1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2019 Facebook */ 4 5 #include <assert.h> 6 #include <limits.h> 7 #include <unistd.h> 8 #include <sys/file.h> 9 #include <sys/time.h> 10 #include <linux/err.h> 11 #include <linux/zalloc.h> 12 #include <api/fs/fs.h> 13 #include <perf/bpf_perf.h> 14 15 #include "bpf_counter.h" 16 #include "bpf-utils.h" 17 #include "counts.h" 18 #include "debug.h" 19 #include "evsel.h" 20 #include "evlist.h" 21 #include "target.h" 22 #include "cgroup.h" 23 #include "cpumap.h" 24 #include "thread_map.h" 25 26 #include "bpf_skel/bpf_prog_profiler.skel.h" 27 #include "bpf_skel/bperf_u.h" 28 #include "bpf_skel/bperf_leader.skel.h" 29 #include "bpf_skel/bperf_follower.skel.h" 30 31 #define ATTR_MAP_SIZE 16 32 33 static inline void *u64_to_ptr(__u64 ptr) 34 { 35 return (void *)(unsigned long)ptr; 36 } 37 38 static struct bpf_counter *bpf_counter_alloc(void) 39 { 40 struct bpf_counter *counter; 41 42 counter = zalloc(sizeof(*counter)); 43 if (counter) 44 INIT_LIST_HEAD(&counter->list); 45 return counter; 46 } 47 48 static int bpf_program_profiler__destroy(struct evsel *evsel) 49 { 50 struct bpf_counter *counter, *tmp; 51 52 list_for_each_entry_safe(counter, tmp, 53 &evsel->bpf_counter_list, list) { 54 list_del_init(&counter->list); 55 bpf_prog_profiler_bpf__destroy(counter->skel); 56 free(counter); 57 } 58 assert(list_empty(&evsel->bpf_counter_list)); 59 60 return 0; 61 } 62 63 static char *bpf_target_prog_name(int tgt_fd) 64 { 65 struct bpf_func_info *func_info; 66 struct perf_bpil *info_linear; 67 const struct btf_type *t; 68 struct btf *btf = NULL; 69 char *name = NULL; 70 71 info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO); 72 if (IS_ERR_OR_NULL(info_linear)) { 73 pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd); 74 return NULL; 75 } 76 77 if (info_linear->info.btf_id == 0) { 78 pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd); 79 goto out; 80 } 81 82 btf = btf__load_from_kernel_by_id(info_linear->info.btf_id); 83 if (libbpf_get_error(btf)) { 84 pr_debug("failed to load btf for prog FD %d\n", tgt_fd); 85 goto out; 86 } 87 88 func_info = u64_to_ptr(info_linear->info.func_info); 89 t = btf__type_by_id(btf, func_info[0].type_id); 90 if (!t) { 91 pr_debug("btf %d doesn't have type %d\n", 92 info_linear->info.btf_id, func_info[0].type_id); 93 goto out; 94 } 95 name = strdup(btf__name_by_offset(btf, t->name_off)); 96 out: 97 btf__free(btf); 98 free(info_linear); 99 return name; 100 } 101 102 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id) 103 { 104 struct bpf_prog_profiler_bpf *skel; 105 struct bpf_counter *counter; 106 struct bpf_program *prog; 107 char *prog_name = NULL; 108 int prog_fd; 109 int err; 110 111 prog_fd = bpf_prog_get_fd_by_id(prog_id); 112 if (prog_fd < 0) { 113 pr_err("Failed to open fd for bpf prog %u\n", prog_id); 114 return -1; 115 } 116 counter = bpf_counter_alloc(); 117 if (!counter) { 118 close(prog_fd); 119 return -1; 120 } 121 122 skel = bpf_prog_profiler_bpf__open(); 123 if (!skel) { 124 pr_err("Failed to open bpf skeleton\n"); 125 goto err_out; 126 } 127 128 skel->rodata->num_cpu = evsel__nr_cpus(evsel); 129 130 bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel)); 131 bpf_map__set_max_entries(skel->maps.fentry_readings, 1); 132 bpf_map__set_max_entries(skel->maps.accum_readings, 1); 133 134 prog_name = bpf_target_prog_name(prog_fd); 135 if (!prog_name) { 136 pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id); 137 goto err_out; 138 } 139 140 bpf_object__for_each_program(prog, skel->obj) { 141 err = bpf_program__set_attach_target(prog, prog_fd, prog_name); 142 if (err) { 143 pr_err("bpf_program__set_attach_target failed.