xref: /freebsd/sys/net/bpf.c (revision 36138969847b231cd98f48272e2bdf88a8dc08dd)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7  *
8  * This code is derived from the Stanford/CMU enet packet filter,
9  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11  * Berkeley Laboratory.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 #include "opt_bpf.h"
40 #include "opt_ddb.h"
41 #include "opt_netgraph.h"
42 
43 #include <sys/param.h>
44 #include <sys/conf.h>
45 #include <sys/eventhandler.h>
46 #include <sys/fcntl.h>
47 #include <sys/jail.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/mutex.h>
53 #include <sys/time.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/signalvar.h>
57 #include <sys/filio.h>
58 #include <sys/sockio.h>
59 #include <sys/ttycom.h>
60 #include <sys/uio.h>
61 #include <sys/sysent.h>
62 #include <sys/systm.h>
63 
64 #include <sys/event.h>
65 #include <sys/file.h>
66 #include <sys/poll.h>
67 #include <sys/proc.h>
68 
69 #include <sys/socket.h>
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_private.h>
78 #include <net/if_vlan_var.h>
79 #include <net/if_dl.h>
80 #include <net/bpf.h>
81 #include <net/bpf_buffer.h>
82 #ifdef BPF_JITTER
83 #include <net/bpf_jitter.h>
84 #endif
85 #include <net/bpf_zerocopy.h>
86 #include <net/bpfdesc.h>
87 #include <net/route.h>
88 #include <net/vnet.h>
89 
90 #include <netinet/in.h>
91 #include <netinet/if_ether.h>
92 #include <sys/kernel.h>
93 #include <sys/sysctl.h>
94 
95 #include <net80211/ieee80211_freebsd.h>
96 
97 #include <security/mac/mac_framework.h>
98 
99 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
100 
101 static const struct bpf_if_ext dead_bpf_if = {
102 	.bif_dlist = CK_LIST_HEAD_INITIALIZER()
103 };
104 
105 struct bpf_if {
106 #define	bif_next	bif_ext.bif_next
107 #define	bif_dlist	bif_ext.bif_dlist
108 	struct bpf_if_ext bif_ext;	/* public members */
109 	u_int		bif_dlt;	/* link layer type */
110 	u_int		bif_hdrlen;	/* length of link header */
111 	struct bpfd_list bif_wlist;	/* writer-only list */
112 	struct ifnet	*bif_ifp;	/* corresponding interface */
113 	struct bpf_if	**bif_bpf;	/* Pointer to pointer to us */
114 	volatile u_int	bif_refcnt;
115 	struct epoch_context epoch_ctx;
116 };
117 
118 CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
119 
120 struct bpf_program_buffer {
121 	struct epoch_context	epoch_ctx;
122 #ifdef BPF_JITTER
123 	bpf_jit_filter		*func;
124 #endif
125 	void			*buffer[0];
126 };
127 
128 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
129 
130 #define PRINET  26			/* interruptible */
131 #define BPF_PRIO_MAX	7
132 
133 #define	SIZEOF_BPF_HDR(type)	\
134     (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
135 
136 #ifdef COMPAT_FREEBSD32
137 #include <sys/mount.h>
138 #include <compat/freebsd32/freebsd32.h>
139 #define BPF_ALIGNMENT32 sizeof(int32_t)
140 #define	BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
141 
142 #ifndef BURN_BRIDGES
143 /*
144  * 32-bit version of structure prepended to each packet.  We use this header
145  * instead of the standard one for 32-bit streams.  We mark the a stream as
146  * 32-bit the first time we see a 32-bit compat ioctl request.
147  */
148 struct bpf_hdr32 {
149 	struct timeval32 bh_tstamp;	/* time stamp */
150 	uint32_t	bh_caplen;	/* length of captured portion */
151 	uint32_t	bh_datalen;	/* original length of packet */
152 	uint16_t	bh_hdrlen;	/* length of bpf header (this struct
153 					   plus alignment padding) */
154 };
155 #endif
156 
157 struct bpf_program32 {
158 	u_int bf_len;
159 	uint32_t bf_insns;
160 };
161 
162 struct bpf_dltlist32 {
163 	u_int	bfl_len;
164 	u_int	bfl_list;
165 };
166 
167 #define	BIOCSETF32	_IOW('B', 103, struct bpf_program32)
168 #define	BIOCSRTIMEOUT32	_IOW('B', 109, struct timeval32)
169 #define	BIOCGRTIMEOUT32	_IOR('B', 110, struct timeval32)
170 #define	BIOCGDLTLIST32	_IOWR('B', 121, struct bpf_dltlist32)
171 #define	BIOCSETWF32	_IOW('B', 123, struct bpf_program32)
172 #define	BIOCSETFNR32	_IOW('B', 130, struct bpf_program32)
173 #endif
174 
175 #define BPF_LOCK()		sx_xlock(&bpf_sx)
176 #define BPF_UNLOCK()		sx_xunlock(&bpf_sx)
177 #define BPF_LOCK_ASSERT()	sx_assert(&bpf_sx, SA_XLOCKED)
178 /*
179  * bpf_iflist is a list of BPF interface structures, each corresponding to a
180  * specific DLT. The same network interface might have several BPF interface
181  * structures registered by different layers in the stack (i.e., 802.11
182  * frames, ethernet frames, etc).
183  */
184 CK_LIST_HEAD(bpf_iflist, bpf_if);
185 static struct bpf_iflist bpf_iflist = CK_LIST_HEAD_INITIALIZER();
186 static struct sx	bpf_sx;		/* bpf global lock */
187 static int		bpf_bpfd_cnt;
188 
189 static void	bpfif_ref(struct bpf_if *);
190 static void	bpfif_rele(struct bpf_if *);
191 
192 static void	bpfd_ref(struct bpf_d *);
193 static void	bpfd_rele(struct bpf_d *);
194 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
195 static void	bpf_detachd(struct bpf_d *);
196 static void	bpf_detachd_locked(struct bpf_d *, bool);
197 static void	bpfd_free(epoch_context_t);
198 static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
199 		    struct sockaddr *, int *, struct bpf_d *);
200 static int	bpf_setif(struct bpf_d *, struct ifreq *);
201 static void	bpf_timed_out(void *);
202 static __inline void
203 		bpf_wakeup(struct bpf_d *);
204 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
205 		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
206 		    struct bintime *);
207 static void	reset_d(struct bpf_d *);
208 static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
209 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
210 static int	bpf_setdlt(struct bpf_d *, u_int);
211 static void	filt_bpfdetach(struct knote *);
212 static int	filt_bpfread(struct knote *, long);
213 static int	filt_bpfwrite(struct knote *, long);
214 static void	bpf_drvinit(void *);
215 static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
216 
217 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
218     "bpf sysctl");
219 int bpf_maxinsns = BPF_MAXINSNS;
220 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
221     &bpf_maxinsns, 0, "Maximum bpf program instructions");
222 static int bpf_zerocopy_enable = 0;
223 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
224     &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
225 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
226     bpf_stats_sysctl, "bpf statistics portal");
227 
228 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
229 #define	V_bpf_optimize_writers VNET(bpf_optimize_writers)
230 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN,
231     &VNET_NAME(bpf_optimize_writers), 0,
232     "Do not send packets until BPF program is set");
233 
234 static	d_open_t	bpfopen;
235 static	d_read_t	bpfread;
236 static	d_write_t	bpfwrite;
237 static	d_ioctl_t	bpfioctl;
238 static	d_poll_t	bpfpoll;
239 static	d_kqfilter_t	bpfkqfilter;
240 
241 static struct cdevsw bpf_cdevsw = {
242 	.d_version =	D_VERSION,
243 	.d_open =	bpfopen,
244 	.d_read =	bpfread,
245 	.d_write =	bpfwrite,
246 	.d_ioctl =	bpfioctl,
247 	.d_poll =	bpfpoll,
248 	.d_name =	"bpf",
249 	.d_kqfilter =	bpfkqfilter,
250 };
251 
252 static const struct filterops bpfread_filtops = {
253 	.f_isfd = 1,
254 	.f_detach = filt_bpfdetach,
255 	.f_event = filt_bpfread,
256 	.f_copy = knote_triv_copy,
257 };
258 
259 static const struct filterops bpfwrite_filtops = {
260 	.f_isfd = 1,
261 	.f_detach = filt_bpfdetach,
262 	.f_event = filt_bpfwrite,
263 	.f_copy = knote_triv_copy,
264 };
265 
266 /*
267  * LOCKING MODEL USED BY BPF
268  *
269  * Locks:
270  * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
271  * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
272  * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
273  * structure fields used by bpf_*tap* code.
274  *
275  * Lock order: global lock, then descriptor lock.
276  *
277  * There are several possible consumers:
278  *
279  * 1. The kernel registers interface pointer with bpfattach().
280  * Each call allocates new bpf_if structure, references ifnet pointer
281  * and links bpf_if into bpf_iflist chain. This is protected with global
282  * lock.
283  *
284  * 2. An userland application uses ioctl() call to bpf_d descriptor.
285  * All such call are serialized with global lock. BPF filters can be
286  * changed, but pointer to old filter will be freed using NET_EPOCH_CALL().
287  * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
288  * filter pointers, even if change will happen during bpf_tap execution.
289  * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL().
290  *
291  * 3. An userland application can write packets into bpf_d descriptor.
292  * There we need to be sure, that ifnet won't disappear during bpfwrite().
293  *
294  * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
295  * bif_dlist is protected with net_epoch_preempt section. So, it should
296  * be safe to make access to bpf_d descriptor inside the section.
297  *
298  * 5. The kernel invokes bpfdetach() on interface destroying. All lists
299  * are modified with global lock held and actual free() is done using
300  * NET_EPOCH_CALL().
301  */
302 
303 static void
bpfif_free(epoch_context_t ctx)304 bpfif_free(epoch_context_t ctx)
305 {
306 	struct bpf_if *bp;
307 
308 	bp = __containerof(ctx, struct bpf_if, epoch_ctx);
309 	if_rele(bp->bif_ifp);
310 	free(bp, M_BPF);
311 }
312 
313 static void
bpfif_ref(struct bpf_if * bp)314 bpfif_ref(struct bpf_if *bp)
315 {
316 
317 	refcount_acquire(&bp->bif_refcnt);
318 }
319 
320 static void
bpfif_rele(struct bpf_if * bp)321 bpfif_rele(struct bpf_if *bp)
322 {
323 
324 	if (!refcount_release(&bp->bif_refcnt))
325 		return;
326 	NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx);
327 }
328 
329 static void
bpfd_ref(struct bpf_d * d)330 bpfd_ref(struct bpf_d *d)
331 {
332 
333 	refcount_acquire(&d->bd_refcnt);
334 }
335 
336 static void
bpfd_rele(struct bpf_d * d)337 bpfd_rele(struct bpf_d *d)
338 {
339 
340 	if (!refcount_release(&d->bd_refcnt))
341 		return;
342 	NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx);
343 }
344 
345 static struct bpf_program_buffer*
bpf_program_buffer_alloc(size_t size,int flags)346 bpf_program_buffer_alloc(size_t size, int flags)
347 {
348 
349 	return (malloc(sizeof(struct bpf_program_buffer) + size,
350 	    M_BPF, flags));
351 }
352 
353 static void
bpf_program_buffer_free(epoch_context_t ctx)354 bpf_program_buffer_free(epoch_context_t ctx)
355 {
356 	struct bpf_program_buffer *ptr;
357 
358 	ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
359 #ifdef BPF_JITTER
360 	if (ptr->func != NULL)
361 		bpf_destroy_jit_filter(ptr->func);
362 #endif
363 	free(ptr, M_BPF);
364 }
365 
366 /*
367  * Wrapper functions for various buffering methods.  If the set of buffer
368  * modes expands, we will probably want to introduce a switch data structure
369  * similar to protosw, et.
370  */
371 static void
bpf_append_bytes(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)372 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
373     u_int len)
374 {
375 
376 	BPFD_LOCK_ASSERT(d);
377 
378 	switch (d->bd_bufmode) {
379 	case BPF_BUFMODE_BUFFER:
380 		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
381 
382 	case BPF_BUFMODE_ZBUF:
383 		counter_u64_add(d->bd_zcopy, 1);
384 		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
385 
386 	default:
387 		panic("bpf_buf_append_bytes");
388 	}
389 }
390 
391 static void
bpf_append_mbuf(struct bpf_d * d,caddr_t buf,u_int offset,void * src,u_int len)392 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
393     u_int len)
394 {
395 
396 	BPFD_LOCK_ASSERT(d);
397 
398 	switch (d->bd_bufmode) {
399 	case BPF_BUFMODE_BUFFER:
400 		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
401 
402 	case BPF_BUFMODE_ZBUF:
403 		counter_u64_add(d->bd_zcopy, 1);
404 		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
405 
406 	default:
407 		panic("bpf_buf_append_mbuf");
408 	}
409 }
410 
411 /*
412  * This function gets called when the free buffer is re-assigned.
413  */
414 static void
bpf_buf_reclaimed(struct bpf_d * d)415 bpf_buf_reclaimed(struct bpf_d *d)
416 {
417 
418 	BPFD_LOCK_ASSERT(d);
419 
420 	switch (d->bd_bufmode) {
421 	case BPF_BUFMODE_BUFFER:
422 		return;
423 
424 	case BPF_BUFMODE_ZBUF:
425 		bpf_zerocopy_buf_reclaimed(d);
426 		return;
427 
428 	default:
429 		panic("bpf_buf_reclaimed");
430 	}
431 }
432 
433 /*
434  * If the buffer mechanism has a way to decide that a held buffer can be made
435  * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
436  * returned if the buffer can be discarded, (0) is returned if it cannot.
