1 /* bnx2x_sriov.c: QLogic Everest network driver.
2 *
3 * Copyright 2009-2013 Broadcom Corporation
4 * Copyright 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * Unless you and QLogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11 *
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other QLogic software provided under a
14 * license other than the GPL, without QLogic's express prior written
15 * consent.
16 *
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Shmulik Ravid
19 * Ariel Elior <ariel.elior@qlogic.com>
20 *
21 */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 struct bnx2x_virtf **vf,
31 struct pf_vf_bulletin_content **bulletin,
32 bool test_queue);
33
34 /* General service functions */
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 u16 pf_id)
37 {
38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 pf_id);
40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 pf_id);
42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 pf_id);
44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 pf_id);
46 }
47
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 u8 enable)
50 {
51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 enable);
53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 enable);
55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 enable);
57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 enable);
59 }
60
bnx2x_vf_idx_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 int idx;
64
65 for_each_vf(bp, idx)
66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 break;
68 return idx;
69 }
70
71 static
bnx2x_vf_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77
bnx2x_vf_igu_ack_sb(struct bnx2x * bp,struct bnx2x_virtf * vf,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 u8 update)
81 {
82 /* acking a VF sb through the PF - use the GRC */
83 u32 ctl;
84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 u32 func_encode = vf->abs_vfid;
87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 struct igu_regular cmd_data = {0};
89
90 cmd_data.sb_id_and_flags =
91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95
96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
97 func_encode << IGU_CTRL_REG_FID_SHIFT |
98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99
100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 cmd_data.sb_id_and_flags, igu_addr_data);
102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 barrier();
104
105 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
106 ctl, igu_addr_ctl);
107 REG_WR(bp, igu_addr_ctl, ctl);
108 barrier();
109 }
110
bnx2x_validate_vf_sp_objs(struct bnx2x * bp,struct bnx2x_virtf * vf,bool print_err)111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 struct bnx2x_virtf *vf,
113 bool print_err)
114 {
115 if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 if (print_err)
117 BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 else
119 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 return false;
121 }
122 return true;
123 }
124
125 /* VFOP operations states */
bnx2x_vfop_qctor_dump_tx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 struct bnx2x_queue_init_params *init_params,
128 struct bnx2x_queue_setup_params *setup_params,
129 u16 q_idx, u16 sb_idx)
130 {
131 DP(BNX2X_MSG_IOV,
132 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 vf->abs_vfid,
134 q_idx,
135 sb_idx,
136 init_params->tx.sb_cq_index,
137 init_params->tx.hc_rate,
138 setup_params->flags,
139 setup_params->txq_params.traffic_type);
140 }
141
bnx2x_vfop_qctor_dump_rx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 struct bnx2x_queue_init_params *init_params,
144 struct bnx2x_queue_setup_params *setup_params,
145 u16 q_idx, u16 sb_idx)
146 {
147 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148
149 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 vf->abs_vfid,
152 q_idx,
153 sb_idx,
154 init_params->rx.sb_cq_index,
155 init_params->rx.hc_rate,
156 setup_params->gen_params.mtu,
157 rxq_params->buf_sz,
158 rxq_params->sge_buf_sz,
159 rxq_params->max_sges_pkt,
160 rxq_params->tpa_agg_sz,
161 setup_params->flags,
162 rxq_params->drop_flags,
163 rxq_params->cache_line_log);
164 }
165
bnx2x_vfop_qctor_prep(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q,struct bnx2x_vf_queue_construct_params * p,unsigned long q_type)166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 struct bnx2x_virtf *vf,
168 struct bnx2x_vf_queue *q,
169 struct bnx2x_vf_queue_construct_params *p,
170 unsigned long q_type)
171 {
172 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174
175 /* INIT */
176
177 /* Enable host coalescing in the transition to INIT state */
178 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180
181 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183
184 /* FW SB ID */
185 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187
188 /* context */
189 init_p->cxts[0] = q->cxt;
190
191 /* SETUP */
192
193 /* Setup-op general parameters */
194 setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 setup_p->gen_params.fp_hsi = vf->fp_hsi;
197
198 /* Setup-op flags:
199 * collect statistics, zero statistics, local-switching, security,
200 * OV for Flex10, RSS and MCAST for leading
201 */
202 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
203 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
204
205 /* for VFs, enable tx switching, bd coherency, and mac address
206 * anti-spoofing
207 */
208 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
209 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
210 if (vf->spoofchk)
211 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
212 else
213 __clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
214
215 /* Setup-op rx parameters */
216 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
217 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
218
219 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
220 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
221 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
222
223 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
224 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
225 }
226
227 /* Setup-op tx parameters */
228 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
229 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
230 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
231 }
232 }
233
bnx2x_vf_queue_create(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)234 static int bnx2x_vf_queue_create(struct bnx2x *bp,
235 struct bnx2x_virtf *vf, int qid,
236 struct bnx2x_vf_queue_construct_params *qctor)
237 {
238 struct bnx2x_queue_state_params *q_params;
239 int rc = 0;
240
241 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
242
243 /* Prepare ramrod information */
244 q_params = &qctor->qstate;
245 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
246 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
247
248 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
249 BNX2X_Q_LOGICAL_STATE_ACTIVE) {
250 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
251 goto out;
252 }
253
254 /* Run Queue 'construction' ramrods */
255 q_params->cmd = BNX2X_Q_CMD_INIT;
256 rc = bnx2x_queue_state_change(bp, q_params);
257 if (rc)
258 goto out;
259
260 memcpy(&q_params->params.setup, &qctor->prep_qsetup,
261 sizeof(struct bnx2x_queue_setup_params));
262 q_params->cmd = BNX2X_Q_CMD_SETUP;
263 rc = bnx2x_queue_state_change(bp, q_params);
264 if (rc)
265 goto out;
266
267 /* enable interrupts */
268 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
269 USTORM_ID, 0, IGU_INT_ENABLE, 0);
270 out:
271 return rc;
272 }
273
bnx2x_vf_queue_destroy(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
275 int qid)
276 {
277 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
278 BNX2X_Q_CMD_TERMINATE,
279 BNX2X_Q_CMD_CFC_DEL};
280 struct bnx2x_queue_state_params q_params;
281 int rc, i;
282
283 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
284
285 /* Prepare ramrod information */
286 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
287 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
288 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
289
290 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
291 BNX2X_Q_LOGICAL_STATE_STOPPED) {
292 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
293 goto out;
294 }
295
296 /* Run Queue 'destruction' ramrods */
297 for (i = 0; i < ARRAY_SIZE(cmds); i++) {
298 q_params.cmd = cmds[i];
299 rc = bnx2x_queue_state_change(bp, &q_params);
300 if (rc) {
301 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
302 return rc;
303 }
304 }
305 out:
306 /* Clean Context */
307 if (bnx2x_vfq(vf, qid, cxt)) {
308 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
309 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
310 }
311
312 return 0;
313 }
314
315 static void
bnx2x_vf_set_igu_info(struct bnx2x * bp,u8 igu_sb_id,u8 abs_vfid)316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
317 {
318 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
319 if (vf) {
320 /* the first igu entry belonging to VFs of this PF */
321 if (!BP_VFDB(bp)->first_vf_igu_entry)
322 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
323
324 /* the first igu entry belonging to this VF */
325 if (!vf_sb_count(vf))
326 vf->igu_base_id = igu_sb_id;
327
328 ++vf_sb_count(vf);
329 ++vf->sb_count;
330 }
331 BP_VFDB(bp)->vf_sbs_pool++;
332 }
333
bnx2x_vf_vlan_mac_clear(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,bool drv_only,int type)334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
335 int qid, bool drv_only, int type)
336 {
337 struct bnx2x_vlan_mac_ramrod_params ramrod;
338 int rc;
339
340 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
341 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
342 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
343
344 /* Prepare ramrod params */
345 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
346 if (type == BNX2X_VF_FILTER_VLAN_MAC) {
347 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
348 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
349 } else if (type == BNX2X_VF_FILTER_MAC) {
350 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
351 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
352 } else {
353 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
354 }
355 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
356
357 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
358 if (drv_only)
359 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
360 else
361 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
362
363 /* Start deleting */
364 rc = ramrod.vlan_mac_obj->delete_all(bp,
365 ramrod.vlan_mac_obj,
366 &ramrod.user_req.vlan_mac_flags,
367 &ramrod.ramrod_flags);
368 if (rc) {
369 BNX2X_ERR("Failed to delete all %s\n",
370 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
371 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
372 return rc;
373 }
374
375 return 0;
376 }
377
bnx2x_vf_mac_vlan_config(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_mac_vlan_filter * filter,bool drv_only)378 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
379 struct bnx2x_virtf *vf, int qid,
380 struct bnx2x_vf_mac_vlan_filter *filter,
381 bool drv_only)
382 {
383 struct bnx2x_vlan_mac_ramrod_params ramrod;
384 int rc;
385
386 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
387 vf->abs_vfid, filter->add ? "Adding" : "Deleting",
388 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
389 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
390
391 /* Prepare ramrod params */
392 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
393 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
394 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
395 ramrod.user_req.u.vlan.vlan = filter->vid;
396 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
397 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
398 } else if (filter->type == BNX2X_VF_FILTER_VLAN) {
399 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
400 ramrod.user_req.u.vlan.vlan = filter->vid;
401 } else {
402 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
403 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
404 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
405 }
406 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
407 BNX2X_VLAN_MAC_DEL;
408
409 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
410 if (drv_only)
411 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
412 else
413 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
414
415 /* Add/Remove the filter */
416 rc = bnx2x_config_vlan_mac(bp, &ramrod);
417 if (rc == -EEXIST)
418 return 0;
419 if (rc) {
420 BNX2X_ERR("Failed to %s %s\n",
421 filter->add ? "add" : "delete",
422 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
423 "VLAN-MAC" :
424 (filter->type == BNX2X_VF_FILTER_MAC) ?
