1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2019 Facebook */
4
5 #include <assert.h>
6 #include <limits.h>
7 #include <unistd.h>
8 #include <sys/file.h>
9 #include <sys/time.h>
10 #include <linux/err.h>
11 #include <linux/zalloc.h>
12 #include <api/fs/fs.h>
13 #include <perf/bpf_perf.h>
14
15 #include "bpf_counter.h"
16 #include "bpf-utils.h"
17 #include "counts.h"
18 #include "debug.h"
19 #include "evsel.h"
20 #include "evlist.h"
21 #include "target.h"
22 #include "cgroup.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25
26 #include "bpf_skel/bpf_prog_profiler.skel.h"
27 #include "bpf_skel/bperf_u.h"
28 #include "bpf_skel/bperf_leader.skel.h"
29 #include "bpf_skel/bperf_follower.skel.h"
30
31 #define ATTR_MAP_SIZE 16
32
u64_to_ptr(__u64 ptr)33 static inline void *u64_to_ptr(__u64 ptr)
34 {
35 return (void *)(unsigned long)ptr;
36 }
37
bpf_counter_alloc(void)38 static struct bpf_counter *bpf_counter_alloc(void)
39 {
40 struct bpf_counter *counter;
41
42 counter = zalloc(sizeof(*counter));
43 if (counter)
44 INIT_LIST_HEAD(&counter->list);
45 return counter;
46 }
47
bpf_program_profiler__destroy(struct evsel * evsel)48 static int bpf_program_profiler__destroy(struct evsel *evsel)
49 {
50 struct bpf_counter *counter, *tmp;
51
52 list_for_each_entry_safe(counter, tmp,
53 &evsel->bpf_counter_list, list) {
54 list_del_init(&counter->list);
55 bpf_prog_profiler_bpf__destroy(counter->skel);
56 free(counter);
57 }
58 assert(list_empty(&evsel->bpf_counter_list));
59
60 return 0;
61 }
62
bpf_target_prog_name(int tgt_fd)63 static char *bpf_target_prog_name(int tgt_fd)
64 {
65 struct bpf_func_info *func_info;
66 struct perf_bpil *info_linear;
67 const struct btf_type *t;
68 struct btf *btf = NULL;
69 char *name = NULL;
70
71 info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO);
72 if (IS_ERR_OR_NULL(info_linear)) {
73 pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
74 return NULL;
75 }
76
77 if (info_linear->info.btf_id == 0) {
78 pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
79 goto out;
80 }
81
82 btf = btf__load_from_kernel_by_id(info_linear->info.btf_id);
83 if (libbpf_get_error(btf)) {
84 pr_debug("failed to load btf for prog FD %d\n", tgt_fd);
85 goto out;
86 }
87
88 func_info = u64_to_ptr(info_linear->info.func_info);
89 t = btf__type_by_id(btf, func_info[0].type_id);
90 if (!t) {
91 pr_debug("btf %d doesn't have type %d\n",
92 info_linear->info.btf_id, func_info[0].type_id);
93 goto out;
94 }
95 name = strdup(btf__name_by_offset(btf, t->name_off));
96 out:
97 btf__free(btf);
98 free(info_linear);
99 return name;
100 }
101
bpf_program_profiler_load_one(struct evsel * evsel,u32 prog_id)102 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
103 {
104 struct bpf_prog_profiler_bpf *skel;
105 struct bpf_counter *counter;
106 struct bpf_program *prog;
107 char *prog_name = NULL;
108 int prog_fd;
109 int err;
110
111 prog_fd = bpf_prog_get_fd_by_id(prog_id);
112 if (prog_fd < 0) {
113 pr_err("Failed to open fd for bpf prog %u\n", prog_id);
114 return -1;
115 }
116 counter = bpf_counter_alloc();
117 if (!counter) {
118 close(prog_fd);
119 return -1;
120 }
121
122 skel = bpf_prog_profiler_bpf__open();
123 if (!skel) {
124 pr_err("Failed to open bpf skeleton\n");
125 goto err_out;
126 }
127
128 skel->rodata->num_cpu = evsel__nr_cpus(evsel);
129
130 bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel));
131 bpf_map__set_max_entries(skel->maps.fentry_readings, 1);
132 bpf_map__set_max_entries(skel->maps.accum_readings, 1);
133