\n" 144 "Does bpf prog %u have BTF?\n", prog_id); 145 goto err_out; 146 } 147 } 148 set_max_rlimit(); 149 err = bpf_prog_profiler_bpf__load(skel); 150 if (err) { 151 pr_err("bpf_prog_profiler_bpf__load failed\n"); 152 goto err_out; 153 } 154 155 assert(skel != NULL); 156 counter->skel = skel; 157 list_add(&counter->list, &evsel->bpf_counter_list); 158 free(prog_name); 159 close(prog_fd); 160 return 0; 161 err_out: 162 bpf_prog_profiler_bpf__destroy(skel); 163 free(prog_name); 164 free(counter); 165 close(prog_fd); 166 return -1; 167 } 168 169 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target) 170 { 171 char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p; 172 u32 prog_id; 173 int ret; 174 175 bpf_str_ = bpf_str = strdup(target->bpf_str); 176 if (!bpf_str) 177 return -1; 178 179 while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) { 180 prog_id = strtoul(tok, &p, 10); 181 if (prog_id == 0 || prog_id == UINT_MAX || 182 (*p != '\0' && *p != ',')) { 183 pr_err("Failed to parse bpf prog ids %s\n", 184 target->bpf_str); 185 free(bpf_str_); 186 return -1; 187 } 188 189 ret = bpf_program_profiler_load_one(evsel, prog_id); 190 if (ret) { 191 bpf_program_profiler__destroy(evsel); 192 free(bpf_str_); 193 return -1; 194 } 195 bpf_str = NULL; 196 } 197 free(bpf_str_); 198 return 0; 199 } 200 201 static int bpf_program_profiler__enable(struct evsel *evsel) 202 { 203 struct bpf_counter *counter; 204 int ret; 205 206 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 207 assert(counter->skel != NULL); 208 ret = bpf_prog_profiler_bpf__attach(counter->skel); 209 if (ret) { 210 bpf_program_profiler__destroy(evsel); 211 return ret; 212 } 213 } 214 return 0; 215 } 216 217 static int bpf_program_profiler__disable(struct evsel *evsel) 218 { 219 struct bpf_counter *counter; 220 221 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 222 assert(counter->skel != NULL); 223 bpf_prog_profiler_bpf__detach(counter->skel); 224 } 225 return 0; 226 } 227 228 static int bpf_program_profiler__read(struct evsel *evsel) 229 { 230 // BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible 231 // Sometimes possible > online, like on a Ryzen 3900X that has 24 232 // threads but its possible showed 0-31 -acme 233 int num_cpu_bpf = libbpf_num_possible_cpus(); 234 struct bpf_perf_event_value values[num_cpu_bpf]; 235 struct bpf_counter *counter; 236 struct perf_counts_values *counts; 237 int reading_map_fd; 238 __u32 key = 0; 239 int err, idx, bpf_cpu; 240 241 if (list_empty(&evsel->bpf_counter_list)) 242 return -EAGAIN; 243 244 perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) { 245 counts = perf_counts(evsel->counts, idx, 0); 246 counts->val = 0; 247 counts->ena = 0; 248 counts->run = 0; 249 } 250 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 251 struct bpf_prog_profiler_bpf *skel = counter->skel; 252 253 assert(skel != NULL); 254 reading_map_fd = bpf_map__fd(skel->maps.accum_readings); 255 256 err = bpf_map_lookup_elem(reading_map_fd, &key, values); 257 if (err) { 258 pr_err("failed to read value\n"); 259 return err; 260 } 261 262 for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) { 263 idx = perf_cpu_map__idx(evsel__cpus(evsel), 264 (struct perf_cpu){.cpu = bpf_cpu}); 265 if (idx == -1) 266 continue; 267 counts = perf_counts(evsel->counts, idx, 0); 268 counts->val += values[bpf_cpu].counter; 