425 "MAC" : "VLAN");
426 return rc;
427 }
428
429 filter->applied = true;
430
431 return 0;
432 }
433
bnx2x_vf_mac_vlan_config_list(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_mac_vlan_filters * filters,int qid,bool drv_only)434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
435 struct bnx2x_vf_mac_vlan_filters *filters,
436 int qid, bool drv_only)
437 {
438 int rc = 0, i;
439
440 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
441
442 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
443 return -EINVAL;
444
445 /* Prepare ramrod params */
446 for (i = 0; i < filters->count; i++) {
447 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
448 &filters->filters[i], drv_only);
449 if (rc)
450 break;
451 }
452
453 /* Rollback if needed */
454 if (i != filters->count) {
455 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
456 i, filters->count);
457 while (--i >= 0) {
458 if (!filters->filters[i].applied)
459 continue;
460 filters->filters[i].add = !filters->filters[i].add;
461 bnx2x_vf_mac_vlan_config(bp, vf, qid,
462 &filters->filters[i],
463 drv_only);
464 }
465 }
466
467 /* It's our responsibility to free the filters */
468 kfree(filters);
469
470 return rc;
471 }
472
bnx2x_vf_queue_setup(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)473 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
474 struct bnx2x_vf_queue_construct_params *qctor)
475 {
476 int rc;
477
478 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
479
480 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
481 if (rc)
482 goto op_err;
483
484 /* Schedule the configuration of any pending vlan filters */
485 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
486 BNX2X_MSG_IOV);
487 return 0;
488 op_err:
489 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
490 return rc;
491 }
492
bnx2x_vf_queue_flr(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)493 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
494 int qid)
495 {
496 int rc;
497
498 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499
500 /* If needed, clean the filtering data base */
501 if ((qid == LEADING_IDX) &&
502 bnx2x_validate_vf_sp_objs(bp, vf, false)) {
503 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
504 BNX2X_VF_FILTER_VLAN_MAC);
505 if (rc)
506 goto op_err;
507 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
508 BNX2X_VF_FILTER_VLAN);
509 if (rc)
510 goto op_err;
511 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
512 BNX2X_VF_FILTER_MAC);
513 if (rc)
514 goto op_err;
515 }
516
517 /* Terminate queue */
518 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
519 struct bnx2x_queue_state_params qstate;
520
521 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
522 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
523 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
524 qstate.cmd = BNX2X_Q_CMD_TERMINATE;
525 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
526 rc = bnx2x_queue_state_change(bp, &qstate);
527 if (rc)
528 goto op_err;
529 }
530
531 return 0;
532 op_err:
533 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
534 return rc;
535 }
536
bnx2x_vf_mcast(struct bnx2x * bp,struct bnx2x_virtf * vf,bnx2x_mac_addr_t * mcasts,int mc_num,bool drv_only)537 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
538 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
539 {
540 struct bnx2x_mcast_list_elem *mc = NULL;
541 struct bnx2x_mcast_ramrod_params mcast;
542 int rc, i;
543
544 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
545
546 /* Prepare Multicast command */
547 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
548 mcast.mcast_obj = &vf->mcast_obj;
549 if (drv_only)
550 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
551 else
552 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
553 if (mc_num) {
554 mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem),
555 GFP_KERNEL);
556 if (!mc) {
557 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
558 return -ENOMEM;
559 }
560 }
561
562 if (mc_num) {
563 INIT_LIST_HEAD(&mcast.mcast_list);
564 for (i = 0; i < mc_num; i++) {
565 mc[i].mac = mcasts[i];
566 list_add_tail(&mc[i].link,
567 &mcast.mcast_list);
568 }
569
570 /* add new mcasts */
571 mcast.mcast_list_len = mc_num;
572 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
573 if (rc)
574 BNX2X_ERR("Failed to set multicasts\n");
575 } else {
576 /* clear existing mcasts */
577 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
578 if (rc)
579 BNX2X_ERR("Failed to remove multicasts\n");
580 }
581
582 kfree(mc);
583
584 return rc;
585 }
586
bnx2x_vf_prep_rx_mode(struct bnx2x * bp,u8 qid,struct bnx2x_rx_mode_ramrod_params * ramrod,struct bnx2x_virtf * vf,unsigned long accept_flags)587 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
588 struct bnx2x_rx_mode_ramrod_params *ramrod,
589 struct bnx2x_virtf *vf,
590 unsigned long accept_flags)
591 {
592 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
593
594 memset(ramrod, 0, sizeof(*ramrod));
595 ramrod->cid = vfq->cid;
596 ramrod->cl_id = vfq_cl_id(vf, vfq);
597 ramrod->rx_mode_obj = &bp->rx_mode_obj;
598 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
599 ramrod->rx_accept_flags = accept_flags;
600 ramrod->tx_accept_flags = accept_flags;
601 ramrod->pstate = &vf->filter_state;
602 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
603
604 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
605 set_bit(RAMROD_RX, &ramrod->ramrod_flags);
606 set_bit(RAMROD_TX, &ramrod->ramrod_flags);
607
608 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
609 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
610 }
611
bnx2x_vf_rxmode(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,unsigned long accept_flags)612 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
613 int qid, unsigned long accept_flags)
614 {
615 struct bnx2x_rx_mode_ramrod_params ramrod;
616
617 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
618
619 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
620 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
621 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
622 return bnx2x_config_rx_mode(bp, &ramrod);
623 }
624
bnx2x_vf_queue_teardown(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)625 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
626 {
627 int rc;
628
629 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
630
631 /* Remove all classification configuration for leading queue */
632 if (qid == LEADING_IDX) {
633 rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
634 if (rc)
635 goto op_err;
636
637 /* Remove filtering if feasible */
638 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
639 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
640 false,
641 BNX2X_VF_FILTER_VLAN_MAC);
642 if (rc)
643 goto op_err;
644 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
645 false,
646 BNX2X_VF_FILTER_VLAN);
647 if (rc)
648 goto op_err;
649 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
650 false,
651 BNX2X_VF_FILTER_MAC);
652 if (rc)
653 goto op_err;
654 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
655 if (rc)
656 goto op_err;
657 }
658 }
659
660 /* Destroy queue */
661 rc = bnx2x_vf_queue_destroy(bp, vf, qid);
662 if (rc)
663 goto op_err;
664 return rc;
665 op_err:
666 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
667 vf->abs_vfid, qid, rc);
668 return rc;
669 }
670
671 /* VF enable primitives
672 * when pretend is required the caller is responsible
673 * for calling pretend prior to calling these routines
674 */
675
676 /* internal vf enable - until vf is enabled internally all transactions
677 * are blocked. This routine should always be called last with pretend.
678 */
bnx2x_vf_enable_internal(struct bnx2x * bp,u8 enable)679 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
680 {
681 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
682 }
683
684 /* clears vf error in all semi blocks */
bnx2x_vf_semi_clear_err(struct bnx2x * bp,u8 abs_vfid)685 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
686 {
687 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
688 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
689 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
690 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
691 }
692
bnx2x_vf_pglue_clear_err(struct bnx2x * bp,u8 abs_vfid)693 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
694 {
695 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
696 u32 was_err_reg = 0;
697
698 switch (was_err_group) {
699 case 0:
700 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
701 break;
702 case 1:
703 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
704 break;
705 case 2:
706 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
707 break;
708 case 3:
709 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
710 break;
711 }
712 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
713 }
714
bnx2x_vf_igu_reset(struct bnx2x * bp,struct bnx2x_virtf * vf)715 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
716 {
717 int i;
718 u32 val;
719
720 /* Set VF masks and configuration - pretend */
721 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
722
723 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
724 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
725 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
726 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
727 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
728 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
729
730 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
731 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
732 val &= ~IGU_VF_CONF_PARENT_MASK;
733 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
734 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
735
736 DP(BNX2X_MSG_IOV,
737 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
738 vf->abs_vfid, val);
739
740 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
741
742 /* iterate over all queues, clear sb consumer */
743 for (i = 0; i < vf_sb_count(vf); i++) {
744 u8 igu_sb_id = vf_igu_sb(vf, i);
745
746 /* zero prod memory */
747 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
748
749 /* clear sb state machine */
750 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
751 false /* VF */);
752
753 /* disable + update */
754 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
755 IGU_INT_DISABLE, 1);
756 }
757 }
758
bnx2x_vf_enable_access(struct bnx2x * bp,u8 abs_vfid)759 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
760 {
761 u16 abs_fid;
762
763 abs_fid = FW_VF_HANDLE(abs_vfid);
764
765 /* set the VF-PF association in the FW */
766 storm_memset_vf_to_pf(bp, abs_fid, BP_FUNC(bp));
767 storm_memset_func_en(bp, abs_fid, 1);
768
769 /* Invalidate fp_hsi version for vfs */
770 if (bp->fw_cap & FW_CAP_INVALIDATE_VF_FP_HSI)
771 REG_WR8(bp, BAR_XSTRORM_INTMEM +
772 XSTORM_ETH_FUNCTION_INFO_FP_HSI_VALID_E2_OFFSET(abs_fid), 0);
773
774 /* clear vf errors*/
775 bnx2x_vf_semi_clear_err(bp, abs_vfid);
776 bnx2x_vf_pglue_clear_err(bp, abs_vfid);
777
778 /* internal vf-enable - pretend */
779 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
780 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
781 bnx2x_vf_enable_internal(bp, true);
782 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
783 }
784
bnx2x_vf_enable_traffic(struct bnx2x * bp,struct bnx2x_virtf * vf)785 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
786 {
787 /* Reset vf in IGU interrupts are still disabled */
788 bnx2x_vf_igu_reset(bp, vf);
789
790 /* pretend to enable the vf with the PBF */
791 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
792 REG_WR(bp, PBF_REG_DISABLE_VF, 0);
793 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
794 }
795
bnx2x_vf_is_pcie_pending(struct bnx2x * bp,u8 abs_vfid)796 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
797 {
798 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
799 struct pci_dev *dev;
800 bool pending;
801
802 if (!vf)
803 return false;
804
805 dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn);
806 if (!dev)
807 return false;
808 pending = bnx2x_is_pcie_pending(dev);
809 pci_dev_put(dev);
810
811 return pending;
812 }
813
bnx2x_vf_flr_clnup_epilog(struct bnx2x * bp,u8 abs_vfid)814 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
815 {
816 /* Verify no pending pci transactions */
817 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
818 BNX2X_ERR("PCIE Transactions still pending\n");
819
820 return 0;
821 }
822
823 /* must be called after the number of PF queues and the number of VFs are
824 * both known
825 */
826 static void
bnx2x_iov_static_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)827 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
828 {
829 struct vf_pf_resc_request *resc = &vf->alloc_resc;
830
831 /* will be set only during VF-ACQUIRE */
832 resc->num_rxqs = 0;
833 resc->num_txqs = 0;
834
835 resc->num_mac_filters = VF_MAC_CREDIT_CNT;
836 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
837
838 /* no real limitation */
839 resc->num_mc_filters = 0;
840
841 /* num_sbs already set */
842 resc->num_sbs = vf->sb_count;
843 }
844
845 /* FLR routines: */
bnx2x_vf_free_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)846 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
847 {
848 /* reset the state variables */
849 bnx2x_iov_static_resc(bp, vf);
850 vf->state = VF_FREE;
851 }
852
bnx2x_vf_flr_clnup_hw(struct bnx2x * bp,struct bnx2x_virtf * vf)853 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
854 {
855 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
856
857 /* DQ usage counter */
858 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
859 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
860 "DQ VF usage counter timed out",
861 poll_cnt);
862 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
863
864 /* FW cleanup command - poll for the results */
865 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
866 poll_cnt))
867 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
868
869 /* verify TX hw is flushed */
870 bnx2x_tx_hw_flushed(bp, poll_cnt);
871 }
872
bnx2x_vf_flr(struct bnx2x * bp,struct bnx2x_virtf * vf)873 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
874 {
875 int rc, i;
876
877 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
878
879 /* the cleanup operations are valid if and only if the VF
880 * was first acquired.
881 */
882 for (i = 0; i < vf_rxq_count(vf); i++) {
883 rc = bnx2x_vf_queue_flr(bp, vf, i);
884 if (rc)
885 goto out;
886 }
887
888 /* remove multicasts */
889 bnx2x_vf_mcast(bp, vf, NULL, 0, true);
890
891 /* dispatch final cleanup and wait for HW queues to flush */
892 bnx2x_vf_flr_clnup_hw(bp, vf);
893
894 /* release VF resources */
895 bnx2x_vf_free_resc(bp, vf);
896
897 vf->malicious = false;
898
899 /* re-open the mailbox */
900 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
901 return;
902 out:
903 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
904 vf->abs_vfid, i, rc);
905 }
906
bnx2x_vf_flr_clnup(struct bnx2x * bp)907 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
908 {
909 struct bnx2x_virtf *vf;
910 int i;
911
912 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
913 /* VF should be RESET & in FLR cleanup states */
914 if (bnx2x_vf(bp, i, state) != VF_RESET ||
915 !bnx2x_vf(bp, i, flr_clnup_stage))
916 continue;
917
918 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
919 i, BNX2X_NR_VIRTFN(bp));
920
921 vf = BP_VF(bp, i);
922
923 /* lock the vf pf channel */
924 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
925
926 /* invoke the VF FLR SM */
927 bnx2x_vf_flr(bp, vf);
928
929 /* mark the VF to be ACKED and continue */
930 vf->flr_clnup_stage = false;
931 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
932 }
933
934 /* Acknowledge the handled VFs.
