xref: /linux/drivers/infiniband/hw/bnxt_re/main.c (revision 092e335082f22880207384ad736729c67d784665)
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: Main component of the bnxt_re driver
37  */
38 
39 #include <linux/module.h>
40 #include <linux/netdevice.h>
41 #include <linux/ethtool.h>
42 #include <linux/mutex.h>
43 #include <linux/list.h>
44 #include <linux/rculist.h>
45 #include <linux/spinlock.h>
46 #include <linux/pci.h>
47 #include <net/dcbnl.h>
48 #include <net/ipv6.h>
49 #include <net/addrconf.h>
50 #include <linux/if_ether.h>
51 #include <linux/auxiliary_bus.h>
52 
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_user_verbs.h>
55 #include <rdma/ib_umem.h>
56 #include <rdma/ib_addr.h>
57 #include <linux/hashtable.h>
58 
59 #include "bnxt_ulp.h"
60 #include "roce_hsi.h"
61 #include "qplib_res.h"
62 #include "qplib_sp.h"
63 #include "qplib_fp.h"
64 #include "qplib_rcfw.h"
65 #include "bnxt_re.h"
66 #include "ib_verbs.h"
67 #include <rdma/bnxt_re-abi.h>
68 #include "bnxt.h"
69 #include "hw_counters.h"
70 #include "debugfs.h"
71 
72 static char version[] =
73 		BNXT_RE_DESC "\n";
74 
75 MODULE_AUTHOR("Eddie Wai <eddie.wai@broadcom.com>");
76 MODULE_DESCRIPTION(BNXT_RE_DESC);
77 MODULE_LICENSE("Dual BSD/GPL");
78 
79 /* globals */
80 static DEFINE_MUTEX(bnxt_re_mutex);
81 
82 static int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev);
83 
84 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len,
85 			     u32 *offset);
86 static void bnxt_re_dispatch_event(struct ib_device *ibdev, struct ib_qp *qp,
87 				   u8 port_num, enum ib_event_type event);
88 static void bnxt_re_set_db_offset(struct bnxt_re_dev *rdev)
89 {
90 	struct bnxt_qplib_chip_ctx *cctx;
91 	struct bnxt_en_dev *en_dev;
92 	struct bnxt_qplib_res *res;
93 	u32 l2db_len = 0;
94 	u32 offset = 0;
95 	u32 barlen;
96 	int rc;
97 
98 	res = &rdev->qplib_res;
99 	en_dev = rdev->en_dev;
100 	cctx = rdev->chip_ctx;
101 
102 	/* Issue qcfg */
103 	rc = bnxt_re_hwrm_qcfg(rdev, &l2db_len, &offset);
104 	if (rc)
105 		dev_info(rdev_to_dev(rdev),
106 			 "Couldn't get DB bar size, Low latency framework is disabled\n");
107 	/* set register offsets for both UC and WC */
108 	if (bnxt_qplib_is_chip_gen_p7(cctx)) {
109 		res->dpi_tbl.ucreg.offset = offset;
110 		res->dpi_tbl.wcreg.offset = en_dev->l2_db_size;
111 	} else {
112 		res->dpi_tbl.ucreg.offset = res->is_vf ? BNXT_QPLIB_DBR_VF_DB_OFFSET :
113 							 BNXT_QPLIB_DBR_PF_DB_OFFSET;
114 		res->dpi_tbl.wcreg.offset = res->dpi_tbl.ucreg.offset;
115 	}
116 
117 	/* If WC mapping is disabled by L2 driver then en_dev->l2_db_size
118 	 * is equal to the DB-Bar actual size. This indicates that L2
119 	 * is mapping entire bar as UC-. RoCE driver can't enable WC mapping
120 	 * in such cases and DB-push will be disabled.
121 	 */
122 	barlen = pci_resource_len(res->pdev, RCFW_DBR_PCI_BAR_REGION);
123 	if (cctx->modes.db_push && l2db_len && en_dev->l2_db_size != barlen) {
124 		res->dpi_tbl.wcreg.offset = en_dev->l2_db_size;
125 		dev_info(rdev_to_dev(rdev),  "Low latency framework is enabled\n");
126 	}
127 }
128 
129 static void bnxt_re_set_drv_mode(struct bnxt_re_dev *rdev)
130 {
131 	struct bnxt_qplib_chip_ctx *cctx;
132 
133 	cctx = rdev->chip_ctx;
134 	cctx->modes.wqe_mode = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ?
135 			       BNXT_QPLIB_WQE_MODE_VARIABLE : BNXT_QPLIB_WQE_MODE_STATIC;
136 	if (bnxt_re_hwrm_qcaps(rdev))
137 		dev_err(rdev_to_dev(rdev),
138 			"Failed to query hwrm qcaps\n");
139 	if (bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx)) {
140 		cctx->modes.toggle_bits |= BNXT_QPLIB_CQ_TOGGLE_BIT;
141 		cctx->modes.toggle_bits |= BNXT_QPLIB_SRQ_TOGGLE_BIT;
142 	}
143 }
144 
145 static void bnxt_re_destroy_chip_ctx(struct bnxt_re_dev *rdev)
146 {
147 	struct bnxt_qplib_chip_ctx *chip_ctx;
148 
149 	if (!rdev->chip_ctx)
150 		return;
151 
152 	kfree(rdev->dev_attr);
153 	rdev->dev_attr = NULL;
154 
155 	chip_ctx = rdev->chip_ctx;
156 	rdev->chip_ctx = NULL;
157 	rdev->rcfw.res = NULL;
158 	rdev->qplib_res.cctx = NULL;
159 	rdev->qplib_res.pdev = NULL;
160 	rdev->qplib_res.netdev = NULL;
161 	kfree(chip_ctx);
162 }
163 
164 static int bnxt_re_setup_chip_ctx(struct bnxt_re_dev *rdev)
165 {
166 	struct bnxt_qplib_chip_ctx *chip_ctx;
167 	struct bnxt_en_dev *en_dev;
168 	int rc = -ENOMEM;
169 
170 	en_dev = rdev->en_dev;
171 
172 	rdev->qplib_res.pdev = en_dev->pdev;
173 	chip_ctx = kzalloc(sizeof(*chip_ctx), GFP_KERNEL);
174 	if (!chip_ctx)
175 		return -ENOMEM;
176 	chip_ctx->chip_num = en_dev->chip_num;
177 	chip_ctx->hw_stats_size = en_dev->hw_ring_stats_size;
178 
179 	rdev->chip_ctx = chip_ctx;
180 	/* rest members to follow eventually */
181 
182 	rdev->qplib_res.cctx = rdev->chip_ctx;
183 	rdev->rcfw.res = &rdev->qplib_res;
184 	rdev->dev_attr = kzalloc(sizeof(*rdev->dev_attr), GFP_KERNEL);
185 	if (!rdev->dev_attr)
186 		goto free_chip_ctx;
187 	rdev->qplib_res.dattr = rdev->dev_attr;
188 	rdev->qplib_res.is_vf = BNXT_EN_VF(en_dev);
189 	rdev->qplib_res.en_dev = en_dev;
190 
191 	bnxt_re_set_drv_mode(rdev);
192 
193 	bnxt_re_set_db_offset(rdev);
194 	rc = bnxt_qplib_map_db_bar(&rdev->qplib_res);
195 	if (rc)
196 		goto free_dev_attr;
197 
198 	if (bnxt_qplib_determine_atomics(en_dev->pdev))
199 		ibdev_info(&rdev->ibdev,
200 			   "platform doesn't support global atomics.");
201 	return 0;
202 free_dev_attr:
203 	kfree(rdev->dev_attr);
204 	rdev->dev_attr = NULL;
205 free_chip_ctx:
206 	kfree(rdev->chip_ctx);
207 	rdev->chip_ctx = NULL;
208 	return rc;
209 }
210 
211 /* SR-IOV helper functions */
212 
213 static void bnxt_re_get_sriov_func_type(struct bnxt_re_dev *rdev)
214 {
215 	if (BNXT_EN_VF(rdev->en_dev))
216 		rdev->is_virtfn = 1;
217 }
218 
219 /* Set the maximum number of each resource that the driver actually wants
220  * to allocate. This may be up to the maximum number the firmware has
221  * reserved for the function. The driver may choose to allocate fewer
222  * resources than the firmware maximum.
223  */
224 static void bnxt_re_limit_pf_res(struct bnxt_re_dev *rdev)
225 {
226 	struct bnxt_qplib_dev_attr *attr;
227 	struct bnxt_qplib_ctx *ctx;
228 	int i;
229 
230 	attr = rdev->dev_attr;
231 	ctx = &rdev->qplib_ctx;
232 
233 	ctx->qpc_count = min_t(u32, BNXT_RE_MAX_QPC_COUNT,
234 			       attr->max_qp);
235 	ctx->mrw_count = BNXT_RE_MAX_MRW_COUNT_256K;
236 	/* Use max_mr from fw since max_mrw does not get set */
237 	ctx->mrw_count = min_t(u32, ctx->mrw_count, attr->max_mr);
238 	ctx->srqc_count = min_t(u32, BNXT_RE_MAX_SRQC_COUNT,
239 				attr->max_srq);
240 	ctx->cq_count = min_t(u32, BNXT_RE_MAX_CQ_COUNT, attr->max_cq);
241 	if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
242 		for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
243 			rdev->qplib_ctx.tqm_ctx.qcount[i] =
244 			rdev->dev_attr->tqm_alloc_reqs[i];
245 }
246 
247 static void bnxt_re_limit_vf_res(struct bnxt_qplib_ctx *qplib_ctx, u32 num_vf)
248 {
249 	struct bnxt_qplib_vf_res *vf_res;
250 	u32 mrws = 0;
251 	u32 vf_pct;
252 	u32 nvfs;
253 
254 	vf_res = &qplib_ctx->vf_res;
255 	/*
256 	 * Reserve a set of resources for the PF. Divide the remaining
257 	 * resources among the VFs
258 	 */
259 	vf_pct = 100 - BNXT_RE_PCT_RSVD_FOR_PF;
260 	nvfs = num_vf;
261 	num_vf = 100 * num_vf;
262 	vf_res->max_qp_per_vf = (qplib_ctx->qpc_count * vf_pct) / num_vf;
263 	vf_res->max_srq_per_vf = (qplib_ctx->srqc_count * vf_pct) / num_vf;
264 	vf_res->max_cq_per_vf = (qplib_ctx->cq_count * vf_pct) / num_vf;
265 	/*
266 	 * The driver allows many more MRs than other resources. If the
267 	 * firmware does also, then reserve a fixed amount for the PF and
268 	 * divide the rest among VFs. VFs may use many MRs for NFS
269 	 * mounts, ISER, NVME applications, etc. If the firmware severely
270 	 * restricts the number of MRs, then let PF have half and divide
271 	 * the rest among VFs, as for the other resource types.
272 	 */
273 	if (qplib_ctx->mrw_count < BNXT_RE_MAX_MRW_COUNT_64K) {
274 		mrws = qplib_ctx->mrw_count * vf_pct;
275 		nvfs = num_vf;
276 	} else {
277 		mrws = qplib_ctx->mrw_count - BNXT_RE_RESVD_MR_FOR_PF;
278 	}
279 	vf_res->max_mrw_per_vf = (mrws / nvfs);
280 	vf_res->max_gid_per_vf = BNXT_RE_MAX_GID_PER_VF;
281 }
282 
283 static void bnxt_re_set_resource_limits(struct bnxt_re_dev *rdev)
284 {
285 	u32 num_vfs;
286 
287 	memset(&rdev->qplib_ctx.vf_res, 0, sizeof(struct bnxt_qplib_vf_res));
288 	bnxt_re_limit_pf_res(rdev);
289 
290 	num_vfs =  bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx) ?
291 			BNXT_RE_GEN_P5_MAX_VF : rdev->num_vfs;
292 	if (num_vfs)
293 		bnxt_re_limit_vf_res(&rdev->qplib_ctx, num_vfs);
294 }
295 
296 static void bnxt_re_vf_res_config(struct bnxt_re_dev *rdev)
297 {
298 	/*
299 	 * Use the total VF count since the actual VF count may not be
300 	 * available at this point.