269 counts->ena += values[bpf_cpu].enabled; 270 counts->run += values[bpf_cpu].running; 271 } 272 } 273 return 0; 274 } 275 276 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx, 277 int fd) 278 { 279 struct bpf_prog_profiler_bpf *skel; 280 struct bpf_counter *counter; 281 int ret; 282 283 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 284 skel = counter->skel; 285 assert(skel != NULL); 286 287 ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events), 288 &cpu_map_idx, &fd, BPF_ANY); 289 if (ret) 290 return ret; 291 } 292 return 0; 293 } 294 295 struct bpf_counter_ops bpf_program_profiler_ops = { 296 .load = bpf_program_profiler__load, 297 .enable = bpf_program_profiler__enable, 298 .disable = bpf_program_profiler__disable, 299 .read = bpf_program_profiler__read, 300 .destroy = bpf_program_profiler__destroy, 301 .install_pe = bpf_program_profiler__install_pe, 302 }; 303 304 static bool bperf_attr_map_compatible(int attr_map_fd) 305 { 306 struct bpf_map_info map_info = {0}; 307 __u32 map_info_len = sizeof(map_info); 308 int err; 309 310 err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len); 311 312 if (err) 313 return false; 314 return (map_info.key_size == sizeof(struct perf_event_attr)) && 315 (map_info.value_size == sizeof(struct perf_event_attr_map_entry)); 316 } 317 318 static int bperf_lock_attr_map(struct target *target) 319 { 320 char path[PATH_MAX]; 321 int map_fd, err; 322 323 if (target->attr_map) { 324 scnprintf(path, PATH_MAX, "%s", target->attr_map); 325 } else { 326 scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(), 327 BPF_PERF_DEFAULT_ATTR_MAP_PATH); 328 } 329 330 if (access(path, F_OK)) { 331 map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL, 332 sizeof(struct perf_event_attr), 333 sizeof(struct perf_event_attr_map_entry), 334 ATTR_MAP_SIZE, NULL); 335 if (map_fd < 0) 336 return -1; 337 338 err = bpf_obj_pin(map_fd, path); 339 if (err) { 340 /* someone pinned the map in parallel? */ 341 close(map_fd); 342 map_fd = bpf_obj_get(path); 343 if (map_fd < 0) 344 return -1; 345 } 346 } else { 347 map_fd = bpf_obj_get(path); 348 if (map_fd < 0) 349 return -1; 350 } 351 352 if (!bperf_attr_map_compatible(map_fd)) { 353 close(map_fd); 354 return -1; 355 356 } 357 err = flock(map_fd, LOCK_EX); 358 if (err) { 359 close(map_fd); 360 return -1; 361 } 362 return map_fd; 363 } 364 365 static int bperf_check_target(struct evsel *evsel, 366 struct target *target, 367 enum bperf_filter_type *filter_type, 368 __u32 *filter_entry_cnt) 369 { 370 if (evsel->core.leader->nr_members > 1) { 371 pr_err("bpf managed perf events do not yet support groups.\n"); 372 return -1; 373 } 374 375 /* determine filter type based on target */ 376 if (target->system_wide) { 377 *filter_type = BPERF_FILTER_GLOBAL; 378 *filter_entry_cnt = 1; 379 } else if (target->cpu_list) { 380 *filter_type = BPERF_FILTER_CPU; 381 *filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel)); 382 } else if (target->tid) { 383 *filter_type = BPERF_FILTER_PID; 384 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads); 385 } else if (target->pid || evsel->evlist->workload.pid != -1) { 386 *filter_type = BPERF_FILTER_TGID; 387 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads); 388 } else { 389 pr_err("bpf managed perf events do not yet support these targets.