xref: /linux/drivers/gpu/drm/ttm/ttm_bo_util.c (revision 42bb9b630c4c6c0964cddca98d9d30aa992826de)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 #include <linux/swap.h>
32 #include <linux/vmalloc.h>
33 
34 #include <drm/ttm/ttm_bo.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <drm/ttm/ttm_tt.h>
37 
38 #include <drm/drm_cache.h>
39 
40 struct ttm_transfer_obj {
41 	struct ttm_buffer_object base;
42 	struct ttm_buffer_object *bo;
43 };
44 
ttm_mem_io_reserve(struct ttm_device * bdev,struct ttm_resource * mem)45 int ttm_mem_io_reserve(struct ttm_device *bdev,
46 		       struct ttm_resource *mem)
47 {
48 	if (mem->bus.offset || mem->bus.addr)
49 		return 0;
50 
51 	mem->bus.is_iomem = false;
52 	if (!bdev->funcs->io_mem_reserve)
53 		return 0;
54 
55 	return bdev->funcs->io_mem_reserve(bdev, mem);
56 }
57 
ttm_mem_io_free(struct ttm_device * bdev,struct ttm_resource * mem)58 void ttm_mem_io_free(struct ttm_device *bdev,
59 		     struct ttm_resource *mem)
60 {
61 	if (!mem)
62 		return;
63 
64 	if (!mem->bus.offset && !mem->bus.addr)
65 		return;
66 
67 	if (bdev->funcs->io_mem_free)
68 		bdev->funcs->io_mem_free(bdev, mem);
69 
70 	mem->bus.offset = 0;
71 	mem->bus.addr = NULL;
72 }
73 
74 /**
75  * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
76  * @clear: Whether to clear rather than copy.
77  * @num_pages: Number of pages of the operation.
78  * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
79  * @src_iter: A struct ttm_kmap_iter representing the source resource.
80  *
81  * This function is intended to be able to move out async under a
82  * dma-fence if desired.
83  */
ttm_move_memcpy(bool clear,u32 num_pages,struct ttm_kmap_iter * dst_iter,struct ttm_kmap_iter * src_iter)84 void ttm_move_memcpy(bool clear,
85 		     u32 num_pages,
86 		     struct ttm_kmap_iter *dst_iter,
87 		     struct ttm_kmap_iter *src_iter)
88 {
89 	const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
90 	const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
91 	struct iosys_map src_map, dst_map;
92 	pgoff_t i;
93 
94 	/* Single TTM move. NOP */
95 	if (dst_ops->maps_tt && src_ops->maps_tt)
96 		return;
97 
98 	/* Don't move nonexistent data. Clear destination instead. */
99 	if (clear) {
100 		for (i = 0; i < num_pages; ++i) {
101 			dst_ops->map_local(dst_iter, &dst_map, i);
102 			if (dst_map.is_iomem)
103 				memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
104 			else
105 				memset(dst_map.vaddr, 0, PAGE_SIZE);
106 			if (dst_ops->unmap_local)
107 				dst_ops->unmap_local(dst_iter, &dst_map);
108 		}
109 		return;
110 	}
111 
112 	for (i = 0; i < num_pages; ++i) {
113 		dst_ops->map_local(dst_iter, &dst_map, i);
114 		src_ops->map_local(src_iter, &src_map, i);
115 
116 		drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
117 
118 		if (src_ops->unmap_local)
119 			src_ops->unmap_local(src_iter, &src_map);
120 		if (dst_ops->unmap_local)
121 			dst_ops->unmap_local(dst_iter, &dst_map);
122 	}
123 }
124 EXPORT_SYMBOL(ttm_move_memcpy);
125 
126 /**
127  * ttm_bo_move_memcpy
128  *
129  * @bo: A pointer to a struct ttm_buffer_object.
130  * @ctx: operation context
131  * @dst_mem: struct ttm_resource indicating where to move.
132  *
133  * Fallback move function for a mappable buffer object in mappable memory.
134  * The function will, if successful,
135  * free any old aperture space, and set (@new_mem)->mm_node to NULL,
136  * and update the (@bo)->mem placement flags. If unsuccessful, the old
137  * data remains untouched, and it's up to the caller to free the
138  * memory space indicated by @new_mem.
139  * Returns:
140  * !0: Failure.