935 * we are acknowledge all the vfs which an flr was requested for, even
936 * if amongst them there are such that we never opened, since the mcp
937 * will interrupt us immediately again if we only ack some of the bits,
938 * resulting in an endless loop. This can happen for example in KVM
939 * where an 'all ones' flr request is sometimes given by hyper visor
940 */
941 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
942 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
943 for (i = 0; i < FLRD_VFS_DWORDS; i++)
944 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
945 bp->vfdb->flrd_vfs[i]);
946
947 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
948
949 /* clear the acked bits - better yet if the MCP implemented
950 * write to clear semantics
951 */
952 for (i = 0; i < FLRD_VFS_DWORDS; i++)
953 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
954 }
955
bnx2x_vf_handle_flr_event(struct bnx2x * bp)956 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
957 {
958 int i;
959
960 /* Read FLR'd VFs */
961 for (i = 0; i < FLRD_VFS_DWORDS; i++)
962 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
963
964 DP(BNX2X_MSG_MCP,
965 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
966 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
967
968 for_each_vf(bp, i) {
969 struct bnx2x_virtf *vf = BP_VF(bp, i);
970 u32 reset = 0;
971
972 if (vf->abs_vfid < 32)
973 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
974 else
975 reset = bp->vfdb->flrd_vfs[1] &
976 (1 << (vf->abs_vfid - 32));
977
978 if (reset) {
979 /* set as reset and ready for cleanup */
980 vf->state = VF_RESET;
981 vf->flr_clnup_stage = true;
982
983 DP(BNX2X_MSG_IOV,
984 "Initiating Final cleanup for VF %d\n",
985 vf->abs_vfid);
986 }
987 }
988
989 /* do the FLR cleanup for all marked VFs*/
990 bnx2x_vf_flr_clnup(bp);
991 }
992
993 /* IOV global initialization routines */
bnx2x_iov_init_dq(struct bnx2x * bp)994 void bnx2x_iov_init_dq(struct bnx2x *bp)
995 {
996 if (!IS_SRIOV(bp))
997 return;
998
999 /* Set the DQ such that the CID reflect the abs_vfid */
1000 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1001 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1002
1003 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1004 * the PF L2 queues
1005 */
1006 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1007
1008 /* The VF window size is the log2 of the max number of CIDs per VF */
1009 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1010
1011 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
1012 * the Pf doorbell size although the 2 are independent.
1013 */
1014 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1015
1016 /* No security checks for now -
1017 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1018 * CID range 0 - 0x1ffff
1019 */
1020 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1021 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1022 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1023 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1024
1025 /* set the VF doorbell threshold. This threshold represents the amount
1026 * of doorbells allowed in the main DORQ fifo for a specific VF.
1027 */
1028 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1029 }
1030
bnx2x_iov_init_dmae(struct bnx2x * bp)1031 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1032 {
1033 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1034 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1035 }
1036
bnx2x_vf_domain(struct bnx2x * bp,int vfid)1037 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid)
1038 {
1039 struct pci_dev *dev = bp->pdev;
1040
1041 return pci_domain_nr(dev->bus);
1042 }
1043
bnx2x_vf_bus(struct bnx2x * bp,int vfid)1044 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1045 {
1046 struct pci_dev *dev = bp->pdev;
1047 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1048
1049 return dev->bus->number + ((dev->devfn + iov->offset +
1050 iov->stride * vfid) >> 8);
1051 }
1052
bnx2x_vf_devfn(struct bnx2x * bp,int vfid)1053 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1054 {
1055 struct pci_dev *dev = bp->pdev;
1056 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1057
1058 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1059 }
1060
bnx2x_vf_set_bars(struct bnx2x * bp,struct bnx2x_virtf * vf)1061 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1062 {
1063 int i, n;
1064 struct pci_dev *dev = bp->pdev;
1065 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1066
1067 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1068 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1069 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1070
1071 size /= iov->total;
1072 vf->bars[n].bar = start + size * vf->abs_vfid;
1073 vf->bars[n].size = size;
1074 }
1075 }
1076
1077 static int
bnx2x_get_vf_igu_cam_info(struct bnx2x * bp)1078 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1079 {
1080 int sb_id;
1081 u32 val;
1082 u8 fid, current_pf = 0;
1083
1084 /* IGU in normal mode - read CAM */
1085 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1086 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1087 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1088 continue;
1089 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1090 if (fid & IGU_FID_ENCODE_IS_PF)
1091 current_pf = fid & IGU_FID_PF_NUM_MASK;
1092 else if (current_pf == BP_FUNC(bp))
1093 bnx2x_vf_set_igu_info(bp, sb_id,
1094 (fid & IGU_FID_VF_NUM_MASK));
1095 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1096 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1097 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1098 (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1099 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1100 }
1101 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1102 return BP_VFDB(bp)->vf_sbs_pool;
1103 }
1104
__bnx2x_iov_free_vfdb(struct bnx2x * bp)1105 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1106 {
1107 if (bp->vfdb) {
1108 kfree(bp->vfdb->vfqs);
1109 kfree(bp->vfdb->vfs);
1110 kfree(bp->vfdb);
1111 }
1112 bp->vfdb = NULL;
1113 }
1114
bnx2x_sriov_pci_cfg_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1115 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1116 {
1117 int pos;
1118 struct pci_dev *dev = bp->pdev;
1119
1120 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1121 if (!pos) {
1122 BNX2X_ERR("failed to find SRIOV capability in device\n");
1123 return -ENODEV;
1124 }
1125
1126 iov->pos = pos;
1127 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1128 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1129 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1130 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1131 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1132 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1133 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1134 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1135 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1136
1137 return 0;
1138 }
1139
bnx2x_sriov_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1140 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1141 {
1142 u32 val;
1143
1144 /* read the SRIOV capability structure
1145 * The fields can be read via configuration read or
1146 * directly from the device (starting at offset PCICFG_OFFSET)
1147 */
1148 if (bnx2x_sriov_pci_cfg_info(bp, iov))
1149 return -ENODEV;
1150
1151 /* get the number of SRIOV bars */
1152 iov->nres = 0;
1153
1154 /* read the first_vfid */
1155 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1156 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1157 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1158
1159 DP(BNX2X_MSG_IOV,
1160 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1161 BP_FUNC(bp),
1162 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1163 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1164
1165 return 0;
1166 }
1167
1168 /* must be called after PF bars are mapped */
bnx2x_iov_init_one(struct bnx2x * bp,int int_mode_param,int num_vfs_param)1169 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1170 int num_vfs_param)
1171 {
1172 int err, i;
1173 struct bnx2x_sriov *iov;
1174 struct pci_dev *dev = bp->pdev;
1175
1176 bp->vfdb = NULL;
1177
1178 /* verify is pf */
1179 if (IS_VF(bp))
1180 return 0;
1181
1182 /* verify sriov capability is present in configuration space */
1183 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1184 return 0;
1185
1186 /* verify chip revision */
1187 if (CHIP_IS_E1x(bp))
1188 return 0;
1189
1190 /* check if SRIOV support is turned off */
1191 if (!num_vfs_param)
1192 return 0;
1193
1194 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1195 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1196 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1197 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1198 return 0;
1199 }
1200
1201 /* SRIOV can be enabled only with MSIX */
1202 if (int_mode_param == BNX2X_INT_MODE_MSI ||
1203 int_mode_param == BNX2X_INT_MODE_INTX) {
1204 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1205 return 0;
1206 }
1207
1208 /* verify ari is enabled */
1209 if (!pci_ari_enabled(bp->pdev->bus)) {
1210 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1211 return 0;
1212 }
1213
1214 /* verify igu is in normal mode */
1215 if (CHIP_INT_MODE_IS_BC(bp)) {
1216 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1217 return 0;
1218 }
1219
1220 /* allocate the vfs database */
1221 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1222 if (!bp->vfdb) {
1223 BNX2X_ERR("failed to allocate vf database\n");
1224 err = -ENOMEM;
1225 goto failed;
1226 }
1227
1228 /* get the sriov info - Linux already collected all the pertinent
1229 * information, however the sriov structure is for the private use
1230 * of the pci module. Also we want this information regardless
1231 * of the hyper-visor.
