1 /*
2 * Broadcom NetXtreme-E RoCE driver.
3 *
4 * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term
5 * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 * Description: Main component of the bnxt_re driver
37 */
38
39 #include <linux/module.h>
40 #include <linux/netdevice.h>
41 #include <linux/ethtool.h>
42 #include <linux/mutex.h>
43 #include <linux/list.h>
44 #include <linux/rculist.h>
45 #include <linux/spinlock.h>
46 #include <linux/pci.h>
47 #include <net/dcbnl.h>
48 #include <net/ipv6.h>
49 #include <net/addrconf.h>
50 #include <linux/if_ether.h>
51 #include <linux/auxiliary_bus.h>
52
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_user_verbs.h>
55 #include <rdma/ib_umem.h>
56 #include <rdma/ib_addr.h>
57 #include <linux/hashtable.h>
58
59 #include "bnxt_ulp.h"
60 #include "roce_hsi.h"
61 #include "qplib_res.h"
62 #include "qplib_sp.h"
63 #include "qplib_fp.h"
64 #include "qplib_rcfw.h"
65 #include "bnxt_re.h"
66 #include "ib_verbs.h"
67 #include <rdma/bnxt_re-abi.h>
68 #include "bnxt.h"
69 #include "hw_counters.h"
70 #include "debugfs.h"
71
72 static char version[] =
73 BNXT_RE_DESC "\n";
74
75 MODULE_AUTHOR("Eddie Wai <eddie.wai@broadcom.com>");
76 MODULE_DESCRIPTION(BNXT_RE_DESC);
77 MODULE_LICENSE("Dual BSD/GPL");
78
79 /* globals */
80 static DEFINE_MUTEX(bnxt_re_mutex);
81
82 static void bnxt_re_stop_irq(void *handle);
83 static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev);
84 static int bnxt_re_netdev_event(struct notifier_block *notifier,
85 unsigned long event, void *ptr);
86 static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev);
87 static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev, u8 op_type);
88 static int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev);
89
90 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len,
91 u32 *offset);
92 static void bnxt_re_setup_cc(struct bnxt_re_dev *rdev, bool enable);
bnxt_re_set_db_offset(struct bnxt_re_dev * rdev)93 static void bnxt_re_set_db_offset(struct bnxt_re_dev *rdev)
94 {
95 struct bnxt_qplib_chip_ctx *cctx;
96 struct bnxt_en_dev *en_dev;
97 struct bnxt_qplib_res *res;
98 u32 l2db_len = 0;
99 u32 offset = 0;
100 u32 barlen;
101 int rc;
102
103 res = &rdev->qplib_res;
104 en_dev = rdev->en_dev;
105 cctx = rdev->chip_ctx;
106
107 /* Issue qcfg */
108 rc = bnxt_re_hwrm_qcfg(rdev, &l2db_len, &offset);
109 if (rc)
110 dev_info(rdev_to_dev(rdev),
111 "Couldn't get DB bar size, Low latency framework is disabled\n");
112 /* set register offsets for both UC and WC */
113 if (bnxt_qplib_is_chip_gen_p7(cctx)) {
114 res->dpi_tbl.ucreg.offset = offset;
115 res->dpi_tbl.wcreg.offset = en_dev->l2_db_size;
116 } else {
117 res->dpi_tbl.ucreg.offset = res->is_vf ? BNXT_QPLIB_DBR_VF_DB_OFFSET :
118 BNXT_QPLIB_DBR_PF_DB_OFFSET;
119 res->dpi_tbl.wcreg.offset = res->dpi_tbl.ucreg.offset;
120 }
121
122 /* If WC mapping is disabled by L2 driver then en_dev->l2_db_size
123 * is equal to the DB-Bar actual size. This indicates that L2
124 * is mapping entire bar as UC-. RoCE driver can't enable WC mapping
125 * in such cases and DB-push will be disabled.
126 */
127 barlen = pci_resource_len(res->pdev, RCFW_DBR_PCI_BAR_REGION);
128 if (cctx->modes.db_push && l2db_len && en_dev->l2_db_size != barlen) {
129 res->dpi_tbl.wcreg.offset = en_dev->l2_db_size;
130 dev_info(rdev_to_dev(rdev), "Low latency framework is enabled\n");
131 }
132 }
133
bnxt_re_set_drv_mode(struct bnxt_re_dev * rdev)134 static void bnxt_re_set_drv_mode(struct bnxt_re_dev *rdev)
135 {
136 struct bnxt_qplib_chip_ctx *cctx;
137
138 cctx = rdev->chip_ctx;
139 cctx->modes.wqe_mode = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ?
140 BNXT_QPLIB_WQE_MODE_VARIABLE : BNXT_QPLIB_WQE_MODE_STATIC;
141 if (bnxt_re_hwrm_qcaps(rdev))
142 dev_err(rdev_to_dev(rdev),
143 "Failed to query hwrm qcaps\n");
144 if (bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx)) {
145 cctx->modes.toggle_bits |= BNXT_QPLIB_CQ_TOGGLE_BIT;
146 cctx->modes.toggle_bits |= BNXT_QPLIB_SRQ_TOGGLE_BIT;
147 }
148 }
149
bnxt_re_destroy_chip_ctx(struct bnxt_re_dev * rdev)150 static void bnxt_re_destroy_chip_ctx(struct bnxt_re_dev *rdev)
151 {
152 struct bnxt_qplib_chip_ctx *chip_ctx;
153
154 if (!rdev->chip_ctx)
155 return;
156 chip_ctx = rdev->chip_ctx;
157 rdev->chip_ctx = NULL;
158 rdev->rcfw.res = NULL;
159 rdev->qplib_res.cctx = NULL;
160 rdev->qplib_res.pdev = NULL;
161 rdev->qplib_res.netdev = NULL;
162 kfree(chip_ctx);
163 }
164
bnxt_re_setup_chip_ctx(struct bnxt_re_dev * rdev)165 static int bnxt_re_setup_chip_ctx(struct bnxt_re_dev *rdev)
166 {
167 struct bnxt_qplib_chip_ctx *chip_ctx;
168 struct bnxt_en_dev *en_dev;
169 int rc;
170
171 en_dev = rdev->en_dev;
172
173 rdev->qplib_res.pdev = en_dev->pdev;
174 chip_ctx = kzalloc(sizeof(*chip_ctx), GFP_KERNEL);
175 if (!chip_ctx)
176 return -ENOMEM;
177 chip_ctx->chip_num = en_dev->chip_num;
178 chip_ctx->hw_stats_size = en_dev->hw_ring_stats_size;
179
180 rdev->chip_ctx = chip_ctx;
181 /* rest members to follow eventually */
182
183 rdev->qplib_res.cctx = rdev->chip_ctx;
184 rdev->rcfw.res = &rdev->qplib_res;
185 rdev->qplib_res.dattr = &rdev->dev_attr;
186 rdev->qplib_res.is_vf = BNXT_EN_VF(en_dev);
187 rdev->qplib_res.en_dev = en_dev;
188
189 bnxt_re_set_drv_mode(rdev);
190
191 bnxt_re_set_db_offset(rdev);
192 rc = bnxt_qplib_map_db_bar(&rdev->qplib_res);
193 if (rc) {
194 kfree(rdev->chip_ctx);
195 rdev->chip_ctx = NULL;
196 return rc;
197 }
198
199 if (bnxt_qplib_determine_atomics(en_dev->pdev))
200 ibdev_info(&rdev->ibdev,
201 "platform doesn't support global atomics.");
202 return 0;
203 }
204
205 /* SR-IOV helper functions */
206
bnxt_re_get_sriov_func_type(struct bnxt_re_dev * rdev)207 static void bnxt_re_get_sriov_func_type(struct bnxt_re_dev *rdev)
208 {
209 if (BNXT_EN_VF(rdev->en_dev))
210 rdev->is_virtfn = 1;
211 }
212
213 /* Set the maximum number of each resource that the driver actually wants
214 * to allocate. This may be up to the maximum number the firmware has
215 * reserved for the function. The driver may choose to allocate fewer
216 * resources than the firmware maximum.
217 */
bnxt_re_limit_pf_res(struct bnxt_re_dev * rdev)218 static void bnxt_re_limit_pf_res(struct bnxt_re_dev *rdev)
219 {
220 struct bnxt_qplib_dev_attr *attr;
221 struct bnxt_qplib_ctx *ctx;
222 int i;
223
224 attr = &rdev->dev_attr;
225 ctx = &rdev->qplib_ctx;
226
227 ctx->qpc_count = min_t(u32, BNXT_RE_MAX_QPC_COUNT,
228 attr->max_qp);
229 ctx->mrw_count = BNXT_RE_MAX_MRW_COUNT_256K;
230 /* Use max_mr from fw since max_mrw does not get set */
231 ctx->mrw_count = min_t(u32, ctx->mrw_count, attr->max_mr);
232 ctx->srqc_count = min_t(u32, BNXT_RE_MAX_SRQC_COUNT,
233 attr->max_srq);
234 ctx->cq_count = min_t(u32, BNXT_RE_MAX_CQ_COUNT, attr->max_cq);
235 if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
236 for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
237 rdev->qplib_ctx.tqm_ctx.qcount[i] =
238 rdev->dev_attr.tqm_alloc_reqs[i];
239 }
240
bnxt_re_limit_vf_res(struct bnxt_qplib_ctx * qplib_ctx,u32 num_vf)241 static void bnxt_re_limit_vf_res(struct bnxt_qplib_ctx *qplib_ctx, u32 num_vf)
242 {
243 struct bnxt_qplib_vf_res *vf_res;
244 u32 mrws = 0;
245 u32 vf_pct;
246 u32 nvfs;
247
248 vf_res = &qplib_ctx->vf_res;
249 /*
250 * Reserve a set of resources for the PF. Divide the remaining
251 * resources among the VFs
252 */
253 vf_pct = 100 - BNXT_RE_PCT_RSVD_FOR_PF;
254 nvfs = num_vf;
255 num_vf = 100 * num_vf;
256 vf_res->max_qp_per_vf = (qplib_ctx->qpc_count * vf_pct) / num_vf;
257 vf_res->max_srq_per_vf = (qplib_ctx->srqc_count * vf_pct) / num_vf;
258 vf_res->max_cq_per_vf = (qplib_ctx->cq_count * vf_pct) / num_vf;
259 /*
260 * The driver allows many more MRs than other resources. If the
261 * firmware does also, then reserve a fixed amount for the PF and
262 * divide the rest among VFs. VFs may use many MRs for NFS
263 * mounts, ISER, NVME applications, etc. If the firmware severely
264 * restricts the number of MRs, then let PF have half and divide
265 * the rest among VFs, as for the other resource types.
266 */
267 if (qplib_ctx->mrw_count < BNXT_RE_MAX_MRW_COUNT_64K) {
268 mrws = qplib_ctx->mrw_count * vf_pct;
269 nvfs = num_vf;
270 } else {
271 mrws = qplib_ctx->mrw_count - BNXT_RE_RESVD_MR_FOR_PF;
272 }
273 vf_res->max_mrw_per_vf = (mrws / nvfs);
274 vf_res->max_gid_per_vf = BNXT_RE_MAX_GID_PER_VF;
275 }
276
bnxt_re_set_resource_limits(struct bnxt_re_dev * rdev)277 static void bnxt_re_set_resource_limits(struct bnxt_re_dev *rdev)
278 {
279 u32 num_vfs;
280
281 memset(&rdev->qplib_ctx.vf_res, 0, sizeof(struct bnxt_qplib_vf_res));
282 bnxt_re_limit_pf_res(rdev);
283
284 num_vfs = bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx) ?
285 BNXT_RE_GEN_P5_MAX_VF : rdev->num_vfs;
286 if (num_vfs)
287 bnxt_re_limit_vf_res(&rdev->qplib_ctx, num_vfs);
288 }
289
bnxt_re_vf_res_config(struct bnxt_re_dev * rdev)290 static void bnxt_re_vf_res_config(struct bnxt_re_dev *rdev)
291 {
292 /*
293 * Use the total VF count since the actual VF count may not be
294 * available at this point.
295 */
296 rdev->num_vfs = pci_sriov_get_totalvfs(rdev->en_dev->pdev);
297 if (!rdev->num_vfs)
298 return;
299
300 bnxt_re_set_resource_limits(rdev);
301 bnxt_qplib_set_func_resources(&rdev->qplib_res, &rdev->rcfw,
302 &rdev->qplib_ctx);
303 }
304
bnxt_re_shutdown(struct auxiliary_device * adev)305 static void bnxt_re_shutdown(struct auxiliary_device *adev)
306 {
307 struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
308 struct bnxt_re_dev *rdev;
309
310 rdev = en_info->rdev;
311 ib_unregister_device(&rdev->ibdev);
312 bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE);
313 }
314
bnxt_re_stop_irq(void * handle)315 static void bnxt_re_stop_irq(void *handle)
316 {
317 struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle);
318 struct bnxt_qplib_rcfw *rcfw;
319 struct bnxt_re_dev *rdev;
320 struct bnxt_qplib_nq *nq;
321 int indx;
322
323 rdev = en_info->rdev;
324 rcfw = &rdev->rcfw;
325
326 for (indx = BNXT_RE_NQ_IDX; indx < rdev->nqr->num_msix; indx++) {
327 nq = &rdev->nqr->nq[indx - 1];
328 bnxt_qplib_nq_stop_irq(nq, false);
329 }
330
331 bnxt_qplib_rcfw_stop_irq(rcfw, false);
332 }
333
bnxt_re_start_irq(void * handle,struct bnxt_msix_entry * ent)334 static void bnxt_re_start_irq(void *handle, struct bnxt_msix_entry *ent)
335 {
336 struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle);
337 struct bnxt_msix_entry *msix_ent;
338 struct bnxt_qplib_rcfw *rcfw;
339 struct bnxt_re_dev *rdev;
340 struct bnxt_qplib_nq *nq;
341 int indx, rc;
342
343 rdev = en_info->rdev;
344 msix_ent = rdev->nqr->msix_entries;
345 rcfw = &rdev->rcfw;
346 if (!ent) {
347 /* Not setting the f/w timeout bit in rcfw.