\n"); 390 return -1; 391 } 392 393 return 0; 394 } 395 396 static struct perf_cpu_map *all_cpu_map; 397 static __u32 filter_entry_cnt; 398 399 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd, 400 struct perf_event_attr_map_entry *entry) 401 { 402 struct bperf_leader_bpf *skel = bperf_leader_bpf__open(); 403 int link_fd, diff_map_fd, err; 404 struct bpf_link *link = NULL; 405 406 if (!skel) { 407 pr_err("Failed to open leader skeleton\n"); 408 return -1; 409 } 410 411 bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus()); 412 err = bperf_leader_bpf__load(skel); 413 if (err) { 414 pr_err("Failed to load leader skeleton\n"); 415 goto out; 416 } 417 418 link = bpf_program__attach(skel->progs.on_switch); 419 if (IS_ERR(link)) { 420 pr_err("Failed to attach leader program\n"); 421 err = PTR_ERR(link); 422 goto out; 423 } 424 425 link_fd = bpf_link__fd(link); 426 diff_map_fd = bpf_map__fd(skel->maps.diff_readings); 427 entry->link_id = bpf_link_get_id(link_fd); 428 entry->diff_map_id = bpf_map_get_id(diff_map_fd); 429 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY); 430 assert(err == 0); 431 432 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id); 433 assert(evsel->bperf_leader_link_fd >= 0); 434 435 /* 436 * save leader_skel for install_pe, which is called within 437 * following evsel__open_per_cpu call 438 */ 439 evsel->leader_skel = skel; 440 evsel__open_per_cpu(evsel, all_cpu_map, -1); 441 442 out: 443 bperf_leader_bpf__destroy(skel); 444 bpf_link__destroy(link); 445 return err; 446 } 447 448 static int bperf_attach_follower_program(struct bperf_follower_bpf *skel, 449 enum bperf_filter_type filter_type, 450 bool inherit) 451 { 452 struct bpf_link *link; 453 int err = 0; 454 455 if ((filter_type == BPERF_FILTER_PID || 456 filter_type == BPERF_FILTER_TGID) && inherit) 457 /* attach all follower bpf progs to enable event inheritance */ 458 err = bperf_follower_bpf__attach(skel); 459 else { 460 link = bpf_program__attach(skel->progs.fexit_XXX); 461 if (IS_ERR(link)) 462 err = PTR_ERR(link); 463 } 464 465 return err; 466 } 467 468 static int bperf__load(struct evsel *evsel, struct target *target) 469 { 470 struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff}; 471 int attr_map_fd, diff_map_fd = -1, err; 472 enum bperf_filter_type filter_type; 473 __u32 i; 474 475 if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt)) 476 return -1; 477 478 if (!all_cpu_map) { 479 all_cpu_map = perf_cpu_map__new_online_cpus(); 480 if (!all_cpu_map) 481 return -1; 482 } 483 484 evsel->bperf_leader_prog_fd = -1; 485 evsel->bperf_leader_link_fd = -1; 486 487 /* 488 * Step 1: hold a fd on the leader program and the bpf_link, if 489 * the program is not already gone, reload the program. 490 * Use flock() to ensure exclusive access to the perf_event_attr 491 * map. 492 */ 493 attr_map_fd = bperf_lock_attr_map(target); 494 if (attr_map_fd < 0) { 495 pr_err("Failed to lock perf_event_attr map\n"); 496 return -1; 497 } 498 499 err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry); 500 if (err) { 501 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY); 502 if (err) 503 goto out; 504 } 505 506 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id); 507 if (evsel->bperf_leader_link_fd < 0 && 508 bperf_reload_leader_program(evsel, attr_map_fd, &entry)) { 509 err = -1; 510 goto out; 511 } 512 /* 513 * The bpf_link holds reference to the leader program, and the 514 * leader program holds reference to the maps. Therefore, if 515 * link_id is valid, diff_map_id should also be valid. 