1232 */
1233 iov = &(bp->vfdb->sriov);
1234 err = bnx2x_sriov_info(bp, iov);
1235 if (err)
1236 goto failed;
1237
1238 /* SR-IOV capability was enabled but there are no VFs*/
1239 if (iov->total == 0) {
1240 err = 0;
1241 goto failed;
1242 }
1243
1244 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1245
1246 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1247 num_vfs_param, iov->nr_virtfn);
1248
1249 /* allocate the vf array */
1250 bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp),
1251 sizeof(struct bnx2x_virtf),
1252 GFP_KERNEL);
1253 if (!bp->vfdb->vfs) {
1254 BNX2X_ERR("failed to allocate vf array\n");
1255 err = -ENOMEM;
1256 goto failed;
1257 }
1258
1259 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1260 for_each_vf(bp, i) {
1261 bnx2x_vf(bp, i, index) = i;
1262 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1263 bnx2x_vf(bp, i, state) = VF_FREE;
1264 mutex_init(&bnx2x_vf(bp, i, op_mutex));
1265 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1266 /* enable spoofchk by default */
1267 bnx2x_vf(bp, i, spoofchk) = 1;
1268 }
1269
1270 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1271 if (!bnx2x_get_vf_igu_cam_info(bp)) {
1272 BNX2X_ERR("No entries in IGU CAM for vfs\n");
1273 err = -EINVAL;
1274 goto failed;
1275 }
1276
1277 /* allocate the queue arrays for all VFs */
1278 bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES,
1279 sizeof(struct bnx2x_vf_queue),
1280 GFP_KERNEL);
1281
1282 if (!bp->vfdb->vfqs) {
1283 BNX2X_ERR("failed to allocate vf queue array\n");
1284 err = -ENOMEM;
1285 goto failed;
1286 }
1287
1288 /* Prepare the VFs event synchronization mechanism */
1289 mutex_init(&bp->vfdb->event_mutex);
1290
1291 mutex_init(&bp->vfdb->bulletin_mutex);
1292
1293 if (SHMEM2_HAS(bp, sriov_switch_mode))
1294 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1295
1296 return 0;
1297 failed:
1298 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1299 __bnx2x_iov_free_vfdb(bp);
1300 return err;
1301 }
1302
bnx2x_iov_remove_one(struct bnx2x * bp)1303 void bnx2x_iov_remove_one(struct bnx2x *bp)
1304 {
1305 int vf_idx;
1306
1307 /* if SRIOV is not enabled there's nothing to do */
1308 if (!IS_SRIOV(bp))
1309 return;
1310
1311 bnx2x_disable_sriov(bp);
1312
1313 /* disable access to all VFs */
1314 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1315 bnx2x_pretend_func(bp,
1316 HW_VF_HANDLE(bp,
1317 bp->vfdb->sriov.first_vf_in_pf +
1318 vf_idx));
1319 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1320 bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1321 bnx2x_vf_enable_internal(bp, 0);
1322 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1323 }
1324
1325 /* free vf database */
1326 __bnx2x_iov_free_vfdb(bp);
1327 }
1328
bnx2x_iov_free_mem(struct bnx2x * bp)1329 void bnx2x_iov_free_mem(struct bnx2x *bp)
1330 {
1331 int i;
1332
1333 if (!IS_SRIOV(bp))
1334 return;
1335
1336 /* free vfs hw contexts */
1337 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1338 struct hw_dma *cxt = &bp->vfdb->context[i];
1339 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1340 }
1341
1342 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1343 BP_VFDB(bp)->sp_dma.mapping,
1344 BP_VFDB(bp)->sp_dma.size);
1345
1346 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1347 BP_VF_MBX_DMA(bp)->mapping,
1348 BP_VF_MBX_DMA(bp)->size);
1349
1350 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1351 BP_VF_BULLETIN_DMA(bp)->mapping,
1352 BP_VF_BULLETIN_DMA(bp)->size);
1353 }
1354
bnx2x_iov_alloc_mem(struct bnx2x * bp)1355 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1356 {
1357 size_t tot_size;
1358 int i, rc = 0;
1359
1360 if (!IS_SRIOV(bp))
1361 return rc;
1362
1363 /* allocate vfs hw contexts */
1364 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1365 BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1366
1367 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1368 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1369 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1370
1371 if (cxt->size) {
1372 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1373 if (!cxt->addr)
1374 goto alloc_mem_err;
1375 } else {
1376 cxt->addr = NULL;
1377 cxt->mapping = 0;
1378 }
1379 tot_size -= cxt->size;
1380 }
1381
1382 /* allocate vfs ramrods dma memory - client_init and set_mac */
1383 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1384 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1385 tot_size);
1386 if (!BP_VFDB(bp)->sp_dma.addr)
1387 goto alloc_mem_err;
1388 BP_VFDB(bp)->sp_dma.size = tot_size;
1389
1390 /* allocate mailboxes */
1391 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1392 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1393 tot_size);
1394 if (!BP_VF_MBX_DMA(bp)->addr)
1395 goto alloc_mem_err;
1396
1397 BP_VF_MBX_DMA(bp)->size = tot_size;
1398
1399 /* allocate local bulletin boards */
1400 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1401 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1402 tot_size);
1403 if (!BP_VF_BULLETIN_DMA(bp)->addr)
1404 goto alloc_mem_err;
1405
1406 BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1407
1408 return 0;
1409
1410 alloc_mem_err:
1411 return -ENOMEM;
1412 }
1413
bnx2x_vfq_init(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q)1414 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1415 struct bnx2x_vf_queue *q)
1416 {
1417 u8 cl_id = vfq_cl_id(vf, q);
1418 u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1419 unsigned long q_type = 0;
1420
1421 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1422 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1423
1424 /* Queue State object */
1425 bnx2x_init_queue_obj(bp, &q->sp_obj,
1426 cl_id, &q->cid, 1, func_id,
1427 bnx2x_vf_sp(bp, vf, q_data),
1428 bnx2x_vf_sp_map(bp, vf, q_data),
1429 q_type);
1430
1431 /* sp indication is set only when vlan/mac/etc. are initialized */
1432 q->sp_initialized = false;
1433
1434 DP(BNX2X_MSG_IOV,
1435 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1436 vf->abs_vfid, q->sp_obj.func_id, q->cid);
1437 }
1438
bnx2x_max_speed_cap(struct bnx2x * bp)1439 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1440 {
1441 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1442
1443 if (supported &
1444 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1445 return 20000;
1446
1447 return 10000; /* assume lowest supported speed is 10G */
1448 }
1449
bnx2x_iov_link_update_vf(struct bnx2x * bp,int idx)1450 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1451 {
1452 struct bnx2x_link_report_data *state = &bp->last_reported_link;
1453 struct pf_vf_bulletin_content *bulletin;
1454 struct bnx2x_virtf *vf;
1455 bool update = true;
1456 int rc = 0;
1457
1458 /* sanity and init */
1459 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1460 if (rc)
1461 return rc;
1462
1463 mutex_lock(&bp->vfdb->bulletin_mutex);
1464
1465 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1466 bulletin->valid_bitmap |= 1 << LINK_VALID;
1467
1468 bulletin->link_speed = state->line_speed;
1469 bulletin->link_flags = 0;
1470 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1471 &state->link_report_flags))
1472 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1473 if (test_bit(BNX2X_LINK_REPORT_FD,
1474 &state->link_report_flags))
1475 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1476 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1477 &state->link_report_flags))
1478 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1479 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1480 &state->link_report_flags))
1481 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1482 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1483 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1484 bulletin->valid_bitmap |= 1 << LINK_VALID;
1485 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1486 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1487 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1488 bulletin->valid_bitmap |= 1 << LINK_VALID;
1489 bulletin->link_speed = bnx2x_max_speed_cap(bp);
1490 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1491 } else {
1492 update = false;
1493 }
1494
1495 if (update) {
1496 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1497 "vf %d mode %u speed %d flags %x\n", idx,
1498 vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1499
1500 /* Post update on VF's bulletin board */
1501 rc = bnx2x_post_vf_bulletin(bp, idx);
1502 if (rc) {
1503 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1504 goto out;
1505 }
1506 }
1507
1508 out:
1509 mutex_unlock(&bp->vfdb->bulletin_mutex);
1510 return rc;
1511 }
1512
bnx2x_set_vf_link_state(struct net_device * dev,int idx,int link_state)1513 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1514 {
1515 struct bnx2x *bp = netdev_priv(dev);
1516 struct bnx2x_virtf *vf = BP_VF(bp, idx);
1517
1518 if (!vf)
1519 return -EINVAL;
1520
1521 if (vf->link_cfg == link_state)
1522 return 0; /* nothing todo */
1523
1524 vf->link_cfg = link_state;
1525
1526 return bnx2x_iov_link_update_vf(bp, idx);
1527 }
1528
bnx2x_iov_link_update(struct bnx2x * bp)1529 void bnx2x_iov_link_update(struct bnx2x *bp)
1530 {
1531 int vfid;
1532
1533 if (!IS_SRIOV(bp))
1534 return;
1535
1536 for_each_vf(bp, vfid)
1537 bnx2x_iov_link_update_vf(bp, vfid);
1538 }
1539
1540 /* called by bnx2x_nic_load */
bnx2x_iov_nic_init(struct bnx2x * bp)1541 int bnx2x_iov_nic_init(struct bnx2x *bp)
1542 {
1543 int vfid;
1544
1545 if (!IS_SRIOV(bp)) {
1546 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1547 return 0;
1548 }
1549
1550 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1551
1552 /* let FLR complete ... */
1553 msleep(100);
1554
1555 /* initialize vf database */
1556 for_each_vf(bp, vfid) {
1557 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1558
1559 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1560 BNX2X_CIDS_PER_VF;
1561
1562 union cdu_context *base_cxt = (union cdu_context *)
1563 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1564 (base_vf_cid & (ILT_PAGE_CIDS-1));
1565
1566 DP(BNX2X_MSG_IOV,
1567 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1568 vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1569 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1570
1571 /* init statically provisioned resources */
1572 bnx2x_iov_static_resc(bp, vf);
1573
1574 /* queues are initialized during VF-ACQUIRE */
1575 vf->filter_state = 0;
1576 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1577
1578 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1579 vf_vlan_rules_cnt(vf));
1580 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1581 vf_mac_rules_cnt(vf));
1582
1583 /* init mcast object - This object will be re-initialized
1584 * during VF-ACQUIRE with the proper cl_id and cid.
1585 * It needs to be initialized here so that it can be safely
1586 * handled by a subsequent FLR flow.
1587 */
1588 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1589 0xFF, 0xFF, 0xFF,
1590 bnx2x_vf_sp(bp, vf, mcast_rdata),
1591 bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1592 BNX2X_FILTER_MCAST_PENDING,
1593 &vf->filter_state,
1594 BNX2X_OBJ_TYPE_RX_TX);
1595
1596 /* set the mailbox message addresses */
1597 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1598 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1599 MBX_MSG_ALIGNED_SIZE);
1600
1601 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1602 vfid * MBX_MSG_ALIGNED_SIZE;
1603
1604 /* Enable vf mailbox */
1605 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1606 }
1607
1608 /* Final VF init */
1609 for_each_vf(bp, vfid) {
1610 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1611
1612 /* fill in the BDF and bars */
1613 vf->domain = bnx2x_vf_domain(bp, vfid);
1614 vf->bus = bnx2x_vf_bus(bp, vfid);
1615 vf->devfn = bnx2x_vf_devfn(bp, vfid);
1616 bnx2x_vf_set_bars(bp, vf);
1617
1618 DP(BNX2X_MSG_IOV,
1619 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1620 vf->abs_vfid, vf->bus, vf->devfn,
1621 (unsigned)vf->bars[0].bar, vf->bars[0].size,
1622 (unsigned)vf->bars[1].bar, vf->bars[1].size,
1623 (unsigned)vf->bars[2].bar, vf->bars[2].size);
1624 }
1625
1626 return 0;
1627 }
1628
1629 /* called by bnx2x_chip_cleanup */
bnx2x_iov_chip_cleanup(struct bnx2x * bp)1630 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1631 {
1632 int i;
1633
1634 if (!IS_SRIOV(bp))
1635 return 0;
1636
1637 /* release all the VFs */
1638 for_each_vf(bp, i)
1639 bnx2x_vf_release(bp, BP_VF(bp, i));
1640
1641 return 0;
1642 }
1643
1644 /* called by bnx2x_init_hw_func, returns the next ilt line */
bnx2x_iov_init_ilt(struct bnx2x * bp,u16 line)1645 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1646 {
1647 int i;