301 	 */
302 	rdev->num_vfs = pci_sriov_get_totalvfs(rdev->en_dev->pdev);
303 	if (!rdev->num_vfs)
304 		return;
305 
306 	bnxt_re_set_resource_limits(rdev);
307 	bnxt_qplib_set_func_resources(&rdev->qplib_res, &rdev->rcfw,
308 				      &rdev->qplib_ctx);
309 }
310 
311 struct bnxt_re_dcb_work {
312 	struct work_struct work;
313 	struct bnxt_re_dev *rdev;
314 	struct hwrm_async_event_cmpl cmpl;
315 };
316 
317 static bool bnxt_re_is_qp1_qp(struct bnxt_re_qp *qp)
318 {
319 	return qp->ib_qp.qp_type == IB_QPT_GSI;
320 }
321 
322 static struct bnxt_re_qp *bnxt_re_get_qp1_qp(struct bnxt_re_dev *rdev)
323 {
324 	struct bnxt_re_qp *qp;
325 
326 	mutex_lock(&rdev->qp_lock);
327 	list_for_each_entry(qp, &rdev->qp_list, list) {
328 		if (bnxt_re_is_qp1_qp(qp)) {
329 			mutex_unlock(&rdev->qp_lock);
330 			return qp;
331 		}
332 	}
333 	mutex_unlock(&rdev->qp_lock);
334 	return NULL;
335 }
336 
337 static int bnxt_re_update_qp1_tos_dscp(struct bnxt_re_dev *rdev)
338 {
339 	struct bnxt_re_qp *qp;
340 
341 	if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
342 		return 0;
343 
344 	qp = bnxt_re_get_qp1_qp(rdev);
345 	if (!qp)
346 		return 0;
347 
348 	qp->qplib_qp.modify_flags = CMDQ_MODIFY_QP_MODIFY_MASK_TOS_DSCP;
349 	qp->qplib_qp.tos_dscp = rdev->cc_param.qp1_tos_dscp;
350 
351 	return bnxt_qplib_modify_qp(&rdev->qplib_res, &qp->qplib_qp);
352 }
353 
354 static void bnxt_re_init_dcb_wq(struct bnxt_re_dev *rdev)
355 {
356 	rdev->dcb_wq = create_singlethread_workqueue("bnxt_re_dcb_wq");
357 }
358 
359 static void bnxt_re_uninit_dcb_wq(struct bnxt_re_dev *rdev)
360 {
361 	if (!rdev->dcb_wq)
362 		return;
363 	destroy_workqueue(rdev->dcb_wq);
364 }
365 
366 static void bnxt_re_dcb_wq_task(struct work_struct *work)
367 {
368 	struct bnxt_re_dcb_work *dcb_work =
369 		container_of(work, struct bnxt_re_dcb_work, work);
370 	struct bnxt_re_dev *rdev = dcb_work->rdev;
371 	struct bnxt_qplib_cc_param *cc_param;
372 	int rc;
373 
374 	if (!rdev)
375 		goto free_dcb;
376 
377 	cc_param = &rdev->cc_param;
378 	rc = bnxt_qplib_query_cc_param(&rdev->qplib_res, cc_param);
379 	if (rc) {
380 		ibdev_dbg(&rdev->ibdev, "Failed to query ccparam rc:%d", rc);
381 		goto free_dcb;
382 	}
383 	if (cc_param->qp1_tos_dscp != cc_param->tos_dscp) {
384 		cc_param->qp1_tos_dscp = cc_param->tos_dscp;
385 		rc = bnxt_re_update_qp1_tos_dscp(rdev);
386 		if (rc) {
387 			ibdev_dbg(&rdev->ibdev, "%s: Failed to modify QP1 rc:%d",
388 				  __func__, rc);
389 			goto free_dcb;
390 		}
391 	}
392 
393 free_dcb:
394 	kfree(dcb_work);
395 }
396 
397 static void bnxt_re_async_notifier(void *handle, struct hwrm_async_event_cmpl *cmpl)
398 {
399 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle);
400 	struct bnxt_re_dcb_work *dcb_work;
401 	struct bnxt_re_dev *rdev;
402 	u32 data1, data2;
403 	u16 event_id;
404 
405 	rdev = en_info->rdev;
406 	if (!rdev)
407 		return;
408 
409 	event_id = le16_to_cpu(cmpl->event_id);
410 	data1 = le32_to_cpu(cmpl->event_data1);
411 	data2 = le32_to_cpu(cmpl->event_data2);
412 
413 	ibdev_dbg(&rdev->ibdev, "Async event_id = %d data1 = %d data2 = %d",
414 		  event_id, data1, data2);
415 
416 	switch (event_id) {
417 	case ASYNC_EVENT_CMPL_EVENT_ID_DCB_CONFIG_CHANGE:
418 		dcb_work = kzalloc(sizeof(*dcb_work), GFP_ATOMIC);
419 		if (!dcb_work)
420 			break;
421 
422 		dcb_work->rdev = rdev;
423 		memcpy(&dcb_work->cmpl, cmpl, sizeof(*cmpl));
424 		INIT_WORK(&dcb_work->work, bnxt_re_dcb_wq_task);
425 		queue_work(rdev->dcb_wq, &dcb_work->work);
426 		break;
427 	default:
428 		break;
429 	}
430 }
431 
432 static void bnxt_re_stop_irq(void *handle, bool reset)
433 {
434 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle);
435 	struct bnxt_qplib_rcfw *rcfw;
436 	struct bnxt_re_dev *rdev;
437 	struct bnxt_qplib_nq *nq;
438 	int indx;
439 
440 	rdev = en_info->rdev;
441 	if (!rdev)
442 		return;
443 	rcfw = &rdev->rcfw;
444 
445 	if (reset) {
446 		set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags);
447 		set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags);
448 		wake_up_all(&rdev->rcfw.cmdq.waitq);
449 		bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1,
450 				       IB_EVENT_DEVICE_FATAL);
451 	}
452 
453 	for (indx = BNXT_RE_NQ_IDX; indx < rdev->nqr->num_msix; indx++) {
454 		nq = &rdev->nqr->nq[indx - 1];
455 		bnxt_qplib_nq_stop_irq(nq, false);
456 	}
457 
458 	bnxt_qplib_rcfw_stop_irq(rcfw, false);
459 }
460 
461 static void bnxt_re_start_irq(void *handle, struct bnxt_msix_entry *ent)
462 {
463 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle);
464 	struct bnxt_msix_entry *msix_ent;
465 	struct bnxt_qplib_rcfw *rcfw;
466 	struct bnxt_re_dev *rdev;
467 	struct bnxt_qplib_nq *nq;
468 	int indx, rc;
469 
470 	rdev = en_info->rdev;
471 	if (!rdev)
472 		return;
473 	msix_ent = rdev->nqr->msix_entries;
474 	rcfw = &rdev->rcfw;
475 	if (!ent) {
476 		/* Not setting the f/w timeout bit in rcfw.
477 		 * During the driver unload the first command
478 		 * to f/w will timeout and that will set the
479 		 * timeout bit.
480 		 */
481 		ibdev_err(&rdev->ibdev, "Failed to re-start IRQs\n");
482 		return;
483 	}
484 
485 	/* Vectors may change after restart, so update with new vectors
486 	 * in device sctructure.
487 	 */
488 	for (indx = 0; indx < rdev->nqr->num_msix; indx++)
489 		rdev->nqr->msix_entries[indx].vector = ent[indx].vector;
490 
491 	rc = bnxt_qplib_rcfw_start_irq(rcfw, msix_ent[BNXT_RE_AEQ_IDX].vector,
492 				       false);
493 	if (rc) {
494 		ibdev_warn(&rdev->ibdev, "Failed to reinit CREQ\n");
495 		return;
496 	}
497 	for (indx = BNXT_RE_NQ_IDX ; indx < rdev->nqr->num_msix; indx++) {
498 		nq = &rdev->nqr->nq[indx - 1];
499 		rc = bnxt_qplib_nq_start_irq(nq, indx - 1,
500 					     msix_ent[indx].vector, false);
501 		if (rc) {
502 			ibdev_warn(&rdev->ibdev, "Failed to reinit NQ index %d\n",
503 				   indx - 1);
504 			return;
505 		}
506 	}
507 }
508 
509 static struct bnxt_ulp_ops bnxt_re_ulp_ops = {
510 	.ulp_async_notifier = bnxt_re_async_notifier,
511 	.ulp_irq_stop = bnxt_re_stop_irq,
512 	.ulp_irq_restart = bnxt_re_start_irq
513 };
514 
515 /* RoCE -> Net driver */
516 
517 static int bnxt_re_register_netdev(struct bnxt_re_dev *rdev)
518 {
519 	struct bnxt_en_dev *en_dev;
520 
521 	en_dev = rdev->en_dev;
522 	return bnxt_register_dev(en_dev, &bnxt_re_ulp_ops, rdev->adev);
523 }
524 
525 static void bnxt_re_init_hwrm_hdr(struct input *hdr, u16 opcd)
526 {
527 	hdr->req_type = cpu_to_le16(opcd);
528 	hdr->cmpl_ring = cpu_to_le16(-1);
529 	hdr->target_id = cpu_to_le16(-1);
530 }
531 
532 static void bnxt_re_fill_fw_msg(struct bnxt_fw_msg *fw_msg, void *msg,
533 				int msg_len, void *resp, int resp_max_len,
534 				int timeout)
535 {
536 	fw_msg->msg = msg;
537 	fw_msg->msg_len = msg_len;
538 	fw_msg->resp = resp;
539 	fw_msg->resp_max_len = resp_max_len;
540 	fw_msg->timeout = timeout;
541 }
542 
543 /* Query device config using common hwrm */
544 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len,
545 			     u32 *offset)
546 {
547 	struct bnxt_en_dev *en_dev = rdev->en_dev;
548 	struct hwrm_func_qcfg_output resp = {0};
549 	struct hwrm_func_qcfg_input req = {0};
550 	struct bnxt_fw_msg fw_msg = {};
551 	int rc;
552 
553 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCFG);
554 	req.fid = cpu_to_le16(0xffff);
555 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
556 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
557 	rc = bnxt_send_msg(en_dev, &fw_msg);
558 	if (!rc) {
559 		*db_len = PAGE_ALIGN(le16_to_cpu(resp.l2_doorbell_bar_size_kb) * 1024);
560 		*offset = PAGE_ALIGN(le16_to_cpu(resp.legacy_l2_db_size_kb) * 1024);
561 	}
562 	return rc;
563 }
564 
565 /* Query function capabilities using common hwrm */
566 int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev)
567 {
568 	struct bnxt_en_dev *en_dev = rdev->en_dev;
569 	struct hwrm_func_qcaps_output resp = {};
570 	struct hwrm_func_qcaps_input req = {};
571 	struct bnxt_qplib_chip_ctx *cctx;
572 	struct bnxt_fw_msg fw_msg = {};
573 	u32 flags_ext2;
574 	int rc;
575 
576 	cctx = rdev->chip_ctx;
577 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCAPS);
578 	req.fid = cpu_to_le16(0xffff);
579 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
580 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
581 
582 	rc = bnxt_send_msg(en_dev, &fw_msg);
583 	if (rc)
584 		return rc;
585 	cctx->modes.db_push = le32_to_cpu(resp.flags) & FUNC_QCAPS_RESP_FLAGS_WCB_PUSH_MODE;
586 
587 	flags_ext2 = le32_to_cpu(resp.flags_ext2);
588 	cctx->modes.dbr_pacing = flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_EXT_SUPPORTED ||
589 				 flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_V0_SUPPORTED;
590 	return 0;
591 }
592 
593 static int bnxt_re_hwrm_dbr_pacing_qcfg(struct bnxt_re_dev *rdev)
594 {
595 	struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
596 	struct hwrm_func_dbr_pacing_qcfg_output resp = {};
597 	struct hwrm_func_dbr_pacing_qcfg_input req = {};
598 	struct bnxt_en_dev *en_dev = rdev->en_dev;
599 	struct bnxt_qplib_chip_ctx *cctx;
600 	struct bnxt_fw_msg fw_msg = {};
601 	int rc;
602 
603 	cctx = rdev->chip_ctx;
604 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_DBR_PACING_QCFG);
605 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
606 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
607 	rc = bnxt_send_msg(en_dev, &fw_msg);
608 	if (rc)
609 		return rc;
610 
611 	if ((le32_to_cpu(resp.dbr_stat_db_fifo_reg) &
612 	    FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK) ==
613 		FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_GRC)
614 		cctx->dbr_stat_db_fifo =
615 			le32_to_cpu(resp.dbr_stat_db_fifo_reg) &
616 			~FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK;
617 
618 	pacing_data->fifo_max_depth = le32_to_cpu(resp.dbr_stat_db_max_fifo_depth);
619 	if (!pacing_data->fifo_max_depth)
620 		pacing_data->fifo_max_depth = BNXT_RE_MAX_FIFO_DEPTH(cctx);
621 	pacing_data->fifo_room_mask = le32_to_cpu(resp.dbr_stat_db_fifo_reg_fifo_room_mask);
622 	pacing_data->fifo_room_shift = resp.dbr_stat_db_fifo_reg_fifo_room_shift;
623 
624 	return 0;
625 }
626 
627 /* Update the pacing tunable parameters to the default values */
628 static void bnxt_re_set_default_pacing_data(struct bnxt_re_dev *rdev)
629 {
630 	struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
631 
632 	pacing_data->do_pacing = rdev->pacing.dbr_def_do_pacing;
633 	pacing_data->pacing_th = rdev->pacing.pacing_algo_th;
634 	pacing_data->alarm_th =
635 		pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE;
636 }
637 
638 static u32 __get_fifo_occupancy(struct bnxt_re_dev *rdev)
639 {
640 	struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
641 	u32 read_val, fifo_occup;
642 
643 	read_val = readl(rdev->en_dev->bar0 + rdev->pacing.dbr_db_fifo_reg_off);
644 	fifo_occup = pacing_data->fifo_max_depth -
645 		     ((read_val & pacing_data->fifo_room_mask) >>
646 		      pacing_data->fifo_room_shift);
647 	return fifo_occup;
648 }
649 
650 static bool is_dbr_fifo_full(struct bnxt_re_dev *rdev)
651 {
652 	u32 max_occup, fifo_occup;
653 
654 	fifo_occup = __get_fifo_occupancy(rdev);
655 	max_occup = BNXT_RE_MAX_FIFO_DEPTH(rdev->chip_ctx) - 1;
656 	if (fifo_occup == max_occup)
657 		return true;
658 
659 	return false;
660 }
661 
662 static void __wait_for_fifo_occupancy_below_th(struct bnxt_re_dev *rdev)
663 {
664 	struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
665 	u32 retry_fifo_check = 1000;
666 	u32 fifo_occup;
667 
668 	/* loop shouldn't run infintely as the occupancy usually goes
669 	 * below pacing algo threshold as soon as pacing kicks in.