348 * During the driver unload the first command
349 * to f/w will timeout and that will set the
350 * timeout bit.
351 */
352 ibdev_err(&rdev->ibdev, "Failed to re-start IRQs\n");
353 return;
354 }
355
356 /* Vectors may change after restart, so update with new vectors
357 * in device sctructure.
358 */
359 for (indx = 0; indx < rdev->nqr->num_msix; indx++)
360 rdev->nqr->msix_entries[indx].vector = ent[indx].vector;
361
362 rc = bnxt_qplib_rcfw_start_irq(rcfw, msix_ent[BNXT_RE_AEQ_IDX].vector,
363 false);
364 if (rc) {
365 ibdev_warn(&rdev->ibdev, "Failed to reinit CREQ\n");
366 return;
367 }
368 for (indx = BNXT_RE_NQ_IDX ; indx < rdev->nqr->num_msix; indx++) {
369 nq = &rdev->nqr->nq[indx - 1];
370 rc = bnxt_qplib_nq_start_irq(nq, indx - 1,
371 msix_ent[indx].vector, false);
372 if (rc) {
373 ibdev_warn(&rdev->ibdev, "Failed to reinit NQ index %d\n",
374 indx - 1);
375 return;
376 }
377 }
378 }
379
380 static struct bnxt_ulp_ops bnxt_re_ulp_ops = {
381 .ulp_irq_stop = bnxt_re_stop_irq,
382 .ulp_irq_restart = bnxt_re_start_irq
383 };
384
385 /* RoCE -> Net driver */
386
bnxt_re_register_netdev(struct bnxt_re_dev * rdev)387 static int bnxt_re_register_netdev(struct bnxt_re_dev *rdev)
388 {
389 struct bnxt_en_dev *en_dev;
390
391 en_dev = rdev->en_dev;
392 return bnxt_register_dev(en_dev, &bnxt_re_ulp_ops, rdev->adev);
393 }
394
bnxt_re_init_hwrm_hdr(struct input * hdr,u16 opcd)395 static void bnxt_re_init_hwrm_hdr(struct input *hdr, u16 opcd)
396 {
397 hdr->req_type = cpu_to_le16(opcd);
398 hdr->cmpl_ring = cpu_to_le16(-1);
399 hdr->target_id = cpu_to_le16(-1);
400 }
401
bnxt_re_fill_fw_msg(struct bnxt_fw_msg * fw_msg,void * msg,int msg_len,void * resp,int resp_max_len,int timeout)402 static void bnxt_re_fill_fw_msg(struct bnxt_fw_msg *fw_msg, void *msg,
403 int msg_len, void *resp, int resp_max_len,
404 int timeout)
405 {
406 fw_msg->msg = msg;
407 fw_msg->msg_len = msg_len;
408 fw_msg->resp = resp;
409 fw_msg->resp_max_len = resp_max_len;
410 fw_msg->timeout = timeout;
411 }
412
413 /* Query device config using common hwrm */
bnxt_re_hwrm_qcfg(struct bnxt_re_dev * rdev,u32 * db_len,u32 * offset)414 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len,
415 u32 *offset)
416 {
417 struct bnxt_en_dev *en_dev = rdev->en_dev;
418 struct hwrm_func_qcfg_output resp = {0};
419 struct hwrm_func_qcfg_input req = {0};
420 struct bnxt_fw_msg fw_msg = {};
421 int rc;
422
423 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCFG);
424 req.fid = cpu_to_le16(0xffff);
425 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
426 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
427 rc = bnxt_send_msg(en_dev, &fw_msg);
428 if (!rc) {
429 *db_len = PAGE_ALIGN(le16_to_cpu(resp.l2_doorbell_bar_size_kb) * 1024);
430 *offset = PAGE_ALIGN(le16_to_cpu(resp.legacy_l2_db_size_kb) * 1024);
431 }
432 return rc;
433 }
434
435 /* Query function capabilities using common hwrm */
bnxt_re_hwrm_qcaps(struct bnxt_re_dev * rdev)436 int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev)
437 {
438 struct bnxt_en_dev *en_dev = rdev->en_dev;
439 struct hwrm_func_qcaps_output resp = {};
440 struct hwrm_func_qcaps_input req = {};
441 struct bnxt_qplib_chip_ctx *cctx;
442 struct bnxt_fw_msg fw_msg = {};
443 u32 flags_ext2;
444 int rc;
445
446 cctx = rdev->chip_ctx;
447 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCAPS);
448 req.fid = cpu_to_le16(0xffff);
449 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
450 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
451
452 rc = bnxt_send_msg(en_dev, &fw_msg);
453 if (rc)
454 return rc;
455 cctx->modes.db_push = le32_to_cpu(resp.flags) & FUNC_QCAPS_RESP_FLAGS_WCB_PUSH_MODE;
456
457 flags_ext2 = le32_to_cpu(resp.flags_ext2);
458 cctx->modes.dbr_pacing = flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_EXT_SUPPORTED ||
459 flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_V0_SUPPORTED;
460 return 0;
461 }
462
bnxt_re_hwrm_dbr_pacing_qcfg(struct bnxt_re_dev * rdev)463 static int bnxt_re_hwrm_dbr_pacing_qcfg(struct bnxt_re_dev *rdev)
464 {
465 struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
466 struct hwrm_func_dbr_pacing_qcfg_output resp = {};
467 struct hwrm_func_dbr_pacing_qcfg_input req = {};
468 struct bnxt_en_dev *en_dev = rdev->en_dev;
469 struct bnxt_qplib_chip_ctx *cctx;
470 struct bnxt_fw_msg fw_msg = {};
471 int rc;
472
473 cctx = rdev->chip_ctx;
474 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_DBR_PACING_QCFG);
475 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
476 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
477 rc = bnxt_send_msg(en_dev, &fw_msg);
478 if (rc)
479 return rc;
480
481 if ((le32_to_cpu(resp.dbr_stat_db_fifo_reg) &
482 FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK) ==
483 FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_GRC)
484 cctx->dbr_stat_db_fifo =
485 le32_to_cpu(resp.dbr_stat_db_fifo_reg) &
486 ~FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK;
487
488 pacing_data->fifo_max_depth = le32_to_cpu(resp.dbr_stat_db_max_fifo_depth);
489 if (!pacing_data->fifo_max_depth)
490 pacing_data->fifo_max_depth = BNXT_RE_MAX_FIFO_DEPTH(cctx);
491 pacing_data->fifo_room_mask = le32_to_cpu(resp.dbr_stat_db_fifo_reg_fifo_room_mask);
492 pacing_data->fifo_room_shift = resp.dbr_stat_db_fifo_reg_fifo_room_shift;
493
494 return 0;
495 }
496
497 /* Update the pacing tunable parameters to the default values */
bnxt_re_set_default_pacing_data(struct bnxt_re_dev * rdev)498 static void bnxt_re_set_default_pacing_data(struct bnxt_re_dev *rdev)
499 {
500 struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
501
502 pacing_data->do_pacing = rdev->pacing.dbr_def_do_pacing;
503 pacing_data->pacing_th = rdev->pacing.pacing_algo_th;
504 pacing_data->alarm_th =
505 pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE;
506 }
507
__get_fifo_occupancy(struct bnxt_re_dev * rdev)508 static u32 __get_fifo_occupancy(struct bnxt_re_dev *rdev)
509 {
510 struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
511 u32 read_val, fifo_occup;
512
513 read_val = readl(rdev->en_dev->bar0 + rdev->pacing.dbr_db_fifo_reg_off);
514 fifo_occup = pacing_data->fifo_max_depth -
515 ((read_val & pacing_data->fifo_room_mask) >>
516 pacing_data->fifo_room_shift);
517 return fifo_occup;
518 }
519
is_dbr_fifo_full(struct bnxt_re_dev * rdev)520 static bool is_dbr_fifo_full(struct bnxt_re_dev *rdev)
521 {
522 u32 max_occup, fifo_occup;
523
524 fifo_occup = __get_fifo_occupancy(rdev);
525 max_occup = BNXT_RE_MAX_FIFO_DEPTH(rdev->chip_ctx) - 1;
526 if (fifo_occup == max_occup)
527 return true;
528
529 return false;
530 }
531
__wait_for_fifo_occupancy_below_th(struct bnxt_re_dev * rdev)532 static void __wait_for_fifo_occupancy_below_th(struct bnxt_re_dev *rdev)
533 {
534 struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
535 u32 retry_fifo_check = 1000;
536 u32 fifo_occup;
537
538 /* loop shouldn't run infintely as the occupancy usually goes
539 * below pacing algo threshold as soon as pacing kicks in.
540 */
541 while (1) {
542 fifo_occup = __get_fifo_occupancy(rdev);
543 /* Fifo occupancy cannot be greater the MAX FIFO depth */
544 if (fifo_occup > pacing_data->fifo_max_depth)
545 break;
546
547 if (fifo_occup < pacing_data->pacing_th)
548 break;
549 if (!retry_fifo_check--) {
550 dev_info_once(rdev_to_dev(rdev),
551 "%s: fifo_occup = 0x%xfifo_max_depth = 0x%x pacing_th = 0x%x\n",
552 __func__, fifo_occup, pacing_data->fifo_max_depth,
553 pacing_data->pacing_th);
554 break;
555 }
556
557 }
558 }
559
bnxt_re_db_fifo_check(struct work_struct * work)560 static void bnxt_re_db_fifo_check(struct work_struct *work)
561 {
562 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
563 dbq_fifo_check_work);
564 struct bnxt_qplib_db_pacing_data *pacing_data;
565 u32 pacing_save;
566
567 if (!mutex_trylock(&rdev->pacing.dbq_lock))
568 return;
569 pacing_data = rdev->qplib_res.pacing_data;
570 pacing_save = rdev->pacing.do_pacing_save;
571 __wait_for_fifo_occupancy_below_th(rdev);
572 cancel_delayed_work_sync(&rdev->dbq_pacing_work);
573 if (pacing_save > rdev->pacing.dbr_def_do_pacing) {
574 /* Double the do_pacing value during the congestion */
575 pacing_save = pacing_save << 1;
576 } else {
577 /*
578 * when a new congestion is detected increase the do_pacing
579 * by 8 times. And also increase the pacing_th by 4 times. The
580 * reason to increase pacing_th is to give more space for the
581 * queue to oscillate down without getting empty, but also more
582 * room for the queue to increase without causing another alarm.
583 */
584 pacing_save = pacing_save << 3;
585 pacing_data->pacing_th = rdev->pacing.pacing_algo_th * 4;
586 }
587
588 if (pacing_save > BNXT_RE_MAX_DBR_DO_PACING)
589 pacing_save = BNXT_RE_MAX_DBR_DO_PACING;
590
591 pacing_data->do_pacing = pacing_save;
592 rdev->pacing.do_pacing_save = pacing_data->do_pacing;
593 pacing_data->alarm_th =
594 pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE;
595 schedule_delayed_work(&rdev->dbq_pacing_work,
596 msecs_to_jiffies(rdev->pacing.dbq_pacing_time));
597 rdev->stats.pacing.alerts++;
598 mutex_unlock(&rdev->pacing.dbq_lock);
599 }
600
bnxt_re_pacing_timer_exp(struct work_struct * work)601 static void bnxt_re_pacing_timer_exp(struct work_struct *work)
602 {
603 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
604 dbq_pacing_work.work);
605 struct bnxt_qplib_db_pacing_data *pacing_data;
606 u32 fifo_occup;
607
608 if (!mutex_trylock(&rdev->pacing.dbq_lock))
609 return;
610
611 pacing_data = rdev->qplib_res.pacing_data;
612 fifo_occup = __get_fifo_occupancy(rdev);
613
614 if (fifo_occup > pacing_data->pacing_th)
615 goto restart_timer;
616
617 /*
618 * Instead of immediately going back to the default do_pacing
619 * reduce it by 1/8 times and restart the timer.
620 */
621 pacing_data->do_pacing = pacing_data->do_pacing - (pacing_data->do_pacing >> 3);
622 pacing_data->do_pacing = max_t(u32, rdev->pacing.dbr_def_do_pacing, pacing_data->do_pacing);
623 if (pacing_data->do_pacing <= rdev->pacing.dbr_def_do_pacing) {
624 bnxt_re_set_default_pacing_data(rdev);
625 rdev->stats.pacing.complete++;
626 goto dbq_unlock;
627 }
628
629 restart_timer:
630 schedule_delayed_work(&rdev->dbq_pacing_work,
631 msecs_to_jiffies(rdev->pacing.dbq_pacing_time));
632 rdev->stats.pacing.resched++;
633 dbq_unlock:
634 rdev->pacing.do_pacing_save = pacing_data->do_pacing;
635 mutex_unlock(&rdev->pacing.dbq_lock);
636 }
637
bnxt_re_pacing_alert(struct bnxt_re_dev * rdev)638 void bnxt_re_pacing_alert(struct bnxt_re_dev *rdev)
639 {
640 struct bnxt_qplib_db_pacing_data *pacing_data;
641
642 if (!rdev->pacing.dbr_pacing)
643 return;
644 mutex_lock(&rdev->pacing.dbq_lock);
645 pacing_data = rdev->qplib_res.pacing_data;
646
647 /*
648 * Increase the alarm_th to max so that other user lib instances do not
649 * keep alerting the driver.
