xref: /linux/drivers/infiniband/hw/bnxt_re/qplib_sp.c (revision 80c4c25460849f441d35810555539aa3adc52929)
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: Slow Path Operators
37  */
38 
39 #define dev_fmt(fmt) "QPLIB: " fmt
40 
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/sched.h>
44 #include <linux/pci.h>
45 
46 #include "roce_hsi.h"
47 
48 #include "qplib_res.h"
49 #include "qplib_rcfw.h"
50 #include "qplib_sp.h"
51 #include "qplib_tlv.h"
52 
53 const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0,
54 						     0, 0, 0, 0, 0, 0, 0, 0 } };
55 
56 /* Device */
57 
bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw * rcfw)58 static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw)
59 {
60 	u16 pcie_ctl2 = 0;
61 
62 	if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx))
63 		return false;
64 
65 	pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2);
66 	return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
67 }
68 
bnxt_qplib_query_version(struct bnxt_qplib_rcfw * rcfw,char * fw_ver)69 static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw,
70 				     char *fw_ver)
71 {
72 	struct creq_query_version_resp resp = {};
73 	struct bnxt_qplib_cmdqmsg msg = {};
74 	struct cmdq_query_version req = {};
75 	int rc;
76 
77 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
78 				 CMDQ_BASE_OPCODE_QUERY_VERSION,
79 				 sizeof(req));
80 
81 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0);
82 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
83 	if (rc)
84 		return;
85 	fw_ver[0] = resp.fw_maj;
86 	fw_ver[1] = resp.fw_minor;
87 	fw_ver[2] = resp.fw_bld;
88 	fw_ver[3] = resp.fw_rsvd;
89 }
90 
bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw * rcfw)91 int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw)
92 {
93 	struct bnxt_qplib_dev_attr *attr = rcfw->res->dattr;
94 	struct creq_query_func_resp resp = {};
95 	struct bnxt_qplib_cmdqmsg msg = {};
96 	struct creq_query_func_resp_sb *sb;
97 	struct bnxt_qplib_rcfw_sbuf sbuf;
98 	struct bnxt_qplib_chip_ctx *cctx;
99 	struct cmdq_query_func req = {};
100 	u8 *tqm_alloc;
101 	int i, rc;
102 	u32 temp;
103 
104 	cctx = rcfw->res->cctx;
105 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
106 				 CMDQ_BASE_OPCODE_QUERY_FUNC,
107 				 sizeof(req));
108 
109 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
110 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
111 				     &sbuf.dma_addr, GFP_KERNEL);
112 	if (!sbuf.sb)
113 		return -ENOMEM;
114 	sb = sbuf.sb;
115 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
116 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
117 				sizeof(resp), 0);
118 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
119 	if (rc)
120 		goto bail;
121 
122 	/* Extract the context from the side buffer */
123 	attr->max_qp = le32_to_cpu(sb->max_qp);
124 	/* max_qp value reported by FW doesn't include the QP1 */
125 	attr->max_qp += 1;
126 	attr->max_qp_rd_atom =
127 		sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
128 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom;
129 	attr->max_qp_init_rd_atom =
130 		sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
131 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom;
132 	attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr) - 1;
133 	if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx)) {
134 		/*
135 		 * 128 WQEs needs to be reserved for the HW (8916). Prevent
136 		 * reporting the max number on legacy devices
137 		 */
138 		attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1;
139 	}
140 
141 	/* Adjust for max_qp_wqes for variable wqe */
142 	if (cctx->modes.wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE)
143 		attr->max_qp_wqes = BNXT_VAR_MAX_WQE - 1;
144 
145 	attr->max_qp_sges = cctx->modes.wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE ?
146 			    min_t(u32, sb->max_sge_var_wqe, BNXT_VAR_MAX_SGE) : 6;
147 	attr->max_cq = le32_to_cpu(sb->max_cq);
148 	attr->max_cq_wqes = le32_to_cpu(sb->max_cqe);
149 	if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
150 		attr->max_cq_wqes = min_t(u32, BNXT_QPLIB_MAX_CQ_WQES, attr->max_cq_wqes);
151 	attr->max_cq_sges = attr->max_qp_sges;
152 	attr->max_mr = le32_to_cpu(sb->max_mr);
153 	attr->max_mw = le32_to_cpu(sb->max_mw);
154 
155 	attr->max_mr_size = le64_to_cpu(sb->max_mr_size);
156 	attr->max_pd = 64 * 1024;
157 	attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp);
158 	attr->max_ah = le32_to_cpu(sb->max_ah);
159 
160 	attr->max_srq = le16_to_cpu(sb->max_srq);
161 	attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1;
162 	attr->max_srq_sges = sb->max_srq_sge;
163 	attr->max_pkey = 1;
164 	attr->max_inline_data = le32_to_cpu(sb->max_inline_data);
165 	if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
166 		attr->l2_db_size = (sb->l2_db_space_size + 1) *
167 				    (0x01 << RCFW_DBR_BASE_PAGE_SHIFT);
168 	/*
169 	 * Read the max gid supported by HW.
170 	 * For each entry in HW  GID in HW table, we consume 2
171 	 * GID entries in the kernel GID table.  So max_gid reported
172 	 * to stack can be up to twice the value reported by the HW, up to 256 gids.
