 ** pprog,u8 * ip,struct bpf_prog * bpf_prog)1510 static int emit_spectre_bhb_barrier(u8 **pprog, u8 *ip,
1511 				    struct bpf_prog *bpf_prog)
1512 {
1513 	u8 *prog = *pprog;
1514 	u8 *func;
1515 
1516 	if (cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP)) {
1517 		/* The clearing sequence clobbers eax and ecx. */
1518 		EMIT1(0x50); /* push rax */
1519 		EMIT1(0x51); /* push rcx */
1520 		ip += 2;
1521 
1522 		func = (u8 *)clear_bhb_loop;
1523 		ip += x86_call_depth_emit_accounting(&prog, func, ip);
1524 
1525 		if (emit_call(&prog, func, ip))
1526 			return -EINVAL;
1527 		EMIT1(0x59); /* pop rcx */
1528 		EMIT1(0x58); /* pop rax */
1529 	}
1530 	/* Insert IBHF instruction */
1531 	if ((cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP) &&
1532 	     cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) ||
1533 	    cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_HW)) {
1534 		/*
1535 		 * Add an Indirect Branch History Fence (IBHF). IBHF acts as a
1536 		 * fence preventing branch history from before the fence from
1537 		 * affecting indirect branches after the fence. This is
1538 		 * specifically used in cBPF jitted code to prevent Intra-mode
1539 		 * BHI attacks. The IBHF instruction is designed to be a NOP on
1540 		 * hardware that doesn't need or support it.  The REP and REX.W
1541 		 * prefixes are required by the microcode, and they also ensure
1542 		 * that the NOP is unlikely to be used in existing code.
1543 		 *
1544 		 * IBHF is not a valid instruction in 32-bit mode.
1545 		 */
1546 		EMIT5(0xF3, 0x48, 0x0F, 0x1E, 0xF8); /* ibhf */
1547 	}
1548 	*pprog = prog;
1549 	return 0;
1550 }
1551 
do_jit(struct bpf_prog * bpf_prog,int * addrs,u8 * image,u8 * rw_image,int oldproglen,struct jit_context * ctx,bool jmp_padding)1552 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1553 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
1554 {
1555 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1556 	struct bpf_insn *insn = bpf_prog->insnsi;
1557 	bool callee_regs_used[4] = {};
1558 	int insn_cnt = bpf_prog->len;
1559 	bool seen_exit = false;
1560 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1561 	void __percpu *priv_frame_ptr = NULL;
1562 	u64 arena_vm_start, user_vm_start;
1563 	void __percpu *priv_stack_ptr;
1564 	int i, excnt = 0;
1565 	int ilen, proglen = 0;
1566 	u8 *prog = temp;
1567 	u32 stack_depth;
1568 	int err;
1569 
1570 	stack_depth = bpf_prog->aux->stack_depth;
1571 	priv_stack_ptr = bpf_prog->aux->priv_stack_ptr;
1572 	if (priv_stack_ptr) {
1573 		priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8);
1574 		stack_depth = 0;
1575 	}
1576 
1577 	arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena);
1578 	user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena);
1579 
1580 	detect_reg_usage(insn, insn_cnt, callee_regs_used);
1581 
1582 	emit_prologue(&prog, image, stack_depth,
1583 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1584 		      bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1585 	/* Exception callback will clobber callee regs for its own use, and
1586 	 * restore the original callee regs from main prog's stack frame.
1587 	 */
1588 	if (bpf_prog->aux->exception_boundary) {
1589 		/* We also need to save r12, which is not mapped to any BPF
1590 		 * register, as we throw after entry into the kernel, which may
1591 		 * overwrite r12.
1592 		 */
1593 		push_r12(&prog);
1594 		push_callee_regs(&prog, all_callee_regs_used);
1595 	} else {
1596 		if (arena_vm_start)
1597 			push_r12(&prog);
1598 		push_callee_regs(&prog, callee_regs_used);
1599 	}
1600 	if (arena_vm_start)
1601 		emit_mov_imm64(&prog, X86_REG_R12,
1602 			       arena_vm_start >> 32, (u32) arena_vm_start);
1603 
1604 	if (priv_frame_ptr)
1605 		emit_priv_frame_ptr(&prog, priv_frame_ptr);
1606 
1607 	ilen = prog - temp;
1608 	if (rw_image)
1609 		memcpy(rw_image + proglen, temp, ilen);
1610 	proglen += ilen;
1611 	addrs[0] = proglen;
1612 	prog = temp;
1613 
1614 	for (i = 1; i <= insn_cnt; i++, insn++) {
1615 		const s32 imm32 = insn->imm;
1616 		u32 dst_reg = insn->dst_reg;
1617 		u32 src_reg = insn->src_reg;
1618 		u8 b2 = 0, b3 = 0;
1619 		u8 *start_of_ldx;
1620 		s64 jmp_offset;
1621 		s16 insn_off;
1622 		u8 jmp_cond;
1623 		u8 *func;
1624 		int nops;
1625 
1626 		if (priv_frame_ptr) {
1627 			if (src_reg == BPF_REG_FP)
1628 				src_reg = X86_REG_R9;
1629 
1630 			if (dst_reg == BPF_REG_FP)
1631 				dst_reg = X86_REG_R9;
1632 		}
1633 
1634 		switch (insn->code) {
1635 			/* ALU */
1636 		case BPF_ALU | BPF_ADD | BPF_X:
1637 		case BPF_ALU | BPF_SUB | BPF_X:
1638 		case BPF_ALU | BPF_AND | BPF_X:
1639 		case BPF_ALU | BPF_OR | BPF_X:
1640 		case BPF_ALU | BPF_XOR | BPF_X:
1641 		case BPF_ALU64 | BPF_ADD | BPF_X:
1642 		case BPF_ALU64 | BPF_SUB | BPF_X:
1643 		case BPF_ALU64 | BPF_AND | BPF_X:
1644 		case BPF_ALU64 | BPF_OR | BPF_X:
1645 		case BPF_ALU64 | BPF_XOR | BPF_X:
1646 			maybe_emit_mod(&prog, dst_reg, src_reg,
1647 				       BPF_CLASS(insn->code) == BPF_ALU64);
1648 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1649 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1650 			break;
1651 
1652 		case BPF_ALU64 | BPF_MOV | BPF_X:
1653 			if (insn_is_cast_user(insn)) {
1654 				if (dst_reg != src_reg)
1655 					/* 32-bit mov */
1656 					emit_mov_reg(&prog, false, dst_reg, src_reg);
1657 				/* shl dst_reg, 32 */
1658 				maybe_emit_1mod(&prog, dst_reg, true);
1659 				EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32);
1660 
1661 				/* or dst_reg, user_vm_start */
1662 				maybe_emit_1mod(&prog, dst_reg, true);
1663 				if (is_axreg(dst_reg))
1664 					EMIT1_off32(0x0D,  user_vm_start >> 32);
1665 				else
1666 					EMIT2_off32(0x81, add_1reg(0xC8, dst_reg),  user_vm_start >> 32);
1667 
1668 				/* rol dst_reg, 32 */
1669 				maybe_emit_1mod(&prog, dst_reg, true);
1670 				EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32);
1671 
1672 				/* xor r11, r11 */
1673 				EMIT3(0x4D, 0x31, 0xDB);
1674 
1675 				/* test dst_reg32, dst_reg32; check if lower 32-bit are zero */
1676 				maybe_emit_mod(&prog, dst_reg, dst_reg, false);
1677 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1678 
1679 				/* cmove r11, dst_reg; if so, set dst_reg to zero */
1680 				/* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */
1681 				maybe_emit_mod(&prog, AUX_REG, dst_reg, true);
1682 				EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg));
1683 				break;
1684 			} else if (insn_is_mov_percpu_addr(insn)) {
1685 				/* mov <dst>, <src> (if necessary) */
1686 				EMIT_mov(dst_reg, src_reg);
1687 #ifdef CONFIG_SMP
1688 				/* add <dst>, gs:[<off>] */
1689 				EMIT2(0x65, add_1mod(0x48, dst_reg));
1690 				EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25);
1691 				EMIT((u32)(unsigned long)&this_cpu_off, 4);
1692 #endif
1693 				break;
1694 			}
1695 			fallthrough;
1696 		case BPF_ALU | BPF_MOV | BPF_X:
1697 			if (insn->off == 0)
1698 				emit_mov_reg(&prog,
1699 					     BPF_CLASS(insn->code) == BPF_ALU64,
1700 					     dst_reg, src_reg);
1701 			else
1702 				emit_movsx_reg(&prog, insn->off,
1703 					       BPF_CLASS(insn->code) == BPF_ALU64,
1704 					       dst_reg, src_reg);
1705 			break;
1706 
1707 			/* neg dst */
1708 		case BPF_ALU | BPF_NEG:
1709 		case BPF_ALU64 | BPF_NEG:
1710 			maybe_emit_1mod(&prog, dst_reg,
1711 					BPF_CLASS(insn->code) == BPF_ALU64);
1712 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1713 			break;
1714 
1715 		case BPF_ALU | BPF_ADD | BPF_K:
1716 		case BPF_ALU | BPF_SUB | BPF_K:
1717 		case BPF_ALU | BPF_AND | BPF_K:
1718 		case BPF_ALU | BPF_OR | BPF_K:
1719 		case BPF_ALU | BPF_XOR | BPF_K:
1720 		case BPF_ALU64 | BPF_ADD | BPF_K:
1721 		case BPF_ALU64 | BPF_SUB | BPF_K:
1722 		case BPF_ALU64 | BPF_AND | BPF_K:
1723 		case BPF_ALU64 | BPF_OR | BPF_K:
1724 		case BPF_ALU64 | BPF_XOR | BPF_K:
1725 			maybe_emit_1mod(&prog, dst_reg,
1726 					BPF_CLASS(insn->code) == BPF_ALU64);
1727 
1728 			/*
1729 			 * b3 holds 'normal' opcode, b2 short form only valid
1730 			 * in case dst is eax/rax.
