1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7 *
8 * This code is derived from the Stanford/CMU enet packet filter,
9 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11 * Berkeley Laboratory.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 #include "opt_bpf.h"
40 #include "opt_ddb.h"
41 #include "opt_netgraph.h"
42
43 #include <sys/param.h>
44 #include <sys/conf.h>
45 #include <sys/eventhandler.h>
46 #include <sys/fcntl.h>
47 #include <sys/jail.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/mutex.h>
53 #include <sys/time.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/signalvar.h>
57 #include <sys/filio.h>
58 #include <sys/sockio.h>
59 #include <sys/ttycom.h>
60 #include <sys/uio.h>
61 #include <sys/sysent.h>
62 #include <sys/systm.h>
63
64 #include <sys/event.h>
65 #include <sys/file.h>
66 #include <sys/poll.h>
67 #include <sys/proc.h>
68
69 #include <sys/socket.h>
70
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_private.h>
78 #include <net/if_vlan_var.h>
79 #include <net/if_dl.h>
80 #include <net/bpf.h>
81 #include <net/bpf_buffer.h>
82 #ifdef BPF_JITTER
83 #include <net/bpf_jitter.h>
84 #endif
85 #include <net/bpf_zerocopy.h>
86 #include <net/bpfdesc.h>
87 #include <net/route.h>
88 #include <net/vnet.h>
89
90 #include <netinet/in.h>
91 #include <netinet/if_ether.h>
92 #include <sys/kernel.h>
93 #include <sys/sysctl.h>
94
95 #include <net80211/ieee80211_freebsd.h>
96
97 #include <security/mac/mac_framework.h>
98
99 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
100
101 static const struct bpf_if_ext dead_bpf_if = {
102 .bif_dlist = CK_LIST_HEAD_INITIALIZER()
103 };
104
105 struct bpf_if {
106 #define bif_next bif_ext.bif_next
107 #define bif_dlist bif_ext.bif_dlist
108 struct bpf_if_ext bif_ext; /* public members */
109 u_int bif_dlt; /* link layer type */
110 u_int bif_hdrlen; /* length of link header */
111 struct bpfd_list bif_wlist; /* writer-only list */
112 struct ifnet *bif_ifp; /* corresponding interface */
113 struct bpf_if **bif_bpf; /* Pointer to pointer to us */
114 volatile u_int bif_refcnt;
115 struct epoch_context epoch_ctx;
116 };
117
118 CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
119
120 struct bpf_program_buffer {
121 struct epoch_context epoch_ctx;
122 #ifdef BPF_JITTER
123 bpf_jit_filter *func;
124 #endif
125 void *buffer[0];
126 };
127
128 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
129
130 #define PRINET 26 /* interruptible */
131 #define BPF_PRIO_MAX 7
132
133 #define SIZEOF_BPF_HDR(type) \
134 (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
135
136 #ifdef COMPAT_FREEBSD32
137 #include <sys/mount.h>
138 #include <compat/freebsd32/freebsd32.h>
139 #define BPF_ALIGNMENT32 sizeof(int32_t)
140 #define BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
141
142 #ifndef BURN_BRIDGES
143 /*
144 * 32-bit version of structure prepended to each packet. We use this header
145 * instead of the standard one for 32-bit streams. We mark the a stream as
146 * 32-bit the first time we see a 32-bit compat ioctl request.
147 */
148 struct bpf_hdr32 {
149 struct timeval32 bh_tstamp; /* time stamp */
150 uint32_t bh_caplen; /* length of captured portion */
151 uint32_t bh_datalen; /* original length of packet */
152 uint16_t bh_hdrlen; /* length of bpf header (this struct
153 plus alignment padding) */
154 };
155 #endif
156
157 struct bpf_program32 {
158 u_int bf_len;
159 uint32_t bf_insns;
160 };
161
162 struct bpf_dltlist32 {
163 u_int bfl_len;
164 u_int bfl_list;
165 };
166
167 #define BIOCSETF32 _IOW('B', 103, struct bpf_program32)
168 #define BIOCSRTIMEOUT32 _IOW('B', 109, struct timeval32)
169 #define BIOCGRTIMEOUT32 _IOR('B', 110, struct timeval32)
170 #define BIOCGDLTLIST32 _IOWR('B', 121, struct bpf_dltlist32)
171 #define BIOCSETWF32 _IOW('B', 123, struct bpf_program32)
172 #define BIOCSETFNR32 _IOW('B', 130, struct bpf_program32)
173 #endif
174
175 #define BPF_LOCK() sx_xlock(&bpf_sx)
176 #define BPF_UNLOCK() sx_xunlock(&bpf_sx)
177 #define BPF_LOCK_ASSERT() sx_assert(&bpf_sx, SA_XLOCKED)
178 /*
179 * bpf_iflist is a list of BPF interface structures, each corresponding to a
180 * specific DLT. The same network interface might have several BPF interface
181 * structures registered by different layers in the stack (i.e., 802.11
182 * frames, ethernet frames, etc).
183 */
184 CK_LIST_HEAD(bpf_iflist, bpf_if);
185 static struct bpf_iflist bpf_iflist = CK_LIST_HEAD_INITIALIZER();
186 static struct sx bpf_sx; /* bpf global lock */
187 static int bpf_bpfd_cnt;
188
189 static void bpfif_ref(struct bpf_if *);
190 static void bpfif_rele(struct bpf_if *);
191
192 static void bpfd_ref(struct bpf_d *);
193 static void bpfd_rele(struct bpf_d *);
194 static void bpf_attachd(struct bpf_d *, struct bpf_if *);
195 static void bpf_detachd(struct bpf_d *);
196 static void bpf_detachd_locked(struct bpf_d *, bool);
197 static void bpfd_free(epoch_context_t);
198 static int bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
199 struct sockaddr *, int *, struct bpf_d *);
200 static int bpf_setif(struct bpf_d *, struct ifreq *);
201 static void bpf_timed_out(void *);
202 static __inline void
203 bpf_wakeup(struct bpf_d *);
204 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
205 void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
206 struct bintime *);
207 static void reset_d(struct bpf_d *);
208 static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
209 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
210 static int bpf_setdlt(struct bpf_d *, u_int);
211 static void filt_bpfdetach(struct knote *);
212 static int filt_bpfread(struct knote *, long);
213 static int filt_bpfwrite(struct knote *, long);
214 static void bpf_drvinit(void *);
215 static int bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
216
217 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
218 "bpf sysctl");
219 int bpf_maxinsns = BPF_MAXINSNS;
220 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
221 &bpf_maxinsns, 0, "Maximum bpf program instructions");
222 static int bpf_zerocopy_enable = 0;
223 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
224 &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
225 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
226 bpf_stats_sysctl, "bpf statistics portal");
227
228 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
229 #define V_bpf_optimize_writers VNET(bpf_optimize_writers)
230 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN,
231 &VNET_NAME(bpf_optimize_writers), 0,
232 "Do not send packets until BPF program is set");
233
234 static d_open_t bpfopen;
235 static d_read_t bpfread;
236 static d_write_t bpfwrite;
237 static d_ioctl_t bpfioctl;
238 static d_poll_t bpfpoll;
239 static d_kqfilter_t bpfkqfilter;
240
241 static struct cdevsw bpf_cdevsw = {
242 .d_version = D_VERSION,
243 .d_open = bpfopen,
244 .d_read = bpfread,
245 .d_write = bpfwrite,
246 .d_ioctl = bpfioctl,
247 .d_poll = bpfpoll,
248 .d_name = "bpf",
249 .d_kqfilter = bpfkqfilter,
250 };
251
252 static const struct filterops bpfread_filtops = {
253 .f_isfd = 1,
254 .f_detach = filt_bpfdetach,
255 .f_event = filt_bpfread,
256 .f_copy = knote_triv_copy,
257 };
258
259 static const struct filterops bpfwrite_filtops = {
260 .f_isfd = 1,
261 .f_detach = filt_bpfdetach,
262 .f_event = filt_bpfwrite,
263 .f_copy = knote_triv_copy,
264 };
265
266 /*
267 * LOCKING MODEL USED BY BPF
268 *
269 * Locks:
270 * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
271 * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
272 * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
273 * structure fields used by bpf_*tap* code.
274 *
275 * Lock order: global lock, then descriptor lock.
276 *
277 * There are several possible consumers:
278 *
279 * 1. The kernel registers interface pointer with bpfattach().
280 * Each call allocates new bpf_if structure, references ifnet pointer
281 * and links bpf_if into bpf_iflist chain. This is protected with global
282 * lock.
283 *
284 * 2. An userland application uses ioctl() call to bpf_d descriptor.
285 * All such call are serialized with global lock. BPF filters can be
286 * changed, but pointer to old filter will be freed using NET_EPOCH_CALL().
287 * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
288 * filter pointers, even if change will happen during bpf_tap execution.
289 * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL().
290 *
291 * 3. An userland application can write packets into bpf_d descriptor.
292 * There we need to be sure, that ifnet won't disappear during bpfwrite().
293 *
294 * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
295 * bif_dlist is protected with net_epoch_preempt section. So, it should
296 * be safe to make access to bpf_d descriptor inside the section.
297 *
298 * 5. The kernel invokes bpfdetach() on interface destroying. All lists
299 * are modified with global lock held and actual free() is done using
300 * NET_EPOCH_CALL().
301 */
302
303 static void
bpfif_free(epoch_context_t ctx)304 bpfif_free(epoch_context_t ctx)
305 {
306 struct bpf_if *bp;
307
308 bp = __containerof(ctx, struct bpf_if, epoch_ctx);
309 if_rele(bp->bif_ifp);
310 free(bp, M_BPF);
311 }
312
313 static void
bpfif_ref(struct bpf_if * bp)314 bpfif_ref(struct bpf_if *bp)
315 {
316
317 refcount_acquire(&bp->bif_refcnt);
318 }
319
320 static void
bpfif_rele(struct bpf_if * bp)321 bpfif_rele(struct bpf_if *bp)
322 {
323
324 if (!refcount_release(&bp->bif_refcnt))
325 return;
326 NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx);
327 }
328
329 static void
bpfd_ref(struct bpf_d * d)330 bpfd_ref(struct bpf_d *d)
331 {
332
333 refcount_acquire(&d->bd_refcnt);
334 }
335
336 static void
bpfd_rele(struct bpf_d * d)337 bpfd_rele(struct bpf_d *d)
338 {
339
340 if (!refcount_release(&d->bd_refcnt))
341 return;
342 NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx);
343 }
344
345 static struct bpf_program_buffer*
bpf_program_buffer_alloc(size_t size,int flags)346 bpf_program_buffer_alloc(size_t size, int flags)
347 {
348
349 return (malloc(sizeof(struct bpf_program_buffer) + size,
350 M_BPF, flags));
351 }
352
353 static void
bpf_program_buffer_free(epoch_context_t ctx)354 bpf_program_buffer_free(epoch_context_t ctx)
355 {
356 struct bpf_program_buffer *ptr;
357
358 ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
359 #ifdef BPF_JITTER
360 if (ptr->func != NULL)
361 bpf_destroy_jit_filter(ptr->func);
362 #endif
363 free(ptr, M_BPF);
364 }
365
366 /*
367 * Wrapper functions for various buffering methods. If the set of buffer
368 * modes expands, we will probably want to introduce a switch data structure
369 * similar to protosw, et.
370 */
371 static void
bpf_append_bytes(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)372 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
373 u_int len)
374 {
375
376 BPFD_LOCK_ASSERT(d);
377
378 switch (d->bd_bufmode) {
379 case BPF_BUFMODE_BUFFER:
380 return (bpf_buffer_append_bytes(d, buf, offset, src, len));
381
382 case BPF_BUFMODE_ZBUF:
383 counter_u64_add(d->bd_zcopy, 1);
384 return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
385
386 default:
387 panic("bpf_buf_append_bytes");
388 }
389 }
390
391 static void
bpf_append_mbuf(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)392 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
393 u_int len)
394 {
395
396 BPFD_LOCK_ASSERT(d);
397
398 switch (d->bd_bufmode) {
399 case BPF_BUFMODE_BUFFER:
400 return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
401
402 case BPF_BUFMODE_ZBUF:
403 counter_u64_add(d->bd_zcopy, 1);
404 return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
405
406 default:
407 panic("bpf_buf_append_mbuf");
408 }
409 }
410
411 /*
412 * This function gets called when the free buffer is re-assigned.
413 */
414 static void
bpf_buf_reclaimed(struct bpf_d * d)415 bpf_buf_reclaimed(struct bpf_d *d)
416 {
417
418 BPFD_LOCK_ASSERT(d);
419
420 switch (d->bd_bufmode) {
421 case BPF_BUFMODE_BUFFER:
422 return;
423
424 case BPF_BUFMODE_ZBUF:
425 bpf_zerocopy_buf_reclaimed(d);
426 return;
427
428 default:
429 panic("bpf_buf_reclaimed");
430 }
431 }
432
433 /*
434 * If the buffer mechanism has a way to decide that a held buffer can be made
435 * free, then it is exposed via the bpf_canfreebuf() interface. (1) is
436 * returned if the buffer can be discarded, (0) is returned if it cannot.