173 	 */
174 	attr->max_sgid = le32_to_cpu(sb->max_gid);
175 	attr->max_sgid = min_t(u32, BNXT_QPLIB_NUM_GIDS_SUPPORTED, 2 * attr->max_sgid);
176 	attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags);
177 	attr->dev_cap_flags2 = le16_to_cpu(sb->dev_cap_ext_flags_2);
178 
179 	if (_is_max_srq_ext_supported(attr->dev_cap_flags2))
180 		attr->max_srq += le16_to_cpu(sb->max_srq_ext);
181 
182 	bnxt_qplib_query_version(rcfw, attr->fw_ver);
183 
184 	for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) {
185 		temp = le32_to_cpu(sb->tqm_alloc_reqs[i]);
186 		tqm_alloc = (u8 *)&temp;
187 		attr->tqm_alloc_reqs[i * 4] = *tqm_alloc;
188 		attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc);
189 		attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc);
190 		attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc);
191 	}
192 
193 	if (rcfw->res->cctx->hwrm_intf_ver >= HWRM_VERSION_DEV_ATTR_MAX_DPI)
194 		attr->max_dpi = le32_to_cpu(sb->max_dpi);
195 
196 	attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw);
197 bail:
198 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
199 			  sbuf.sb, sbuf.dma_addr);
200 	return rc;
201 }
202 
bnxt_qplib_set_func_resources(struct bnxt_qplib_res * res,struct bnxt_qplib_rcfw * rcfw,struct bnxt_qplib_ctx * ctx)203 int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res,
204 				  struct bnxt_qplib_rcfw *rcfw,
205 				  struct bnxt_qplib_ctx *ctx)
206 {
207 	struct creq_set_func_resources_resp resp = {};
208 	struct cmdq_set_func_resources req = {};
209 	struct bnxt_qplib_cmdqmsg msg = {};
210 	int rc;
211 
212 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
213 				 CMDQ_BASE_OPCODE_SET_FUNC_RESOURCES,
214 				 sizeof(req));
215 
216 	req.number_of_qp = cpu_to_le32(ctx->qpc_count);
217 	req.number_of_mrw = cpu_to_le32(ctx->mrw_count);
218 	req.number_of_srq =  cpu_to_le32(ctx->srqc_count);
219 	req.number_of_cq = cpu_to_le32(ctx->cq_count);
220 
221 	req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf);
222 	req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf);
223 	req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf);
224 	req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf);
225 	req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf);
226 
227 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
228 				sizeof(resp), 0);
229 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
230 	if (rc) {
231 		dev_err(&res->pdev->dev, "Failed to set function resources\n");
232 	}
233 	return rc;
234 }
235 
236 /* SGID */
bnxt_qplib_get_sgid(struct bnxt_qplib_res * res,struct bnxt_qplib_sgid_tbl * sgid_tbl,int index,struct bnxt_qplib_gid * gid)237 int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res,
238 			struct bnxt_qplib_sgid_tbl *sgid_tbl, int index,
239 			struct bnxt_qplib_gid *gid)
240 {
241 	if (index >= sgid_tbl->max) {
242 		dev_err(&res->pdev->dev,
243 			"Index %d exceeded SGID table max (%d)\n",
244 			index, sgid_tbl->max);
245 		return -EINVAL;
246 	}
247 	memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid));
248 	return 0;
249 }
250 
bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl * sgid_tbl,struct bnxt_qplib_gid * gid,u16 vlan_id,bool update)251 int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
252 			struct bnxt_qplib_gid *gid, u16 vlan_id, bool update)
253 {
254 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
255 						   struct bnxt_qplib_res,
256 						   sgid_tbl);
257 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
258 	int index;
259 
260 	/* Do we need a sgid_lock here? */
261 	if (!sgid_tbl->active) {
262 		dev_err(&res->pdev->dev, "SGID table has no active entries\n");
263 		return -ENOMEM;
264 	}
265 	for (index = 0; index < sgid_tbl->max; index++) {
266 		if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) &&
267 		    vlan_id == sgid_tbl->tbl[index].vlan_id)
268 			break;
269 	}
270 	if (index == sgid_tbl->max) {
271 		dev_warn(&res->pdev->dev, "GID not found in the SGID table\n");
272 		return 0;
273 	}
274 	/* Remove GID from the SGID table */
275 	if (update) {
276 		struct creq_delete_gid_resp resp = {};
277 		struct bnxt_qplib_cmdqmsg msg = {};
278 		struct cmdq_delete_gid req = {};
279 		int rc;
280 
281 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
282 					 CMDQ_BASE_OPCODE_DELETE_GID,
283 					 sizeof(req));
284 		if (sgid_tbl->hw_id[index] == 0xFFFF) {
285 			dev_err(&res->pdev->dev,
286 				"GID entry contains an invalid HW id\n");
287 			return -EINVAL;
288 		}
289 		req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]);
290 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
291 					sizeof(resp), 0);
292 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
293 		if (rc)
294 			return rc;
295 	}
296 	memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero,
297 	       sizeof(bnxt_qplib_gid_zero));
298 	sgid_tbl->tbl[index].vlan_id = 0xFFFF;
299 	sgid_tbl->vlan[index] = 0;
300 	sgid_tbl->active--;
301 	dev_dbg(&res->pdev->dev,
302 		"SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n",
303 		 index, sgid_tbl->hw_id[index], sgid_tbl->active);
304 	sgid_tbl->hw_id[index] = (u16)-1;
305 
306 	/* unlock */
307 	return 0;
308 }
309 
bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl * sgid_tbl,struct bnxt_qplib_gid * gid,const u8 * smac,u16 vlan_id,bool update,u32 * index)310 int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
311 			struct bnxt_qplib_gid *gid, const u8 *smac,
312 			u16 vlan_id, bool update, u32 *index)
313 {
314 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
315 						   struct bnxt_qplib_res,
316 						   sgid_tbl);
317 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
318 	int i, free_idx;
319 
320 	/* Do we need a sgid_lock here? */
321 	if (sgid_tbl->active == sgid_tbl->max) {
322 		dev_err(&res->pdev->dev, "SGID table is full\n");
323 		return -ENOMEM;
324 	}
325 	free_idx = sgid_tbl->max;
326 	for (i = 0; i < sgid_tbl->max; i++) {
327 		if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) &&
328 		    sgid_tbl->tbl[i].vlan_id == vlan_id) {
329 			dev_dbg(&res->pdev->dev,
330 				"SGID entry already exist in entry %d!\n", i);
331 			*index = i;
332 			return -EALREADY;
333 		} else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
334 				   sizeof(bnxt_qplib_gid_zero)) &&
335 			   free_idx == sgid_tbl->max) {
336 			free_idx = i;
337 		}
338 	}
339 	if (free_idx == sgid_tbl->max) {
340 		dev_err(&res->pdev->dev,
341 			"SGID table is FULL but count is not MAX??\n");
342 		return -ENOMEM;
343 	}
344 	if (update) {
345 		struct creq_add_gid_resp resp = {};
346 		struct bnxt_qplib_cmdqmsg msg = {};
347 		struct cmdq_add_gid req = {};
348 		int rc;
349 
350 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
351 					 CMDQ_BASE_OPCODE_ADD_GID,
352 					 sizeof(req));
353 
354 		req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
355 		req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
356 		req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
357 		req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
358 		/*
359 		 * driver should ensure that all RoCE traffic is always VLAN
360 		 * tagged if RoCE traffic is running on non-zero VLAN ID or
361 		 * RoCE traffic is running on non-zero Priority.