1648 struct bnx2x_ilt *ilt = BP_ILT(bp);
1649
1650 if (!IS_SRIOV(bp))
1651 return line;
1652
1653 /* set vfs ilt lines */
1654 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1655 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1656
1657 ilt->lines[line+i].page = hw_cxt->addr;
1658 ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1659 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1660 }
1661 return line + i;
1662 }
1663
bnx2x_iov_is_vf_cid(struct bnx2x * bp,u16 cid)1664 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1665 {
1666 return ((cid >= BNX2X_FIRST_VF_CID) &&
1667 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1668 }
1669
1670 static
bnx2x_vf_handle_classification_eqe(struct bnx2x * bp,struct bnx2x_vf_queue * vfq,union event_ring_elem * elem)1671 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1672 struct bnx2x_vf_queue *vfq,
1673 union event_ring_elem *elem)
1674 {
1675 unsigned long ramrod_flags = 0;
1676 int rc = 0;
1677 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1678
1679 /* Always push next commands out, don't wait here */
1680 set_bit(RAMROD_CONT, &ramrod_flags);
1681
1682 switch (echo >> BNX2X_SWCID_SHIFT) {
1683 case BNX2X_FILTER_MAC_PENDING:
1684 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1685 &ramrod_flags);
1686 break;
1687 case BNX2X_FILTER_VLAN_PENDING:
1688 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1689 &ramrod_flags);
1690 break;
1691 default:
1692 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1693 return;
1694 }
1695 if (rc < 0)
1696 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1697 else if (rc > 0)
1698 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1699 }
1700
1701 static
bnx2x_vf_handle_mcast_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1702 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1703 struct bnx2x_virtf *vf)
1704 {
1705 struct bnx2x_mcast_ramrod_params rparam = {NULL};
1706 int rc;
1707
1708 rparam.mcast_obj = &vf->mcast_obj;
1709 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1710
1711 /* If there are pending mcast commands - send them */
1712 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1713 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1714 if (rc < 0)
1715 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1716 rc);
1717 }
1718 }
1719
1720 static
bnx2x_vf_handle_filters_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1721 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1722 struct bnx2x_virtf *vf)
1723 {
1724 smp_mb__before_atomic();
1725 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1726 smp_mb__after_atomic();
1727 }
1728
bnx2x_vf_handle_rss_update_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1729 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1730 struct bnx2x_virtf *vf)
1731 {
1732 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1733 }
1734
bnx2x_iov_eq_sp_event(struct bnx2x * bp,union event_ring_elem * elem)1735 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1736 {
1737 struct bnx2x_virtf *vf;
1738 int qidx = 0, abs_vfid;
1739 u8 opcode;
1740 u16 cid = 0xffff;
1741
1742 if (!IS_SRIOV(bp))
1743 return 1;
1744
1745 /* first get the cid - the only events we handle here are cfc-delete
1746 * and set-mac completion
1747 */
1748 opcode = elem->message.opcode;
1749
1750 switch (opcode) {
1751 case EVENT_RING_OPCODE_CFC_DEL:
1752 cid = SW_CID(elem->message.data.cfc_del_event.cid);
1753 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1754 break;
1755 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1756 case EVENT_RING_OPCODE_MULTICAST_RULES:
1757 case EVENT_RING_OPCODE_FILTERS_RULES:
1758 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1759 cid = SW_CID(elem->message.data.eth_event.echo);
1760 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1761 break;
1762 case EVENT_RING_OPCODE_VF_FLR:
1763 abs_vfid = elem->message.data.vf_flr_event.vf_id;
1764 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1765 abs_vfid);
1766 goto get_vf;
1767 case EVENT_RING_OPCODE_MALICIOUS_VF:
1768 abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1769 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1770 abs_vfid,
1771 elem->message.data.malicious_vf_event.err_id);
1772 goto get_vf;
1773 default:
1774 return 1;
1775 }
1776
1777 /* check if the cid is the VF range */
1778 if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1779 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1780 return 1;
1781 }
1782
1783 /* extract vf and rxq index from vf_cid - relies on the following:
1784 * 1. vfid on cid reflects the true abs_vfid
1785 * 2. The max number of VFs (per path) is 64
1786 */
1787 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1788 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1789 get_vf:
1790 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1791
1792 if (!vf) {
1793 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1794 cid, abs_vfid);
1795 return 0;
1796 }
1797
1798 switch (opcode) {
1799 case EVENT_RING_OPCODE_CFC_DEL:
1800 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1801 vf->abs_vfid, qidx);
1802 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1803 &vfq_get(vf,
1804 qidx)->sp_obj,
1805 BNX2X_Q_CMD_CFC_DEL);
1806 break;
1807 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1808 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1809 vf->abs_vfid, qidx);
1810 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1811 break;
1812 case EVENT_RING_OPCODE_MULTICAST_RULES:
1813 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1814 vf->abs_vfid, qidx);
1815 bnx2x_vf_handle_mcast_eqe(bp, vf);
1816 break;
1817 case EVENT_RING_OPCODE_FILTERS_RULES:
1818 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1819 vf->abs_vfid, qidx);
1820 bnx2x_vf_handle_filters_eqe(bp, vf);
1821 break;
1822 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1823 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1824 vf->abs_vfid, qidx);
1825 bnx2x_vf_handle_rss_update_eqe(bp, vf);
1826 fallthrough;
1827 case EVENT_RING_OPCODE_VF_FLR:
1828 /* Do nothing for now */
1829 return 0;
1830 case EVENT_RING_OPCODE_MALICIOUS_VF:
1831 vf->malicious = true;
1832 return 0;
1833 }
1834
1835 return 0;
1836 }
1837
bnx2x_vf_by_cid(struct bnx2x * bp,int vf_cid)1838 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1839 {
1840 /* extract the vf from vf_cid - relies on the following:
1841 * 1. vfid on cid reflects the true abs_vfid
1842 * 2. The max number of VFs (per path) is 64
1843 */
1844 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1845 return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1846 }
1847
bnx2x_iov_set_queue_sp_obj(struct bnx2x * bp,int vf_cid,struct bnx2x_queue_sp_obj ** q_obj)1848 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1849 struct bnx2x_queue_sp_obj **q_obj)
1850 {
1851 struct bnx2x_virtf *vf;
1852
1853 if (!IS_SRIOV(bp))
1854 return;
1855
1856 vf = bnx2x_vf_by_cid(bp, vf_cid);
1857
1858 if (vf) {
1859 /* extract queue index from vf_cid - relies on the following:
1860 * 1. vfid on cid reflects the true abs_vfid
1861 * 2. The max number of VFs (per path) is 64
1862 */
1863 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1864 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1865 } else {
1866 BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1867 }
1868 }
1869
bnx2x_iov_adjust_stats_req(struct bnx2x * bp)1870 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1871 {
1872 int i;
1873 int first_queue_query_index, num_queues_req;
1874 struct stats_query_entry *cur_query_entry;
1875 u8 stats_count = 0;
1876 bool is_fcoe = false;
1877
1878 if (!IS_SRIOV(bp))
1879 return;
1880
1881 if (!NO_FCOE(bp))
1882 is_fcoe = true;
1883
1884 /* fcoe adds one global request and one queue request */
1885 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1886 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1887 (is_fcoe ? 0 : 1);
1888
1889 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1890 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1891 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1892 first_queue_query_index + num_queues_req);
1893
1894 cur_query_entry = &bp->fw_stats_req->
1895 query[first_queue_query_index + num_queues_req];
1896
1897 for_each_vf(bp, i) {
1898 int j;
1899 struct bnx2x_virtf *vf = BP_VF(bp, i);
1900
1901 if (vf->state != VF_ENABLED) {
1902 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1903 "vf %d not enabled so no stats for it\n",
1904 vf->abs_vfid);
1905 continue;
1906 }
1907
1908 if (vf->malicious) {
1909 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1910 "vf %d malicious so no stats for it\n",
1911 vf->abs_vfid);
1912 continue;
1913 }
1914
1915 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1916 "add addresses for vf %d\n", vf->abs_vfid);
1917 for_each_vfq(vf, j) {
1918 struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1919
1920 dma_addr_t q_stats_addr =
1921 vf->fw_stat_map + j * vf->stats_stride;
1922
1923 /* collect stats fro active queues only */
1924 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1925 BNX2X_Q_LOGICAL_STATE_STOPPED)
1926 continue;
1927
1928 /* create stats query entry for this queue */
1929 cur_query_entry->kind = STATS_TYPE_QUEUE;
1930 cur_query_entry->index = vfq_stat_id(vf, rxq);
1931 cur_query_entry->funcID =
1932 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1933 cur_query_entry->address.hi =
1934 cpu_to_le32(U64_HI(q_stats_addr));
1935 cur_query_entry->address.lo =
1936 cpu_to_le32(U64_LO(q_stats_addr));
1937 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1938 "added address %x %x for vf %d queue %d client %d\n",
1939 cur_query_entry->address.hi,
1940 cur_query_entry->address.lo,
1941 cur_query_entry->funcID,
1942 j, cur_query_entry->index);
1943 cur_query_entry++;
1944 stats_count++;
1945
1946 /* all stats are coalesced to the leading queue */
1947 if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1948 break;
1949 }
1950 }
1951 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1952 }
1953
1954 /* VF API helpers */
bnx2x_vf_qtbl_set_q(struct bnx2x * bp,u8 abs_vfid,u8 qid,u8 enable)1955 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1956 u8 enable)
1957 {
1958 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1959 u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1960
1961 REG_WR(bp, reg, val);
1962 }
1963
bnx2x_vf_clr_qtbl(struct bnx2x * bp,struct bnx2x_virtf * vf)1964 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1965 {
1966 int i;
1967
1968 for_each_vfq(vf, i)
1969 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1970 vfq_qzone_id(vf, vfq_get(vf, i)), false);
1971 }
1972
bnx2x_vf_igu_disable(struct bnx2x * bp,struct bnx2x_virtf * vf)1973 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1974 {
1975 u32 val;
1976
1977 /* clear the VF configuration - pretend */
1978 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1979 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1980 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1981 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1982 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1983 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1984 }
1985
bnx2x_vf_max_queue_cnt(struct bnx2x * bp,struct bnx2x_virtf * vf)1986 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1987 {
1988 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1989 BNX2X_VF_MAX_QUEUES);
1990 }
1991
1992 static
bnx2x_vf_chk_avail_resc(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * req_resc)1993 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1994 struct vf_pf_resc_request *req_resc)
1995 {
1996 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1997 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1998
1999 return ((req_resc->num_rxqs <= rxq_cnt) &&
2000 (req_resc->num_txqs <= txq_cnt) &&
2001 (req_resc->num_sbs <= vf_sb_count(vf)) &&
2002 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2003 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
2004 }
2005
2006 /* CORE VF API */
bnx2x_vf_acquire(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * resc)2007 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2008 struct vf_pf_resc_request *resc)
2009 {
2010 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2011 BNX2X_CIDS_PER_VF;
2012
2013 union cdu_context *base_cxt = (union cdu_context *)
2014 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2015 (base_vf_cid & (ILT_PAGE_CIDS-1));
2016 int i;
2017
2018 /* if state is 'acquired' the VF was not released or FLR'd, in
2019 * this case the returned resources match the acquired already
2020 * acquired resources. Verify that the requested numbers do
2021 * not exceed the already acquired numbers.