437 */
438 static int
bpf_canfreebuf(struct bpf_d * d)439 bpf_canfreebuf(struct bpf_d *d)
440 {
441
442 BPFD_LOCK_ASSERT(d);
443
444 switch (d->bd_bufmode) {
445 case BPF_BUFMODE_ZBUF:
446 return (bpf_zerocopy_canfreebuf(d));
447 }
448 return (0);
449 }
450
451 /*
452 * Allow the buffer model to indicate that the current store buffer is
453 * immutable, regardless of the appearance of space. Return (1) if the
454 * buffer is writable, and (0) if not.
455 */
456 static int
bpf_canwritebuf(struct bpf_d * d)457 bpf_canwritebuf(struct bpf_d *d)
458 {
459 BPFD_LOCK_ASSERT(d);
460
461 switch (d->bd_bufmode) {
462 case BPF_BUFMODE_ZBUF:
463 return (bpf_zerocopy_canwritebuf(d));
464 }
465 return (1);
466 }
467
468 /*
469 * Notify buffer model that an attempt to write to the store buffer has
470 * resulted in a dropped packet, in which case the buffer may be considered
471 * full.
472 */
473 static void
bpf_buffull(struct bpf_d * d)474 bpf_buffull(struct bpf_d *d)
475 {
476
477 BPFD_LOCK_ASSERT(d);
478
479 switch (d->bd_bufmode) {
480 case BPF_BUFMODE_ZBUF:
481 bpf_zerocopy_buffull(d);
482 break;
483 }
484 }
485
486 /*
487 * Notify the buffer model that a buffer has moved into the hold position.
488 */
489 void
bpf_bufheld(struct bpf_d * d)490 bpf_bufheld(struct bpf_d *d)
491 {
492
493 BPFD_LOCK_ASSERT(d);
494
495 switch (d->bd_bufmode) {
496 case BPF_BUFMODE_ZBUF:
497 bpf_zerocopy_bufheld(d);
498 break;
499 }
500 }
501
502 static void
bpf_free(struct bpf_d * d)503 bpf_free(struct bpf_d *d)
504 {
505
506 switch (d->bd_bufmode) {
507 case BPF_BUFMODE_BUFFER:
508 return (bpf_buffer_free(d));
509
510 case BPF_BUFMODE_ZBUF:
511 return (bpf_zerocopy_free(d));
512
513 default:
514 panic("bpf_buf_free");
515 }
516 }
517
518 static int
bpf_uiomove(struct bpf_d * d,caddr_t buf,u_int len,struct uio * uio)519 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
520 {
521
522 if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
523 return (EOPNOTSUPP);
524 return (bpf_buffer_uiomove(d, buf, len, uio));
525 }
526
527 static int
bpf_ioctl_sblen(struct bpf_d * d,u_int * i)528 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
529 {
530
531 if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
532 return (EOPNOTSUPP);
533 return (bpf_buffer_ioctl_sblen(d, i));
534 }
535
536 static int
bpf_ioctl_getzmax(struct thread * td,struct bpf_d * d,size_t * i)537 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
538 {
539
540 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
541 return (EOPNOTSUPP);
542 return (bpf_zerocopy_ioctl_getzmax(td, d, i));
543 }
544
545 static int
bpf_ioctl_rotzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)546 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
547 {
548
549 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
550 return (EOPNOTSUPP);
551 return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
552 }
553
554 static int
bpf_ioctl_setzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)555 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
556 {
557
558 if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
559 return (EOPNOTSUPP);
560 return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
561 }
562
563 /*
564 * General BPF functions.
565 */
566 static int
bpf_movein(struct uio * uio,int linktype,struct ifnet * ifp,struct mbuf ** mp,struct sockaddr * sockp,int * hdrlen,struct bpf_d * d)567 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
568 struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
569 {
570 const struct ieee80211_bpf_params *p;
571 struct ether_header *eh;
572 struct mbuf *m;
573 int error;
574 int len;
575 int hlen;
576 int slen;
577
578 /*
579 * Build a sockaddr based on the data link layer type.
580 * We do this at this level because the ethernet header
581 * is copied directly into the data field of the sockaddr.
582 * In the case of SLIP, there is no header and the packet
583 * is forwarded as is.
584 * Also, we are careful to leave room at the front of the mbuf
585 * for the link level header.
586 */
587 switch (linktype) {
588 case DLT_SLIP:
589 sockp->sa_family = AF_INET;
590 hlen = 0;
591 break;
592
593 case DLT_EN10MB:
594 sockp->sa_family = AF_UNSPEC;
595 /* XXX Would MAXLINKHDR be better? */
596 hlen = ETHER_HDR_LEN;
597 break;
598
599 case DLT_FDDI:
600 sockp->sa_family = AF_IMPLINK;
601 hlen = 0;
602 break;
603
604 case DLT_RAW:
605 sockp->sa_family = AF_UNSPEC;
606 hlen = 0;
607 break;
608
609 case DLT_NULL:
610 /*
611 * null interface types require a 4 byte pseudo header which
612 * corresponds to the address family of the packet.
613 */
614 sockp->sa_family = AF_UNSPEC;
615 hlen = 4;
616 break;
617
618 case DLT_ATM_RFC1483:
619 /*
620 * en atm driver requires 4-byte atm pseudo header.
621 * though it isn't standard, vpi:vci needs to be
622 * specified anyway.
623 */
624 sockp->sa_family = AF_UNSPEC;
625 hlen = 12; /* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
626 break;
627
628 case DLT_PPP:
629 sockp->sa_family = AF_UNSPEC;
630 hlen = 4; /* This should match PPP_HDRLEN */
631 break;
632
633 case DLT_IEEE802_11: /* IEEE 802.11 wireless */
634 sockp->sa_family = AF_IEEE80211;
635 hlen = 0;
636 break;
637
638 case DLT_IEEE802_11_RADIO: /* IEEE 802.11 wireless w/ phy params */
639 sockp->sa_family = AF_IEEE80211;
640 sockp->sa_len = 12; /* XXX != 0 */
641 hlen = sizeof(struct ieee80211_bpf_params);
642 break;
643
644 default:
645 return (EIO);
646 }
647
648 len = uio->uio_resid;
649 if (len < hlen || len - hlen > ifp->if_mtu)
650 return (EMSGSIZE);
651
652 /* Allocate a mbuf, up to MJUM16BYTES bytes, for our write. */
653 m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR);
654 if (m == NULL)
655 return (EIO);
656 m->m_pkthdr.len = m->m_len = len;
657 *mp = m;
658
659 error = uiomove(mtod(m, u_char *), len, uio);
660 if (error)
661 goto bad;
662
663 slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
664 if (slen == 0) {
665 error = EPERM;
666 goto bad;
667 }
668
669 /* Check for multicast destination */
670 switch (linktype) {
671 case DLT_EN10MB:
672 eh = mtod(m, struct ether_header *);
673 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
674 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
675 ETHER_ADDR_LEN) == 0)
676 m->m_flags |= M_BCAST;
677 else
678 m->m_flags |= M_MCAST;
679 }
680 if (d->bd_hdrcmplt == 0) {
681 memcpy(eh->ether_shost, IF_LLADDR(ifp),
682 sizeof(eh->ether_shost));
683 }
684 break;
685 }
686
687 /*
688 * Make room for link header, and copy it to sockaddr
689 */
690 if (hlen != 0) {
691 if (sockp->sa_family == AF_IEEE80211) {
692 /*
693 * Collect true length from the parameter header
694 * NB: sockp is known to be zero'd so if we do a
695 * short copy unspecified parameters will be
696 * zero.
697 * NB: packet may not be aligned after stripping
698 * bpf params
699 * XXX check ibp_vers
700 */
701 p = mtod(m, const struct ieee80211_bpf_params *);
702 hlen = p->ibp_len;
703 if (hlen > sizeof(sockp->sa_data)) {
704 error = EINVAL;
705 goto bad;
706 }
707 }
708 bcopy(mtod(m, const void *), sockp->sa_data, hlen);
709 }
710 *hdrlen = hlen;
711
712 return (0);
713 bad:
714 m_freem(m);
715 return (error);
716 }
717
718 /*
719 * Attach descriptor to the bpf interface, i.e. make d listen on bp,
720 * then reset its buffers and counters with reset_d().
721 */
722 static void
bpf_attachd(struct bpf_d * d,struct bpf_if * bp)723 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
724 {
725 int op_w;
726
727 BPF_LOCK_ASSERT();
728
729 /*
730 * Save sysctl value to protect from sysctl change
731 * between reads
732 */
733 op_w = V_bpf_optimize_writers || d->bd_writer;
734
735 if (d->bd_bif != NULL)
736 bpf_detachd_locked(d, false);
737 /*
738 * Point d at bp, and add d to the interface's list.
739 * Since there are many applications using BPF for
740 * sending raw packets only (dhcpd, cdpd are good examples)
741 * we can delay adding d to the list of active listeners until
742 * some filter is configured.
743 */
744
745 BPFD_LOCK(d);
746 /*
747 * Hold reference to bpif while descriptor uses this interface.
748 */
749 bpfif_ref(bp);
750 d->bd_bif = bp;
751 if (op_w != 0) {
752 /* Add to writers-only list */
753 CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
754 /*
755 * We decrement bd_writer on every filter set operation.
756 * First BIOCSETF is done by pcap_open_live() to set up
757 * snap length. After that appliation usually sets its own
758 * filter.
759 */
760 d->bd_writer = 2;
761 } else
762 CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
763
764 reset_d(d);
765
766 /* Trigger EVFILT_WRITE events. */
767 bpf_wakeup(d);
768
769 BPFD_UNLOCK(d);
770 bpf_bpfd_cnt++;
771
772 CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
773 __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
774
775 if (op_w == 0)
776 EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
777 }
778
779 /*
780 * Check if we need to upgrade our descriptor @d from write-only mode.
781 */
782 static int
bpf_check_upgrade(u_long cmd,struct bpf_d * d,struct bpf_insn * fcode,int flen)783 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
784 int flen)
785 {
786 int is_snap, need_upgrade;
787
788 /*
789 * Check if we've already upgraded or new filter is empty.
790 */
791 if (d->bd_writer == 0 || fcode == NULL)
792 return (0);
793
794 need_upgrade = 0;
795
796 /*
797 * Check if cmd looks like snaplen setting from
798 * pcap_bpf.c:pcap_open_live().
799 * Note we're not checking .k value here:
800 * while pcap_open_live() definitely sets to non-zero value,
801 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
802 * do not consider upgrading immediately
803 */
804 if (cmd == BIOCSETF && flen == 1 &&
805 fcode[0].code == (BPF_RET | BPF_K))
806 is_snap = 1;
807 else
808 is_snap = 0;
809
810 if (is_snap == 0) {
811 /*
812 * We're setting first filter and it doesn't look like
813 * setting snaplen. We're probably using bpf directly.
814 * Upgrade immediately.
815 */
816 need_upgrade = 1;
817 } else {
818 /*
819 * Do not require upgrade by first BIOCSETF
820 * (used to set snaplen) by pcap_open_live().
821 */
822
823 if (--d->bd_writer == 0) {
824 /*
825 * First snaplen filter has already
826 * been set. This is probably catch-all
827 * filter
828 */
829 need_upgrade = 1;
830 }
831 }
832
833 CTR5(KTR_NET,
834 "%s: filter function set by pid %d, "
835 "bd_writer counter %d, snap %d upgrade %d",
836 __func__, d->bd_pid, d->bd_writer,
837 is_snap, need_upgrade);
838
839 return (need_upgrade);
840 }
841
842 /*
843 * Detach a file from its interface.
844 */
845 static void
bpf_detachd(struct bpf_d * d)846 bpf_detachd(struct bpf_d *d)
847 {
848 BPF_LOCK();
849 bpf_detachd_locked(d, false);
850 BPF_UNLOCK();
851 }
852
853 static void
bpf_detachd_locked(struct bpf_d * d,bool detached_ifp)854 bpf_detachd_locked(struct bpf_d *d, bool detached_ifp)
855 {
856 struct bpf_if *bp;
857 struct ifnet *ifp;
858 int error;
859
860 BPF_LOCK_ASSERT();
861 CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
862
863 /* Check if descriptor is attached */
864 if ((bp = d->bd_bif) == NULL)
865 return;
866
867 BPFD_LOCK(d);
868 /* Remove d from the interface's descriptor list. */
869 CK_LIST_REMOVE(d, bd_next);
870 /* Save bd_writer value */
871 error = d->bd_writer;
872 ifp = bp->bif_ifp;
873 d->bd_bif = NULL;
874 if (detached_ifp) {
875 /*
876 * Notify descriptor as it's detached, so that any
877 * sleepers wake up and get ENXIO.