516 */ 517 evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id( 518 bpf_link_get_prog_id(evsel->bperf_leader_link_fd)); 519 assert(evsel->bperf_leader_prog_fd >= 0); 520 521 diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id); 522 assert(diff_map_fd >= 0); 523 524 /* 525 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check 526 * whether the kernel support it 527 */ 528 err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0); 529 if (err) { 530 pr_err("The kernel does not support test_run for raw_tp BPF programs.\n" 531 "Therefore, --use-bpf might show inaccurate readings\n"); 532 goto out; 533 } 534 535 /* Step 2: load the follower skeleton */ 536 evsel->follower_skel = bperf_follower_bpf__open(); 537 if (!evsel->follower_skel) { 538 err = -1; 539 pr_err("Failed to open follower skeleton\n"); 540 goto out; 541 } 542 543 /* attach fexit program to the leader program */ 544 bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX, 545 evsel->bperf_leader_prog_fd, "on_switch"); 546 547 /* connect to leader diff_reading map */ 548 bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd); 549 550 /* set up reading map */ 551 bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings, 552 filter_entry_cnt); 553 err = bperf_follower_bpf__load(evsel->follower_skel); 554 if (err) { 555 pr_err("Failed to load follower skeleton\n"); 556 bperf_follower_bpf__destroy(evsel->follower_skel); 557 evsel->follower_skel = NULL; 558 goto out; 559 } 560 561 for (i = 0; i < filter_entry_cnt; i++) { 562 int filter_map_fd; 563 __u32 key; 564 struct bperf_filter_value fval = { i, 0 }; 565 566 if (filter_type == BPERF_FILTER_PID || 567 filter_type == BPERF_FILTER_TGID) 568 key = perf_thread_map__pid(evsel->core.threads, i); 569 else if (filter_type == BPERF_FILTER_CPU) 570 key = perf_cpu_map__cpu(evsel->core.cpus, i).cpu; 571 else 572 break; 573 574 filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter); 575 bpf_map_update_elem(filter_map_fd, &key, &fval, BPF_ANY); 576 } 577 578 evsel->follower_skel->bss->type = filter_type; 579 evsel->follower_skel->bss->inherit = target->inherit; 580 581 err = bperf_attach_follower_program(evsel->follower_skel, filter_type, 582 target->inherit); 583 584 out: 585 if (err && evsel->bperf_leader_link_fd >= 0) 586 close(evsel->bperf_leader_link_fd); 587 if (err && evsel->bperf_leader_prog_fd >= 0) 588 close(evsel->bperf_leader_prog_fd); 589 if (diff_map_fd >= 0) 590 close(diff_map_fd); 591 592 flock(attr_map_fd, LOCK_UN); 593 close(attr_map_fd); 594 595 return err; 596 } 597 598 static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd) 599 { 600 struct bperf_leader_bpf *skel = evsel->leader_skel; 601 602 return bpf_map_update_elem(bpf_map__fd(skel->maps.events), 603 &cpu_map_idx, &fd, BPF_ANY); 604 } 605 606 /* 607 * trigger the leader prog on each cpu, so the accum_reading map could get 608 * the latest readings. 609 */ 610 static int bperf_sync_counters(struct evsel *evsel) 611 { 612 int num_cpu, i, cpu; 613 614 num_cpu = perf_cpu_map__nr(all_cpu_map); 615 for (i = 0; i < num_cpu; i++) { 616 cpu = perf_cpu_map__cpu(all_cpu_map, i).cpu; 617 bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu); 618 } 619 return 0; 620 } 621 622 static int bperf__enable(struct evsel *evsel) 623 { 624 evsel->follower_skel->bss->enabled = 1; 625 return 0; 626 } 627 628 static int bperf__disable(struct evsel *evsel) 629 { 630 evsel->follower_skel->bss->enabled = 0; 631 return 0; 632 } 633 634 static int bperf__read(struct evsel *evsel) 635 { 636 struct bperf_follower_bpf *skel = evsel->follower_skel; 637 __u32 num_cpu_bpf = cpu__max_cpu().cpu; 638 struct bpf_perf_event_value