437  */
438 static int
bpf_canfreebuf(struct bpf_d * d)439 bpf_canfreebuf(struct bpf_d *d)
440 {
441 
442 	BPFD_LOCK_ASSERT(d);
443 
444 	switch (d->bd_bufmode) {
445 	case BPF_BUFMODE_ZBUF:
446 		return (bpf_zerocopy_canfreebuf(d));
447 	}
448 	return (0);
449 }
450 
451 /*
452  * Allow the buffer model to indicate that the current store buffer is
453  * immutable, regardless of the appearance of space.  Return (1) if the
454  * buffer is writable, and (0) if not.
455  */
456 static int
bpf_canwritebuf(struct bpf_d * d)457 bpf_canwritebuf(struct bpf_d *d)
458 {
459 	BPFD_LOCK_ASSERT(d);
460 
461 	switch (d->bd_bufmode) {
462 	case BPF_BUFMODE_ZBUF:
463 		return (bpf_zerocopy_canwritebuf(d));
464 	}
465 	return (1);
466 }
467 
468 /*
469  * Notify buffer model that an attempt to write to the store buffer has
470  * resulted in a dropped packet, in which case the buffer may be considered
471  * full.
472  */
473 static void
bpf_buffull(struct bpf_d * d)474 bpf_buffull(struct bpf_d *d)
475 {
476 
477 	BPFD_LOCK_ASSERT(d);
478 
479 	switch (d->bd_bufmode) {
480 	case BPF_BUFMODE_ZBUF:
481 		bpf_zerocopy_buffull(d);
482 		break;
483 	}
484 }
485 
486 /*
487  * Notify the buffer model that a buffer has moved into the hold position.
488  */
489 void
bpf_bufheld(struct bpf_d * d)490 bpf_bufheld(struct bpf_d *d)
491 {
492 
493 	BPFD_LOCK_ASSERT(d);
494 
495 	switch (d->bd_bufmode) {
496 	case BPF_BUFMODE_ZBUF:
497 		bpf_zerocopy_bufheld(d);
498 		break;
499 	}
500 }
501 
502 static void
bpf_free(struct bpf_d * d)503 bpf_free(struct bpf_d *d)
504 {
505 
506 	switch (d->bd_bufmode) {
507 	case BPF_BUFMODE_BUFFER:
508 		return (bpf_buffer_free(d));
509 
510 	case BPF_BUFMODE_ZBUF:
511 		return (bpf_zerocopy_free(d));
512 
513 	default:
514 		panic("bpf_buf_free");
515 	}
516 }
517 
518 static int
bpf_uiomove(struct bpf_d * d,caddr_t buf,u_int len,struct uio * uio)519 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
520 {
521 
522 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
523 		return (EOPNOTSUPP);
524 	return (bpf_buffer_uiomove(d, buf, len, uio));
525 }
526 
527 static int
bpf_ioctl_sblen(struct bpf_d * d,u_int * i)528 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
529 {
530 
531 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
532 		return (EOPNOTSUPP);
533 	return (bpf_buffer_ioctl_sblen(d, i));
534 }
535 
536 static int
bpf_ioctl_getzmax(struct thread * td,struct bpf_d * d,size_t * i)537 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
538 {
539 
540 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
541 		return (EOPNOTSUPP);
542 	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
543 }
544 
545 static int
bpf_ioctl_rotzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)546 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
547 {
548 
549 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
550 		return (EOPNOTSUPP);
551 	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
552 }
553 
554 static int
bpf_ioctl_setzbuf(struct thread * td,struct bpf_d * d,struct bpf_zbuf * bz)555 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
556 {
557 
558 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
559 		return (EOPNOTSUPP);
560 	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
561 }
562 
563 /*
564  * General BPF functions.
565  */
566 static int
bpf_movein(struct uio * uio,int linktype,struct ifnet * ifp,struct mbuf ** mp,struct sockaddr * sockp,int * hdrlen,struct bpf_d * d)567 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
568     struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
569 {
570 	const struct ieee80211_bpf_params *p;
571 	struct ether_header *eh;
572 	struct mbuf *m;
573 	int error;
574 	int len;
575 	int hlen;
576 	int slen;
577 
578 	/*
579 	 * Build a sockaddr based on the data link layer type.
580 	 * We do this at this level because the ethernet header
581 	 * is copied directly into the data field of the sockaddr.
582 	 * In the case of SLIP, there is no header and the packet
583 	 * is forwarded as is.
584 	 * Also, we are careful to leave room at the front of the mbuf
585 	 * for the link level header.
586 	 */
587 	switch (linktype) {
588 	case DLT_SLIP:
589 		sockp->sa_family = AF_INET;
590 		hlen = 0;
591 		break;
592 
593 	case DLT_EN10MB:
594 		sockp->sa_family = AF_UNSPEC;
595 		/* XXX Would MAXLINKHDR be better? */
596 		hlen = ETHER_HDR_LEN;
597 		break;
598 
599 	case DLT_FDDI:
600 		sockp->sa_family = AF_IMPLINK;
601 		hlen = 0;
602 		break;
603 
604 	case DLT_RAW:
605 		sockp->sa_family = AF_UNSPEC;
606 		hlen = 0;
607 		break;
608 
609 	case DLT_NULL:
610 		/*
611 		 * null interface types require a 4 byte pseudo header which
612 		 * corresponds to the address family of the packet.
613 		 */
614 		sockp->sa_family = AF_UNSPEC;
615 		hlen = 4;
616 		break;
617 
618 	case DLT_ATM_RFC1483:
619 		/*
620 		 * en atm driver requires 4-byte atm pseudo header.
621 		 * though it isn't standard, vpi:vci needs to be
622 		 * specified anyway.
623 		 */
624 		sockp->sa_family = AF_UNSPEC;
625 		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
626 		break;
627 
628 	case DLT_PPP:
629 		sockp->sa_family = AF_UNSPEC;
630 		hlen = 4;	/* This should match PPP_HDRLEN */
631 		break;
632 
633 	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
634 		sockp->sa_family = AF_IEEE80211;
635 		hlen = 0;
636 		break;
637 
638 	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
639 		sockp->sa_family = AF_IEEE80211;
640 		sockp->sa_len = 12;	/* XXX != 0 */
641 		hlen = sizeof(struct ieee80211_bpf_params);
642 		break;
643 
644 	default:
645 		return (EIO);
646 	}
647 
648 	len = uio->uio_resid;
649 	if (len < hlen || len - hlen > ifp->if_mtu)
650 		return (EMSGSIZE);
651 
652 	/* Allocate a mbuf, up to MJUM16BYTES bytes, for our write. */
653 	m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR);
654 	if (m == NULL)
655 		return (EIO);
656 	m->m_pkthdr.len = m->m_len = len;
657 	*mp = m;
658 
659 	error = uiomove(mtod(m, u_char *), len, uio);
660 	if (error)
661 		goto bad;
662 
663 	slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
664 	if (slen == 0) {
665 		error = EPERM;
666 		goto bad;
667 	}
668 
669 	/* Check for multicast destination */
670 	switch (linktype) {
671 	case DLT_EN10MB:
672 		eh = mtod(m, struct ether_header *);
673 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
674 			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
675 			    ETHER_ADDR_LEN) == 0)
676 				m->m_flags |= M_BCAST;
677 			else
678 				m->m_flags |= M_MCAST;
679 		}
680 		if (d->bd_hdrcmplt == 0) {
681 			memcpy(eh->ether_shost, IF_LLADDR(ifp),
682 			    sizeof(eh->ether_shost));
683 		}
684 		break;
685 	}
686 
687 	/*
688 	 * Make room for link header, and copy it to sockaddr
689 	 */
690 	if (hlen != 0) {
691 		if (sockp->sa_family == AF_IEEE80211) {
692 			/*
693 			 * Collect true length from the parameter header
694 			 * NB: sockp is known to be zero'd so if we do a
695 			 *     short copy unspecified parameters will be
696 			 *     zero.
697 			 * NB: packet may not be aligned after stripping
698 			 *     bpf params
699 			 * XXX check ibp_vers
700 			 */
701 			p = mtod(m, const struct ieee80211_bpf_params *);
702 			hlen = p->ibp_len;
703 			if (hlen > sizeof(sockp->sa_data)) {
704 				error = EINVAL;
705 				goto bad;
706 			}
707 		}
708 		bcopy(mtod(m, const void *), sockp->sa_data, hlen);
709 	}
710 	*hdrlen = hlen;
711 
712 	return (0);
713 bad:
714 	m_freem(m);
715 	return (error);
716 }
717 
718 /*
719  * Attach descriptor to the bpf interface, i.e. make d listen on bp,
720  * then reset its buffers and counters with reset_d().
721  */
722 static void
bpf_attachd(struct bpf_d * d,struct bpf_if * bp)723 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
724 {
725 	int op_w;
726 
727 	BPF_LOCK_ASSERT();
728 
729 	/*
730 	 * Save sysctl value to protect from sysctl change
731 	 * between reads
732 	 */
733 	op_w = V_bpf_optimize_writers || d->bd_writer;
734 
735 	if (d->bd_bif != NULL)
736 		bpf_detachd_locked(d, false);
737 	/*
738 	 * Point d at bp, and add d to the interface's list.
739 	 * Since there are many applications using BPF for
740 	 * sending raw packets only (dhcpd, cdpd are good examples)
741 	 * we can delay adding d to the list of active listeners until
742 	 * some filter is configured.
743 	 */
744 
745 	BPFD_LOCK(d);
746 	/*
747 	 * Hold reference to bpif while descriptor uses this interface.
748 	 */
749 	bpfif_ref(bp);
750 	d->bd_bif = bp;
751 	if (op_w != 0) {
752 		/* Add to writers-only list */
753 		CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
754 		/*
755 		 * We decrement bd_writer on every filter set operation.
756 		 * First BIOCSETF is done by pcap_open_live() to set up
757 		 * snap length. After that appliation usually sets its own
758 		 * filter.
759 		 */
760 		d->bd_writer = 2;
761 	} else
762 		CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
763 
764 	reset_d(d);
765 
766 	/* Trigger EVFILT_WRITE events. */
767 	bpf_wakeup(d);
768 
769 	BPFD_UNLOCK(d);
770 	bpf_bpfd_cnt++;
771 
772 	CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
773 	    __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
774 
775 	if (op_w == 0)
776 		EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
777 }
778 
779 /*
780  * Check if we need to upgrade our descriptor @d from write-only mode.
781  */
782 static int
bpf_check_upgrade(u_long cmd,struct bpf_d * d,struct bpf_insn * fcode,int flen)783 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
784     int flen)
785 {
786 	int is_snap, need_upgrade;
787 
788 	/*
789 	 * Check if we've already upgraded or new filter is empty.
790 	 */
791 	if (d->bd_writer == 0 || fcode == NULL)
792 		return (0);
793 
794 	need_upgrade = 0;
795 
796 	/*
797 	 * Check if cmd looks like snaplen setting from
798 	 * pcap_bpf.c:pcap_open_live().
799 	 * Note we're not checking .k value here:
800 	 * while pcap_open_live() definitely sets to non-zero value,
801 	 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
802 	 * do not consider upgrading immediately
803 	 */
804 	if (cmd == BIOCSETF && flen == 1 &&
805 	    fcode[0].code == (BPF_RET | BPF_K))
806 		is_snap = 1;
807 	else
808 		is_snap = 0;
809 
810 	if (is_snap == 0) {
811 		/*
812 		 * We're setting first filter and it doesn't look like
813 		 * setting snaplen.  We're probably using bpf directly.
814 		 * Upgrade immediately.
815 		 */
816 		need_upgrade = 1;
817 	} else {
818 		/*
819 		 * Do not require upgrade by first BIOCSETF
820 		 * (used to set snaplen) by pcap_open_live().
821 		 */
822 
823 		if (--d->bd_writer == 0) {
824 			/*
825 			 * First snaplen filter has already
826 			 * been set. This is probably catch-all
827 			 * filter
828 			 */
829 			need_upgrade = 1;
830 		}
831 	}
832 
833 	CTR5(KTR_NET,
834 	    "%s: filter function set by pid %d, "
835 	    "bd_writer counter %d, snap %d upgrade %d",
836 	    __func__, d->bd_pid, d->bd_writer,
837 	    is_snap, need_upgrade);
838 
839 	return (need_upgrade);
840 }
841 
842 /*
843  * Detach a file from its interface.
844  */
845 static void
bpf_detachd(struct bpf_d * d)846 bpf_detachd(struct bpf_d *d)
847 {
848 	BPF_LOCK();
849 	bpf_detachd_locked(d, false);
850 	BPF_UNLOCK();
851 }
852 
853 static void
bpf_detachd_locked(struct bpf_d * d,bool detached_ifp)854 bpf_detachd_locked(struct bpf_d *d, bool detached_ifp)
855 {
856 	struct bpf_if *bp;
857 	struct ifnet *ifp;
858 	int error;
859 
860 	BPF_LOCK_ASSERT();
861 	CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
862 
863 	/* Check if descriptor is attached */
864 	if ((bp = d->bd_bif) == NULL)
865 		return;
866 
867 	BPFD_LOCK(d);
868 	/* Remove d from the interface's descriptor list. */
869 	CK_LIST_REMOVE(d, bd_next);
870 	/* Save bd_writer value */
871 	error = d->bd_writer;
872 	ifp = bp->bif_ifp;
873 	d->bd_bif = NULL;
874 	if (detached_ifp) {
875 		/*
876 		 * Notify descriptor as it's detached, so that any
877 		 * sleepers wake up and get ENXIO.