878 */
879 bpf_wakeup(d);
880 }
881 BPFD_UNLOCK(d);
882 bpf_bpfd_cnt--;
883
884 /* Call event handler iff d is attached */
885 if (error == 0)
886 EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
887
888 /*
889 * Check if this descriptor had requested promiscuous mode.
890 * If so and ifnet is not detached, turn it off.
891 */
892 if (d->bd_promisc && !detached_ifp) {
893 d->bd_promisc = 0;
894 CURVNET_SET(ifp->if_vnet);
895 error = ifpromisc(ifp, 0);
896 CURVNET_RESTORE();
897 if (error != 0 && error != ENXIO) {
898 /*
899 * ENXIO can happen if a pccard is unplugged
900 * Something is really wrong if we were able to put
901 * the driver into promiscuous mode, but can't
902 * take it out.
903 */
904 if_printf(bp->bif_ifp,
905 "bpf_detach: ifpromisc failed (%d)\n", error);
906 }
907 }
908 bpfif_rele(bp);
909 }
910
911 /*
912 * Close the descriptor by detaching it from its interface,
913 * deallocating its buffers, and marking it free.
914 */
915 static void
bpf_dtor(void * data)916 bpf_dtor(void *data)
917 {
918 struct bpf_d *d = data;
919
920 BPFD_LOCK(d);
921 if (d->bd_state == BPF_WAITING)
922 callout_stop(&d->bd_callout);
923 d->bd_state = BPF_IDLE;
924 BPFD_UNLOCK(d);
925 funsetown(&d->bd_sigio);
926 bpf_detachd(d);
927 #ifdef MAC
928 mac_bpfdesc_destroy(d);
929 #endif /* MAC */
930 seldrain(&d->bd_sel);
931 knlist_destroy(&d->bd_sel.si_note);
932 callout_drain(&d->bd_callout);
933 bpfd_rele(d);
934 }
935
936 /*
937 * Open ethernet device. Returns ENXIO for illegal minor device number,
938 * EBUSY if file is open by another process.
939 */
940 /* ARGSUSED */
941 static int
bpfopen(struct cdev * dev,int flags,int fmt,struct thread * td)942 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
943 {
944 struct bpf_d *d;
945 int error;
946
947 d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
948 error = devfs_set_cdevpriv(d, bpf_dtor);
949 if (error != 0) {
950 free(d, M_BPF);
951 return (error);
952 }
953
954 /* Setup counters */
955 d->bd_rcount = counter_u64_alloc(M_WAITOK);
956 d->bd_dcount = counter_u64_alloc(M_WAITOK);
957 d->bd_fcount = counter_u64_alloc(M_WAITOK);
958 d->bd_wcount = counter_u64_alloc(M_WAITOK);
959 d->bd_wfcount = counter_u64_alloc(M_WAITOK);
960 d->bd_wdcount = counter_u64_alloc(M_WAITOK);
961 d->bd_zcopy = counter_u64_alloc(M_WAITOK);
962
963 /*
964 * For historical reasons, perform a one-time initialization call to
965 * the buffer routines, even though we're not yet committed to a
966 * particular buffer method.
967 */
968 bpf_buffer_init(d);
969 if ((flags & FREAD) == 0)
970 d->bd_writer = 2;
971 d->bd_hbuf_in_use = 0;
972 d->bd_bufmode = BPF_BUFMODE_BUFFER;
973 d->bd_sig = SIGIO;
974 d->bd_direction = BPF_D_INOUT;
975 refcount_init(&d->bd_refcnt, 1);
976 BPF_PID_REFRESH(d, td);
977 #ifdef MAC
978 mac_bpfdesc_init(d);
979 mac_bpfdesc_create(td->td_ucred, d);
980 #endif
981 mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
982 callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
983 knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
984
985 /* Disable VLAN pcp tagging. */
986 d->bd_pcp = 0;
987
988 return (0);
989 }
990
991 /*
992 * bpfread - read next chunk of packets from buffers
993 */
994 static int
bpfread(struct cdev * dev,struct uio * uio,int ioflag)995 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
996 {
997 struct bpf_d *d;
998 int error;
999 int non_block;
1000 int timed_out;
1001
1002 error = devfs_get_cdevpriv((void **)&d);
1003 if (error != 0)
1004 return (error);
1005
1006 /*
1007 * Restrict application to use a buffer the same size as
1008 * as kernel buffers.
1009 */
1010 if (uio->uio_resid != d->bd_bufsize)
1011 return (EINVAL);
1012
1013 non_block = ((ioflag & O_NONBLOCK) != 0);
1014
1015 BPFD_LOCK(d);
1016 BPF_PID_REFRESH_CUR(d);
1017 if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1018 BPFD_UNLOCK(d);
1019 return (EOPNOTSUPP);
1020 }
1021 if (d->bd_state == BPF_WAITING)
1022 callout_stop(&d->bd_callout);
1023 timed_out = (d->bd_state == BPF_TIMED_OUT);
1024 d->bd_state = BPF_IDLE;
1025 while (d->bd_hbuf_in_use) {
1026 error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1027 PRINET | PCATCH, "bd_hbuf", 0);
1028 if (error != 0) {
1029 BPFD_UNLOCK(d);
1030 return (error);
1031 }
1032 }
1033 /*
1034 * If the hold buffer is empty, then do a timed sleep, which
1035 * ends when the timeout expires or when enough packets
1036 * have arrived to fill the store buffer.
1037 */
1038 while (d->bd_hbuf == NULL) {
1039 if (d->bd_slen != 0) {
1040 /*
1041 * A packet(s) either arrived since the previous
1042 * read or arrived while we were asleep.
1043 */
1044 if (d->bd_immediate || non_block || timed_out) {
1045 /*
1046 * Rotate the buffers and return what's here
1047 * if we are in immediate mode, non-blocking
1048 * flag is set, or this descriptor timed out.
1049 */
1050 ROTATE_BUFFERS(d);
1051 break;
1052 }
1053 }
1054
1055 /*
1056 * No data is available, check to see if the bpf device
1057 * is still pointed at a real interface. If not, return
1058 * ENXIO so that the userland process knows to rebind
1059 * it before using it again.
1060 */
1061 if (d->bd_bif == NULL) {
1062 BPFD_UNLOCK(d);
1063 return (ENXIO);
1064 }
1065
1066 if (non_block) {
1067 BPFD_UNLOCK(d);
1068 return (EWOULDBLOCK);
1069 }
1070 error = msleep(d, &d->bd_lock, PRINET | PCATCH,
1071 "bpf", d->bd_rtout);
1072 if (error == EINTR || error == ERESTART) {
1073 BPFD_UNLOCK(d);
1074 return (error);
1075 }
1076 if (error == EWOULDBLOCK) {
1077 /*
1078 * On a timeout, return what's in the buffer,
1079 * which may be nothing. If there is something
1080 * in the store buffer, we can rotate the buffers.
1081 */
1082 if (d->bd_hbuf)
1083 /*
1084 * We filled up the buffer in between
1085 * getting the timeout and arriving
1086 * here, so we don't need to rotate.
1087 */
1088 break;
1089
1090 if (d->bd_slen == 0) {
1091 BPFD_UNLOCK(d);
1092 return (0);
1093 }
1094 ROTATE_BUFFERS(d);
1095 break;
1096 }
1097 }
1098 /*
1099 * At this point, we know we have something in the hold slot.
1100 */
1101 d->bd_hbuf_in_use = 1;
1102 BPFD_UNLOCK(d);
1103
1104 /*
1105 * Move data from hold buffer into user space.
1106 * We know the entire buffer is transferred since
1107 * we checked above that the read buffer is bpf_bufsize bytes.
1108 *
1109 * We do not have to worry about simultaneous reads because
1110 * we waited for sole access to the hold buffer above.
1111 */
1112 error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1113
1114 BPFD_LOCK(d);
1115 if (d->bd_hbuf_in_use) {
1116 KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1117 d->bd_fbuf = d->bd_hbuf;
1118 d->bd_hbuf = NULL;
1119 d->bd_hlen = 0;
1120 bpf_buf_reclaimed(d);
1121 d->bd_hbuf_in_use = 0;
1122 wakeup(&d->bd_hbuf_in_use);
1123 }
1124 BPFD_UNLOCK(d);
1125
1126 return (error);
1127 }
1128
1129 /*
1130 * If there are processes sleeping on this descriptor, wake them up.
1131 */
1132 static __inline void
bpf_wakeup(struct bpf_d * d)1133 bpf_wakeup(struct bpf_d *d)
1134 {
1135
1136 BPFD_LOCK_ASSERT(d);
1137 if (d->bd_state == BPF_WAITING) {
1138 callout_stop(&d->bd_callout);
1139 d->bd_state = BPF_IDLE;
1140 }
1141 wakeup(d);
1142 if (d->bd_async && d->bd_sig && d->bd_sigio)
1143 pgsigio(&d->bd_sigio, d->bd_sig, 0);
1144
1145 selwakeuppri(&d->bd_sel, PRINET);
1146 KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1147 }
1148
1149 static void
bpf_timed_out(void * arg)1150 bpf_timed_out(void *arg)
1151 {
1152 struct bpf_d *d = (struct bpf_d *)arg;
1153
1154 BPFD_LOCK_ASSERT(d);
1155
1156 if (callout_pending(&d->bd_callout) ||
1157 !callout_active(&d->bd_callout))
1158 return;
1159 if (d->bd_state == BPF_WAITING) {
1160 d->bd_state = BPF_TIMED_OUT;
1161 if (d->bd_slen != 0)
1162 bpf_wakeup(d);
1163 }
1164 }
1165
1166 static int
bpf_ready(struct bpf_d * d)1167 bpf_ready(struct bpf_d *d)
1168 {
1169
1170 BPFD_LOCK_ASSERT(d);
1171
1172 if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1173 return (1);
1174 if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1175 d->bd_slen != 0)
1176 return (1);
1177 return (0);
1178 }
1179
1180 static int
bpfwrite(struct cdev * dev,struct uio * uio,int ioflag)1181 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1182 {
1183 struct route ro;
1184 struct sockaddr dst;
1185 struct epoch_tracker et;
1186 struct bpf_if *bp;
1187 struct bpf_d *d;
1188 struct ifnet *ifp;
1189 struct mbuf *m, *mc;
1190 int error, hlen;
1191
1192 error = devfs_get_cdevpriv((void **)&d);
1193 if (error != 0)
1194 return (error);
1195
1196 NET_EPOCH_ENTER(et);
1197 BPFD_LOCK(d);
1198 BPF_PID_REFRESH_CUR(d);
1199 counter_u64_add(d->bd_wcount, 1);
1200 if ((bp = d->bd_bif) == NULL) {
1201 error = ENXIO;
1202 goto out_locked;
1203 }
1204
1205 ifp = bp->bif_ifp;
1206 if ((ifp->if_flags & IFF_UP) == 0) {
1207 error = ENETDOWN;
1208 goto out_locked;
1209 }
1210
1211 if (uio->uio_resid == 0)
1212 goto out_locked;
1213
1214 bzero(&dst, sizeof(dst));
1215 m = NULL;
1216 hlen = 0;
1217
1218 /*
1219 * Take extra reference, unlock d and exit from epoch section,
1220 * since bpf_movein() can sleep.
1221 */
1222 bpfd_ref(d);
1223 NET_EPOCH_EXIT(et);
1224 BPFD_UNLOCK(d);
1225
1226 error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1227 &m, &dst, &hlen, d);
1228
1229 if (error != 0) {
1230 counter_u64_add(d->bd_wdcount, 1);
1231 bpfd_rele(d);
1232 return (error);
1233 }
1234
1235 BPFD_LOCK(d);
1236 /*
1237 * Check that descriptor is still attached to the interface.
1238 * This can happen on bpfdetach(). To avoid access to detached
1239 * ifnet, free mbuf and return ENXIO.