650 */
651 pacing_data->alarm_th = pacing_data->fifo_max_depth;
652 pacing_data->do_pacing = BNXT_RE_MAX_DBR_DO_PACING;
653 cancel_work_sync(&rdev->dbq_fifo_check_work);
654 schedule_work(&rdev->dbq_fifo_check_work);
655 mutex_unlock(&rdev->pacing.dbq_lock);
656 }
657
bnxt_re_initialize_dbr_pacing(struct bnxt_re_dev * rdev)658 static int bnxt_re_initialize_dbr_pacing(struct bnxt_re_dev *rdev)
659 {
660 /* Allocate a page for app use */
661 rdev->pacing.dbr_page = (void *)__get_free_page(GFP_KERNEL);
662 if (!rdev->pacing.dbr_page)
663 return -ENOMEM;
664
665 memset((u8 *)rdev->pacing.dbr_page, 0, PAGE_SIZE);
666 rdev->qplib_res.pacing_data = (struct bnxt_qplib_db_pacing_data *)rdev->pacing.dbr_page;
667
668 if (bnxt_re_hwrm_dbr_pacing_qcfg(rdev)) {
669 free_page((u64)rdev->pacing.dbr_page);
670 rdev->pacing.dbr_page = NULL;
671 return -EIO;
672 }
673
674 /* MAP HW window 2 for reading db fifo depth */
675 writel(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_BASE_MASK,
676 rdev->en_dev->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
677 rdev->pacing.dbr_db_fifo_reg_off =
678 (rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_OFFSET_MASK) +
679 BNXT_RE_GRC_FIFO_REG_BASE;
680 rdev->pacing.dbr_bar_addr =
681 pci_resource_start(rdev->qplib_res.pdev, 0) + rdev->pacing.dbr_db_fifo_reg_off;
682
683 if (is_dbr_fifo_full(rdev)) {
684 free_page((u64)rdev->pacing.dbr_page);
685 rdev->pacing.dbr_page = NULL;
686 return -EIO;
687 }
688
689 rdev->pacing.pacing_algo_th = BNXT_RE_PACING_ALGO_THRESHOLD;
690 rdev->pacing.dbq_pacing_time = BNXT_RE_DBR_PACING_TIME;
691 rdev->pacing.dbr_def_do_pacing = BNXT_RE_DBR_DO_PACING_NO_CONGESTION;
692 rdev->pacing.do_pacing_save = rdev->pacing.dbr_def_do_pacing;
693 rdev->qplib_res.pacing_data->grc_reg_offset = rdev->pacing.dbr_db_fifo_reg_off;
694 bnxt_re_set_default_pacing_data(rdev);
695 /* Initialize worker for DBR Pacing */
696 INIT_WORK(&rdev->dbq_fifo_check_work, bnxt_re_db_fifo_check);
697 INIT_DELAYED_WORK(&rdev->dbq_pacing_work, bnxt_re_pacing_timer_exp);
698 return 0;
699 }
700
bnxt_re_deinitialize_dbr_pacing(struct bnxt_re_dev * rdev)701 static void bnxt_re_deinitialize_dbr_pacing(struct bnxt_re_dev *rdev)
702 {
703 cancel_work_sync(&rdev->dbq_fifo_check_work);
704 cancel_delayed_work_sync(&rdev->dbq_pacing_work);
705 if (rdev->pacing.dbr_page)
706 free_page((u64)rdev->pacing.dbr_page);
707
708 rdev->pacing.dbr_page = NULL;
709 rdev->pacing.dbr_pacing = false;
710 }
711
bnxt_re_net_ring_free(struct bnxt_re_dev * rdev,u16 fw_ring_id,int type)712 static int bnxt_re_net_ring_free(struct bnxt_re_dev *rdev,
713 u16 fw_ring_id, int type)
714 {
715 struct bnxt_en_dev *en_dev;
716 struct hwrm_ring_free_input req = {};
717 struct hwrm_ring_free_output resp;
718 struct bnxt_fw_msg fw_msg = {};
719 int rc = -EINVAL;
720
721 if (!rdev)
722 return rc;
723
724 en_dev = rdev->en_dev;
725
726 if (!en_dev)
727 return rc;
728
729 if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
730 return 0;
731
732 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_FREE);
733 req.ring_type = type;
734 req.ring_id = cpu_to_le16(fw_ring_id);
735 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
736 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
737 rc = bnxt_send_msg(en_dev, &fw_msg);
738 if (rc)
739 ibdev_err(&rdev->ibdev, "Failed to free HW ring:%d :%#x",
740 req.ring_id, rc);
741 return rc;
742 }
743
bnxt_re_net_ring_alloc(struct bnxt_re_dev * rdev,struct bnxt_re_ring_attr * ring_attr,u16 * fw_ring_id)744 static int bnxt_re_net_ring_alloc(struct bnxt_re_dev *rdev,
745 struct bnxt_re_ring_attr *ring_attr,
746 u16 *fw_ring_id)
747 {
748 struct bnxt_en_dev *en_dev = rdev->en_dev;
749 struct hwrm_ring_alloc_input req = {};
750 struct hwrm_ring_alloc_output resp;
751 struct bnxt_fw_msg fw_msg = {};
752 int rc = -EINVAL;
753
754 if (!en_dev)
755 return rc;
756
757 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_ALLOC);
758 req.enables = 0;
759 req.page_tbl_addr = cpu_to_le64(ring_attr->dma_arr[0]);
760 if (ring_attr->pages > 1) {
761 /* Page size is in log2 units */
762 req.page_size = BNXT_PAGE_SHIFT;
763 req.page_tbl_depth = 1;
764 }
765 req.fbo = 0;
766 /* Association of ring index with doorbell index and MSIX number */
767 req.logical_id = cpu_to_le16(ring_attr->lrid);
768 req.length = cpu_to_le32(ring_attr->depth + 1);
769 req.ring_type = ring_attr->type;
770 req.int_mode = ring_attr->mode;
771 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
772 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
773 rc = bnxt_send_msg(en_dev, &fw_msg);
774 if (!rc)
775 *fw_ring_id = le16_to_cpu(resp.ring_id);
776
777 return rc;
778 }
779
bnxt_re_net_stats_ctx_free(struct bnxt_re_dev * rdev,u32 fw_stats_ctx_id)780 static int bnxt_re_net_stats_ctx_free(struct bnxt_re_dev *rdev,
781 u32 fw_stats_ctx_id)
782 {
783 struct bnxt_en_dev *en_dev = rdev->en_dev;
784 struct hwrm_stat_ctx_free_input req = {};
785 struct hwrm_stat_ctx_free_output resp = {};
786 struct bnxt_fw_msg fw_msg = {};
787 int rc = -EINVAL;
788
789 if (!en_dev)
790 return rc;
791
792 if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
793 return 0;
794
795 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_FREE);
796 req.stat_ctx_id = cpu_to_le32(fw_stats_ctx_id);
797 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
798 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
799 rc = bnxt_send_msg(en_dev, &fw_msg);
800 if (rc)
801 ibdev_err(&rdev->ibdev, "Failed to free HW stats context %#x",
802 rc);
803
804 return rc;
805 }
806
bnxt_re_net_stats_ctx_alloc(struct bnxt_re_dev * rdev,dma_addr_t dma_map,u32 * fw_stats_ctx_id)807 static int bnxt_re_net_stats_ctx_alloc(struct bnxt_re_dev *rdev,
808 dma_addr_t dma_map,
809 u32 *fw_stats_ctx_id)
810 {
811 struct bnxt_qplib_chip_ctx *chip_ctx = rdev->chip_ctx;
812 struct hwrm_stat_ctx_alloc_output resp = {};
813 struct hwrm_stat_ctx_alloc_input req = {};
814 struct bnxt_en_dev *en_dev = rdev->en_dev;
815 struct bnxt_fw_msg fw_msg = {};
816 int rc = -EINVAL;
817
818 *fw_stats_ctx_id = INVALID_STATS_CTX_ID;
819
820 if (!en_dev)
821 return rc;
822
823 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_ALLOC);
824 req.update_period_ms = cpu_to_le32(1000);
825 req.stats_dma_addr = cpu_to_le64(dma_map);
826 req.stats_dma_length = cpu_to_le16(chip_ctx->hw_stats_size);
827 req.stat_ctx_flags = STAT_CTX_ALLOC_REQ_STAT_CTX_FLAGS_ROCE;
828 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
829 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
830 rc = bnxt_send_msg(en_dev, &fw_msg);
831 if (!rc)
832 *fw_stats_ctx_id = le32_to_cpu(resp.stat_ctx_id);
833
834 return rc;
835 }
836
bnxt_re_disassociate_ucontext(struct ib_ucontext * ibcontext)837 static void bnxt_re_disassociate_ucontext(struct ib_ucontext *ibcontext)
838 {
839 }
840
841 /* Device */
842
bnxt_re_from_netdev(struct net_device * netdev)843 static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev)
844 {
845 struct ib_device *ibdev =
846 ib_device_get_by_netdev(netdev, RDMA_DRIVER_BNXT_RE);
847 if (!ibdev)
848 return NULL;
849
850 return container_of(ibdev, struct bnxt_re_dev, ibdev);
851 }
852
hw_rev_show(struct device * device,struct device_attribute * attr,char * buf)853 static ssize_t hw_rev_show(struct device *device, struct device_attribute *attr,
854 char *buf)
855 {
856 struct bnxt_re_dev *rdev =
857 rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev);
858
859 return sysfs_emit(buf, "0x%x\n", rdev->en_dev->pdev->vendor);
860 }
861 static DEVICE_ATTR_RO(hw_rev);
862
hca_type_show(struct device * device,struct device_attribute * attr,char * buf)863 static ssize_t hca_type_show(struct device *device,
864 struct device_attribute *attr, char *buf)
865 {
866 struct bnxt_re_dev *rdev =
867 rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev);
868
869 return sysfs_emit(buf, "%s\n", rdev->ibdev.node_desc);
870 }
871 static DEVICE_ATTR_RO(hca_type);
872
873 static struct attribute *bnxt_re_attributes[] = {
874 &dev_attr_hw_rev.attr,
875 &dev_attr_hca_type.attr,
876 NULL
877 };
878
879 static const struct attribute_group bnxt_re_dev_attr_group = {
880 .attrs = bnxt_re_attributes,
881 };
882
bnxt_re_fill_res_mr_entry(struct sk_buff * msg,struct ib_mr * ib_mr)883 static int bnxt_re_fill_res_mr_entry(struct sk_buff *msg, struct ib_mr *ib_mr)
884 {
885 struct bnxt_qplib_hwq *mr_hwq;
886 struct nlattr *table_attr;
887 struct bnxt_re_mr *mr;
888
889 table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_DRIVER);
890 if (!table_attr)
891 return -EMSGSIZE;
892
893 mr = container_of(ib_mr, struct bnxt_re_mr, ib_mr);
894 mr_hwq = &mr->qplib_mr.hwq;
895
896 if (rdma_nl_put_driver_u32(msg, "page_size",
897 mr_hwq->qe_ppg * mr_hwq->element_size))
898 goto err;
899 if (rdma_nl_put_driver_u32(msg, "max_elements", mr_hwq->max_elements))
900 goto err;
901 if (rdma_nl_put_driver_u32(msg, "element_size", mr_hwq->element_size))
902 goto err;
903 if (rdma_nl_put_driver_u64_hex(msg, "hwq", (unsigned long)mr_hwq))
904 goto err;
905 if (rdma_nl_put_driver_u64_hex(msg, "va", mr->qplib_mr.va))
906 goto err;
907
908 nla_nest_end(msg, table_attr);
909 return 0;
910
911 err:
912 nla_nest_cancel(msg, table_attr);
913 return -EMSGSIZE;
914 }
915
bnxt_re_fill_res_mr_entry_raw(struct sk_buff * msg,struct ib_mr * ib_mr)916 static int bnxt_re_fill_res_mr_entry_raw(struct sk_buff *msg, struct ib_mr *ib_mr)
917 {
918 struct bnxt_re_dev *rdev;
919 struct bnxt_re_mr *mr;
920 int err, len;
921 void *data;
922
923 mr = container_of(ib_mr, struct bnxt_re_mr, ib_mr);
924 rdev = mr->rdev;
925
926 err = bnxt_re_read_context_allowed(rdev);
927 if (err)
928 return err;
929
930 len = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ? BNXT_RE_CONTEXT_TYPE_MRW_SIZE_P7 :
931 BNXT_RE_CONTEXT_TYPE_MRW_SIZE_P5;
932 data = kzalloc(len, GFP_KERNEL);
933 if (!data)
934 return -ENOMEM;
935
936 err = bnxt_qplib_read_context(&rdev->rcfw, CMDQ_READ_CONTEXT_TYPE_MRW,
937 mr->qplib_mr.lkey, len, data);
938 if (!err)
939 err = nla_put(msg, RDMA_NLDEV_ATTR_RES_RAW, len, data);
940
941 kfree(data);
942 return err;
943 }
944
bnxt_re_fill_res_cq_entry(struct sk_buff * msg,struct ib_cq * ib_cq)945 static int bnxt_re_fill_res_cq_entry(struct sk_buff *msg, struct ib_cq *ib_cq)
946 {
947 struct bnxt_qplib_hwq *cq_hwq;
948 struct nlattr *table_attr;
949 struct bnxt_re_cq *cq;
950
951 cq = container_of(ib_cq, struct bnxt_re_cq, ib_cq);
952 cq_hwq = &cq->qplib_cq.hwq;
953
954 table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_DRIVER);
955 if (!table_attr)
956 return -EMSGSIZE;
957
958 if (rdma_nl_put_driver_u32(msg, "cq_depth", cq_hwq->depth))
959 goto err;
960 if (rdma_nl_put_driver_u32(msg, "max_elements", cq_hwq->max_elements))