878 		 */
879 		bpf_wakeup(d);
880 	}
881 	BPFD_UNLOCK(d);
882 	bpf_bpfd_cnt--;
883 
884 	/* Call event handler iff d is attached */
885 	if (error == 0)
886 		EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
887 
888 	/*
889 	 * Check if this descriptor had requested promiscuous mode.
890 	 * If so and ifnet is not detached, turn it off.
891 	 */
892 	if (d->bd_promisc && !detached_ifp) {
893 		d->bd_promisc = 0;
894 		CURVNET_SET(ifp->if_vnet);
895 		error = ifpromisc(ifp, 0);
896 		CURVNET_RESTORE();
897 		if (error != 0 && error != ENXIO) {
898 			/*
899 			 * ENXIO can happen if a pccard is unplugged
900 			 * Something is really wrong if we were able to put
901 			 * the driver into promiscuous mode, but can't
902 			 * take it out.
903 			 */
904 			if_printf(bp->bif_ifp,
905 				"bpf_detach: ifpromisc failed (%d)\n", error);
906 		}
907 	}
908 	bpfif_rele(bp);
909 }
910 
911 /*
912  * Close the descriptor by detaching it from its interface,
913  * deallocating its buffers, and marking it free.
914  */
915 static void
bpf_dtor(void * data)916 bpf_dtor(void *data)
917 {
918 	struct bpf_d *d = data;
919 
920 	BPFD_LOCK(d);
921 	if (d->bd_state == BPF_WAITING)
922 		callout_stop(&d->bd_callout);
923 	d->bd_state = BPF_IDLE;
924 	BPFD_UNLOCK(d);
925 	funsetown(&d->bd_sigio);
926 	bpf_detachd(d);
927 #ifdef MAC
928 	mac_bpfdesc_destroy(d);
929 #endif /* MAC */
930 	seldrain(&d->bd_sel);
931 	knlist_destroy(&d->bd_sel.si_note);
932 	callout_drain(&d->bd_callout);
933 	bpfd_rele(d);
934 }
935 
936 /*
937  * Open ethernet device.  Returns ENXIO for illegal minor device number,
938  * EBUSY if file is open by another process.
939  */
940 /* ARGSUSED */
941 static	int
bpfopen(struct cdev * dev,int flags,int fmt,struct thread * td)942 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
943 {
944 	struct bpf_d *d;
945 	int error;
946 
947 	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
948 	error = devfs_set_cdevpriv(d, bpf_dtor);
949 	if (error != 0) {
950 		free(d, M_BPF);
951 		return (error);
952 	}
953 
954 	/* Setup counters */
955 	d->bd_rcount = counter_u64_alloc(M_WAITOK);
956 	d->bd_dcount = counter_u64_alloc(M_WAITOK);
957 	d->bd_fcount = counter_u64_alloc(M_WAITOK);
958 	d->bd_wcount = counter_u64_alloc(M_WAITOK);
959 	d->bd_wfcount = counter_u64_alloc(M_WAITOK);
960 	d->bd_wdcount = counter_u64_alloc(M_WAITOK);
961 	d->bd_zcopy = counter_u64_alloc(M_WAITOK);
962 
963 	/*
964 	 * For historical reasons, perform a one-time initialization call to
965 	 * the buffer routines, even though we're not yet committed to a
966 	 * particular buffer method.
967 	 */
968 	bpf_buffer_init(d);
969 	if ((flags & FREAD) == 0)
970 		d->bd_writer = 2;
971 	d->bd_hbuf_in_use = 0;
972 	d->bd_bufmode = BPF_BUFMODE_BUFFER;
973 	d->bd_sig = SIGIO;
974 	d->bd_direction = BPF_D_INOUT;
975 	refcount_init(&d->bd_refcnt, 1);
976 	BPF_PID_REFRESH(d, td);
977 #ifdef MAC
978 	mac_bpfdesc_init(d);
979 	mac_bpfdesc_create(td->td_ucred, d);
980 #endif
981 	mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
982 	callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
983 	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
984 
985 	/* Disable VLAN pcp tagging. */
986 	d->bd_pcp = 0;
987 
988 	return (0);
989 }
990 
991 /*
992  *  bpfread - read next chunk of packets from buffers
993  */
994 static	int
bpfread(struct cdev * dev,struct uio * uio,int ioflag)995 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
996 {
997 	struct bpf_d *d;
998 	int error;
999 	int non_block;
1000 	int timed_out;
1001 
1002 	error = devfs_get_cdevpriv((void **)&d);
1003 	if (error != 0)
1004 		return (error);
1005 
1006 	/*
1007 	 * Restrict application to use a buffer the same size as
1008 	 * as kernel buffers.
1009 	 */
1010 	if (uio->uio_resid != d->bd_bufsize)
1011 		return (EINVAL);
1012 
1013 	non_block = ((ioflag & O_NONBLOCK) != 0);
1014 
1015 	BPFD_LOCK(d);
1016 	BPF_PID_REFRESH_CUR(d);
1017 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1018 		BPFD_UNLOCK(d);
1019 		return (EOPNOTSUPP);
1020 	}
1021 	if (d->bd_state == BPF_WAITING)
1022 		callout_stop(&d->bd_callout);
1023 	timed_out = (d->bd_state == BPF_TIMED_OUT);
1024 	d->bd_state = BPF_IDLE;
1025 	while (d->bd_hbuf_in_use) {
1026 		error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1027 		    PRINET | PCATCH, "bd_hbuf", 0);
1028 		if (error != 0) {
1029 			BPFD_UNLOCK(d);
1030 			return (error);
1031 		}
1032 	}
1033 	/*
1034 	 * If the hold buffer is empty, then do a timed sleep, which
1035 	 * ends when the timeout expires or when enough packets
1036 	 * have arrived to fill the store buffer.
1037 	 */
1038 	while (d->bd_hbuf == NULL) {
1039 		if (d->bd_slen != 0) {
1040 			/*
1041 			 * A packet(s) either arrived since the previous
1042 			 * read or arrived while we were asleep.
1043 			 */
1044 			if (d->bd_immediate || non_block || timed_out) {
1045 				/*
1046 				 * Rotate the buffers and return what's here
1047 				 * if we are in immediate mode, non-blocking
1048 				 * flag is set, or this descriptor timed out.
1049 				 */
1050 				ROTATE_BUFFERS(d);
1051 				break;
1052 			}
1053 		}
1054 
1055 		/*
1056 		 * No data is available, check to see if the bpf device
1057 		 * is still pointed at a real interface.  If not, return
1058 		 * ENXIO so that the userland process knows to rebind
1059 		 * it before using it again.
1060 		 */
1061 		if (d->bd_bif == NULL) {
1062 			BPFD_UNLOCK(d);
1063 			return (ENXIO);
1064 		}
1065 
1066 		if (non_block) {
1067 			BPFD_UNLOCK(d);
1068 			return (EWOULDBLOCK);
1069 		}
1070 		error = msleep(d, &d->bd_lock, PRINET | PCATCH,
1071 		     "bpf", d->bd_rtout);
1072 		if (error == EINTR || error == ERESTART) {
1073 			BPFD_UNLOCK(d);
1074 			return (error);
1075 		}
1076 		if (error == EWOULDBLOCK) {
1077 			/*
1078 			 * On a timeout, return what's in the buffer,
1079 			 * which may be nothing.  If there is something
1080 			 * in the store buffer, we can rotate the buffers.
1081 			 */
1082 			if (d->bd_hbuf)
1083 				/*
1084 				 * We filled up the buffer in between
1085 				 * getting the timeout and arriving
1086 				 * here, so we don't need to rotate.
1087 				 */
1088 				break;
1089 
1090 			if (d->bd_slen == 0) {
1091 				BPFD_UNLOCK(d);
1092 				return (0);
1093 			}
1094 			ROTATE_BUFFERS(d);
1095 			break;
1096 		}
1097 	}
1098 	/*
1099 	 * At this point, we know we have something in the hold slot.
1100 	 */
1101 	d->bd_hbuf_in_use = 1;
1102 	BPFD_UNLOCK(d);
1103 
1104 	/*
1105 	 * Move data from hold buffer into user space.
1106 	 * We know the entire buffer is transferred since
1107 	 * we checked above that the read buffer is bpf_bufsize bytes.
1108   	 *
1109 	 * We do not have to worry about simultaneous reads because
1110 	 * we waited for sole access to the hold buffer above.
1111 	 */
1112 	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1113 
1114 	BPFD_LOCK(d);
1115 	if (d->bd_hbuf_in_use) {
1116 		KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1117 		d->bd_fbuf = d->bd_hbuf;
1118 		d->bd_hbuf = NULL;
1119 		d->bd_hlen = 0;
1120 		bpf_buf_reclaimed(d);
1121 		d->bd_hbuf_in_use = 0;
1122 		wakeup(&d->bd_hbuf_in_use);
1123 	}
1124 	BPFD_UNLOCK(d);
1125 
1126 	return (error);
1127 }
1128 
1129 /*
1130  * If there are processes sleeping on this descriptor, wake them up.
1131  */
1132 static __inline void
bpf_wakeup(struct bpf_d * d)1133 bpf_wakeup(struct bpf_d *d)
1134 {
1135 
1136 	BPFD_LOCK_ASSERT(d);
1137 	if (d->bd_state == BPF_WAITING) {
1138 		callout_stop(&d->bd_callout);
1139 		d->bd_state = BPF_IDLE;
1140 	}
1141 	wakeup(d);
1142 	if (d->bd_async && d->bd_sig && d->bd_sigio)
1143 		pgsigio(&d->bd_sigio, d->bd_sig, 0);
1144 
1145 	selwakeuppri(&d->bd_sel, PRINET);
1146 	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1147 }
1148 
1149 static void
bpf_timed_out(void * arg)1150 bpf_timed_out(void *arg)
1151 {
1152 	struct bpf_d *d = (struct bpf_d *)arg;
1153 
1154 	BPFD_LOCK_ASSERT(d);
1155 
1156 	if (callout_pending(&d->bd_callout) ||
1157 	    !callout_active(&d->bd_callout))
1158 		return;
1159 	if (d->bd_state == BPF_WAITING) {
1160 		d->bd_state = BPF_TIMED_OUT;
1161 		if (d->bd_slen != 0)
1162 			bpf_wakeup(d);
1163 	}
1164 }
1165 
1166 static int
bpf_ready(struct bpf_d * d)1167 bpf_ready(struct bpf_d *d)
1168 {
1169 
1170 	BPFD_LOCK_ASSERT(d);
1171 
1172 	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1173 		return (1);
1174 	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1175 	    d->bd_slen != 0)
1176 		return (1);
1177 	return (0);
1178 }
1179 
1180 static int
bpfwrite(struct cdev * dev,struct uio * uio,int ioflag)1181 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1182 {
1183 	struct route ro;
1184 	struct sockaddr dst;
1185 	struct epoch_tracker et;
1186 	struct bpf_if *bp;
1187 	struct bpf_d *d;
1188 	struct ifnet *ifp;
1189 	struct mbuf *m, *mc;
1190 	int error, hlen;
1191 
1192 	error = devfs_get_cdevpriv((void **)&d);
1193 	if (error != 0)
1194 		return (error);
1195 
1196 	NET_EPOCH_ENTER(et);
1197 	BPFD_LOCK(d);
1198 	BPF_PID_REFRESH_CUR(d);
1199 	counter_u64_add(d->bd_wcount, 1);
1200 	if ((bp = d->bd_bif) == NULL) {
1201 		error = ENXIO;
1202 		goto out_locked;
1203 	}
1204 
1205 	ifp = bp->bif_ifp;
1206 	if ((ifp->if_flags & IFF_UP) == 0) {
1207 		error = ENETDOWN;
1208 		goto out_locked;
1209 	}
1210 
1211 	if (uio->uio_resid == 0)
1212 		goto out_locked;
1213 
1214 	bzero(&dst, sizeof(dst));
1215 	m = NULL;
1216 	hlen = 0;
1217 
1218 	/*
1219 	 * Take extra reference, unlock d and exit from epoch section,
1220 	 * since bpf_movein() can sleep.
1221 	 */
1222 	bpfd_ref(d);
1223 	NET_EPOCH_EXIT(et);
1224 	BPFD_UNLOCK(d);
1225 
1226 	error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1227 	    &m, &dst, &hlen, d);
1228 
1229 	if (error != 0) {
1230 		counter_u64_add(d->bd_wdcount, 1);
1231 		bpfd_rele(d);
1232 		return (error);
1233 	}
1234 
1235 	BPFD_LOCK(d);
1236 	/*
1237 	 * Check that descriptor is still attached to the interface.
1238 	 * This can happen on bpfdetach(). To avoid access to detached
1239 	 * ifnet, free mbuf and return ENXIO.