1240 */
1241 if (d->bd_bif == NULL) {
1242 counter_u64_add(d->bd_wdcount, 1);
1243 BPFD_UNLOCK(d);
1244 bpfd_rele(d);
1245 m_freem(m);
1246 return (ENXIO);
1247 }
1248 counter_u64_add(d->bd_wfcount, 1);
1249 if (d->bd_hdrcmplt)
1250 dst.sa_family = pseudo_AF_HDRCMPLT;
1251
1252 if (d->bd_feedback) {
1253 mc = m_dup(m, M_NOWAIT);
1254 if (mc != NULL)
1255 mc->m_pkthdr.rcvif = ifp;
1256 /* Set M_PROMISC for outgoing packets to be discarded. */
1257 if (d->bd_direction == BPF_D_INOUT)
1258 m->m_flags |= M_PROMISC;
1259 } else
1260 mc = NULL;
1261
1262 m->m_pkthdr.len -= hlen;
1263 m->m_len -= hlen;
1264 m->m_data += hlen; /* XXX */
1265
1266 CURVNET_SET(ifp->if_vnet);
1267 #ifdef MAC
1268 mac_bpfdesc_create_mbuf(d, m);
1269 if (mc != NULL)
1270 mac_bpfdesc_create_mbuf(d, mc);
1271 #endif
1272
1273 bzero(&ro, sizeof(ro));
1274 if (hlen != 0) {
1275 ro.ro_prepend = (u_char *)&dst.sa_data;
1276 ro.ro_plen = hlen;
1277 ro.ro_flags = RT_HAS_HEADER;
1278 }
1279
1280 if (d->bd_pcp != 0)
1281 vlan_set_pcp(m, d->bd_pcp);
1282
1283 /* Avoid possible recursion on BPFD_LOCK(). */
1284 NET_EPOCH_ENTER(et);
1285 BPFD_UNLOCK(d);
1286 error = (*ifp->if_output)(ifp, m, &dst, &ro);
1287 if (error)
1288 counter_u64_add(d->bd_wdcount, 1);
1289
1290 if (mc != NULL) {
1291 if (error == 0)
1292 (*ifp->if_input)(ifp, mc);
1293 else
1294 m_freem(mc);
1295 }
1296 NET_EPOCH_EXIT(et);
1297 CURVNET_RESTORE();
1298 bpfd_rele(d);
1299 return (error);
1300
1301 out_locked:
1302 counter_u64_add(d->bd_wdcount, 1);
1303 NET_EPOCH_EXIT(et);
1304 BPFD_UNLOCK(d);
1305 return (error);
1306 }
1307
1308 /*
1309 * Reset a descriptor by flushing its packet buffer and clearing the receive
1310 * and drop counts. This is doable for kernel-only buffers, but with
1311 * zero-copy buffers, we can't write to (or rotate) buffers that are
1312 * currently owned by userspace. It would be nice if we could encapsulate
1313 * this logic in the buffer code rather than here.
1314 */
1315 static void
reset_d(struct bpf_d * d)1316 reset_d(struct bpf_d *d)
1317 {
1318
1319 BPFD_LOCK_ASSERT(d);
1320
1321 while (d->bd_hbuf_in_use)
1322 mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1323 "bd_hbuf", 0);
1324 if ((d->bd_hbuf != NULL) &&
1325 (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1326 /* Free the hold buffer. */
1327 d->bd_fbuf = d->bd_hbuf;
1328 d->bd_hbuf = NULL;
1329 d->bd_hlen = 0;
1330 bpf_buf_reclaimed(d);
1331 }
1332 if (bpf_canwritebuf(d))
1333 d->bd_slen = 0;
1334 counter_u64_zero(d->bd_rcount);
1335 counter_u64_zero(d->bd_dcount);
1336 counter_u64_zero(d->bd_fcount);
1337 counter_u64_zero(d->bd_wcount);
1338 counter_u64_zero(d->bd_wfcount);
1339 counter_u64_zero(d->bd_wdcount);
1340 counter_u64_zero(d->bd_zcopy);
1341 }
1342
1343 /*
1344 * FIONREAD Check for read packet available.
1345 * BIOCGBLEN Get buffer len [for read()].
1346 * BIOCSETF Set read filter.
1347 * BIOCSETFNR Set read filter without resetting descriptor.
1348 * BIOCSETWF Set write filter.
1349 * BIOCFLUSH Flush read packet buffer.
1350 * BIOCPROMISC Put interface into promiscuous mode.
1351 * BIOCGDLT Get link layer type.
1352 * BIOCGETIF Get interface name.
1353 * BIOCSETIF Set interface.
1354 * BIOCSRTIMEOUT Set read timeout.
1355 * BIOCGRTIMEOUT Get read timeout.
1356 * BIOCGSTATS Get packet stats.
1357 * BIOCIMMEDIATE Set immediate mode.
1358 * BIOCVERSION Get filter language version.
1359 * BIOCGHDRCMPLT Get "header already complete" flag
1360 * BIOCSHDRCMPLT Set "header already complete" flag
1361 * BIOCGDIRECTION Get packet direction flag
1362 * BIOCSDIRECTION Set packet direction flag
1363 * BIOCGTSTAMP Get time stamp format and resolution.
1364 * BIOCSTSTAMP Set time stamp format and resolution.
1365 * BIOCLOCK Set "locked" flag
1366 * BIOCFEEDBACK Set packet feedback mode.
1367 * BIOCSETZBUF Set current zero-copy buffer locations.
1368 * BIOCGETZMAX Get maximum zero-copy buffer size.
1369 * BIOCROTZBUF Force rotation of zero-copy buffer
1370 * BIOCSETBUFMODE Set buffer mode.
1371 * BIOCGETBUFMODE Get current buffer mode.
1372 * BIOCSETVLANPCP Set VLAN PCP tag.
1373 */
1374 /* ARGSUSED */
1375 static int
bpfioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flags,struct thread * td)1376 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1377 struct thread *td)
1378 {
1379 struct bpf_d *d;
1380 int error;
1381
1382 error = devfs_get_cdevpriv((void **)&d);
1383 if (error != 0)
1384 return (error);
1385
1386 /*
1387 * Refresh PID associated with this descriptor.
1388 */
1389 BPFD_LOCK(d);
1390 BPF_PID_REFRESH(d, td);
1391 if (d->bd_state == BPF_WAITING)
1392 callout_stop(&d->bd_callout);
1393 d->bd_state = BPF_IDLE;
1394 BPFD_UNLOCK(d);
1395
1396 if (d->bd_locked == 1) {
1397 switch (cmd) {
1398 case BIOCGBLEN:
1399 case BIOCFLUSH:
1400 case BIOCGDLT:
1401 case BIOCGDLTLIST:
1402 #ifdef COMPAT_FREEBSD32
1403 case BIOCGDLTLIST32:
1404 #endif
1405 case BIOCGETIF:
1406 case BIOCGRTIMEOUT:
1407 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1408 case BIOCGRTIMEOUT32:
1409 #endif
1410 case BIOCGSTATS:
1411 case BIOCVERSION:
1412 case BIOCGRSIG:
1413 case BIOCGHDRCMPLT:
1414 case BIOCSTSTAMP:
1415 case BIOCFEEDBACK:
1416 case FIONREAD:
1417 case BIOCLOCK:
1418 case BIOCSRTIMEOUT:
1419 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1420 case BIOCSRTIMEOUT32:
1421 #endif
1422 case BIOCIMMEDIATE:
1423 case TIOCGPGRP:
1424 case BIOCROTZBUF:
1425 break;
1426 default:
1427 return (EPERM);
1428 }
1429 }
1430 #ifdef COMPAT_FREEBSD32
1431 /*
1432 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1433 * that it will get 32-bit packet headers.
1434 */
1435 switch (cmd) {
1436 case BIOCSETF32:
1437 case BIOCSETFNR32:
1438 case BIOCSETWF32:
1439 case BIOCGDLTLIST32:
1440 case BIOCGRTIMEOUT32:
1441 case BIOCSRTIMEOUT32:
1442 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1443 BPFD_LOCK(d);
1444 d->bd_compat32 = 1;
1445 BPFD_UNLOCK(d);
1446 }
1447 }
1448 #endif
1449
1450 CURVNET_SET(TD_TO_VNET(td));
1451 switch (cmd) {
1452 default:
1453 error = EINVAL;
1454 break;
1455
1456 /*
1457 * Check for read packet available.
1458 */
1459 case FIONREAD:
1460 {
1461 int n;
1462
1463 BPFD_LOCK(d);
1464 n = d->bd_slen;
1465 while (d->bd_hbuf_in_use)
1466 mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1467 PRINET, "bd_hbuf", 0);
1468 if (d->bd_hbuf)
1469 n += d->bd_hlen;
1470 BPFD_UNLOCK(d);
1471
1472 *(int *)addr = n;
1473 break;
1474 }
1475
1476 /*
1477 * Get buffer len [for read()].
1478 */
1479 case BIOCGBLEN:
1480 BPFD_LOCK(d);
1481 *(u_int *)addr = d->bd_bufsize;
1482 BPFD_UNLOCK(d);
1483 break;
1484
1485 /*
1486 * Set buffer length.
1487 */
1488 case BIOCSBLEN:
1489 error = bpf_ioctl_sblen(d, (u_int *)addr);
1490 break;
1491
1492 /*
1493 * Set link layer read filter.
1494 */
1495 case BIOCSETF:
1496 case BIOCSETFNR:
1497 case BIOCSETWF:
1498 #ifdef COMPAT_FREEBSD32
1499 case BIOCSETF32:
1500 case BIOCSETFNR32:
1501 case BIOCSETWF32:
1502 #endif
1503 error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1504 break;
1505
1506 /*
1507 * Flush read packet buffer.
1508 */
1509 case BIOCFLUSH:
1510 BPFD_LOCK(d);
1511 reset_d(d);
1512 BPFD_UNLOCK(d);
1513 break;
1514
1515 /*
1516 * Put interface into promiscuous mode.
1517 */
1518 case BIOCPROMISC:
1519 BPF_LOCK();
1520 if (d->bd_bif == NULL) {
1521 /*
1522 * No interface attached yet.
1523 */
1524 error = EINVAL;
1525 } else if (d->bd_promisc == 0) {
1526 error = ifpromisc(d->bd_bif->bif_ifp, 1);
1527 if (error == 0)
1528 d->bd_promisc = 1;
1529 }
1530 BPF_UNLOCK();
1531 break;
1532
1533 /*
1534 * Get current data link type.
1535 */
1536 case BIOCGDLT:
1537 BPF_LOCK();
1538 if (d->bd_bif == NULL)
1539 error = EINVAL;
1540 else
1541 *(u_int *)addr = d->bd_bif->bif_dlt;
1542 BPF_UNLOCK();
1543 break;
1544
1545 /*
1546 * Get a list of supported data link types.
1547 */
1548 #ifdef COMPAT_FREEBSD32
1549 case BIOCGDLTLIST32:
1550 {
1551 struct bpf_dltlist32 *list32;
1552 struct bpf_dltlist dltlist;
1553
1554 list32 = (struct bpf_dltlist32 *)addr;
1555 dltlist.bfl_len = list32->bfl_len;
1556 dltlist.bfl_list = PTRIN(list32->bfl_list);
1557 BPF_LOCK();
1558 if (d->bd_bif == NULL)
1559 error = EINVAL;
1560 else {
1561 error = bpf_getdltlist(d, &dltlist);
1562 if (error == 0)
1563 list32->bfl_len = dltlist.bfl_len;
1564 }
1565 BPF_UNLOCK();
1566 break;
1567 }
1568 #endif
1569
1570 case BIOCGDLTLIST:
1571 BPF_LOCK();
1572 if (d->bd_bif == NULL)
1573 error = EINVAL;
1574 else
1575 error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1576 BPF_UNLOCK();
1577 break;
1578
1579 /*
1580 * Set data link type.
1581 */
1582 case BIOCSDLT:
1583 BPF_LOCK();
1584 if (d->bd_bif == NULL)
1585 error = EINVAL;
1586 else
1587 error = bpf_setdlt(d, *(u_int *)addr);
1588 BPF_UNLOCK();
1589 break;
1590
1591 /*
1592 * Get interface name.
1593 */
1594 case BIOCGETIF:
1595 BPF_LOCK();
1596 if (d->bd_bif == NULL)
1597 error = EINVAL;
1598 else {
1599 struct ifnet *const ifp = d->bd_bif->bif_ifp;
1600 struct ifreq *const ifr = (struct ifreq *)addr;
1601
1602 strlcpy(ifr->ifr_name, ifp->if_xname,
1603 sizeof(ifr->ifr_name));
1604 }
1605 BPF_UNLOCK();
1606 break;
1607
1608 /*
1609 * Set interface.
1610 */
1611 case BIOCSETIF:
1612 {
1613 int alloc_buf, size;
1614
1615 /*
1616 * Behavior here depends on the buffering model. If
1617 * we're using kernel memory buffers, then we can
1618 * allocate them here. If we're using zero-copy,
1619 * then the user process must have registered buffers
1620 * by the time we get here.
1621 */
1622 alloc_buf = 0;
1623 BPFD_LOCK(d);
1624 if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1625 d->bd_sbuf == NULL)
1626 alloc_buf = 1;
1627 BPFD_UNLOCK(d);
1628 if (alloc_buf) {
1629 size = d->bd_bufsize;
1630 error = bpf_buffer_ioctl_sblen(d, &size);
1631 if (error != 0)
1632 break;
1633 }
1634 BPF_LOCK();
1635 error = bpf_setif(d, (struct ifreq *)addr);
1636 BPF_UNLOCK();
1637 break;
1638 }
1639
1640 /*
1641 * Set read timeout.