134 prog_name = bpf_target_prog_name(prog_fd);
135 if (!prog_name) {
136 pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
137 goto err_out;
138 }
139
140 bpf_object__for_each_program(prog, skel->obj) {
141 err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
142 if (err) {
143 pr_err("bpf_program__set_attach_target failed.\n"
144 "Does bpf prog %u have BTF?\n", prog_id);
145 goto err_out;
146 }
147 }
148 set_max_rlimit();
149 err = bpf_prog_profiler_bpf__load(skel);
150 if (err) {
151 pr_err("bpf_prog_profiler_bpf__load failed\n");
152 goto err_out;
153 }
154
155 assert(skel != NULL);
156 counter->skel = skel;
157 list_add(&counter->list, &evsel->bpf_counter_list);
158 free(prog_name);
159 close(prog_fd);
160 return 0;
161 err_out:
162 bpf_prog_profiler_bpf__destroy(skel);
163 free(prog_name);
164 free(counter);
165 close(prog_fd);
166 return -1;
167 }
168
bpf_program_profiler__load(struct evsel * evsel,struct target * target)169 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
170 {
171 char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
172 u32 prog_id;
173 int ret;
174
175 bpf_str_ = bpf_str = strdup(target->bpf_str);
176 if (!bpf_str)
177 return -1;
178
179 while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
180 prog_id = strtoul(tok, &p, 10);
181 if (prog_id == 0 || prog_id == UINT_MAX ||
182 (*p != '\0' && *p != ',')) {
183 pr_err("Failed to parse bpf prog ids %s\n",
184 target->bpf_str);
185 free(bpf_str_);
186 return -1;
187 }
188
189 ret = bpf_program_profiler_load_one(evsel, prog_id);
190 if (ret) {
191 bpf_program_profiler__destroy(evsel);
192 free(bpf_str_);
193 return -1;
194 }
195 bpf_str = NULL;
196 }
197 free(bpf_str_);
198 return 0;
199 }
200
bpf_program_profiler__enable(struct evsel * evsel)201 static int bpf_program_profiler__enable(struct evsel *evsel)
202 {
203 struct bpf_counter *counter;
204 int ret;
205
206 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
207 assert(counter->skel != NULL);
208 ret = bpf_prog_profiler_bpf__attach(counter->skel);
209 if (ret) {
210 bpf_program_profiler__destroy(evsel);
211 return ret;
212 }
213 }
214 return 0;
215 }
216
bpf_program_profiler__disable(struct evsel * evsel)217 static int bpf_program_profiler__disable(struct evsel *evsel)
218 {
219 struct bpf_counter *counter;
220
221 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
222 assert(counter->skel != NULL);
223 bpf_prog_profiler_bpf__detach(counter->skel);
224 }
225 return 0;
226 }
227
bpf_program_profiler__read(struct evsel * evsel)228 static int bpf_program_profiler__read(struct evsel *evsel)
229 {
230 // BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
231 // Sometimes possible > online, like on a Ryzen 3900X that has 24
232 // threads but its possible showed 0-31 -acme
233 int num_cpu_bpf = libbpf_num_possible_cpus();
234 struct bpf_perf_event_value values[num_cpu_bpf];
235 struct bpf_counter *counter;
236 struct perf_counts_values *counts;
237 int reading_map_fd;
238 __u32 key = 0;
239 int err, idx, bpf_cpu;
240
241 if (list_empty(&evsel->bpf_counter_list))
242 return -EAGAIN;
243
244 perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
245 counts = perf_counts(evsel->counts, idx, 0);
246 counts->val = 0;
247 counts->ena = 0;
248 counts->run = 0;
249 }
250 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
251 struct bpf_prog_profiler_bpf *skel = counter->skel;
252
253 assert(skel != NULL);
254 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
255
256 err = bpf_map_lookup_elem(reading_map_fd, &key, values);