961 goto err;
962 if (rdma_nl_put_driver_u32(msg, "element_size", cq_hwq->element_size))
963 goto err;
964 if (rdma_nl_put_driver_u32(msg, "max_wqe", cq->qplib_cq.max_wqe))
965 goto err;
966
967 nla_nest_end(msg, table_attr);
968 return 0;
969
970 err:
971 nla_nest_cancel(msg, table_attr);
972 return -EMSGSIZE;
973 }
974
bnxt_re_fill_res_cq_entry_raw(struct sk_buff * msg,struct ib_cq * ib_cq)975 static int bnxt_re_fill_res_cq_entry_raw(struct sk_buff *msg, struct ib_cq *ib_cq)
976 {
977 struct bnxt_re_dev *rdev;
978 struct bnxt_re_cq *cq;
979 int err, len;
980 void *data;
981
982 cq = container_of(ib_cq, struct bnxt_re_cq, ib_cq);
983 rdev = cq->rdev;
984
985 err = bnxt_re_read_context_allowed(rdev);
986 if (err)
987 return err;
988
989 len = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ? BNXT_RE_CONTEXT_TYPE_CQ_SIZE_P7 :
990 BNXT_RE_CONTEXT_TYPE_CQ_SIZE_P5;
991 data = kzalloc(len, GFP_KERNEL);
992 if (!data)
993 return -ENOMEM;
994
995 err = bnxt_qplib_read_context(&rdev->rcfw,
996 CMDQ_READ_CONTEXT_TYPE_CQ,
997 cq->qplib_cq.id, len, data);
998 if (!err)
999 err = nla_put(msg, RDMA_NLDEV_ATTR_RES_RAW, len, data);
1000
1001 kfree(data);
1002 return err;
1003 }
1004
bnxt_re_fill_res_qp_entry(struct sk_buff * msg,struct ib_qp * ib_qp)1005 static int bnxt_re_fill_res_qp_entry(struct sk_buff *msg, struct ib_qp *ib_qp)
1006 {
1007 struct bnxt_qplib_qp *qplib_qp;
1008 struct nlattr *table_attr;
1009 struct bnxt_re_qp *qp;
1010
1011 table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_DRIVER);
1012 if (!table_attr)
1013 return -EMSGSIZE;
1014
1015 qp = container_of(ib_qp, struct bnxt_re_qp, ib_qp);
1016 qplib_qp = &qp->qplib_qp;
1017
1018 if (rdma_nl_put_driver_u32(msg, "sq_max_wqe", qplib_qp->sq.max_wqe))
1019 goto err;
1020 if (rdma_nl_put_driver_u32(msg, "sq_max_sge", qplib_qp->sq.max_sge))
1021 goto err;
1022 if (rdma_nl_put_driver_u32(msg, "sq_wqe_size", qplib_qp->sq.wqe_size))
1023 goto err;
1024 if (rdma_nl_put_driver_u32(msg, "sq_swq_start", qplib_qp->sq.swq_start))
1025 goto err;
1026 if (rdma_nl_put_driver_u32(msg, "sq_swq_last", qplib_qp->sq.swq_last))
1027 goto err;
1028 if (rdma_nl_put_driver_u32(msg, "rq_max_wqe", qplib_qp->rq.max_wqe))
1029 goto err;
1030 if (rdma_nl_put_driver_u32(msg, "rq_max_sge", qplib_qp->rq.max_sge))
1031 goto err;
1032 if (rdma_nl_put_driver_u32(msg, "rq_wqe_size", qplib_qp->rq.wqe_size))
1033 goto err;
1034 if (rdma_nl_put_driver_u32(msg, "rq_swq_start", qplib_qp->rq.swq_start))
1035 goto err;
1036 if (rdma_nl_put_driver_u32(msg, "rq_swq_last", qplib_qp->rq.swq_last))
1037 goto err;
1038 if (rdma_nl_put_driver_u32(msg, "timeout", qplib_qp->timeout))
1039 goto err;
1040
1041 nla_nest_end(msg, table_attr);
1042 return 0;
1043
1044 err:
1045 nla_nest_cancel(msg, table_attr);
1046 return -EMSGSIZE;
1047 }
1048
bnxt_re_fill_res_qp_entry_raw(struct sk_buff * msg,struct ib_qp * ibqp)1049 static int bnxt_re_fill_res_qp_entry_raw(struct sk_buff *msg, struct ib_qp *ibqp)
1050 {
1051 struct bnxt_re_dev *rdev = to_bnxt_re_dev(ibqp->device, ibdev);
1052 int err, len;
1053 void *data;
1054
1055 err = bnxt_re_read_context_allowed(rdev);
1056 if (err)
1057 return err;
1058
1059 len = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ? BNXT_RE_CONTEXT_TYPE_QPC_SIZE_P7 :
1060 BNXT_RE_CONTEXT_TYPE_QPC_SIZE_P5;
1061 data = kzalloc(len, GFP_KERNEL);
1062 if (!data)
1063 return -ENOMEM;
1064
1065 err = bnxt_qplib_read_context(&rdev->rcfw, CMDQ_READ_CONTEXT_TYPE_QPC,
1066 ibqp->qp_num, len, data);
1067 if (!err)
1068 err = nla_put(msg, RDMA_NLDEV_ATTR_RES_RAW, len, data);
1069
1070 kfree(data);
1071 return err;
1072 }
1073
bnxt_re_fill_res_srq_entry(struct sk_buff * msg,struct ib_srq * ib_srq)1074 static int bnxt_re_fill_res_srq_entry(struct sk_buff *msg, struct ib_srq *ib_srq)
1075 {
1076 struct nlattr *table_attr;
1077 struct bnxt_re_srq *srq;
1078
1079 table_attr = nla_nest_start(msg, RDMA_NLDEV_ATTR_DRIVER);
1080 if (!table_attr)
1081 return -EMSGSIZE;
1082
1083 srq = container_of(ib_srq, struct bnxt_re_srq, ib_srq);
1084
1085 if (rdma_nl_put_driver_u32_hex(msg, "wqe_size", srq->qplib_srq.wqe_size))
1086 goto err;
1087 if (rdma_nl_put_driver_u32_hex(msg, "max_wqe", srq->qplib_srq.max_wqe))
1088 goto err;
1089 if (rdma_nl_put_driver_u32_hex(msg, "max_sge", srq->qplib_srq.max_sge))
1090 goto err;
1091
1092 nla_nest_end(msg, table_attr);
1093 return 0;
1094
1095 err:
1096 nla_nest_cancel(msg, table_attr);
1097 return -EMSGSIZE;
1098 }
1099
bnxt_re_fill_res_srq_entry_raw(struct sk_buff * msg,struct ib_srq * ib_srq)1100 static int bnxt_re_fill_res_srq_entry_raw(struct sk_buff *msg, struct ib_srq *ib_srq)
1101 {
1102 struct bnxt_re_dev *rdev;
1103 struct bnxt_re_srq *srq;
1104 int err, len;
1105 void *data;
1106
1107 srq = container_of(ib_srq, struct bnxt_re_srq, ib_srq);
1108 rdev = srq->rdev;
1109
1110 err = bnxt_re_read_context_allowed(rdev);
1111 if (err)
1112 return err;
1113
1114 len = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ? BNXT_RE_CONTEXT_TYPE_SRQ_SIZE_P7 :
1115 BNXT_RE_CONTEXT_TYPE_SRQ_SIZE_P5;
1116
1117 data = kzalloc(len, GFP_KERNEL);
1118 if (!data)
1119 return -ENOMEM;
1120
1121 err = bnxt_qplib_read_context(&rdev->rcfw, CMDQ_READ_CONTEXT_TYPE_SRQ,
1122 srq->qplib_srq.id, len, data);
1123 if (!err)
1124 err = nla_put(msg, RDMA_NLDEV_ATTR_RES_RAW, len, data);
1125
1126 kfree(data);
1127 return err;
1128 }
1129
1130 static const struct ib_device_ops bnxt_re_dev_ops = {
1131 .owner = THIS_MODULE,
1132 .driver_id = RDMA_DRIVER_BNXT_RE,
1133 .uverbs_abi_ver = BNXT_RE_ABI_VERSION,
1134
1135 .add_gid = bnxt_re_add_gid,
1136 .alloc_hw_port_stats = bnxt_re_ib_alloc_hw_port_stats,
1137 .alloc_mr = bnxt_re_alloc_mr,
1138 .alloc_pd = bnxt_re_alloc_pd,
1139 .alloc_ucontext = bnxt_re_alloc_ucontext,
1140 .create_ah = bnxt_re_create_ah,
1141 .create_cq = bnxt_re_create_cq,
1142 .create_qp = bnxt_re_create_qp,
1143 .create_srq = bnxt_re_create_srq,
1144 .create_user_ah = bnxt_re_create_ah,
1145 .dealloc_pd = bnxt_re_dealloc_pd,
1146 .dealloc_ucontext = bnxt_re_dealloc_ucontext,
1147 .del_gid = bnxt_re_del_gid,
1148 .dereg_mr = bnxt_re_dereg_mr,
1149 .destroy_ah = bnxt_re_destroy_ah,
1150 .destroy_cq = bnxt_re_destroy_cq,
1151 .destroy_qp = bnxt_re_destroy_qp,
1152 .destroy_srq = bnxt_re_destroy_srq,
1153 .device_group = &bnxt_re_dev_attr_group,
1154 .disassociate_ucontext = bnxt_re_disassociate_ucontext,
1155 .get_dev_fw_str = bnxt_re_query_fw_str,
1156 .get_dma_mr = bnxt_re_get_dma_mr,
1157 .get_hw_stats = bnxt_re_ib_get_hw_stats,
1158 .get_link_layer = bnxt_re_get_link_layer,
1159 .get_port_immutable = bnxt_re_get_port_immutable,
1160 .map_mr_sg = bnxt_re_map_mr_sg,
1161 .mmap = bnxt_re_mmap,
1162 .mmap_free = bnxt_re_mmap_free,
1163 .modify_qp = bnxt_re_modify_qp,
1164 .modify_srq = bnxt_re_modify_srq,
1165 .poll_cq = bnxt_re_poll_cq,
1166 .post_recv = bnxt_re_post_recv,
1167 .post_send = bnxt_re_post_send,
1168 .post_srq_recv = bnxt_re_post_srq_recv,
1169 .query_ah = bnxt_re_query_ah,
1170 .query_device = bnxt_re_query_device,
1171 .modify_device = bnxt_re_modify_device,
1172 .query_pkey = bnxt_re_query_pkey,
1173 .query_port = bnxt_re_query_port,
1174 .query_qp = bnxt_re_query_qp,
1175 .query_srq = bnxt_re_query_srq,
1176 .reg_user_mr = bnxt_re_reg_user_mr,
1177 .reg_user_mr_dmabuf = bnxt_re_reg_user_mr_dmabuf,
1178 .req_notify_cq = bnxt_re_req_notify_cq,
1179 .resize_cq = bnxt_re_resize_cq,
1180 INIT_RDMA_OBJ_SIZE(ib_ah, bnxt_re_ah, ib_ah),
1181 INIT_RDMA_OBJ_SIZE(ib_cq, bnxt_re_cq, ib_cq),
1182 INIT_RDMA_OBJ_SIZE(ib_pd, bnxt_re_pd, ib_pd),
1183 INIT_RDMA_OBJ_SIZE(ib_qp, bnxt_re_qp, ib_qp),
1184 INIT_RDMA_OBJ_SIZE(ib_srq, bnxt_re_srq, ib_srq),
1185 INIT_RDMA_OBJ_SIZE(ib_ucontext, bnxt_re_ucontext, ib_uctx),
1186 };
1187
1188 static const struct ib_device_ops restrack_ops = {
1189 .fill_res_cq_entry = bnxt_re_fill_res_cq_entry,
1190 .fill_res_cq_entry_raw = bnxt_re_fill_res_cq_entry_raw,
1191 .fill_res_qp_entry = bnxt_re_fill_res_qp_entry,
1192 .fill_res_qp_entry_raw = bnxt_re_fill_res_qp_entry_raw,
1193 .fill_res_mr_entry = bnxt_re_fill_res_mr_entry,
1194 .fill_res_mr_entry_raw = bnxt_re_fill_res_mr_entry_raw,
1195 .fill_res_srq_entry = bnxt_re_fill_res_srq_entry,
1196 .fill_res_srq_entry_raw = bnxt_re_fill_res_srq_entry_raw,
1197 };
1198
bnxt_re_register_ib(struct bnxt_re_dev * rdev)1199 static int bnxt_re_register_ib(struct bnxt_re_dev *rdev)
1200 {
1201 struct ib_device *ibdev = &rdev->ibdev;
1202 int ret;
1203
1204 /* ib device init */
1205 ibdev->node_type = RDMA_NODE_IB_CA;
1206 strscpy(ibdev->node_desc, BNXT_RE_DESC " HCA",
1207 strlen(BNXT_RE_DESC) + 5);
1208 ibdev->phys_port_cnt = 1;
1209
1210 addrconf_addr_eui48((u8 *)&ibdev->node_guid, rdev->netdev->dev_addr);
1211
1212 ibdev->num_comp_vectors = rdev->nqr->num_msix - 1;
1213 ibdev->dev.parent = &rdev->en_dev->pdev->dev;
1214 ibdev->local_dma_lkey = BNXT_QPLIB_RSVD_LKEY;
1215
1216 if (IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS))
1217 ibdev->driver_def = bnxt_re_uapi_defs;
1218
1219 ib_set_device_ops(ibdev, &bnxt_re_dev_ops);
1220 ib_set_device_ops(ibdev, &restrack_ops);
1221 ret = ib_device_set_netdev(&rdev->ibdev, rdev->netdev, 1);
1222 if (ret)
1223 return ret;
1224
1225 dma_set_max_seg_size(&rdev->en_dev->pdev->dev, UINT_MAX);
1226 ibdev->uverbs_cmd_mask |= BIT_ULL(IB_USER_VERBS_CMD_POLL_CQ);
1227 return ib_register_device(ibdev, "bnxt_re%d", &rdev->en_dev->pdev->dev);
1228 }
1229
bnxt_re_dev_add(struct auxiliary_device * adev,struct bnxt_en_dev * en_dev)1230 static struct bnxt_re_dev *bnxt_re_dev_add(struct auxiliary_device *adev,
1231 struct bnxt_en_dev *en_dev)
1232 {
1233 struct bnxt_re_dev *rdev;
1234
1235 /* Allocate bnxt_re_dev instance here */
1236 rdev = ib_alloc_device(bnxt_re_dev, ibdev);
1237 if (!rdev) {
1238 ibdev_err(NULL, "%s: bnxt_re_dev allocation failure!",
1239 ROCE_DRV_MODULE_NAME);
1240 return NULL;
1241 }
1242 /* Default values */
1243 rdev->nb.notifier_call = NULL;
1244 rdev->netdev = en_dev->net;
1245 rdev->en_dev = en_dev;
1246 rdev->adev = adev;
1247 rdev->id = rdev->en_dev->pdev->devfn;
1248 INIT_LIST_HEAD(&rdev->qp_list);
1249 mutex_init(&rdev->qp_lock);
1250 mutex_init(&rdev->pacing.dbq_lock);
1251 atomic_set(&rdev->stats.res.qp_count, 0);
1252 atomic_set(&rdev->stats.res.cq_count, 0);
1253 atomic_set(&rdev->stats.res.srq_count, 0);
1254 atomic_set(&rdev->stats.res.mr_count, 0);
1255 atomic_set(&rdev->stats.res.mw_count, 0);
1256 atomic_set(&rdev->stats.res.ah_count, 0);
1257 atomic_set(&rdev->stats.res.pd_count, 0);
1258 rdev->cosq[0] = 0xFFFF;
1259 rdev->cosq[1] = 0xFFFF;
1260 rdev->cq_coalescing.buf_maxtime = BNXT_QPLIB_CQ_COAL_DEF_BUF_MAXTIME;
1261 if (bnxt_re_chip_gen_p7(en_dev->chip_num)) {