1731 			 */
1732 			switch (BPF_OP(insn->code)) {
1733 			case BPF_ADD:
1734 				b3 = 0xC0;
1735 				b2 = 0x05;
1736 				break;
1737 			case BPF_SUB:
1738 				b3 = 0xE8;
1739 				b2 = 0x2D;
1740 				break;
1741 			case BPF_AND:
1742 				b3 = 0xE0;
1743 				b2 = 0x25;
1744 				break;
1745 			case BPF_OR:
1746 				b3 = 0xC8;
1747 				b2 = 0x0D;
1748 				break;
1749 			case BPF_XOR:
1750 				b3 = 0xF0;
1751 				b2 = 0x35;
1752 				break;
1753 			}
1754 
1755 			if (is_imm8(imm32))
1756 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1757 			else if (is_axreg(dst_reg))
1758 				EMIT1_off32(b2, imm32);
1759 			else
1760 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1761 			break;
1762 
1763 		case BPF_ALU64 | BPF_MOV | BPF_K:
1764 		case BPF_ALU | BPF_MOV | BPF_K:
1765 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1766 				       dst_reg, imm32);
1767 			break;
1768 
1769 		case BPF_LD | BPF_IMM | BPF_DW:
1770 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1771 			insn++;
1772 			i++;
1773 			break;
1774 
1775 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1776 		case BPF_ALU | BPF_MOD | BPF_X:
1777 		case BPF_ALU | BPF_DIV | BPF_X:
1778 		case BPF_ALU | BPF_MOD | BPF_K:
1779 		case BPF_ALU | BPF_DIV | BPF_K:
1780 		case BPF_ALU64 | BPF_MOD | BPF_X:
1781 		case BPF_ALU64 | BPF_DIV | BPF_X:
1782 		case BPF_ALU64 | BPF_MOD | BPF_K:
1783 		case BPF_ALU64 | BPF_DIV | BPF_K: {
1784 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1785 
1786 			if (dst_reg != BPF_REG_0)
1787 				EMIT1(0x50); /* push rax */
1788 			if (dst_reg != BPF_REG_3)
1789 				EMIT1(0x52); /* push rdx */
1790 
1791 			if (BPF_SRC(insn->code) == BPF_X) {
1792 				if (src_reg == BPF_REG_0 ||
1793 				    src_reg == BPF_REG_3) {
1794 					/* mov r11, src_reg */
1795 					EMIT_mov(AUX_REG, src_reg);
1796 					src_reg = AUX_REG;
1797 				}
1798 			} else {
1799 				/* mov r11, imm32 */
1800 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1801 				src_reg = AUX_REG;
1802 			}
1803 
1804 			if (dst_reg != BPF_REG_0)
1805 				/* mov rax, dst_reg */
1806 				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1807 
1808 			if (insn->off == 0) {
1809 				/*
1810 				 * xor edx, edx
1811 				 * equivalent to 'xor rdx, rdx', but one byte less
1812 				 */
1813 				EMIT2(0x31, 0xd2);
1814 
1815 				/* div src_reg */
1816 				maybe_emit_1mod(&prog, src_reg, is64);
1817 				EMIT2(0xF7, add_1reg(0xF0, src_reg));
1818 			} else {
1819 				if (BPF_CLASS(insn->code) == BPF_ALU)
1820 					EMIT1(0x99); /* cdq */
1821 				else
1822 					EMIT2(0x48, 0x99); /* cqo */
1823 
1824 				/* idiv src_reg */
1825 				maybe_emit_1mod(&prog, src_reg, is64);
1826 				EMIT2(0xF7, add_1reg(0xF8, src_reg));
1827 			}
1828 
1829 			if (BPF_OP(insn->code) == BPF_MOD &&
1830 			    dst_reg != BPF_REG_3)
1831 				/* mov dst_reg, rdx */
1832 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1833 			else if (BPF_OP(insn->code) == BPF_DIV &&
1834 				 dst_reg != BPF_REG_0)
1835 				/* mov dst_reg, rax */
1836 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1837 
1838 			if (dst_reg != BPF_REG_3)
1839 				EMIT1(0x5A); /* pop rdx */
1840 			if (dst_reg != BPF_REG_0)
1841 				EMIT1(0x58); /* pop rax */
1842 			break;
1843 		}
1844 
1845 		case BPF_ALU | BPF_MUL | BPF_K:
1846 		case BPF_ALU64 | BPF_MUL | BPF_K:
1847 			maybe_emit_mod(&prog, dst_reg, dst_reg,
1848 				       BPF_CLASS(insn->code) == BPF_ALU64);
1849 
1850 			if (is_imm8(imm32))
1851 				/* imul dst_reg, dst_reg, imm8 */
1852 				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1853 				      imm32);
1854 			else
1855 				/* imul dst_reg, dst_reg, imm32 */
1856 				EMIT2_off32(0x69,
1857 					    add_2reg(0xC0, dst_reg, dst_reg),
1858 					    imm32);
1859 			break;
1860 
1861 		case BPF_ALU | BPF_MUL | BPF_X:
1862 		case BPF_ALU64 | BPF_MUL | BPF_X:
1863 			maybe_emit_mod(&prog, src_reg, dst_reg,
1864 				       BPF_CLASS(insn->code) == BPF_ALU64);
1865 
1866 			/* imul dst_reg, src_reg */
1867 			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1868 			break;
1869 
1870 			/* Shifts */
1871 		case BPF_ALU | BPF_LSH | BPF_K:
1872 		case BPF_ALU | BPF_RSH | BPF_K:
1873 		case BPF_ALU | BPF_ARSH | BPF_K:
1874 		case BPF_ALU64 | BPF_LSH | BPF_K:
1875 		case BPF_ALU64 | BPF_RSH | BPF_K:
1876 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1877 			maybe_emit_1mod(&prog, dst_reg,
1878 					BPF_CLASS(insn->code) == BPF_ALU64);
1879 
1880 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1881 			if (imm32 == 1)
1882 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1883 			else
1884 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1885 			break;
1886 
1887 		case BPF_ALU | BPF_LSH | BPF_X:
1888 		case BPF_ALU | BPF_RSH | BPF_X:
1889 		case BPF_ALU | BPF_ARSH | BPF_X:
1890 		case BPF_ALU64 | BPF_LSH | BPF_X:
1891 		case BPF_ALU64 | BPF_RSH | BPF_X:
1892 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1893 			/* BMI2 shifts aren't better when shift count is already in rcx */
1894 			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1895 				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1896 				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1897 				u8 op;
1898 
1899 				switch (BPF_OP(insn->code)) {
1900 				case BPF_LSH:
1901 					op = 1; /* prefix 0x66 */
1902 					break;
1903 				case BPF_RSH:
1904 					op = 3; /* prefix 0xf2 */
1905 					break;
1906 				case BPF_ARSH:
1907 					op = 2; /* prefix 0xf3 */
1908 					break;
1909 				}
1910 
1911 				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1912 
1913 				break;
1914 			}
1915 
1916 			if (src_reg != BPF_REG_4) { /* common case */
1917 				/* Check for bad case when dst_reg == rcx */
1918 				if (dst_reg == BPF_REG_4) {
1919 					/* mov r11, dst_reg */
1920 					EMIT_mov(AUX_REG, dst_reg);
1921 					dst_reg = AUX_REG;
1922 				} else {
1923 					EMIT1(0x51); /* push rcx */
1924 				}
1925 				/* mov rcx, src_reg */
1926 				EMIT_mov(BPF_REG_4, src_reg);
1927 			}
1928 
1929 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1930 			maybe_emit_1mod(&prog, dst_reg,
1931 					BPF_CLASS(insn->code) == BPF_ALU64);
1932 
1933 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1934 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1935 
1936 			if (src_reg != BPF_REG_4) {
1937 				if (insn->dst_reg == BPF_REG_4)
1938 					/* mov dst_reg, r11 */
1939 					EMIT_mov(insn->dst_reg, AUX_REG);
1940 				else
1941 					EMIT1(0x59); /* pop rcx */
1942 			}
1943 
1944 			break;
1945 
1946 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1947 		case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1948 			switch (imm32) {
1949 			case 16:
1950 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1951 				EMIT1(0x66);
1952 				if (is_ereg(dst_reg))
1953 					EMIT1(0x41);
1954 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1955 
1956 				/* Emit 'movzwl eax, ax' */
1957 				if (is_ereg(dst_reg))
1958 					EMIT3(0x45, 0x0F, 0xB7);
1959 				else
1960 					EMIT2(0x0F, 0xB7);
1961 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1962 				break;
1963 			case 32:
1964 				/* Emit 'bswap eax' to swap lower 4 bytes */
1965 				if (is_ereg(dst_reg))
1966 					EMIT2(0x41, 0x0F);
1967 				else
1968 					EMIT1(0x0F);
1969 				EMIT1(add_1reg(0xC8, dst_reg));
1970 				break;
1971 			case 64:
1972 				/* Emit 'bswap rax' to swap 8 bytes */
1973 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1974 				      add_1reg(0xC8, dst_reg));
1975 				break;
1976 			}
1977 			break;
1978 
1979 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1980 			switch (imm32) {
1981 			case 16:
1982 				/*
1983 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1984 				 * into 64 bit
1985 				 */
1986 				if (is_ereg(dst_reg))
1987 					EMIT3(0x45, 0x0F, 0xB7);
1988 				else
1989 					EMIT2(0x0F, 0xB7);
1990 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1991 				break;
1992 			case 32:
1993 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1994 				if (is_ereg(dst_reg))
1995 					EMIT1(0x45);
1996 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1997 				break;
1998 			case 64:
1999 				/* nop */
2000 				break;
2001 			}
2002 			break;
2003 
2004 			/* speculation barrier */
2005 		case BPF_ST | BPF_NOSPEC:
2006 			EMIT_LFENCE();
2007 			break;
2008 
2009 			/* ST: *(u8*)(dst_reg + off) = imm */
2010 		case BPF_ST | BPF_MEM | BPF_B:
2011 			if (is_ereg(dst_reg))
2012 				EMIT2(0x41, 0xC6);
2013 			else
2014 				EMIT1(0xC6);
2015 			goto st;
2016 		case BPF_ST | BPF_MEM | BPF_H:
2017 			if (is_ereg(dst_reg))
2018 				EMIT3(0x66, 0x41, 0xC7);
2019 			else
2020 				EMIT2(0x66, 0xC7);
2021 			goto st;
2022 		case BPF_ST | BPF_MEM | BPF_W:
2023 			if (is_ereg(dst_reg))
2024 				EMIT2(0x41, 0xC7);
2025 			else
2026 				EMIT1(0xC7);
2027 			goto st;
2028 		case BPF_ST | BPF_MEM | BPF_DW:
2029 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
2030 
2031 st:			if (is_imm8(insn->off))
2032 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
2033 			else
2034 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
2035 
2036 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
2037 			break;
2038 
2039 			/* STX: *(u8*)(dst_reg + off) = src_reg */
2040 		case BPF_STX | BPF_MEM | BPF_B:
2041 		case BPF_STX | BPF_MEM | BPF_H:
2042 		case BPF_STX | BPF_MEM | BPF_W:
2043 		case BPF_STX | BPF_MEM | BPF_DW:
2044 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2045 			break;
2046 
2047 		case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
2048 		case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
2049 		case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
2050 		case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
2051 			start_of_ldx = prog;
2052 			emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm);
2053 			goto populate_extable;
2054 
2055 			/* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */
2056 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
2057 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
2058 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
2059 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
2060 		case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
2061 		case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
2062 		case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
2063 		case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
2064 			start_of_ldx = prog;
2065 			if (BPF_CLASS(insn->code) == BPF_LDX)
2066 				emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2067 			else
2068 				emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2069 populate_extable:
2070 			{
2071 				struct exception_table_entry *ex;
2072 				u8 *_insn = image + proglen + (start_of_ldx - temp);
2073 				s64 delta;
2074 
2075 				if (!bpf_prog->aux->extable)
2076 					break;
2077 
2078 				if (excnt >= bpf_prog->aux->num_exentries) {
2079 					pr_err("mem32 extable bug\n");
2080 					return -EFAULT;
2081 				}
2082 				ex = &bpf_prog->aux->extable[excnt++];
2083 
2084 				delta = _insn - (u8 *)&ex->insn;
2085 				/* switch ex to rw buffer for writes */
2086 				ex = (void *)rw_image + ((void *)ex - (void *)image);
2087 
2088 				ex->insn = delta;
2089 
2090 				ex->data = EX_TYPE_BPF;
2091 
2092 				ex->fixup = (prog - start_of_ldx) |
2093 					((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8);
2094 			}
2095 			break;
2096 
2097 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
2098 		case BPF_LDX | BPF_MEM | BPF_B:
2099 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
2100 		case BPF_LDX | BPF_MEM | BPF_H:
2101 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
2102 		case BPF_LDX | BPF_MEM | BPF_W:
2103 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
2104 		case BPF_LDX | BPF_MEM | BPF_DW:
2105 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
2106 			/* LDXS: dst_reg = *(s8*)(src_reg + off) */
2107 		case BPF_LDX | BPF_MEMSX | BPF_B:
2108 		case BPF_LDX | BPF_MEMSX | BPF_H:
2109 		case BPF_LDX | BPF_MEMSX | BPF_W:
2110 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
2111 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
2112 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
2113 			insn_off = insn->off;
2114 
2115 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2116 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2117 				/* Conservatively check that src_reg + insn->off is a kernel address:
2118 				 *   src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
2119 				 *   and
2120 				 *   src_reg + insn->off < VSYSCALL_ADDR
2121 				 */
2122 
2123 				u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
2124 				u8 *end_of_jmp;
2125 
2126 				/* movabsq r10, VSYSCALL_ADDR */
2127 				emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
2128 					       (u32)(long)VSYSCALL_ADDR);
2129 
2130 				/* mov src_reg, r11 */
2131 				EMIT_mov(AUX_REG, src_reg);
2132 
2133 				if (insn->off) {
2134 					/* add r11, insn->off */
2135 					maybe_emit_1mod(&prog, AUX_REG, true);
2136 					EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
2137 				}
2138 
2139 				/* sub r11, r10 */
2140 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2141 				EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2142 
2143 				/* movabsq r10, limit */
2144 				emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
2145 					       (u32)(long)limit);
2146 
2147 				/* cmp r10, r11 */
2148 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2149 				EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2150 
2151 				/* if unsigned '>', goto load */
2152 				EMIT2(X86_JA, 0);
2153 				end_of_jmp = prog;
2154 
2155 				/* xor dst_reg, dst_reg */
2156 				emit_mov_imm32(&prog, false, dst_reg, 0);
2157 				/* jmp byte_after_ldx */
2158 				EMIT2(0xEB, 0);
2159 
2160 				/* populate jmp_offset for JAE above to jump to start_of_ldx */
2161 				start_of_ldx = prog;
2162 				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
2163 			}
2164 			if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
2165 			    BPF_MODE(insn->code) == BPF_MEMSX)
2166 				emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2167 			else
2168 				emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2169 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2170 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2171 				struct exception_table_entry *ex;
2172 				u8 *_insn = image + proglen + (start_of_ldx - temp);
2173 				s64 delta;
2174 
2175 				/* populate jmp_offset for JMP above */
2176 				start_of_ldx[-1] = prog - start_of_ldx;
2177 
2178 				if (!bpf_prog->aux->extable)
2179 					break;
2180 
2181 				if (excnt >= bpf_prog->aux->num_exentries) {
2182 					pr_err("ex gen bug\n");
2183 					return -EFAULT;
2184 				}
2185 				ex = &bpf_prog->aux->extable[excnt++];
2186 
2187 				delta = _insn - (u8 *)&ex->insn;
2188 				if (!is_simm32(delta)) {
2189 					pr_err("extable->insn doesn't fit into 32-bit\n");
2190 					return -EFAULT;
2191 				}
2192 				/* switch ex to rw buffer for writes */
2193 				ex = (void *)rw_image + ((void *)ex - (void *)image);
2194 
2195 				ex->insn = delta;
2196 
2197 				ex->data = EX_TYPE_BPF;
2198 
2199 				if (dst_reg > BPF_REG_9) {
2200 					pr_err("verifier error\n");
2201 					return -EFAULT;
2202 				}
2203 				/*
2204 				 * Compute size of x86 insn and its target dest x86 register.
2205 				 * ex_handler_bpf() will use lower 8 bits to adjust
2206 				 * pt_regs->ip to jump over this x86 instruction
2207 				 * and upper bits to figure out which pt_regs to zero out.
2208 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
2209 				 * of 4 bytes will be ignored and rbx will be zero inited.
2210 				 */
2211 				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
2212 			}
2213 			break;
2214 
2215 		case BPF_STX | BPF_ATOMIC | BPF_B:
2216 		case BPF_STX | BPF_ATOMIC | BPF_H:
2217 			if (!bpf_atomic_is_load_store(insn)) {
2218 				pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2219 				return -EFAULT;
2220 			}
2221 			fallthrough;
2222 		case BPF_STX | BPF_ATOMIC | BPF_W:
2223 		case BPF_STX | BPF_ATOMIC | BPF_DW:
2224 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
2225 			    insn->imm == (BPF_OR | BPF_FETCH) ||
2226 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
2227 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
2228 				u32 real_src_reg = src_reg;
2229 				u32 real_dst_reg = dst_reg;
2230 				u8 *branch_target;
2231 
2232 				/*
2233 				 * Can't be implemented with a single x86 insn.
2234 				 * Need to do a CMPXCHG loop.
2235 				 */
2236 
2237 				/* Will need RAX as a CMPXCHG operand so save R0 */
2238 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
2239 				if (src_reg == BPF_REG_0)
2240 					real_src_reg = BPF_REG_AX;
2241 				if (dst_reg == BPF_REG_0)
2242 					real_dst_reg = BPF_REG_AX;
2243 
2244 				branch_target = prog;
2245 				/* Load old value */
2246 				emit_ldx(&prog, BPF_SIZE(insn->code),
2247 					 BPF_REG_0, real_dst_reg, insn->off);
2248 				/*
2249 				 * Perform the (commutative) operation locally,
2250 				 * put the result in the AUX_REG.
2251 				 */
2252 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
2253 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
2254 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
2255 				      add_2reg(0xC0, AUX_REG, real_src_reg));
2256 				/* Attempt to swap in new value */
2257 				err = emit_atomic_rmw(&prog, BPF_CMPXCHG,
2258 						      real_dst_reg, AUX_REG,
2259 						      insn->off,
2260 						      BPF_SIZE(insn->code));
2261 				if (WARN_ON(err))
2262 					return err;
2263 				/*
2264 				 * ZF tells us whether we won the race. If it's
2265 				 * cleared we need to try again.
2266 				 */
2267 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
2268 				/* Return the pre-modification value */
2269 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
2270 				/* Restore R0 after clobbering RAX */
2271 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
2272 				break;
2273 			}
2274 
2275 			if (bpf_atomic_is_load_store(insn))
2276 				err = emit_atomic_ld_st(&prog, insn->imm, dst_reg, src_reg,
2277 							insn->off, BPF_SIZE(insn->code));
2278 			else
2279 				err = emit_atomic_rmw(&prog, insn->imm, dst_reg, src_reg,
2280 						      insn->off, BPF_SIZE(insn->code));
2281 			if (err)
2282 				return err;
2283 			break;
2284 
2285 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
2286 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
2287 			if (!bpf_atomic_is_load_store(insn)) {
2288 				pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2289 				return -EFAULT;
2290 			}
2291 			fallthrough;
2292 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
2293 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
2294 			start_of_ldx = prog;
2295 
2296 			if (bpf_atomic_is_load_store(insn))
2297 				err = emit_atomic_ld_st_index(&prog, insn->imm,
2298 							      BPF_SIZE(insn->code), dst_reg,
2299 							      src_reg, X86_REG_R12, insn->off);
2300 			else
2301 				err = emit_atomic_rmw_index(&prog, insn->imm, BPF_SIZE(insn->code),
2302 							    dst_reg, src_reg, X86_REG_R12,
2303 							    insn->off);
2304 			if (err)
2305 				return err;
2306 			goto populate_extable;
2307 
2308 			/* call */
2309 		case BPF_JMP | BPF_CALL: {
2310 			u8 *ip = image + addrs[i - 1];
2311 
2312 			func = (u8 *) __bpf_call_base + imm32;
2313 			if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) {
2314 				LOAD_TAIL_CALL_CNT_PTR(stack_depth);
2315 				ip += 7;
2316 			}
2317 			if (!imm32)
2318 				return -EINVAL;
2319 			if (priv_frame_ptr) {
2320 				push_r9(&prog);
2321 				ip += 2;
2322 			}
2323 			ip += x86_call_depth_emit_accounting(&prog, func, ip);
2324 			if (emit_call(&prog, func, ip))
2325 				return -EINVAL;
2326 			if (priv_frame_ptr)