362 		 */
363 		if ((vlan_id != 0xFFFF) || res->prio) {
364 			if (vlan_id != 0xFFFF)
365 				req.vlan = cpu_to_le16
366 				(vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK);
367 			req.vlan |= cpu_to_le16
368 					(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
369 					 CMDQ_ADD_GID_VLAN_VLAN_EN);
370 		}
371 
372 		/* MAC in network format */
373 		req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
374 		req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
375 		req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
376 
377 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
378 					sizeof(resp), 0);
379 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
380 		if (rc)
381 			return rc;
382 		sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid);
383 	}
384 	/* Add GID to the sgid_tbl */
385 	memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid));
386 	sgid_tbl->tbl[free_idx].vlan_id = vlan_id;
387 	sgid_tbl->active++;
388 	if (vlan_id != 0xFFFF)
389 		sgid_tbl->vlan[free_idx] = 1;
390 
391 	dev_dbg(&res->pdev->dev,
392 		"SGID added hw_id[0x%x] = 0x%x active = 0x%x\n",
393 		 free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active);
394 
395 	*index = free_idx;
396 	/* unlock */
397 	return 0;
398 }
399 
bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl * sgid_tbl,struct bnxt_qplib_gid * gid,u16 gid_idx,const u8 * smac)400 int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
401 			   struct bnxt_qplib_gid *gid, u16 gid_idx,
402 			   const u8 *smac)
403 {
404 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
405 						   struct bnxt_qplib_res,
406 						   sgid_tbl);
407 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
408 	struct creq_modify_gid_resp resp = {};
409 	struct bnxt_qplib_cmdqmsg msg = {};
410 	struct cmdq_modify_gid req = {};
411 	int rc;
412 
413 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
414 				 CMDQ_BASE_OPCODE_MODIFY_GID,
415 				 sizeof(req));
416 
417 	req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
418 	req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
419 	req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
420 	req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
421 	if (res->prio) {
422 		req.vlan |= cpu_to_le16
423 			(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
424 			 CMDQ_ADD_GID_VLAN_VLAN_EN);
425 	}
426 
427 	/* MAC in network format */
428 	req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
429 	req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
430 	req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
431 
432 	req.gid_index = cpu_to_le16(gid_idx);
433 
434 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
435 				sizeof(resp), 0);
436 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
437 	return rc;
438 }
439 
440 /* AH */
bnxt_qplib_create_ah(struct bnxt_qplib_res * res,struct bnxt_qplib_ah * ah,bool block)441 int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
442 			 bool block)
443 {
444 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
445 	struct creq_create_ah_resp resp = {};
446 	struct bnxt_qplib_cmdqmsg msg = {};
447 	struct cmdq_create_ah req = {};
448 	u32 temp32[4];
449 	u16 temp16[3];
450 	int rc;
451 
452 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
453 				 CMDQ_BASE_OPCODE_CREATE_AH,
454 				 sizeof(req));
455 
456 	memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid));
457 	req.dgid[0] = cpu_to_le32(temp32[0]);
458 	req.dgid[1] = cpu_to_le32(temp32[1]);
459 	req.dgid[2] = cpu_to_le32(temp32[2]);
460 	req.dgid[3] = cpu_to_le32(temp32[3]);
461 
462 	req.type = ah->nw_type;
463 	req.hop_limit = ah->hop_limit;
464 	req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]);
465 	req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label &
466 					CMDQ_CREATE_AH_FLOW_LABEL_MASK) |
467 					CMDQ_CREATE_AH_DEST_VLAN_ID_MASK);
468 	req.pd_id = cpu_to_le32(ah->pd->id);
469 	req.traffic_class = ah->traffic_class;
470 
471 	/* MAC in network format */
472 	memcpy(temp16, ah->dmac, 6);
473 	req.dest_mac[0] = cpu_to_le16(temp16[0]);
474 	req.dest_mac[1] = cpu_to_le16(temp16[1]);
475 	req.dest_mac[2] = cpu_to_le16(temp16[2]);
476 
477 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
478 				sizeof(resp), block);
479 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
480 	if (rc)
481 		return rc;
482 
483 	ah->id = le32_to_cpu(resp.xid);
484 	return 0;
485 }
486 
bnxt_qplib_destroy_ah(struct bnxt_qplib_res * res,struct bnxt_qplib_ah * ah,bool block)487 int bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
488 			  bool block)
489 {
490 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
491 	struct creq_destroy_ah_resp resp = {};
492 	struct bnxt_qplib_cmdqmsg msg = {};
493 	struct cmdq_destroy_ah req = {};
494 	int rc;
495 
496 	/* Clean up the AH table in the device */
497 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
498 				 CMDQ_BASE_OPCODE_DESTROY_AH,
499 				 sizeof(req));
500 
501 	req.ah_cid = cpu_to_le32(ah->id);
502 
503 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
504 				sizeof(resp), block);
505 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
506 	return rc;
507 }
508 
509 /* MRW */
bnxt_qplib_free_mrw(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mrw)510 int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