1240 	 */
1241 	if (d->bd_bif == NULL) {
1242 		counter_u64_add(d->bd_wdcount, 1);
1243 		BPFD_UNLOCK(d);
1244 		bpfd_rele(d);
1245 		m_freem(m);
1246 		return (ENXIO);
1247 	}
1248 	counter_u64_add(d->bd_wfcount, 1);
1249 	if (d->bd_hdrcmplt)
1250 		dst.sa_family = pseudo_AF_HDRCMPLT;
1251 
1252 	if (d->bd_feedback) {
1253 		mc = m_dup(m, M_NOWAIT);
1254 		if (mc != NULL)
1255 			mc->m_pkthdr.rcvif = ifp;
1256 		/* Set M_PROMISC for outgoing packets to be discarded. */
1257 		if (d->bd_direction == BPF_D_INOUT)
1258 			m->m_flags |= M_PROMISC;
1259 	} else
1260 		mc = NULL;
1261 
1262 	m->m_pkthdr.len -= hlen;
1263 	m->m_len -= hlen;
1264 	m->m_data += hlen;	/* XXX */
1265 
1266 	CURVNET_SET(ifp->if_vnet);
1267 #ifdef MAC
1268 	mac_bpfdesc_create_mbuf(d, m);
1269 	if (mc != NULL)
1270 		mac_bpfdesc_create_mbuf(d, mc);
1271 #endif
1272 
1273 	bzero(&ro, sizeof(ro));
1274 	if (hlen != 0) {
1275 		ro.ro_prepend = (u_char *)&dst.sa_data;
1276 		ro.ro_plen = hlen;
1277 		ro.ro_flags = RT_HAS_HEADER;
1278 	}
1279 
1280 	if (d->bd_pcp != 0)
1281 		vlan_set_pcp(m, d->bd_pcp);
1282 
1283 	/* Avoid possible recursion on BPFD_LOCK(). */
1284 	NET_EPOCH_ENTER(et);
1285 	BPFD_UNLOCK(d);
1286 	error = (*ifp->if_output)(ifp, m, &dst, &ro);
1287 	if (error)
1288 		counter_u64_add(d->bd_wdcount, 1);
1289 
1290 	if (mc != NULL) {
1291 		if (error == 0)
1292 			(*ifp->if_input)(ifp, mc);
1293 		else
1294 			m_freem(mc);
1295 	}
1296 	NET_EPOCH_EXIT(et);
1297 	CURVNET_RESTORE();
1298 	bpfd_rele(d);
1299 	return (error);
1300 
1301 out_locked:
1302 	counter_u64_add(d->bd_wdcount, 1);
1303 	NET_EPOCH_EXIT(et);
1304 	BPFD_UNLOCK(d);
1305 	return (error);
1306 }
1307 
1308 /*
1309  * Reset a descriptor by flushing its packet buffer and clearing the receive
1310  * and drop counts.  This is doable for kernel-only buffers, but with
1311  * zero-copy buffers, we can't write to (or rotate) buffers that are
1312  * currently owned by userspace.  It would be nice if we could encapsulate
1313  * this logic in the buffer code rather than here.
1314  */
1315 static void
reset_d(struct bpf_d * d)1316 reset_d(struct bpf_d *d)
1317 {
1318 
1319 	BPFD_LOCK_ASSERT(d);
1320 
1321 	while (d->bd_hbuf_in_use)
1322 		mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1323 		    "bd_hbuf", 0);
1324 	if ((d->bd_hbuf != NULL) &&
1325 	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1326 		/* Free the hold buffer. */
1327 		d->bd_fbuf = d->bd_hbuf;
1328 		d->bd_hbuf = NULL;
1329 		d->bd_hlen = 0;
1330 		bpf_buf_reclaimed(d);
1331 	}
1332 	if (bpf_canwritebuf(d))
1333 		d->bd_slen = 0;
1334 	counter_u64_zero(d->bd_rcount);
1335 	counter_u64_zero(d->bd_dcount);
1336 	counter_u64_zero(d->bd_fcount);
1337 	counter_u64_zero(d->bd_wcount);
1338 	counter_u64_zero(d->bd_wfcount);
1339 	counter_u64_zero(d->bd_wdcount);
1340 	counter_u64_zero(d->bd_zcopy);
1341 }
1342 
1343 /*
1344  *  FIONREAD		Check for read packet available.
1345  *  BIOCGBLEN		Get buffer len [for read()].
1346  *  BIOCSETF		Set read filter.
1347  *  BIOCSETFNR		Set read filter without resetting descriptor.
1348  *  BIOCSETWF		Set write filter.
1349  *  BIOCFLUSH		Flush read packet buffer.
1350  *  BIOCPROMISC		Put interface into promiscuous mode.
1351  *  BIOCGDLT		Get link layer type.
1352  *  BIOCGETIF		Get interface name.
1353  *  BIOCSETIF		Set interface.
1354  *  BIOCSRTIMEOUT	Set read timeout.
1355  *  BIOCGRTIMEOUT	Get read timeout.
1356  *  BIOCGSTATS		Get packet stats.
1357  *  BIOCIMMEDIATE	Set immediate mode.
1358  *  BIOCVERSION		Get filter language version.
1359  *  BIOCGHDRCMPLT	Get "header already complete" flag
1360  *  BIOCSHDRCMPLT	Set "header already complete" flag
1361  *  BIOCGDIRECTION	Get packet direction flag
1362  *  BIOCSDIRECTION	Set packet direction flag
1363  *  BIOCGTSTAMP		Get time stamp format and resolution.
1364  *  BIOCSTSTAMP		Set time stamp format and resolution.
1365  *  BIOCLOCK		Set "locked" flag
1366  *  BIOCFEEDBACK	Set packet feedback mode.
1367  *  BIOCSETZBUF		Set current zero-copy buffer locations.
1368  *  BIOCGETZMAX		Get maximum zero-copy buffer size.
1369  *  BIOCROTZBUF		Force rotation of zero-copy buffer
1370  *  BIOCSETBUFMODE	Set buffer mode.
1371  *  BIOCGETBUFMODE	Get current buffer mode.
1372  *  BIOCSETVLANPCP	Set VLAN PCP tag.
1373  */
1374 /* ARGSUSED */
1375 static	int
bpfioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flags,struct thread * td)1376 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1377     struct thread *td)
1378 {
1379 	struct bpf_d *d;
1380 	int error;
1381 
1382 	error = devfs_get_cdevpriv((void **)&d);
1383 	if (error != 0)
1384 		return (error);
1385 
1386 	/*
1387 	 * Refresh PID associated with this descriptor.
1388 	 */
1389 	BPFD_LOCK(d);
1390 	BPF_PID_REFRESH(d, td);
1391 	if (d->bd_state == BPF_WAITING)
1392 		callout_stop(&d->bd_callout);
1393 	d->bd_state = BPF_IDLE;
1394 	BPFD_UNLOCK(d);
1395 
1396 	if (d->bd_locked == 1) {
1397 		switch (cmd) {
1398 		case BIOCGBLEN:
1399 		case BIOCFLUSH:
1400 		case BIOCGDLT:
1401 		case BIOCGDLTLIST:
1402 #ifdef COMPAT_FREEBSD32
1403 		case BIOCGDLTLIST32:
1404 #endif
1405 		case BIOCGETIF:
1406 		case BIOCGRTIMEOUT:
1407 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1408 		case BIOCGRTIMEOUT32:
1409 #endif
1410 		case BIOCGSTATS:
1411 		case BIOCVERSION:
1412 		case BIOCGRSIG:
1413 		case BIOCGHDRCMPLT:
1414 		case BIOCSTSTAMP:
1415 		case BIOCFEEDBACK:
1416 		case FIONREAD:
1417 		case BIOCLOCK:
1418 		case BIOCSRTIMEOUT:
1419 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1420 		case BIOCSRTIMEOUT32:
1421 #endif
1422 		case BIOCIMMEDIATE:
1423 		case TIOCGPGRP:
1424 		case BIOCROTZBUF:
1425 			break;
1426 		default:
1427 			return (EPERM);
1428 		}
1429 	}
1430 #ifdef COMPAT_FREEBSD32
1431 	/*
1432 	 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1433 	 * that it will get 32-bit packet headers.
1434 	 */
1435 	switch (cmd) {
1436 	case BIOCSETF32:
1437 	case BIOCSETFNR32:
1438 	case BIOCSETWF32:
1439 	case BIOCGDLTLIST32:
1440 	case BIOCGRTIMEOUT32:
1441 	case BIOCSRTIMEOUT32:
1442 		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1443 			BPFD_LOCK(d);
1444 			d->bd_compat32 = 1;
1445 			BPFD_UNLOCK(d);
1446 		}
1447 	}
1448 #endif
1449 
1450 	CURVNET_SET(TD_TO_VNET(td));
1451 	switch (cmd) {
1452 	default:
1453 		error = EINVAL;
1454 		break;
1455 
1456 	/*
1457 	 * Check for read packet available.
1458 	 */
1459 	case FIONREAD:
1460 		{
1461 			int n;
1462 
1463 			BPFD_LOCK(d);
1464 			n = d->bd_slen;
1465 			while (d->bd_hbuf_in_use)
1466 				mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1467 				    PRINET, "bd_hbuf", 0);
1468 			if (d->bd_hbuf)
1469 				n += d->bd_hlen;
1470 			BPFD_UNLOCK(d);
1471 
1472 			*(int *)addr = n;
1473 			break;
1474 		}
1475 
1476 	/*
1477 	 * Get buffer len [for read()].
1478 	 */
1479 	case BIOCGBLEN:
1480 		BPFD_LOCK(d);
1481 		*(u_int *)addr = d->bd_bufsize;
1482 		BPFD_UNLOCK(d);
1483 		break;
1484 
1485 	/*
1486 	 * Set buffer length.
1487 	 */
1488 	case BIOCSBLEN:
1489 		error = bpf_ioctl_sblen(d, (u_int *)addr);
1490 		break;
1491 
1492 	/*
1493 	 * Set link layer read filter.
1494 	 */
1495 	case BIOCSETF:
1496 	case BIOCSETFNR:
1497 	case BIOCSETWF:
1498 #ifdef COMPAT_FREEBSD32
1499 	case BIOCSETF32:
1500 	case BIOCSETFNR32:
1501 	case BIOCSETWF32:
1502 #endif
1503 		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1504 		break;
1505 
1506 	/*
1507 	 * Flush read packet buffer.
1508 	 */
1509 	case BIOCFLUSH:
1510 		BPFD_LOCK(d);
1511 		reset_d(d);
1512 		BPFD_UNLOCK(d);
1513 		break;
1514 
1515 	/*
1516 	 * Put interface into promiscuous mode.
1517 	 */
1518 	case BIOCPROMISC:
1519 		BPF_LOCK();
1520 		if (d->bd_bif == NULL) {
1521 			/*
1522 			 * No interface attached yet.
1523 			 */
1524 			error = EINVAL;
1525 		} else if (d->bd_promisc == 0) {
1526 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1527 			if (error == 0)
1528 				d->bd_promisc = 1;
1529 		}
1530 		BPF_UNLOCK();
1531 		break;
1532 
1533 	/*
1534 	 * Get current data link type.
1535 	 */
1536 	case BIOCGDLT:
1537 		BPF_LOCK();
1538 		if (d->bd_bif == NULL)
1539 			error = EINVAL;
1540 		else
1541 			*(u_int *)addr = d->bd_bif->bif_dlt;
1542 		BPF_UNLOCK();
1543 		break;
1544 
1545 	/*
1546 	 * Get a list of supported data link types.
1547 	 */
1548 #ifdef COMPAT_FREEBSD32
1549 	case BIOCGDLTLIST32:
1550 		{
1551 			struct bpf_dltlist32 *list32;
1552 			struct bpf_dltlist dltlist;
1553 
1554 			list32 = (struct bpf_dltlist32 *)addr;
1555 			dltlist.bfl_len = list32->bfl_len;
1556 			dltlist.bfl_list = PTRIN(list32->bfl_list);
1557 			BPF_LOCK();
1558 			if (d->bd_bif == NULL)
1559 				error = EINVAL;
1560 			else {
1561 				error = bpf_getdltlist(d, &dltlist);
1562 				if (error == 0)
1563 					list32->bfl_len = dltlist.bfl_len;
1564 			}
1565 			BPF_UNLOCK();
1566 			break;
1567 		}
1568 #endif
1569 
1570 	case BIOCGDLTLIST:
1571 		BPF_LOCK();
1572 		if (d->bd_bif == NULL)
1573 			error = EINVAL;
1574 		else
1575 			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1576 		BPF_UNLOCK();
1577 		break;
1578 
1579 	/*
1580 	 * Set data link type.
1581 	 */
1582 	case BIOCSDLT:
1583 		BPF_LOCK();
1584 		if (d->bd_bif == NULL)
1585 			error = EINVAL;
1586 		else
1587 			error = bpf_setdlt(d, *(u_int *)addr);
1588 		BPF_UNLOCK();
1589 		break;
1590 
1591 	/*
1592 	 * Get interface name.
1593 	 */
1594 	case BIOCGETIF:
1595 		BPF_LOCK();
1596 		if (d->bd_bif == NULL)
1597 			error = EINVAL;
1598 		else {
1599 			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1600 			struct ifreq *const ifr = (struct ifreq *)addr;
1601 
1602 			strlcpy(ifr->ifr_name, ifp->if_xname,
1603 			    sizeof(ifr->ifr_name));
1604 		}
1605 		BPF_UNLOCK();
1606 		break;
1607 
1608 	/*
1609 	 * Set interface.
1610 	 */
1611 	case BIOCSETIF:
1612 		{
1613 			int alloc_buf, size;
1614 
1615 			/*
1616 			 * Behavior here depends on the buffering model.  If
1617 			 * we're using kernel memory buffers, then we can
1618 			 * allocate them here.  If we're using zero-copy,
1619 			 * then the user process must have registered buffers
1620 			 * by the time we get here.
1621 			 */
1622 			alloc_buf = 0;
1623 			BPFD_LOCK(d);
1624 			if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1625 			    d->bd_sbuf == NULL)
1626 				alloc_buf = 1;
1627 			BPFD_UNLOCK(d);
1628 			if (alloc_buf) {
1629 				size = d->bd_bufsize;
1630 				error = bpf_buffer_ioctl_sblen(d, &size);
1631 				if (error != 0)
1632 					break;
1633 			}
1634 			BPF_LOCK();
1635 			error = bpf_setif(d, (struct ifreq *)addr);
1636 			BPF_UNLOCK();
1637 			break;
1638 		}
1639 
1640 	/*
1641 	 * Set read timeout.