141  */
ttm_bo_move_memcpy(struct ttm_buffer_object * bo,struct ttm_operation_ctx * ctx,struct ttm_resource * dst_mem)142 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
143 		       struct ttm_operation_ctx *ctx,
144 		       struct ttm_resource *dst_mem)
145 {
146 	struct ttm_device *bdev = bo->bdev;
147 	struct ttm_resource_manager *dst_man =
148 		ttm_manager_type(bo->bdev, dst_mem->mem_type);
149 	struct ttm_tt *ttm = bo->ttm;
150 	struct ttm_resource *src_mem = bo->resource;
151 	struct ttm_resource_manager *src_man;
152 	union {
153 		struct ttm_kmap_iter_tt tt;
154 		struct ttm_kmap_iter_linear_io io;
155 	} _dst_iter, _src_iter;
156 	struct ttm_kmap_iter *dst_iter, *src_iter;
157 	bool clear;
158 	int ret = 0;
159 
160 	if (WARN_ON(!src_mem))
161 		return -EINVAL;
162 
163 	src_man = ttm_manager_type(bdev, src_mem->mem_type);
164 	if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
165 		    dst_man->use_tt)) {
166 		ret = ttm_bo_populate(bo, ctx);
167 		if (ret)
168 			return ret;
169 	}
170 
171 	dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
172 	if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
173 		dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
174 	if (IS_ERR(dst_iter))
175 		return PTR_ERR(dst_iter);
176 
177 	src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
178 	if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
179 		src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
180 	if (IS_ERR(src_iter)) {
181 		ret = PTR_ERR(src_iter);
182 		goto out_src_iter;
183 	}
184 
185 	clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
186 	if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
187 		ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
188 
189 	if (!src_iter->ops->maps_tt)
190 		ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
191 	ttm_bo_move_sync_cleanup(bo, dst_mem);
192 
193 out_src_iter:
194 	if (!dst_iter->ops->maps_tt)
195 		ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
196 
197 	return ret;
198 }
199 EXPORT_SYMBOL(ttm_bo_move_memcpy);
200 
ttm_transfered_destroy(struct ttm_buffer_object * bo)201 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
202 {
203 	struct ttm_transfer_obj *fbo;
204 
205 	fbo = container_of(bo, struct ttm_transfer_obj, base);
206 	dma_resv_fini(&fbo->base.base._resv);
207 	ttm_bo_put(fbo->bo);
208 	kfree(fbo);
209 }
210 
211 /**
212  * ttm_buffer_object_transfer
213  *
214  * @bo: A pointer to a struct ttm_buffer_object.
215  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
216  * holding the data of @bo with the old placement.
217  *
218  * This is a utility function that may be called after an accelerated move
219  * has been scheduled. A new buffer object is created as a placeholder for
220  * the old data while it's being copied. When that buffer object is idle,
221  * it can be destroyed, releasing the space of the old placement.
222  * Returns:
223  * !0: Failure.
224  */
225 
ttm_buffer_object_transfer(struct ttm_buffer_object * bo,struct ttm_buffer_object ** new_obj)226 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
227 				      struct ttm_buffer_object **new_obj)
228 {
229 	struct ttm_transfer_obj *fbo;
230 	int ret;
231 
232 	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
233 	if (!fbo)
234 		return -ENOMEM;
235 
236 	fbo->base = *bo;
237 
238 	/**
239 	 * Fix up members that we shouldn't copy directly:
240 	 * TODO: Explicit member copy would probably be better here.
241 	 */
242 
243 	atomic_inc(&ttm_glob.bo_count);
244 	drm_vma_node_reset(&fbo->base.base.vma_node);
245 
246 	kref_init(&fbo->base.kref);
247 	fbo->base.destroy = &ttm_transfered_destroy;
248 	fbo->base.pin_count = 0;
249 	if (bo->type != ttm_bo_type_sg)
250 		fbo->base.base.resv = &fbo->base.base._resv;
251 
252 	dma_resv_init(&fbo->base.base._resv);
253 	fbo->base.base.dev = NULL;
254 	ret = dma_resv_trylock(&fbo->base.base._resv);
255 	WARN_ON(!ret);
256 
257 	ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
258 	if (ret) {
259 		dma_resv_unlock(&fbo->base.base._resv);
260 		kfree(fbo);
261 		return ret;
262 	}
263 
264 	if (fbo->base.resource) {
265 		ttm_resource_set_bo(fbo->base.resource, &fbo->base);
266 		bo->resource = NULL;
267 		ttm_bo_set_bulk_move(&fbo->base, NULL);
268 	} else {
269 		fbo->base.bulk_move = NULL;
270 	}
271 
272 	ttm_bo_get(bo);
273 	fbo->bo = bo;
274 
275 	ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
276 
277 	*new_obj = &fbo->base;
278 	return 0;
279 }
280 
281 /**
282  * ttm_io_prot
283  *
284  * @bo: ttm buffer object
285  * @res: ttm resource object
286  * @tmp: Page protection flag for a normal, cached mapping.
287  *
288  * Utility function that returns the pgprot_t that should be used for
289  * setting up a PTE with the caching model indicated by @c_state.
290  */
ttm_io_prot(struct ttm_buffer_object * bo,struct ttm_resource * res,pgprot_t tmp)291 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
292 		     pgprot_t tmp)
293 {
294 	struct ttm_resource_manager *man;
295 	enum ttm_caching caching;
296 
297 	man = ttm_manager_type(bo->bdev, res->mem_type);
298 	if (man->use_tt) {
299 		caching = bo->ttm->caching;
300 		if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED)
301 			tmp = pgprot_decrypted(tmp);
302 	} else  {
303 		caching = res->bus.caching;
304 	}
305 
306 	return ttm_prot_from_caching(caching, tmp);
307 }
308 EXPORT_SYMBOL(ttm_io_prot);
309 
ttm_bo_ioremap(struct ttm_buffer_object * bo,unsigned long offset,unsigned long size,struct ttm_bo_kmap_obj * map)310 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
311 			  unsigned long offset,
312 			  unsigned long size,
313 			  struct ttm_bo_kmap_obj *map)
314 {
315 	struct ttm_resource *mem = bo->resource;
316 
317 	if (bo->resource->bus.addr) {
318 		map->bo_kmap_type = ttm_bo_map_premapped;
319 		map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
320 	} else {
321 		resource_size_t res = bo->resource->bus.offset + offset;
322 
323 		map->bo_kmap_type = ttm_bo_map_iomap;
324 		if (mem->bus.caching == ttm_write_combined)
325 			map->virtual = ioremap_wc(res, size);
326 #ifdef CONFIG_X86
327 		else if (mem->bus.caching == ttm_cached)
328 			map->virtual = ioremap_cache(res, size);
329 #endif
330 		else
331 			map->virtual = ioremap(res, size);
332 	}
333 	return (!map->virtual) ? -ENOMEM : 0;
334 }
335 
ttm_bo_kmap_ttm(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)336 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
337 			   unsigned long start_page,
338 			   unsigned long num_pages,
339 			   struct ttm_bo_kmap_obj *map)
340 {
341 	struct ttm_resource *mem = bo->resource;
342 	struct ttm_operation_ctx ctx = {
343 		.interruptible = false,
344 		.no_wait_gpu = false
345 	};
346 	struct ttm_tt *ttm = bo->ttm;
347 	struct ttm_resource_manager *man =
348 			ttm_manager_type(bo->bdev, bo->resource->mem_type);
349 	pgprot_t prot;
350 	int ret;
351 
352 	BUG_ON(!ttm);
353 
354 	ret = ttm_bo_populate(bo, &ctx);
355 	if (ret)
356 		return ret;
357 
358 	if (num_pages == 1 && ttm->caching == ttm_cached &&
359 	    !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) {
360 		/*
361 		 * We're mapping a single page, and the desired
362 		 * page protection is consistent with the bo.