511 {
512 	struct creq_deallocate_key_resp resp = {};
513 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
514 	struct cmdq_deallocate_key req = {};
515 	struct bnxt_qplib_cmdqmsg msg = {};
516 	int rc;
517 
518 	if (mrw->lkey == 0xFFFFFFFF) {
519 		dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n");
520 		return 0;
521 	}
522 
523 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
524 				 CMDQ_BASE_OPCODE_DEALLOCATE_KEY,
525 				 sizeof(req));
526 
527 	req.mrw_flags = mrw->type;
528 
529 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
530 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
531 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
532 		req.key = cpu_to_le32(mrw->rkey);
533 	else
534 		req.key = cpu_to_le32(mrw->lkey);
535 
536 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
537 				sizeof(resp), 0);
538 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
539 	if (rc)
540 		return rc;
541 
542 	/* Free the qplib's MRW memory */
543 	if (mrw->hwq.max_elements)
544 		bnxt_qplib_free_hwq(res, &mrw->hwq);
545 
546 	return 0;
547 }
548 
bnxt_qplib_alloc_mrw(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mrw)549 int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
550 {
551 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
552 	struct creq_allocate_mrw_resp resp = {};
553 	struct bnxt_qplib_cmdqmsg msg = {};
554 	struct cmdq_allocate_mrw req = {};
555 	unsigned long tmp;
556 	int rc;
557 
558 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
559 				 CMDQ_BASE_OPCODE_ALLOCATE_MRW,
560 				 sizeof(req));
561 
562 	req.pd_id = cpu_to_le32(mrw->pd->id);
563 	req.mrw_flags = mrw->type;
564 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR &&
565 	     mrw->access_flags & BNXT_QPLIB_FR_PMR) ||
566 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A ||
567 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)
568 		req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY;
569 	tmp = (unsigned long)mrw;
570 	req.mrw_handle = cpu_to_le64(tmp);
571 
572 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
573 				sizeof(resp), 0);
574 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
575 	if (rc)
576 		return rc;
577 
578 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
579 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
580 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
581 		mrw->rkey = le32_to_cpu(resp.xid);
582 	else
583 		mrw->lkey = le32_to_cpu(resp.xid);
584 	return 0;
585 }
586 
bnxt_qplib_dereg_mrw(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mrw,bool block)587 int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw,
588 			 bool block)
589 {
590 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
591 	struct creq_deregister_mr_resp resp = {};
592 	struct bnxt_qplib_cmdqmsg msg = {};
593 	struct cmdq_deregister_mr req = {};
594 	int rc;
595 
596 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
597 				 CMDQ_BASE_OPCODE_DEREGISTER_MR,
598 				 sizeof(req));
599 
600 	req.lkey = cpu_to_le32(mrw->lkey);
601 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
602 				sizeof(resp), block);
603 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
604 	if (rc)
605 		return rc;
606 
607 	/* Free the qplib's MR memory */
608 	if (mrw->hwq.max_elements) {
609 		mrw->va = 0;
610 		mrw->total_size = 0;
611 		bnxt_qplib_free_hwq(res, &mrw->hwq);
612 	}
613 
614 	return 0;
615 }
616 
bnxt_qplib_reg_mr(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mr,struct ib_umem * umem,int num_pbls,u32 buf_pg_size)617 int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr,
618 		      struct ib_umem *umem, int num_pbls, u32 buf_pg_size)
619 {
620 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
621 	struct bnxt_qplib_hwq_attr hwq_attr = {};
622 	struct bnxt_qplib_sg_info sginfo = {};
623 	struct creq_register_mr_resp resp = {};
624 	struct bnxt_qplib_cmdqmsg msg = {};
625 	struct cmdq_register_mr req = {};
626 	int pages, rc;
627 	u32 pg_size;
628 	u16 level;
629 
630 	if (num_pbls) {
631 		pages = roundup_pow_of_two(num_pbls);
632 		/* Allocate memory for the non-leaf pages to store buf ptrs.
633 		 * Non-leaf pages always uses system PAGE_SIZE
634 		 */
635 		/* Free the hwq if it already exist, must be a rereg */
636 		if (mr->hwq.max_elements)
637 			bnxt_qplib_free_hwq(res, &mr->hwq);
638 		hwq_attr.res = res;
639 		hwq_attr.depth = pages;
640 		hwq_attr.stride = sizeof(dma_addr_t);
641 		hwq_attr.type = HWQ_TYPE_MR;
642 		hwq_attr.sginfo = &sginfo;
643 		hwq_attr.sginfo->umem = umem;
644 		hwq_attr.sginfo->npages = pages;
645 		hwq_attr.sginfo->pgsize = buf_pg_size;
646 		hwq_attr.sginfo->pgshft = ilog2(buf_pg_size);
647 		rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr);
648 		if (rc) {
649 			dev_err(&res->pdev->dev,
650 				"SP: Reg MR memory allocation failed\n");
651 			return -ENOMEM;
652 		}
653 	}
654 
655 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
656 				 CMDQ_BASE_OPCODE_REGISTER_MR,
657 				 sizeof(req));
658 
659 	/* Configure the request */
660 	if (mr->hwq.level == PBL_LVL_MAX) {
661 		/* No PBL provided, just use system PAGE_SIZE */
662 		level = 0;
663 		req.pbl = 0;
664 		pg_size = PAGE_SIZE;
665 	} else {