1642 */
1643 case BIOCSRTIMEOUT:
1644 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1645 case BIOCSRTIMEOUT32:
1646 #endif
1647 {
1648 struct timeval *tv = (struct timeval *)addr;
1649 #if defined(COMPAT_FREEBSD32)
1650 struct timeval32 *tv32;
1651 struct timeval tv64;
1652
1653 if (cmd == BIOCSRTIMEOUT32) {
1654 tv32 = (struct timeval32 *)addr;
1655 tv = &tv64;
1656 tv->tv_sec = tv32->tv_sec;
1657 tv->tv_usec = tv32->tv_usec;
1658 } else
1659 #endif
1660 tv = (struct timeval *)addr;
1661
1662 /*
1663 * Subtract 1 tick from tvtohz() since this isn't
1664 * a one-shot timer.
1665 */
1666 if ((error = itimerfix(tv)) == 0)
1667 d->bd_rtout = tvtohz(tv) - 1;
1668 break;
1669 }
1670
1671 /*
1672 * Get read timeout.
1673 */
1674 case BIOCGRTIMEOUT:
1675 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1676 case BIOCGRTIMEOUT32:
1677 #endif
1678 {
1679 struct timeval *tv;
1680 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1681 struct timeval32 *tv32;
1682 struct timeval tv64;
1683
1684 if (cmd == BIOCGRTIMEOUT32)
1685 tv = &tv64;
1686 else
1687 #endif
1688 tv = (struct timeval *)addr;
1689
1690 tv->tv_sec = d->bd_rtout / hz;
1691 tv->tv_usec = (d->bd_rtout % hz) * tick;
1692 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1693 if (cmd == BIOCGRTIMEOUT32) {
1694 tv32 = (struct timeval32 *)addr;
1695 tv32->tv_sec = tv->tv_sec;
1696 tv32->tv_usec = tv->tv_usec;
1697 }
1698 #endif
1699
1700 break;
1701 }
1702
1703 /*
1704 * Get packet stats.
1705 */
1706 case BIOCGSTATS:
1707 {
1708 struct bpf_stat *bs = (struct bpf_stat *)addr;
1709
1710 /* XXXCSJP overflow */
1711 bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1712 bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1713 break;
1714 }
1715
1716 /*
1717 * Set immediate mode.
1718 */
1719 case BIOCIMMEDIATE:
1720 BPFD_LOCK(d);
1721 d->bd_immediate = *(u_int *)addr;
1722 BPFD_UNLOCK(d);
1723 break;
1724
1725 case BIOCVERSION:
1726 {
1727 struct bpf_version *bv = (struct bpf_version *)addr;
1728
1729 bv->bv_major = BPF_MAJOR_VERSION;
1730 bv->bv_minor = BPF_MINOR_VERSION;
1731 break;
1732 }
1733
1734 /*
1735 * Get "header already complete" flag
1736 */
1737 case BIOCGHDRCMPLT:
1738 BPFD_LOCK(d);
1739 *(u_int *)addr = d->bd_hdrcmplt;
1740 BPFD_UNLOCK(d);
1741 break;
1742
1743 /*
1744 * Set "header already complete" flag
1745 */
1746 case BIOCSHDRCMPLT:
1747 BPFD_LOCK(d);
1748 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1749 BPFD_UNLOCK(d);
1750 break;
1751
1752 /*
1753 * Get packet direction flag
1754 */
1755 case BIOCGDIRECTION:
1756 BPFD_LOCK(d);
1757 *(u_int *)addr = d->bd_direction;
1758 BPFD_UNLOCK(d);
1759 break;
1760
1761 /*
1762 * Set packet direction flag
1763 */
1764 case BIOCSDIRECTION:
1765 {
1766 u_int direction;
1767
1768 direction = *(u_int *)addr;
1769 switch (direction) {
1770 case BPF_D_IN:
1771 case BPF_D_INOUT:
1772 case BPF_D_OUT:
1773 BPFD_LOCK(d);
1774 d->bd_direction = direction;
1775 BPFD_UNLOCK(d);
1776 break;
1777 default:
1778 error = EINVAL;
1779 }
1780 }
1781 break;
1782
1783 /*
1784 * Get packet timestamp format and resolution.
1785 */
1786 case BIOCGTSTAMP:
1787 BPFD_LOCK(d);
1788 *(u_int *)addr = d->bd_tstamp;
1789 BPFD_UNLOCK(d);
1790 break;
1791
1792 /*
1793 * Set packet timestamp format and resolution.
1794 */
1795 case BIOCSTSTAMP:
1796 {
1797 u_int func;
1798
1799 func = *(u_int *)addr;
1800 if (BPF_T_VALID(func))
1801 d->bd_tstamp = func;
1802 else
1803 error = EINVAL;
1804 }
1805 break;
1806
1807 case BIOCFEEDBACK:
1808 BPFD_LOCK(d);
1809 d->bd_feedback = *(u_int *)addr;
1810 BPFD_UNLOCK(d);
1811 break;
1812
1813 case BIOCLOCK:
1814 BPFD_LOCK(d);
1815 d->bd_locked = 1;
1816 BPFD_UNLOCK(d);
1817 break;
1818
1819 case FIONBIO: /* Non-blocking I/O */
1820 break;
1821
1822 case FIOASYNC: /* Send signal on receive packets */
1823 BPFD_LOCK(d);
1824 d->bd_async = *(int *)addr;
1825 BPFD_UNLOCK(d);
1826 break;
1827
1828 case FIOSETOWN:
1829 /*
1830 * XXX: Add some sort of locking here?
1831 * fsetown() can sleep.
1832 */
1833 error = fsetown(*(int *)addr, &d->bd_sigio);
1834 break;
1835
1836 case FIOGETOWN:
1837 BPFD_LOCK(d);
1838 *(int *)addr = fgetown(&d->bd_sigio);
1839 BPFD_UNLOCK(d);
1840 break;
1841
1842 /* This is deprecated, FIOSETOWN should be used instead. */
1843 case TIOCSPGRP:
1844 error = fsetown(-(*(int *)addr), &d->bd_sigio);
1845 break;
1846
1847 /* This is deprecated, FIOGETOWN should be used instead. */
1848 case TIOCGPGRP:
1849 *(int *)addr = -fgetown(&d->bd_sigio);
1850 break;
1851
1852 case BIOCSRSIG: /* Set receive signal */
1853 {
1854 u_int sig;
1855
1856 sig = *(u_int *)addr;
1857
1858 if (sig >= NSIG)
1859 error = EINVAL;
1860 else {
1861 BPFD_LOCK(d);
1862 d->bd_sig = sig;
1863 BPFD_UNLOCK(d);
1864 }
1865 break;
1866 }
1867 case BIOCGRSIG:
1868 BPFD_LOCK(d);
1869 *(u_int *)addr = d->bd_sig;
1870 BPFD_UNLOCK(d);
1871 break;
1872
1873 case BIOCGETBUFMODE:
1874 BPFD_LOCK(d);
1875 *(u_int *)addr = d->bd_bufmode;
1876 BPFD_UNLOCK(d);
1877 break;
1878
1879 case BIOCSETBUFMODE:
1880 /*
1881 * Allow the buffering mode to be changed as long as we
1882 * haven't yet committed to a particular mode. Our
1883 * definition of commitment, for now, is whether or not a
1884 * buffer has been allocated or an interface attached, since
1885 * that's the point where things get tricky.
1886 */
1887 switch (*(u_int *)addr) {
1888 case BPF_BUFMODE_BUFFER:
1889 break;
1890
1891 case BPF_BUFMODE_ZBUF:
1892 if (bpf_zerocopy_enable)
1893 break;
1894 /* FALLSTHROUGH */
1895
1896 default:
1897 CURVNET_RESTORE();
1898 return (EINVAL);
1899 }
1900
1901 BPFD_LOCK(d);
1902 if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1903 d->bd_fbuf != NULL || d->bd_bif != NULL) {
1904 BPFD_UNLOCK(d);
1905 CURVNET_RESTORE();
1906 return (EBUSY);
1907 }
1908 d->bd_bufmode = *(u_int *)addr;
1909 BPFD_UNLOCK(d);
1910 break;
1911
1912 case BIOCGETZMAX:
1913 error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1914 break;
1915
1916 case BIOCSETZBUF:
1917 error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1918 break;
1919
1920 case BIOCROTZBUF:
1921 error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1922 break;
1923
1924 case BIOCSETVLANPCP:
1925 {
1926 u_int pcp;
1927
1928 pcp = *(u_int *)addr;
1929 if (pcp > BPF_PRIO_MAX || pcp < 0) {
1930 error = EINVAL;
1931 break;
1932 }
1933 d->bd_pcp = pcp;
1934 break;
1935 }
1936 }
1937 CURVNET_RESTORE();
1938 return (error);
1939 }
1940
1941 /*
1942 * Set d's packet filter program to fp. If this file already has a filter,
1943 * free it and replace it. Returns EINVAL for bogus requests.
1944 *
1945 * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1946 * calls.
1947 */
1948 static int
bpf_setf(struct bpf_d * d,struct bpf_program * fp,u_long cmd)1949 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1950 {
1951 #ifdef COMPAT_FREEBSD32
1952 struct bpf_program fp_swab;
1953 struct bpf_program32 *fp32;
1954 #endif
1955 struct bpf_program_buffer *fcode;
1956 struct bpf_insn *filter;
1957 #ifdef BPF_JITTER
1958 bpf_jit_filter *jfunc;
1959 #endif
1960 size_t size;
1961 u_int flen;
1962 bool track_event;
1963
1964 #ifdef COMPAT_FREEBSD32
1965 switch (cmd) {
1966 case BIOCSETF32:
1967 case BIOCSETWF32:
1968 case BIOCSETFNR32:
1969 fp32 = (struct bpf_program32 *)fp;
1970 fp_swab.bf_len = fp32->bf_len;
1971 fp_swab.bf_insns =
1972 (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1973 fp = &fp_swab;
1974 switch (cmd) {
1975 case BIOCSETF32:
1976 cmd = BIOCSETF;
1977 break;
1978 case BIOCSETWF32:
1979 cmd = BIOCSETWF;
1980 break;
1981 }
1982 break;
1983 }
1984 #endif
1985
1986 filter = NULL;
1987 #ifdef BPF_JITTER
1988 jfunc = NULL;
1989 #endif
1990 /*
1991 * Check new filter validness before acquiring any locks.
1992 * Allocate memory for new filter, if needed.
1993 */
1994 flen = fp->bf_len;
1995 if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1996 return (EINVAL);
1997 size = flen * sizeof(*fp->bf_insns);
1998 if (size > 0) {
1999 /* We're setting up new filter. Copy and check actual data. */
2000 fcode = bpf_program_buffer_alloc(size, M_WAITOK);
2001 filter = (struct bpf_insn *)fcode->buffer;
2002 if (copyin(fp->bf_insns, filter, size) != 0 ||
2003 !bpf_validate(filter, flen)) {
2004 free(fcode, M_BPF);
2005 return (EINVAL);
2006 }
2007 #ifdef BPF_JITTER
2008 if (cmd != BIOCSETWF) {
2009 /*
2010 * Filter is copied inside fcode and is
2011 * perfectly valid.
2012 */
2013 jfunc = bpf_jitter(filter, flen);
2014 }
2015 #endif
2016 }
2017
2018 track_event = false;
2019 fcode = NULL;
2020
2021 BPF_LOCK();
2022 BPFD_LOCK(d);
2023 /* Set up new filter. */
2024 if (cmd == BIOCSETWF) {
2025 if (d->bd_wfilter != NULL) {
2026 fcode = __containerof((void *)d->bd_wfilter,
2027 struct bpf_program_buffer, buffer);
2028 #ifdef BPF_JITTER
2029 fcode->func = NULL;
2030 #endif
2031 }
2032 d->bd_wfilter = filter;
2033 } else {
2034 if (d->bd_rfilter != NULL) {
2035 fcode = __containerof((void *)d->bd_rfilter,
2036 struct bpf_program_buffer, buffer);
2037 #ifdef BPF_JITTER
2038 fcode->func = d->bd_bfilter;
2039 #endif
2040 }
2041 d->bd_rfilter = filter;
2042 #ifdef BPF_JITTER
2043 d->bd_bfilter = jfunc;
2044 #endif
2045 if (cmd == BIOCSETF)
2046 reset_d(d);
2047
2048 if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2049 /*
2050 * Filter can be set several times without
2051 * specifying interface. In this case just mark d
2052 * as reader.
2053 */
2054 d->bd_writer = 0;
2055 if (d->bd_bif != NULL) {
2056 /*
2057 * Remove descriptor from writers-only list
2058 * and add it to active readers list.