363 		 */
364 
365 		map->bo_kmap_type = ttm_bo_map_kmap;
366 		map->page = ttm->pages[start_page];
367 		map->virtual = kmap(map->page);
368 	} else {
369 		/*
370 		 * We need to use vmap to get the desired page protection
371 		 * or to make the buffer object look contiguous.
372 		 */
373 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
374 		map->bo_kmap_type = ttm_bo_map_vmap;
375 		map->virtual = vmap(ttm->pages + start_page, num_pages,
376 				    0, prot);
377 	}
378 	return (!map->virtual) ? -ENOMEM : 0;
379 }
380 
381 /**
382  * ttm_bo_kmap
383  *
384  * @bo: The buffer object.
385  * @start_page: The first page to map.
386  * @num_pages: Number of pages to map.
387  * @map: pointer to a struct ttm_bo_kmap_obj representing the map.
388  *
389  * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
390  * data in the buffer object. The ttm_kmap_obj_virtual function can then be
391  * used to obtain a virtual address to the data.
392  *
393  * Returns
394  * -ENOMEM: Out of memory.
395  * -EINVAL: Invalid range.
396  */
ttm_bo_kmap(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)397 int ttm_bo_kmap(struct ttm_buffer_object *bo,
398 		unsigned long start_page, unsigned long num_pages,
399 		struct ttm_bo_kmap_obj *map)
400 {
401 	unsigned long offset, size;
402 	int ret;
403 
404 	map->virtual = NULL;
405 	map->bo = bo;
406 	if (num_pages > PFN_UP(bo->resource->size))
407 		return -EINVAL;
408 	if ((start_page + num_pages) > PFN_UP(bo->resource->size))
409 		return -EINVAL;
410 
411 	ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
412 	if (ret)
413 		return ret;
414 	if (!bo->resource->bus.is_iomem) {
415 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
416 	} else {
417 		offset = start_page << PAGE_SHIFT;
418 		size = num_pages << PAGE_SHIFT;
419 		return ttm_bo_ioremap(bo, offset, size, map);
420 	}
421 }
422 EXPORT_SYMBOL(ttm_bo_kmap);
423 
424 /**
425  * ttm_bo_kunmap
426  *
427  * @map: Object describing the map to unmap.
428  *
429  * Unmaps a kernel map set up by ttm_bo_kmap.
430  */
ttm_bo_kunmap(struct ttm_bo_kmap_obj * map)431 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
432 {
433 	if (!map->virtual)
434 		return;
435 	switch (map->bo_kmap_type) {
436 	case ttm_bo_map_iomap:
437 		iounmap(map->virtual);
438 		break;
439 	case ttm_bo_map_vmap:
440 		vunmap(map->virtual);
441 		break;
442 	case ttm_bo_map_kmap:
443 		kunmap(map->page);
444 		break;
445 	case ttm_bo_map_premapped:
446 		break;
447 	default:
448 		BUG();
449 	}
450 	ttm_mem_io_free(map->bo->bdev, map->bo->resource);
451 	map->virtual = NULL;
452 	map->page = NULL;
453 }
454 EXPORT_SYMBOL(ttm_bo_kunmap);
455 
456 /**
457  * ttm_bo_vmap
458  *
459  * @bo: The buffer object.
460  * @map: pointer to a struct iosys_map representing the map.
461  *
462  * Sets up a kernel virtual mapping, using ioremap or vmap to the
463  * data in the buffer object. The parameter @map returns the virtual
464  * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
465  *
466  * Returns
467  * -ENOMEM: Out of memory.
468  * -EINVAL: Invalid range.