666 		level = mr->hwq.level;
667 		req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]);
668 	}
669 	pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE;
670 	req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) |
671 			       ((ilog2(pg_size) <<
672 				 CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) &
673 				CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK);
674 	req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) <<
675 				 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) &
676 				CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK));
677 	req.access = (mr->access_flags & 0xFFFF);
678 	req.va = cpu_to_le64(mr->va);
679 	req.key = cpu_to_le32(mr->lkey);
680 	if (_is_alloc_mr_unified(res->dattr->dev_cap_flags))
681 		req.key = cpu_to_le32(mr->pd->id);
682 	req.flags = cpu_to_le16(mr->flags);
683 	req.mr_size = cpu_to_le64(mr->total_size);
684 
685 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
686 				sizeof(resp), 0);
687 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
688 	if (rc)
689 		goto fail;
690 
691 	if (_is_alloc_mr_unified(res->dattr->dev_cap_flags)) {
692 		mr->lkey = le32_to_cpu(resp.xid);
693 		mr->rkey = mr->lkey;
694 	}
695 
696 	return 0;
697 
698 fail:
699 	if (mr->hwq.max_elements)
700 		bnxt_qplib_free_hwq(res, &mr->hwq);
701 	return rc;
702 }
703 
bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res * res,struct bnxt_qplib_frpl * frpl,int max_pg_ptrs)704 int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res,
705 					struct bnxt_qplib_frpl *frpl,
706 					int max_pg_ptrs)
707 {
708 	struct bnxt_qplib_hwq_attr hwq_attr = {};
709 	struct bnxt_qplib_sg_info sginfo = {};
710 	int pg_ptrs, pages, rc;
711 
712 	/* Re-calculate the max to fit the HWQ allocation model */
713 	pg_ptrs = roundup_pow_of_two(max_pg_ptrs);
714 	pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT;
715 	if (!pages)
716 		pages++;
717 
718 	if (pages > MAX_PBL_LVL_1_PGS)
719 		return -ENOMEM;
720 
721 	sginfo.pgsize = PAGE_SIZE;
722 	sginfo.nopte = true;
723 
724 	hwq_attr.res = res;
725 	hwq_attr.depth = pg_ptrs;
726 	hwq_attr.stride = PAGE_SIZE;
727 	hwq_attr.sginfo = &sginfo;
728 	hwq_attr.type = HWQ_TYPE_CTX;
729 	rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr);
730 	if (!rc)
731 		frpl->max_pg_ptrs = pg_ptrs;
732 
733 	return rc;
734 }
735 
bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res * res,struct bnxt_qplib_frpl * frpl)736 int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res,
737 				       struct bnxt_qplib_frpl *frpl)
738 {
739 	bnxt_qplib_free_hwq(res, &frpl->hwq);
740 	return 0;
741 }
742 
bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw * rcfw,struct bnxt_qplib_roce_stats * stats)743 int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw,
744 			      struct bnxt_qplib_roce_stats *stats)
745 {
746 	struct creq_query_roce_stats_resp resp = {};
747 	struct creq_query_roce_stats_resp_sb *sb;
748 	struct cmdq_query_roce_stats req = {};
749 	struct bnxt_qplib_cmdqmsg msg = {};
750 	struct bnxt_qplib_rcfw_sbuf sbuf;
751 	int rc;
752 
753 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
754 				 CMDQ_BASE_OPCODE_QUERY_ROCE_STATS,
755 				 sizeof(req));
756 
757 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
758 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
759 				     &sbuf.dma_addr, GFP_KERNEL);
760 	if (!sbuf.sb)
761 		return -ENOMEM;
762 	sb = sbuf.sb;
763 
764 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
765 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
766 				sizeof(resp), 0);
767 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
768 	if (rc)
769 		goto bail;
770 	/* Extract the context from the side buffer */
771 	stats->to_retransmits = le64_to_cpu(sb->to_retransmits);
772 	stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd);
773 	stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded);
774 	stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd);
775 	stats->missing_resp = le64_to_cpu(sb->missing_resp);
776 	stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err);
777 	stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err);
778 	stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err);
779 	stats->local_protection_err = le64_to_cpu(sb->local_protection_err);
780 	stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err);
781 	stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err);
782 	stats->remote_access_err = le64_to_cpu(sb->remote_access_err);
783 	stats->remote_op_err = le64_to_cpu(sb->remote_op_err);
784 	stats->dup_req = le64_to_cpu(sb->dup_req);
785 	stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max);
786 	stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch);
787 	stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe);
788 	stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err);
789 	stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey);
790 	stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err);
791 	stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm);
792 	stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err);
793 	stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey);
794 	stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err);
795 	stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm);