1262 rdev->cq_coalescing.normal_maxbuf = BNXT_QPLIB_CQ_COAL_DEF_NORMAL_MAXBUF_P7;
1263 rdev->cq_coalescing.during_maxbuf = BNXT_QPLIB_CQ_COAL_DEF_DURING_MAXBUF_P7;
1264 } else {
1265 rdev->cq_coalescing.normal_maxbuf = BNXT_QPLIB_CQ_COAL_DEF_NORMAL_MAXBUF_P5;
1266 rdev->cq_coalescing.during_maxbuf = BNXT_QPLIB_CQ_COAL_DEF_DURING_MAXBUF_P5;
1267 }
1268 rdev->cq_coalescing.en_ring_idle_mode = BNXT_QPLIB_CQ_COAL_DEF_EN_RING_IDLE_MODE;
1269
1270 return rdev;
1271 }
1272
bnxt_re_handle_unaffi_async_event(struct creq_func_event * unaffi_async)1273 static int bnxt_re_handle_unaffi_async_event(struct creq_func_event
1274 *unaffi_async)
1275 {
1276 switch (unaffi_async->event) {
1277 case CREQ_FUNC_EVENT_EVENT_TX_WQE_ERROR:
1278 break;
1279 case CREQ_FUNC_EVENT_EVENT_TX_DATA_ERROR:
1280 break;
1281 case CREQ_FUNC_EVENT_EVENT_RX_WQE_ERROR:
1282 break;
1283 case CREQ_FUNC_EVENT_EVENT_RX_DATA_ERROR:
1284 break;
1285 case CREQ_FUNC_EVENT_EVENT_CQ_ERROR:
1286 break;
1287 case CREQ_FUNC_EVENT_EVENT_TQM_ERROR:
1288 break;
1289 case CREQ_FUNC_EVENT_EVENT_CFCQ_ERROR:
1290 break;
1291 case CREQ_FUNC_EVENT_EVENT_CFCS_ERROR:
1292 break;
1293 case CREQ_FUNC_EVENT_EVENT_CFCC_ERROR:
1294 break;
1295 case CREQ_FUNC_EVENT_EVENT_CFCM_ERROR:
1296 break;
1297 case CREQ_FUNC_EVENT_EVENT_TIM_ERROR:
1298 break;
1299 default:
1300 return -EINVAL;
1301 }
1302 return 0;
1303 }
1304
bnxt_re_handle_qp_async_event(struct creq_qp_event * qp_event,struct bnxt_re_qp * qp)1305 static int bnxt_re_handle_qp_async_event(struct creq_qp_event *qp_event,
1306 struct bnxt_re_qp *qp)
1307 {
1308 struct creq_qp_error_notification *err_event;
1309 struct bnxt_re_srq *srq = NULL;
1310 struct ib_event event = {};
1311 unsigned int flags;
1312
1313 if (qp->qplib_qp.srq)
1314 srq = container_of(qp->qplib_qp.srq, struct bnxt_re_srq,
1315 qplib_srq);
1316
1317 if (qp->qplib_qp.state == CMDQ_MODIFY_QP_NEW_STATE_ERR &&
1318 rdma_is_kernel_res(&qp->ib_qp.res)) {
1319 flags = bnxt_re_lock_cqs(qp);
1320 bnxt_qplib_add_flush_qp(&qp->qplib_qp);
1321 bnxt_re_unlock_cqs(qp, flags);
1322 }
1323
1324 event.device = &qp->rdev->ibdev;
1325 event.element.qp = &qp->ib_qp;
1326 event.event = IB_EVENT_QP_FATAL;
1327
1328 err_event = (struct creq_qp_error_notification *)qp_event;
1329
1330 switch (err_event->req_err_state_reason) {
1331 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_OPCODE_ERROR:
1332 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TIMEOUT_RETRY_LIMIT:
1333 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RNR_TIMEOUT_RETRY_LIMIT:
1334 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_2:
1335 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_3:
1336 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_READ_RESP:
1337 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_BIND:
1338 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_FAST_REG:
1339 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_INVALIDATE:
1340 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETRAN_LOCAL_ERROR:
1341 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_AV_DOMAIN_ERROR:
1342 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PROD_WQE_MSMTCH_ERROR:
1343 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PSN_RANGE_CHECK_ERROR:
1344 event.event = IB_EVENT_QP_ACCESS_ERR;
1345 break;
1346 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_1:
1347 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_4:
1348 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_READ_RESP_LENGTH:
1349 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_WQE_FORMAT_ERROR:
1350 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ORRQ_FORMAT_ERROR:
1351 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_AVID_ERROR:
1352 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_SERV_TYPE_ERROR:
1353 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_OP_ERROR:
1354 event.event = IB_EVENT_QP_REQ_ERR;
1355 break;
1356 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_MEMORY_ERROR:
1357 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_MEMORY_ERROR:
1358 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CMP_ERROR:
1359 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CQ_LOAD_ERROR:
1360 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_PCI_ERROR:
1361 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_PCI_ERROR:
1362 case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETX_SETUP_ERROR:
1363 event.event = IB_EVENT_QP_FATAL;
1364 break;
1365
1366 default:
1367 break;
1368 }
1369
1370 switch (err_event->res_err_state_reason) {
1371 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEED_MAX:
1372 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PAYLOAD_LENGTH_MISMATCH:
1373 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_SEQ_ERROR_RETRY_LIMIT:
1374 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_INVALID_R_KEY:
1375 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_DOMAIN_ERROR:
1376 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_NO_PERMISSION:
1377 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_RANGE_ERROR:
1378 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_INVALID_R_KEY:
1379 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_DOMAIN_ERROR:
1380 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_NO_PERMISSION:
1381 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_RANGE_ERROR:
1382 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNALIGN_ATOMIC:
1383 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_NOT_FOUND:
1384 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_INVALID_DUP_RKEY:
1385 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_FORMAT_ERROR:
1386 event.event = IB_EVENT_QP_ACCESS_ERR;
1387 break;
1388 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEEDS_WQE:
1389 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_WQE_FORMAT_ERROR:
1390 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNSUPPORTED_OPCODE:
1391 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_REM_INVALIDATE:
1392 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_OPCODE_ERROR:
1393 event.event = IB_EVENT_QP_REQ_ERR;
1394 break;
1395 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_OFLOW:
1396 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CMP_ERROR:
1397 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CQ_LOAD_ERROR:
1398 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_PCI_ERROR:
1399 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_PCI_ERROR:
1400 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_MEMORY_ERROR:
1401 event.event = IB_EVENT_QP_FATAL;
1402 break;
1403 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_LOAD_ERROR:
1404 case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_ERROR:
1405 if (srq)
1406 event.event = IB_EVENT_SRQ_ERR;
1407 break;
1408 default:
1409 break;
1410 }
1411
1412 if (err_event->res_err_state_reason || err_event->req_err_state_reason) {
1413 ibdev_dbg(&qp->rdev->ibdev,
1414 "%s %s qp_id: %d cons (%d %d) req (%d %d) res (%d %d)\n",
1415 __func__, rdma_is_kernel_res(&qp->ib_qp.res) ? "kernel" : "user",
1416 qp->qplib_qp.id,
1417 err_event->sq_cons_idx,
1418 err_event->rq_cons_idx,
1419 err_event->req_slow_path_state,
1420 err_event->req_err_state_reason,
1421 err_event->res_slow_path_state,
1422 err_event->res_err_state_reason);
1423 } else {
1424 if (srq)
1425 event.event = IB_EVENT_QP_LAST_WQE_REACHED;
1426 }
1427
1428 if (event.event == IB_EVENT_SRQ_ERR && srq->ib_srq.event_handler) {
1429 (*srq->ib_srq.event_handler)(&event,
1430 srq->ib_srq.srq_context);
1431 } else if (event.device && qp->ib_qp.event_handler) {
1432 qp->ib_qp.event_handler(&event, qp->ib_qp.qp_context);
1433 }
1434
1435 return 0;
1436 }
1437
bnxt_re_handle_cq_async_error(void * event,struct bnxt_re_cq * cq)1438 static int bnxt_re_handle_cq_async_error(void *event, struct bnxt_re_cq *cq)
1439 {
1440 struct creq_cq_error_notification *cqerr;
1441 struct ib_event ibevent = {};
1442
1443 cqerr = event;
1444 switch (cqerr->cq_err_reason) {
1445 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_INVALID_ERROR:
1446 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_OVERFLOW_ERROR:
1447 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_LOAD_ERROR:
1448 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_INVALID_ERROR:
1449 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_OVERFLOW_ERROR:
1450 case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_LOAD_ERROR:
1451 ibevent.event = IB_EVENT_CQ_ERR;
1452 break;
1453 default:
1454 break;
1455 }
1456
1457 if (ibevent.event == IB_EVENT_CQ_ERR && cq->ib_cq.event_handler) {
1458 ibevent.element.cq = &cq->ib_cq;
1459 ibevent.device = &cq->rdev->ibdev;
1460
1461 ibdev_dbg(&cq->rdev->ibdev,
1462 "%s err reason %d\n", __func__, cqerr->cq_err_reason);
1463 cq->ib_cq.event_handler(&ibevent, cq->ib_cq.cq_context);
1464 }
1465
1466 return 0;
1467 }
1468
bnxt_re_handle_affi_async_event(struct creq_qp_event * affi_async,void * obj)1469 static int bnxt_re_handle_affi_async_event(struct creq_qp_event *affi_async,
1470 void *obj)
1471 {
1472 struct bnxt_qplib_qp *lib_qp;
1473 struct bnxt_qplib_cq *lib_cq;
1474 struct bnxt_re_qp *qp;
1475 struct bnxt_re_cq *cq;
1476 int rc = 0;
1477 u8 event;
1478
1479 if (!obj)
1480 return rc; /* QP was already dead, still return success */
1481
1482 event = affi_async->event;
1483 switch (event) {
1484 case CREQ_QP_EVENT_EVENT_QP_ERROR_NOTIFICATION:
1485 lib_qp = obj;
1486 qp = container_of(lib_qp, struct bnxt_re_qp, qplib_qp);
1487 rc = bnxt_re_handle_qp_async_event(affi_async, qp);
1488 break;
1489 case CREQ_QP_EVENT_EVENT_CQ_ERROR_NOTIFICATION:
1490 lib_cq = obj;
1491 cq = container_of(lib_cq, struct bnxt_re_cq, qplib_cq);
1492 rc = bnxt_re_handle_cq_async_error(affi_async, cq);
1493 break;
1494 default:
1495 rc = -EINVAL;
1496 }
1497 return rc;
1498 }
1499
bnxt_re_aeq_handler(struct bnxt_qplib_rcfw * rcfw,void * aeqe,void * obj)1500 static int bnxt_re_aeq_handler(struct bnxt_qplib_rcfw *rcfw,
1501 void *aeqe, void *obj)
1502 {
1503 struct creq_qp_event *affi_async;
1504 struct creq_func_event *unaffi_async;
1505 u8 type;
1506 int rc;
1507
1508 type = ((struct creq_base *)aeqe)->type;
1509 if (type == CREQ_BASE_TYPE_FUNC_EVENT) {
1510 unaffi_async = aeqe;
1511 rc = bnxt_re_handle_unaffi_async_event(unaffi_async);
1512 } else {
1513 affi_async = aeqe;
1514 rc = bnxt_re_handle_affi_async_event(affi_async, obj);
1515 }
1516
1517 return rc;
1518 }
1519
bnxt_re_srqn_handler(struct bnxt_qplib_nq * nq,struct bnxt_qplib_srq * handle,u8 event)1520 static int bnxt_re_srqn_handler(struct bnxt_qplib_nq *nq,
1521 struct bnxt_qplib_srq *handle, u8 event)