469  */
ttm_bo_vmap(struct ttm_buffer_object * bo,struct iosys_map * map)470 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
471 {
472 	struct ttm_resource *mem = bo->resource;
473 	int ret;
474 
475 	dma_resv_assert_held(bo->base.resv);
476 
477 	ret = ttm_mem_io_reserve(bo->bdev, mem);
478 	if (ret)
479 		return ret;
480 
481 	if (mem->bus.is_iomem) {
482 		void __iomem *vaddr_iomem;
483 
484 		if (mem->bus.addr)
485 			vaddr_iomem = (void __iomem *)mem->bus.addr;
486 		else if (mem->bus.caching == ttm_write_combined)
487 			vaddr_iomem = ioremap_wc(mem->bus.offset,
488 						 bo->base.size);
489 #ifdef CONFIG_X86
490 		else if (mem->bus.caching == ttm_cached)
491 			vaddr_iomem = ioremap_cache(mem->bus.offset,
492 						  bo->base.size);
493 #endif
494 		else
495 			vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
496 
497 		if (!vaddr_iomem)
498 			return -ENOMEM;
499 
500 		iosys_map_set_vaddr_iomem(map, vaddr_iomem);
501 
502 	} else {
503 		struct ttm_operation_ctx ctx = {
504 			.interruptible = false,
505 			.no_wait_gpu = false
506 		};
507 		struct ttm_tt *ttm = bo->ttm;
508 		pgprot_t prot;
509 		void *vaddr;
510 
511 		ret = ttm_bo_populate(bo, &ctx);
512 		if (ret)
513 			return ret;
514 
515 		/*
516 		 * We need to use vmap to get the desired page protection
517 		 * or to make the buffer object look contiguous.
518 		 */
519 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
520 		vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
521 		if (!vaddr)
522 			return -ENOMEM;
523 
524 		iosys_map_set_vaddr(map, vaddr);
525 	}
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL(ttm_bo_vmap);
530 
531 /**
532  * ttm_bo_vunmap
533  *
534  * @bo: The buffer object.
535  * @map: Object describing the map to unmap.
536  *
537  * Unmaps a kernel map set up by ttm_bo_vmap().
538  */
ttm_bo_vunmap(struct ttm_buffer_object * bo,struct iosys_map * map)539 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
540 {
541 	struct ttm_resource *mem = bo->resource;
542 
543 	dma_resv_assert_held(bo->base.resv);
544 
545 	if (iosys_map_is_null(map))
546 		return;
547 
548 	if (!map->is_iomem)
549 		vunmap(map->vaddr);
550 	else if (!mem->bus.addr)
551 		iounmap(map->vaddr_iomem);
552 	iosys_map_clear(map);
553 
554 	ttm_mem_io_free(bo->bdev, bo->resource);
555 }
556 EXPORT_SYMBOL(ttm_bo_vunmap);
557 
ttm_bo_wait_free_node(struct ttm_buffer_object * bo,bool dst_use_tt)558 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
559 				 bool dst_use_tt)
560 {
561 	long ret;
562 
563 	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
564 				    false, 15 * HZ);
565 	if (ret == 0)
566 		return -EBUSY;
567 	if (ret < 0)
568 		return ret;
569 
570 	if (!dst_use_tt)
571 		ttm_bo_tt_destroy(bo);
572 	ttm_resource_free(bo, &bo->resource);
573 	return 0;
574 }
575 
ttm_bo_move_to_ghost(struct ttm_buffer_object * bo,struct dma_fence * fence,bool dst_use_tt)576 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
577 				struct dma_fence *fence,
578 				bool dst_use_tt)
579 {
580 	struct ttm_buffer_object *ghost_obj;
581 	int ret;
582 
583 	/**
584 	 * This should help pipeline ordinary buffer moves.
585 	 *
586 	 * Hang old buffer memory on a new buffer object,
587 	 * and leave it to be released when the GPU
588 	 * operation has completed.
589 	 */
590 
591 	ret = ttm_buffer_object_transfer(bo, &ghost_obj);
592 	if (ret)
593 		return ret;
594 
595 	dma_resv_add_fence(&ghost_obj->base._resv, fence,
596 			   DMA_RESV_USAGE_KERNEL);
597 
598 	/**
599 	 * If we're not moving to fixed memory, the TTM object
600 	 * needs to stay alive. Otherwhise hang it on the ghost
601 	 * bo to be unbound and destroyed.
602 	 */
603 
604 	if (dst_use_tt)
605 		ghost_obj->ttm = NULL;
606 	else
607 		bo->ttm = NULL;
608 
609 	dma_resv_unlock(&ghost_obj->base._resv);
610 	ttm_bo_put(ghost_obj);
611 	return 0;
612 }
613 
ttm_bo_move_pipeline_evict(struct ttm_buffer_object * bo,struct dma_fence * fence)614 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
615 				       struct dma_fence *fence)
616 {
617 	struct ttm_device *bdev = bo->bdev;
618 	struct ttm_resource_manager *from;
619 
620 	from = ttm_manager_type(bdev, bo->resource->mem_type);
621 
622 	/**
623 	 * BO doesn't have a TTM we need to bind/unbind. Just remember
624 	 * this eviction and free up the allocation
625 	 */
626 	spin_lock(&from->move_lock);
627 	if (!from->move || dma_fence_is_later(fence, from->move)) {
628 		dma_fence_put(from->move);
629 		from->move = dma_fence_get(fence);
630 	}
631 	spin_unlock(&from->move_lock);
632 
633 	ttm_resource_free(bo, &bo->resource);
634 }
635 
636 /**
637  * ttm_bo_move_accel_cleanup - cleanup helper for hw copies
638  *
639  * @bo: A pointer to a struct ttm_buffer_object.
640  * @fence: A fence object that signals when moving is complete.
641  * @evict: This is an evict move. Don't return until the buffer is idle.