2022 */
2023 if (vf->state == VF_ACQUIRED) {
2024 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2025 vf->abs_vfid);
2026
2027 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2028 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2029 vf->abs_vfid);
2030 return -EINVAL;
2031 }
2032 return 0;
2033 }
2034
2035 /* Otherwise vf state must be 'free' or 'reset' */
2036 if (vf->state != VF_FREE && vf->state != VF_RESET) {
2037 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2038 vf->abs_vfid, vf->state);
2039 return -EINVAL;
2040 }
2041
2042 /* static allocation:
2043 * the global maximum number are fixed per VF. Fail the request if
2044 * requested number exceed these globals
2045 */
2046 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2047 DP(BNX2X_MSG_IOV,
2048 "cannot fulfill vf resource request. Placing maximal available values in response\n");
2049 /* set the max resource in the vf */
2050 return -ENOMEM;
2051 }
2052
2053 /* Set resources counters - 0 request means max available */
2054 vf_sb_count(vf) = resc->num_sbs;
2055 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2056 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2057
2058 DP(BNX2X_MSG_IOV,
2059 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2060 vf_sb_count(vf), vf_rxq_count(vf),
2061 vf_txq_count(vf), vf_mac_rules_cnt(vf),
2062 vf_vlan_rules_cnt(vf));
2063
2064 /* Initialize the queues */
2065 if (!vf->vfqs) {
2066 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2067 return -EINVAL;
2068 }
2069
2070 for_each_vfq(vf, i) {
2071 struct bnx2x_vf_queue *q = vfq_get(vf, i);
2072
2073 if (!q) {
2074 BNX2X_ERR("q number %d was not allocated\n", i);
2075 return -EINVAL;
2076 }
2077
2078 q->index = i;
2079 q->cxt = &((base_cxt + i)->eth);
2080 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2081
2082 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2083 vf->abs_vfid, i, q->index, q->cid, q->cxt);
2084
2085 /* init SP objects */
2086 bnx2x_vfq_init(bp, vf, q);
2087 }
2088 vf->state = VF_ACQUIRED;
2089 return 0;
2090 }
2091
bnx2x_vf_init(struct bnx2x * bp,struct bnx2x_virtf * vf,dma_addr_t * sb_map)2092 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2093 {
2094 struct bnx2x_func_init_params func_init = {0};
2095 int i;
2096
2097 /* the sb resources are initialized at this point, do the
2098 * FW/HW initializations
2099 */
2100 for_each_vf_sb(vf, i)
2101 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2102 vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2103
2104 /* Sanity checks */
2105 if (vf->state != VF_ACQUIRED) {
2106 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2107 vf->abs_vfid, vf->state);
2108 return -EINVAL;
2109 }
2110
2111 /* let FLR complete ... */
2112 msleep(100);
2113
2114 /* FLR cleanup epilogue */
2115 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2116 return -EBUSY;
2117
2118 /* reset IGU VF statistics: MSIX */
2119 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2120
2121 /* function setup */
2122 func_init.pf_id = BP_FUNC(bp);
2123 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2124 bnx2x_func_init(bp, &func_init);
2125
2126 /* Enable the vf */
2127 bnx2x_vf_enable_access(bp, vf->abs_vfid);
2128 bnx2x_vf_enable_traffic(bp, vf);
2129
2130 /* queue protection table */
2131 for_each_vfq(vf, i)
2132 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2133 vfq_qzone_id(vf, vfq_get(vf, i)), true);
2134
2135 vf->state = VF_ENABLED;
2136
2137 /* update vf bulletin board */
2138 bnx2x_post_vf_bulletin(bp, vf->index);
2139
2140 return 0;
2141 }
2142
2143 struct set_vf_state_cookie {
2144 struct bnx2x_virtf *vf;
2145 u8 state;
2146 };
2147
bnx2x_set_vf_state(void * cookie)2148 static void bnx2x_set_vf_state(void *cookie)
2149 {
2150 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2151
2152 p->vf->state = p->state;
2153 }
2154
bnx2x_vf_close(struct bnx2x * bp,struct bnx2x_virtf * vf)2155 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2156 {
2157 int rc = 0, i;
2158
2159 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2160
2161 /* Close all queues */
2162 for (i = 0; i < vf_rxq_count(vf); i++) {
2163 rc = bnx2x_vf_queue_teardown(bp, vf, i);
2164 if (rc)
2165 goto op_err;
2166 }
2167
2168 /* disable the interrupts */
2169 DP(BNX2X_MSG_IOV, "disabling igu\n");
2170 bnx2x_vf_igu_disable(bp, vf);
2171
2172 /* disable the VF */
2173 DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2174 bnx2x_vf_clr_qtbl(bp, vf);
2175
2176 /* need to make sure there are no outstanding stats ramrods which may
2177 * cause the device to access the VF's stats buffer which it will free
2178 * as soon as we return from the close flow.
2179 */
2180 {
2181 struct set_vf_state_cookie cookie;
2182
2183 cookie.vf = vf;
2184 cookie.state = VF_ACQUIRED;
2185 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2186 if (rc)
2187 goto op_err;
2188 }
2189
2190 DP(BNX2X_MSG_IOV, "set state to acquired\n");
2191
2192 return 0;
2193 op_err:
2194 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2195 return rc;
2196 }
2197
2198 /* VF release can be called either: 1. The VF was acquired but
2199 * not enabled 2. the vf was enabled or in the process of being
2200 * enabled
2201 */
bnx2x_vf_free(struct bnx2x * bp,struct bnx2x_virtf * vf)2202 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2203 {
2204 int rc;
2205
2206 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2207 vf->state == VF_FREE ? "Free" :
2208 vf->state == VF_ACQUIRED ? "Acquired" :
2209 vf->state == VF_ENABLED ? "Enabled" :
2210 vf->state == VF_RESET ? "Reset" :
2211 "Unknown");
2212
2213 switch (vf->state) {
2214 case VF_ENABLED:
2215 rc = bnx2x_vf_close(bp, vf);
2216 if (rc)
2217 goto op_err;
2218 fallthrough; /* to release resources */
2219 case VF_ACQUIRED:
2220 DP(BNX2X_MSG_IOV, "about to free resources\n");
2221 bnx2x_vf_free_resc(bp, vf);
2222 break;
2223
2224 case VF_FREE:
2225 case VF_RESET:
2226 default:
2227 break;
2228 }
2229 return 0;
2230 op_err:
2231 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2232 return rc;
2233 }
2234
bnx2x_vf_rss_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_config_rss_params * rss)2235 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2236 struct bnx2x_config_rss_params *rss)
2237 {
2238 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2239 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2240 return bnx2x_config_rss(bp, rss);
2241 }
2242
bnx2x_vf_tpa_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vfpf_tpa_tlv * tlv,struct bnx2x_queue_update_tpa_params * params)2243 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2244 struct vfpf_tpa_tlv *tlv,
2245 struct bnx2x_queue_update_tpa_params *params)
2246 {
2247 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2248 struct bnx2x_queue_state_params qstate;
2249 int qid, rc = 0;
2250
2251 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2252
2253 /* Set ramrod params */
2254 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2255 memcpy(&qstate.params.update_tpa, params,
2256 sizeof(struct bnx2x_queue_update_tpa_params));
2257 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2258 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2259
2260 for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2261 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2262 qstate.params.update_tpa.sge_map = sge_addr[qid];
2263 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2264 vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2265 U64_LO(sge_addr[qid]));
2266 rc = bnx2x_queue_state_change(bp, &qstate);
2267 if (rc) {
2268 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2269 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2270 vf->abs_vfid, qid);
2271 return rc;
2272 }
2273 }
2274
2275 return rc;
2276 }
2277
2278 /* VF release ~ VF close + VF release-resources
2279 * Release is the ultimate SW shutdown and is called whenever an
2280 * irrecoverable error is encountered.
2281 */
bnx2x_vf_release(struct bnx2x * bp,struct bnx2x_virtf * vf)2282 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2283 {
2284 int rc;
2285
2286 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2287 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2288
2289 rc = bnx2x_vf_free(bp, vf);
2290 if (rc)
2291 WARN(rc,
2292 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2293 vf->abs_vfid, rc);
2294 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2295 return rc;
2296 }
2297
bnx2x_lock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs tlv)2298 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2299 enum channel_tlvs tlv)
2300 {
2301 /* we don't lock the channel for unsupported tlvs */
2302 if (!bnx2x_tlv_supported(tlv)) {
2303 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2304 return;
2305 }
2306
2307 /* lock the channel */
2308 mutex_lock(&vf->op_mutex);
2309
2310 /* record the locking op */
2311 vf->op_current = tlv;
2312
2313 /* log the lock */
2314 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2315 vf->abs_vfid, tlv);
2316 }
2317
bnx2x_unlock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs expected_tlv)2318 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2319 enum channel_tlvs expected_tlv)
2320 {
2321 enum channel_tlvs current_tlv;
2322
2323 if (!vf) {
2324 BNX2X_ERR("VF was %p\n", vf);
2325 return;
2326 }
2327
2328 current_tlv = vf->op_current;
2329
2330 /* we don't unlock the channel for unsupported tlvs */
2331 if (!bnx2x_tlv_supported(expected_tlv))
2332 return;
2333
2334 WARN(expected_tlv != vf->op_current,
2335 "lock mismatch: expected %d found %d", expected_tlv,
2336 vf->op_current);
2337
2338 /* record the locking op */
2339 vf->op_current = CHANNEL_TLV_NONE;
2340
2341 /* lock the channel */
2342 mutex_unlock(&vf->op_mutex);
2343
2344 /* log the unlock */
2345 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2346 vf->abs_vfid, current_tlv);
2347 }
2348
bnx2x_set_pf_tx_switching(struct bnx2x * bp,bool enable)2349 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2350 {
2351 struct bnx2x_queue_state_params q_params;
2352 u32 prev_flags;
2353 int i, rc;
2354
2355 /* Verify changes are needed and record current Tx switching state */
2356 prev_flags = bp->flags;
2357 if (enable)
2358 bp->flags |= TX_SWITCHING;
2359 else
2360 bp->flags &= ~TX_SWITCHING;
2361 if (prev_flags == bp->flags)
2362 return 0;
2363
2364 /* Verify state enables the sending of queue ramrods */
2365 if ((bp->state != BNX2X_STATE_OPEN) ||
2366 (bnx2x_get_q_logical_state(bp,
2367 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2368 BNX2X_Q_LOGICAL_STATE_ACTIVE))
2369 return 0;
2370
2371 /* send q. update ramrod to configure Tx switching */
2372 memset(&q_params, 0, sizeof(q_params));
2373 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2374 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2375 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2376 &q_params.params.update.update_flags);
2377 if (enable)
2378 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2379 &q_params.params.update.update_flags);
2380 else
2381 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2382 &q_params.params.update.update_flags);
2383
2384 /* send the ramrod on all the queues of the PF */
2385 for_each_eth_queue(bp, i) {
2386 struct bnx2x_fastpath *fp = &bp->fp[i];
2387 int tx_idx;
2388
2389 /* Set the appropriate Queue object */
2390 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2391
2392 for (tx_idx = FIRST_TX_COS_INDEX;
2393 tx_idx < fp->max_cos; tx_idx++) {
2394 q_params.params.update.cid_index = tx_idx;
2395
2396 /* Update the Queue state */
2397 rc = bnx2x_queue_state_change(bp, &q_params);
2398 if (rc) {
2399 BNX2X_ERR("Failed to configure Tx switching\n");
2400 return rc;
2401 }
2402 }
2403 }
2404
2405 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2406 return 0;
2407 }
2408
bnx2x_sriov_configure(struct pci_dev * dev,int num_vfs_param)2409 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2410 {
2411 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2412
2413 if (!IS_SRIOV(bp)) {
2414 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2415 return -EINVAL;
2416 }
2417
2418 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2419 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2420
2421 /* HW channel is only operational when PF is up */
2422 if (bp->state != BNX2X_STATE_OPEN) {
2423 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2424 return -EINVAL;
2425 }
2426
2427 /* we are always bound by the total_vfs in the configuration space */
2428 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2429 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2430 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2431 num_vfs_param = BNX2X_NR_VIRTFN(bp);
2432 }
2433
2434 bp->requested_nr_virtfn = num_vfs_param;
2435 if (num_vfs_param == 0) {
2436 bnx2x_set_pf_tx_switching(bp, false);
2437 bnx2x_disable_sriov(bp);
2438 return 0;
2439 } else {
2440 return bnx2x_enable_sriov(bp);
2441 }
2442 }
2443
2444 #define IGU_ENTRY_SIZE 4
2445
bnx2x_enable_sriov(struct bnx2x * bp)2446 int bnx2x_enable_sriov(struct bnx2x *bp)
2447 {
2448 int rc = 0, req_vfs = bp->requested_nr_virtfn;
2449 int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2450 u32 igu_entry, address;
2451 u16 num_vf_queues;
2452
2453 if (req_vfs == 0)
2454 return 0;
2455
2456 first_vf = bp->vfdb->sriov.first_vf_in_pf;
2457
2458 /* statically distribute vf sb pool between VFs */
2459 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2460 BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2461
2462 /* zero previous values learned from igu cam */
2463 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2464 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2465
2466 vf->sb_count = 0;
2467 vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2468 }
2469 bp->vfdb->vf_sbs_pool = 0;
2470
2471 /* prepare IGU cam */
2472 sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2473 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2474 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2475 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2476 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2477 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2478 IGU_REG_MAPPING_MEMORY_VALID;
2479 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2480 sb_idx, vf_idx);
2481 REG_WR(bp, address, igu_entry);
2482 sb_idx++;
2483 address += IGU_ENTRY_SIZE;
2484 }
2485 }
2486
2487 /* Reinitialize vf database according to igu cam */
2488 bnx2x_get_vf_igu_cam_info(bp);
2489
2490 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2491 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2492
2493 qcount = 0;
2494 for_each_vf(bp, vf_idx) {
2495 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2496
2497 /* set local queue arrays */
2498 vf->vfqs = &bp->vfdb->vfqs[qcount];
2499 qcount += vf_sb_count(vf);
2500 bnx2x_iov_static_resc(bp, vf);
2501 }
2502
2503 /* prepare msix vectors in VF configuration space - the value in the
2504 * PCI configuration space should be the index of the last entry,
2505 * namely one less than the actual size of the table
2506 */
2507 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2508 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2509 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2510 num_vf_queues - 1);
2511 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2512 vf_idx, num_vf_queues - 1);
2513 }
2514 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2515
2516 /* enable sriov. This will probe all the VFs, and consequentially cause
2517 * the "acquire" messages to appear on the VF PF channel.