257 if (err) {
258 pr_err("failed to read value\n");
259 return err;
260 }
261
262 for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) {
263 idx = perf_cpu_map__idx(evsel__cpus(evsel),
264 (struct perf_cpu){.cpu = bpf_cpu});
265 if (idx == -1)
266 continue;
267 counts = perf_counts(evsel->counts, idx, 0);
268 counts->val += values[bpf_cpu].counter;
269 counts->ena += values[bpf_cpu].enabled;
270 counts->run += values[bpf_cpu].running;
271 }
272 }
273 return 0;
274 }
275
bpf_program_profiler__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)276 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx,
277 int fd)
278 {
279 struct bpf_prog_profiler_bpf *skel;
280 struct bpf_counter *counter;
281 int ret;
282
283 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
284 skel = counter->skel;
285 assert(skel != NULL);
286
287 ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
288 &cpu_map_idx, &fd, BPF_ANY);
289 if (ret)
290 return ret;
291 }
292 return 0;
293 }
294
295 struct bpf_counter_ops bpf_program_profiler_ops = {
296 .load = bpf_program_profiler__load,
297 .enable = bpf_program_profiler__enable,
298 .disable = bpf_program_profiler__disable,
299 .read = bpf_program_profiler__read,
300 .destroy = bpf_program_profiler__destroy,
301 .install_pe = bpf_program_profiler__install_pe,
302 };
303
bperf_attr_map_compatible(int attr_map_fd)304 static bool bperf_attr_map_compatible(int attr_map_fd)
305 {
306 struct bpf_map_info map_info = {0};
307 __u32 map_info_len = sizeof(map_info);
308 int err;
309
310 err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
311
312 if (err)
313 return false;
314 return (map_info.key_size == sizeof(struct perf_event_attr)) &&
315 (map_info.value_size == sizeof(struct perf_event_attr_map_entry));
316 }
317
bperf_lock_attr_map(struct target * target)318 static int bperf_lock_attr_map(struct target *target)
319 {
320 char path[PATH_MAX];
321 int map_fd, err;
322
323 if (target->attr_map) {
324 scnprintf(path, PATH_MAX, "%s", target->attr_map);
325 } else {
326 scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
327 BPF_PERF_DEFAULT_ATTR_MAP_PATH);
328 }
329
330 if (access(path, F_OK)) {
331 map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL,
332 sizeof(struct perf_event_attr),
333 sizeof(struct perf_event_attr_map_entry),
334 ATTR_MAP_SIZE, NULL);
335 if (map_fd < 0)
336 return -1;
337
338 err = bpf_obj_pin(map_fd, path);
339 if (err) {
340 /* someone pinned the map in parallel? */
341 close(map_fd);
342 map_fd = bpf_obj_get(path);
343 if (map_fd < 0)
344 return -1;
345 }
346 } else {
347 map_fd = bpf_obj_get(path);
348 if (map_fd < 0)
349 return -1;
350 }
351
352 if (!bperf_attr_map_compatible(map_fd)) {
353 close(map_fd);
354 return -1;
355
356 }
357 err = flock(map_fd, LOCK_EX);
358 if (err) {
359 close(map_fd);
360 return -1;
361 }
362 return map_fd;
363 }
364
bperf_check_target(struct evsel * evsel,struct target * target,enum bperf_filter_type * filter_type,__u32 * filter_entry_cnt)365 static int bperf_check_target(struct evsel *evsel,
366 struct target *target,
367 enum bperf_filter_type *filter_type,
368 __u32 *filter_entry_cnt)
369 {
370 if (evsel->core.leader->nr_members > 1) {
371 pr_err("bpf managed perf events do not yet support groups.\n");
372 return -1;
373 }
374
375 /* determine filter type based on target */
376 if (target->system_wide) {
377 *filter_type = BPERF_FILTER_GLOBAL;
378 *filter_entry_cnt = 1;
379 } else if (target->cpu_list) {
380 *filter_type = BPERF_FILTER_CPU;