670 	 */
671 	while (1) {
672 		fifo_occup = __get_fifo_occupancy(rdev);
673 		/* Fifo occupancy cannot be greater the MAX FIFO depth */
674 		if (fifo_occup > pacing_data->fifo_max_depth)
675 			break;
676 
677 		if (fifo_occup < pacing_data->pacing_th)
678 			break;
679 		if (!retry_fifo_check--) {
680 			dev_info_once(rdev_to_dev(rdev),
681 				      "%s: fifo_occup = 0x%xfifo_max_depth = 0x%x pacing_th = 0x%x\n",
682 				      __func__, fifo_occup, pacing_data->fifo_max_depth,
683 					pacing_data->pacing_th);
684 			break;
685 		}
686 
687 	}
688 }
689 
690 static void bnxt_re_db_fifo_check(struct work_struct *work)
691 {
692 	struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
693 			dbq_fifo_check_work);
694 	struct bnxt_qplib_db_pacing_data *pacing_data;
695 	u32 pacing_save;
696 
697 	if (!mutex_trylock(&rdev->pacing.dbq_lock))
698 		return;
699 	pacing_data = rdev->qplib_res.pacing_data;
700 	pacing_save = rdev->pacing.do_pacing_save;
701 	__wait_for_fifo_occupancy_below_th(rdev);
702 	cancel_delayed_work_sync(&rdev->dbq_pacing_work);
703 	if (pacing_save > rdev->pacing.dbr_def_do_pacing) {
704 		/* Double the do_pacing value during the congestion */
705 		pacing_save = pacing_save << 1;
706 	} else {
707 		/*
708 		 * when a new congestion is detected increase the do_pacing
709 		 * by 8 times. And also increase the pacing_th by 4 times. The
710 		 * reason to increase pacing_th is to give more space for the
711 		 * queue to oscillate down without getting empty, but also more
712 		 * room for the queue to increase without causing another alarm.
713 		 */
714 		pacing_save = pacing_save << 3;
715 		pacing_data->pacing_th = rdev->pacing.pacing_algo_th * 4;
716 	}
717 
718 	if (pacing_save > BNXT_RE_MAX_DBR_DO_PACING)
719 		pacing_save = BNXT_RE_MAX_DBR_DO_PACING;
720 
721 	pacing_data->do_pacing = pacing_save;
722 	rdev->pacing.do_pacing_save = pacing_data->do_pacing;
723 	pacing_data->alarm_th =
724 		pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE;
725 	schedule_delayed_work(&rdev->dbq_pacing_work,
726 			      msecs_to_jiffies(rdev->pacing.dbq_pacing_time));
727 	rdev->stats.pacing.alerts++;
728 	mutex_unlock(&rdev->pacing.dbq_lock);
729 }
730 
731 static void bnxt_re_pacing_timer_exp(struct work_struct *work)
732 {
733 	struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
734 			dbq_pacing_work.work);
735 	struct bnxt_qplib_db_pacing_data *pacing_data;
736 	u32 fifo_occup;
737 
738 	if (!mutex_trylock(&rdev->pacing.dbq_lock))
739 		return;
740 
741 	pacing_data = rdev->qplib_res.pacing_data;
742 	fifo_occup = __get_fifo_occupancy(rdev);
743 
744 	if (fifo_occup > pacing_data->pacing_th)
745 		goto restart_timer;
746 
747 	/*
748 	 * Instead of immediately going back to the default do_pacing
749 	 * reduce it by 1/8 times and restart the timer.
750 	 */
751 	pacing_data->do_pacing = pacing_data->do_pacing - (pacing_data->do_pacing >> 3);
752 	pacing_data->do_pacing = max_t(u32, rdev->pacing.dbr_def_do_pacing, pacing_data->do_pacing);
753 	if (pacing_data->do_pacing <= rdev->pacing.dbr_def_do_pacing) {
754 		bnxt_re_set_default_pacing_data(rdev);
755 		rdev->stats.pacing.complete++;
756 		goto dbq_unlock;
757 	}
758 
759 restart_timer:
760 	schedule_delayed_work(&rdev->dbq_pacing_work,
761 			      msecs_to_jiffies(rdev->pacing.dbq_pacing_time));
762 	rdev->stats.pacing.resched++;
763 dbq_unlock:
764 	rdev->pacing.do_pacing_save = pacing_data->do_pacing;
765 	mutex_unlock(&rdev->pacing.dbq_lock);
766 }
767 
768 void bnxt_re_pacing_alert(struct bnxt_re_dev *rdev)
769 {
770 	struct bnxt_qplib_db_pacing_data *pacing_data;
771 
772 	if (!rdev->pacing.dbr_pacing)
773 		return;
774 	mutex_lock(&rdev->pacing.dbq_lock);
775 	pacing_data = rdev->qplib_res.pacing_data;
776 
777 	/*
778 	 * Increase the alarm_th to max so that other user lib instances do not
779 	 * keep alerting the driver.
780 	 */
781 	pacing_data->alarm_th = pacing_data->fifo_max_depth;
782 	pacing_data->do_pacing = BNXT_RE_MAX_DBR_DO_PACING;
783 	cancel_work_sync(&rdev->dbq_fifo_check_work);
784 	schedule_work(&rdev->dbq_fifo_check_work);
785 	mutex_unlock(&rdev->pacing.dbq_lock);
786 }
787 
788 static int bnxt_re_initialize_dbr_pacing(struct bnxt_re_dev *rdev)
789 {
790 	/* Allocate a page for app use */
791 	rdev->pacing.dbr_page = (void *)__get_free_page(GFP_KERNEL);
792 	if (!rdev->pacing.dbr_page)
793 		return -ENOMEM;
794 
795 	memset((u8 *)rdev->pacing.dbr_page, 0, PAGE_SIZE);
796 	rdev->qplib_res.pacing_data = (struct bnxt_qplib_db_pacing_data *)rdev->pacing.dbr_page;
797 
798 	if (bnxt_re_hwrm_dbr_pacing_qcfg(rdev)) {
799 		free_page((u64)rdev->pacing.dbr_page);
800 		rdev->pacing.dbr_page = NULL;
801 		return -EIO;
802 	}
803 
804 	/* MAP HW window 2 for reading db fifo depth */
805 	writel(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_BASE_MASK,
806 	       rdev->en_dev->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
807 	rdev->pacing.dbr_db_fifo_reg_off =
808 		(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_OFFSET_MASK) +
809 		 BNXT_RE_GRC_FIFO_REG_BASE;
810 	rdev->pacing.dbr_bar_addr =
811 		pci_resource_start(rdev->qplib_res.pdev, 0) + rdev->pacing.dbr_db_fifo_reg_off;
812 
813 	if (is_dbr_fifo_full(rdev)) {
814 		free_page((u64)rdev->pacing.dbr_page);
815 		rdev->pacing.dbr_page = NULL;
816 		return -EIO;
817 	}
818 
819 	rdev->pacing.pacing_algo_th = BNXT_RE_PACING_ALGO_THRESHOLD;
820 	rdev->pacing.dbq_pacing_time = BNXT_RE_DBR_PACING_TIME;
821 	rdev->pacing.dbr_def_do_pacing = BNXT_RE_DBR_DO_PACING_NO_CONGESTION;
822 	rdev->pacing.do_pacing_save = rdev->pacing.dbr_def_do_pacing;
823 	rdev->qplib_res.pacing_data->grc_reg_offset = rdev->pacing.dbr_db_fifo_reg_off;
824 	bnxt_re_set_default_pacing_data(rdev);
825 	/* Initialize worker for DBR Pacing */
826 	INIT_WORK(&rdev->dbq_fifo_check_work, bnxt_re_db_fifo_check);
827 	INIT_DELAYED_WORK(&rdev->dbq_pacing_work, bnxt_re_pacing_timer_exp);
828 	return 0;
829 }
830 
831 static void bnxt_re_deinitialize_dbr_pacing(struct bnxt_re_dev *rdev)
832 {
833 	cancel_work_sync(&rdev->dbq_fifo_check_work);
834 	cancel_delayed_work_sync(&rdev->dbq_pacing_work);
835 	if (rdev->pacing.dbr_page)
836 		free_page((u64)rdev->pacing.dbr_page);
837 
838 	rdev->pacing.dbr_page = NULL;
839 	rdev->pacing.dbr_pacing = false;
840 }
841 
842 static int bnxt_re_net_ring_free(struct bnxt_re_dev *rdev,
843 				 u16 fw_ring_id, int type)
844 {
845 	struct bnxt_en_dev *en_dev;
846 	struct hwrm_ring_free_input req = {};
847 	struct hwrm_ring_free_output resp;
848 	struct bnxt_fw_msg fw_msg = {};
849 	int rc = -EINVAL;
850 
851 	if (!rdev)
852 		return rc;
853 
854 	en_dev = rdev->en_dev;
855 
856 	if (!en_dev)
857 		return rc;
858 
859 	if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
860 		return 0;
861 
862 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_FREE);
863 	req.ring_type = type;
864 	req.ring_id = cpu_to_le16(fw_ring_id);
865 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
866 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
867 	rc = bnxt_send_msg(en_dev, &fw_msg);
868 	if (rc)
869 		ibdev_err(&rdev->ibdev, "Failed to free HW ring:%d :%#x",
870 			  req.ring_id, rc);
871 	return rc;
872 }
873 
874 static int bnxt_re_net_ring_alloc(struct bnxt_re_dev *rdev,
875 				  struct bnxt_re_ring_attr *ring_attr,
876 				  u16 *fw_ring_id)
877 {
878 	struct bnxt_en_dev *en_dev = rdev->en_dev;
879 	struct hwrm_ring_alloc_input req = {};
880 	struct hwrm_ring_alloc_output resp;
881 	struct bnxt_fw_msg fw_msg = {};
882 	int rc = -EINVAL;
883 
884 	if (!en_dev)
885 		return rc;
886 
887 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_ALLOC);
888 	req.enables = 0;
889 	req.page_tbl_addr =  cpu_to_le64(ring_attr->dma_arr[0]);
890 	if (ring_attr->pages > 1) {
891 		/* Page size is in log2 units */
892 		req.page_size = BNXT_PAGE_SHIFT;
893 		req.page_tbl_depth = 1;
894 	}
895 	req.fbo = 0;
896 	/* Association of ring index with doorbell index and MSIX number */
897 	req.logical_id = cpu_to_le16(ring_attr->lrid);
898 	req.length = cpu_to_le32(ring_attr->depth + 1);
899 	req.ring_type = ring_attr->type;
900 	req.int_mode = ring_attr->mode;
901 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
902 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
903 	rc = bnxt_send_msg(en_dev, &fw_msg);
904 	if (!rc)
905 		*fw_ring_id = le16_to_cpu(resp.ring_id);
906 
907 	return rc;
908 }
909 
910 static int bnxt_re_net_stats_ctx_free(struct bnxt_re_dev *rdev,
911 				      u32 fw_stats_ctx_id)
912 {
913 	struct bnxt_en_dev *en_dev = rdev->en_dev;
914 	struct hwrm_stat_ctx_free_input req = {};
915 	struct hwrm_stat_ctx_free_output resp = {};
916 	struct bnxt_fw_msg fw_msg = {};
917 	int rc = -EINVAL;
918 
919 	if (!en_dev)
920 		return rc;
921 
922 	if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
923 		return 0;
924 
925 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_FREE);
926 	req.stat_ctx_id = cpu_to_le32(fw_stats_ctx_id);
927 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
928 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
929 	rc = bnxt_send_msg(en_dev, &fw_msg);
930 	if (rc)
931 		ibdev_err(&rdev->ibdev, "Failed to free HW stats context %#x",
932 			  rc);
933 
934 	return rc;
935 }
936 
937 static int bnxt_re_net_stats_ctx_alloc(struct bnxt_re_dev *rdev,
938 				       dma_addr_t dma_map,
939 				       u32 *fw_stats_ctx_id)
940 {
941 	struct bnxt_qplib_chip_ctx *chip_ctx = rdev->chip_ctx;
942 	struct hwrm_stat_ctx_alloc_output resp = {};
943 	struct hwrm_stat_ctx_alloc_input req = {};
944 	struct bnxt_en_dev *en_dev = rdev->en_dev;
945 	struct bnxt_fw_msg fw_msg = {};
946 	int rc = -EINVAL;
947 
948 	*fw_stats_ctx_id = INVALID_STATS_CTX_ID;
949 
950 	if (!en_dev)
951 		return rc;
952 
953 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_ALLOC);
954 	req.update_period_ms = cpu_to_le32(1000);
955 	req.stats_dma_addr = cpu_to_le64(dma_map);
956 	req.stats_dma_length = cpu_to_le16(chip_ctx->hw_stats_size);
957 	req.stat_ctx_flags = STAT_CTX_ALLOC_REQ_STAT_CTX_FLAGS_ROCE;
958 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
959 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
960 	rc = bnxt_send_msg(en_dev, &fw_msg);
961 	if (!rc)
962 		*fw_stats_ctx_id = le32_to_cpu(resp.stat_ctx_id);
963 
964 	return rc;
965 }
966 
967 static void bnxt_re_disassociate_ucontext(struct ib_ucontext *ibcontext)
968 {
969 }
970 