1522 {
1523 struct bnxt_re_srq *srq = container_of(handle, struct bnxt_re_srq,
1524 qplib_srq);
1525 struct ib_event ib_event;
1526
1527 ib_event.device = &srq->rdev->ibdev;
1528 ib_event.element.srq = &srq->ib_srq;
1529
1530 if (srq->ib_srq.event_handler) {
1531 if (event == NQ_SRQ_EVENT_EVENT_SRQ_THRESHOLD_EVENT)
1532 ib_event.event = IB_EVENT_SRQ_LIMIT_REACHED;
1533 (*srq->ib_srq.event_handler)(&ib_event,
1534 srq->ib_srq.srq_context);
1535 }
1536 return 0;
1537 }
1538
bnxt_re_cqn_handler(struct bnxt_qplib_nq * nq,struct bnxt_qplib_cq * handle)1539 static int bnxt_re_cqn_handler(struct bnxt_qplib_nq *nq,
1540 struct bnxt_qplib_cq *handle)
1541 {
1542 struct bnxt_re_cq *cq = container_of(handle, struct bnxt_re_cq,
1543 qplib_cq);
1544
1545 if (cq->ib_cq.comp_handler)
1546 (*cq->ib_cq.comp_handler)(&cq->ib_cq, cq->ib_cq.cq_context);
1547
1548 return 0;
1549 }
1550
bnxt_re_cleanup_res(struct bnxt_re_dev * rdev)1551 static void bnxt_re_cleanup_res(struct bnxt_re_dev *rdev)
1552 {
1553 int i;
1554
1555 for (i = 1; i < rdev->nqr->num_msix; i++)
1556 bnxt_qplib_disable_nq(&rdev->nqr->nq[i - 1]);
1557
1558 if (rdev->qplib_res.rcfw)
1559 bnxt_qplib_cleanup_res(&rdev->qplib_res);
1560 }
1561
bnxt_re_init_res(struct bnxt_re_dev * rdev)1562 static int bnxt_re_init_res(struct bnxt_re_dev *rdev)
1563 {
1564 int num_vec_enabled = 0;
1565 int rc = 0, i;
1566 u32 db_offt;
1567
1568 bnxt_qplib_init_res(&rdev->qplib_res);
1569
1570 mutex_init(&rdev->nqr->load_lock);
1571
1572 for (i = 1; i < rdev->nqr->num_msix ; i++) {
1573 db_offt = rdev->nqr->msix_entries[i].db_offset;
1574 rc = bnxt_qplib_enable_nq(rdev->en_dev->pdev, &rdev->nqr->nq[i - 1],
1575 i - 1, rdev->nqr->msix_entries[i].vector,
1576 db_offt, &bnxt_re_cqn_handler,
1577 &bnxt_re_srqn_handler);
1578 if (rc) {
1579 ibdev_err(&rdev->ibdev,
1580 "Failed to enable NQ with rc = 0x%x", rc);
1581 goto fail;
1582 }
1583 num_vec_enabled++;
1584 }
1585 return 0;
1586 fail:
1587 for (i = num_vec_enabled; i >= 0; i--)
1588 bnxt_qplib_disable_nq(&rdev->nqr->nq[i]);
1589 return rc;
1590 }
1591
bnxt_re_free_nq_res(struct bnxt_re_dev * rdev)1592 static void bnxt_re_free_nq_res(struct bnxt_re_dev *rdev)
1593 {
1594 struct bnxt_qplib_nq *nq;
1595 u8 type;
1596 int i;
1597
1598 for (i = 0; i < rdev->nqr->num_msix - 1; i++) {
1599 type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1600 nq = &rdev->nqr->nq[i];
1601 bnxt_re_net_ring_free(rdev, nq->ring_id, type);
1602 bnxt_qplib_free_nq(nq);
1603 nq->res = NULL;
1604 }
1605 }
1606
bnxt_re_free_res(struct bnxt_re_dev * rdev)1607 static void bnxt_re_free_res(struct bnxt_re_dev *rdev)
1608 {
1609 bnxt_re_free_nq_res(rdev);
1610
1611 if (rdev->qplib_res.dpi_tbl.max) {
1612 bnxt_qplib_dealloc_dpi(&rdev->qplib_res,
1613 &rdev->dpi_privileged);
1614 }
1615 if (rdev->qplib_res.rcfw) {
1616 bnxt_qplib_free_res(&rdev->qplib_res);
1617 rdev->qplib_res.rcfw = NULL;
1618 }
1619 }
1620
bnxt_re_alloc_res(struct bnxt_re_dev * rdev)1621 static int bnxt_re_alloc_res(struct bnxt_re_dev *rdev)
1622 {
1623 struct bnxt_re_ring_attr rattr = {};
1624 int num_vec_created = 0;
1625 int rc, i;
1626 u8 type;
1627
1628 /* Configure and allocate resources for qplib */
1629 rdev->qplib_res.rcfw = &rdev->rcfw;
1630 rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr);
1631 if (rc)
1632 goto fail;
1633
1634 rc = bnxt_qplib_alloc_res(&rdev->qplib_res, rdev->en_dev->pdev,
1635 rdev->netdev, &rdev->dev_attr);
1636 if (rc)
1637 goto fail;
1638
1639 rc = bnxt_qplib_alloc_dpi(&rdev->qplib_res,
1640 &rdev->dpi_privileged,
1641 rdev, BNXT_QPLIB_DPI_TYPE_KERNEL);
1642 if (rc)
1643 goto dealloc_res;
1644
1645 for (i = 0; i < rdev->nqr->num_msix - 1; i++) {
1646 struct bnxt_qplib_nq *nq;
1647
1648 nq = &rdev->nqr->nq[i];
1649 nq->hwq.max_elements = BNXT_QPLIB_NQE_MAX_CNT;
1650 rc = bnxt_qplib_alloc_nq(&rdev->qplib_res, nq);
1651 if (rc) {
1652 ibdev_err(&rdev->ibdev, "Alloc Failed NQ%d rc:%#x",
1653 i, rc);
1654 goto free_nq;
1655 }
1656 type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1657 rattr.dma_arr = nq->hwq.pbl[PBL_LVL_0].pg_map_arr;
1658 rattr.pages = nq->hwq.pbl[rdev->nqr->nq[i].hwq.level].pg_count;
1659 rattr.type = type;
1660 rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX;
1661 rattr.depth = BNXT_QPLIB_NQE_MAX_CNT - 1;
1662 rattr.lrid = rdev->nqr->msix_entries[i + 1].ring_idx;
1663 rc = bnxt_re_net_ring_alloc(rdev, &rattr, &nq->ring_id);
1664 if (rc) {
1665 ibdev_err(&rdev->ibdev,
1666 "Failed to allocate NQ fw id with rc = 0x%x",
1667 rc);
1668 bnxt_qplib_free_nq(nq);
1669 goto free_nq;
1670 }
1671 num_vec_created++;
1672 }
1673 return 0;
1674 free_nq:
1675 for (i = num_vec_created - 1; i >= 0; i--) {
1676 type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1677 bnxt_re_net_ring_free(rdev, rdev->nqr->nq[i].ring_id, type);
1678 bnxt_qplib_free_nq(&rdev->nqr->nq[i]);
1679 }
1680 bnxt_qplib_dealloc_dpi(&rdev->qplib_res,
1681 &rdev->dpi_privileged);
1682 dealloc_res:
1683 bnxt_qplib_free_res(&rdev->qplib_res);
1684
1685 fail:
1686 rdev->qplib_res.rcfw = NULL;
1687 return rc;
1688 }
1689
bnxt_re_dispatch_event(struct ib_device * ibdev,struct ib_qp * qp,u8 port_num,enum ib_event_type event)1690 static void bnxt_re_dispatch_event(struct ib_device *ibdev, struct ib_qp *qp,
1691 u8 port_num, enum ib_event_type event)
1692 {
1693 struct ib_event ib_event;
1694
1695 ib_event.device = ibdev;
1696 if (qp) {
1697 ib_event.element.qp = qp;
1698 ib_event.event = event;
1699 if (qp->event_handler)
1700 qp->event_handler(&ib_event, qp->qp_context);
1701
1702 } else {
1703 ib_event.element.port_num = port_num;
1704 ib_event.event = event;
1705 ib_dispatch_event(&ib_event);
1706 }
1707 }
1708
bnxt_re_is_qp1_or_shadow_qp(struct bnxt_re_dev * rdev,struct bnxt_re_qp * qp)1709 static bool bnxt_re_is_qp1_or_shadow_qp(struct bnxt_re_dev *rdev,
1710 struct bnxt_re_qp *qp)
1711 {
1712 return (qp->ib_qp.qp_type == IB_QPT_GSI) ||
1713 (qp == rdev->gsi_ctx.gsi_sqp);
1714 }
1715
bnxt_re_dev_stop(struct bnxt_re_dev * rdev)1716 static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev)
1717 {
1718 struct bnxt_re_qp *qp;
1719
1720 mutex_lock(&rdev->qp_lock);
1721 list_for_each_entry(qp, &rdev->qp_list, list) {
1722 /* Modify the state of all QPs except QP1/Shadow QP */
1723 if (!bnxt_re_is_qp1_or_shadow_qp(rdev, qp)) {
1724 if (qp->qplib_qp.state !=
1725 CMDQ_MODIFY_QP_NEW_STATE_RESET &&
1726 qp->qplib_qp.state !=
1727 CMDQ_MODIFY_QP_NEW_STATE_ERR)
1728 bnxt_re_dispatch_event(&rdev->ibdev, &qp->ib_qp,
1729 1, IB_EVENT_QP_FATAL);
1730 }
1731 }
1732 mutex_unlock(&rdev->qp_lock);
1733 }
1734
bnxt_re_update_gid(struct bnxt_re_dev * rdev)1735 static int bnxt_re_update_gid(struct bnxt_re_dev *rdev)
1736 {
1737 struct bnxt_qplib_sgid_tbl *sgid_tbl = &rdev->qplib_res.sgid_tbl;
1738 struct bnxt_qplib_gid gid;
1739 u16 gid_idx, index;
1740 int rc = 0;
1741
1742 if (!ib_device_try_get(&rdev->ibdev))
1743 return 0;
1744
1745 for (index = 0; index < sgid_tbl->active; index++) {
1746 gid_idx = sgid_tbl->hw_id[index];
1747
1748 if (!memcmp(&sgid_tbl->tbl[index], &bnxt_qplib_gid_zero,
1749 sizeof(bnxt_qplib_gid_zero)))
1750 continue;
1751 /* need to modify the VLAN enable setting of non VLAN GID only
1752 * as setting is done for VLAN GID while adding GID
1753 */
1754 if (sgid_tbl->vlan[index])
1755 continue;
1756
1757 memcpy(&gid, &sgid_tbl->tbl[index], sizeof(gid));
1758
1759 rc = bnxt_qplib_update_sgid(sgid_tbl, &gid, gid_idx,
1760 rdev->qplib_res.netdev->dev_addr);
1761 }
1762
1763 ib_device_put(&rdev->ibdev);
1764 return rc;
1765 }
1766
bnxt_re_get_priority_mask(struct bnxt_re_dev * rdev)1767 static u32 bnxt_re_get_priority_mask(struct bnxt_re_dev *rdev)
1768 {
1769 u32 prio_map = 0, tmp_map = 0;
1770 struct net_device *netdev;
1771 struct dcb_app app = {};
1772
1773 netdev = rdev->netdev;
1774
1775 app.selector = IEEE_8021QAZ_APP_SEL_ETHERTYPE;
1776 app.protocol = ETH_P_IBOE;
1777 tmp_map = dcb_ieee_getapp_mask(netdev, &app);
1778 prio_map = tmp_map;
1779
1780 app.selector = IEEE_8021QAZ_APP_SEL_DGRAM;
1781 app.protocol = ROCE_V2_UDP_DPORT;
1782 tmp_map = dcb_ieee_getapp_mask(netdev, &app);
1783 prio_map |= tmp_map;
1784
1785 return prio_map;
1786 }
1787
bnxt_re_setup_qos(struct bnxt_re_dev * rdev)1788 static int bnxt_re_setup_qos(struct bnxt_re_dev *rdev)
1789 {
1790 u8 prio_map = 0;
1791
1792 /* Get priority for roce */
1793 prio_map = bnxt_re_get_priority_mask(rdev);
1794
1795 if (prio_map == rdev->cur_prio_map)
1796 return 0;
1797 rdev->cur_prio_map = prio_map;
1798 /* Actual priorities are not programmed as they are already
1799 * done by L2 driver; just enable or disable priority vlan tagging
1800 */
1801 if ((prio_map == 0 && rdev->qplib_res.prio) ||
1802 (prio_map != 0 && !rdev->qplib_res.prio)) {
1803 rdev->qplib_res.prio = prio_map;
1804 bnxt_re_update_gid(rdev);
1805 }
1806
1807 return 0;
1808 }
1809
bnxt_re_query_hwrm_intf_version(struct bnxt_re_dev * rdev)1810 static void bnxt_re_query_hwrm_intf_version(struct bnxt_re_dev *rdev)
1811 {
1812 struct bnxt_en_dev *en_dev = rdev->en_dev;
1813 struct hwrm_ver_get_output resp = {};
1814 struct hwrm_ver_get_input req = {};
1815 struct bnxt_qplib_chip_ctx *cctx;
1816 struct bnxt_fw_msg fw_msg = {};
1817 int rc;
1818
1819 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_VER_GET);
1820 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
1821 req.hwrm_intf_min = HWRM_VERSION_MINOR;
1822 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
1823 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
1824 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
1825 rc = bnxt_send_msg(en_dev, &fw_msg);
1826 if (rc) {
1827 ibdev_err(&rdev->ibdev, "Failed to query HW version, rc = 0x%x",
1828 rc);
1829 return;
1830 }
1831
1832 cctx = rdev->chip_ctx;
1833 cctx->hwrm_intf_ver =
1834 (u64)le16_to_cpu(resp.hwrm_intf_major) << 48 |
1835 (u64)le16_to_cpu(resp.hwrm_intf_minor) << 32 |
1836 (u64)le16_to_cpu(resp.hwrm_intf_build) << 16 |
1837 le16_to_cpu(resp.hwrm_intf_patch);
1838
1839 cctx->hwrm_cmd_max_timeout = le16_to_cpu(resp.max_req_timeout);
1840
1841 if (!cctx->hwrm_cmd_max_timeout)
1842 cctx->hwrm_cmd_max_timeout = RCFW_FW_STALL_MAX_TIMEOUT;
1843 }
1844
bnxt_re_ib_init(struct bnxt_re_dev * rdev)1845 static int bnxt_re_ib_init(struct bnxt_re_dev *rdev)
1846 {
1847 int rc;
1848 u32 event;
1849
1850 /* Register ib dev */
1851 rc = bnxt_re_register_ib(rdev);
1852 if (rc) {
1853 pr_err("Failed to register with IB: %#x\n", rc);
1854 return rc;
1855 }
1856 dev_info(rdev_to_dev(rdev), "Device registered with IB successfully");
1857 set_bit(BNXT_RE_FLAG_ISSUE_ROCE_STATS, &rdev->flags);
1858
1859 event = netif_running(rdev->netdev) && netif_carrier_ok(rdev->netdev) ?