1642 	 */
1643 	case BIOCSRTIMEOUT:
1644 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1645 	case BIOCSRTIMEOUT32:
1646 #endif
1647 		{
1648 			struct timeval *tv = (struct timeval *)addr;
1649 #if defined(COMPAT_FREEBSD32)
1650 			struct timeval32 *tv32;
1651 			struct timeval tv64;
1652 
1653 			if (cmd == BIOCSRTIMEOUT32) {
1654 				tv32 = (struct timeval32 *)addr;
1655 				tv = &tv64;
1656 				tv->tv_sec = tv32->tv_sec;
1657 				tv->tv_usec = tv32->tv_usec;
1658 			} else
1659 #endif
1660 				tv = (struct timeval *)addr;
1661 
1662 			/*
1663 			 * Subtract 1 tick from tvtohz() since this isn't
1664 			 * a one-shot timer.
1665 			 */
1666 			if ((error = itimerfix(tv)) == 0)
1667 				d->bd_rtout = tvtohz(tv) - 1;
1668 			break;
1669 		}
1670 
1671 	/*
1672 	 * Get read timeout.
1673 	 */
1674 	case BIOCGRTIMEOUT:
1675 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1676 	case BIOCGRTIMEOUT32:
1677 #endif
1678 		{
1679 			struct timeval *tv;
1680 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1681 			struct timeval32 *tv32;
1682 			struct timeval tv64;
1683 
1684 			if (cmd == BIOCGRTIMEOUT32)
1685 				tv = &tv64;
1686 			else
1687 #endif
1688 				tv = (struct timeval *)addr;
1689 
1690 			tv->tv_sec = d->bd_rtout / hz;
1691 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1692 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1693 			if (cmd == BIOCGRTIMEOUT32) {
1694 				tv32 = (struct timeval32 *)addr;
1695 				tv32->tv_sec = tv->tv_sec;
1696 				tv32->tv_usec = tv->tv_usec;
1697 			}
1698 #endif
1699 
1700 			break;
1701 		}
1702 
1703 	/*
1704 	 * Get packet stats.
1705 	 */
1706 	case BIOCGSTATS:
1707 		{
1708 			struct bpf_stat *bs = (struct bpf_stat *)addr;
1709 
1710 			/* XXXCSJP overflow */
1711 			bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1712 			bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1713 			break;
1714 		}
1715 
1716 	/*
1717 	 * Set immediate mode.
1718 	 */
1719 	case BIOCIMMEDIATE:
1720 		BPFD_LOCK(d);
1721 		d->bd_immediate = *(u_int *)addr;
1722 		BPFD_UNLOCK(d);
1723 		break;
1724 
1725 	case BIOCVERSION:
1726 		{
1727 			struct bpf_version *bv = (struct bpf_version *)addr;
1728 
1729 			bv->bv_major = BPF_MAJOR_VERSION;
1730 			bv->bv_minor = BPF_MINOR_VERSION;
1731 			break;
1732 		}
1733 
1734 	/*
1735 	 * Get "header already complete" flag
1736 	 */
1737 	case BIOCGHDRCMPLT:
1738 		BPFD_LOCK(d);
1739 		*(u_int *)addr = d->bd_hdrcmplt;
1740 		BPFD_UNLOCK(d);
1741 		break;
1742 
1743 	/*
1744 	 * Set "header already complete" flag
1745 	 */
1746 	case BIOCSHDRCMPLT:
1747 		BPFD_LOCK(d);
1748 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1749 		BPFD_UNLOCK(d);
1750 		break;
1751 
1752 	/*
1753 	 * Get packet direction flag
1754 	 */
1755 	case BIOCGDIRECTION:
1756 		BPFD_LOCK(d);
1757 		*(u_int *)addr = d->bd_direction;
1758 		BPFD_UNLOCK(d);
1759 		break;
1760 
1761 	/*
1762 	 * Set packet direction flag
1763 	 */
1764 	case BIOCSDIRECTION:
1765 		{
1766 			u_int	direction;
1767 
1768 			direction = *(u_int *)addr;
1769 			switch (direction) {
1770 			case BPF_D_IN:
1771 			case BPF_D_INOUT:
1772 			case BPF_D_OUT:
1773 				BPFD_LOCK(d);
1774 				d->bd_direction = direction;
1775 				BPFD_UNLOCK(d);
1776 				break;
1777 			default:
1778 				error = EINVAL;
1779 			}
1780 		}
1781 		break;
1782 
1783 	/*
1784 	 * Get packet timestamp format and resolution.
1785 	 */
1786 	case BIOCGTSTAMP:
1787 		BPFD_LOCK(d);
1788 		*(u_int *)addr = d->bd_tstamp;
1789 		BPFD_UNLOCK(d);
1790 		break;
1791 
1792 	/*
1793 	 * Set packet timestamp format and resolution.
1794 	 */
1795 	case BIOCSTSTAMP:
1796 		{
1797 			u_int	func;
1798 
1799 			func = *(u_int *)addr;
1800 			if (BPF_T_VALID(func))
1801 				d->bd_tstamp = func;
1802 			else
1803 				error = EINVAL;
1804 		}
1805 		break;
1806 
1807 	case BIOCFEEDBACK:
1808 		BPFD_LOCK(d);
1809 		d->bd_feedback = *(u_int *)addr;
1810 		BPFD_UNLOCK(d);
1811 		break;
1812 
1813 	case BIOCLOCK:
1814 		BPFD_LOCK(d);
1815 		d->bd_locked = 1;
1816 		BPFD_UNLOCK(d);
1817 		break;
1818 
1819 	case FIONBIO:		/* Non-blocking I/O */
1820 		break;
1821 
1822 	case FIOASYNC:		/* Send signal on receive packets */
1823 		BPFD_LOCK(d);
1824 		d->bd_async = *(int *)addr;
1825 		BPFD_UNLOCK(d);
1826 		break;
1827 
1828 	case FIOSETOWN:
1829 		/*
1830 		 * XXX: Add some sort of locking here?
1831 		 * fsetown() can sleep.
1832 		 */
1833 		error = fsetown(*(int *)addr, &d->bd_sigio);
1834 		break;
1835 
1836 	case FIOGETOWN:
1837 		BPFD_LOCK(d);
1838 		*(int *)addr = fgetown(&d->bd_sigio);
1839 		BPFD_UNLOCK(d);
1840 		break;
1841 
1842 	/* This is deprecated, FIOSETOWN should be used instead. */
1843 	case TIOCSPGRP:
1844 		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1845 		break;
1846 
1847 	/* This is deprecated, FIOGETOWN should be used instead. */
1848 	case TIOCGPGRP:
1849 		*(int *)addr = -fgetown(&d->bd_sigio);
1850 		break;
1851 
1852 	case BIOCSRSIG:		/* Set receive signal */
1853 		{
1854 			u_int sig;
1855 
1856 			sig = *(u_int *)addr;
1857 
1858 			if (sig >= NSIG)
1859 				error = EINVAL;
1860 			else {
1861 				BPFD_LOCK(d);
1862 				d->bd_sig = sig;
1863 				BPFD_UNLOCK(d);
1864 			}
1865 			break;
1866 		}
1867 	case BIOCGRSIG:
1868 		BPFD_LOCK(d);
1869 		*(u_int *)addr = d->bd_sig;
1870 		BPFD_UNLOCK(d);
1871 		break;
1872 
1873 	case BIOCGETBUFMODE:
1874 		BPFD_LOCK(d);
1875 		*(u_int *)addr = d->bd_bufmode;
1876 		BPFD_UNLOCK(d);
1877 		break;
1878 
1879 	case BIOCSETBUFMODE:
1880 		/*
1881 		 * Allow the buffering mode to be changed as long as we
1882 		 * haven't yet committed to a particular mode.  Our
1883 		 * definition of commitment, for now, is whether or not a
1884 		 * buffer has been allocated or an interface attached, since
1885 		 * that's the point where things get tricky.
1886 		 */
1887 		switch (*(u_int *)addr) {
1888 		case BPF_BUFMODE_BUFFER:
1889 			break;
1890 
1891 		case BPF_BUFMODE_ZBUF:
1892 			if (bpf_zerocopy_enable)
1893 				break;
1894 			/* FALLSTHROUGH */
1895 
1896 		default:
1897 			CURVNET_RESTORE();
1898 			return (EINVAL);
1899 		}
1900 
1901 		BPFD_LOCK(d);
1902 		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1903 		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1904 			BPFD_UNLOCK(d);
1905 			CURVNET_RESTORE();
1906 			return (EBUSY);
1907 		}
1908 		d->bd_bufmode = *(u_int *)addr;
1909 		BPFD_UNLOCK(d);
1910 		break;
1911 
1912 	case BIOCGETZMAX:
1913 		error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1914 		break;
1915 
1916 	case BIOCSETZBUF:
1917 		error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1918 		break;
1919 
1920 	case BIOCROTZBUF:
1921 		error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1922 		break;
1923 
1924 	case BIOCSETVLANPCP:
1925 		{
1926 			u_int pcp;
1927 
1928 			pcp = *(u_int *)addr;
1929 			if (pcp > BPF_PRIO_MAX || pcp < 0) {
1930 				error = EINVAL;
1931 				break;
1932 			}
1933 			d->bd_pcp = pcp;
1934 			break;
1935 		}
1936 	}
1937 	CURVNET_RESTORE();
1938 	return (error);
1939 }
1940 
1941 /*
1942  * Set d's packet filter program to fp. If this file already has a filter,
1943  * free it and replace it. Returns EINVAL for bogus requests.
1944  *
1945  * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1946  * calls.
1947  */
1948 static int
bpf_setf(struct bpf_d * d,struct bpf_program * fp,u_long cmd)1949 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1950 {
1951 #ifdef COMPAT_FREEBSD32
1952 	struct bpf_program fp_swab;
1953 	struct bpf_program32 *fp32;
1954 #endif
1955 	struct bpf_program_buffer *fcode;
1956 	struct bpf_insn *filter;
1957 #ifdef BPF_JITTER
1958 	bpf_jit_filter *jfunc;
1959 #endif
1960 	size_t size;
1961 	u_int flen;
1962 	bool track_event;
1963 
1964 #ifdef COMPAT_FREEBSD32
1965 	switch (cmd) {
1966 	case BIOCSETF32:
1967 	case BIOCSETWF32:
1968 	case BIOCSETFNR32:
1969 		fp32 = (struct bpf_program32 *)fp;
1970 		fp_swab.bf_len = fp32->bf_len;
1971 		fp_swab.bf_insns =
1972 		    (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1973 		fp = &fp_swab;
1974 		switch (cmd) {
1975 		case BIOCSETF32:
1976 			cmd = BIOCSETF;
1977 			break;
1978 		case BIOCSETWF32:
1979 			cmd = BIOCSETWF;
1980 			break;
1981 		}
1982 		break;
1983 	}
1984 #endif
1985 
1986 	filter = NULL;
1987 #ifdef BPF_JITTER
1988 	jfunc = NULL;
1989 #endif
1990 	/*
1991 	 * Check new filter validness before acquiring any locks.
1992 	 * Allocate memory for new filter, if needed.
1993 	 */
1994 	flen = fp->bf_len;
1995 	if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1996 		return (EINVAL);
1997 	size = flen * sizeof(*fp->bf_insns);
1998 	if (size > 0) {
1999 		/* We're setting up new filter. Copy and check actual data. */
2000 		fcode = bpf_program_buffer_alloc(size, M_WAITOK);
2001 		filter = (struct bpf_insn *)fcode->buffer;
2002 		if (copyin(fp->bf_insns, filter, size) != 0 ||
2003 		    !bpf_validate(filter, flen)) {
2004 			free(fcode, M_BPF);
2005 			return (EINVAL);
2006 		}
2007 #ifdef BPF_JITTER
2008 		if (cmd != BIOCSETWF) {
2009 			/*
2010 			 * Filter is copied inside fcode and is
2011 			 * perfectly valid.
2012 			 */
2013 			jfunc = bpf_jitter(filter, flen);
2014 		}
2015 #endif
2016 	}
2017 
2018 	track_event = false;
2019 	fcode = NULL;
2020 
2021 	BPF_LOCK();
2022 	BPFD_LOCK(d);
2023 	/* Set up new filter. */
2024 	if (cmd == BIOCSETWF) {
2025 		if (d->bd_wfilter != NULL) {
2026 			fcode = __containerof((void *)d->bd_wfilter,
2027 			    struct bpf_program_buffer, buffer);
2028 #ifdef BPF_JITTER
2029 			fcode->func = NULL;
2030 #endif
2031 		}
2032 		d->bd_wfilter = filter;
2033 	} else {
2034 		if (d->bd_rfilter != NULL) {
2035 			fcode = __containerof((void *)d->bd_rfilter,
2036 			    struct bpf_program_buffer, buffer);
2037 #ifdef BPF_JITTER
2038 			fcode->func = d->bd_bfilter;
2039 #endif
2040 		}
2041 		d->bd_rfilter = filter;
2042 #ifdef BPF_JITTER
2043 		d->bd_bfilter = jfunc;
2044 #endif
2045 		if (cmd == BIOCSETF)
2046 			reset_d(d);
2047 
2048 		if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2049 			/*
2050 			 * Filter can be set several times without
2051 			 * specifying interface. In this case just mark d
2052 			 * as reader.
2053 			 */
2054 			d->bd_writer = 0;
2055 			if (d->bd_bif != NULL) {
2056 				/*
2057 				 * Remove descriptor from writers-only list
2058 				 * and add it to active readers list.