2327 				pop_r9(&prog);
2328 			break;
2329 		}
2330 
2331 		case BPF_JMP | BPF_TAIL_CALL:
2332 			if (imm32)
2333 				emit_bpf_tail_call_direct(bpf_prog,
2334 							  &bpf_prog->aux->poke_tab[imm32 - 1],
2335 							  &prog, image + addrs[i - 1],
2336 							  callee_regs_used,
2337 							  stack_depth,
2338 							  ctx);
2339 			else
2340 				emit_bpf_tail_call_indirect(bpf_prog,
2341 							    &prog,
2342 							    callee_regs_used,
2343 							    stack_depth,
2344 							    image + addrs[i - 1],
2345 							    ctx);
2346 			break;
2347 
2348 			/* cond jump */
2349 		case BPF_JMP | BPF_JEQ | BPF_X:
2350 		case BPF_JMP | BPF_JNE | BPF_X:
2351 		case BPF_JMP | BPF_JGT | BPF_X:
2352 		case BPF_JMP | BPF_JLT | BPF_X:
2353 		case BPF_JMP | BPF_JGE | BPF_X:
2354 		case BPF_JMP | BPF_JLE | BPF_X:
2355 		case BPF_JMP | BPF_JSGT | BPF_X:
2356 		case BPF_JMP | BPF_JSLT | BPF_X:
2357 		case BPF_JMP | BPF_JSGE | BPF_X:
2358 		case BPF_JMP | BPF_JSLE | BPF_X:
2359 		case BPF_JMP32 | BPF_JEQ | BPF_X:
2360 		case BPF_JMP32 | BPF_JNE | BPF_X:
2361 		case BPF_JMP32 | BPF_JGT | BPF_X:
2362 		case BPF_JMP32 | BPF_JLT | BPF_X:
2363 		case BPF_JMP32 | BPF_JGE | BPF_X:
2364 		case BPF_JMP32 | BPF_JLE | BPF_X:
2365 		case BPF_JMP32 | BPF_JSGT | BPF_X:
2366 		case BPF_JMP32 | BPF_JSLT | BPF_X:
2367 		case BPF_JMP32 | BPF_JSGE | BPF_X:
2368 		case BPF_JMP32 | BPF_JSLE | BPF_X:
2369 			/* cmp dst_reg, src_reg */
2370 			maybe_emit_mod(&prog, dst_reg, src_reg,
2371 				       BPF_CLASS(insn->code) == BPF_JMP);
2372 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
2373 			goto emit_cond_jmp;
2374 
2375 		case BPF_JMP | BPF_JSET | BPF_X:
2376 		case BPF_JMP32 | BPF_JSET | BPF_X:
2377 			/* test dst_reg, src_reg */
2378 			maybe_emit_mod(&prog, dst_reg, src_reg,
2379 				       BPF_CLASS(insn->code) == BPF_JMP);
2380 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
2381 			goto emit_cond_jmp;
2382 
2383 		case BPF_JMP | BPF_JSET | BPF_K:
2384 		case BPF_JMP32 | BPF_JSET | BPF_K:
2385 			/* test dst_reg, imm32 */
2386 			maybe_emit_1mod(&prog, dst_reg,
2387 					BPF_CLASS(insn->code) == BPF_JMP);
2388 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
2389 			goto emit_cond_jmp;
2390 
2391 		case BPF_JMP | BPF_JEQ | BPF_K:
2392 		case BPF_JMP | BPF_JNE | BPF_K:
2393 		case BPF_JMP | BPF_JGT | BPF_K:
2394 		case BPF_JMP | BPF_JLT | BPF_K:
2395 		case BPF_JMP | BPF_JGE | BPF_K:
2396 		case BPF_JMP | BPF_JLE | BPF_K:
2397 		case BPF_JMP | BPF_JSGT | BPF_K:
2398 		case BPF_JMP | BPF_JSLT | BPF_K:
2399 		case BPF_JMP | BPF_JSGE | BPF_K:
2400 		case BPF_JMP | BPF_JSLE | BPF_K:
2401 		case BPF_JMP32 | BPF_JEQ | BPF_K:
2402 		case BPF_JMP32 | BPF_JNE | BPF_K:
2403 		case BPF_JMP32 | BPF_JGT | BPF_K:
2404 		case BPF_JMP32 | BPF_JLT | BPF_K:
2405 		case BPF_JMP32 | BPF_JGE | BPF_K:
2406 		case BPF_JMP32 | BPF_JLE | BPF_K:
2407 		case BPF_JMP32 | BPF_JSGT | BPF_K:
2408 		case BPF_JMP32 | BPF_JSLT | BPF_K:
2409 		case BPF_JMP32 | BPF_JSGE | BPF_K:
2410 		case BPF_JMP32 | BPF_JSLE | BPF_K:
2411 			/* test dst_reg, dst_reg to save one extra byte */
2412 			if (imm32 == 0) {
2413 				maybe_emit_mod(&prog, dst_reg, dst_reg,
2414 					       BPF_CLASS(insn->code) == BPF_JMP);
2415 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
2416 				goto emit_cond_jmp;
2417 			}
2418 
2419 			/* cmp dst_reg, imm8/32 */
2420 			maybe_emit_1mod(&prog, dst_reg,
2421 					BPF_CLASS(insn->code) == BPF_JMP);
2422 
2423 			if (is_imm8(imm32))
2424 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
2425 			else
2426 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
2427 
2428 emit_cond_jmp:		/* Convert BPF opcode to x86 */
2429 			switch (BPF_OP(insn->code)) {
2430 			case BPF_JEQ:
2431 				jmp_cond = X86_JE;
2432 				break;
2433 			case BPF_JSET:
2434 			case BPF_JNE:
2435 				jmp_cond = X86_JNE;
2436 				break;
2437 			case BPF_JGT:
2438 				/* GT is unsigned '>', JA in x86 */
2439 				jmp_cond = X86_JA;
2440 				break;
2441 			case BPF_JLT:
2442 				/* LT is unsigned '<', JB in x86 */
2443 				jmp_cond = X86_JB;
2444 				break;
2445 			case BPF_JGE:
2446 				/* GE is unsigned '>=', JAE in x86 */
2447 				jmp_cond = X86_JAE;
2448 				break;
2449 			case BPF_JLE:
2450 				/* LE is unsigned '<=', JBE in x86 */
2451 				jmp_cond = X86_JBE;
2452 				break;
2453 			case BPF_JSGT:
2454 				/* Signed '>', GT in x86 */
2455 				jmp_cond = X86_JG;
2456 				break;
2457 			case BPF_JSLT:
2458 				/* Signed '<', LT in x86 */
2459 				jmp_cond = X86_JL;
2460 				break;
2461 			case BPF_JSGE:
2462 				/* Signed '>=', GE in x86 */
2463 				jmp_cond = X86_JGE;
2464 				break;
2465 			case BPF_JSLE:
2466 				/* Signed '<=', LE in x86 */
2467 				jmp_cond = X86_JLE;
2468 				break;
2469 			default: /* to silence GCC warning */
2470 				return -EFAULT;
2471 			}
2472 			jmp_offset = addrs[i + insn->off] - addrs[i];
2473 			if (is_imm8_jmp_offset(jmp_offset)) {
2474 				if (jmp_padding) {
2475 					/* To keep the jmp_offset valid, the extra bytes are
2476 					 * padded before the jump insn, so we subtract the
2477 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
2478 					 *
2479 					 * If the previous pass already emits an imm8
2480 					 * jmp_cond, then this BPF insn won't shrink, so
2481 					 * "nops" is 0.
2482 					 *
2483 					 * On the other hand, if the previous pass emits an
2484 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
2485 					 * keep the image from shrinking further.
2486 					 *
2487 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
2488 					 *     is 2 bytes, so the size difference is 4 bytes.
2489 					 */
2490 					nops = INSN_SZ_DIFF - 2;
2491 					if (nops != 0 && nops != 4) {
2492 						pr_err("unexpected jmp_cond padding: %d bytes\n",
2493 						       nops);
2494 						return -EFAULT;
2495 					}
2496 					emit_nops(&prog, nops);
2497 				}
2498 				EMIT2(jmp_cond, jmp_offset);
2499 			} else if (is_simm32(jmp_offset)) {
2500 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2501 			} else {
2502 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2503 				return -EFAULT;
2504 			}
2505 
2506 			break;
2507 
2508 		case BPF_JMP | BPF_JA:
2509 		case BPF_JMP32 | BPF_JA:
2510 			if (BPF_CLASS(insn->code) == BPF_JMP) {
2511 				if (insn->off == -1)
2512 					/* -1 jmp instructions will always jump
2513 					 * backwards two bytes. Explicitly handling
2514 					 * this case avoids wasting too many passes
2515 					 * when there are long sequences of replaced
2516 					 * dead code.
2517 					 */
2518 					jmp_offset = -2;
2519 				else
2520 					jmp_offset = addrs[i + insn->off] - addrs[i];
2521 			} else {
2522 				if (insn->imm == -1)
2523 					jmp_offset = -2;
2524 				else
2525 					jmp_offset = addrs[i + insn->imm] - addrs[i];
2526 			}
2527 
2528 			if (!jmp_offset) {
2529 				/*
2530 				 * If jmp_padding is enabled, the extra nops will
2531 				 * be inserted. Otherwise, optimize out nop jumps.
2532 				 */
2533 				if (jmp_padding) {
2534 					/* There are 3 possible conditions.
2535 					 * (1) This BPF_JA is already optimized out in
2536 					 *     the previous run, so there is no need
2537 					 *     to pad any extra byte (0 byte).
2538 					 * (2) The previous pass emits an imm8 jmp,
2539 					 *     so we pad 2 bytes to match the previous
2540 					 *     insn size.
2541 					 * (3) Similarly, the previous pass emits an
2542 					 *     imm32 jmp, and 5 bytes is padded.
2543 					 */
2544 					nops = INSN_SZ_DIFF;
2545 					if (nops != 0 && nops != 2 && nops != 5) {
2546 						pr_err("unexpected nop jump padding: %d bytes\n",
2547 						       nops);
2548 						return -EFAULT;
2549 					}
2550 					emit_nops(&prog, nops);
2551 				}
2552 				break;
2553 			}
2554 emit_jmp:
2555 			if (is_imm8_jmp_offset(jmp_offset)) {
2556 				if (jmp_padding) {
2557 					/* To avoid breaking jmp_offset, the extra bytes
2558 					 * are padded before the actual jmp insn, so
2559 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
2560 					 *
2561 					 * If the previous pass already emits an imm8
2562 					 * jmp, there is nothing to pad (0 byte).
2563 					 *
2564 					 * If it emits an imm32 jmp (5 bytes) previously
2565 					 * and now an imm8 jmp (2 bytes), then we pad
2566 					 * (5 - 2 = 3) bytes to stop the image from
2567 					 * shrinking further.
2568 					 */
2569 					nops = INSN_SZ_DIFF - 2;
2570 					if (nops != 0 && nops != 3) {
2571 						pr_err("unexpected jump padding: %d bytes\n",
2572 						       nops);
2573 						return -EFAULT;
2574 					}
2575 					emit_nops(&prog, INSN_SZ_DIFF - 2);
2576 				}
2577 				EMIT2(0xEB, jmp_offset);
2578 			} else if (is_simm32(jmp_offset)) {
2579 				EMIT1_off32(0xE9, jmp_offset);
2580 			} else {
2581 				pr_err("jmp gen bug %llx\n", jmp_offset);
2582 				return -EFAULT;
2583 			}
2584 			break;
2585 
2586 		case BPF_JMP | BPF_EXIT:
2587 			if (seen_exit) {
2588 				jmp_offset = ctx->cleanup_addr - addrs[i];
2589 				goto emit_jmp;
2590 			}
2591 			seen_exit = true;
2592 			/* Update cleanup_addr */
2593 			ctx->cleanup_addr = proglen;
2594 			if (bpf_prog_was_classic(bpf_prog) &&
2595 			    !capable(CAP_SYS_ADMIN)) {
2596 				u8 *ip = image + addrs[i - 1];
2597 
2598 				if (emit_spectre_bhb_barrier(&prog, ip, bpf_prog))
2599 					return -EINVAL;
2600 			}
2601 			if (bpf_prog->aux->exception_boundary) {
2602 				pop_callee_regs(&prog, all_callee_regs_used);
2603 				pop_r12(&prog);
2604 			} else {
2605 				pop_callee_regs(&prog, callee_regs_used);
2606 				if (arena_vm_start)
2607 					pop_r12(&prog);
2608 			}
2609 			EMIT1(0xC9);         /* leave */
2610 			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2611 			break;
2612 
2613 		default:
2614 			/*
2615 			 * By design x86-64 JIT should support all BPF instructions.
2616 			 * This error will be seen if new instruction was added
2617 			 * to the interpreter, but not to the JIT, or if there is
2618 			 * junk in bpf_prog.