1860 IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR;
1861
1862 bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, event);
1863
1864 return rc;
1865 }
1866
bnxt_re_alloc_nqr_mem(struct bnxt_re_dev * rdev)1867 static int bnxt_re_alloc_nqr_mem(struct bnxt_re_dev *rdev)
1868 {
1869 rdev->nqr = kzalloc(sizeof(*rdev->nqr), GFP_KERNEL);
1870 if (!rdev->nqr)
1871 return -ENOMEM;
1872
1873 return 0;
1874 }
1875
bnxt_re_free_nqr_mem(struct bnxt_re_dev * rdev)1876 static void bnxt_re_free_nqr_mem(struct bnxt_re_dev *rdev)
1877 {
1878 kfree(rdev->nqr);
1879 rdev->nqr = NULL;
1880 }
1881
bnxt_re_dev_uninit(struct bnxt_re_dev * rdev,u8 op_type)1882 static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev, u8 op_type)
1883 {
1884 u8 type;
1885 int rc;
1886
1887 bnxt_re_debugfs_rem_pdev(rdev);
1888
1889 if (test_and_clear_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags))
1890 cancel_delayed_work_sync(&rdev->worker);
1891
1892 if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED,
1893 &rdev->flags))
1894 bnxt_re_cleanup_res(rdev);
1895 if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags))
1896 bnxt_re_free_res(rdev);
1897
1898 if (test_and_clear_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags)) {
1899 rc = bnxt_qplib_deinit_rcfw(&rdev->rcfw);
1900 if (rc)
1901 ibdev_warn(&rdev->ibdev,
1902 "Failed to deinitialize RCFW: %#x", rc);
1903 bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id);
1904 bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx);
1905 bnxt_qplib_disable_rcfw_channel(&rdev->rcfw);
1906 type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
1907 bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type);
1908 bnxt_qplib_free_rcfw_channel(&rdev->rcfw);
1909 }
1910
1911 rdev->nqr->num_msix = 0;
1912
1913 if (rdev->pacing.dbr_pacing)
1914 bnxt_re_deinitialize_dbr_pacing(rdev);
1915
1916 bnxt_re_free_nqr_mem(rdev);
1917 bnxt_re_destroy_chip_ctx(rdev);
1918 if (op_type == BNXT_RE_COMPLETE_REMOVE) {
1919 if (test_and_clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags))
1920 bnxt_unregister_dev(rdev->en_dev);
1921 }
1922 }
1923
1924 /* worker thread for polling periodic events. Now used for QoS programming*/
bnxt_re_worker(struct work_struct * work)1925 static void bnxt_re_worker(struct work_struct *work)
1926 {
1927 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
1928 worker.work);
1929
1930 bnxt_re_setup_qos(rdev);
1931 schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000));
1932 }
1933
bnxt_re_dev_init(struct bnxt_re_dev * rdev,u8 op_type)1934 static int bnxt_re_dev_init(struct bnxt_re_dev *rdev, u8 op_type)
1935 {
1936 struct bnxt_re_ring_attr rattr = {};
1937 struct bnxt_qplib_creq_ctx *creq;
1938 u32 db_offt;
1939 int vid;
1940 u8 type;
1941 int rc;
1942
1943 if (op_type == BNXT_RE_COMPLETE_INIT) {
1944 /* Registered a new RoCE device instance to netdev */
1945 rc = bnxt_re_register_netdev(rdev);
1946 if (rc) {
1947 ibdev_err(&rdev->ibdev,
1948 "Failed to register with netedev: %#x\n", rc);
1949 return -EINVAL;
1950 }
1951 }
1952 set_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
1953
1954 if (rdev->en_dev->ulp_tbl->msix_requested < BNXT_RE_MIN_MSIX) {
1955 ibdev_err(&rdev->ibdev,
1956 "RoCE requires minimum 2 MSI-X vectors, but only %d reserved\n",
1957 rdev->en_dev->ulp_tbl->msix_requested);
1958 bnxt_unregister_dev(rdev->en_dev);
1959 clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
1960 return -EINVAL;
1961 }
1962 ibdev_dbg(&rdev->ibdev, "Got %d MSI-X vectors\n",
1963 rdev->en_dev->ulp_tbl->msix_requested);
1964
1965 rc = bnxt_re_setup_chip_ctx(rdev);
1966 if (rc) {
1967 bnxt_unregister_dev(rdev->en_dev);
1968 clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
1969 ibdev_err(&rdev->ibdev, "Failed to get chip context\n");
1970 return -EINVAL;
1971 }
1972
1973 rc = bnxt_re_alloc_nqr_mem(rdev);
1974 if (rc) {
1975 bnxt_re_destroy_chip_ctx(rdev);
1976 bnxt_unregister_dev(rdev->en_dev);
1977 clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
1978 return rc;
1979 }
1980 rdev->nqr->num_msix = rdev->en_dev->ulp_tbl->msix_requested;
1981 memcpy(rdev->nqr->msix_entries, rdev->en_dev->msix_entries,
1982 sizeof(struct bnxt_msix_entry) * rdev->nqr->num_msix);
1983
1984 /* Check whether VF or PF */
1985 bnxt_re_get_sriov_func_type(rdev);
1986
1987 bnxt_re_query_hwrm_intf_version(rdev);
1988
1989 /* Establish RCFW Communication Channel to initialize the context
1990 * memory for the function and all child VFs
1991 */
1992 rc = bnxt_qplib_alloc_rcfw_channel(&rdev->qplib_res, &rdev->rcfw,
1993 &rdev->qplib_ctx,
1994 BNXT_RE_MAX_QPC_COUNT);
1995 if (rc) {
1996 ibdev_err(&rdev->ibdev,
1997 "Failed to allocate RCFW Channel: %#x\n", rc);
1998 goto fail;
1999 }
2000
2001 type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
2002 creq = &rdev->rcfw.creq;
2003 rattr.dma_arr = creq->hwq.pbl[PBL_LVL_0].pg_map_arr;
2004 rattr.pages = creq->hwq.pbl[creq->hwq.level].pg_count;
2005 rattr.type = type;
2006 rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX;
2007 rattr.depth = BNXT_QPLIB_CREQE_MAX_CNT - 1;
2008 rattr.lrid = rdev->nqr->msix_entries[BNXT_RE_AEQ_IDX].ring_idx;
2009 rc = bnxt_re_net_ring_alloc(rdev, &rattr, &creq->ring_id);
2010 if (rc) {
2011 ibdev_err(&rdev->ibdev, "Failed to allocate CREQ: %#x\n", rc);
2012 goto free_rcfw;
2013 }
2014 db_offt = rdev->nqr->msix_entries[BNXT_RE_AEQ_IDX].db_offset;
2015 vid = rdev->nqr->msix_entries[BNXT_RE_AEQ_IDX].vector;
2016 rc = bnxt_qplib_enable_rcfw_channel(&rdev->rcfw,
2017 vid, db_offt,
2018 &bnxt_re_aeq_handler);
2019 if (rc) {
2020 ibdev_err(&rdev->ibdev, "Failed to enable RCFW channel: %#x\n",
2021 rc);
2022 goto free_ring;
2023 }
2024
2025 if (bnxt_qplib_dbr_pacing_en(rdev->chip_ctx)) {
2026 rc = bnxt_re_initialize_dbr_pacing(rdev);
2027 if (!rc) {
2028 rdev->pacing.dbr_pacing = true;
2029 } else {
2030 ibdev_err(&rdev->ibdev,
2031 "DBR pacing disabled with error : %d\n", rc);
2032 rdev->pacing.dbr_pacing = false;
2033 }
2034 }
2035 rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr);
2036 if (rc)
2037 goto disable_rcfw;
2038
2039 bnxt_re_set_resource_limits(rdev);
2040
2041 rc = bnxt_qplib_alloc_ctx(&rdev->qplib_res, &rdev->qplib_ctx, 0,
2042 bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx));
2043 if (rc) {
2044 ibdev_err(&rdev->ibdev,
2045 "Failed to allocate QPLIB context: %#x\n", rc);
2046 goto disable_rcfw;
2047 }
2048 rc = bnxt_re_net_stats_ctx_alloc(rdev,
2049 rdev->qplib_ctx.stats.dma_map,
2050 &rdev->qplib_ctx.stats.fw_id);
2051 if (rc) {
2052 ibdev_err(&rdev->ibdev,
2053 "Failed to allocate stats context: %#x\n", rc);
2054 goto free_ctx;
2055 }
2056
2057 rc = bnxt_qplib_init_rcfw(&rdev->rcfw, &rdev->qplib_ctx,
2058 rdev->is_virtfn);
2059 if (rc) {
2060 ibdev_err(&rdev->ibdev,
2061 "Failed to initialize RCFW: %#x\n", rc);
2062 goto free_sctx;
2063 }
2064 set_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags);
2065
2066 /* Resources based on the 'new' device caps */
2067 rc = bnxt_re_alloc_res(rdev);
2068 if (rc) {
2069 ibdev_err(&rdev->ibdev,
2070 "Failed to allocate resources: %#x\n", rc);
2071 goto fail;
2072 }
2073 set_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags);
2074 rc = bnxt_re_init_res(rdev);
2075 if (rc) {
2076 ibdev_err(&rdev->ibdev,
2077 "Failed to initialize resources: %#x\n", rc);
2078 goto fail;
2079 }
2080
2081 set_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, &rdev->flags);
2082
2083 if (!rdev->is_virtfn) {
2084 rc = bnxt_re_setup_qos(rdev);
2085 if (rc)
2086 ibdev_info(&rdev->ibdev,
2087 "RoCE priority not yet configured\n");
2088
2089 INIT_DELAYED_WORK(&rdev->worker, bnxt_re_worker);
2090 set_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags);
2091 schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000));
2092
2093 if (!(rdev->qplib_res.en_dev->flags & BNXT_EN_FLAG_ROCE_VF_RES_MGMT))
2094 bnxt_re_vf_res_config(rdev);
2095 }
2096 hash_init(rdev->cq_hash);
2097 if (rdev->chip_ctx->modes.toggle_bits & BNXT_QPLIB_SRQ_TOGGLE_BIT)
2098 hash_init(rdev->srq_hash);
2099
2100 bnxt_re_debugfs_add_pdev(rdev);
2101
2102 return 0;
2103 free_sctx:
2104 bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id);
2105 free_ctx:
2106 bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx);
2107 disable_rcfw:
2108 bnxt_qplib_disable_rcfw_channel(&rdev->rcfw);
2109 free_ring:
2110 type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
2111 bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type);
2112 free_rcfw:
2113 bnxt_qplib_free_rcfw_channel(&rdev->rcfw);
2114 fail:
2115 bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE);
2116
2117 return rc;
2118 }
2119
bnxt_re_update_en_info_rdev(struct bnxt_re_dev * rdev,struct bnxt_re_en_dev_info * en_info,struct auxiliary_device * adev)2120 static void bnxt_re_update_en_info_rdev(struct bnxt_re_dev *rdev,
2121 struct bnxt_re_en_dev_info *en_info,
2122 struct auxiliary_device *adev)
2123 {
2124 /* Before updating the rdev pointer in bnxt_re_en_dev_info structure,
2125 * take the rtnl lock to avoid accessing invalid rdev pointer from
2126 * L2 ULP callbacks. This is applicable in all the places where rdev
2127 * pointer is updated in bnxt_re_en_dev_info.