2059 */
2060 CK_LIST_REMOVE(d, bd_next);
2061 CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2062 d, bd_next);
2063 CTR2(KTR_NET,
2064 "%s: upgrade required by pid %d",
2065 __func__, d->bd_pid);
2066 track_event = true;
2067 }
2068 }
2069 }
2070 BPFD_UNLOCK(d);
2071
2072 if (fcode != NULL)
2073 NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx);
2074
2075 if (track_event)
2076 EVENTHANDLER_INVOKE(bpf_track,
2077 d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2078
2079 BPF_UNLOCK();
2080 return (0);
2081 }
2082
2083 /*
2084 * Detach a file from its current interface (if attached at all) and attach
2085 * to the interface indicated by the name stored in ifr.
2086 * Return an errno or 0.
2087 */
2088 static int
bpf_setif(struct bpf_d * d,struct ifreq * ifr)2089 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2090 {
2091 struct bpf_if *bp;
2092 struct ifnet *theywant;
2093
2094 BPF_LOCK_ASSERT();
2095
2096 theywant = ifunit(ifr->ifr_name);
2097 if (theywant == NULL)
2098 return (ENXIO);
2099 /*
2100 * Look through attached interfaces for the named one.
2101 */
2102 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2103 if (bp->bif_ifp == theywant &&
2104 bp->bif_bpf == &theywant->if_bpf)
2105 break;
2106 }
2107 if (bp == NULL)
2108 return (ENXIO);
2109
2110 MPASS(bp == theywant->if_bpf);
2111 /*
2112 * At this point, we expect the buffer is already allocated. If not,
2113 * return an error.
2114 */
2115 switch (d->bd_bufmode) {
2116 case BPF_BUFMODE_BUFFER:
2117 case BPF_BUFMODE_ZBUF:
2118 if (d->bd_sbuf == NULL)
2119 return (EINVAL);
2120 break;
2121
2122 default:
2123 panic("bpf_setif: bufmode %d", d->bd_bufmode);
2124 }
2125 if (bp != d->bd_bif)
2126 bpf_attachd(d, bp);
2127 else {
2128 BPFD_LOCK(d);
2129 reset_d(d);
2130 BPFD_UNLOCK(d);
2131 }
2132 return (0);
2133 }
2134
2135 /*
2136 * Support for select() and poll() system calls
2137 *
2138 * Return true iff the specific operation will not block indefinitely.
2139 * Otherwise, return false but make a note that a selwakeup() must be done.
2140 */
2141 static int
bpfpoll(struct cdev * dev,int events,struct thread * td)2142 bpfpoll(struct cdev *dev, int events, struct thread *td)
2143 {
2144 struct bpf_d *d;
2145 int revents;
2146
2147 if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2148 return (events &
2149 (POLLHUP | POLLIN | POLLRDNORM | POLLOUT | POLLWRNORM));
2150
2151 /*
2152 * Refresh PID associated with this descriptor.
2153 */
2154 revents = events & (POLLOUT | POLLWRNORM);
2155 BPFD_LOCK(d);
2156 BPF_PID_REFRESH(d, td);
2157 if (events & (POLLIN | POLLRDNORM)) {
2158 if (bpf_ready(d))
2159 revents |= events & (POLLIN | POLLRDNORM);
2160 else {
2161 selrecord(td, &d->bd_sel);
2162 /* Start the read timeout if necessary. */
2163 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2164 callout_reset(&d->bd_callout, d->bd_rtout,
2165 bpf_timed_out, d);
2166 d->bd_state = BPF_WAITING;
2167 }
2168 }
2169 }
2170 BPFD_UNLOCK(d);
2171 return (revents);
2172 }
2173
2174 /*
2175 * Support for kevent() system call. Register EVFILT_READ filters and
2176 * reject all others.
2177 */
2178 int
bpfkqfilter(struct cdev * dev,struct knote * kn)2179 bpfkqfilter(struct cdev *dev, struct knote *kn)
2180 {
2181 struct bpf_d *d;
2182
2183 if (devfs_get_cdevpriv((void **)&d) != 0)
2184 return (1);
2185
2186 switch (kn->kn_filter) {
2187 case EVFILT_READ:
2188 kn->kn_fop = &bpfread_filtops;
2189 break;
2190
2191 case EVFILT_WRITE:
2192 kn->kn_fop = &bpfwrite_filtops;
2193 break;
2194
2195 default:
2196 return (1);
2197 }
2198
2199 /*
2200 * Refresh PID associated with this descriptor.
2201 */
2202 BPFD_LOCK(d);
2203 BPF_PID_REFRESH_CUR(d);
2204 kn->kn_hook = d;
2205 knlist_add(&d->bd_sel.si_note, kn, 1);
2206 BPFD_UNLOCK(d);
2207
2208 return (0);
2209 }
2210
2211 static void
filt_bpfdetach(struct knote * kn)2212 filt_bpfdetach(struct knote *kn)
2213 {
2214 struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2215
2216 knlist_remove(&d->bd_sel.si_note, kn, 0);
2217 }
2218
2219 static int
filt_bpfread(struct knote * kn,long hint)2220 filt_bpfread(struct knote *kn, long hint)
2221 {
2222 struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2223 int ready;
2224
2225 BPFD_LOCK_ASSERT(d);
2226 ready = bpf_ready(d);
2227 if (ready) {
2228 kn->kn_data = d->bd_slen;
2229 /*
2230 * Ignore the hold buffer if it is being copied to user space.
2231 */
2232 if (!d->bd_hbuf_in_use && d->bd_hbuf)
2233 kn->kn_data += d->bd_hlen;
2234 } else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2235 callout_reset(&d->bd_callout, d->bd_rtout,
2236 bpf_timed_out, d);
2237 d->bd_state = BPF_WAITING;
2238 }
2239
2240 return (ready);
2241 }
2242
2243 static int
filt_bpfwrite(struct knote * kn,long hint)2244 filt_bpfwrite(struct knote *kn, long hint)
2245 {
2246 struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2247
2248 BPFD_LOCK_ASSERT(d);
2249
2250 if (d->bd_bif == NULL) {
2251 kn->kn_data = 0;
2252 return (0);
2253 } else {
2254 kn->kn_data = d->bd_bif->bif_ifp->if_mtu;
2255 return (1);
2256 }
2257 }
2258
2259 #define BPF_TSTAMP_NONE 0
2260 #define BPF_TSTAMP_FAST 1
2261 #define BPF_TSTAMP_NORMAL 2
2262 #define BPF_TSTAMP_EXTERN 3
2263
2264 static int
bpf_ts_quality(int tstype)2265 bpf_ts_quality(int tstype)
2266 {
2267
2268 if (tstype == BPF_T_NONE)
2269 return (BPF_TSTAMP_NONE);
2270 if ((tstype & BPF_T_FAST) != 0)
2271 return (BPF_TSTAMP_FAST);
2272
2273 return (BPF_TSTAMP_NORMAL);
2274 }
2275
2276 static int
bpf_gettime(struct bintime * bt,int tstype,struct mbuf * m)2277 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2278 {
2279 struct timespec ts;
2280 struct m_tag *tag;
2281 int quality;
2282
2283 quality = bpf_ts_quality(tstype);
2284 if (quality == BPF_TSTAMP_NONE)
2285 return (quality);
2286
2287 if (m != NULL) {
2288 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) {
2289 mbuf_tstmp2timespec(m, &ts);
2290 timespec2bintime(&ts, bt);
2291 return (BPF_TSTAMP_EXTERN);
2292 }
2293 tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2294 if (tag != NULL) {
2295 *bt = *(struct bintime *)(tag + 1);
2296 return (BPF_TSTAMP_EXTERN);
2297 }
2298 }
2299 if (quality == BPF_TSTAMP_NORMAL)
2300 binuptime(bt);
2301 else
2302 getbinuptime(bt);
2303
2304 return (quality);
2305 }
2306
2307 /*
2308 * Incoming linkage from device drivers. Process the packet pkt, of length
2309 * pktlen, which is stored in a contiguous buffer. The packet is parsed
2310 * by each process' filter, and if accepted, stashed into the corresponding
2311 * buffer.
2312 */
2313 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)2314 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2315 {
2316 struct epoch_tracker et;
2317 struct bintime bt;
2318 struct bpf_d *d;
2319 #ifdef BPF_JITTER
2320 bpf_jit_filter *bf;
2321 #endif
2322 u_int slen;
2323 int gottime;
2324
2325 gottime = BPF_TSTAMP_NONE;
2326 NET_EPOCH_ENTER(et);
2327 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2328 counter_u64_add(d->bd_rcount, 1);
2329 /*
2330 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2331 * is no way for the caller to indiciate to us whether this
2332 * packet is inbound or outbound. In the bpf_mtap() routines,
2333 * we use the interface pointers on the mbuf to figure it out.
2334 */
2335 #ifdef BPF_JITTER
2336 bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2337 if (bf != NULL)
2338 slen = (*(bf->func))(pkt, pktlen, pktlen);
2339 else
2340 #endif
2341 slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2342 if (slen != 0) {
2343 /*
2344 * Filter matches. Let's to acquire write lock.
2345 */
2346 BPFD_LOCK(d);
2347 counter_u64_add(d->bd_fcount, 1);
2348 if (gottime < bpf_ts_quality(d->bd_tstamp))
2349 gottime = bpf_gettime(&bt, d->bd_tstamp,
2350 NULL);
2351 #ifdef MAC
2352 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2353 #endif
2354 catchpacket(d, pkt, pktlen, slen,
2355 bpf_append_bytes, &bt);
2356 BPFD_UNLOCK(d);
2357 }
2358 }
2359 NET_EPOCH_EXIT(et);
2360 }
2361
2362 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)2363 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
2364 {
2365 if (bpf_peers_present(ifp->if_bpf))
2366 bpf_tap(ifp->if_bpf, pkt, pktlen);
2367 }
2368
2369 #define BPF_CHECK_DIRECTION(d, r, i) \
2370 (((d)->bd_direction == BPF_D_IN && (r) != (i)) || \
2371 ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2372
2373 /*
2374 * Incoming linkage from device drivers, when packet is in an mbuf chain.
2375 * Locking model is explained in bpf_tap().
2376 */
2377 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)2378 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2379 {
2380 struct epoch_tracker et;
2381 struct bintime bt;
2382 struct bpf_d *d;
2383 #ifdef BPF_JITTER
2384 bpf_jit_filter *bf;
2385 #endif
2386 u_int pktlen, slen;
2387 int gottime;
2388
2389 /* Skip outgoing duplicate packets. */
2390 if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) {
2391 m->m_flags &= ~M_PROMISC;
2392 return;
2393 }
2394
2395 pktlen = m_length(m, NULL);
2396 gottime = BPF_TSTAMP_NONE;
2397
2398 NET_EPOCH_ENTER(et);
2399 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2400 if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp))
2401 continue;
2402 counter_u64_add(d->bd_rcount, 1);
2403 #ifdef BPF_JITTER
2404 bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2405 /* XXX We cannot handle multiple mbufs. */
2406 if (bf != NULL && m->m_next == NULL)
2407 slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2408 pktlen);
2409 else
2410 #endif
2411 slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2412 if (slen != 0) {
2413 BPFD_LOCK(d);
2414
2415 counter_u64_add(d->bd_fcount, 1);
2416 if (gottime < bpf_ts_quality(d->bd_tstamp))
2417 gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2418 #ifdef MAC
2419 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2420 #endif
2421 catchpacket(d, (u_char *)m, pktlen, slen,
2422 bpf_append_mbuf, &bt);
2423 BPFD_UNLOCK(d);
2424 }
2425 }
2426 NET_EPOCH_EXIT(et);
2427 }
2428
2429 void
bpf_mtap_if(if_t ifp,struct mbuf * m)2430 bpf_mtap_if(if_t ifp, struct mbuf *m)
2431 {
2432 if (bpf_peers_present(ifp->if_bpf)) {
2433 M_ASSERTVALID(m);
2434 bpf_mtap(ifp->if_bpf, m);
2435 }
2436 }
2437
2438 /*
2439 * Incoming linkage from device drivers, when packet is in
2440 * an mbuf chain and to be prepended by a contiguous header.
2441 */
2442 void
bpf_mtap2(struct bpf_if * bp,void * data,u_int dlen,struct mbuf * m)2443 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2444 {
2445 struct epoch_tracker et;
2446 struct bintime bt;
2447 struct mbuf mb;
2448 struct bpf_d *d;
2449 u_int pktlen, slen;
2450 int gottime;
2451
2452 /* Skip outgoing duplicate packets. */
2453 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2454 m->m_flags &= ~M_PROMISC;
2455 return;
2456 }
2457
2458 pktlen = m_length(m, NULL);
2459 /*
2460 * Craft on-stack mbuf suitable for passing to bpf_filter.
2461 * Note that we cut corners here; we only setup what's
2462 * absolutely needed--this mbuf should never go anywhere else.