642  * @pipeline: evictions are to be pipelined.
643  * @new_mem: struct ttm_resource indicating where to move.
644  *
645  * Accelerated move function to be called when an accelerated move
646  * has been scheduled. The function will create a new temporary buffer object
647  * representing the old placement, and put the sync object on both buffer
648  * objects. After that the newly created buffer object is unref'd to be
649  * destroyed when the move is complete. This will help pipeline
650  * buffer moves.
651  */
ttm_bo_move_accel_cleanup(struct ttm_buffer_object * bo,struct dma_fence * fence,bool evict,bool pipeline,struct ttm_resource * new_mem)652 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
653 			      struct dma_fence *fence,
654 			      bool evict,
655 			      bool pipeline,
656 			      struct ttm_resource *new_mem)
657 {
658 	struct ttm_device *bdev = bo->bdev;
659 	struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
660 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
661 	int ret = 0;
662 
663 	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
664 	if (!evict)
665 		ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
666 	else if (!from->use_tt && pipeline)
667 		ttm_bo_move_pipeline_evict(bo, fence);
668 	else
669 		ret = ttm_bo_wait_free_node(bo, man->use_tt);
670 
671 	if (ret)
672 		return ret;
673 
674 	ttm_bo_assign_mem(bo, new_mem);
675 
676 	return 0;
677 }
678 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
679 
680 /**
681  * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
682  *
683  * @bo: A pointer to a struct ttm_buffer_object.
684  * @new_mem: struct ttm_resource indicating where to move.
685  *
686  * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
687  * by the caller to be idle. Typically used after memcpy buffer moves.
688  */
ttm_bo_move_sync_cleanup(struct ttm_buffer_object * bo,struct ttm_resource * new_mem)689 void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
690 			      struct ttm_resource *new_mem)
691 {
692 	struct ttm_device *bdev = bo->bdev;
693 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
694 	int ret;
695 
696 	ret = ttm_bo_wait_free_node(bo, man->use_tt);
697 	if (WARN_ON(ret))
698 		return;
699 
700 	ttm_bo_assign_mem(bo, new_mem);
701 }
702 EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
703 
704 /**
705  * ttm_bo_pipeline_gutting - purge the contents of a bo
706  * @bo: The buffer object
707  *
708  * Purge the contents of a bo, async if the bo is not idle.
709  * After a successful call, the bo is left unpopulated in
710  * system placement. The function may wait uninterruptible
711  * for idle on OOM.
712  *
713  * Return: 0 if successful, negative error code on failure.
714  */
ttm_bo_pipeline_gutting(struct ttm_buffer_object * bo)715 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
716 {
717 	struct ttm_buffer_object *ghost;
718 	struct ttm_tt *ttm;
719 	int ret;
720 
721 	/* If already idle, no need for ghost object dance. */
722 	if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
723 		if (!bo->ttm) {
724 			/* See comment below about clearing. */
725 			ret = ttm_tt_create(bo, true);
726 			if (ret)
727 				return ret;
728 		} else {
729 			ttm_tt_unpopulate(bo->bdev, bo->ttm);
730 			if (bo->type == ttm_bo_type_device)
731 				ttm_tt_mark_for_clear(bo->ttm);
732 		}
733 		ttm_resource_free(bo, &bo->resource);
734 		return 0;
735 	}
736 
737 	/*
738 	 * We need an unpopulated ttm_tt after giving our current one,
739 	 * if any, to the ghost object. And we can't afford to fail
740 	 * creating one *after* the operation. If the bo subsequently gets
741 	 * resurrected, make sure it's cleared (if ttm_bo_type_device)
742 	 * to avoid leaking sensitive information to user-space.
743 	 */
744 
745 	ttm = bo->ttm;
746 	bo->ttm = NULL;
747 	ret = ttm_tt_create(bo, true);
748 	swap(bo->ttm, ttm);
749 	if (ret)
750 		return ret;
751 
752 	ret = ttm_buffer_object_transfer(bo, &ghost);
753 	if (ret)
754 		goto error_destroy_tt;
755 
756 	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
757 	/* Last resort, wait for the BO to be idle when we are OOM */
758 	if (ret) {
759 		dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
760 				      false, MAX_SCHEDULE_TIMEOUT);
761 	}
762 
763 	dma_resv_unlock(&ghost->base._resv);
764 	ttm_bo_put(ghost);
765 	bo->ttm = ttm;
766 	return 0;
767 
768 error_destroy_tt:
769 	ttm_tt_destroy(bo->bdev, ttm);
770 	return ret;
771 }
772 
ttm_lru_walk_trylock(struct ttm_operation_ctx * ctx,struct ttm_buffer_object * bo,bool * needs_unlock)773 static bool ttm_lru_walk_trylock(struct ttm_operation_ctx *ctx,
774 				 struct ttm_buffer_object *bo,
775 				 bool *needs_unlock)
776 {
777 	*needs_unlock = false;
778 
779 	if (dma_resv_trylock(bo->base.resv)) {
780 		*needs_unlock = true;
781 		return true;
782 	}
783 
784 	if (bo->base.resv == ctx->resv && ctx->allow_res_evict) {
785 		dma_resv_assert_held(bo->base.resv);
786 		return true;
787 	}
788 
789 	return false;
790 }
791 
ttm_lru_walk_ticketlock(struct ttm_lru_walk * walk,struct ttm_buffer_object * bo,bool * needs_unlock)792 static int ttm_lru_walk_ticketlock(struct ttm_lru_walk *walk,
793 				   struct ttm_buffer_object *bo,
794 				   bool *needs_unlock)
795 {
796 	struct dma_resv *resv = bo->base.resv;
797 	int ret;
798 
799 	if (walk->ctx->interruptible)
800 		ret = dma_resv_lock_interruptible(resv, walk->ticket);
801 	else
802 		ret = dma_resv_lock(resv, walk->ticket);
803 
804 	if (!ret) {
805 		*needs_unlock = true;
806 		/*
807 		 * Only a single ticketlock per loop. Ticketlocks are prone
808 		 * to return -EDEADLK causing the eviction to fail, so
809 		 * after waiting for the ticketlock, revert back to
810 		 * trylocking for this walk.