971 /* Device */
972 static ssize_t hw_rev_show(struct device *device, struct device_attribute *attr,
973 			   char *buf)
974 {
975 	struct bnxt_re_dev *rdev =
976 		rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev);
977 
978 	return sysfs_emit(buf, "0x%x\n", rdev->en_dev->pdev->vendor);
979 }
980 static DEVICE_ATTR_RO(hw_rev);
981 
982 static ssize_t hca_type_show(struct device *device,
983 			     struct device_attribute *attr, char *buf)
984 {
985 	struct bnxt_re_dev *rdev =
986 		rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev);
987 
988 	return sysfs_emit(buf, "%s\n", rdev->ibdev.node_desc);
989 }
990 static DEVICE_ATTR_RO(hca_type);
991 
992 static struct attribute *bnxt_re_attributes[] = {
993 	&dev_attr_hw_rev.attr,
994 	&dev_attr_hca_type.attr,
995 	NULL
996 };
997 
998 static const struct attribute_group bnxt_re_dev_attr_group = {
999 	.attrs = bnxt_re_attributes,
1000 };
1001 
1002 static int bnxt_re_fill_res_mr_entry(struct sk_buff *msg, struct ib_mr *ib_mr)
1003 {
1004 	struct bnxt_qplib_hwq *mr_hwq;
1005 	struct nlattr *table_attr;
1006 	struct bnxt_re_mr *mr;
1007 
1008 	table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_DRIVER);
1009 	if (!table_attr)
1010 		return -EMSGSIZE;
1011 
1012 	mr = container_of(ib_mr, struct bnxt_re_mr, ib_mr);
1013 	mr_hwq = &mr->qplib_mr.hwq;
1014 
1015 	if (rdma_nl_put_driver_u32(msg, "page_size",
1016 				   mr_hwq->qe_ppg * mr_hwq->element_size))
1017 		goto err;
1018 	if (rdma_nl_put_driver_u32(msg, "max_elements", mr_hwq->max_elements))
1019 		goto err;
1020 	if (rdma_nl_put_driver_u32(msg, "element_size", mr_hwq->element_size))
1021 		goto err;
1022 	if (rdma_nl_put_driver_u64_hex(msg, "hwq", (unsigned long)mr_hwq))
1023 		goto err;
1024 	if (rdma_nl_put_driver_u64_hex(msg, "va", mr->qplib_mr.va))
1025 		goto err;
1026 
1027 	nla_nest_end(msg, table_attr);
1028 	return 0;
1029 
1030 err:
1031 	nla_nest_cancel(msg, table_attr);
1032 	return -EMSGSIZE;
1033 }
1034 
1035 static int bnxt_re_fill_res_mr_entry_raw(struct sk_buff *msg, struct ib_mr *ib_mr)
1036 {
1037 	struct bnxt_re_dev *rdev;
1038 	struct bnxt_re_mr *mr;
1039 	int err, len;
1040 	void *data;
1041 
1042 	mr = container_of(ib_mr, struct bnxt_re_mr, ib_mr);
1043 	rdev = mr->rdev;
1044 
1045 	err = bnxt_re_read_context_allowed(rdev);
1046 	if (err)
1047 		return err;
1048 
1049 	len = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ? BNXT_RE_CONTEXT_TYPE_MRW_SIZE_P7 :
1050 							  BNXT_RE_CONTEXT_TYPE_MRW_SIZE_P5;
1051 	data = kzalloc(len, GFP_KERNEL);
1052 	if (!data)
1053 		return -ENOMEM;
1054 
1055 	err = bnxt_qplib_read_context(&rdev->rcfw, CMDQ_READ_CONTEXT_TYPE_MRW,
1056 				      mr->qplib_mr.lkey, len, data);
1057 	if (!err)
1058 		err = nla_put(msg, RDMA_NLDEV_ATTR_RES_RAW, len, data);
1059 
1060 	kfree(data);
1061 	return err;
1062 }
1063 
1064 static int bnxt_re_fill_res_cq_entry(struct sk_buff *msg, struct ib_cq *ib_cq)
1065 {
1066 	struct bnxt_qplib_hwq *cq_hwq;
1067 	struct nlattr *table_attr;
1068 	struct bnxt_re_cq *cq;
1069 
1070 	cq = container_of(ib_cq, struct bnxt_re_cq, ib_cq);
1071 	cq_hwq = &cq->qplib_cq.hwq;
1072 
1073 	table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_DRIVER);
1074 	if (!table_attr)
1075 		return -EMSGSIZE;
1076 
1077 	if (rdma_nl_put_driver_u32(msg, "cq_depth", cq_hwq->depth))
1078 		goto err;
1079 	if (rdma_nl_put_driver_u32(msg, "max_elements", cq_hwq->max_elements))
1080 		goto err;
1081 	if (rdma_nl_put_driver_u32(msg, "element_size", cq_hwq->element_size))
1082 		goto err;
1083 	if (rdma_nl_put_driver_u32(msg, "max_wqe", cq->qplib_cq.max_wqe))
1084 		goto err;
1085 
1086 	nla_nest_end(msg, table_attr);
1087 	return 0;
1088 
1089 err:
1090 	nla_nest_cancel(msg, table_attr);
1091 	return -EMSGSIZE;
1092 }
1093 
1094 static int bnxt_re_fill_res_cq_entry_raw(struct sk_buff *msg, struct ib_cq *ib_cq)
1095 {
1096 	struct bnxt_re_dev *rdev;
1097 	struct bnxt_re_cq *cq;
1098 	int err, len;
1099 	void *data;
1100 
1101 	cq = container_of(ib_cq, struct bnxt_re_cq, ib_cq);
1102 	rdev = cq->rdev;
1103 
1104 	err = bnxt_re_read_context_allowed(rdev);
1105 	if (err)
1106 		return err;
1107 
1108 	len = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ? BNXT_RE_CONTEXT_TYPE_CQ_SIZE_P7 :
1109 					BNXT_RE_CONTEXT_TYPE_CQ_SIZE_P5;
1110 	data = kzalloc(len, GFP_KERNEL);
1111 	if (!data)
1112 		return -ENOMEM;
1113 
1114 	err = bnxt_qplib_read_context(&rdev->rcfw,
1115 				      CMDQ_READ_CONTEXT_TYPE_CQ,
1116 				      cq->qplib_cq.id, len, data);
1117 	if (!err)
1118 		err = nla_put(msg, RDMA_NLDEV_ATTR_RES_RAW, len, data);
1119 
1120 	kfree(data);
1121 	return err;
1122 }
1123 
1124 static int bnxt_re_fill_res_qp_entry(struct sk_buff *msg, struct ib_qp *ib_qp)
1125 {
1126 	struct bnxt_qplib_qp *qplib_qp;
1127 	struct nlattr *table_attr;
1128 	struct bnxt_re_qp *qp;
1129 
1130 	table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_DRIVER);
1131 	if (!table_attr)
1132 		return -EMSGSIZE;
1133 
1134 	qp = container_of(ib_qp, struct bnxt_re_qp, ib_qp);
1135 	qplib_qp = &qp->qplib_qp;
1136 
1137 	if (rdma_nl_put_driver_u32(msg, "sq_max_wqe", qplib_qp->sq.max_wqe))
1138 		goto err;
1139 	if (rdma_nl_put_driver_u32(msg, "sq_max_sge", qplib_qp->sq.max_sge))
1140 		goto err;
1141 	if (rdma_nl_put_driver_u32(msg, "sq_wqe_size", qplib_qp->sq.wqe_size))
1142 		goto err;
1143 	if (rdma_nl_put_driver_u32(msg, "sq_swq_start", qplib_qp->sq.swq_start))
1144 		goto err;
1145 	if (rdma_nl_put_driver_u32(msg, "sq_swq_last", qplib_qp->sq.swq_last))
1146 		goto err;
1147 	if (rdma_nl_put_driver_u32(msg, "rq_max_wqe", qplib_qp->rq.max_wqe))
1148 		goto err;
1149 	if (rdma_nl_put_driver_u32(msg, "rq_max_sge", qplib_qp->rq.max_sge))
1150 		goto err;
1151 	if (rdma_nl_put_driver_u32(msg, "rq_wqe_size", qplib_qp->rq.wqe_size))
1152 		goto err;
1153 	if (rdma_nl_put_driver_u32(msg, "rq_swq_start", qplib_qp->rq.swq_start))
1154 		goto err;
1155 	if (rdma_nl_put_driver_u32(msg, "rq_swq_last", qplib_qp->rq.swq_last))
1156 		goto err;
1157 	if (rdma_nl_put_driver_u32(msg, "timeout", qplib_qp->timeout))
1158 		goto err;
1159 
1160 	nla_nest_end(msg, table_attr);
1161 	return 0;
1162 
1163 err:
1164 	nla_nest_cancel(msg, table_attr);
1165 	return -EMSGSIZE;
1166 }
1167 
1168 static int bnxt_re_fill_res_qp_entry_raw(struct sk_buff *msg, struct ib_qp *ibqp)
1169 {
1170 	struct bnxt_re_dev *rdev = to_bnxt_re_dev(ibqp->device, ibdev);
1171 	int err, len;
1172 	void *data;
1173 
1174 	err = bnxt_re_read_context_allowed(rdev);
1175 	if (err)
1176 		return err;
1177 
1178 	len = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ? BNXT_RE_CONTEXT_TYPE_QPC_SIZE_P7 :
1179 							  BNXT_RE_CONTEXT_TYPE_QPC_SIZE_P5;
1180 	data = kzalloc(len, GFP_KERNEL);
1181 	if (!data)
1182 		return -ENOMEM;
1183 
1184 	err = bnxt_qplib_read_context(&rdev->rcfw, CMDQ_READ_CONTEXT_TYPE_QPC,
1185 				      ibqp->qp_num, len, data);
1186 	if (!err)
1187 		err = nla_put(msg, RDMA_NLDEV_ATTR_RES_RAW, len, data);
1188 
1189 	kfree(data);
1190 	return err;
1191 }
1192 
1193 static int bnxt_re_fill_res_srq_entry(struct sk_buff *msg, struct ib_srq *ib_srq)
1194 {
1195 	struct nlattr *table_attr;
1196 	struct bnxt_re_srq *srq;
1197 
1198 	table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_DRIVER);
1199 	if (!table_attr)
1200 		return -EMSGSIZE;
1201 
1202 	srq = container_of(ib_srq, struct bnxt_re_srq, ib_srq);
1203 
1204 	if (rdma_nl_put_driver_u32_hex(msg, "wqe_size", srq->qplib_srq.wqe_size))
1205 		goto err;
1206 	if (rdma_nl_put_driver_u32_hex(msg, "max_wqe", srq->qplib_srq.max_wqe))
1207 		goto err;
1208 	if (rdma_nl_put_driver_u32_hex(msg, "max_sge", srq->qplib_srq.max_sge))
1209 		goto err;
1210 
1211 	nla_nest_end(msg, table_attr);
1212 	return 0;
1213 
1214 err:
1215 	nla_nest_cancel(msg, table_attr);
1216 	return -EMSGSIZE;
1217 }
1218 
1219 static int bnxt_re_fill_res_srq_entry_raw(struct sk_buff *msg, struct ib_srq *ib_srq)
1220 {
1221 	struct bnxt_re_dev *rdev;
1222 	struct bnxt_re_srq *srq;
1223 	int err, len;
1224 	void *data;
1225 
1226 	srq = container_of(ib_srq, struct bnxt_re_srq, ib_srq);
1227 	rdev = srq->rdev;
1228 
1229 	err = bnxt_re_read_context_allowed(rdev);
1230 	if (err)
1231 		return err;
1232 
1233 	len = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ? BNXT_RE_CONTEXT_TYPE_SRQ_SIZE_P7 :
1234 							  BNXT_RE_CONTEXT_TYPE_SRQ_SIZE_P5;
1235 
1236 	data = kzalloc(len, GFP_KERNEL);
1237 	if (!data)
1238 		return -ENOMEM;
1239 
1240 	err = bnxt_qplib_read_context(&rdev->rcfw, CMDQ_READ_CONTEXT_TYPE_SRQ,
1241 				      srq->qplib_srq.id, len, data);
1242 	if (!err)
1243 		err = nla_put(msg, RDMA_NLDEV_ATTR_RES_RAW, len, data);
1244 
1245 	kfree(data);
1246 	return err;
1247 }
1248 
1249 static const struct ib_device_ops bnxt_re_dev_ops = {
1250 	.owner = THIS_MODULE,
1251 	.driver_id = RDMA_DRIVER_BNXT_RE,
1252 	.uverbs_abi_ver = BNXT_RE_ABI_VERSION,
1253 
1254 	.add_gid = bnxt_re_add_gid,
1255 	.alloc_hw_port_stats = bnxt_re_ib_alloc_hw_port_stats,
1256 	.alloc_mr = bnxt_re_alloc_mr,
1257 	.alloc_pd = bnxt_re_alloc_pd,
1258 	.alloc_ucontext = bnxt_re_alloc_ucontext,
1259 	.create_ah = bnxt_re_create_ah,
1260 	.create_cq = bnxt_re_create_cq,
1261 	.create_qp = bnxt_re_create_qp,
1262 	.create_srq = bnxt_re_create_srq,
1263 	.create_user_ah = bnxt_re_create_ah,
1264 	.dealloc_pd = bnxt_re_dealloc_pd,
1265 	.dealloc_ucontext = bnxt_re_dealloc_ucontext,
1266 	.del_gid = bnxt_re_del_gid,
1267 	.dereg_mr = bnxt_re_dereg_mr,
1268 	.destroy_ah = bnxt_re_destroy_ah,
1269 	.destroy_cq = bnxt_re_destroy_cq,
1270 	.destroy_qp = bnxt_re_destroy_qp,
1271 	.destroy_srq = bnxt_re_destroy_srq,
1272 	.device_group = &bnxt_re_dev_attr_group,
1273 	.disassociate_ucontext = bnxt_re_disassociate_ucontext,
1274 	.get_dev_fw_str = bnxt_re_query_fw_str,
1275 	.get_dma_mr = bnxt_re_get_dma_mr,
1276 	.get_hw_stats = bnxt_re_ib_get_hw_stats,
1277 	.get_link_layer = bnxt_re_get_link_layer,
1278 	.get_port_immutable = bnxt_re_get_port_immutable,
1279 	.map_mr_sg = bnxt_re_map_mr_sg,
1280 	.mmap = bnxt_re_mmap,
1281 	.mmap_free = bnxt_re_mmap_free,
1282 	.modify_qp = bnxt_re_modify_qp,
1283 	.modify_srq = bnxt_re_modify_srq,
1284 	.poll_cq = bnxt_re_poll_cq,
1285 	.post_recv = bnxt_re_post_recv,
1286 	.post_send = bnxt_re_post_send,
1287 	.post_srq_recv = bnxt_re_post_srq_recv,
1288 	.process_mad = bnxt_re_process_mad,
1289 	.query_ah = bnxt_re_query_ah,
1290 	.query_device = bnxt_re_query_device,