values[num_cpu_bpf]; 639 struct perf_counts_values *counts; 640 int reading_map_fd, err = 0; 641 __u32 i; 642 int j; 643 644 bperf_sync_counters(evsel); 645 reading_map_fd = bpf_map__fd(skel->maps.accum_readings); 646 647 for (i = 0; i < filter_entry_cnt; i++) { 648 struct perf_cpu entry; 649 __u32 cpu; 650 651 err = bpf_map_lookup_elem(reading_map_fd, &i, values); 652 if (err) 653 goto out; 654 switch (evsel->follower_skel->bss->type) { 655 case BPERF_FILTER_GLOBAL: 656 assert(i == 0); 657 658 perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) { 659 counts = perf_counts(evsel->counts, j, 0); 660 counts->val = values[entry.cpu].counter; 661 counts->ena = values[entry.cpu].enabled; 662 counts->run = values[entry.cpu].running; 663 } 664 break; 665 case BPERF_FILTER_CPU: 666 cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu; 667 assert(cpu >= 0); 668 counts = perf_counts(evsel->counts, i, 0); 669 counts->val = values[cpu].counter; 670 counts->ena = values[cpu].enabled; 671 counts->run = values[cpu].running; 672 break; 673 case BPERF_FILTER_PID: 674 case BPERF_FILTER_TGID: 675 counts = perf_counts(evsel->counts, 0, i); 676 counts->val = 0; 677 counts->ena = 0; 678 counts->run = 0; 679 680 for (cpu = 0; cpu < num_cpu_bpf; cpu++) { 681 counts->val += values[cpu].counter; 682 counts->ena += values[cpu].enabled; 683 counts->run += values[cpu].running; 684 } 685 break; 686 default: 687 break; 688 } 689 } 690 out: 691 return err; 692 } 693 694 static int bperf__destroy(struct evsel *evsel) 695 { 696 bperf_follower_bpf__destroy(evsel->follower_skel); 697 close(evsel->bperf_leader_prog_fd); 698 close(evsel->bperf_leader_link_fd); 699 return 0; 700 } 701 702 /* 703 * bperf: share hardware PMCs with BPF 704 * 705 * perf uses performance monitoring counters (PMC) to monitor system 706 * performance. The PMCs are limited hardware resources. For example, 707 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu. 708 * 709 * Modern data center systems use these PMCs in many different ways: 710 * system level monitoring, (maybe nested) container level monitoring, per 711 * process monitoring, profiling (in sample mode), etc. In some cases, 712 * there are more active perf_events than available hardware PMCs. To allow 713 * all perf_events to have a chance to run, it is necessary to do expensive 714 * time multiplexing of events. 715 * 716 * On the other hand, many monitoring tools count the common metrics 717 * (cycles, instructions). It is a waste to have multiple tools create 718 * multiple perf_events of "cycles" and occupy multiple PMCs. 719 * 720 * bperf tries to reduce such wastes by allowing multiple perf_events of 721 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead 722 * of having each perf-stat session to read its own perf_events, bperf uses 723 * BPF programs to read the perf_events and aggregate readings to BPF maps. 724 * Then, the perf-stat session(s) reads the values from these BPF maps. 725 * 726 * || 727 * shared progs and maps <- || -> per session progs and maps 728 * || 729 * --------------- || 730 * | perf_events | || 731 * --------------- fexit || ----------------- 732 * | --------||----> | follower prog | 733 * --------------- / || --- ----------------- 734 * cs -> | leader prog |/ ||/ | | 735 * --> --------------- /|| -------------- ------------------ 736 * / | | / || | filter map | | accum_readings | 737 * / ------------ ------------ || -------------- ------------------ 738 * | | prev map | | diff map | || | 739 * | ------------ ------------ || | 740 * \ || | 741 * = \ ==================================================== | ============ 742 * \ / user space 743 * \ / 744 * \ / 745 * BPF_PROG_TEST_RUN BPF_MAP_LOOKUP_ELEM 746 * \ / 747 * \ / 748 * \------ perf-stat ----------------------/ 749 * 750 * The figure above shows the architecture of bperf. Note that the figure 751 * is divided into 3 regions: shared progs and maps (top left), per session 752 * progs and maps (top right), and user space (bottom). 