2463 */
2464 mb.m_flags = 0;
2465 mb.m_next = m;
2466 mb.m_data = data;
2467 mb.m_len = dlen;
2468 pktlen += dlen;
2469
2470 gottime = BPF_TSTAMP_NONE;
2471
2472 NET_EPOCH_ENTER(et);
2473 CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2474 if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2475 continue;
2476 counter_u64_add(d->bd_rcount, 1);
2477 slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2478 if (slen != 0) {
2479 BPFD_LOCK(d);
2480
2481 counter_u64_add(d->bd_fcount, 1);
2482 if (gottime < bpf_ts_quality(d->bd_tstamp))
2483 gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2484 #ifdef MAC
2485 if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2486 #endif
2487 catchpacket(d, (u_char *)&mb, pktlen, slen,
2488 bpf_append_mbuf, &bt);
2489 BPFD_UNLOCK(d);
2490 }
2491 }
2492 NET_EPOCH_EXIT(et);
2493 }
2494
2495 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)2496 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
2497 {
2498 if (bpf_peers_present(ifp->if_bpf)) {
2499 M_ASSERTVALID(m);
2500 bpf_mtap2(ifp->if_bpf, data, dlen, m);
2501 }
2502 }
2503
2504 #undef BPF_CHECK_DIRECTION
2505 #undef BPF_TSTAMP_NONE
2506 #undef BPF_TSTAMP_FAST
2507 #undef BPF_TSTAMP_NORMAL
2508 #undef BPF_TSTAMP_EXTERN
2509
2510 static int
bpf_hdrlen(struct bpf_d * d)2511 bpf_hdrlen(struct bpf_d *d)
2512 {
2513 int hdrlen;
2514
2515 hdrlen = d->bd_bif->bif_hdrlen;
2516 #ifndef BURN_BRIDGES
2517 if (d->bd_tstamp == BPF_T_NONE ||
2518 BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2519 #ifdef COMPAT_FREEBSD32
2520 if (d->bd_compat32)
2521 hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2522 else
2523 #endif
2524 hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2525 else
2526 #endif
2527 hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2528 #ifdef COMPAT_FREEBSD32
2529 if (d->bd_compat32)
2530 hdrlen = BPF_WORDALIGN32(hdrlen);
2531 else
2532 #endif
2533 hdrlen = BPF_WORDALIGN(hdrlen);
2534
2535 return (hdrlen - d->bd_bif->bif_hdrlen);
2536 }
2537
2538 static void
bpf_bintime2ts(struct bintime * bt,struct bpf_ts * ts,int tstype)2539 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2540 {
2541 struct bintime bt2, boottimebin;
2542 struct timeval tsm;
2543 struct timespec tsn;
2544
2545 if ((tstype & BPF_T_MONOTONIC) == 0) {
2546 bt2 = *bt;
2547 getboottimebin(&boottimebin);
2548 bintime_add(&bt2, &boottimebin);
2549 bt = &bt2;
2550 }
2551 switch (BPF_T_FORMAT(tstype)) {
2552 case BPF_T_MICROTIME:
2553 bintime2timeval(bt, &tsm);
2554 ts->bt_sec = tsm.tv_sec;
2555 ts->bt_frac = tsm.tv_usec;
2556 break;
2557 case BPF_T_NANOTIME:
2558 bintime2timespec(bt, &tsn);
2559 ts->bt_sec = tsn.tv_sec;
2560 ts->bt_frac = tsn.tv_nsec;
2561 break;
2562 case BPF_T_BINTIME:
2563 ts->bt_sec = bt->sec;
2564 ts->bt_frac = bt->frac;
2565 break;
2566 }
2567 }
2568
2569 /*
2570 * Move the packet data from interface memory (pkt) into the
2571 * store buffer. "cpfn" is the routine called to do the actual data
2572 * transfer. bcopy is passed in to copy contiguous chunks, while
2573 * bpf_append_mbuf is passed in to copy mbuf chains. In the latter case,
2574 * pkt is really an mbuf.
2575 */
2576 static void
catchpacket(struct bpf_d * d,u_char * pkt,u_int pktlen,u_int snaplen,void (* cpfn)(struct bpf_d *,caddr_t,u_int,void *,u_int),struct bintime * bt)2577 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2578 void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2579 struct bintime *bt)
2580 {
2581 static char zeroes[BPF_ALIGNMENT];
2582 struct bpf_xhdr hdr;
2583 #ifndef BURN_BRIDGES
2584 struct bpf_hdr hdr_old;
2585 #ifdef COMPAT_FREEBSD32
2586 struct bpf_hdr32 hdr32_old;
2587 #endif
2588 #endif
2589 int caplen, curlen, hdrlen, pad, totlen;
2590 int do_wakeup = 0;
2591 int do_timestamp;
2592 int tstype;
2593
2594 BPFD_LOCK_ASSERT(d);
2595 if (d->bd_bif == NULL) {
2596 /* Descriptor was detached in concurrent thread */
2597 counter_u64_add(d->bd_dcount, 1);
2598 return;
2599 }
2600
2601 /*
2602 * Detect whether user space has released a buffer back to us, and if
2603 * so, move it from being a hold buffer to a free buffer. This may
2604 * not be the best place to do it (for example, we might only want to
2605 * run this check if we need the space), but for now it's a reliable
2606 * spot to do it.
2607 */
2608 if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2609 d->bd_fbuf = d->bd_hbuf;
2610 d->bd_hbuf = NULL;
2611 d->bd_hlen = 0;
2612 bpf_buf_reclaimed(d);
2613 }
2614
2615 /*
2616 * Figure out how many bytes to move. If the packet is
2617 * greater or equal to the snapshot length, transfer that
2618 * much. Otherwise, transfer the whole packet (unless
2619 * we hit the buffer size limit).
2620 */
2621 hdrlen = bpf_hdrlen(d);
2622 totlen = hdrlen + min(snaplen, pktlen);
2623 if (totlen > d->bd_bufsize)
2624 totlen = d->bd_bufsize;
2625
2626 /*
2627 * Round up the end of the previous packet to the next longword.
2628 *
2629 * Drop the packet if there's no room and no hope of room
2630 * If the packet would overflow the storage buffer or the storage
2631 * buffer is considered immutable by the buffer model, try to rotate
2632 * the buffer and wakeup pending processes.
2633 */
2634 #ifdef COMPAT_FREEBSD32
2635 if (d->bd_compat32)
2636 curlen = BPF_WORDALIGN32(d->bd_slen);
2637 else
2638 #endif
2639 curlen = BPF_WORDALIGN(d->bd_slen);
2640 if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2641 if (d->bd_fbuf == NULL) {
2642 /*
2643 * There's no room in the store buffer, and no
2644 * prospect of room, so drop the packet. Notify the
2645 * buffer model.
2646 */
2647 bpf_buffull(d);
2648 counter_u64_add(d->bd_dcount, 1);
2649 return;
2650 }
2651 KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2652 ROTATE_BUFFERS(d);
2653 do_wakeup = 1;
2654 curlen = 0;
2655 } else {
2656 if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2657 /*
2658 * Immediate mode is set, or the read timeout has
2659 * already expired during a select call. A packet
2660 * arrived, so the reader should be woken up.
2661 */
2662 do_wakeup = 1;
2663 }
2664 pad = curlen - d->bd_slen;
2665 KASSERT(pad >= 0 && pad <= sizeof(zeroes),
2666 ("%s: invalid pad byte count %d", __func__, pad));
2667 if (pad > 0) {
2668 /* Zero pad bytes. */
2669 bpf_append_bytes(d, d->bd_sbuf, d->bd_slen, zeroes,
2670 pad);
2671 }
2672 }
2673
2674 caplen = totlen - hdrlen;
2675 tstype = d->bd_tstamp;
2676 do_timestamp = tstype != BPF_T_NONE;
2677 #ifndef BURN_BRIDGES
2678 if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2679 struct bpf_ts ts;
2680 if (do_timestamp)
2681 bpf_bintime2ts(bt, &ts, tstype);
2682 #ifdef COMPAT_FREEBSD32
2683 if (d->bd_compat32) {
2684 bzero(&hdr32_old, sizeof(hdr32_old));
2685 if (do_timestamp) {
2686 hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2687 hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2688 }
2689 hdr32_old.bh_datalen = pktlen;
2690 hdr32_old.bh_hdrlen = hdrlen;
2691 hdr32_old.bh_caplen = caplen;
2692 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2693 sizeof(hdr32_old));
2694 goto copy;
2695 }
2696 #endif
2697 bzero(&hdr_old, sizeof(hdr_old));
2698 if (do_timestamp) {
2699 hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2700 hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2701 }
2702 hdr_old.bh_datalen = pktlen;
2703 hdr_old.bh_hdrlen = hdrlen;
2704 hdr_old.bh_caplen = caplen;
2705 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2706 sizeof(hdr_old));
2707 goto copy;
2708 }
2709 #endif
2710
2711 /*
2712 * Append the bpf header. Note we append the actual header size, but
2713 * move forward the length of the header plus padding.
2714 */
2715 bzero(&hdr, sizeof(hdr));
2716 if (do_timestamp)
2717 bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2718 hdr.bh_datalen = pktlen;
2719 hdr.bh_hdrlen = hdrlen;
2720 hdr.bh_caplen = caplen;
2721 bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2722
2723 /*
2724 * Copy the packet data into the store buffer and update its length.
2725 */
2726 #ifndef BURN_BRIDGES
2727 copy:
2728 #endif
2729 (*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2730 d->bd_slen = curlen + totlen;
2731
2732 if (do_wakeup)
2733 bpf_wakeup(d);
2734 }
2735
2736 /*
2737 * Free buffers currently in use by a descriptor.
2738 * Called on close.
2739 */
2740 static void
bpfd_free(epoch_context_t ctx)2741 bpfd_free(epoch_context_t ctx)
2742 {
2743 struct bpf_d *d;
2744 struct bpf_program_buffer *p;
2745
2746 /*
2747 * We don't need to lock out interrupts since this descriptor has
2748 * been detached from its interface and it yet hasn't been marked
2749 * free.
2750 */
2751 d = __containerof(ctx, struct bpf_d, epoch_ctx);
2752 bpf_free(d);
2753 if (d->bd_rfilter != NULL) {
2754 p = __containerof((void *)d->bd_rfilter,
2755 struct bpf_program_buffer, buffer);
2756 #ifdef BPF_JITTER
2757 p->func = d->bd_bfilter;
2758 #endif
2759 bpf_program_buffer_free(&p->epoch_ctx);
2760 }
2761 if (d->bd_wfilter != NULL) {
2762 p = __containerof((void *)d->bd_wfilter,
2763 struct bpf_program_buffer, buffer);
2764 #ifdef BPF_JITTER
2765 p->func = NULL;
2766 #endif
2767 bpf_program_buffer_free(&p->epoch_ctx);
2768 }
2769
2770 mtx_destroy(&d->bd_lock);
2771 counter_u64_free(d->bd_rcount);
2772 counter_u64_free(d->bd_dcount);
2773 counter_u64_free(d->bd_fcount);
2774 counter_u64_free(d->bd_wcount);
2775 counter_u64_free(d->bd_wfcount);
2776 counter_u64_free(d->bd_wdcount);
2777 counter_u64_free(d->bd_zcopy);
2778 free(d, M_BPF);
2779 }
2780
2781 /*
2782 * Attach an interface to bpf. dlt is the link layer type; hdrlen is the
2783 * fixed size of the link header (variable length headers not yet supported).
2784 */
2785 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)2786 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2787 {
2788
2789 bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2790 }
2791
2792 /*
2793 * Attach an interface to bpf. ifp is a pointer to the structure
2794 * defining the interface to be attached, dlt is the link layer type,
2795 * and hdrlen is the fixed size of the link header (variable length
2796 * headers are not yet supporrted).
2797 */
2798 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)2799 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2800 struct bpf_if **driverp)
2801 {
2802 struct bpf_if *bp;
2803
2804 KASSERT(*driverp == NULL,
2805 ("bpfattach2: driverp already initialized"));
2806
2807 bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2808
2809 CK_LIST_INIT(&bp->bif_dlist);
2810 CK_LIST_INIT(&bp->bif_wlist);
2811 bp->bif_ifp = ifp;
2812 bp->bif_dlt = dlt;
2813 bp->bif_hdrlen = hdrlen;
2814 bp->bif_bpf = driverp;
2815 refcount_init(&bp->bif_refcnt, 1);
2816 *driverp = bp;
2817 /*
2818 * Reference ifnet pointer, so it won't freed until
2819 * we release it.
2820 */
2821 if_ref(ifp);
2822 BPF_LOCK();
2823 CK_LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2824 BPF_UNLOCK();
2825
2826 if (bootverbose && IS_DEFAULT_VNET(curvnet))
2827 if_printf(ifp, "bpf attached\n");
2828 }
2829
2830 #ifdef VIMAGE
2831 /*
2832 * When moving interfaces between vnet instances we need a way to
2833 * query the dlt and hdrlen before detach so we can re-attch the if_bpf
2834 * after the vmove. We unfortunately have no device driver infrastructure
2835 * to query the interface for these values after creation/attach, thus
2836 * add this as a workaround.