2619 			 */
2620 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2621 			return -EINVAL;
2622 		}
2623 
2624 		ilen = prog - temp;
2625 		if (ilen > BPF_MAX_INSN_SIZE) {
2626 			pr_err("bpf_jit: fatal insn size error\n");
2627 			return -EFAULT;
2628 		}
2629 
2630 		if (image) {
2631 			/*
2632 			 * When populating the image, assert that:
2633 			 *
2634 			 *  i) We do not write beyond the allocated space, and
2635 			 * ii) addrs[i] did not change from the prior run, in order
2636 			 *     to validate assumptions made for computing branch
2637 			 *     displacements.
2638 			 */
2639 			if (unlikely(proglen + ilen > oldproglen ||
2640 				     proglen + ilen != addrs[i])) {
2641 				pr_err("bpf_jit: fatal error\n");
2642 				return -EFAULT;
2643 			}
2644 			memcpy(rw_image + proglen, temp, ilen);
2645 		}
2646 		proglen += ilen;
2647 		addrs[i] = proglen;
2648 		prog = temp;
2649 	}
2650 
2651 	if (image && excnt != bpf_prog->aux->num_exentries) {
2652 		pr_err("extable is not populated\n");
2653 		return -EFAULT;
2654 	}
2655 	return proglen;
2656 }
2657 
clean_stack_garbage(const struct btf_func_model * m,u8 ** pprog,int nr_stack_slots,int stack_size)2658 static void clean_stack_garbage(const struct btf_func_model *m,
2659 				u8 **pprog, int nr_stack_slots,
2660 				int stack_size)
2661 {
2662 	int arg_size, off;
2663 	u8 *prog;
2664 
2665 	/* Generally speaking, the compiler will pass the arguments
2666 	 * on-stack with "push" instruction, which will take 8-byte
2667 	 * on the stack. In this case, there won't be garbage values
2668 	 * while we copy the arguments from origin stack frame to current
2669 	 * in BPF_DW.
2670 	 *
2671 	 * However, sometimes the compiler will only allocate 4-byte on
2672 	 * the stack for the arguments. For now, this case will only
2673 	 * happen if there is only one argument on-stack and its size
2674 	 * not more than 4 byte. In this case, there will be garbage
2675 	 * values on the upper 4-byte where we store the argument on
2676 	 * current stack frame.
2677 	 *
2678 	 * arguments on origin stack:
2679 	 *
2680 	 * stack_arg_1(4-byte) xxx(4-byte)
2681 	 *
2682 	 * what we copy:
2683 	 *
2684 	 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2685 	 *
2686 	 * and the xxx is the garbage values which we should clean here.
2687 	 */
2688 	if (nr_stack_slots != 1)
2689 		return;
2690 
2691 	/* the size of the last argument */
2692 	arg_size = m->arg_size[m->nr_args - 1];
2693 	if (arg_size <= 4) {
2694 		off = -(stack_size - 4);
2695 		prog = *pprog;
2696 		/* mov DWORD PTR [rbp + off], 0 */
2697 		if (!is_imm8(off))
2698 			EMIT2_off32(0xC7, 0x85, off);
2699 		else
2700 			EMIT3(0xC7, 0x45, off);
2701 		EMIT(0, 4);
2702 		*pprog = prog;
2703 	}
2704 }
2705 
2706 /* get the count of the regs that are used to pass arguments */
get_nr_used_regs(const struct btf_func_model * m)2707 static int get_nr_used_regs(const struct btf_func_model *m)
2708 {
2709 	int i, arg_regs, nr_used_regs = 0;
2710 
2711 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2712 		arg_regs = (m->arg_size[i] + 7) / 8;
2713 		if (nr_used_regs + arg_regs <= 6)
2714 			nr_used_regs += arg_regs;
2715 
2716 		if (nr_used_regs >= 6)
2717 			break;
2718 	}
2719 
2720 	return nr_used_regs;
2721 }
2722 
save_args(const struct btf_func_model * m,u8 ** prog,int stack_size,bool for_call_origin)2723 static void save_args(const struct btf_func_model *m, u8 **prog,
2724 		      int stack_size, bool for_call_origin)
2725 {
2726 	int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2727 	int i, j;
2728 
2729 	/* Store function arguments to stack.
2730 	 * For a function that accepts two pointers the sequence will be:
2731 	 * mov QWORD PTR [rbp-0x10],rdi
2732 	 * mov QWORD PTR [rbp-0x8],rsi
2733 	 */
2734 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2735 		arg_regs = (m->arg_size[i] + 7) / 8;
2736 
2737 		/* According to the research of Yonghong, struct members
2738 		 * should be all in register or all on the stack.
2739 		 * Meanwhile, the compiler will pass the argument on regs
2740 		 * if the remaining regs can hold the argument.
2741 		 *
2742 		 * Disorder of the args can happen. For example:
2743 		 *
2744 		 * struct foo_struct {
2745 		 *     long a;
2746 		 *     int b;
2747 		 * };
2748 		 * int foo(char, char, char, char, char, struct foo_struct,
2749 		 *         char);
2750 		 *
2751 		 * the arg1-5,arg7 will be passed by regs, and arg6 will
2752 		 * by stack.
2753 		 */
2754 		if (nr_regs + arg_regs > 6) {
2755 			/* copy function arguments from origin stack frame
2756 			 * into current stack frame.
2757 			 *
2758 			 * The starting address of the arguments on-stack
2759 			 * is:
2760 			 *   rbp + 8(push rbp) +
2761 			 *   8(return addr of origin call) +
2762 			 *   8(return addr of the caller)
2763 			 * which means: rbp + 24
2764 			 */
2765 			for (j = 0; j < arg_regs; j++) {
2766 				emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2767 					 nr_stack_slots * 8 + 0x18);
2768 				emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2769 					 -stack_size);
2770 
2771 				if (!nr_stack_slots)
2772 					first_off = stack_size;
2773 				stack_size -= 8;
2774 				nr_stack_slots++;
2775 			}
2776 		} else {
2777 			/* Only copy the arguments on-stack to current
2778 			 * 'stack_size' and ignore the regs, used to
2779 			 * prepare the arguments on-stack for origin call.
2780 			 */
2781 			if (for_call_origin) {
2782 				nr_regs += arg_regs;
2783 				continue;
2784 			}
2785 
2786 			/* copy the arguments from regs into stack */
2787 			for (j = 0; j < arg_regs; j++) {
2788 				emit_stx(prog, BPF_DW, BPF_REG_FP,
2789 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2790 					 -stack_size);
2791 				stack_size -= 8;
2792 				nr_regs++;
2793 			}
2794 		}
2795 	}
2796 
2797 	clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2798 }
2799 
restore_regs(const struct btf_func_model * m,u8 ** prog,int stack_size)2800 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2801 			 int stack_size)
2802 {
2803 	int i, j, arg_regs, nr_regs = 0;
2804 
2805 	/* Restore function arguments from stack.
2806 	 * For a function that accepts two pointers the sequence will be:
2807 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2808 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2809 	 *
2810 	 * The logic here is similar to what we do in save_args()
2811 	 */
2812 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2813 		arg_regs = (m->arg_size[i] + 7) / 8;
2814 		if (nr_regs + arg_regs <= 6) {
2815 			for (j = 0; j < arg_regs; j++) {
2816 				emit_ldx(prog, BPF_DW,
2817 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2818 					 BPF_REG_FP,
2819 					 -stack_size);
2820 				stack_size -= 8;
2821 				nr_regs++;
2822 			}
2823 		} else {
2824 			stack_size -= 8 * arg_regs;
2825 		}
2826 
2827 		if (nr_regs >= 6)
2828 			break;
2829 	}
2830 }
2831 
invoke_bpf_prog(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_link * l,int stack_size,int run_ctx_off,bool save_ret,void * image,void * rw_image)2832 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2833 			   struct bpf_tramp_link *l, int stack_size,
2834 			   int run_ctx_off, bool save_ret,
2835 			   void *image, void *rw_image)
2836 {
2837 	u8 *prog = *pprog;
2838 	u8 *jmp_insn;
2839 	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2840 	struct bpf_prog *p = l->link.prog;
2841 	u64 cookie = l->cookie;
2842 
2843 	/* mov rdi, cookie */
2844 	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2845 
2846 	/* Prepare struct bpf_tramp_run_ctx.
2847 	 *
2848 	 * bpf_tramp_run_ctx is already preserved by
2849 	 * arch_prepare_bpf_trampoline().
2850 	 *
2851 	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2852 	 */
2853 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2854 
2855 	/* arg1: mov rdi, progs[i] */
2856 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2857 	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2858 	if (!is_imm8(-run_ctx_off))
2859 		EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2860 	else
2861 		EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2862 
2863 	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2864 		return -EINVAL;
2865 	/* remember prog start time returned by __bpf_prog_enter */
2866 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2867 
2868 	/* if (__bpf_prog_enter*(prog) == 0)
2869 	 *	goto skip_exec_of_prog;
2870 	 */
2871 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2872 	/* emit 2 nops that will be replaced with JE insn */
2873 	jmp_insn = prog;
2874 	emit_nops(&prog, 2);
2875 
2876 	/* arg1: lea rdi, [rbp - stack_size] */
2877 	if (!is_imm8(-stack_size))
2878 		EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2879 	else
2880 		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2881 	/* arg2: progs[i]->insnsi for interpreter */
2882 	if (!p->jited)
2883 		emit_mov_imm64(&prog, BPF_REG_2,
2884 			       (long) p->insnsi >> 32,
2885 			       (u32) (long) p->insnsi);
2886 	/* call JITed bpf program or interpreter */
2887 	if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2888 		return -EINVAL;
2889 
2890 	/*
2891 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2892 	 * of the previous call which is then passed on the stack to
2893 	 * the next BPF program.
2894 	 *
2895 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
2896 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2897 	 */
2898 	if (save_ret)
2899 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2900 
2901 	/* replace 2 nops with JE insn, since jmp target is known */
2902 	jmp_insn[0] = X86_JE;
2903 	jmp_insn[1] = prog - jmp_insn - 2;
2904 
2905 	/* arg1: mov rdi, progs[i] */
2906 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2907 	/* arg2: mov rsi, rbx <- start time in nsec */
2908 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2909 	/* arg3: lea rdx, [rbp - run_ctx_off] */
2910 	if (!is_imm8(-run_ctx_off))
2911 		EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2912 	else
2913 		EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2914 	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2915 		return -EINVAL;
2916 
2917 	*pprog = prog;
2918 	return 0;
2919 }
2920 
emit_align(u8 ** pprog,u32 align)2921 static void emit_align(u8 **pprog, u32 align)
2922 {
2923 	u8 *target, *prog = *pprog;
2924 
2925 	target = PTR_ALIGN(prog, align);
2926 	if (target != prog)
2927 		emit_nops(&prog, target - prog);
2928 
2929 	*pprog = prog;
2930 }
2931 
emit_cond_near_jump(u8 ** pprog,void * func,void * ip,u8 jmp_cond)2932 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2933 {
2934 	u8 *prog = *pprog;
2935 	s64 offset;
2936 
2937 	offset = func - (ip + 2 + 4);
2938 	if (!is_simm32(offset)) {
2939 		pr_err("Target %p is out of range\n", func);
2940 		return -EINVAL;
2941 	}
2942 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2943 	*pprog = prog;
2944 	return 0;
2945 }
2946 
invoke_bpf(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_links * tl,int stack_size,int run_ctx_off,bool save_ret,void * image,void * rw_image)2947 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2948 		      struct bpf_tramp_links *tl, int stack_size,
2949 		      int run_ctx_off, bool save_ret,
2950 		      void *image, void *rw_image)
2951 {
2952 	int i;
2953 	u8 *prog = *pprog;
2954 
2955 	for (i = 0; i < tl->nr_links; i++) {
2956 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2957 				    run_ctx_off, save_ret, image, rw_image))
2958 			return -EINVAL;
2959 	}
2960 	*pprog = prog;
2961 	return 0;
2962 }
2963 
invoke_bpf_mod_ret(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_links * tl,int stack_size,int run_ctx_off,u8 ** branches,void * image,void * rw_image)2964 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2965 			      struct bpf_tramp_links *tl, int stack_size,
2966 			      int run_ctx_off, u8 **branches,
2967 			      void *image, void *rw_image)
2968 {
2969 	u8 *prog = *pprog;
2970 	int i;
2971 
2972 	/* The first fmod_ret program will receive a garbage return value.