753 * 754 * The leader prog is triggered on each context switch (cs). The leader 755 * prog reads perf_events and stores the difference (current_reading - 756 * previous_reading) to the diff map. For the same metric, e.g. "cycles", 757 * multiple perf-stat sessions share the same leader prog. 758 * 759 * Each perf-stat session creates a follower prog as fexit program to the 760 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38) 761 * follower progs to the same leader prog. The follower prog checks current 762 * task and processor ID to decide whether to add the value from the diff 763 * map to its accumulated reading map (accum_readings). 764 * 765 * Finally, perf-stat user space reads the value from accum_reading map. 766 * 767 * Besides context switch, it is also necessary to trigger the leader prog 768 * before perf-stat reads the value. Otherwise, the accum_reading map may 769 * not have the latest reading from the perf_events. This is achieved by 770 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU. 771 * 772 * Comment before the definition of struct perf_event_attr_map_entry 773 * describes how different sessions of perf-stat share information about 774 * the leader prog. 775 */ 776 777 struct bpf_counter_ops bperf_ops = { 778 .load = bperf__load, 779 .enable = bperf__enable, 780 .disable = bperf__disable, 781 .read = bperf__read, 782 .install_pe = bperf__install_pe, 783 .destroy = bperf__destroy, 784 }; 785 786 extern struct bpf_counter_ops bperf_cgrp_ops; 787 788 static inline bool bpf_counter_skip(struct evsel *evsel) 789 { 790 return evsel->bpf_counter_ops == NULL; 791 } 792 793 int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd) 794 { 795 if (bpf_counter_skip(evsel)) 796 return 0; 797 return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd); 798 } 799 800 int bpf_counter__load(struct evsel *evsel, struct target *target) 801 { 802 if (target->bpf_str) 803 evsel->bpf_counter_ops = &bpf_program_profiler_ops; 804 else if (cgrp_event_expanded && target->use_bpf) 805 evsel->bpf_counter_ops = &bperf_cgrp_ops; 806 else if (target->use_bpf || evsel->bpf_counter || 807 evsel__match_bpf_counter_events(evsel->name)) 808 evsel->bpf_counter_ops = &bperf_ops; 809 810 if (evsel->bpf_counter_ops) 811 return evsel->bpf_counter_ops->load(evsel, target); 812 return 0; 813 } 814 815 int bpf_counter__enable(struct evsel *evsel) 816 { 817 if (bpf_counter_skip(evsel)) 818 return 0; 819 return evsel->bpf_counter_ops->enable(evsel); 820 } 821 822 int bpf_counter__disable(struct evsel *evsel) 823 { 824 if (bpf_counter_skip(evsel)) 825 return 0; 826 return evsel->bpf_counter_ops->disable(evsel); 827 } 828 829 int bpf_counter__read(struct evsel *evsel) 830 { 831 if (bpf_counter_skip(evsel)) 832 return -EAGAIN; 833 return evsel->bpf_counter_ops->read(evsel); 834 } 835 836 void bpf_counter__destroy(struct evsel *evsel) 837 { 838 if (bpf_counter_skip(evsel)) 839 return; 840 evsel->bpf_counter_ops->destroy(evsel); 841 evsel->bpf_counter_ops = NULL; 842 evsel->bpf_skel = NULL; 843 } 844