796 	stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err);
797 	stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow);
798 	stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode);
799 	stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic);
800 	stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err);
801 	stats->res_mem_error = le64_to_cpu(sb->res_mem_error);
802 	stats->res_srq_err = le64_to_cpu(sb->res_srq_err);
803 	stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err);
804 	stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey);
805 	stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err);
806 	stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err);
807 	stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err);
808 	stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err);
809 	stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err);
810 	if (!rcfw->init_oos_stats) {
811 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
812 		rcfw->init_oos_stats = 1;
813 	} else {
814 		stats->res_oos_drop_count +=
815 				(le64_to_cpu(sb->res_oos_drop_count) -
816 				 rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK;
817 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
818 	}
819 
820 bail:
821 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
822 			  sbuf.sb, sbuf.dma_addr);
823 	return rc;
824 }
825 
bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw * rcfw,u32 fid,struct bnxt_qplib_ext_stat * estat)826 int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid,
827 			 struct bnxt_qplib_ext_stat *estat)
828 {
829 	struct creq_query_roce_stats_ext_resp resp = {};
830 	struct creq_query_roce_stats_ext_resp_sb *sb;
831 	struct cmdq_query_roce_stats_ext req = {};
832 	struct bnxt_qplib_cmdqmsg msg = {};
833 	struct bnxt_qplib_rcfw_sbuf sbuf;
834 	int rc;
835 
836 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
837 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
838 				     &sbuf.dma_addr, GFP_KERNEL);
839 	if (!sbuf.sb)
840 		return -ENOMEM;
841 
842 	sb = sbuf.sb;
843 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
844 				 CMDQ_QUERY_ROCE_STATS_EXT_OPCODE_QUERY_ROCE_STATS,
845 				 sizeof(req));
846 
847 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
848 	req.resp_addr = cpu_to_le64(sbuf.dma_addr);
849 	req.function_id = cpu_to_le32(fid);
850 	req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID);
851 
852 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
853 				sizeof(resp), 0);
854 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
855 	if (rc)
856 		goto bail;
857 
858 	estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts);
859 	estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts);
860 	estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts);
861 	estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts);
862 	estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts);
863 	estat->tx_roce_pkts = le64_to_cpu(sb->tx_roce_pkts);
864 	estat->tx_roce_bytes = le64_to_cpu(sb->tx_roce_bytes);
865 	estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts);
866 	estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts);
867 	estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts);
868 	estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts);
869 	estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts);
870 	estat->rx_roce_pkts = le64_to_cpu(sb->rx_roce_pkts);
871 	estat->rx_roce_bytes = le64_to_cpu(sb->rx_roce_bytes);
872 	estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts);
873 	estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes);
874 	estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts);
875 	estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts);
876 	estat->tx_cnp = le64_to_cpu(sb->tx_cnp_pkts);
877 	estat->rx_cnp = le64_to_cpu(sb->rx_cnp_pkts);
878 	estat->rx_ecn_marked = le64_to_cpu(sb->rx_ecn_marked_pkts);
879 
880 bail:
881 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
882 			  sbuf.sb, sbuf.dma_addr);
883 	return rc;
884 }
885 
bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv * ext_req,struct bnxt_qplib_cc_param_ext * cc_ext)886 static void bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv *ext_req,
887 				    struct bnxt_qplib_cc_param_ext *cc_ext)
888 {
889 	ext_req->modify_mask = cpu_to_le64(cc_ext->ext_mask);
890 	cc_ext->ext_mask = 0;
891 	ext_req->inactivity_th_hi = cpu_to_le16(cc_ext->inact_th_hi);
892 	ext_req->min_time_between_cnps = cpu_to_le16(cc_ext->min_delta_cnp);
893 	ext_req->init_cp = cpu_to_le16(cc_ext->init_cp);
894 	ext_req->tr_update_mode = cc_ext->tr_update_mode;
895 	ext_req->tr_update_cycles = cc_ext->tr_update_cyls;
896 	ext_req->fr_num_rtts = cc_ext->fr_rtt;
897 	ext_req->ai_rate_increase = cc_ext->ai_rate_incr;
898 	ext_req->reduction_relax_rtts_th = cpu_to_le16(cc_ext->rr_rtt_th);
899 	ext_req->additional_relax_cr_th = cpu_to_le16(cc_ext->ar_cr_th);
900 	ext_req->cr_min_th = cpu_to_le16(cc_ext->cr_min_th);
901 	ext_req->bw_avg_weight = cc_ext->bw_avg_weight;
902 	ext_req->actual_cr_factor = cc_ext->cr_factor;
903 	ext_req->max_cp_cr_th = cpu_to_le16(cc_ext->cr_th_max_cp);
904 	ext_req->cp_bias_en = cc_ext->cp_bias_en;
905 	ext_req->cp_bias = cc_ext->cp_bias;