381 *filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
382 } else if (target->tid) {
383 *filter_type = BPERF_FILTER_PID;
384 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
385 } else if (target->pid || evsel->evlist->workload.pid != -1) {
386 *filter_type = BPERF_FILTER_TGID;
387 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
388 } else {
389 pr_err("bpf managed perf events do not yet support these targets.\n");
390 return -1;
391 }
392
393 return 0;
394 }
395
396 static struct perf_cpu_map *all_cpu_map;
397
bperf_reload_leader_program(struct evsel * evsel,int attr_map_fd,struct perf_event_attr_map_entry * entry)398 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
399 struct perf_event_attr_map_entry *entry)
400 {
401 struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
402 int link_fd, diff_map_fd, err;
403 struct bpf_link *link = NULL;
404
405 if (!skel) {
406 pr_err("Failed to open leader skeleton\n");
407 return -1;
408 }
409
410 bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus());
411 err = bperf_leader_bpf__load(skel);
412 if (err) {
413 pr_err("Failed to load leader skeleton\n");
414 goto out;
415 }
416
417 link = bpf_program__attach(skel->progs.on_switch);
418 if (IS_ERR(link)) {
419 pr_err("Failed to attach leader program\n");
420 err = PTR_ERR(link);
421 goto out;
422 }
423
424 link_fd = bpf_link__fd(link);
425 diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
426 entry->link_id = bpf_link_get_id(link_fd);
427 entry->diff_map_id = bpf_map_get_id(diff_map_fd);
428 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
429 assert(err == 0);
430
431 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
432 assert(evsel->bperf_leader_link_fd >= 0);
433
434 /*
435 * save leader_skel for install_pe, which is called within
436 * following evsel__open_per_cpu call
437 */
438 evsel->leader_skel = skel;
439 evsel__open_per_cpu(evsel, all_cpu_map, -1);
440
441 out:
442 bperf_leader_bpf__destroy(skel);
443 bpf_link__destroy(link);
444 return err;
445 }
446
bperf__load(struct evsel * evsel,struct target * target)447 static int bperf__load(struct evsel *evsel, struct target *target)
448 {
449 struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
450 int attr_map_fd, diff_map_fd = -1, err;
451 enum bperf_filter_type filter_type;
452 __u32 filter_entry_cnt, i;
453
454 if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
455 return -1;
456
457 if (!all_cpu_map) {
458 all_cpu_map = perf_cpu_map__new_online_cpus();
459 if (!all_cpu_map)
460 return -1;
461 }
462
463 evsel->bperf_leader_prog_fd = -1;
464 evsel->bperf_leader_link_fd = -1;
465
466 /*
467 * Step 1: hold a fd on the leader program and the bpf_link, if
468 * the program is not already gone, reload the program.
469 * Use flock() to ensure exclusive access to the perf_event_attr
470 * map.
471 */
472 attr_map_fd = bperf_lock_attr_map(target);
473 if (attr_map_fd < 0) {
474 pr_err("Failed to lock perf_event_attr map\n");
475 return -1;
476 }
477
478 err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
479 if (err) {
480 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
481 if (err)
482 goto out;
483 }
484
485 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
486 if (evsel->bperf_leader_link_fd < 0 &&
487 bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
488 err = -1;
489 goto out;
490 }
491 /*
492 * The bpf_link holds reference to the leader program, and the
493 * leader program holds reference to the maps. Therefore, if
494 * link_id is valid, diff_map_id should also be valid.