811 		 */
812 		walk->ticket = NULL;
813 	} else if (ret == -EDEADLK) {
814 		/* Caller needs to exit the ww transaction. */
815 		ret = -ENOSPC;
816 	}
817 
818 	return ret;
819 }
820 
ttm_lru_walk_unlock(struct ttm_buffer_object * bo,bool locked)821 static void ttm_lru_walk_unlock(struct ttm_buffer_object *bo, bool locked)
822 {
823 	if (locked)
824 		dma_resv_unlock(bo->base.resv);
825 }
826 
827 /**
828  * ttm_lru_walk_for_evict() - Perform a LRU list walk, with actions taken on
829  * valid items.
830  * @walk: describe the walks and actions taken
831  * @bdev: The TTM device.
832  * @man: The struct ttm_resource manager whose LRU lists we're walking.
833  * @target: The end condition for the walk.
834  *
835  * The LRU lists of @man are walk, and for each struct ttm_resource encountered,
836  * the corresponding ttm_buffer_object is locked and taken a reference on, and
837  * the LRU lock is dropped. the LRU lock may be dropped before locking and, in
838  * that case, it's verified that the item actually remains on the LRU list after
839  * the lock, and that the buffer object didn't switch resource in between.
840  *
841  * With a locked object, the actions indicated by @walk->process_bo are
842  * performed, and after that, the bo is unlocked, the refcount dropped and the
843  * next struct ttm_resource is processed. Here, the walker relies on
844  * TTM's restartable LRU list implementation.
845  *
846  * Typically @walk->process_bo() would return the number of pages evicted,
847  * swapped or shrunken, so that when the total exceeds @target, or when the
848  * LRU list has been walked in full, iteration is terminated. It's also terminated
849  * on error. Note that the definition of @target is done by the caller, it
850  * could have a different meaning than the number of pages.
851  *
852  * Note that the way dma_resv individualization is done, locking needs to be done
853  * either with the LRU lock held (trylocking only) or with a reference on the
854  * object.
855  *
856  * Return: The progress made towards target or negative error code on error.
857  */
ttm_lru_walk_for_evict(struct ttm_lru_walk * walk,struct ttm_device * bdev,struct ttm_resource_manager * man,s64 target)858 s64 ttm_lru_walk_for_evict(struct ttm_lru_walk *walk, struct ttm_device *bdev,
859 			   struct ttm_resource_manager *man, s64 target)
860 {
861 	struct ttm_resource_cursor cursor;
862 	struct ttm_resource *res;
863 	s64 progress = 0;
864 	s64 lret;
865 
866 	spin_lock(&bdev->lru_lock);
867 	ttm_resource_cursor_init(&cursor, man);
868 	ttm_resource_manager_for_each_res(&cursor, res) {
869 		struct ttm_buffer_object *bo = res->bo;
870 		bool bo_needs_unlock = false;
871 		bool bo_locked = false;
872 		int mem_type;
873 
874 		/*
875 		 * Attempt a trylock before taking a reference on the bo,
876 		 * since if we do it the other way around, and the trylock fails,
877 		 * we need to drop the lru lock to put the bo.
878 		 */
879 		if (ttm_lru_walk_trylock(walk->ctx, bo, &bo_needs_unlock))
880 			bo_locked = true;
881 		else if (!walk->ticket || walk->ctx->no_wait_gpu ||
882 			 walk->trylock_only)
883 			continue;
884 
885 		if (!ttm_bo_get_unless_zero(bo)) {
886 			ttm_lru_walk_unlock(bo, bo_needs_unlock);
887 			continue;
888 		}
889 
890 		mem_type = res->mem_type;
891 		spin_unlock(&bdev->lru_lock);
892 
893 		lret = 0;
894 		if (!bo_locked)
895 			lret = ttm_lru_walk_ticketlock(walk, bo, &bo_needs_unlock);
896 
897 		/*
898 		 * Note that in between the release of the lru lock and the
899 		 * ticketlock, the bo may have switched resource,
900 		 * and also memory type, since the resource may have been
901 		 * freed and allocated again with a different memory type.
902 		 * In that case, just skip it.