906 	ext_req->cnp_ecn = cc_ext->cnp_ecn;
907 	ext_req->rtt_jitter_en = cc_ext->rtt_jitter_en;
908 	ext_req->link_bytes_per_usec = cpu_to_le16(cc_ext->bytes_per_usec);
909 	ext_req->reset_cc_cr_th = cpu_to_le16(cc_ext->cc_cr_reset_th);
910 	ext_req->cr_width = cc_ext->cr_width;
911 	ext_req->quota_period_min = cc_ext->min_quota;
912 	ext_req->quota_period_max = cc_ext->max_quota;
913 	ext_req->quota_period_abs_max = cc_ext->abs_max_quota;
914 	ext_req->tr_lower_bound = cpu_to_le16(cc_ext->tr_lb);
915 	ext_req->cr_prob_factor = cc_ext->cr_prob_fac;
916 	ext_req->tr_prob_factor = cc_ext->tr_prob_fac;
917 	ext_req->fairness_cr_th = cpu_to_le16(cc_ext->fair_cr_th);
918 	ext_req->red_div = cc_ext->red_div;
919 	ext_req->cnp_ratio_th = cc_ext->cnp_ratio_th;
920 	ext_req->exp_ai_rtts = cpu_to_le16(cc_ext->ai_ext_rtt);
921 	ext_req->exp_ai_cr_cp_ratio = cc_ext->exp_crcp_ratio;
922 	ext_req->use_rate_table = cc_ext->low_rate_en;
923 	ext_req->cp_exp_update_th = cpu_to_le16(cc_ext->cpcr_update_th);
924 	ext_req->high_exp_ai_rtts_th1 = cpu_to_le16(cc_ext->ai_rtt_th1);
925 	ext_req->high_exp_ai_rtts_th2 = cpu_to_le16(cc_ext->ai_rtt_th2);
926 	ext_req->actual_cr_cong_free_rtts_th = cpu_to_le16(cc_ext->cf_rtt_th);
927 	ext_req->severe_cong_cr_th1 = cpu_to_le16(cc_ext->sc_cr_th1);
928 	ext_req->severe_cong_cr_th2 = cpu_to_le16(cc_ext->sc_cr_th2);
929 	ext_req->link64B_per_rtt = cpu_to_le32(cc_ext->l64B_per_rtt);
930 	ext_req->cc_ack_bytes = cc_ext->cc_ack_bytes;
931 }
932 
bnxt_qplib_modify_cc(struct bnxt_qplib_res * res,struct bnxt_qplib_cc_param * cc_param)933 int bnxt_qplib_modify_cc(struct bnxt_qplib_res *res,
934 			 struct bnxt_qplib_cc_param *cc_param)
935 {
936 	struct bnxt_qplib_tlv_modify_cc_req tlv_req = {};
937 	struct creq_modify_roce_cc_resp resp = {};
938 	struct bnxt_qplib_cmdqmsg msg = {};
939 	struct cmdq_modify_roce_cc *req;
940 	int req_size;
941 	void *cmd;
942 	int rc;
943 
944 	/* Prepare the older base command */
945 	req = &tlv_req.base_req;
946 	cmd = req;
947 	req_size = sizeof(*req);
948 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)req, CMDQ_BASE_OPCODE_MODIFY_ROCE_CC,
949 				 sizeof(*req));
950 	req->modify_mask = cpu_to_le32(cc_param->mask);
951 	req->enable_cc = cc_param->enable;
952 	req->g = cc_param->g;
953 	req->num_phases_per_state = cc_param->nph_per_state;
954 	req->time_per_phase = cc_param->time_pph;
955 	req->pkts_per_phase = cc_param->pkts_pph;
956 	req->init_cr = cpu_to_le16(cc_param->init_cr);
957 	req->init_tr = cpu_to_le16(cc_param->init_tr);
958 	req->tos_dscp_tos_ecn = (cc_param->tos_dscp << CMDQ_MODIFY_ROCE_CC_TOS_DSCP_SFT) |
959 				(cc_param->tos_ecn & CMDQ_MODIFY_ROCE_CC_TOS_ECN_MASK);
960 	req->alt_vlan_pcp = cc_param->alt_vlan_pcp;
961 	req->alt_tos_dscp = cpu_to_le16(cc_param->alt_tos_dscp);
962 	req->rtt = cpu_to_le16(cc_param->rtt);
963 	req->tcp_cp = cpu_to_le16(cc_param->tcp_cp);
964 	req->cc_mode = cc_param->cc_mode;
965 	req->inactivity_th = cpu_to_le16(cc_param->inact_th);
966 
967 	/* For chip gen P5 onwards fill extended cmd and header */
968 	if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) {
969 		struct roce_tlv *hdr;
970 		u32 payload;
971 		u32 chunks;
972 
973 		cmd = &tlv_req;
974 		req_size = sizeof(tlv_req);
975 		/* Prepare primary tlv header */
976 		hdr = &tlv_req.tlv_hdr;
977 		chunks = CHUNKS(sizeof(struct bnxt_qplib_tlv_modify_cc_req));
978 		payload = sizeof(struct cmdq_modify_roce_cc);
979 		__roce_1st_tlv_prep(hdr, chunks, payload, true);
980 		/* Prepare secondary tlv header */
981 		hdr = (struct roce_tlv *)&tlv_req.ext_req;
982 		payload = sizeof(struct cmdq_modify_roce_cc_gen1_tlv) -
983 			  sizeof(struct roce_tlv);
984 		__roce_ext_tlv_prep(hdr, TLV_TYPE_MODIFY_ROCE_CC_GEN1, payload, false, true);
985 		bnxt_qplib_fill_cc_gen1(&tlv_req.ext_req, &cc_param->cc_ext);
986 	}
987 
988 	bnxt_qplib_fill_cmdqmsg(&msg, cmd, &resp, NULL, req_size,
989 				sizeof(resp), 0);
990 	rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg);
991 	return rc;
992 }
993 
bnxt_qplib_read_context(struct bnxt_qplib_rcfw * rcfw,u8 res_type,u32 xid,u32 resp_size,void * resp_va)994 int bnxt_qplib_read_context(struct bnxt_qplib_rcfw *rcfw, u8 res_type,
995 			    u32 xid, u32 resp_size, void *resp_va)
996 {
997 	struct creq_read_context resp = {};
998 	struct bnxt_qplib_cmdqmsg msg = {};
999 	struct cmdq_read_context req = {};
1000 	struct bnxt_qplib_rcfw_sbuf sbuf;
1001 	int rc;
1002 
1003 	sbuf.size = resp_size;
1004 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
1005 				     &sbuf.dma_addr, GFP_KERNEL);
1006 	if (!sbuf.sb)
1007 		return -ENOMEM;
1008 
1009 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
1010 				 CMDQ_BASE_OPCODE_READ_CONTEXT, sizeof(req));
1011 	req.resp_addr = cpu_to_le64(sbuf.dma_addr);
1012 	req.resp_size = resp_size / BNXT_QPLIB_CMDQE_UNITS;
1013 
1014 	req.xid = cpu_to_le32(xid);
1015 	req.type = res_type;
1016 
1017 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
1018 				sizeof(resp), 0);
1019 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
1020 	if (rc)
1021 		goto free_mem;
1022 
1023 	memcpy(resp_va, sbuf.sb, resp_size);
1024 free_mem:
1025 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size, sbuf.sb, sbuf.dma_addr);
1026 	return rc;
1027 }
1028 