495 */
496 evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
497 bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
498 assert(evsel->bperf_leader_prog_fd >= 0);
499
500 diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
501 assert(diff_map_fd >= 0);
502
503 /*
504 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
505 * whether the kernel support it
506 */
507 err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
508 if (err) {
509 pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
510 "Therefore, --use-bpf might show inaccurate readings\n");
511 goto out;
512 }
513
514 /* Step 2: load the follower skeleton */
515 evsel->follower_skel = bperf_follower_bpf__open();
516 if (!evsel->follower_skel) {
517 err = -1;
518 pr_err("Failed to open follower skeleton\n");
519 goto out;
520 }
521
522 /* attach fexit program to the leader program */
523 bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
524 evsel->bperf_leader_prog_fd, "on_switch");
525
526 /* connect to leader diff_reading map */
527 bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
528
529 /* set up reading map */
530 bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
531 filter_entry_cnt);
532 /* set up follower filter based on target */
533 bpf_map__set_max_entries(evsel->follower_skel->maps.filter,
534 filter_entry_cnt);
535 err = bperf_follower_bpf__load(evsel->follower_skel);
536 if (err) {
537 pr_err("Failed to load follower skeleton\n");
538 bperf_follower_bpf__destroy(evsel->follower_skel);
539 evsel->follower_skel = NULL;
540 goto out;
541 }
542
543 for (i = 0; i < filter_entry_cnt; i++) {
544 int filter_map_fd;
545 __u32 key;
546
547 if (filter_type == BPERF_FILTER_PID ||
548 filter_type == BPERF_FILTER_TGID)
549 key = perf_thread_map__pid(evsel->core.threads, i);
550 else if (filter_type == BPERF_FILTER_CPU)
551 key = perf_cpu_map__cpu(evsel->core.cpus, i).cpu;
552 else
553 break;
554
555 filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
556 bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY);
557 }
558
559 evsel->follower_skel->bss->type = filter_type;
560
561 err = bperf_follower_bpf__attach(evsel->follower_skel);
562
563 out:
564 if (err && evsel->bperf_leader_link_fd >= 0)
565 close(evsel->bperf_leader_link_fd);
566 if (err && evsel->bperf_leader_prog_fd >= 0)
567 close(evsel->bperf_leader_prog_fd);
568 if (diff_map_fd >= 0)
569 close(diff_map_fd);
570
571 flock(attr_map_fd, LOCK_UN);
572 close(attr_map_fd);
573
574 return err;
575 }
576
bperf__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)577 static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
578 {
579 struct bperf_leader_bpf *skel = evsel->leader_skel;
580
581 return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
582 &cpu_map_idx, &fd, BPF_ANY);
583 }
584
585 /*
586 * trigger the leader prog on each cpu, so the accum_reading map could get
587 * the latest readings.