2059 				 */
2060 				CK_LIST_REMOVE(d, bd_next);
2061 				CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2062 				    d, bd_next);
2063 				CTR2(KTR_NET,
2064 				    "%s: upgrade required by pid %d",
2065 				    __func__, d->bd_pid);
2066 				track_event = true;
2067 			}
2068 		}
2069 	}
2070 	BPFD_UNLOCK(d);
2071 
2072 	if (fcode != NULL)
2073 		NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx);
2074 
2075 	if (track_event)
2076 		EVENTHANDLER_INVOKE(bpf_track,
2077 		    d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2078 
2079 	BPF_UNLOCK();
2080 	return (0);
2081 }
2082 
2083 /*
2084  * Detach a file from its current interface (if attached at all) and attach
2085  * to the interface indicated by the name stored in ifr.
2086  * Return an errno or 0.
2087  */
2088 static int
bpf_setif(struct bpf_d * d,struct ifreq * ifr)2089 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2090 {
2091 	struct bpf_if *bp;
2092 	struct ifnet *theywant;
2093 
2094 	BPF_LOCK_ASSERT();
2095 
2096 	theywant = ifunit(ifr->ifr_name);
2097 	if (theywant == NULL)
2098 		return (ENXIO);
2099 	/*
2100 	 * Look through attached interfaces for the named one.
2101 	 */
2102 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2103 		if (bp->bif_ifp == theywant &&
2104 		    bp->bif_bpf == &theywant->if_bpf)
2105 			break;
2106 	}
2107 	if (bp == NULL)
2108 		return (ENXIO);
2109 
2110 	MPASS(bp == theywant->if_bpf);
2111 	/*
2112 	 * At this point, we expect the buffer is already allocated.  If not,
2113 	 * return an error.
2114 	 */
2115 	switch (d->bd_bufmode) {
2116 	case BPF_BUFMODE_BUFFER:
2117 	case BPF_BUFMODE_ZBUF:
2118 		if (d->bd_sbuf == NULL)
2119 			return (EINVAL);
2120 		break;
2121 
2122 	default:
2123 		panic("bpf_setif: bufmode %d", d->bd_bufmode);
2124 	}
2125 	if (bp != d->bd_bif)
2126 		bpf_attachd(d, bp);
2127 	else {
2128 		BPFD_LOCK(d);
2129 		reset_d(d);
2130 		BPFD_UNLOCK(d);
2131 	}
2132 	return (0);
2133 }
2134 
2135 /*
2136  * Support for select() and poll() system calls
2137  *
2138  * Return true iff the specific operation will not block indefinitely.
2139  * Otherwise, return false but make a note that a selwakeup() must be done.
2140  */
2141 static int
bpfpoll(struct cdev * dev,int events,struct thread * td)2142 bpfpoll(struct cdev *dev, int events, struct thread *td)
2143 {
2144 	struct bpf_d *d;
2145 	int revents;
2146 
2147 	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2148 		return (events &
2149 		    (POLLHUP | POLLIN | POLLRDNORM | POLLOUT | POLLWRNORM));
2150 
2151 	/*
2152 	 * Refresh PID associated with this descriptor.
2153 	 */
2154 	revents = events & (POLLOUT | POLLWRNORM);
2155 	BPFD_LOCK(d);
2156 	BPF_PID_REFRESH(d, td);
2157 	if (events & (POLLIN | POLLRDNORM)) {
2158 		if (bpf_ready(d))
2159 			revents |= events & (POLLIN | POLLRDNORM);
2160 		else {
2161 			selrecord(td, &d->bd_sel);
2162 			/* Start the read timeout if necessary. */
2163 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2164 				callout_reset(&d->bd_callout, d->bd_rtout,
2165 				    bpf_timed_out, d);
2166 				d->bd_state = BPF_WAITING;
2167 			}
2168 		}
2169 	}
2170 	BPFD_UNLOCK(d);
2171 	return (revents);
2172 }
2173 
2174 /*
2175  * Support for kevent() system call.  Register EVFILT_READ filters and
2176  * reject all others.
2177  */
2178 int
bpfkqfilter(struct cdev * dev,struct knote * kn)2179 bpfkqfilter(struct cdev *dev, struct knote *kn)
2180 {
2181 	struct bpf_d *d;
2182 
2183 	if (devfs_get_cdevpriv((void **)&d) != 0)
2184 		return (1);
2185 
2186 	switch (kn->kn_filter) {
2187 	case EVFILT_READ:
2188 		kn->kn_fop = &bpfread_filtops;
2189 		break;
2190 
2191 	case EVFILT_WRITE:
2192 		kn->kn_fop = &bpfwrite_filtops;
2193 		break;
2194 
2195 	default:
2196 		return (1);
2197 	}
2198 
2199 	/*
2200 	 * Refresh PID associated with this descriptor.
2201 	 */
2202 	BPFD_LOCK(d);
2203 	BPF_PID_REFRESH_CUR(d);
2204 	kn->kn_hook = d;
2205 	knlist_add(&d->bd_sel.si_note, kn, 1);
2206 	BPFD_UNLOCK(d);
2207 
2208 	return (0);
2209 }
2210 
2211 static void
filt_bpfdetach(struct knote * kn)2212 filt_bpfdetach(struct knote *kn)
2213 {
2214 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2215 
2216 	knlist_remove(&d->bd_sel.si_note, kn, 0);
2217 }
2218 
2219 static int
filt_bpfread(struct knote * kn,long hint)2220 filt_bpfread(struct knote *kn, long hint)
2221 {
2222 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2223 	int ready;
2224 
2225 	BPFD_LOCK_ASSERT(d);
2226 	ready = bpf_ready(d);
2227 	if (ready) {
2228 		kn->kn_data = d->bd_slen;
2229 		/*
2230 		 * Ignore the hold buffer if it is being copied to user space.
2231 		 */
2232 		if (!d->bd_hbuf_in_use && d->bd_hbuf)
2233 			kn->kn_data += d->bd_hlen;
2234 	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2235 		callout_reset(&d->bd_callout, d->bd_rtout,
2236 		    bpf_timed_out, d);
2237 		d->bd_state = BPF_WAITING;
2238 	}
2239 
2240 	return (ready);
2241 }
2242 
2243 static int
filt_bpfwrite(struct knote * kn,long hint)2244 filt_bpfwrite(struct knote *kn, long hint)
2245 {
2246 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2247 
2248 	BPFD_LOCK_ASSERT(d);
2249 
2250 	if (d->bd_bif == NULL) {
2251 		kn->kn_data = 0;
2252 		return (0);
2253 	} else {
2254 		kn->kn_data = d->bd_bif->bif_ifp->if_mtu;
2255 		return (1);
2256 	}
2257 }
2258 
2259 #define	BPF_TSTAMP_NONE		0
2260 #define	BPF_TSTAMP_FAST		1
2261 #define	BPF_TSTAMP_NORMAL	2
2262 #define	BPF_TSTAMP_EXTERN	3
2263 
2264 static int
bpf_ts_quality(int tstype)2265 bpf_ts_quality(int tstype)
2266 {
2267 
2268 	if (tstype == BPF_T_NONE)
2269 		return (BPF_TSTAMP_NONE);
2270 	if ((tstype & BPF_T_FAST) != 0)
2271 		return (BPF_TSTAMP_FAST);
2272 
2273 	return (BPF_TSTAMP_NORMAL);
2274 }
2275 
2276 static int
bpf_gettime(struct bintime * bt,int tstype,struct mbuf * m)2277 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2278 {
2279 	struct timespec ts;
2280 	struct m_tag *tag;
2281 	int quality;
2282 
2283 	quality = bpf_ts_quality(tstype);
2284 	if (quality == BPF_TSTAMP_NONE)
2285 		return (quality);
2286 
2287 	if (m != NULL) {
2288 		if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) {
2289 			mbuf_tstmp2timespec(m, &ts);
2290 			timespec2bintime(&ts, bt);
2291 			return (BPF_TSTAMP_EXTERN);
2292 		}
2293 		tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2294 		if (tag != NULL) {
2295 			*bt = *(struct bintime *)(tag + 1);
2296 			return (BPF_TSTAMP_EXTERN);
2297 		}
2298 	}
2299 	if (quality == BPF_TSTAMP_NORMAL)
2300 		binuptime(bt);
2301 	else
2302 		getbinuptime(bt);
2303 
2304 	return (quality);
2305 }
2306 
2307 /*
2308  * Incoming linkage from device drivers.  Process the packet pkt, of length
2309  * pktlen, which is stored in a contiguous buffer.  The packet is parsed
2310  * by each process' filter, and if accepted, stashed into the corresponding
2311  * buffer.
2312  */
2313 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)2314 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2315 {
2316 	struct epoch_tracker et;
2317 	struct bintime bt;
2318 	struct bpf_d *d;
2319 #ifdef BPF_JITTER
2320 	bpf_jit_filter *bf;
2321 #endif
2322 	u_int slen;
2323 	int gottime;
2324 
2325 	gottime = BPF_TSTAMP_NONE;
2326 	NET_EPOCH_ENTER(et);
2327 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2328 		counter_u64_add(d->bd_rcount, 1);
2329 		/*
2330 		 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2331 		 * is no way for the caller to indiciate to us whether this
2332 		 * packet is inbound or outbound. In the bpf_mtap() routines,
2333 		 * we use the interface pointers on the mbuf to figure it out.
2334 		 */
2335 #ifdef BPF_JITTER
2336 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2337 		if (bf != NULL)
2338 			slen = (*(bf->func))(pkt, pktlen, pktlen);
2339 		else
2340 #endif
2341 		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2342 		if (slen != 0) {
2343 			/*
2344 			 * Filter matches. Let's to acquire write lock.
2345 			 */
2346 			BPFD_LOCK(d);
2347 			counter_u64_add(d->bd_fcount, 1);
2348 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2349 				gottime = bpf_gettime(&bt, d->bd_tstamp,
2350 				    NULL);
2351 #ifdef MAC
2352 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2353 #endif
2354 				catchpacket(d, pkt, pktlen, slen,
2355 				    bpf_append_bytes, &bt);
2356 			BPFD_UNLOCK(d);
2357 		}
2358 	}
2359 	NET_EPOCH_EXIT(et);
2360 }
2361 
2362 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)2363 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
2364 {
2365 	if (bpf_peers_present(ifp->if_bpf))
2366 		bpf_tap(ifp->if_bpf, pkt, pktlen);
2367 }
2368 
2369 #define	BPF_CHECK_DIRECTION(d, r, i)				\
2370 	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
2371 	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2372 
2373 /*
2374  * Incoming linkage from device drivers, when packet is in an mbuf chain.
2375  * Locking model is explained in bpf_tap().
2376  */
2377 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)2378 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2379 {
2380 	struct epoch_tracker et;
2381 	struct bintime bt;
2382 	struct bpf_d *d;
2383 #ifdef BPF_JITTER
2384 	bpf_jit_filter *bf;
2385 #endif
2386 	u_int pktlen, slen;
2387 	int gottime;
2388 
2389 	/* Skip outgoing duplicate packets. */
2390 	if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) {
2391 		m->m_flags &= ~M_PROMISC;
2392 		return;
2393 	}
2394 
2395 	pktlen = m_length(m, NULL);
2396 	gottime = BPF_TSTAMP_NONE;
2397 
2398 	NET_EPOCH_ENTER(et);
2399 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2400 		if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp))
2401 			continue;
2402 		counter_u64_add(d->bd_rcount, 1);
2403 #ifdef BPF_JITTER
2404 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2405 		/* XXX We cannot handle multiple mbufs. */
2406 		if (bf != NULL && m->m_next == NULL)
2407 			slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2408 			    pktlen);
2409 		else
2410 #endif
2411 		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2412 		if (slen != 0) {
2413 			BPFD_LOCK(d);
2414 
2415 			counter_u64_add(d->bd_fcount, 1);
2416 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2417 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2418 #ifdef MAC
2419 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2420 #endif
2421 				catchpacket(d, (u_char *)m, pktlen, slen,
2422 				    bpf_append_mbuf, &bt);
2423 			BPFD_UNLOCK(d);
2424 		}
2425 	}
2426 	NET_EPOCH_EXIT(et);
2427 }
2428 
2429 void
bpf_mtap_if(if_t ifp,struct mbuf * m)2430 bpf_mtap_if(if_t ifp, struct mbuf *m)
2431 {
2432 	if (bpf_peers_present(ifp->if_bpf)) {
2433 		M_ASSERTVALID(m);
2434 		bpf_mtap(ifp->if_bpf, m);
2435 	}
2436 }
2437 
2438 /*
2439  * Incoming linkage from device drivers, when packet is in
2440  * an mbuf chain and to be prepended by a contiguous header.
2441  */
2442 void
bpf_mtap2(struct bpf_if * bp,void * data,u_int dlen,struct mbuf * m)2443 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2444 {
2445 	struct epoch_tracker et;
2446 	struct bintime bt;
2447 	struct mbuf mb;
2448 	struct bpf_d *d;
2449 	u_int pktlen, slen;
2450 	int gottime;
2451 
2452 	/* Skip outgoing duplicate packets. */
2453 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2454 		m->m_flags &= ~M_PROMISC;
2455 		return;
2456 	}
2457 
2458 	pktlen = m_length(m, NULL);
2459 	/*
2460 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
2461 	 * Note that we cut corners here; we only setup what's
2462 	 * absolutely needed--this mbuf should never go anywhere else.