2518 */
2519 DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2520 bnx2x_disable_sriov(bp);
2521
2522 rc = bnx2x_set_pf_tx_switching(bp, true);
2523 if (rc)
2524 return rc;
2525
2526 rc = pci_enable_sriov(bp->pdev, req_vfs);
2527 if (rc) {
2528 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2529 return rc;
2530 }
2531 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2532 return req_vfs;
2533 }
2534
bnx2x_pf_set_vfs_vlan(struct bnx2x * bp)2535 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2536 {
2537 int vfidx;
2538 struct pf_vf_bulletin_content *bulletin;
2539
2540 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2541 for_each_vf(bp, vfidx) {
2542 bulletin = BP_VF_BULLETIN(bp, vfidx);
2543 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2544 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2545 htons(ETH_P_8021Q));
2546 }
2547 }
2548
bnx2x_disable_sriov(struct bnx2x * bp)2549 void bnx2x_disable_sriov(struct bnx2x *bp)
2550 {
2551 if (pci_vfs_assigned(bp->pdev)) {
2552 DP(BNX2X_MSG_IOV,
2553 "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2554 return;
2555 }
2556
2557 pci_disable_sriov(bp->pdev);
2558 }
2559
bnx2x_vf_op_prep(struct bnx2x * bp,int vfidx,struct bnx2x_virtf ** vf,struct pf_vf_bulletin_content ** bulletin,bool test_queue)2560 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2561 struct bnx2x_virtf **vf,
2562 struct pf_vf_bulletin_content **bulletin,
2563 bool test_queue)
2564 {
2565 if (bp->state != BNX2X_STATE_OPEN) {
2566 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2567 return -EINVAL;
2568 }
2569
2570 if (!IS_SRIOV(bp)) {
2571 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2572 return -EINVAL;
2573 }
2574
2575 if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2576 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2577 vfidx, BNX2X_NR_VIRTFN(bp));
2578 return -EINVAL;
2579 }
2580
2581 /* init members */
2582 *vf = BP_VF(bp, vfidx);
2583 *bulletin = BP_VF_BULLETIN(bp, vfidx);
2584
2585 if (!*vf) {
2586 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2587 return -EINVAL;
2588 }
2589
2590 if (test_queue && !(*vf)->vfqs) {
2591 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2592 vfidx);
2593 return -EINVAL;
2594 }
2595
2596 if (!*bulletin) {
2597 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2598 vfidx);
2599 return -EINVAL;
2600 }
2601
2602 return 0;
2603 }
2604
bnx2x_get_vf_config(struct net_device * dev,int vfidx,struct ifla_vf_info * ivi)2605 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2606 struct ifla_vf_info *ivi)
2607 {
2608 struct bnx2x *bp = netdev_priv(dev);
2609 struct bnx2x_virtf *vf = NULL;
2610 struct pf_vf_bulletin_content *bulletin = NULL;
2611 struct bnx2x_vlan_mac_obj *mac_obj;
2612 struct bnx2x_vlan_mac_obj *vlan_obj;
2613 int rc;
2614
2615 /* sanity and init */
2616 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2617 if (rc)
2618 return rc;
2619
2620 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2621 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2622 if (!mac_obj || !vlan_obj) {
2623 BNX2X_ERR("VF partially initialized\n");
2624 return -EINVAL;
2625 }
2626
2627 ivi->vf = vfidx;
2628 ivi->qos = 0;
2629 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2630 ivi->min_tx_rate = 0;
2631 ivi->spoofchk = vf->spoofchk ? 1 : 0;
2632 ivi->linkstate = vf->link_cfg;
2633 if (vf->state == VF_ENABLED) {
2634 /* mac and vlan are in vlan_mac objects */
2635 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2636 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2637 0, ETH_ALEN);
2638 vlan_obj->get_n_elements(bp, vlan_obj, 1,
2639 (u8 *)&ivi->vlan, 0,
2640 VLAN_HLEN);
2641 }
2642 } else {
2643 mutex_lock(&bp->vfdb->bulletin_mutex);
2644 /* mac */
2645 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2646 /* mac configured by ndo so its in bulletin board */
2647 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2648 else
2649 /* function has not been loaded yet. Show mac as 0s */
2650 eth_zero_addr(ivi->mac);
2651
2652 /* vlan */
2653 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2654 /* vlan configured by ndo so its in bulletin board */
2655 ivi->vlan = bulletin->vlan;
2656 else
2657 /* function has not been loaded yet. Show vlans as 0s */
2658 ivi->vlan = 0;
2659
2660 mutex_unlock(&bp->vfdb->bulletin_mutex);
2661 }
2662
2663 return 0;
2664 }
2665
2666 /* New mac for VF. Consider these cases:
2667 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2668 * supply at acquire.
2669 * 2. VF has already been acquired but has not yet initialized - store in local
2670 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2671 * will configure this mac when it is ready.
2672 * 3. VF has already initialized but has not yet setup a queue - post the new
2673 * mac on VF's bulletin board right now. VF will configure this mac when it
2674 * is ready.
2675 * 4. VF has already set a queue - delete any macs already configured for this
2676 * queue and manually config the new mac.
2677 * In any event, once this function has been called refuse any attempts by the
2678 * VF to configure any mac for itself except for this mac. In case of a race
2679 * where the VF fails to see the new post on its bulletin board before sending a
2680 * mac configuration request, the PF will simply fail the request and VF can try
2681 * again after consulting its bulletin board.
2682 */
bnx2x_set_vf_mac(struct net_device * dev,int vfidx,u8 * mac)2683 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2684 {
2685 struct bnx2x *bp = netdev_priv(dev);
2686 int rc, q_logical_state;
2687 struct bnx2x_virtf *vf = NULL;
2688 struct pf_vf_bulletin_content *bulletin = NULL;
2689
2690 if (!is_valid_ether_addr(mac)) {
2691 BNX2X_ERR("mac address invalid\n");
2692 return -EINVAL;
2693 }
2694
2695 /* sanity and init */
2696 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2697 if (rc)
2698 return rc;
2699
2700 mutex_lock(&bp->vfdb->bulletin_mutex);
2701
2702 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2703 * configuration requests from vf unless match this mac
2704 */
2705 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2706 memcpy(bulletin->mac, mac, ETH_ALEN);
2707
2708 /* Post update on VF's bulletin board */
2709 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2710
2711 /* release lock before checking return code */
2712 mutex_unlock(&bp->vfdb->bulletin_mutex);
2713
2714 if (rc) {
2715 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2716 return rc;
2717 }
2718
2719 q_logical_state =
2720 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2721 if (vf->state == VF_ENABLED &&
2722 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2723 /* configure the mac in device on this vf's queue */
2724 unsigned long ramrod_flags = 0;
2725 struct bnx2x_vlan_mac_obj *mac_obj;
2726
2727 /* User should be able to see failure reason in system logs */
2728 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2729 return -EINVAL;
2730
2731 /* must lock vfpf channel to protect against vf flows */
2732 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2733
2734 /* remove existing eth macs */
2735 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2736 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2737 if (rc) {
2738 BNX2X_ERR("failed to delete eth macs\n");
2739 rc = -EINVAL;
2740 goto out;
2741 }
2742
2743 /* remove existing uc list macs */
2744 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2745 if (rc) {
2746 BNX2X_ERR("failed to delete uc_list macs\n");
2747 rc = -EINVAL;
2748 goto out;
2749 }
2750
2751 /* configure the new mac to device */
2752 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2753 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2754 BNX2X_ETH_MAC, &ramrod_flags);
2755
2756 out:
2757 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2758 }
2759
2760 return rc;
2761 }
2762
bnx2x_set_vf_vlan_acceptance(struct bnx2x * bp,struct bnx2x_virtf * vf,bool accept)2763 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2764 struct bnx2x_virtf *vf, bool accept)
2765 {
2766 struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2767 unsigned long accept_flags;
2768
2769 /* need to remove/add the VF's accept_any_vlan bit */
2770 accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2771 if (accept)
2772 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2773 else
2774 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2775
2776 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2777 accept_flags);
2778 bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2779 bnx2x_config_rx_mode(bp, &rx_ramrod);
2780 }
2781
bnx2x_set_vf_vlan_filter(struct bnx2x * bp,struct bnx2x_virtf * vf,u16 vlan,bool add)2782 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2783 u16 vlan, bool add)
2784 {
2785 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2786 unsigned long ramrod_flags = 0;
2787 int rc = 0;
2788
2789 /* configure the new vlan to device */
2790 memset(&ramrod_param, 0, sizeof(ramrod_param));
2791 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2792 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2793 ramrod_param.ramrod_flags = ramrod_flags;
2794 ramrod_param.user_req.u.vlan.vlan = vlan;
2795 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2796 : BNX2X_VLAN_MAC_DEL;
2797 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2798 if (rc) {
2799 BNX2X_ERR("failed to configure vlan\n");
2800 return -EINVAL;
2801 }
2802
2803 return 0;
2804 }
2805
bnx2x_set_vf_vlan(struct net_device * dev,int vfidx,u16 vlan,u8 qos,__be16 vlan_proto)2806 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2807 __be16 vlan_proto)
2808 {
2809 struct pf_vf_bulletin_content *bulletin = NULL;
2810 struct bnx2x *bp = netdev_priv(dev);
2811 struct bnx2x_vlan_mac_obj *vlan_obj;
2812 unsigned long vlan_mac_flags = 0;
2813 unsigned long ramrod_flags = 0;
2814 struct bnx2x_virtf *vf = NULL;
2815 int i, rc;
2816
2817 if (vlan > 4095) {
2818 BNX2X_ERR("illegal vlan value %d\n", vlan);
2819 return -EINVAL;
2820 }
2821
2822 if (vlan_proto != htons(ETH_P_8021Q))
2823 return -EPROTONOSUPPORT;
2824
2825 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2826 vfidx, vlan, 0);
2827
2828 /* sanity and init */
2829 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2830 if (rc)
2831 return rc;
2832
2833 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2834 * to the VF since it doesn't have anything to do with it. But it useful
2835 * to store it here in case the VF is not up yet and we can only
2836 * configure the vlan later when it does. Treat vlan id 0 as remove the
2837 * Host tag.