588 */
bperf_sync_counters(struct evsel * evsel)589 static int bperf_sync_counters(struct evsel *evsel)
590 {
591 int num_cpu, i, cpu;
592
593 num_cpu = perf_cpu_map__nr(all_cpu_map);
594 for (i = 0; i < num_cpu; i++) {
595 cpu = perf_cpu_map__cpu(all_cpu_map, i).cpu;
596 bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
597 }
598 return 0;
599 }
600
bperf__enable(struct evsel * evsel)601 static int bperf__enable(struct evsel *evsel)
602 {
603 evsel->follower_skel->bss->enabled = 1;
604 return 0;
605 }
606
bperf__disable(struct evsel * evsel)607 static int bperf__disable(struct evsel *evsel)
608 {
609 evsel->follower_skel->bss->enabled = 0;
610 return 0;
611 }
612
bperf__read(struct evsel * evsel)613 static int bperf__read(struct evsel *evsel)
614 {
615 struct bperf_follower_bpf *skel = evsel->follower_skel;
616 __u32 num_cpu_bpf = cpu__max_cpu().cpu;
617 struct bpf_perf_event_value values[num_cpu_bpf];
618 struct perf_counts_values *counts;
619 int reading_map_fd, err = 0;
620 __u32 i;
621 int j;
622
623 bperf_sync_counters(evsel);
624 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
625
626 for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
627 struct perf_cpu entry;
628 __u32 cpu;
629
630 err = bpf_map_lookup_elem(reading_map_fd, &i, values);
631 if (err)
632 goto out;
633 switch (evsel->follower_skel->bss->type) {
634 case BPERF_FILTER_GLOBAL:
635 assert(i == 0);
636
637 perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) {
638 counts = perf_counts(evsel->counts, j, 0);
639 counts->val = values[entry.cpu].counter;
640 counts->ena = values[entry.cpu].enabled;
641 counts->run = values[entry.cpu].running;
642 }
643 break;
644 case BPERF_FILTER_CPU:
645 cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu;
646 assert(cpu >= 0);
647 counts = perf_counts(evsel->counts, i, 0);
648 counts->val = values[cpu].counter;
649 counts->ena = values[cpu].enabled;
650 counts->run = values[cpu].running;
651 break;
652 case BPERF_FILTER_PID:
653 case BPERF_FILTER_TGID:
654 counts = perf_counts(evsel->counts, 0, i);
655 counts->val = 0;
656 counts->ena = 0;
657 counts->run = 0;
658
659 for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
660 counts->val += values[cpu].counter;
661 counts->ena += values[cpu].enabled;
662 counts->run += values[cpu].running;
663 }
664 break;
665 default:
666 break;
667 }
668 }
669 out:
670 return err;
671 }
672
bperf__destroy(struct evsel * evsel)673 static int bperf__destroy(struct evsel *evsel)
674 {
675 bperf_follower_bpf__destroy(evsel->follower_skel);
676 close(evsel->bperf_leader_prog_fd);
677 close(evsel->bperf_leader_link_fd);
678 return 0;
679 }
680
681 /*
682 * bperf: share hardware PMCs with BPF
683 *
684 * perf uses performance monitoring counters (PMC) to monitor system
685 * performance. The PMCs are limited hardware resources. For example,
686 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
687 *
688 * Modern data center systems use these PMCs in many different ways:
689 * system level monitoring, (maybe nested) container level monitoring, per
690 * process monitoring, profiling (in sample mode), etc. In some cases,
691 * there are more active perf_events than available hardware PMCs. To allow
692 * all perf_events to have a chance to run, it is necessary to do expensive
693 * time multiplexing of events.
694 *
695 * On the other hand, many monitoring tools count the common metrics
696 * (cycles, instructions). It is a waste to have multiple tools create
697 * multiple perf_events of "cycles" and occupy multiple PMCs.
698 *
699 * bperf tries to reduce such wastes by allowing multiple perf_events of
700 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
701 * of having each perf-stat session to read its own perf_events, bperf uses
702 * BPF programs to read the perf_events and aggregate readings to BPF maps.
703 * Then, the perf-stat session(s) reads the values from these BPF maps.
704 *
705 * ||
706 * shared progs and maps <- || -> per session progs and maps
707 * ||
708 * --------------- ||
709 * | perf_events | ||
710 * --------------- fexit || -----------------
711 * | --------||----> | follower prog |
712 * --------------- / || --- -----------------
713 * cs -> | leader prog |/ ||/ | |
714 * --> --------------- /|| -------------- ------------------
715 * / | | / || | filter map | | accum_readings |
716 * / ------------ ------------ || -------------- ------------------
717 * | | prev map | | diff map | || |
718 * | ------------ ------------ || |
719 * \ || |
720 * = \ ==================================================== | ============
721 * \ / user space
722 * \ /
723 * \ /
724 * BPF_PROG_TEST_RUN BPF_MAP_LOOKUP_ELEM
725 * \ /
726 * \ /
727 * \------ perf-stat ----------------------/
728 *
729 * The figure above shows the architecture of bperf. Note that the figure
730 * is divided into 3 regions: shared progs and maps (top left), per session
731 * progs and maps (top right), and user space (bottom).