2837 */
2838 int
bpf_get_bp_params(struct bpf_if * bp,u_int * bif_dlt,u_int * bif_hdrlen)2839 bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
2840 {
2841
2842 if (bp == NULL)
2843 return (ENXIO);
2844 if (bif_dlt == NULL && bif_hdrlen == NULL)
2845 return (0);
2846
2847 if (bif_dlt != NULL)
2848 *bif_dlt = bp->bif_dlt;
2849 if (bif_hdrlen != NULL)
2850 *bif_hdrlen = bp->bif_hdrlen;
2851
2852 return (0);
2853 }
2854
2855 /*
2856 * Detach descriptors on interface's vmove event.
2857 */
2858 void
bpf_ifdetach(struct ifnet * ifp)2859 bpf_ifdetach(struct ifnet *ifp)
2860 {
2861 struct bpf_if *bp;
2862 struct bpf_d *d;
2863
2864 BPF_LOCK();
2865 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2866 if (bp->bif_ifp != ifp)
2867 continue;
2868
2869 /* Detach common descriptors */
2870 while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2871 bpf_detachd_locked(d, true);
2872 }
2873
2874 /* Detach writer-only descriptors */
2875 while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2876 bpf_detachd_locked(d, true);
2877 }
2878 }
2879 BPF_UNLOCK();
2880 }
2881 #endif
2882
2883 /*
2884 * Detach bpf from an interface. This involves detaching each descriptor
2885 * associated with the interface. Notify each descriptor as it's detached
2886 * so that any sleepers wake up and get ENXIO.
2887 */
2888 void
bpfdetach(struct ifnet * ifp)2889 bpfdetach(struct ifnet *ifp)
2890 {
2891 struct bpf_if *bp, *bp_temp;
2892 struct bpf_d *d;
2893
2894 BPF_LOCK();
2895 /* Find all bpf_if struct's which reference ifp and detach them. */
2896 CK_LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2897 if (ifp != bp->bif_ifp)
2898 continue;
2899
2900 CK_LIST_REMOVE(bp, bif_next);
2901 *bp->bif_bpf = __DECONST(struct bpf_if *, &dead_bpf_if);
2902
2903 CTR4(KTR_NET,
2904 "%s: sheduling free for encap %d (%p) for if %p",
2905 __func__, bp->bif_dlt, bp, ifp);
2906
2907 /* Detach common descriptors */
2908 while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2909 bpf_detachd_locked(d, true);
2910 }
2911
2912 /* Detach writer-only descriptors */
2913 while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2914 bpf_detachd_locked(d, true);
2915 }
2916 bpfif_rele(bp);
2917 }
2918 BPF_UNLOCK();
2919 }
2920
2921 bool
bpf_peers_present_if(struct ifnet * ifp)2922 bpf_peers_present_if(struct ifnet *ifp)
2923 {
2924 return (bpf_peers_present(ifp->if_bpf));
2925 }
2926
2927 /*
2928 * Get a list of available data link type of the interface.
2929 */
2930 static int
bpf_getdltlist(struct bpf_d * d,struct bpf_dltlist * bfl)2931 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2932 {
2933 struct ifnet *ifp;
2934 struct bpf_if *bp;
2935 u_int *lst;
2936 int error, n, n1;
2937
2938 BPF_LOCK_ASSERT();
2939
2940 ifp = d->bd_bif->bif_ifp;
2941 n1 = 0;
2942 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2943 if (bp->bif_ifp == ifp)
2944 n1++;
2945 }
2946 if (bfl->bfl_list == NULL) {
2947 bfl->bfl_len = n1;
2948 return (0);
2949 }
2950 if (n1 > bfl->bfl_len)
2951 return (ENOMEM);
2952
2953 lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2954 n = 0;
2955 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2956 if (bp->bif_ifp != ifp)
2957 continue;
2958 lst[n++] = bp->bif_dlt;
2959 }
2960 error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2961 free(lst, M_TEMP);
2962 bfl->bfl_len = n;
2963 return (error);
2964 }
2965
2966 /*
2967 * Set the data link type of a BPF instance.
2968 */
2969 static int
bpf_setdlt(struct bpf_d * d,u_int dlt)2970 bpf_setdlt(struct bpf_d *d, u_int dlt)
2971 {
2972 int error, opromisc;
2973 struct ifnet *ifp;
2974 struct bpf_if *bp;
2975
2976 BPF_LOCK_ASSERT();
2977 MPASS(d->bd_bif != NULL);
2978
2979 /*
2980 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2981 * changed while we hold global lock.
2982 */
2983 if (d->bd_bif->bif_dlt == dlt)
2984 return (0);
2985
2986 ifp = d->bd_bif->bif_ifp;
2987 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2988 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2989 break;
2990 }
2991 if (bp == NULL)
2992 return (EINVAL);
2993
2994 opromisc = d->bd_promisc;
2995 bpf_attachd(d, bp);
2996 if (opromisc) {
2997 error = ifpromisc(bp->bif_ifp, 1);
2998 if (error)
2999 if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
3000 __func__, error);
3001 else
3002 d->bd_promisc = 1;
3003 }
3004 return (0);
3005 }
3006
3007 static void
bpf_drvinit(void * unused)3008 bpf_drvinit(void *unused)
3009 {
3010 struct cdev *dev;
3011
3012 sx_init(&bpf_sx, "bpf global lock");
3013 dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
3014 /* For compatibility */
3015 make_dev_alias(dev, "bpf0");
3016 }
3017
3018 /*
3019 * Zero out the various packet counters associated with all of the bpf
3020 * descriptors. At some point, we will probably want to get a bit more
3021 * granular and allow the user to specify descriptors to be zeroed.
3022 */
3023 static void
bpf_zero_counters(void)3024 bpf_zero_counters(void)
3025 {
3026 struct bpf_if *bp;
3027 struct bpf_d *bd;
3028
3029 BPF_LOCK();
3030 /*
3031 * We are protected by global lock here, interfaces and
3032 * descriptors can not be deleted while we hold it.
3033 */
3034 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3035 CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3036 counter_u64_zero(bd->bd_rcount);
3037 counter_u64_zero(bd->bd_dcount);
3038 counter_u64_zero(bd->bd_fcount);
3039 counter_u64_zero(bd->bd_wcount);
3040 counter_u64_zero(bd->bd_wfcount);
3041 counter_u64_zero(bd->bd_zcopy);
3042 }
3043 }
3044 BPF_UNLOCK();
3045 }
3046
3047 /*
3048 * Fill filter statistics
3049 */
3050 static void
bpfstats_fill_xbpf(struct xbpf_d * d,struct bpf_d * bd)3051 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
3052 {
3053
3054 BPF_LOCK_ASSERT();
3055 bzero(d, sizeof(*d));
3056 d->bd_structsize = sizeof(*d);
3057 d->bd_immediate = bd->bd_immediate;
3058 d->bd_promisc = bd->bd_promisc;
3059 d->bd_hdrcmplt = bd->bd_hdrcmplt;
3060 d->bd_direction = bd->bd_direction;
3061 d->bd_feedback = bd->bd_feedback;
3062 d->bd_async = bd->bd_async;
3063 d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
3064 d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
3065 d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
3066 d->bd_sig = bd->bd_sig;
3067 d->bd_slen = bd->bd_slen;
3068 d->bd_hlen = bd->bd_hlen;
3069 d->bd_bufsize = bd->bd_bufsize;
3070 d->bd_pid = bd->bd_pid;
3071 strlcpy(d->bd_ifname,
3072 bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
3073 d->bd_locked = bd->bd_locked;
3074 d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
3075 d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
3076 d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
3077 d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
3078 d->bd_bufmode = bd->bd_bufmode;
3079 }
3080
3081 /*
3082 * Handle `netstat -B' stats request
3083 */
3084 static int
bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)3085 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
3086 {
3087 static const struct xbpf_d zerostats;
3088 struct xbpf_d *xbdbuf, *xbd, tempstats;
3089 int index, error;
3090 struct bpf_if *bp;
3091 struct bpf_d *bd;
3092
3093 /*
3094 * XXX This is not technically correct. It is possible for non
3095 * privileged users to open bpf devices. It would make sense
3096 * if the users who opened the devices were able to retrieve
3097 * the statistics for them, too.
3098 */
3099 error = priv_check(req->td, PRIV_NET_BPF);
3100 if (error)
3101 return (error);
3102 /*
3103 * Check to see if the user is requesting that the counters be
3104 * zeroed out. Explicitly check that the supplied data is zeroed,
3105 * as we aren't allowing the user to set the counters currently.
3106 */
3107 if (req->newptr != NULL) {
3108 if (req->newlen != sizeof(tempstats))
3109 return (EINVAL);
3110 memset(&tempstats, 0, sizeof(tempstats));
3111 error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
3112 if (error)
3113 return (error);
3114 if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
3115 return (EINVAL);
3116 bpf_zero_counters();
3117 return (0);
3118 }
3119 if (req->oldptr == NULL)
3120 return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
3121 if (bpf_bpfd_cnt == 0)
3122 return (SYSCTL_OUT(req, 0, 0));
3123 xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
3124 BPF_LOCK();
3125 if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
3126 BPF_UNLOCK();
3127 free(xbdbuf, M_BPF);
3128 return (ENOMEM);
3129 }
3130 index = 0;
3131 CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3132 /* Send writers-only first */
3133 CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
3134 xbd = &xbdbuf[index++];
3135 bpfstats_fill_xbpf(xbd, bd);
3136 }
3137 CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3138 xbd = &xbdbuf[index++];
3139 bpfstats_fill_xbpf(xbd, bd);
3140 }
3141 }
3142 BPF_UNLOCK();
3143 error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
3144 free(xbdbuf, M_BPF);
3145 return (error);
3146 }
3147
3148 SYSINIT(bpfdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, bpf_drvinit, NULL);
3149
3150 #else /* !DEV_BPF && !NETGRAPH_BPF */
3151
3152 /*
3153 * NOP stubs to allow bpf-using drivers to load and function.
3154 *
3155 * A 'better' implementation would allow the core bpf functionality
3156 * to be loaded at runtime.
3157 */
3158
3159 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)3160 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3161 {
3162 }
3163
3164 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)3165 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
3166 {
3167 }
3168
3169 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)3170 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3171 {
3172 }
3173
3174 void
bpf_mtap_if(if_t ifp,struct mbuf * m)3175 bpf_mtap_if(if_t ifp, struct mbuf *m)
3176 {
3177 }
3178
3179 void
bpf_mtap2(struct bpf_if * bp,void * d,u_int l,struct mbuf * m)3180 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3181 {
3182 }
3183
3184 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)3185 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
3186 {
3187 }
3188
3189 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)3190 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3191 {
3192
3193 bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3194 }
3195
3196 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)3197 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3198 {
3199
3200 *driverp = __DECONST(struct bpf_if *, &dead_bpf_if);
3201 }
3202
3203 void
bpfdetach(struct ifnet * ifp)3204 bpfdetach(struct ifnet *ifp)
3205 {
3206 }
3207
3208 bool
bpf_peers_present_if(struct ifnet * ifp)3209 bpf_peers_present_if(struct ifnet *ifp)
3210 {
3211 return (false);
3212 }
3213
3214 u_int
bpf_filter(const struct bpf_insn * pc,u_char * p,u_int wirelen,u_int buflen)3215 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3216 {
3217 return (-1); /* "no filter" behaviour */
3218 }
3219
3220 int
bpf_validate(const struct bpf_insn * f,int len)3221 bpf_validate(const struct bpf_insn *f, int len)
3222 {
3223 return (0); /* false */
3224 }
3225
3226 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3227
3228 #ifdef DDB
3229 static void
bpf_show_bpf_if(struct bpf_if * bpf_if)3230 bpf_show_bpf_if(struct bpf_if *bpf_if)
3231 {
3232
3233 if (bpf_if == NULL)
3234 return;
3235 db_printf("%p:\n", bpf_if);
3236 #define BPF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, bpf_if->e);
3237 #define BPF_DB_PRINTF_RAW(f, e) db_printf(" %s = " f "\n", #e, e);
3238 /* bif_ext.bif_next */
3239 /* bif_ext.bif_dlist */
3240 BPF_DB_PRINTF("%#x", bif_dlt);
3241 BPF_DB_PRINTF("%u", bif_hdrlen);
3242 /* bif_wlist */
3243 BPF_DB_PRINTF("%p", bif_ifp);
3244 BPF_DB_PRINTF("%p", bif_bpf);
3245 BPF_DB_PRINTF_RAW("%u", refcount_load(&bpf_if->bif_refcnt));
3246 }
3247
DB_SHOW_COMMAND(bpf_if,db_show_bpf_if)3248 DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
3249 {
3250
3251 if (!have_addr) {
3252 db_printf("usage: show bpf_if <struct bpf_if *>\n");
3253 return;
3254 }
3255
3256 bpf_show_bpf_if((struct bpf_if *)addr);
3257 }
3258 #endif
3259