2463 	 */
2464 	mb.m_flags = 0;
2465 	mb.m_next = m;
2466 	mb.m_data = data;
2467 	mb.m_len = dlen;
2468 	pktlen += dlen;
2469 
2470 	gottime = BPF_TSTAMP_NONE;
2471 
2472 	NET_EPOCH_ENTER(et);
2473 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2474 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2475 			continue;
2476 		counter_u64_add(d->bd_rcount, 1);
2477 		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2478 		if (slen != 0) {
2479 			BPFD_LOCK(d);
2480 
2481 			counter_u64_add(d->bd_fcount, 1);
2482 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2483 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2484 #ifdef MAC
2485 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2486 #endif
2487 				catchpacket(d, (u_char *)&mb, pktlen, slen,
2488 				    bpf_append_mbuf, &bt);
2489 			BPFD_UNLOCK(d);
2490 		}
2491 	}
2492 	NET_EPOCH_EXIT(et);
2493 }
2494 
2495 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)2496 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
2497 {
2498 	if (bpf_peers_present(ifp->if_bpf)) {
2499 		M_ASSERTVALID(m);
2500 		bpf_mtap2(ifp->if_bpf, data, dlen, m);
2501 	}
2502 }
2503 
2504 #undef	BPF_CHECK_DIRECTION
2505 #undef	BPF_TSTAMP_NONE
2506 #undef	BPF_TSTAMP_FAST
2507 #undef	BPF_TSTAMP_NORMAL
2508 #undef	BPF_TSTAMP_EXTERN
2509 
2510 static int
bpf_hdrlen(struct bpf_d * d)2511 bpf_hdrlen(struct bpf_d *d)
2512 {
2513 	int hdrlen;
2514 
2515 	hdrlen = d->bd_bif->bif_hdrlen;
2516 #ifndef BURN_BRIDGES
2517 	if (d->bd_tstamp == BPF_T_NONE ||
2518 	    BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2519 #ifdef COMPAT_FREEBSD32
2520 		if (d->bd_compat32)
2521 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2522 		else
2523 #endif
2524 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2525 	else
2526 #endif
2527 		hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2528 #ifdef COMPAT_FREEBSD32
2529 	if (d->bd_compat32)
2530 		hdrlen = BPF_WORDALIGN32(hdrlen);
2531 	else
2532 #endif
2533 		hdrlen = BPF_WORDALIGN(hdrlen);
2534 
2535 	return (hdrlen - d->bd_bif->bif_hdrlen);
2536 }
2537 
2538 static void
bpf_bintime2ts(struct bintime * bt,struct bpf_ts * ts,int tstype)2539 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2540 {
2541 	struct bintime bt2, boottimebin;
2542 	struct timeval tsm;
2543 	struct timespec tsn;
2544 
2545 	if ((tstype & BPF_T_MONOTONIC) == 0) {
2546 		bt2 = *bt;
2547 		getboottimebin(&boottimebin);
2548 		bintime_add(&bt2, &boottimebin);
2549 		bt = &bt2;
2550 	}
2551 	switch (BPF_T_FORMAT(tstype)) {
2552 	case BPF_T_MICROTIME:
2553 		bintime2timeval(bt, &tsm);
2554 		ts->bt_sec = tsm.tv_sec;
2555 		ts->bt_frac = tsm.tv_usec;
2556 		break;
2557 	case BPF_T_NANOTIME:
2558 		bintime2timespec(bt, &tsn);
2559 		ts->bt_sec = tsn.tv_sec;
2560 		ts->bt_frac = tsn.tv_nsec;
2561 		break;
2562 	case BPF_T_BINTIME:
2563 		ts->bt_sec = bt->sec;
2564 		ts->bt_frac = bt->frac;
2565 		break;
2566 	}
2567 }
2568 
2569 /*
2570  * Move the packet data from interface memory (pkt) into the
2571  * store buffer.  "cpfn" is the routine called to do the actual data
2572  * transfer.  bcopy is passed in to copy contiguous chunks, while
2573  * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
2574  * pkt is really an mbuf.
2575  */
2576 static void
catchpacket(struct bpf_d * d,u_char * pkt,u_int pktlen,u_int snaplen,void (* cpfn)(struct bpf_d *,caddr_t,u_int,void *,u_int),struct bintime * bt)2577 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2578     void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2579     struct bintime *bt)
2580 {
2581 	static char zeroes[BPF_ALIGNMENT];
2582 	struct bpf_xhdr hdr;
2583 #ifndef BURN_BRIDGES
2584 	struct bpf_hdr hdr_old;
2585 #ifdef COMPAT_FREEBSD32
2586 	struct bpf_hdr32 hdr32_old;
2587 #endif
2588 #endif
2589 	int caplen, curlen, hdrlen, pad, totlen;
2590 	int do_wakeup = 0;
2591 	int do_timestamp;
2592 	int tstype;
2593 
2594 	BPFD_LOCK_ASSERT(d);
2595 	if (d->bd_bif == NULL) {
2596 		/* Descriptor was detached in concurrent thread */
2597 		counter_u64_add(d->bd_dcount, 1);
2598 		return;
2599 	}
2600 
2601 	/*
2602 	 * Detect whether user space has released a buffer back to us, and if
2603 	 * so, move it from being a hold buffer to a free buffer.  This may
2604 	 * not be the best place to do it (for example, we might only want to
2605 	 * run this check if we need the space), but for now it's a reliable
2606 	 * spot to do it.
2607 	 */
2608 	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2609 		d->bd_fbuf = d->bd_hbuf;
2610 		d->bd_hbuf = NULL;
2611 		d->bd_hlen = 0;
2612 		bpf_buf_reclaimed(d);
2613 	}
2614 
2615 	/*
2616 	 * Figure out how many bytes to move.  If the packet is
2617 	 * greater or equal to the snapshot length, transfer that
2618 	 * much.  Otherwise, transfer the whole packet (unless
2619 	 * we hit the buffer size limit).
2620 	 */
2621 	hdrlen = bpf_hdrlen(d);
2622 	totlen = hdrlen + min(snaplen, pktlen);
2623 	if (totlen > d->bd_bufsize)
2624 		totlen = d->bd_bufsize;
2625 
2626 	/*
2627 	 * Round up the end of the previous packet to the next longword.
2628 	 *
2629 	 * Drop the packet if there's no room and no hope of room
2630 	 * If the packet would overflow the storage buffer or the storage
2631 	 * buffer is considered immutable by the buffer model, try to rotate
2632 	 * the buffer and wakeup pending processes.
2633 	 */
2634 #ifdef COMPAT_FREEBSD32
2635 	if (d->bd_compat32)
2636 		curlen = BPF_WORDALIGN32(d->bd_slen);
2637 	else
2638 #endif
2639 		curlen = BPF_WORDALIGN(d->bd_slen);
2640 	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2641 		if (d->bd_fbuf == NULL) {
2642 			/*
2643 			 * There's no room in the store buffer, and no
2644 			 * prospect of room, so drop the packet.  Notify the
2645 			 * buffer model.
2646 			 */
2647 			bpf_buffull(d);
2648 			counter_u64_add(d->bd_dcount, 1);
2649 			return;
2650 		}
2651 		KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2652 		ROTATE_BUFFERS(d);
2653 		do_wakeup = 1;
2654 		curlen = 0;
2655 	} else {
2656 		if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2657 			/*
2658 			 * Immediate mode is set, or the read timeout has
2659 			 * already expired during a select call.  A packet
2660 			 * arrived, so the reader should be woken up.
2661 			 */
2662 			do_wakeup = 1;
2663 		}
2664 		pad = curlen - d->bd_slen;
2665 		KASSERT(pad >= 0 && pad <= sizeof(zeroes),
2666 		    ("%s: invalid pad byte count %d", __func__, pad));
2667 		if (pad > 0) {
2668 			/* Zero pad bytes. */
2669 			bpf_append_bytes(d, d->bd_sbuf, d->bd_slen, zeroes,
2670 			    pad);
2671 		}
2672 	}
2673 
2674 	caplen = totlen - hdrlen;
2675 	tstype = d->bd_tstamp;
2676 	do_timestamp = tstype != BPF_T_NONE;
2677 #ifndef BURN_BRIDGES
2678 	if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2679 		struct bpf_ts ts;
2680 		if (do_timestamp)
2681 			bpf_bintime2ts(bt, &ts, tstype);
2682 #ifdef COMPAT_FREEBSD32
2683 		if (d->bd_compat32) {
2684 			bzero(&hdr32_old, sizeof(hdr32_old));
2685 			if (do_timestamp) {
2686 				hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2687 				hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2688 			}
2689 			hdr32_old.bh_datalen = pktlen;
2690 			hdr32_old.bh_hdrlen = hdrlen;
2691 			hdr32_old.bh_caplen = caplen;
2692 			bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2693 			    sizeof(hdr32_old));
2694 			goto copy;
2695 		}
2696 #endif
2697 		bzero(&hdr_old, sizeof(hdr_old));
2698 		if (do_timestamp) {
2699 			hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2700 			hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2701 		}
2702 		hdr_old.bh_datalen = pktlen;
2703 		hdr_old.bh_hdrlen = hdrlen;
2704 		hdr_old.bh_caplen = caplen;
2705 		bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2706 		    sizeof(hdr_old));
2707 		goto copy;
2708 	}
2709 #endif
2710 
2711 	/*
2712 	 * Append the bpf header.  Note we append the actual header size, but
2713 	 * move forward the length of the header plus padding.
2714 	 */
2715 	bzero(&hdr, sizeof(hdr));
2716 	if (do_timestamp)
2717 		bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2718 	hdr.bh_datalen = pktlen;
2719 	hdr.bh_hdrlen = hdrlen;
2720 	hdr.bh_caplen = caplen;
2721 	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2722 
2723 	/*
2724 	 * Copy the packet data into the store buffer and update its length.
2725 	 */
2726 #ifndef BURN_BRIDGES
2727 copy:
2728 #endif
2729 	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2730 	d->bd_slen = curlen + totlen;
2731 
2732 	if (do_wakeup)
2733 		bpf_wakeup(d);
2734 }
2735 
2736 /*
2737  * Free buffers currently in use by a descriptor.
2738  * Called on close.
2739  */
2740 static void
bpfd_free(epoch_context_t ctx)2741 bpfd_free(epoch_context_t ctx)
2742 {
2743 	struct bpf_d *d;
2744 	struct bpf_program_buffer *p;
2745 
2746 	/*
2747 	 * We don't need to lock out interrupts since this descriptor has
2748 	 * been detached from its interface and it yet hasn't been marked
2749 	 * free.
2750 	 */
2751 	d = __containerof(ctx, struct bpf_d, epoch_ctx);
2752 	bpf_free(d);
2753 	if (d->bd_rfilter != NULL) {
2754 		p = __containerof((void *)d->bd_rfilter,
2755 		    struct bpf_program_buffer, buffer);
2756 #ifdef BPF_JITTER
2757 		p->func = d->bd_bfilter;
2758 #endif
2759 		bpf_program_buffer_free(&p->epoch_ctx);
2760 	}
2761 	if (d->bd_wfilter != NULL) {
2762 		p = __containerof((void *)d->bd_wfilter,
2763 		    struct bpf_program_buffer, buffer);
2764 #ifdef BPF_JITTER
2765 		p->func = NULL;
2766 #endif
2767 		bpf_program_buffer_free(&p->epoch_ctx);
2768 	}
2769 
2770 	mtx_destroy(&d->bd_lock);
2771 	counter_u64_free(d->bd_rcount);
2772 	counter_u64_free(d->bd_dcount);
2773 	counter_u64_free(d->bd_fcount);
2774 	counter_u64_free(d->bd_wcount);
2775 	counter_u64_free(d->bd_wfcount);
2776 	counter_u64_free(d->bd_wdcount);
2777 	counter_u64_free(d->bd_zcopy);
2778 	free(d, M_BPF);
2779 }
2780 
2781 /*
2782  * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
2783  * fixed size of the link header (variable length headers not yet supported).
2784  */
2785 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)2786 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2787 {
2788 
2789 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2790 }
2791 
2792 /*
2793  * Attach an interface to bpf.  ifp is a pointer to the structure
2794  * defining the interface to be attached, dlt is the link layer type,
2795  * and hdrlen is the fixed size of the link header (variable length
2796  * headers are not yet supporrted).
2797  */
2798 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)2799 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2800     struct bpf_if **driverp)
2801 {
2802 	struct bpf_if *bp;
2803 
2804 	KASSERT(*driverp == NULL,
2805 	    ("bpfattach2: driverp already initialized"));
2806 
2807 	bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2808 
2809 	CK_LIST_INIT(&bp->bif_dlist);
2810 	CK_LIST_INIT(&bp->bif_wlist);
2811 	bp->bif_ifp = ifp;
2812 	bp->bif_dlt = dlt;
2813 	bp->bif_hdrlen = hdrlen;
2814 	bp->bif_bpf = driverp;
2815 	refcount_init(&bp->bif_refcnt, 1);
2816 	*driverp = bp;
2817 	/*
2818 	 * Reference ifnet pointer, so it won't freed until
2819 	 * we release it.
2820 	 */
2821 	if_ref(ifp);
2822 	BPF_LOCK();
2823 	CK_LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2824 	BPF_UNLOCK();
2825 
2826 	if (bootverbose && IS_DEFAULT_VNET(curvnet))
2827 		if_printf(ifp, "bpf attached\n");
2828 }
2829 
2830 #ifdef VIMAGE
2831 /*
2832  * When moving interfaces between vnet instances we need a way to
2833  * query the dlt and hdrlen before detach so we can re-attch the if_bpf
2834  * after the vmove.  We unfortunately have no device driver infrastructure
2835  * to query the interface for these values after creation/attach, thus
2836  * add this as a workaround.