2973 	 * Set this to 0 to avoid confusing the program.
2974 	 */
2975 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2976 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2977 	for (i = 0; i < tl->nr_links; i++) {
2978 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2979 				    image, rw_image))
2980 			return -EINVAL;
2981 
2982 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2983 		 * if (*(u64 *)(rbp - 8) !=  0)
2984 		 *	goto do_fexit;
2985 		 */
2986 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2987 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2988 
2989 		/* Save the location of the branch and Generate 6 nops
2990 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2991 		 * are replaced with a conditional jump once do_fexit (i.e. the
2992 		 * start of the fexit invocation) is finalized.
2993 		 */
2994 		branches[i] = prog;
2995 		emit_nops(&prog, 4 + 2);
2996 	}
2997 
2998 	*pprog = prog;
2999 	return 0;
3000 }
3001 
3002 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
3003 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack)	\
3004 	__LOAD_TCC_PTR(-round_up(stack, 8) - 8)
3005 
3006 /* Example:
3007  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
3008  * its 'struct btf_func_model' will be nr_args=2
3009  * The assembly code when eth_type_trans is executing after trampoline:
3010  *
3011  * push rbp
3012  * mov rbp, rsp
3013  * sub rsp, 16                     // space for skb and dev
3014  * push rbx                        // temp regs to pass start time
3015  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
3016  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
3017  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
3018  * mov rbx, rax                    // remember start time in bpf stats are enabled
3019  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
3020  * call addr_of_jited_FENTRY_prog
3021  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
3022  * mov rsi, rbx                    // prog start time
3023  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
3024  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
3025  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
3026  * pop rbx
3027  * leave
3028  * ret
3029  *
3030  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
3031  * replaced with 'call generated_bpf_trampoline'. When it returns
3032  * eth_type_trans will continue executing with original skb and dev pointers.
3033  *
3034  * The assembly code when eth_type_trans is called from trampoline:
3035  *
3036  * push rbp
3037  * mov rbp, rsp
3038  * sub rsp, 24                     // space for skb, dev, return value
3039  * push rbx                        // temp regs to pass start time
3040  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
3041  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
3042  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
3043  * mov rbx, rax                    // remember start time if bpf stats are enabled
3044  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
3045  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
3046  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
3047  * mov rsi, rbx                    // prog start time
3048  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
3049  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
3050  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
3051  * call eth_type_trans+5           // execute body of eth_type_trans
3052  * mov qword ptr [rbp - 8], rax    // save return value
3053  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
3054  * mov rbx, rax                    // remember start time in bpf stats are enabled
3055  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
3056  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
3057  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
3058  * mov rsi, rbx                    // prog start time
3059  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
3060  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
3061  * pop rbx
3062  * leave
3063  * add rsp, 8                      // skip eth_type_trans's frame
3064  * ret                             // return to its caller
3065  */
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * rw_image,void * rw_image_end,void * image,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)3066 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
3067 					 void *rw_image_end, void *image,
3068 					 const struct btf_func_model *m, u32 flags,
3069 					 struct bpf_tramp_links *tlinks,
3070 					 void *func_addr)
3071 {
3072 	int i, ret, nr_regs = m->nr_args, stack_size = 0;
3073 	int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
3074 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
3075 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
3076 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
3077 	void *orig_call = func_addr;
3078 	u8 **branches = NULL;
3079 	u8 *prog;
3080 	bool save_ret;
3081 
3082 	/*
3083 	 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
3084 	 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
3085 	 * because @func_addr.
3086 	 */
3087 	WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
3088 		     (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
3089 
3090 	/* extra registers for struct arguments */
3091 	for (i = 0; i < m->nr_args; i++) {
3092 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
3093 			nr_regs += (m->arg_size[i] + 7) / 8 - 1;
3094 	}
3095 
3096 	/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
3097 	 * are passed through regs, the remains are through stack.
3098 	 */
3099 	if (nr_regs > MAX_BPF_FUNC_ARGS)
3100 		return -ENOTSUPP;
3101 
3102 	/* Generated trampoline stack layout:
3103 	 *
3104 	 * RBP + 8         [ return address  ]
3105 	 * RBP + 0         [ RBP             ]
3106 	 *
3107 	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
3108 	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
3109 	 *
3110 	 *                 [ reg_argN        ]  always
3111 	 *                 [ ...             ]
3112 	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
3113 	 *
3114 	 * RBP - nregs_off [ regs count	     ]  always
3115 	 *
3116 	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
3117 	 *
3118 	 * RBP - rbx_off   [ rbx value       ]  always
3119 	 *
3120 	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
3121 	 *
3122 	 *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
3123 	 *                     [ ...        ]
3124 	 *                     [ stack_arg2 ]
3125 	 * RBP - arg_stack_off [ stack_arg1 ]
3126 	 * RSP                 [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX
3127 	 */
3128 
3129 	/* room for return value of orig_call or fentry prog */
3130 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
3131 	if (save_ret)
3132 		stack_size += 8;
3133 
3134 	stack_size += nr_regs * 8;
3135 	regs_off = stack_size;
3136 
3137 	/* regs count  */
3138 	stack_size += 8;
3139 	nregs_off = stack_size;
3140 
3141 	if (flags & BPF_TRAMP_F_IP_ARG)
3142 		stack_size += 8; /* room for IP address argument */
3143 
3144 	ip_off = stack_size;
3145 
3146 	stack_size += 8;
3147 	rbx_off = stack_size;
3148 
3149 	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
3150 	run_ctx_off = stack_size;
3151 
3152 	if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
3153 		/* the space that used to pass arguments on-stack */
3154 		stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
3155 		/* make sure the stack pointer is 16-byte aligned if we
3156 		 * need pass arguments on stack, which means
3157 		 *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
3158 		 * should be 16-byte aligned. Following code depend on
3159 		 * that stack_size is already 8-byte aligned.
3160 		 */
3161 		stack_size += (stack_size % 16) ? 0 : 8;
3162 	}
3163 
3164 	arg_stack_off = stack_size;
3165 
3166 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3167 		/* skip patched call instruction and point orig_call to actual
3168 		 * body of the kernel function.
3169 		 */
3170 		if (is_endbr(orig_call))
3171 			orig_call += ENDBR_INSN_SIZE;
3172 		orig_call += X86_PATCH_SIZE;
3173 	}
3174 
3175 	prog = rw_image;
3176 
3177 	if (flags & BPF_TRAMP_F_INDIRECT) {
3178 		/*
3179 		 * Indirect call for bpf_struct_ops
3180 		 */
3181 		emit_cfi(&prog, image,
3182 			 cfi_get_func_hash(func_addr),
3183 			 cfi_get_func_arity(func_addr));
3184 	} else {
3185 		/*
3186 		 * Direct-call fentry stub, as such it needs accounting for the
3187 		 * __fentry__ call.
3188 		 */
3189 		x86_call_depth_emit_accounting(&prog, NULL, image);
3190 	}
3191 	EMIT1(0x55);		 /* push rbp */
3192 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
3193 	if (!is_imm8(stack_size)) {
3194 		/* sub rsp, stack_size */
3195 		EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
3196 	} else {
3197 		/* sub rsp, stack_size */
3198 		EMIT4(0x48, 0x83, 0xEC, stack_size);
3199 	}
3200 	if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
3201 		EMIT1(0x50);		/* push rax */
3202 	/* mov QWORD PTR [rbp - rbx_off], rbx */
3203 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
3204 
3205 	/* Store number of argument registers of the traced function:
3206 	 *   mov rax, nr_regs
3207 	 *   mov QWORD PTR [rbp - nregs_off], rax
3208 	 */
3209 	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
3210 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
3211 
3212 	if (flags & BPF_TRAMP_F_IP_ARG) {
3213 		/* Store IP address of the traced function:
3214 		 * movabsq rax, func_addr
3215 		 * mov QWORD PTR [rbp - ip_off], rax
3216 		 */
3217 		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
3218 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
3219 	}
3220 
3221 	save_args(m, &prog, regs_off, false);
3222 
3223 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3224 		/* arg1: mov rdi, im */
3225 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3226 		if (emit_rsb_call(&prog, __bpf_tramp_enter,
3227 				  image + (prog - (u8 *)rw_image))) {
3228 			ret = -EINVAL;
3229 			goto cleanup;
3230 		}
3231 	}
3232 
3233 	if (fentry->nr_links) {
3234 		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
3235 			       flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
3236 			return -EINVAL;
3237 	}
3238 
3239 	if (fmod_ret->nr_links) {
3240 		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
3241 				   GFP_KERNEL);
3242 		if (!branches)
3243 			return -ENOMEM;
3244 
3245 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
3246 				       run_ctx_off, branches, image, rw_image)) {
3247 			ret = -EINVAL;
3248 			goto cleanup;
3249 		}
3250 	}
3251 
3252 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3253 		restore_regs(m, &prog, regs_off);
3254 		save_args(m, &prog, arg_stack_off, true);
3255 
3256 		if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3257 			/* Before calling the original function, load the
3258 			 * tail_call_cnt_ptr from stack to rax.
3259 			 */
3260 			LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3261 		}
3262 
3263 		if (flags & BPF_TRAMP_F_ORIG_STACK) {
3264 			emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
3265 			EMIT2(0xff, 0xd3); /* call *rbx */
3266 		} else {
3267 			/* call original function */
3268 			if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
3269 				ret = -EINVAL;
3270 				goto cleanup;
3271 			}
3272 		}
3273 		/* remember return value in a stack for bpf prog to access */
3274 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3275 		im->ip_after_call = image + (prog - (u8 *)rw_image);
3276 		emit_nops(&prog, X86_PATCH_SIZE);
3277 	}
3278 
3279 	if (fmod_ret->nr_links) {
3280 		/* From Intel 64 and IA-32 Architectures Optimization
3281 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3282 		 * Coding Rule 11: All branch targets should be 16-byte
3283 		 * aligned.