903 		 */
904 		if (!lret && bo->resource && bo->resource->mem_type == mem_type)
905 			lret = walk->ops->process_bo(walk, bo);
906 
907 		ttm_lru_walk_unlock(bo, bo_needs_unlock);
908 		ttm_bo_put(bo);
909 		if (lret == -EBUSY || lret == -EALREADY)
910 			lret = 0;
911 		progress = (lret < 0) ? lret : progress + lret;
912 
913 		spin_lock(&bdev->lru_lock);
914 		if (progress < 0 || progress >= target)
915 			break;
916 	}
917 	ttm_resource_cursor_fini(&cursor);
918 	spin_unlock(&bdev->lru_lock);
919 
920 	return progress;
921 }
922 EXPORT_SYMBOL(ttm_lru_walk_for_evict);
923 
ttm_bo_lru_cursor_cleanup_bo(struct ttm_bo_lru_cursor * curs)924 static void ttm_bo_lru_cursor_cleanup_bo(struct ttm_bo_lru_cursor *curs)
925 {
926 	struct ttm_buffer_object *bo = curs->bo;
927 
928 	if (bo) {
929 		if (curs->needs_unlock)
930 			dma_resv_unlock(bo->base.resv);
931 		ttm_bo_put(bo);
932 		curs->bo = NULL;
933 	}
934 }
935 
936 /**
937  * ttm_bo_lru_cursor_fini() - Stop using a struct ttm_bo_lru_cursor
938  * and clean up any iteration it was used for.
939  * @curs: The cursor.
940  */
ttm_bo_lru_cursor_fini(struct ttm_bo_lru_cursor * curs)941 void ttm_bo_lru_cursor_fini(struct ttm_bo_lru_cursor *curs)
942 {
943 	spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock;
944 
945 	ttm_bo_lru_cursor_cleanup_bo(curs);
946 	spin_lock(lru_lock);
947 	ttm_resource_cursor_fini(&curs->res_curs);
948 	spin_unlock(lru_lock);
949 }
950 EXPORT_SYMBOL(ttm_bo_lru_cursor_fini);
951 
952 /**
953  * ttm_bo_lru_cursor_init() - Initialize a struct ttm_bo_lru_cursor
954  * @curs: The ttm_bo_lru_cursor to initialize.
955  * @man: The ttm resource_manager whose LRU lists to iterate over.
956  * @ctx: The ttm_operation_ctx to govern the locking.
957  *
958  * Initialize a struct ttm_bo_lru_cursor. Currently only trylocking
959  * or prelocked buffer objects are available as detailed by
960  * @ctx::resv and @ctx::allow_res_evict. Ticketlocking is not
961  * supported.
962  *
963  * Return: Pointer to @curs. The function does not fail.
964  */
965 struct ttm_bo_lru_cursor *
ttm_bo_lru_cursor_init(struct ttm_bo_lru_cursor * curs,struct ttm_resource_manager * man,struct ttm_operation_ctx * ctx)966 ttm_bo_lru_cursor_init(struct ttm_bo_lru_cursor *curs,
967 		       struct ttm_resource_manager *man,
968 		       struct ttm_operation_ctx *ctx)
969 {
970 	memset(curs, 0, sizeof(*curs));
971 	ttm_resource_cursor_init(&curs->res_curs, man);
972 	curs->ctx = ctx;
973 
974 	return curs;
975 }
976 EXPORT_SYMBOL(ttm_bo_lru_cursor_init);
977 
978 static struct ttm_buffer_object *
ttm_bo_from_res_reserved(struct ttm_resource * res,struct ttm_bo_lru_cursor * curs)979 ttm_bo_from_res_reserved(struct ttm_resource *res, struct ttm_bo_lru_cursor *curs)
980 {
981 	struct ttm_buffer_object *bo = res->bo;
982 
983 	if (!ttm_lru_walk_trylock(curs->ctx, bo, &curs->needs_unlock))
984 		return NULL;
985 
986 	if (!ttm_bo_get_unless_zero(bo)) {
987 		if (curs->needs_unlock)
988 			dma_resv_unlock(bo->base.resv);
989 		return NULL;
990 	}
991 
992 	curs->bo = bo;
993 	return bo;
994 }
995 
996 /**
997  * ttm_bo_lru_cursor_next() - Continue iterating a manager's LRU lists
998  * to find and lock buffer object.
999  * @curs: The cursor initialized using ttm_bo_lru_cursor_init() and
1000  * ttm_bo_lru_cursor_first().
1001  *
1002  * Return: A pointer to a locked and reference-counted buffer object,
1003  * or NULL if none could be found and looping should be terminated.
1004  */
ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor * curs)1005 struct ttm_buffer_object *ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor *curs)
1006 {
1007 	spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock;
1008 	struct ttm_resource *res = NULL;
1009 	struct ttm_buffer_object *bo;
1010 
1011 	ttm_bo_lru_cursor_cleanup_bo(curs);
1012 
1013 	spin_lock(lru_lock);
1014 	for (;;) {
1015 		res = ttm_resource_manager_next(&curs->res_curs);
1016 		if (!res)
1017 			break;
1018 
1019 		bo = ttm_bo_from_res_reserved(res, curs);
1020 		if (bo)
1021 			break;
1022 	}
1023 
1024 	spin_unlock(lru_lock);
1025 	return res ? bo : NULL;
1026 }
1027 EXPORT_SYMBOL(ttm_bo_lru_cursor_next);
1028 
1029 /**
1030  * ttm_bo_lru_cursor_first() - Start iterating a manager's LRU lists
1031  * to find and lock buffer object.
1032  * @curs: The cursor initialized using ttm_bo_lru_cursor_init().
1033  *
1034  * Return: A pointer to a locked and reference-counted buffer object,
1035  * or NULL if none could be found and looping should be terminated.