2838 */
2839 mutex_lock(&bp->vfdb->bulletin_mutex);
2840
2841 if (vlan > 0)
2842 bulletin->valid_bitmap |= 1 << VLAN_VALID;
2843 else
2844 bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2845 bulletin->vlan = vlan;
2846
2847 /* Post update on VF's bulletin board */
2848 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2849 if (rc)
2850 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2851 mutex_unlock(&bp->vfdb->bulletin_mutex);
2852
2853 /* is vf initialized and queue set up? */
2854 if (vf->state != VF_ENABLED ||
2855 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2856 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2857 return rc;
2858
2859 /* User should be able to see error in system logs */
2860 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2861 return -EINVAL;
2862
2863 /* must lock vfpf channel to protect against vf flows */
2864 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2865
2866 /* remove existing vlans */
2867 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2868 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2869 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2870 &ramrod_flags);
2871 if (rc) {
2872 BNX2X_ERR("failed to delete vlans\n");
2873 rc = -EINVAL;
2874 goto out;
2875 }
2876
2877 /* clear accept_any_vlan when HV forces vlan, otherwise
2878 * according to VF capabilities
2879 */
2880 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2881 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2882
2883 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2884 if (rc)
2885 goto out;
2886
2887 /* send queue update ramrods to configure default vlan and
2888 * silent vlan removal
2889 */
2890 for_each_vfq(vf, i) {
2891 struct bnx2x_queue_state_params q_params = {NULL};
2892 struct bnx2x_queue_update_params *update_params;
2893
2894 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2895
2896 /* validate the Q is UP */
2897 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2898 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2899 continue;
2900
2901 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2902 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2903 update_params = &q_params.params.update;
2904 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2905 &update_params->update_flags);
2906 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2907 &update_params->update_flags);
2908 if (vlan == 0) {
2909 /* if vlan is 0 then we want to leave the VF traffic
2910 * untagged, and leave the incoming traffic untouched
2911 * (i.e. do not remove any vlan tags).
2912 */
2913 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2914 &update_params->update_flags);
2915 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2916 &update_params->update_flags);
2917 } else {
2918 /* configure default vlan to vf queue and set silent
2919 * vlan removal (the vf remains unaware of this vlan).
2920 */
2921 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2922 &update_params->update_flags);
2923 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2924 &update_params->update_flags);
2925 update_params->def_vlan = vlan;
2926 update_params->silent_removal_value =
2927 vlan & VLAN_VID_MASK;
2928 update_params->silent_removal_mask = VLAN_VID_MASK;
2929 }
2930
2931 /* Update the Queue state */
2932 rc = bnx2x_queue_state_change(bp, &q_params);
2933 if (rc) {
2934 BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2935 i);
2936 goto out;
2937 }
2938 }
2939 out:
2940 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2941
2942 if (rc)
2943 DP(BNX2X_MSG_IOV,
2944 "updated VF[%d] vlan configuration (vlan = %d)\n",
2945 vfidx, vlan);
2946
2947 return rc;
2948 }
2949
bnx2x_set_vf_spoofchk(struct net_device * dev,int idx,bool val)2950 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val)
2951 {
2952 struct bnx2x *bp = netdev_priv(dev);
2953 struct bnx2x_virtf *vf;
2954 int i, rc = 0;
2955
2956 vf = BP_VF(bp, idx);
2957 if (!vf)
2958 return -EINVAL;
2959
2960 /* nothing to do */
2961 if (vf->spoofchk == val)
2962 return 0;
2963
2964 vf->spoofchk = val ? 1 : 0;
2965
2966 DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n",
2967 val ? "enabling" : "disabling", idx);
2968
2969 /* is vf initialized and queue set up? */
2970 if (vf->state != VF_ENABLED ||
2971 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2972 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2973 return rc;
2974
2975 /* User should be able to see error in system logs */
2976 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2977 return -EINVAL;
2978
2979 /* send queue update ramrods to configure spoofchk */
2980 for_each_vfq(vf, i) {
2981 struct bnx2x_queue_state_params q_params = {NULL};
2982 struct bnx2x_queue_update_params *update_params;
2983
2984 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2985
2986 /* validate the Q is UP */
2987 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2988 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2989 continue;
2990
2991 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2992 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2993 update_params = &q_params.params.update;
2994 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG,
2995 &update_params->update_flags);
2996 if (val) {
2997 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
2998 &update_params->update_flags);
2999 } else {
3000 __clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
3001 &update_params->update_flags);
3002 }
3003
3004 /* Update the Queue state */
3005 rc = bnx2x_queue_state_change(bp, &q_params);
3006 if (rc) {
3007 BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n",
3008 val ? "enable" : "disable", idx, i);
3009 goto out;
3010 }
3011 }
3012 out:
3013 if (!rc)
3014 DP(BNX2X_MSG_IOV,
3015 "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled",
3016 idx);
3017
3018 return rc;
3019 }
3020
3021 /* crc is the first field in the bulletin board. Compute the crc over the
3022 * entire bulletin board excluding the crc field itself. Use the length field
3023 * as the Bulletin Board was posted by a PF with possibly a different version
3024 * from the vf which will sample it. Therefore, the length is computed by the
3025 * PF and then used blindly by the VF.
3026 */
bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content * bulletin)3027 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
3028 {
3029 return crc32(BULLETIN_CRC_SEED,
3030 ((u8 *)bulletin) + sizeof(bulletin->crc),
3031 bulletin->length - sizeof(bulletin->crc));
3032 }
3033
3034 /* Check for new posts on the bulletin board */
bnx2x_sample_bulletin(struct bnx2x * bp)3035 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
3036 {
3037 struct pf_vf_bulletin_content *bulletin;
3038 int attempts;
3039
3040 /* sampling structure in mid post may result with corrupted data
3041 * validate crc to ensure coherency.
3042 */
3043 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
3044 u32 crc;
3045
3046 /* sample the bulletin board */
3047 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
3048 sizeof(union pf_vf_bulletin));
3049
3050 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
3051
3052 if (bp->shadow_bulletin.content.crc == crc)
3053 break;
3054
3055 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3056 bp->shadow_bulletin.content.crc, crc);
3057 }
3058
3059 if (attempts >= BULLETIN_ATTEMPTS) {
3060 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3061 attempts);
3062 return PFVF_BULLETIN_CRC_ERR;
3063 }
3064 bulletin = &bp->shadow_bulletin.content;
3065
3066 /* bulletin board hasn't changed since last sample */
3067 if (bp->old_bulletin.version == bulletin->version)
3068 return PFVF_BULLETIN_UNCHANGED;
3069
3070 /* the mac address in bulletin board is valid and is new */
3071 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3072 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3073 /* update new mac to net device */
3074 eth_hw_addr_set(bp->dev, bulletin->mac);
3075 }
3076
3077 if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3078 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3079 bulletin->link_speed, bulletin->link_flags);
3080
3081 bp->vf_link_vars.line_speed = bulletin->link_speed;
3082 bp->vf_link_vars.link_report_flags = 0;
3083 /* Link is down */
3084 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3085 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3086 &bp->vf_link_vars.link_report_flags);
3087 /* Full DUPLEX */
3088 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3089 __set_bit(BNX2X_LINK_REPORT_FD,
3090 &bp->vf_link_vars.link_report_flags);
3091 /* Rx Flow Control is ON */
3092 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3093 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3094 &bp->vf_link_vars.link_report_flags);
3095 /* Tx Flow Control is ON */
3096 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3097 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3098 &bp->vf_link_vars.link_report_flags);
3099 __bnx2x_link_report(bp);
3100 }
3101
3102 /* copy new bulletin board to bp */
3103 memcpy(&bp->old_bulletin, bulletin,
3104 sizeof(struct pf_vf_bulletin_content));
3105
3106 return PFVF_BULLETIN_UPDATED;
3107 }
3108
bnx2x_timer_sriov(struct bnx2x * bp)3109 void bnx2x_timer_sriov(struct bnx2x *bp)
3110 {
3111 bnx2x_sample_bulletin(bp);
3112
3113 /* if channel is down we need to self destruct */
3114 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3115 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3116 BNX2X_MSG_IOV);
3117 }
3118
bnx2x_vf_doorbells(struct bnx2x * bp)3119 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3120 {
3121 /* vf doorbells are embedded within the regview */
3122 return bp->regview + PXP_VF_ADDR_DB_START;
3123 }
3124
bnx2x_vf_pci_dealloc(struct bnx2x * bp)3125 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3126 {
3127 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3128 sizeof(struct bnx2x_vf_mbx_msg));
3129 BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3130 sizeof(union pf_vf_bulletin));
3131 }
3132
bnx2x_vf_pci_alloc(struct bnx2x * bp)3133 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3134 {
3135 mutex_init(&bp->vf2pf_mutex);
3136
3137 /* allocate vf2pf mailbox for vf to pf channel */
3138 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3139 sizeof(struct bnx2x_vf_mbx_msg));
3140 if (!bp->vf2pf_mbox)
3141 goto alloc_mem_err;
3142
3143 /* allocate pf 2 vf bulletin board */
3144 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3145 sizeof(union pf_vf_bulletin));
3146 if (!bp->pf2vf_bulletin)
3147 goto alloc_mem_err;
3148
3149 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3150
3151 return 0;
3152
3153 alloc_mem_err:
3154 bnx2x_vf_pci_dealloc(bp);
3155 return -ENOMEM;
3156 }
3157
bnx2x_iov_channel_down(struct bnx2x * bp)3158 void bnx2x_iov_channel_down(struct bnx2x *bp)
3159 {
3160 int vf_idx;
3161 struct pf_vf_bulletin_content *bulletin;
3162
3163 if (!IS_SRIOV(bp))
3164 return;
3165
3166 for_each_vf(bp, vf_idx) {
3167 /* locate this VFs bulletin board and update the channel down
3168 * bit
3169 */
3170 bulletin = BP_VF_BULLETIN(bp, vf_idx);
3171 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3172
3173 /* update vf bulletin board */
3174 bnx2x_post_vf_bulletin(bp, vf_idx);
3175 }
3176 }
3177
bnx2x_iov_task(struct work_struct * work)3178 void bnx2x_iov_task(struct work_struct *work)
3179 {
3180 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3181
3182 if (!netif_running(bp->dev))
3183 return;
3184
3185 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3186 &bp->iov_task_state))
3187 bnx2x_vf_handle_flr_event(bp);
3188
3189 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3190 &bp->iov_task_state))
3191 bnx2x_vf_mbx(bp);
3192 }
3193
bnx2x_schedule_iov_task(struct bnx2x * bp,enum bnx2x_iov_flag flag)3194 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3195 {
3196 smp_mb__before_atomic();
3197 set_bit(flag, &bp->iov_task_state);
3198 smp_mb__after_atomic();
3199 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3200 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3201 }
3202