3284 		 */
3285 		emit_align(&prog, 16);
3286 		/* Update the branches saved in invoke_bpf_mod_ret with the
3287 		 * aligned address of do_fexit.
3288 		 */
3289 		for (i = 0; i < fmod_ret->nr_links; i++) {
3290 			emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
3291 					    image + (branches[i] - (u8 *)rw_image), X86_JNE);
3292 		}
3293 	}
3294 
3295 	if (fexit->nr_links) {
3296 		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
3297 			       false, image, rw_image)) {
3298 			ret = -EINVAL;
3299 			goto cleanup;
3300 		}
3301 	}
3302 
3303 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
3304 		restore_regs(m, &prog, regs_off);
3305 
3306 	/* This needs to be done regardless. If there were fmod_ret programs,
3307 	 * the return value is only updated on the stack and still needs to be
3308 	 * restored to R0.
3309 	 */
3310 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3311 		im->ip_epilogue = image + (prog - (u8 *)rw_image);
3312 		/* arg1: mov rdi, im */
3313 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3314 		if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
3315 			ret = -EINVAL;
3316 			goto cleanup;
3317 		}
3318 	} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3319 		/* Before running the original function, load the
3320 		 * tail_call_cnt_ptr from stack to rax.
3321 		 */
3322 		LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3323 	}
3324 
3325 	/* restore return value of orig_call or fentry prog back into RAX */
3326 	if (save_ret)
3327 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
3328 
3329 	emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
3330 	EMIT1(0xC9); /* leave */
3331 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3332 		/* skip our return address and return to parent */
3333 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
3334 	}
3335 	emit_return(&prog, image + (prog - (u8 *)rw_image));
3336 	/* Make sure the trampoline generation logic doesn't overflow */
3337 	if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
3338 		ret = -EFAULT;
3339 		goto cleanup;
3340 	}
3341 	ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
3342 
3343 cleanup:
3344 	kfree(branches);
3345 	return ret;
3346 }
3347 
arch_alloc_bpf_trampoline(unsigned int size)3348 void *arch_alloc_bpf_trampoline(unsigned int size)
3349 {
3350 	return bpf_prog_pack_alloc(size, jit_fill_hole);
3351 }
3352 
arch_free_bpf_trampoline(void * image,unsigned int size)3353 void arch_free_bpf_trampoline(void *image, unsigned int size)
3354 {
3355 	bpf_prog_pack_free(image, size);
3356 }
3357 
arch_protect_bpf_trampoline(void * image,unsigned int size)3358 int arch_protect_bpf_trampoline(void *image, unsigned int size)
3359 {
3360 	return 0;
3361 }
3362 
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)3363 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
3364 				const struct btf_func_model *m, u32 flags,
3365 				struct bpf_tramp_links *tlinks,
3366 				void *func_addr)
3367 {
3368 	void *rw_image, *tmp;
3369 	int ret;
3370 	u32 size = image_end - image;
3371 
3372 	/* rw_image doesn't need to be in module memory range, so we can
3373 	 * use kvmalloc.
3374 	 */
3375 	rw_image = kvmalloc(size, GFP_KERNEL);
3376 	if (!rw_image)
3377 		return -ENOMEM;
3378 
3379 	ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
3380 					    flags, tlinks, func_addr);
3381 	if (ret < 0)
3382 		goto out;
3383 
3384 	tmp = bpf_arch_text_copy(image, rw_image, size);
3385 	if (IS_ERR(tmp))
3386 		ret = PTR_ERR(tmp);
3387 out:
3388 	kvfree(rw_image);
3389 	return ret;
3390 }
3391 
arch_bpf_trampoline_size(const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)3392 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
3393 			     struct bpf_tramp_links *tlinks, void *func_addr)
3394 {
3395 	struct bpf_tramp_image im;
3396 	void *image;
3397 	int ret;
3398 
3399 	/* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
3400 	 * This will NOT cause fragmentation in direct map, as we do not
3401 	 * call set_memory_*() on this buffer.
3402 	 *
3403 	 * We cannot use kvmalloc here, because we need image to be in
3404 	 * module memory range.
3405 	 */
3406 	image = bpf_jit_alloc_exec(PAGE_SIZE);
3407 	if (!image)
3408 		return -ENOMEM;
3409 
3410 	ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
3411 					    m, flags, tlinks, func_addr);
3412 	bpf_jit_free_exec(image);
3413 	return ret;
3414 }
3415 
emit_bpf_dispatcher(u8 ** pprog,int a,int b,s64 * progs,u8 * image,u8 * buf)3416 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
3417 {
3418 	u8 *jg_reloc, *prog = *pprog;
3419 	int pivot, err, jg_bytes = 1;
3420 	s64 jg_offset;
3421 
3422 	if (a == b) {
3423 		/* Leaf node of recursion, i.e. not a range of indices
3424 		 * anymore.
3425 		 */
3426 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
3427 		if (!is_simm32(progs[a]))
3428 			return -1;
3429 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
3430 			    progs[a]);
3431 		err = emit_cond_near_jump(&prog,	/* je func */
3432 					  (void *)progs[a], image + (prog - buf),
3433 					  X86_JE);
3434 		if (err)
3435 			return err;
3436 
3437 		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
3438 
3439 		*pprog = prog;
3440 		return 0;
3441 	}
3442 
3443 	/* Not a leaf node, so we pivot, and recursively descend into
3444 	 * the lower and upper ranges.
3445 	 */
3446 	pivot = (b - a) / 2;
3447 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
3448 	if (!is_simm32(progs[a + pivot]))
3449 		return -1;
3450 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
3451 
3452 	if (pivot > 2) {				/* jg upper_part */
3453 		/* Require near jump. */
3454 		jg_bytes = 4;
3455 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
3456 	} else {
3457 		EMIT2(X86_JG, 0);
3458 	}
3459 	jg_reloc = prog;
3460 
3461 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
3462 				  progs, image, buf);
3463 	if (err)
3464 		return err;
3465 
3466 	/* From Intel 64 and IA-32 Architectures Optimization
3467 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3468 	 * Coding Rule 11: All branch targets should be 16-byte
3469 	 * aligned.
3470 	 */
3471 	emit_align(&prog, 16);
3472 	jg_offset = prog - jg_reloc;
3473 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
3474 
3475 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
3476 				  b, progs, image, buf);
3477 	if (err)
3478 		return err;
3479 
3480 	*pprog = prog;
3481 	return 0;
3482 }
3483 
cmp_ips(const void * a,const void * b)3484 static int cmp_ips(const void *a, const void *b)
3485 {
3486 	const s64 *ipa = a;
3487 	const s64 *ipb = b;
3488 
3489 	if (*ipa > *ipb)
3490 		return 1;
3491 	if (*ipa < *ipb)
3492 		return -1;
3493 	return 0;
3494 }
3495 
arch_prepare_bpf_dispatcher(void * image,void * buf,s64 * funcs,int num_funcs)3496 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
3497 {
3498 	u8 *prog = buf;
3499 
3500 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
3501 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
3502 }
3503 
bpf_get_prog_name(struct bpf_prog * prog)3504 static const char *bpf_get_prog_name(struct bpf_prog *prog)
3505 {
3506 	if (prog->aux->ksym.prog)
3507 		return prog->aux->ksym.name;
3508 	return prog->aux->name;
3509 }
3510 
priv_stack_init_guard(void __percpu * priv_stack_ptr,int alloc_size)3511 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
3512 {
3513 	int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3514 	u64 *stack_ptr;
3515 
3516 	for_each_possible_cpu(cpu) {
3517 		stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3518 		stack_ptr[0] = PRIV_STACK_GUARD_VAL;
3519 		stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
3520 	}
3521 }
3522 
priv_stack_check_guard(void __percpu * priv_stack_ptr,int alloc_size,struct bpf_prog * prog)3523 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
3524 				   struct bpf_prog *prog)
3525 {
3526 	int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3527 	u64 *stack_ptr;
3528 
3529 	for_each_possible_cpu(cpu) {
3530 		stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3531 		if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
3532 		    stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) {
3533 			pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
3534 			       bpf_get_prog_name(prog));
3535 			break;
3536 		}
3537 	}
3538 }
3539 
3540 struct x64_jit_data {
3541 	struct bpf_binary_header *rw_header;
3542 	struct bpf_binary_header *header;
3543 	int *addrs;
3544 	u8 *image;
3545 	int proglen;
3546 	struct jit_context ctx;
3547 };
3548 
3549 #define MAX_PASSES 20
3550 #define PADDING_PASSES (MAX_PASSES - 5)
3551 
bpf_int_jit_compile(struct bpf_prog * prog)3552 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
3553 {
3554 	struct bpf_binary_header *rw_header = NULL;
3555 	struct bpf_binary_header *header = NULL;
3556 	struct bpf_prog *tmp, *orig_prog = prog;
3557 	void __percpu *priv_stack_ptr = NULL;
3558 	struct x64_jit_data *jit_data;
3559 	int priv_stack_alloc_sz;
3560 	int proglen, oldproglen = 0;
3561 	struct jit_context ctx = {};
3562 	bool tmp_blinded = false;
3563 	bool extra_pass = false;
3564 	bool padding = false;
3565 	u8 *rw_image = NULL;
3566 	u8 *image = NULL;
3567 	int *addrs;
3568 	int pass;
3569 	int i;
3570 
3571 	if (!prog->jit_requested)
3572 		return orig_prog;
3573 
3574 	tmp = bpf_jit_blind_constants(prog);
3575 	/*
3576 	 * If blinding was requested and we failed during blinding,
3577 	 * we must fall back to the interpreter.
3578 	 */
3579 	if (IS_ERR(tmp))
3580 		return orig_prog;
3581 	if (tmp != prog) {
3582 		tmp_blinded = true;
3583 		prog = tmp;
3584 	}
3585 
3586 	jit_data = prog->aux->jit_data;
3587 	if (!jit_data) {
3588 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
3589 		if (!jit_data) {
3590 			prog = orig_prog;
3591 			goto out;
3592 		}
3593 		prog->aux->jit_data = jit_data;
3594 	}
3595 	priv_stack_ptr = prog->aux->priv_stack_ptr;
3596 	if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
3597 		/* Allocate actual private stack size with verifier-calculated
3598 		 * stack size plus two memory guards to protect overflow and
3599 		 * underflow.