1036  */
ttm_bo_lru_cursor_first(struct ttm_bo_lru_cursor * curs)1037 struct ttm_buffer_object *ttm_bo_lru_cursor_first(struct ttm_bo_lru_cursor *curs)
1038 {
1039 	spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock;
1040 	struct ttm_buffer_object *bo;
1041 	struct ttm_resource *res;
1042 
1043 	spin_lock(lru_lock);
1044 	res = ttm_resource_manager_first(&curs->res_curs);
1045 	if (!res) {
1046 		spin_unlock(lru_lock);
1047 		return NULL;
1048 	}
1049 
1050 	bo = ttm_bo_from_res_reserved(res, curs);
1051 	spin_unlock(lru_lock);
1052 
1053 	return bo ? bo : ttm_bo_lru_cursor_next(curs);
1054 }
1055 EXPORT_SYMBOL(ttm_bo_lru_cursor_first);
1056 
1057 /**
1058  * ttm_bo_shrink() - Helper to shrink a ttm buffer object.
1059  * @ctx: The struct ttm_operation_ctx used for the shrinking operation.
1060  * @bo: The buffer object.
1061  * @flags: Flags governing the shrinking behaviour.
1062  *
1063  * The function uses the ttm_tt_back_up functionality to back up or
1064  * purge a struct ttm_tt. If the bo is not in system, it's first
1065  * moved there.
1066  *
1067  * Return: The number of pages shrunken or purged, or
1068  * negative error code on failure.
1069  */
ttm_bo_shrink(struct ttm_operation_ctx * ctx,struct ttm_buffer_object * bo,const struct ttm_bo_shrink_flags flags)1070 long ttm_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
1071 		   const struct ttm_bo_shrink_flags flags)
1072 {
1073 	static const struct ttm_place sys_placement_flags = {
1074 		.fpfn = 0,
1075 		.lpfn = 0,
1076 		.mem_type = TTM_PL_SYSTEM,
1077 		.flags = 0,
1078 	};
1079 	static struct ttm_placement sys_placement = {
1080 		.num_placement = 1,
1081 		.placement = &sys_placement_flags,
1082 	};
1083 	struct ttm_tt *tt = bo->ttm;
1084 	long lret;
1085 
1086 	dma_resv_assert_held(bo->base.resv);
1087 
1088 	if (flags.allow_move && bo->resource->mem_type != TTM_PL_SYSTEM) {
1089 		int ret = ttm_bo_validate(bo, &sys_placement, ctx);
1090 
1091 		/* Consider -ENOMEM and -ENOSPC non-fatal. */
1092 		if (ret) {
1093 			if (ret == -ENOMEM || ret == -ENOSPC)
1094 				ret = -EBUSY;
1095 			return ret;
1096 		}
1097 	}
1098 
1099 	ttm_bo_unmap_virtual(bo);
1100 	lret = ttm_bo_wait_ctx(bo, ctx);
1101 	if (lret < 0)
1102 		return lret;
1103 
1104 	if (bo->bulk_move) {
1105 		spin_lock(&bo->bdev->lru_lock);
1106 		ttm_resource_del_bulk_move(bo->resource, bo);
1107 		spin_unlock(&bo->bdev->lru_lock);
1108 	}
1109 
1110 	lret = ttm_tt_backup(bo->bdev, tt, (struct ttm_backup_flags)
1111 			     {.purge = flags.purge,
1112 			      .writeback = flags.writeback});
1113 
1114 	if (lret <= 0 && bo->bulk_move) {
1115 		spin_lock(&bo->bdev->lru_lock);
1116 		ttm_resource_add_bulk_move(bo->resource, bo);
1117 		spin_unlock(&bo->bdev->lru_lock);
1118 	}
1119 
1120 	if (lret < 0 && lret != -EINTR)
1121 		return -EBUSY;
1122 
1123 	return lret;
1124 }
1125 EXPORT_SYMBOL(ttm_bo_shrink);
1126 
1127 /**
1128  * ttm_bo_shrink_suitable() - Whether a bo is suitable for shinking
1129  * @ctx: The struct ttm_operation_ctx governing the shrinking.
1130  * @bo: The candidate for shrinking.
1131  *
1132  * Check whether the object, given the information available to TTM,
1133  * is suitable for shinking, This function can and should be used
1134  * before attempting to shrink an object.
1135  *
1136  * Return: true if suitable. false if not.
1137  */
ttm_bo_shrink_suitable(struct ttm_buffer_object * bo,struct ttm_operation_ctx * ctx)1138 bool ttm_bo_shrink_suitable(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1139 {
1140 	return bo->ttm && ttm_tt_is_populated(bo->ttm) && !bo->pin_count &&
1141 		(!ctx->no_wait_gpu ||
1142 		 dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP));
1143 }
1144 EXPORT_SYMBOL(ttm_bo_shrink_suitable);
1145 
1146 /**
1147  * ttm_bo_shrink_avoid_wait() - Whether to avoid waiting for GPU
1148  * during shrinking
1149  *
1150  * In some situations, like direct reclaim, waiting (in particular gpu waiting)
1151  * should be avoided since it may stall a system that could otherwise make progress
1152  * shrinking something else less time consuming.
1153  *
1154  * Return: true if gpu waiting should be avoided, false if not.
1155  */
ttm_bo_shrink_avoid_wait(void)1156 bool ttm_bo_shrink_avoid_wait(void)
1157 {
1158 	return !current_is_kswapd();
1159 }
1160 EXPORT_SYMBOL(ttm_bo_shrink_avoid_wait);
1161