2128 */
2129 rtnl_lock();
2130 en_info->rdev = rdev;
2131 rtnl_unlock();
2132 }
2133
bnxt_re_add_device(struct auxiliary_device * adev,u8 op_type)2134 static int bnxt_re_add_device(struct auxiliary_device *adev, u8 op_type)
2135 {
2136 struct bnxt_aux_priv *aux_priv =
2137 container_of(adev, struct bnxt_aux_priv, aux_dev);
2138 struct bnxt_re_en_dev_info *en_info;
2139 struct bnxt_en_dev *en_dev;
2140 struct bnxt_re_dev *rdev;
2141 int rc;
2142
2143 en_info = auxiliary_get_drvdata(adev);
2144 en_dev = en_info->en_dev;
2145
2146
2147 rdev = bnxt_re_dev_add(adev, en_dev);
2148 if (!rdev || !rdev_to_dev(rdev)) {
2149 rc = -ENOMEM;
2150 goto exit;
2151 }
2152
2153 bnxt_re_update_en_info_rdev(rdev, en_info, adev);
2154
2155 rc = bnxt_re_dev_init(rdev, op_type);
2156 if (rc)
2157 goto re_dev_dealloc;
2158
2159 rc = bnxt_re_ib_init(rdev);
2160 if (rc) {
2161 pr_err("Failed to register with IB: %s",
2162 aux_priv->aux_dev.name);
2163 goto re_dev_uninit;
2164 }
2165
2166 rdev->nb.notifier_call = bnxt_re_netdev_event;
2167 rc = register_netdevice_notifier(&rdev->nb);
2168 if (rc) {
2169 rdev->nb.notifier_call = NULL;
2170 pr_err("%s: Cannot register to netdevice_notifier",
2171 ROCE_DRV_MODULE_NAME);
2172 goto re_dev_unreg;
2173 }
2174 bnxt_re_setup_cc(rdev, true);
2175
2176 return 0;
2177
2178 re_dev_unreg:
2179 ib_unregister_device(&rdev->ibdev);
2180 re_dev_uninit:
2181 bnxt_re_update_en_info_rdev(NULL, en_info, adev);
2182 bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE);
2183 re_dev_dealloc:
2184 ib_dealloc_device(&rdev->ibdev);
2185 exit:
2186 return rc;
2187 }
2188
bnxt_re_setup_cc(struct bnxt_re_dev * rdev,bool enable)2189 static void bnxt_re_setup_cc(struct bnxt_re_dev *rdev, bool enable)
2190 {
2191 struct bnxt_qplib_cc_param cc_param = {};
2192
2193 /* Do not enable congestion control on VFs */
2194 if (rdev->is_virtfn)
2195 return;
2196
2197 /* Currently enabling only for GenP5 adapters */
2198 if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
2199 return;
2200
2201 if (enable) {
2202 cc_param.enable = 1;
2203 cc_param.tos_ecn = 1;
2204 }
2205
2206 cc_param.mask = (CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ENABLE_CC |
2207 CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_ECN);
2208
2209 if (bnxt_qplib_modify_cc(&rdev->qplib_res, &cc_param))
2210 ibdev_err(&rdev->ibdev, "Failed to setup CC enable = %d\n", enable);
2211 }
2212
2213 /*
2214 * "Notifier chain callback can be invoked for the same chain from
2215 * different CPUs at the same time".
2216 *
2217 * For cases when the netdev is already present, our call to the
2218 * register_netdevice_notifier() will actually get the rtnl_lock()
2219 * before sending NETDEV_REGISTER and (if up) NETDEV_UP
2220 * events.
2221 *
2222 * But for cases when the netdev is not already present, the notifier
2223 * chain is subjected to be invoked from different CPUs simultaneously.
2224 *
2225 * This is protected by the netdev_mutex.
2226 */
bnxt_re_netdev_event(struct notifier_block * notifier,unsigned long event,void * ptr)2227 static int bnxt_re_netdev_event(struct notifier_block *notifier,
2228 unsigned long event, void *ptr)
2229 {
2230 struct net_device *real_dev, *netdev = netdev_notifier_info_to_dev(ptr);
2231 struct bnxt_re_dev *rdev;
2232
2233 real_dev = rdma_vlan_dev_real_dev(netdev);
2234 if (!real_dev)
2235 real_dev = netdev;
2236
2237 if (real_dev != netdev)
2238 goto exit;
2239
2240 rdev = bnxt_re_from_netdev(real_dev);
2241 if (!rdev)
2242 return NOTIFY_DONE;
2243
2244
2245 switch (event) {
2246 case NETDEV_UP:
2247 case NETDEV_DOWN:
2248 case NETDEV_CHANGE:
2249 bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1,
2250 netif_carrier_ok(real_dev) ?
2251 IB_EVENT_PORT_ACTIVE :
2252 IB_EVENT_PORT_ERR);
2253 break;
2254 default:
2255 break;
2256 }
2257 ib_device_put(&rdev->ibdev);
2258 exit:
2259 return NOTIFY_DONE;
2260 }
2261
2262 #define BNXT_ADEV_NAME "bnxt_en"
2263
bnxt_re_remove_device(struct bnxt_re_dev * rdev,u8 op_type,struct auxiliary_device * aux_dev)2264 static void bnxt_re_remove_device(struct bnxt_re_dev *rdev, u8 op_type,
2265 struct auxiliary_device *aux_dev)
2266 {
2267 if (rdev->nb.notifier_call) {
2268 unregister_netdevice_notifier(&rdev->nb);
2269 rdev->nb.notifier_call = NULL;
2270 } else {
2271 /* If notifier is null, we should have already done a
2272 * clean up before coming here.
2273 */
2274 return;
2275 }
2276 bnxt_re_setup_cc(rdev, false);
2277 ib_unregister_device(&rdev->ibdev);
2278 bnxt_re_dev_uninit(rdev, op_type);
2279 ib_dealloc_device(&rdev->ibdev);
2280 }
2281
bnxt_re_remove(struct auxiliary_device * adev)2282 static void bnxt_re_remove(struct auxiliary_device *adev)
2283 {
2284 struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
2285 struct bnxt_re_dev *rdev;
2286
2287 mutex_lock(&bnxt_re_mutex);
2288 rdev = en_info->rdev;
2289
2290 if (rdev)
2291 bnxt_re_remove_device(rdev, BNXT_RE_COMPLETE_REMOVE, adev);
2292 kfree(en_info);
2293 mutex_unlock(&bnxt_re_mutex);
2294 }
2295
bnxt_re_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)2296 static int bnxt_re_probe(struct auxiliary_device *adev,
2297 const struct auxiliary_device_id *id)
2298 {
2299 struct bnxt_aux_priv *aux_priv =
2300 container_of(adev, struct bnxt_aux_priv, aux_dev);
2301 struct bnxt_re_en_dev_info *en_info;
2302 struct bnxt_en_dev *en_dev;
2303 int rc;
2304
2305 en_dev = aux_priv->edev;
2306
2307 mutex_lock(&bnxt_re_mutex);
2308 en_info = kzalloc(sizeof(*en_info), GFP_KERNEL);
2309 if (!en_info) {
2310 mutex_unlock(&bnxt_re_mutex);
2311 return -ENOMEM;
2312 }
2313 en_info->en_dev = en_dev;
2314
2315 auxiliary_set_drvdata(adev, en_info);
2316
2317 rc = bnxt_re_add_device(adev, BNXT_RE_COMPLETE_INIT);
2318 if (rc)
2319 goto err;
2320 mutex_unlock(&bnxt_re_mutex);
2321 return 0;
2322
2323 err:
2324 mutex_unlock(&bnxt_re_mutex);
2325 kfree(en_info);
2326
2327 return rc;
2328 }
2329
bnxt_re_suspend(struct auxiliary_device * adev,pm_message_t state)2330 static int bnxt_re_suspend(struct auxiliary_device *adev, pm_message_t state)
2331 {
2332 struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
2333 struct bnxt_en_dev *en_dev;
2334 struct bnxt_re_dev *rdev;
2335
2336 rdev = en_info->rdev;
2337 en_dev = en_info->en_dev;
2338 mutex_lock(&bnxt_re_mutex);
2339
2340 ibdev_info(&rdev->ibdev, "Handle device suspend call");
2341 /* Check the current device state from bnxt_en_dev and move the
2342 * device to detached state if FW_FATAL_COND is set.
2343 * This prevents more commands to HW during clean-up,
2344 * in case the device is already in error.
2345 */
2346 if (test_bit(BNXT_STATE_FW_FATAL_COND, &rdev->en_dev->en_state)) {
2347 set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags);
2348 set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags);
2349 wake_up_all(&rdev->rcfw.cmdq.waitq);
2350 bnxt_re_dev_stop(rdev);
2351 }
2352
2353 if (rdev->pacing.dbr_pacing)
2354 bnxt_re_set_pacing_dev_state(rdev);
2355
2356 ibdev_info(&rdev->ibdev, "%s: L2 driver notified to stop en_state 0x%lx",
2357 __func__, en_dev->en_state);
2358 bnxt_re_remove_device(rdev, BNXT_RE_PRE_RECOVERY_REMOVE, adev);
2359 mutex_unlock(&bnxt_re_mutex);
2360
2361 return 0;
2362 }
2363
bnxt_re_resume(struct auxiliary_device * adev)2364 static int bnxt_re_resume(struct auxiliary_device *adev)
2365 {
2366 struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
2367 struct bnxt_re_dev *rdev;
2368
2369 mutex_lock(&bnxt_re_mutex);
2370 bnxt_re_add_device(adev, BNXT_RE_POST_RECOVERY_INIT);
2371 rdev = en_info->rdev;
2372 ibdev_info(&rdev->ibdev, "Device resume completed");
2373 mutex_unlock(&bnxt_re_mutex);
2374
2375 return 0;
2376 }
2377
2378 static const struct auxiliary_device_id bnxt_re_id_table[] = {
2379 { .name = BNXT_ADEV_NAME ".rdma", },
2380 {},
2381 };
2382
2383 MODULE_DEVICE_TABLE(auxiliary, bnxt_re_id_table);
2384
2385 static struct auxiliary_driver bnxt_re_driver = {
2386 .name = "rdma",
2387 .probe = bnxt_re_probe,
2388 .remove = bnxt_re_remove,
2389 .shutdown = bnxt_re_shutdown,
2390 .suspend = bnxt_re_suspend,
2391 .resume = bnxt_re_resume,
2392 .id_table = bnxt_re_id_table,
2393 };
2394
bnxt_re_mod_init(void)2395 static int __init bnxt_re_mod_init(void)
2396 {
2397 int rc;
2398
2399 pr_info("%s: %s", ROCE_DRV_MODULE_NAME, version);
2400 bnxt_re_register_debugfs();
2401
2402 rc = auxiliary_driver_register(&bnxt_re_driver);
2403 if (rc) {
2404 pr_err("%s: Failed to register auxiliary driver\n",
2405 ROCE_DRV_MODULE_NAME);
2406 goto err_debug;
2407 }
2408 return 0;
2409 err_debug:
2410 bnxt_re_unregister_debugfs();
2411 return rc;
2412 }
2413
bnxt_re_mod_exit(void)2414 static void __exit bnxt_re_mod_exit(void)
2415 {
2416 auxiliary_driver_unregister(&bnxt_re_driver);
2417 bnxt_re_unregister_debugfs();
2418 }
2419
2420 module_init(bnxt_re_mod_init);
2421 module_exit(bnxt_re_mod_exit);
2422