1291 	.modify_device = bnxt_re_modify_device,
1292 	.query_pkey = bnxt_re_query_pkey,
1293 	.query_port = bnxt_re_query_port,
1294 	.query_qp = bnxt_re_query_qp,
1295 	.query_srq = bnxt_re_query_srq,
1296 	.reg_user_mr = bnxt_re_reg_user_mr,
1297 	.reg_user_mr_dmabuf = bnxt_re_reg_user_mr_dmabuf,
1298 	.req_notify_cq = bnxt_re_req_notify_cq,
1299 	.resize_cq = bnxt_re_resize_cq,
1300 	INIT_RDMA_OBJ_SIZE(ib_ah, bnxt_re_ah, ib_ah),
1301 	INIT_RDMA_OBJ_SIZE(ib_cq, bnxt_re_cq, ib_cq),
1302 	INIT_RDMA_OBJ_SIZE(ib_pd, bnxt_re_pd, ib_pd),
1303 	INIT_RDMA_OBJ_SIZE(ib_qp, bnxt_re_qp, ib_qp),
1304 	INIT_RDMA_OBJ_SIZE(ib_srq, bnxt_re_srq, ib_srq),
1305 	INIT_RDMA_OBJ_SIZE(ib_ucontext, bnxt_re_ucontext, ib_uctx),
1306 };
1307 
1308 static const struct ib_device_ops restrack_ops = {
1309 	.fill_res_cq_entry = bnxt_re_fill_res_cq_entry,
1310 	.fill_res_cq_entry_raw = bnxt_re_fill_res_cq_entry_raw,
1311 	.fill_res_qp_entry = bnxt_re_fill_res_qp_entry,
1312 	.fill_res_qp_entry_raw = bnxt_re_fill_res_qp_entry_raw,
1313 	.fill_res_mr_entry = bnxt_re_fill_res_mr_entry,
1314 	.fill_res_mr_entry_raw = bnxt_re_fill_res_mr_entry_raw,
1315 	.fill_res_srq_entry = bnxt_re_fill_res_srq_entry,
1316 	.fill_res_srq_entry_raw = bnxt_re_fill_res_srq_entry_raw,
1317 };
1318 
1319 static int bnxt_re_register_ib(struct bnxt_re_dev *rdev)
1320 {
1321 	struct ib_device *ibdev = &rdev->ibdev;
1322 	int ret;
1323 
1324 	/* ib device init */
1325 	ibdev->node_type = RDMA_NODE_IB_CA;
1326 	strscpy(ibdev->node_desc, BNXT_RE_DESC " HCA",
1327 		strlen(BNXT_RE_DESC) + 5);
1328 	ibdev->phys_port_cnt = 1;
1329 
1330 	addrconf_addr_eui48((u8 *)&ibdev->node_guid, rdev->netdev->dev_addr);
1331 
1332 	ibdev->num_comp_vectors	= rdev->nqr->num_msix - 1;
1333 	ibdev->dev.parent = &rdev->en_dev->pdev->dev;
1334 	ibdev->local_dma_lkey = BNXT_QPLIB_RSVD_LKEY;
1335 
1336 	if (IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS))
1337 		ibdev->driver_def = bnxt_re_uapi_defs;
1338 
1339 	ib_set_device_ops(ibdev, &bnxt_re_dev_ops);
1340 	ib_set_device_ops(ibdev, &restrack_ops);
1341 	ret = ib_device_set_netdev(&rdev->ibdev, rdev->netdev, 1);
1342 	if (ret)
1343 		return ret;
1344 
1345 	dma_set_max_seg_size(&rdev->en_dev->pdev->dev, UINT_MAX);
1346 	ibdev->uverbs_cmd_mask |= BIT_ULL(IB_USER_VERBS_CMD_POLL_CQ);
1347 	return ib_register_device(ibdev, "bnxt_re%d", &rdev->en_dev->pdev->dev);
1348 }
1349 
1350 static struct bnxt_re_dev *bnxt_re_dev_add(struct auxiliary_device *adev,
1351 					   struct bnxt_en_dev *en_dev)
1352 {
1353 	struct bnxt_re_dev *rdev;
1354 
1355 	/* Allocate bnxt_re_dev instance here */
1356 	rdev = ib_alloc_device(bnxt_re_dev, ibdev);
1357 	if (!rdev) {
1358 		ibdev_err(NULL, "%s: bnxt_re_dev allocation failure!",
1359 			  ROCE_DRV_MODULE_NAME);
1360 		return NULL;
1361 	}
1362 	/* Default values */
1363 	rdev->netdev = en_dev->net;
1364 	rdev->en_dev = en_dev;
1365 	rdev->adev = adev;
1366 	rdev->id = rdev->en_dev->pdev->devfn;
1367 	INIT_LIST_HEAD(&rdev->qp_list);
1368 	mutex_init(&rdev->qp_lock);
1369 	mutex_init(&rdev->pacing.dbq_lock);
1370 	atomic_set(&rdev->stats.res.qp_count, 0);
1371 	atomic_set(&rdev->stats.res.cq_count, 0);
1372 	atomic_set(&rdev->stats.res.srq_count, 0);
1373 	atomic_set(&rdev->stats.res.mr_count, 0);
1374 	atomic_set(&rdev->stats.res.mw_count, 0);
1375 	atomic_set(&rdev->stats.res.ah_count, 0);
1376 	atomic_set(&rdev->stats.res.pd_count, 0);
1377 	rdev->cosq[0] = 0xFFFF;
1378 	rdev->cosq[1] = 0xFFFF;
1379 	rdev->cq_coalescing.buf_maxtime = BNXT_QPLIB_CQ_COAL_DEF_BUF_MAXTIME;
1380 	if (bnxt_re_chip_gen_p7(en_dev->chip_num)) {
1381 		rdev->cq_coalescing.normal_maxbuf = BNXT_QPLIB_CQ_COAL_DEF_NORMAL_MAXBUF_P7;
1382 		rdev->cq_coalescing.during_maxbuf = BNXT_QPLIB_CQ_COAL_DEF_DURING_MAXBUF_P7;
1383 	} else {
1384 		rdev->cq_coalescing.normal_maxbuf = BNXT_QPLIB_CQ_COAL_DEF_NORMAL_MAXBUF_P5;
1385 		rdev->cq_coalescing.during_maxbuf = BNXT_QPLIB_CQ_COAL_DEF_DURING_MAXBUF_P5;
1386 	}
1387 	rdev->cq_coalescing.en_ring_idle_mode = BNXT_QPLIB_CQ_COAL_DEF_EN_RING_IDLE_MODE;
1388 
1389 	return rdev;
1390 }
1391 
1392 static int bnxt_re_handle_unaffi_async_event(struct creq_func_event
1393 					     *unaffi_async)
1394 {
1395 	switch (unaffi_async->event) {
1396 	case CREQ_FUNC_EVENT_EVENT_TX_WQE_ERROR:
1397 		break;
1398 	case CREQ_FUNC_EVENT_EVENT_TX_DATA_ERROR:
1399 		break;
1400 	case CREQ_FUNC_EVENT_EVENT_RX_WQE_ERROR:
1401 		break;
1402 	case CREQ_FUNC_EVENT_EVENT_RX_DATA_ERROR:
1403 		break;
1404 	case CREQ_FUNC_EVENT_EVENT_CQ_ERROR:
1405 		break;
1406 	case CREQ_FUNC_EVENT_EVENT_TQM_ERROR:
1407 		break;
1408 	case CREQ_FUNC_EVENT_EVENT_CFCQ_ERROR:
1409 		break;
1410 	case CREQ_FUNC_EVENT_EVENT_CFCS_ERROR:
1411 		break;
1412 	case CREQ_FUNC_EVENT_EVENT_CFCC_ERROR:
1413 		break;
1414 	case CREQ_FUNC_EVENT_EVENT_CFCM_ERROR:
1415 		break;
1416 	case CREQ_FUNC_EVENT_EVENT_TIM_ERROR:
1417 		break;
1418 	default:
1419 		return -EINVAL;
1420 	}
1421 	return 0;
1422 }
1423 
1424 static int bnxt_re_handle_qp_async_event(struct creq_qp_event *qp_event,
1425 					 struct bnxt_re_qp *qp)
1426 {
1427 	struct creq_qp_error_notification *err_event;
1428 	struct bnxt_re_srq *srq = NULL;
1429 	struct ib_event event = {};
1430 	unsigned int flags;
1431 
1432 	if (qp->qplib_qp.srq)
1433 		srq =  container_of(qp->qplib_qp.srq, struct bnxt_re_srq,
1434 				    qplib_srq);
1435 
1436 	if (qp->qplib_qp.state == CMDQ_MODIFY_QP_NEW_STATE_ERR &&
1437 	    rdma_is_kernel_res(&qp->ib_qp.res)) {
1438 		flags = bnxt_re_lock_cqs(qp);
1439 		bnxt_qplib_add_flush_qp(&qp->qplib_qp);
1440 		bnxt_re_unlock_cqs(qp, flags);
1441 	}
1442 
1443 	event.device = &qp->rdev->ibdev;
1444 	event.element.qp = &qp->ib_qp;
1445 	event.event = IB_EVENT_QP_FATAL;
1446 
1447 	err_event = (struct creq_qp_error_notification *)qp_event;
1448 
1449 	switch (err_event->req_err_state_reason) {
1450 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_OPCODE_ERROR:
1451 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TIMEOUT_RETRY_LIMIT:
1452 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RNR_TIMEOUT_RETRY_LIMIT:
1453 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_2:
1454 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_3:
1455 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_READ_RESP:
1456 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_BIND:
1457 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_FAST_REG:
1458 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_INVALIDATE:
1459 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETRAN_LOCAL_ERROR:
1460 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_AV_DOMAIN_ERROR:
1461 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PROD_WQE_MSMTCH_ERROR:
1462 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PSN_RANGE_CHECK_ERROR:
1463 		event.event = IB_EVENT_QP_ACCESS_ERR;
1464 		break;
1465 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_1:
1466 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_4:
1467 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_READ_RESP_LENGTH:
1468 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_WQE_FORMAT_ERROR:
1469 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ORRQ_FORMAT_ERROR:
1470 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_AVID_ERROR:
1471 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_SERV_TYPE_ERROR:
1472 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_OP_ERROR:
1473 		event.event = IB_EVENT_QP_REQ_ERR;
1474 		break;
1475 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_MEMORY_ERROR:
1476 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_MEMORY_ERROR:
1477 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CMP_ERROR:
1478 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CQ_LOAD_ERROR:
1479 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_PCI_ERROR:
1480 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_PCI_ERROR:
1481 	case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETX_SETUP_ERROR:
1482 		event.event = IB_EVENT_QP_FATAL;
1483 		break;
1484 
1485 	default:
1486 		break;
1487 	}
1488 
1489 	switch (err_event->res_err_state_reason) {
1490 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEED_MAX:
1491 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PAYLOAD_LENGTH_MISMATCH:
1492 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_SEQ_ERROR_RETRY_LIMIT:
1493 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_INVALID_R_KEY:
1494 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_DOMAIN_ERROR:
1495 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_NO_PERMISSION:
1496 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_RANGE_ERROR:
1497 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_INVALID_R_KEY:
1498 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_DOMAIN_ERROR:
1499 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_NO_PERMISSION:
1500 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_RANGE_ERROR:
1501 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNALIGN_ATOMIC:
1502 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_NOT_FOUND:
1503 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_INVALID_DUP_RKEY:
1504 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_FORMAT_ERROR:
1505 		event.event = IB_EVENT_QP_ACCESS_ERR;
1506 		break;
1507 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEEDS_WQE:
1508 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_WQE_FORMAT_ERROR:
1509 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNSUPPORTED_OPCODE:
1510 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_REM_INVALIDATE:
1511 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_OPCODE_ERROR:
1512 		event.event = IB_EVENT_QP_REQ_ERR;
1513 		break;
1514 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_OFLOW:
1515 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CMP_ERROR:
1516 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CQ_LOAD_ERROR:
1517 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_PCI_ERROR:
1518 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_PCI_ERROR:
1519 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_MEMORY_ERROR:
1520 		event.event = IB_EVENT_QP_FATAL;
1521 		break;
1522 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_LOAD_ERROR:
1523 	case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_ERROR:
1524 		if (srq)
1525 			event.event = IB_EVENT_SRQ_ERR;
1526 		break;
1527 	default:
1528 		break;
1529 	}
1530 
1531 	if (err_event->res_err_state_reason || err_event->req_err_state_reason) {
1532 		ibdev_dbg(&qp->rdev->ibdev,
1533 			  "%s %s qp_id: %d cons (%d %d) req (%d %d) res (%d %d)\n",
1534 			   __func__, rdma_is_kernel_res(&qp->ib_qp.res) ? "kernel" : "user",
1535 			   qp->qplib_qp.id,
1536 			   err_event->sq_cons_idx,
1537 			   err_event->rq_cons_idx,
1538 			   err_event->req_slow_path_state,
1539 			   err_event->req_err_state_reason,
1540 			   err_event->res_slow_path_state,
1541 			   err_event->res_err_state_reason);
1542 	} else {
1543 		if (srq)
1544 			event.event = IB_EVENT_QP_LAST_WQE_REACHED;
1545 	}
1546 
1547 	if (event.event == IB_EVENT_SRQ_ERR && srq->ib_srq.event_handler)  {
1548 		(*srq->ib_srq.event_handler)(&event,
1549 				srq->ib_srq.srq_context);
1550 	} else if (event.device && qp->ib_qp.event_handler) {
1551 		qp->ib_qp.event_handler(&event, qp->ib_qp.qp_context);
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 static int bnxt_re_handle_cq_async_error(void *event, struct bnxt_re_cq *cq)
1558 {
1559 	struct creq_cq_error_notification *cqerr;
1560 	struct ib_event ibevent = {};
1561 
1562 	cqerr = event;
1563 	switch (cqerr->cq_err_reason) {
1564 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_INVALID_ERROR:
1565 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_OVERFLOW_ERROR:
1566 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_LOAD_ERROR:
1567 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_INVALID_ERROR:
1568 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_OVERFLOW_ERROR:
1569 	case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_LOAD_ERROR:
1570 		ibevent.event = IB_EVENT_CQ_ERR;
1571 		break;
1572 	default:
1573 		break;
1574 	}
1575 
1576 	if (ibevent.event == IB_EVENT_CQ_ERR && cq->ib_cq.event_handler) {
1577 		ibevent.element.cq = &cq->ib_cq;
1578 		ibevent.device = &cq->rdev->ibdev;
1579 
1580 		ibdev_dbg(&cq->rdev->ibdev,
1581 			  "%s err reason %d\n", __func__, cqerr->cq_err_reason);
1582 		cq->ib_cq.event_handler(&ibevent, cq->ib_cq.cq_context);
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 static int bnxt_re_handle_affi_async_event(struct creq_qp_event *affi_async,
1589 					   void *obj)
1590 {
1591 	struct bnxt_qplib_qp *lib_qp;
1592 	struct bnxt_qplib_cq *lib_cq;
1593 	struct bnxt_re_qp *qp;
1594 	struct bnxt_re_cq *cq;
1595 	int rc = 0;
1596 	u8 event;
1597 
1598 	if (!obj)
1599 		return rc; /* QP was already dead, still return success */
1600 
1601 	event = affi_async->event;
1602 	switch (event) {
1603 	case CREQ_QP_EVENT_EVENT_QP_ERROR_NOTIFICATION:
1604 		lib_qp = obj;
1605 		qp = container_of(lib_qp, struct bnxt_re_qp, qplib_qp);
1606 		rc = bnxt_re_handle_qp_async_event(affi_async, qp);
1607 		break;
1608 	case CREQ_QP_EVENT_EVENT_CQ_ERROR_NOTIFICATION:
1609 		lib_cq = obj;
1610 		cq = container_of(lib_cq, struct bnxt_re_cq, qplib_cq);
1611 		rc = bnxt_re_handle_cq_async_error(affi_async, cq);
1612 		break;
1613 	default:
1614 		rc = -EINVAL;
1615 	}
1616 	return rc;
1617 }
1618 
1619 static int bnxt_re_aeq_handler(struct bnxt_qplib_rcfw *rcfw,
1620 			       void *aeqe, void *obj)
1621 {
1622 	struct creq_qp_event *affi_async;
1623 	struct creq_func_event *unaffi_async;
1624 	u8 type;
1625 	int rc;
1626 
1627 	type = ((struct creq_base *)aeqe)->type;
1628 	if (type == CREQ_BASE_TYPE_FUNC_EVENT) {
1629 		unaffi_async = aeqe;
1630 		rc = bnxt_re_handle_unaffi_async_event(unaffi_async);
1631 	} else {
1632 		affi_async = aeqe;
1633 		rc = bnxt_re_handle_affi_async_event(affi_async, obj);
1634 	}
1635 
1636 	return rc;
1637 }
1638 
1639 static int bnxt_re_srqn_handler(struct bnxt_qplib_nq *nq,
1640 				struct bnxt_qplib_srq *handle, u8 event)
1641 {
1642 	struct bnxt_re_srq *srq = container_of(handle, struct bnxt_re_srq,
1643 					       qplib_srq);
1644 	struct ib_event ib_event;
1645 
1646 	ib_event.device = &srq->rdev->ibdev;
1647 	ib_event.element.srq = &srq->ib_srq;
1648 
1649 	if (srq->ib_srq.event_handler) {
1650 		if (event == NQ_SRQ_EVENT_EVENT_SRQ_THRESHOLD_EVENT)
1651 			ib_event.event = IB_EVENT_SRQ_LIMIT_REACHED;
1652 		(*srq->ib_srq.event_handler)(&ib_event,
1653 					     srq->ib_srq.srq_context);
1654 	}
1655 	return 0;
1656 }
1657 
1658 static int bnxt_re_cqn_handler(struct bnxt_qplib_nq *nq,
1659 			       struct bnxt_qplib_cq *handle)
1660 {
1661 	struct bnxt_re_cq *cq = container_of(handle, struct bnxt_re_cq,
1662 					     qplib_cq);
1663 
1664 	if (cq->ib_cq.comp_handler)
1665 		(*cq->ib_cq.comp_handler)(&cq->ib_cq, cq->ib_cq.cq_context);
1666 
1667 	return 0;
1668 }
1669 
1670 static void bnxt_re_cleanup_res(struct bnxt_re_dev *rdev)
1671 {
1672 	int i;
1673 
1674 	for (i = 1; i < rdev->nqr->num_msix; i++)
1675 		bnxt_qplib_disable_nq(&rdev->nqr->nq[i - 1]);
1676 
1677 	if (rdev->qplib_res.rcfw)
1678 		bnxt_qplib_cleanup_res(&rdev->qplib_res);
1679 }
1680 
1681 static int bnxt_re_init_res(struct bnxt_re_dev *rdev)
1682 {
1683 	int num_vec_enabled = 0;
1684 	int rc = 0, i;
1685 	u32 db_offt;
1686 
1687 	bnxt_qplib_init_res(&rdev->qplib_res);
1688 
1689 	mutex_init(&rdev->nqr->load_lock);
1690 
1691 	for (i = 1; i < rdev->nqr->num_msix ; i++) {
1692 		db_offt = rdev->nqr->msix_entries[i].db_offset;
1693 		rc = bnxt_qplib_enable_nq(rdev->en_dev->pdev, &rdev->nqr->nq[i - 1],
1694 					  i - 1, rdev->nqr->msix_entries[i].vector,
1695 					  db_offt, &bnxt_re_cqn_handler,
1696 					  &bnxt_re_srqn_handler);
1697 		if (rc) {
1698 			ibdev_err(&rdev->ibdev,
1699 				  "Failed to enable NQ with rc = 0x%x", rc);
1700 			goto fail;
1701 		}
1702 		num_vec_enabled++;
1703 	}
1704 	return 0;
1705 fail:
1706 	for (i = num_vec_enabled; i >= 0; i--)
1707 		bnxt_qplib_disable_nq(&rdev->nqr->nq[i]);
1708 	return rc;
1709 }
1710 
1711 static void bnxt_re_free_nq_res(struct bnxt_re_dev *rdev)
1712 {
1713 	struct bnxt_qplib_nq *nq;
1714 	u8 type;
1715 	int i;
1716 
1717 	for (i = 0; i < rdev->nqr->num_msix - 1; i++) {
1718 		type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1719 		nq = &rdev->nqr->nq[i];
1720 		bnxt_re_net_ring_free(rdev, nq->ring_id, type);
1721 		bnxt_qplib_free_nq(nq);
1722 		nq->res = NULL;
1723 	}
1724 }
1725 
1726 static void bnxt_re_free_res(struct bnxt_re_dev *rdev)
1727 {
1728 	bnxt_re_free_nq_res(rdev);
1729 
1730 	if (rdev->qplib_res.dpi_tbl.max) {
1731 		bnxt_qplib_dealloc_dpi(&rdev->qplib_res,
1732 				       &rdev->dpi_privileged);
1733 	}
1734 	if (rdev->qplib_res.rcfw) {
1735 		bnxt_qplib_free_res(&rdev->qplib_res);
1736 		rdev->qplib_res.rcfw = NULL;
1737 	}
1738 }
1739 
1740 static int bnxt_re_alloc_res(struct bnxt_re_dev *rdev)
1741 {
1742 	struct bnxt_re_ring_attr rattr = {};
1743 	int num_vec_created = 0;
1744 	int rc, i;
1745 	u8 type;
1746 
1747 	/* Configure and allocate resources for qplib */
1748 	rdev->qplib_res.rcfw = &rdev->rcfw;
1749 	rc = bnxt_qplib_get_dev_attr(&rdev->rcfw);
1750 	if (rc)
1751 		goto fail;
1752 
1753 	rc = bnxt_qplib_alloc_res(&rdev->qplib_res, rdev->netdev);
1754 	if (rc)
1755 		goto fail;
1756 
1757 	rc = bnxt_qplib_alloc_dpi(&rdev->qplib_res,
1758 				  &rdev->dpi_privileged,
1759 				  rdev, BNXT_QPLIB_DPI_TYPE_KERNEL);
1760 	if (rc)
1761 		goto dealloc_res;
1762 
1763 	for (i = 0; i < rdev->nqr->num_msix - 1; i++) {
1764 		struct bnxt_qplib_nq *nq;
1765 
1766 		nq = &rdev->nqr->nq[i];
1767 		nq->hwq.max_elements = BNXT_QPLIB_NQE_MAX_CNT;
1768 		rc = bnxt_qplib_alloc_nq(&rdev->qplib_res, nq);
1769 		if (rc) {
1770 			ibdev_err(&rdev->ibdev, "Alloc Failed NQ%d rc:%#x",
1771 				  i, rc);
1772 			goto free_nq;
1773 		}
1774 		type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1775 		rattr.dma_arr = nq->hwq.pbl[PBL_LVL_0].pg_map_arr;
1776 		rattr.pages = nq->hwq.pbl[rdev->nqr->nq[i].hwq.level].pg_count;
1777 		rattr.type = type;
1778 		rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX;
1779 		rattr.depth = BNXT_QPLIB_NQE_MAX_CNT - 1;
1780 		rattr.lrid = rdev->nqr->msix_entries[i + 1].ring_idx;
1781 		rc = bnxt_re_net_ring_alloc(rdev, &rattr, &nq->ring_id);
1782 		if (rc) {
1783 			ibdev_err(&rdev->ibdev,
1784 				  "Failed to allocate NQ fw id with rc = 0x%x",
1785 				  rc);
1786 			bnxt_qplib_free_nq(nq);
1787 			goto free_nq;
1788 		}
1789 		num_vec_created++;
1790 	}
1791 	return 0;
1792 free_nq:
1793 	for (i = num_vec_created - 1; i >= 0; i--) {
1794 		type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1795 		bnxt_re_net_ring_free(rdev, rdev->nqr->nq[i].ring_id, type);
1796 		bnxt_qplib_free_nq(&rdev->nqr->nq[i]);
1797 	}
1798 	bnxt_qplib_dealloc_dpi(&rdev->qplib_res,
1799 			       &rdev->dpi_privileged);
1800 dealloc_res:
1801 	bnxt_qplib_free_res(&rdev->qplib_res);
1802 
1803 fail:
1804 	rdev->qplib_res.rcfw = NULL;
1805 	return rc;
1806 }
1807 
1808 static void bnxt_re_dispatch_event(struct ib_device *ibdev, struct ib_qp *qp,
1809 				   u8 port_num, enum ib_event_type event)
1810 {
1811 	struct ib_event ib_event;
1812 
1813 	ib_event.device = ibdev;
1814 	if (qp) {
1815 		ib_event.element.qp = qp;
1816 		ib_event.event = event;
1817 		if (qp->event_handler)
1818 			qp->event_handler(&ib_event, qp->qp_context);
1819 
1820 	} else {
1821 		ib_event.element.port_num = port_num;
1822 		ib_event.event = event;
1823 		ib_dispatch_event(&ib_event);
1824 	}
1825 }
1826 
1827 static bool bnxt_re_is_qp1_or_shadow_qp(struct bnxt_re_dev *rdev,
1828 					struct bnxt_re_qp *qp)
1829 {
1830 	return (qp->ib_qp.qp_type == IB_QPT_GSI) ||
1831 	       (qp == rdev->gsi_ctx.gsi_sqp);
1832 }
1833 
1834 static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev)
1835 {
1836 	struct bnxt_re_qp *qp;
1837 
1838 	mutex_lock(&rdev->qp_lock);
1839 	list_for_each_entry(qp, &rdev->qp_list, list) {
1840 		/* Modify the state of all QPs except QP1/Shadow QP */
1841 		if (!bnxt_re_is_qp1_or_shadow_qp(rdev, qp)) {
1842 			if (qp->qplib_qp.state !=
1843 			    CMDQ_MODIFY_QP_NEW_STATE_RESET &&
1844 			    qp->qplib_qp.state !=
1845 			    CMDQ_MODIFY_QP_NEW_STATE_ERR)
1846 				bnxt_re_dispatch_event(&rdev->ibdev, &qp->ib_qp,
1847 						       1, IB_EVENT_QP_FATAL);
1848 		}
1849 	}
1850 	mutex_unlock(&rdev->qp_lock);
1851 }
1852 
1853 static int bnxt_re_update_gid(struct bnxt_re_dev *rdev)
1854 {
1855 	struct bnxt_qplib_sgid_tbl *sgid_tbl = &rdev->qplib_res.sgid_tbl;
1856 	struct bnxt_qplib_gid gid;
1857 	u16 gid_idx, index;
1858 	int rc = 0;
1859 
1860 	if (!ib_device_try_get(&rdev->ibdev))
1861 		return 0;
1862 