bnxt_qplib_read_cc_gen1(struct bnxt_qplib_cc_param_ext * cc_ext,struct creq_query_roce_cc_gen1_resp_sb_tlv * sb)1029 static void bnxt_qplib_read_cc_gen1(struct bnxt_qplib_cc_param_ext *cc_ext,
1030 				    struct creq_query_roce_cc_gen1_resp_sb_tlv *sb)
1031 {
1032 	cc_ext->inact_th_hi = le16_to_cpu(sb->inactivity_th_hi);
1033 	cc_ext->min_delta_cnp = le16_to_cpu(sb->min_time_between_cnps);
1034 	cc_ext->init_cp = le16_to_cpu(sb->init_cp);
1035 	cc_ext->tr_update_mode = sb->tr_update_mode;
1036 	cc_ext->tr_update_cyls = sb->tr_update_cycles;
1037 	cc_ext->fr_rtt = sb->fr_num_rtts;
1038 	cc_ext->ai_rate_incr = sb->ai_rate_increase;
1039 	cc_ext->rr_rtt_th = le16_to_cpu(sb->reduction_relax_rtts_th);
1040 	cc_ext->ar_cr_th = le16_to_cpu(sb->additional_relax_cr_th);
1041 	cc_ext->cr_min_th = le16_to_cpu(sb->cr_min_th);
1042 	cc_ext->bw_avg_weight = sb->bw_avg_weight;
1043 	cc_ext->cr_factor = sb->actual_cr_factor;
1044 	cc_ext->cr_th_max_cp = le16_to_cpu(sb->max_cp_cr_th);
1045 	cc_ext->cp_bias_en = sb->cp_bias_en;
1046 	cc_ext->cp_bias = sb->cp_bias;
1047 	cc_ext->cnp_ecn = sb->cnp_ecn;
1048 	cc_ext->rtt_jitter_en = sb->rtt_jitter_en;
1049 	cc_ext->bytes_per_usec = le16_to_cpu(sb->link_bytes_per_usec);
1050 	cc_ext->cc_cr_reset_th = le16_to_cpu(sb->reset_cc_cr_th);
1051 	cc_ext->cr_width = sb->cr_width;
1052 	cc_ext->min_quota = sb->quota_period_min;
1053 	cc_ext->max_quota = sb->quota_period_max;
1054 	cc_ext->abs_max_quota = sb->quota_period_abs_max;
1055 	cc_ext->tr_lb = le16_to_cpu(sb->tr_lower_bound);
1056 	cc_ext->cr_prob_fac = sb->cr_prob_factor;
1057 	cc_ext->tr_prob_fac = sb->tr_prob_factor;
1058 	cc_ext->fair_cr_th = le16_to_cpu(sb->fairness_cr_th);
1059 	cc_ext->red_div = sb->red_div;
1060 	cc_ext->cnp_ratio_th = sb->cnp_ratio_th;
1061 	cc_ext->ai_ext_rtt = le16_to_cpu(sb->exp_ai_rtts);
1062 	cc_ext->exp_crcp_ratio = sb->exp_ai_cr_cp_ratio;
1063 	cc_ext->low_rate_en = sb->use_rate_table;
1064 	cc_ext->cpcr_update_th = le16_to_cpu(sb->cp_exp_update_th);
1065 	cc_ext->ai_rtt_th1 = le16_to_cpu(sb->high_exp_ai_rtts_th1);
1066 	cc_ext->ai_rtt_th2 = le16_to_cpu(sb->high_exp_ai_rtts_th2);
1067 	cc_ext->cf_rtt_th = le16_to_cpu(sb->actual_cr_cong_free_rtts_th);
1068 	cc_ext->sc_cr_th1 = le16_to_cpu(sb->severe_cong_cr_th1);
1069 	cc_ext->sc_cr_th2 = le16_to_cpu(sb->severe_cong_cr_th2);
1070 	cc_ext->l64B_per_rtt = le32_to_cpu(sb->link64B_per_rtt);
1071 	cc_ext->cc_ack_bytes = sb->cc_ack_bytes;
1072 	cc_ext->reduce_cf_rtt_th = le16_to_cpu(sb->reduce_init_cong_free_rtts_th);
1073 }
1074 
bnxt_qplib_query_cc_param(struct bnxt_qplib_res * res,struct bnxt_qplib_cc_param * cc_param)1075 int bnxt_qplib_query_cc_param(struct bnxt_qplib_res *res,
1076 			      struct bnxt_qplib_cc_param *cc_param)
1077 {
1078 	struct bnxt_qplib_tlv_query_rcc_sb *ext_sb;
1079 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
1080 	struct creq_query_roce_cc_resp resp = {};
1081 	struct creq_query_roce_cc_resp_sb *sb;
1082 	struct bnxt_qplib_cmdqmsg msg = {};
1083 	struct cmdq_query_roce_cc req = {};
1084 	struct bnxt_qplib_rcfw_sbuf sbuf;
1085 	size_t resp_size;
1086 	int rc;
1087 
1088 	/* Query the parameters from chip */
1089 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req, CMDQ_BASE_OPCODE_QUERY_ROCE_CC,
1090 				 sizeof(req));
1091 	if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx))
1092 		resp_size = sizeof(*ext_sb);
1093 	else
1094 		resp_size = sizeof(*sb);
1095 
1096 	sbuf.size = ALIGN(resp_size, BNXT_QPLIB_CMDQE_UNITS);
1097 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
1098 				     &sbuf.dma_addr, GFP_KERNEL);
1099 	if (!sbuf.sb)
1100 		return -ENOMEM;
1101 
1102 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
1103 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
1104 				sizeof(resp), 0);
1105 	rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg);
1106 	if (rc)
1107 		goto out;
1108 
1109 	ext_sb = sbuf.sb;
1110 	sb = bnxt_qplib_is_chip_gen_p5_p7(res->cctx) ? &ext_sb->base_sb :
1111 		(struct creq_query_roce_cc_resp_sb *)ext_sb;
1112 
1113 	cc_param->enable = sb->enable_cc & CREQ_QUERY_ROCE_CC_RESP_SB_ENABLE_CC;
1114 	cc_param->tos_ecn = (sb->tos_dscp_tos_ecn &
1115 			     CREQ_QUERY_ROCE_CC_RESP_SB_TOS_ECN_MASK) >>
1116 			    CREQ_QUERY_ROCE_CC_RESP_SB_TOS_ECN_SFT;
1117 	cc_param->tos_dscp = (sb->tos_dscp_tos_ecn &
1118 			      CREQ_QUERY_ROCE_CC_RESP_SB_TOS_DSCP_MASK) >>
1119 			     CREQ_QUERY_ROCE_CC_RESP_SB_TOS_DSCP_SFT;
1120 	cc_param->alt_tos_dscp = sb->alt_tos_dscp;
1121 	cc_param->alt_vlan_pcp = sb->alt_vlan_pcp;
1122 
1123 	cc_param->g = sb->g;
1124 	cc_param->nph_per_state = sb->num_phases_per_state;
1125 	cc_param->init_cr = le16_to_cpu(sb->init_cr);
1126 	cc_param->init_tr = le16_to_cpu(sb->init_tr);
1127 	cc_param->cc_mode = sb->cc_mode;
1128 	cc_param->inact_th = le16_to_cpu(sb->inactivity_th);
1129 	cc_param->rtt = le16_to_cpu(sb->rtt);
1130 	cc_param->tcp_cp = le16_to_cpu(sb->tcp_cp);
1131 	cc_param->time_pph = sb->time_per_phase;
1132 	cc_param->pkts_pph = sb->pkts_per_phase;
1133 	if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) {
1134 		bnxt_qplib_read_cc_gen1(&cc_param->cc_ext, &ext_sb->gen1_sb);
1135 		cc_param->inact_th |= (cc_param->cc_ext.inact_th_hi & 0x3F) << 16;
1136 	}
1137 out:
1138 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size, sbuf.sb, sbuf.dma_addr);
1139 	return rc;
1140 }
1141