2837  */
2838 int
bpf_get_bp_params(struct bpf_if * bp,u_int * bif_dlt,u_int * bif_hdrlen)2839 bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
2840 {
2841 
2842 	if (bp == NULL)
2843 		return (ENXIO);
2844 	if (bif_dlt == NULL && bif_hdrlen == NULL)
2845 		return (0);
2846 
2847 	if (bif_dlt != NULL)
2848 		*bif_dlt = bp->bif_dlt;
2849 	if (bif_hdrlen != NULL)
2850 		*bif_hdrlen = bp->bif_hdrlen;
2851 
2852 	return (0);
2853 }
2854 
2855 /*
2856  * Detach descriptors on interface's vmove event.
2857  */
2858 void
bpf_ifdetach(struct ifnet * ifp)2859 bpf_ifdetach(struct ifnet *ifp)
2860 {
2861 	struct bpf_if *bp;
2862 	struct bpf_d *d;
2863 
2864 	BPF_LOCK();
2865 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2866 		if (bp->bif_ifp != ifp)
2867 			continue;
2868 
2869 		/* Detach common descriptors */
2870 		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2871 			bpf_detachd_locked(d, true);
2872 		}
2873 
2874 		/* Detach writer-only descriptors */
2875 		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2876 			bpf_detachd_locked(d, true);
2877 		}
2878 	}
2879 	BPF_UNLOCK();
2880 }
2881 #endif
2882 
2883 /*
2884  * Detach bpf from an interface. This involves detaching each descriptor
2885  * associated with the interface. Notify each descriptor as it's detached
2886  * so that any sleepers wake up and get ENXIO.
2887  */
2888 void
bpfdetach(struct ifnet * ifp)2889 bpfdetach(struct ifnet *ifp)
2890 {
2891 	struct bpf_if *bp, *bp_temp;
2892 	struct bpf_d *d;
2893 
2894 	BPF_LOCK();
2895 	/* Find all bpf_if struct's which reference ifp and detach them. */
2896 	CK_LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2897 		if (ifp != bp->bif_ifp)
2898 			continue;
2899 
2900 		CK_LIST_REMOVE(bp, bif_next);
2901 		*bp->bif_bpf = __DECONST(struct bpf_if *, &dead_bpf_if);
2902 
2903 		CTR4(KTR_NET,
2904 		    "%s: sheduling free for encap %d (%p) for if %p",
2905 		    __func__, bp->bif_dlt, bp, ifp);
2906 
2907 		/* Detach common descriptors */
2908 		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2909 			bpf_detachd_locked(d, true);
2910 		}
2911 
2912 		/* Detach writer-only descriptors */
2913 		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2914 			bpf_detachd_locked(d, true);
2915 		}
2916 		bpfif_rele(bp);
2917 	}
2918 	BPF_UNLOCK();
2919 }
2920 
2921 bool
bpf_peers_present_if(struct ifnet * ifp)2922 bpf_peers_present_if(struct ifnet *ifp)
2923 {
2924 	return (bpf_peers_present(ifp->if_bpf));
2925 }
2926 
2927 /*
2928  * Get a list of available data link type of the interface.
2929  */
2930 static int
bpf_getdltlist(struct bpf_d * d,struct bpf_dltlist * bfl)2931 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2932 {
2933 	struct ifnet *ifp;
2934 	struct bpf_if *bp;
2935 	u_int *lst;
2936 	int error, n, n1;
2937 
2938 	BPF_LOCK_ASSERT();
2939 
2940 	ifp = d->bd_bif->bif_ifp;
2941 	n1 = 0;
2942 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2943 		if (bp->bif_ifp == ifp)
2944 			n1++;
2945 	}
2946 	if (bfl->bfl_list == NULL) {
2947 		bfl->bfl_len = n1;
2948 		return (0);
2949 	}
2950 	if (n1 > bfl->bfl_len)
2951 		return (ENOMEM);
2952 
2953 	lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2954 	n = 0;
2955 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2956 		if (bp->bif_ifp != ifp)
2957 			continue;
2958 		lst[n++] = bp->bif_dlt;
2959 	}
2960 	error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2961 	free(lst, M_TEMP);
2962 	bfl->bfl_len = n;
2963 	return (error);
2964 }
2965 
2966 /*
2967  * Set the data link type of a BPF instance.
2968  */
2969 static int
bpf_setdlt(struct bpf_d * d,u_int dlt)2970 bpf_setdlt(struct bpf_d *d, u_int dlt)
2971 {
2972 	int error, opromisc;
2973 	struct ifnet *ifp;
2974 	struct bpf_if *bp;
2975 
2976 	BPF_LOCK_ASSERT();
2977 	MPASS(d->bd_bif != NULL);
2978 
2979 	/*
2980 	 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2981 	 * changed while we hold global lock.
2982 	 */
2983 	if (d->bd_bif->bif_dlt == dlt)
2984 		return (0);
2985 
2986 	ifp = d->bd_bif->bif_ifp;
2987 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2988 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2989 			break;
2990 	}
2991 	if (bp == NULL)
2992 		return (EINVAL);
2993 
2994 	opromisc = d->bd_promisc;
2995 	bpf_attachd(d, bp);
2996 	if (opromisc) {
2997 		error = ifpromisc(bp->bif_ifp, 1);
2998 		if (error)
2999 			if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
3000 			    __func__, error);
3001 		else
3002 			d->bd_promisc = 1;
3003 	}
3004 	return (0);
3005 }
3006 
3007 static void
bpf_drvinit(void * unused)3008 bpf_drvinit(void *unused)
3009 {
3010 	struct cdev *dev;
3011 
3012 	sx_init(&bpf_sx, "bpf global lock");
3013 	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
3014 	/* For compatibility */
3015 	make_dev_alias(dev, "bpf0");
3016 }
3017 
3018 /*
3019  * Zero out the various packet counters associated with all of the bpf
3020  * descriptors.  At some point, we will probably want to get a bit more
3021  * granular and allow the user to specify descriptors to be zeroed.
3022  */
3023 static void
bpf_zero_counters(void)3024 bpf_zero_counters(void)
3025 {
3026 	struct bpf_if *bp;
3027 	struct bpf_d *bd;
3028 
3029 	BPF_LOCK();
3030 	/*
3031 	 * We are protected by global lock here, interfaces and
3032 	 * descriptors can not be deleted while we hold it.
3033 	 */
3034 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3035 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3036 			counter_u64_zero(bd->bd_rcount);
3037 			counter_u64_zero(bd->bd_dcount);
3038 			counter_u64_zero(bd->bd_fcount);
3039 			counter_u64_zero(bd->bd_wcount);
3040 			counter_u64_zero(bd->bd_wfcount);
3041 			counter_u64_zero(bd->bd_zcopy);
3042 		}
3043 	}
3044 	BPF_UNLOCK();
3045 }
3046 
3047 /*
3048  * Fill filter statistics
3049  */
3050 static void
bpfstats_fill_xbpf(struct xbpf_d * d,struct bpf_d * bd)3051 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
3052 {
3053 
3054 	BPF_LOCK_ASSERT();
3055 	bzero(d, sizeof(*d));
3056 	d->bd_structsize = sizeof(*d);
3057 	d->bd_immediate = bd->bd_immediate;
3058 	d->bd_promisc = bd->bd_promisc;
3059 	d->bd_hdrcmplt = bd->bd_hdrcmplt;
3060 	d->bd_direction = bd->bd_direction;
3061 	d->bd_feedback = bd->bd_feedback;
3062 	d->bd_async = bd->bd_async;
3063 	d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
3064 	d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
3065 	d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
3066 	d->bd_sig = bd->bd_sig;
3067 	d->bd_slen = bd->bd_slen;
3068 	d->bd_hlen = bd->bd_hlen;
3069 	d->bd_bufsize = bd->bd_bufsize;
3070 	d->bd_pid = bd->bd_pid;
3071 	strlcpy(d->bd_ifname,
3072 	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
3073 	d->bd_locked = bd->bd_locked;
3074 	d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
3075 	d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
3076 	d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
3077 	d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
3078 	d->bd_bufmode = bd->bd_bufmode;
3079 }
3080 
3081 /*
3082  * Handle `netstat -B' stats request
3083  */
3084 static int
bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)3085 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
3086 {
3087 	static const struct xbpf_d zerostats;
3088 	struct xbpf_d *xbdbuf, *xbd, tempstats;
3089 	int index, error;
3090 	struct bpf_if *bp;
3091 	struct bpf_d *bd;
3092 
3093 	/*
3094 	 * XXX This is not technically correct. It is possible for non
3095 	 * privileged users to open bpf devices. It would make sense
3096 	 * if the users who opened the devices were able to retrieve
3097 	 * the statistics for them, too.
3098 	 */
3099 	error = priv_check(req->td, PRIV_NET_BPF);
3100 	if (error)
3101 		return (error);
3102 	/*
3103 	 * Check to see if the user is requesting that the counters be
3104 	 * zeroed out.  Explicitly check that the supplied data is zeroed,
3105 	 * as we aren't allowing the user to set the counters currently.
3106 	 */
3107 	if (req->newptr != NULL) {
3108 		if (req->newlen != sizeof(tempstats))
3109 			return (EINVAL);
3110 		memset(&tempstats, 0, sizeof(tempstats));
3111 		error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
3112 		if (error)
3113 			return (error);
3114 		if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
3115 			return (EINVAL);
3116 		bpf_zero_counters();
3117 		return (0);
3118 	}
3119 	if (req->oldptr == NULL)
3120 		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
3121 	if (bpf_bpfd_cnt == 0)
3122 		return (SYSCTL_OUT(req, 0, 0));
3123 	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
3124 	BPF_LOCK();
3125 	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
3126 		BPF_UNLOCK();
3127 		free(xbdbuf, M_BPF);
3128 		return (ENOMEM);
3129 	}
3130 	index = 0;
3131 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3132 		/* Send writers-only first */
3133 		CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
3134 			xbd = &xbdbuf[index++];
3135 			bpfstats_fill_xbpf(xbd, bd);
3136 		}
3137 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3138 			xbd = &xbdbuf[index++];
3139 			bpfstats_fill_xbpf(xbd, bd);
3140 		}
3141 	}
3142 	BPF_UNLOCK();
3143 	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
3144 	free(xbdbuf, M_BPF);
3145 	return (error);
3146 }
3147 
3148 SYSINIT(bpfdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, bpf_drvinit, NULL);
3149 
3150 #else /* !DEV_BPF && !NETGRAPH_BPF */
3151 
3152 /*
3153  * NOP stubs to allow bpf-using drivers to load and function.
3154  *
3155  * A 'better' implementation would allow the core bpf functionality
3156  * to be loaded at runtime.
3157  */
3158 
3159 void
bpf_tap(struct bpf_if * bp,u_char * pkt,u_int pktlen)3160 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3161 {
3162 }
3163 
3164 void
bpf_tap_if(if_t ifp,u_char * pkt,u_int pktlen)3165 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
3166 {
3167 }
3168 
3169 void
bpf_mtap(struct bpf_if * bp,struct mbuf * m)3170 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3171 {
3172 }
3173 
3174 void
bpf_mtap_if(if_t ifp,struct mbuf * m)3175 bpf_mtap_if(if_t ifp, struct mbuf *m)
3176 {
3177 }
3178 
3179 void
bpf_mtap2(struct bpf_if * bp,void * d,u_int l,struct mbuf * m)3180 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3181 {
3182 }
3183 
3184 void
bpf_mtap2_if(if_t ifp,void * data,u_int dlen,struct mbuf * m)3185 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
3186 {
3187 }
3188 
3189 void
bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen)3190 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3191 {
3192 
3193 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3194 }
3195 
3196 void
bpfattach2(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)3197 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3198 {
3199 
3200 	*driverp = __DECONST(struct bpf_if *, &dead_bpf_if);
3201 }
3202 
3203 void
bpfdetach(struct ifnet * ifp)3204 bpfdetach(struct ifnet *ifp)
3205 {
3206 }
3207 
3208 bool
bpf_peers_present_if(struct ifnet * ifp)3209 bpf_peers_present_if(struct ifnet *ifp)
3210 {
3211 	return (false);
3212 }
3213 
3214 u_int
bpf_filter(const struct bpf_insn * pc,u_char * p,u_int wirelen,u_int buflen)3215 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3216 {
3217 	return (-1);	/* "no filter" behaviour */
3218 }
3219 
3220 int
bpf_validate(const struct bpf_insn * f,int len)3221 bpf_validate(const struct bpf_insn *f, int len)
3222 {
3223 	return (0);	/* false */
3224 }
3225 
3226 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3227 
3228 #ifdef DDB
3229 static void
bpf_show_bpf_if(struct bpf_if * bpf_if)3230 bpf_show_bpf_if(struct bpf_if *bpf_if)
3231 {
3232 
3233 	if (bpf_if == NULL)
3234 		return;
3235 	db_printf("%p:\n", bpf_if);
3236 #define	BPF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, bpf_if->e);
3237 #define	BPF_DB_PRINTF_RAW(f, e)	db_printf("   %s = " f "\n", #e, e);
3238 	/* bif_ext.bif_next */
3239 	/* bif_ext.bif_dlist */
3240 	BPF_DB_PRINTF("%#x", bif_dlt);
3241 	BPF_DB_PRINTF("%u", bif_hdrlen);
3242 	/* bif_wlist */
3243 	BPF_DB_PRINTF("%p", bif_ifp);
3244 	BPF_DB_PRINTF("%p", bif_bpf);
3245 	BPF_DB_PRINTF_RAW("%u", refcount_load(&bpf_if->bif_refcnt));
3246 }
3247 
DB_SHOW_COMMAND(bpf_if,db_show_bpf_if)3248 DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
3249 {
3250 
3251 	if (!have_addr) {
3252 		db_printf("usage: show bpf_if <struct bpf_if *>\n");
3253 		return;
3254 	}
3255 
3256 	bpf_show_bpf_if((struct bpf_if *)addr);
3257 }
3258 #endif
3259