1863 	for (index = 0; index < sgid_tbl->active; index++) {
1864 		gid_idx = sgid_tbl->hw_id[index];
1865 
1866 		if (!memcmp(&sgid_tbl->tbl[index], &bnxt_qplib_gid_zero,
1867 			    sizeof(bnxt_qplib_gid_zero)))
1868 			continue;
1869 		/* need to modify the VLAN enable setting of non VLAN GID only
1870 		 * as setting is done for VLAN GID while adding GID
1871 		 */
1872 		if (sgid_tbl->vlan[index])
1873 			continue;
1874 
1875 		memcpy(&gid, &sgid_tbl->tbl[index], sizeof(gid));
1876 
1877 		rc = bnxt_qplib_update_sgid(sgid_tbl, &gid, gid_idx,
1878 					    rdev->qplib_res.netdev->dev_addr);
1879 	}
1880 
1881 	ib_device_put(&rdev->ibdev);
1882 	return rc;
1883 }
1884 
1885 static u32 bnxt_re_get_priority_mask(struct bnxt_re_dev *rdev)
1886 {
1887 	u32 prio_map = 0, tmp_map = 0;
1888 	struct net_device *netdev;
1889 	struct dcb_app app = {};
1890 
1891 	netdev = rdev->netdev;
1892 
1893 	app.selector = IEEE_8021QAZ_APP_SEL_ETHERTYPE;
1894 	app.protocol = ETH_P_IBOE;
1895 	tmp_map = dcb_ieee_getapp_mask(netdev, &app);
1896 	prio_map = tmp_map;
1897 
1898 	app.selector = IEEE_8021QAZ_APP_SEL_DGRAM;
1899 	app.protocol = ROCE_V2_UDP_DPORT;
1900 	tmp_map = dcb_ieee_getapp_mask(netdev, &app);
1901 	prio_map |= tmp_map;
1902 
1903 	return prio_map;
1904 }
1905 
1906 static int bnxt_re_setup_qos(struct bnxt_re_dev *rdev)
1907 {
1908 	u8 prio_map = 0;
1909 
1910 	/* Get priority for roce */
1911 	prio_map = bnxt_re_get_priority_mask(rdev);
1912 
1913 	if (prio_map == rdev->cur_prio_map)
1914 		return 0;
1915 	rdev->cur_prio_map = prio_map;
1916 	/* Actual priorities are not programmed as they are already
1917 	 * done by L2 driver; just enable or disable priority vlan tagging
1918 	 */
1919 	if ((prio_map == 0 && rdev->qplib_res.prio) ||
1920 	    (prio_map != 0 && !rdev->qplib_res.prio)) {
1921 		rdev->qplib_res.prio = prio_map;
1922 		bnxt_re_update_gid(rdev);
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static void bnxt_re_net_unregister_async_event(struct bnxt_re_dev *rdev)
1929 {
1930 	if (rdev->is_virtfn)
1931 		return;
1932 
1933 	memset(&rdev->event_bitmap, 0, sizeof(rdev->event_bitmap));
1934 	bnxt_register_async_events(rdev->en_dev, &rdev->event_bitmap,
1935 				   ASYNC_EVENT_CMPL_EVENT_ID_DCB_CONFIG_CHANGE);
1936 }
1937 
1938 static void bnxt_re_net_register_async_event(struct bnxt_re_dev *rdev)
1939 {
1940 	if (rdev->is_virtfn)
1941 		return;
1942 
1943 	rdev->event_bitmap |= (1 << ASYNC_EVENT_CMPL_EVENT_ID_DCB_CONFIG_CHANGE);
1944 	bnxt_register_async_events(rdev->en_dev, &rdev->event_bitmap,
1945 				   ASYNC_EVENT_CMPL_EVENT_ID_DCB_CONFIG_CHANGE);
1946 }
1947 
1948 static void bnxt_re_query_hwrm_intf_version(struct bnxt_re_dev *rdev)
1949 {
1950 	struct bnxt_en_dev *en_dev = rdev->en_dev;
1951 	struct hwrm_ver_get_output resp = {};
1952 	struct hwrm_ver_get_input req = {};
1953 	struct bnxt_qplib_chip_ctx *cctx;
1954 	struct bnxt_fw_msg fw_msg = {};
1955 	int rc;
1956 
1957 	bnxt_re_init_hwrm_hdr((void *)&req, HWRM_VER_GET);
1958 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
1959 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
1960 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
1961 	bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
1962 			    sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
1963 	rc = bnxt_send_msg(en_dev, &fw_msg);
1964 	if (rc) {
1965 		ibdev_err(&rdev->ibdev, "Failed to query HW version, rc = 0x%x",
1966 			  rc);
1967 		return;
1968 	}
1969 
1970 	cctx = rdev->chip_ctx;
1971 	cctx->hwrm_intf_ver =
1972 		(u64)le16_to_cpu(resp.hwrm_intf_major) << 48 |
1973 		(u64)le16_to_cpu(resp.hwrm_intf_minor) << 32 |
1974 		(u64)le16_to_cpu(resp.hwrm_intf_build) << 16 |
1975 		le16_to_cpu(resp.hwrm_intf_patch);
1976 
1977 	cctx->hwrm_cmd_max_timeout = le16_to_cpu(resp.max_req_timeout);
1978 
1979 	if (!cctx->hwrm_cmd_max_timeout)
1980 		cctx->hwrm_cmd_max_timeout = RCFW_FW_STALL_MAX_TIMEOUT;
1981 }
1982 
1983 static int bnxt_re_ib_init(struct bnxt_re_dev *rdev)
1984 {
1985 	int rc;
1986 	u32 event;
1987 
1988 	/* Register ib dev */
1989 	rc = bnxt_re_register_ib(rdev);
1990 	if (rc) {
1991 		pr_err("Failed to register with IB: %#x\n", rc);
1992 		return rc;
1993 	}
1994 	dev_info(rdev_to_dev(rdev), "Device registered with IB successfully");
1995 	set_bit(BNXT_RE_FLAG_ISSUE_ROCE_STATS, &rdev->flags);
1996 
1997 	event = netif_running(rdev->netdev) && netif_carrier_ok(rdev->netdev) ?
1998 		IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR;
1999 
2000 	bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, event);
2001 
2002 	return rc;
2003 }
2004 
2005 static int bnxt_re_alloc_nqr_mem(struct bnxt_re_dev *rdev)
2006 {
2007 	rdev->nqr = kzalloc(sizeof(*rdev->nqr), GFP_KERNEL);
2008 	if (!rdev->nqr)
2009 		return -ENOMEM;
2010 
2011 	return 0;
2012 }
2013 
2014 static void bnxt_re_free_nqr_mem(struct bnxt_re_dev *rdev)
2015 {
2016 	kfree(rdev->nqr);
2017 	rdev->nqr = NULL;
2018 }
2019 
2020 static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev, u8 op_type)
2021 {
2022 	u8 type;
2023 	int rc;
2024 
2025 	bnxt_re_debugfs_rem_pdev(rdev);
2026 
2027 	bnxt_re_net_unregister_async_event(rdev);
2028 	bnxt_re_uninit_dcb_wq(rdev);
2029 
2030 	if (test_and_clear_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags))
2031 		cancel_delayed_work_sync(&rdev->worker);
2032 
2033 	if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED,
2034 			       &rdev->flags))
2035 		bnxt_re_cleanup_res(rdev);
2036 	if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags))
2037 		bnxt_re_free_res(rdev);
2038 
2039 	if (test_and_clear_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags)) {
2040 		rc = bnxt_qplib_deinit_rcfw(&rdev->rcfw);
2041 		if (rc)
2042 			ibdev_warn(&rdev->ibdev,
2043 				   "Failed to deinitialize RCFW: %#x", rc);
2044 		bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id);
2045 		bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx);
2046 		bnxt_qplib_disable_rcfw_channel(&rdev->rcfw);
2047 		type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
2048 		bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type);
2049 		bnxt_qplib_free_rcfw_channel(&rdev->rcfw);
2050 	}
2051 
2052 	rdev->nqr->num_msix = 0;
2053 
2054 	if (rdev->pacing.dbr_pacing)
2055 		bnxt_re_deinitialize_dbr_pacing(rdev);
2056 
2057 	bnxt_re_free_nqr_mem(rdev);
2058 	bnxt_re_destroy_chip_ctx(rdev);
2059 	if (op_type == BNXT_RE_COMPLETE_REMOVE) {
2060 		if (test_and_clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags))
2061 			bnxt_unregister_dev(rdev->en_dev);
2062 	}
2063 }
2064 
2065 /* worker thread for polling periodic events. Now used for QoS programming*/
2066 static void bnxt_re_worker(struct work_struct *work)
2067 {
2068 	struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
2069 						worker.work);
2070 
2071 	bnxt_re_setup_qos(rdev);
2072 	schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000));
2073 }
2074 
2075 static int bnxt_re_dev_init(struct bnxt_re_dev *rdev, u8 op_type)
2076 {
2077 	struct bnxt_re_ring_attr rattr = {};
2078 	struct bnxt_qplib_creq_ctx *creq;
2079 	u32 db_offt;
2080 	int vid;
2081 	u8 type;
2082 	int rc;
2083 
2084 	if (op_type == BNXT_RE_COMPLETE_INIT) {
2085 		/* Registered a new RoCE device instance to netdev */
2086 		rc = bnxt_re_register_netdev(rdev);
2087 		if (rc) {
2088 			ibdev_err(&rdev->ibdev,
2089 				  "Failed to register with netedev: %#x\n", rc);
2090 			return -EINVAL;
2091 		}
2092 	}
2093 	set_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
2094 
2095 	if (rdev->en_dev->ulp_tbl->msix_requested < BNXT_RE_MIN_MSIX) {
2096 		ibdev_err(&rdev->ibdev,
2097 			  "RoCE requires minimum 2 MSI-X vectors, but only %d reserved\n",
2098 			  rdev->en_dev->ulp_tbl->msix_requested);
2099 		bnxt_unregister_dev(rdev->en_dev);
2100 		clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
2101 		return -EINVAL;
2102 	}
2103 	ibdev_dbg(&rdev->ibdev, "Got %d MSI-X vectors\n",
2104 		  rdev->en_dev->ulp_tbl->msix_requested);
2105 
2106 	rc = bnxt_re_setup_chip_ctx(rdev);
2107 	if (rc) {
2108 		bnxt_unregister_dev(rdev->en_dev);
2109 		clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
2110 		ibdev_err(&rdev->ibdev, "Failed to get chip context\n");
2111 		return -EINVAL;
2112 	}
2113 
2114 	rc = bnxt_re_alloc_nqr_mem(rdev);
2115 	if (rc) {
2116 		bnxt_re_destroy_chip_ctx(rdev);
2117 		bnxt_unregister_dev(rdev->en_dev);
2118 		clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
2119 		return rc;
2120 	}
2121 	rdev->nqr->num_msix = rdev->en_dev->ulp_tbl->msix_requested;
2122 	memcpy(rdev->nqr->msix_entries, rdev->en_dev->msix_entries,
2123 	       sizeof(struct bnxt_msix_entry) * rdev->nqr->num_msix);
2124 
2125 	/* Check whether VF or PF */
2126 	bnxt_re_get_sriov_func_type(rdev);
2127 
2128 	bnxt_re_query_hwrm_intf_version(rdev);
2129 
2130 	/* Establish RCFW Communication Channel to initialize the context
2131 	 * memory for the function and all child VFs
2132 	 */
2133 	rc = bnxt_qplib_alloc_rcfw_channel(&rdev->qplib_res, &rdev->rcfw,
2134 					   &rdev->qplib_ctx);
2135 	if (rc) {
2136 		ibdev_err(&rdev->ibdev,
2137 			  "Failed to allocate RCFW Channel: %#x\n", rc);
2138 		goto fail;
2139 	}
2140 
2141 	type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
2142 	creq = &rdev->rcfw.creq;
2143 	rattr.dma_arr = creq->hwq.pbl[PBL_LVL_0].pg_map_arr;
2144 	rattr.pages = creq->hwq.pbl[creq->hwq.level].pg_count;
2145 	rattr.type = type;
2146 	rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX;
2147 	rattr.depth = BNXT_QPLIB_CREQE_MAX_CNT - 1;
2148 	rattr.lrid = rdev->nqr->msix_entries[BNXT_RE_AEQ_IDX].ring_idx;
2149 	rc = bnxt_re_net_ring_alloc(rdev, &rattr, &creq->ring_id);
2150 	if (rc) {
2151 		ibdev_err(&rdev->ibdev, "Failed to allocate CREQ: %#x\n", rc);
2152 		goto free_rcfw;
2153 	}
2154 	db_offt = rdev->nqr->msix_entries[BNXT_RE_AEQ_IDX].db_offset;
2155 	vid = rdev->nqr->msix_entries[BNXT_RE_AEQ_IDX].vector;
2156 	rc = bnxt_qplib_enable_rcfw_channel(&rdev->rcfw,
2157 					    vid, db_offt,
2158 					    &bnxt_re_aeq_handler);
2159 	if (rc) {
2160 		ibdev_err(&rdev->ibdev, "Failed to enable RCFW channel: %#x\n",
2161 			  rc);
2162 		goto free_ring;
2163 	}
2164 
2165 	if (bnxt_qplib_dbr_pacing_en(rdev->chip_ctx)) {
2166 		rc = bnxt_re_initialize_dbr_pacing(rdev);
2167 		if (!rc) {
2168 			rdev->pacing.dbr_pacing = true;
2169 		} else {
2170 			ibdev_err(&rdev->ibdev,
2171 				  "DBR pacing disabled with error : %d\n", rc);