3600 		 */
3601 		priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3602 				      2 * PRIV_STACK_GUARD_SZ;
3603 		priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL);
3604 		if (!priv_stack_ptr) {
3605 			prog = orig_prog;
3606 			goto out_priv_stack;
3607 		}
3608 
3609 		priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
3610 		prog->aux->priv_stack_ptr = priv_stack_ptr;
3611 	}
3612 	addrs = jit_data->addrs;
3613 	if (addrs) {
3614 		ctx = jit_data->ctx;
3615 		oldproglen = jit_data->proglen;
3616 		image = jit_data->image;
3617 		header = jit_data->header;
3618 		rw_header = jit_data->rw_header;
3619 		rw_image = (void *)rw_header + ((void *)image - (void *)header);
3620 		extra_pass = true;
3621 		padding = true;
3622 		goto skip_init_addrs;
3623 	}
3624 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3625 	if (!addrs) {
3626 		prog = orig_prog;
3627 		goto out_addrs;
3628 	}
3629 
3630 	/*
3631 	 * Before first pass, make a rough estimation of addrs[]
3632 	 * each BPF instruction is translated to less than 64 bytes
3633 	 */
3634 	for (proglen = 0, i = 0; i <= prog->len; i++) {
3635 		proglen += 64;
3636 		addrs[i] = proglen;
3637 	}
3638 	ctx.cleanup_addr = proglen;
3639 skip_init_addrs:
3640 
3641 	/*
3642 	 * JITed image shrinks with every pass and the loop iterates
3643 	 * until the image stops shrinking. Very large BPF programs
3644 	 * may converge on the last pass. In such case do one more
3645 	 * pass to emit the final image.
3646 	 */
3647 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
3648 		if (!padding && pass >= PADDING_PASSES)
3649 			padding = true;
3650 		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3651 		if (proglen <= 0) {
3652 out_image:
3653 			image = NULL;
3654 			if (header) {
3655 				bpf_arch_text_copy(&header->size, &rw_header->size,
3656 						   sizeof(rw_header->size));
3657 				bpf_jit_binary_pack_free(header, rw_header);
3658 			}
3659 			/* Fall back to interpreter mode */
3660 			prog = orig_prog;
3661 			if (extra_pass) {
3662 				prog->bpf_func = NULL;
3663 				prog->jited = 0;
3664 				prog->jited_len = 0;
3665 			}
3666 			goto out_addrs;
3667 		}
3668 		if (image) {
3669 			if (proglen != oldproglen) {
3670 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3671 				       proglen, oldproglen);
3672 				goto out_image;
3673 			}
3674 			break;
3675 		}
3676 		if (proglen == oldproglen) {
3677 			/*
3678 			 * The number of entries in extable is the number of BPF_LDX
3679 			 * insns that access kernel memory via "pointer to BTF type".
3680 			 * The verifier changed their opcode from LDX|MEM|size
3681 			 * to LDX|PROBE_MEM|size to make JITing easier.
3682 			 */
3683 			u32 align = __alignof__(struct exception_table_entry);
3684 			u32 extable_size = prog->aux->num_exentries *
3685 				sizeof(struct exception_table_entry);
3686 
3687 			/* allocate module memory for x86 insns and extable */
3688 			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3689 							   &image, align, &rw_header, &rw_image,
3690 							   jit_fill_hole);
3691 			if (!header) {
3692 				prog = orig_prog;
3693 				goto out_addrs;
3694 			}
3695 			prog->aux->extable = (void *) image + roundup(proglen, align);
3696 		}
3697 		oldproglen = proglen;
3698 		cond_resched();
3699 	}
3700 
3701 	if (bpf_jit_enable > 1)
3702 		bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3703 
3704 	if (image) {
3705 		if (!prog->is_func || extra_pass) {
3706 			/*
3707 			 * bpf_jit_binary_pack_finalize fails in two scenarios:
3708 			 *   1) header is not pointing to proper module memory;
3709 			 *   2) the arch doesn't support bpf_arch_text_copy().
3710 			 *
3711 			 * Both cases are serious bugs and justify WARN_ON.
3712 			 */
3713 			if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) {
3714 				/* header has been freed */
3715 				header = NULL;
3716 				goto out_image;
3717 			}
3718 
3719 			bpf_tail_call_direct_fixup(prog);
3720 		} else {
3721 			jit_data->addrs = addrs;
3722 			jit_data->ctx = ctx;
3723 			jit_data->proglen = proglen;
3724 			jit_data->image = image;
3725 			jit_data->header = header;
3726 			jit_data->rw_header = rw_header;
3727 		}
3728 		/*
3729 		 * ctx.prog_offset is used when CFI preambles put code *before*
3730 		 * the function. See emit_cfi(). For FineIBT specifically this code
3731 		 * can also be executed and bpf_prog_kallsyms_add() will
3732 		 * generate an additional symbol to cover this, hence also
3733 		 * decrement proglen.
3734 		 */
3735 		prog->bpf_func = (void *)image + cfi_get_offset();
3736 		prog->jited = 1;
3737 		prog->jited_len = proglen - cfi_get_offset();
3738 	} else {
3739 		prog = orig_prog;
3740 	}
3741 
3742 	if (!image || !prog->is_func || extra_pass) {
3743 		if (image)
3744 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
3745 out_addrs:
3746 		kvfree(addrs);
3747 		if (!image && priv_stack_ptr) {
3748 			free_percpu(priv_stack_ptr);
3749 			prog->aux->priv_stack_ptr = NULL;
3750 		}
3751 out_priv_stack:
3752 		kfree(jit_data);
3753 		prog->aux->jit_data = NULL;
3754 	}
3755 out:
3756 	if (tmp_blinded)
3757 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
3758 					   tmp : orig_prog);
3759 	return prog;
3760 }
3761 
bpf_jit_supports_kfunc_call(void)3762 bool bpf_jit_supports_kfunc_call(void)
3763 {
3764 	return true;
3765 }
3766 
bpf_arch_text_copy(void * dst,void * src,size_t len)3767 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3768 {
3769 	if (text_poke_copy(dst, src, len) == NULL)
3770 		return ERR_PTR(-EINVAL);
3771 	return dst;
3772 }
3773 
3774 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)3775 bool bpf_jit_supports_subprog_tailcalls(void)
3776 {
3777 	return true;
3778 }
3779 
bpf_jit_supports_percpu_insn(void)3780 bool bpf_jit_supports_percpu_insn(void)
3781 {
3782 	return true;
3783 }
3784 
bpf_jit_free(struct bpf_prog * prog)3785 void bpf_jit_free(struct bpf_prog *prog)
3786 {
3787 	if (prog->jited) {
3788 		struct x64_jit_data *jit_data = prog->aux->jit_data;
3789 		struct bpf_binary_header *hdr;
3790 		void __percpu *priv_stack_ptr;
3791 		int priv_stack_alloc_sz;
3792 
3793 		/*
3794 		 * If we fail the final pass of JIT (from jit_subprogs),
3795 		 * the program may not be finalized yet. Call finalize here
3796 		 * before freeing it.
3797 		 */
3798 		if (jit_data) {
3799 			bpf_jit_binary_pack_finalize(jit_data->header,
3800 						     jit_data->rw_header);
3801 			kvfree(jit_data->addrs);
3802 			kfree(jit_data);
3803 		}
3804 		prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3805 		hdr = bpf_jit_binary_pack_hdr(prog);
3806 		bpf_jit_binary_pack_free(hdr, NULL);
3807 		priv_stack_ptr = prog->aux->priv_stack_ptr;
3808 		if (priv_stack_ptr) {
3809 			priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3810 					      2 * PRIV_STACK_GUARD_SZ;
3811 			priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3812 			free_percpu(prog->aux->priv_stack_ptr);
3813 		}
3814 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3815 	}
3816 
3817 	bpf_prog_unlock_free(prog);
3818 }
3819 
bpf_jit_supports_exceptions(void)3820 bool bpf_jit_supports_exceptions(void)
3821 {
3822 	/* We unwind through both kernel frames (starting from within bpf_throw
3823 	 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3824 	 * to walk kernel frames and reach BPF frames in the stack trace.
3825 	 */
3826 	return IS_ENABLED(CONFIG_UNWINDER_ORC);
3827 }
3828 
bpf_jit_supports_private_stack(void)3829 bool bpf_jit_supports_private_stack(void)
3830 {
3831 	return true;
3832 }
3833 
arch_bpf_stack_walk(bool (* consume_fn)(void * cookie,u64 ip,u64 sp,u64 bp),void * cookie)3834 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3835 {
3836 #if defined(CONFIG_UNWINDER_ORC)
3837 	struct unwind_state state;
3838 	unsigned long addr;
3839 
3840 	for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3841 	     unwind_next_frame(&state)) {
3842 		addr = unwind_get_return_address(&state);
3843 		if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3844 			break;
3845 	}
3846 	return;
3847 #endif
3848 	WARN(1, "verification of programs using bpf_throw should have failed\n");
3849 }
3850 
bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor * poke,struct bpf_prog * new,struct bpf_prog * old)3851 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3852 			       struct bpf_prog *new, struct bpf_prog *old)
3853 {
3854 	u8 *old_addr, *new_addr, *old_bypass_addr;
3855 	int ret;
3856 
3857 	old_bypass_addr = old ? NULL : poke->bypass_addr;
3858 	old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3859 	new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3860 
3861 	/*
3862 	 * On program loading or teardown, the program's kallsym entry
3863 	 * might not be in place, so we use __bpf_arch_text_poke to skip
3864 	 * the kallsyms check.
3865 	 */
3866 	if (new) {
3867 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3868 					   BPF_MOD_JUMP,
3869 					   old_addr, new_addr);
3870 		BUG_ON(ret < 0);
3871 		if (!old) {
3872 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3873 						   BPF_MOD_JUMP,
3874 						   poke->bypass_addr,
3875 						   NULL);
3876 			BUG_ON(ret < 0);
3877 		}
3878 	} else {
3879 		ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3880 					   BPF_MOD_JUMP,
3881 					   old_bypass_addr,
3882 					   poke->bypass_addr);
3883 		BUG_ON(ret < 0);
3884 		/* let other CPUs finish the execution of program
3885 		 * so that it will not possible to expose them
3886 		 * to invalid nop, stack unwind, nop state
3887 		 */
3888 		if (!ret)
3889 			synchronize_rcu();
3890 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3891 					   BPF_MOD_JUMP,
3892 					   old_addr, NULL);
3893 		BUG_ON(ret < 0);
3894 	}
3895 }
3896 
bpf_jit_supports_arena(void)3897 bool bpf_jit_supports_arena(void)
3898 {
3899 	return true;
3900 }
3901 
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)3902 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3903 {
3904 	if (!in_arena)
3905 		return true;
3906 	switch (insn->code) {
3907 	case BPF_STX | BPF_ATOMIC | BPF_W:
3908 	case BPF_STX | BPF_ATOMIC | BPF_DW:
3909 		if (insn->imm == (BPF_AND | BPF_FETCH) ||
3910 		    insn->imm == (BPF_OR | BPF_FETCH) ||
3911 		    insn->imm == (BPF_XOR | BPF_FETCH))
3912 			return false;
3913 	}
3914 	return true;
3915 }
3916 
bpf_jit_supports_ptr_xchg(void)3917 bool bpf_jit_supports_ptr_xchg(void)
3918 {
3919 	return true;
3920 }
3921 
3922 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */
bpf_arch_uaddress_limit(void)3923 u64 bpf_arch_uaddress_limit(void)
3924 {
3925 	return 0;
3926 }
3927 
bpf_jit_supports_timed_may_goto(void)3928 bool bpf_jit_supports_timed_may_goto(void)
3929 {
3930 	return true;
3931 }
3932