732 *
733 * The leader prog is triggered on each context switch (cs). The leader
734 * prog reads perf_events and stores the difference (current_reading -
735 * previous_reading) to the diff map. For the same metric, e.g. "cycles",
736 * multiple perf-stat sessions share the same leader prog.
737 *
738 * Each perf-stat session creates a follower prog as fexit program to the
739 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
740 * follower progs to the same leader prog. The follower prog checks current
741 * task and processor ID to decide whether to add the value from the diff
742 * map to its accumulated reading map (accum_readings).
743 *
744 * Finally, perf-stat user space reads the value from accum_reading map.
745 *
746 * Besides context switch, it is also necessary to trigger the leader prog
747 * before perf-stat reads the value. Otherwise, the accum_reading map may
748 * not have the latest reading from the perf_events. This is achieved by
749 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
750 *
751 * Comment before the definition of struct perf_event_attr_map_entry
752 * describes how different sessions of perf-stat share information about
753 * the leader prog.
754 */
755
756 struct bpf_counter_ops bperf_ops = {
757 .load = bperf__load,
758 .enable = bperf__enable,
759 .disable = bperf__disable,
760 .read = bperf__read,
761 .install_pe = bperf__install_pe,
762 .destroy = bperf__destroy,
763 };
764
765 extern struct bpf_counter_ops bperf_cgrp_ops;
766
bpf_counter_skip(struct evsel * evsel)767 static inline bool bpf_counter_skip(struct evsel *evsel)
768 {
769 return evsel->bpf_counter_ops == NULL;
770 }
771
bpf_counter__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)772 int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
773 {
774 if (bpf_counter_skip(evsel))
775 return 0;
776 return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd);
777 }
778
bpf_counter__load(struct evsel * evsel,struct target * target)779 int bpf_counter__load(struct evsel *evsel, struct target *target)
780 {
781 if (target->bpf_str)
782 evsel->bpf_counter_ops = &bpf_program_profiler_ops;
783 else if (cgrp_event_expanded && target->use_bpf)
784 evsel->bpf_counter_ops = &bperf_cgrp_ops;
785 else if (target->use_bpf || evsel->bpf_counter ||
786 evsel__match_bpf_counter_events(evsel->name))
787 evsel->bpf_counter_ops = &bperf_ops;
788
789 if (evsel->bpf_counter_ops)
790 return evsel->bpf_counter_ops->load(evsel, target);
791 return 0;
792 }
793
bpf_counter__enable(struct evsel * evsel)794 int bpf_counter__enable(struct evsel *evsel)
795 {
796 if (bpf_counter_skip(evsel))
797 return 0;
798 return evsel->bpf_counter_ops->enable(evsel);
799 }
800
bpf_counter__disable(struct evsel * evsel)801 int bpf_counter__disable(struct evsel *evsel)
802 {
803 if (bpf_counter_skip(evsel))
804 return 0;
805 return evsel->bpf_counter_ops->disable(evsel);
806 }
807
bpf_counter__read(struct evsel * evsel)808 int bpf_counter__read(struct evsel *evsel)
809 {
810 if (bpf_counter_skip(evsel))
811 return -EAGAIN;
812 return evsel->bpf_counter_ops->read(evsel);
813 }
814
bpf_counter__destroy(struct evsel * evsel)815 void bpf_counter__destroy(struct evsel *evsel)
816 {
817 if (bpf_counter_skip(evsel))
818 return;
819 evsel->bpf_counter_ops->destroy(evsel);
820 evsel->bpf_counter_ops = NULL;
821 evsel->bpf_skel = NULL;
822 }
823