2172 			rdev->pacing.dbr_pacing = false;
2173 		}
2174 	}
2175 	rc = bnxt_qplib_get_dev_attr(&rdev->rcfw);
2176 	if (rc)
2177 		goto disable_rcfw;
2178 
2179 	bnxt_re_set_resource_limits(rdev);
2180 
2181 	rc = bnxt_qplib_alloc_ctx(&rdev->qplib_res, &rdev->qplib_ctx, 0,
2182 				  bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx));
2183 	if (rc) {
2184 		ibdev_err(&rdev->ibdev,
2185 			  "Failed to allocate QPLIB context: %#x\n", rc);
2186 		goto disable_rcfw;
2187 	}
2188 	rc = bnxt_re_net_stats_ctx_alloc(rdev,
2189 					 rdev->qplib_ctx.stats.dma_map,
2190 					 &rdev->qplib_ctx.stats.fw_id);
2191 	if (rc) {
2192 		ibdev_err(&rdev->ibdev,
2193 			  "Failed to allocate stats context: %#x\n", rc);
2194 		goto free_ctx;
2195 	}
2196 
2197 	rc = bnxt_qplib_init_rcfw(&rdev->rcfw, &rdev->qplib_ctx,
2198 				  rdev->is_virtfn);
2199 	if (rc) {
2200 		ibdev_err(&rdev->ibdev,
2201 			  "Failed to initialize RCFW: %#x\n", rc);
2202 		goto free_sctx;
2203 	}
2204 	set_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags);
2205 
2206 	/* Resources based on the 'new' device caps */
2207 	rc = bnxt_re_alloc_res(rdev);
2208 	if (rc) {
2209 		ibdev_err(&rdev->ibdev,
2210 			  "Failed to allocate resources: %#x\n", rc);
2211 		goto fail;
2212 	}
2213 	set_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags);
2214 	rc = bnxt_re_init_res(rdev);
2215 	if (rc) {
2216 		ibdev_err(&rdev->ibdev,
2217 			  "Failed to initialize resources: %#x\n", rc);
2218 		goto fail;
2219 	}
2220 
2221 	set_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, &rdev->flags);
2222 
2223 	if (!rdev->is_virtfn) {
2224 		/* Query f/w defaults of CC params */
2225 		rc = bnxt_qplib_query_cc_param(&rdev->qplib_res, &rdev->cc_param);
2226 		if (rc)
2227 			ibdev_warn(&rdev->ibdev, "Failed to query CC defaults\n");
2228 
2229 		rc = bnxt_re_setup_qos(rdev);
2230 		if (rc)
2231 			ibdev_info(&rdev->ibdev,
2232 				   "RoCE priority not yet configured\n");
2233 
2234 		INIT_DELAYED_WORK(&rdev->worker, bnxt_re_worker);
2235 		set_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags);
2236 		schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000));
2237 
2238 		if (!(rdev->qplib_res.en_dev->flags & BNXT_EN_FLAG_ROCE_VF_RES_MGMT))
2239 			bnxt_re_vf_res_config(rdev);
2240 	}
2241 	hash_init(rdev->cq_hash);
2242 	if (rdev->chip_ctx->modes.toggle_bits & BNXT_QPLIB_SRQ_TOGGLE_BIT)
2243 		hash_init(rdev->srq_hash);
2244 
2245 	bnxt_re_debugfs_add_pdev(rdev);
2246 
2247 	bnxt_re_init_dcb_wq(rdev);
2248 	bnxt_re_net_register_async_event(rdev);
2249 
2250 	return 0;
2251 free_sctx:
2252 	bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id);
2253 free_ctx:
2254 	bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx);
2255 disable_rcfw:
2256 	bnxt_qplib_disable_rcfw_channel(&rdev->rcfw);
2257 free_ring:
2258 	type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
2259 	bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type);
2260 free_rcfw:
2261 	bnxt_qplib_free_rcfw_channel(&rdev->rcfw);
2262 fail:
2263 	bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE);
2264 
2265 	return rc;
2266 }
2267 
2268 static void bnxt_re_setup_cc(struct bnxt_re_dev *rdev, bool enable)
2269 {
2270 	struct bnxt_qplib_cc_param cc_param = {};
2271 
2272 	/* Do not enable congestion control on VFs */
2273 	if (rdev->is_virtfn)
2274 		return;
2275 
2276 	/* Currently enabling only for GenP5 adapters */
2277 	if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
2278 		return;
2279 
2280 	if (enable) {
2281 		cc_param.enable  = 1;
2282 		cc_param.tos_ecn = 1;
2283 	}
2284 
2285 	cc_param.mask = (CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ENABLE_CC |
2286 			 CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_ECN);
2287 
2288 	if (bnxt_qplib_modify_cc(&rdev->qplib_res, &cc_param))
2289 		ibdev_err(&rdev->ibdev, "Failed to setup CC enable = %d\n", enable);
2290 }
2291 
2292 static void bnxt_re_update_en_info_rdev(struct bnxt_re_dev *rdev,
2293 					struct bnxt_re_en_dev_info *en_info,
2294 					struct auxiliary_device *adev)
2295 {
2296 	/* Before updating the rdev pointer in bnxt_re_en_dev_info structure,
2297 	 * take the rtnl lock to avoid accessing invalid rdev pointer from
2298 	 * L2 ULP callbacks. This is applicable in all the places where rdev
2299 	 * pointer is updated in bnxt_re_en_dev_info.
2300 	 */
2301 	rtnl_lock();
2302 	en_info->rdev = rdev;
2303 	rtnl_unlock();
2304 }
2305 
2306 static int bnxt_re_add_device(struct auxiliary_device *adev, u8 op_type)
2307 {
2308 	struct bnxt_aux_priv *aux_priv =
2309 		container_of(adev, struct bnxt_aux_priv, aux_dev);
2310 	struct bnxt_re_en_dev_info *en_info;
2311 	struct bnxt_en_dev *en_dev;
2312 	struct bnxt_re_dev *rdev;
2313 	int rc;
2314 
2315 	en_info = auxiliary_get_drvdata(adev);
2316 	en_dev = en_info->en_dev;
2317 
2318 
2319 	rdev = bnxt_re_dev_add(adev, en_dev);
2320 	if (!rdev || !rdev_to_dev(rdev)) {
2321 		rc = -ENOMEM;
2322 		goto exit;
2323 	}
2324 
2325 	bnxt_re_update_en_info_rdev(rdev, en_info, adev);
2326 
2327 	rc = bnxt_re_dev_init(rdev, op_type);
2328 	if (rc)
2329 		goto re_dev_dealloc;
2330 
2331 	rc = bnxt_re_ib_init(rdev);
2332 	if (rc) {
2333 		pr_err("Failed to register with IB: %s",
2334 			aux_priv->aux_dev.name);
2335 		goto re_dev_uninit;
2336 	}
2337 
2338 	bnxt_re_setup_cc(rdev, true);
2339 
2340 	return 0;
2341 
2342 re_dev_uninit:
2343 	bnxt_re_update_en_info_rdev(NULL, en_info, adev);
2344 	bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE);
2345 re_dev_dealloc:
2346 	ib_dealloc_device(&rdev->ibdev);
2347 exit:
2348 	return rc;
2349 }
2350 
2351 #define BNXT_ADEV_NAME "bnxt_en"
2352 
2353 static void bnxt_re_remove_device(struct bnxt_re_dev *rdev, u8 op_type,
2354 				  struct auxiliary_device *aux_dev)
2355 {
2356 	bnxt_re_setup_cc(rdev, false);
2357 	ib_unregister_device(&rdev->ibdev);
2358 	bnxt_re_dev_uninit(rdev, op_type);
2359 	ib_dealloc_device(&rdev->ibdev);
2360 }
2361 
2362 static void bnxt_re_remove(struct auxiliary_device *adev)
2363 {
2364 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
2365 	struct bnxt_re_dev *rdev;
2366 
2367 	mutex_lock(&bnxt_re_mutex);
2368 	rdev = en_info->rdev;
2369 
2370 	if (rdev)
2371 		bnxt_re_remove_device(rdev, BNXT_RE_COMPLETE_REMOVE, adev);
2372 	kfree(en_info);
2373 	mutex_unlock(&bnxt_re_mutex);
2374 }
2375 
2376 static int bnxt_re_probe(struct auxiliary_device *adev,
2377 			 const struct auxiliary_device_id *id)
2378 {
2379 	struct bnxt_aux_priv *aux_priv =
2380 		container_of(adev, struct bnxt_aux_priv, aux_dev);
2381 	struct bnxt_re_en_dev_info *en_info;
2382 	struct bnxt_en_dev *en_dev;
2383 	int rc;
2384 
2385 	en_dev = aux_priv->edev;
2386 
2387 	mutex_lock(&bnxt_re_mutex);
2388 	en_info = kzalloc(sizeof(*en_info), GFP_KERNEL);
2389 	if (!en_info) {
2390 		mutex_unlock(&bnxt_re_mutex);
2391 		return -ENOMEM;
2392 	}
2393 	en_info->en_dev = en_dev;
2394 
2395 	auxiliary_set_drvdata(adev, en_info);
2396 
2397 	rc = bnxt_re_add_device(adev, BNXT_RE_COMPLETE_INIT);
2398 	if (rc)
2399 		kfree(en_info);
2400 
2401 	mutex_unlock(&bnxt_re_mutex);
2402 
2403 	return rc;
2404 }
2405 
2406 static int bnxt_re_suspend(struct auxiliary_device *adev, pm_message_t state)
2407 {
2408 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
2409 	struct bnxt_en_dev *en_dev;
2410 	struct bnxt_re_dev *rdev;
2411 
2412 	rdev = en_info->rdev;
2413 	en_dev = en_info->en_dev;
2414 	mutex_lock(&bnxt_re_mutex);
2415 
2416 	ibdev_info(&rdev->ibdev, "Handle device suspend call");
2417 	/* Check the current device state from bnxt_en_dev and move the
2418 	 * device to detached state if FW_FATAL_COND is set.
2419 	 * This prevents more commands to HW during clean-up,
2420 	 * in case the device is already in error.
2421 	 */
2422 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &rdev->en_dev->en_state)) {
2423 		set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags);
2424 		set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags);
2425 		wake_up_all(&rdev->rcfw.cmdq.waitq);
2426 		bnxt_re_dev_stop(rdev);
2427 	}
2428 
2429 	if (rdev->pacing.dbr_pacing)
2430 		bnxt_re_set_pacing_dev_state(rdev);
2431 
2432 	ibdev_info(&rdev->ibdev, "%s: L2 driver notified to stop en_state 0x%lx",
2433 		   __func__, en_dev->en_state);
2434 	bnxt_re_remove_device(rdev, BNXT_RE_PRE_RECOVERY_REMOVE, adev);
2435 	bnxt_re_update_en_info_rdev(NULL, en_info, adev);
2436 	mutex_unlock(&bnxt_re_mutex);
2437 
2438 	return 0;
2439 }
2440 
2441 static int bnxt_re_resume(struct auxiliary_device *adev)
2442 {
2443 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
2444 	struct bnxt_re_dev *rdev;
2445 
2446 	mutex_lock(&bnxt_re_mutex);
2447 	bnxt_re_add_device(adev, BNXT_RE_POST_RECOVERY_INIT);
2448 	rdev = en_info->rdev;
2449 	ibdev_info(&rdev->ibdev, "Device resume completed");
2450 	mutex_unlock(&bnxt_re_mutex);
2451 
2452 	return 0;
2453 }
2454 
2455 static void bnxt_re_shutdown(struct auxiliary_device *adev)
2456 {
2457 	struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
2458 	struct bnxt_re_dev *rdev;
2459 
2460 	rdev = en_info->rdev;
2461 	ib_unregister_device(&rdev->ibdev);
2462 	bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE);
2463 }
2464 
2465 static const struct auxiliary_device_id bnxt_re_id_table[] = {
2466 	{ .name = BNXT_ADEV_NAME ".rdma", },
2467 	{},
2468 };
2469 
2470 MODULE_DEVICE_TABLE(auxiliary, bnxt_re_id_table);
2471 
2472 static struct auxiliary_driver bnxt_re_driver = {
2473 	.name = "rdma",
2474 	.probe = bnxt_re_probe,
2475 	.remove = bnxt_re_remove,
2476 	.shutdown = bnxt_re_shutdown,
2477 	.suspend = bnxt_re_suspend,
2478 	.resume = bnxt_re_resume,
2479 	.id_table = bnxt_re_id_table,
2480 };
2481 
2482 static int __init bnxt_re_mod_init(void)
2483 {
2484 	int rc;
2485 
2486 	pr_info("%s: %s", ROCE_DRV_MODULE_NAME, version);
2487 	bnxt_re_register_debugfs();
2488 
2489 	rc = auxiliary_driver_register(&bnxt_re_driver);
2490 	if (rc) {
2491 		pr_err("%s: Failed to register auxiliary driver\n",
2492 			ROCE_DRV_MODULE_NAME);
2493 		goto err_debug;
2494 	}
2495 	return 0;
2496 err_debug:
2497 	bnxt_re_unregister_debugfs();
2498 	return rc;
2499 }
2500 
2501 static void __exit bnxt_re_mod_exit(void)
2502 {
2503 	auxiliary_driver_unregister(&bnxt_re_driver);
2504 	bnxt_re_unregister_debugfs();
2505 }
2506 
2507 module_init(bnxt_re_mod_init);
2508 module_exit(bnxt_re_mod_exit);
2509