xref: /freebsd/crypto/openssl/crypto/bn/bn_sqr.c (revision b077aed33b7b6aefca7b17ddb250cf521f938613)
1 /*
2  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include "internal/cryptlib.h"
11 #include "bn_local.h"
12 
13 /* r must not be a */
14 /*
15  * I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96
16  */
BN_sqr(BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)17 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
18 {
19     int ret = bn_sqr_fixed_top(r, a, ctx);
20 
21     bn_correct_top(r);
22     bn_check_top(r);
23 
24     return ret;
25 }
26 
bn_sqr_fixed_top(BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)27 int bn_sqr_fixed_top(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
28 {
29     int max, al;
30     int ret = 0;
31     BIGNUM *tmp, *rr;
32 
33     bn_check_top(a);
34 
35     al = a->top;
36     if (al <= 0) {
37         r->top = 0;
38         r->neg = 0;
39         return 1;
40     }
41 
42     BN_CTX_start(ctx);
43     rr = (a != r) ? r : BN_CTX_get(ctx);
44     tmp = BN_CTX_get(ctx);
45     if (rr == NULL || tmp == NULL)
46         goto err;
47 
48     max = 2 * al;               /* Non-zero (from above) */
49     if (bn_wexpand(rr, max) == NULL)
50         goto err;
51 
52     if (al == 4) {
53 #ifndef BN_SQR_COMBA
54         BN_ULONG t[8];
55         bn_sqr_normal(rr->d, a->d, 4, t);
56 #else
57         bn_sqr_comba4(rr->d, a->d);
58 #endif
59     } else if (al == 8) {
60 #ifndef BN_SQR_COMBA
61         BN_ULONG t[16];
62         bn_sqr_normal(rr->d, a->d, 8, t);
63 #else
64         bn_sqr_comba8(rr->d, a->d);
65 #endif
66     } else {
67 #if defined(BN_RECURSION)
68         if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
69             BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
70             bn_sqr_normal(rr->d, a->d, al, t);
71         } else {
72             int j, k;
73 
74             j = BN_num_bits_word((BN_ULONG)al);
75             j = 1 << (j - 1);
76             k = j + j;
77             if (al == j) {
78                 if (bn_wexpand(tmp, k * 2) == NULL)
79                     goto err;
80                 bn_sqr_recursive(rr->d, a->d, al, tmp->d);
81             } else {
82                 if (bn_wexpand(tmp, max) == NULL)
83                     goto err;
84                 bn_sqr_normal(rr->d, a->d, al, tmp->d);
85             }
86         }
87 #else
88         if (bn_wexpand(tmp, max) == NULL)
89             goto err;
90         bn_sqr_normal(rr->d, a->d, al, tmp->d);
91 #endif
92     }
93 
94     rr->neg = 0;
95     rr->top = max;
96     rr->flags |= BN_FLG_FIXED_TOP;
97     if (r != rr && BN_copy(r, rr) == NULL)
98         goto err;
99 
100     ret = 1;
101  err:
102     bn_check_top(rr);
103     bn_check_top(tmp);
104     BN_CTX_end(ctx);
105     return ret;
106 }
107 
108 /* tmp must have 2*n words */
bn_sqr_normal(BN_ULONG * r,const BN_ULONG * a,int n,BN_ULONG * tmp)109 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp)
110 {
111     int i, j, max;
112     const BN_ULONG *ap;
113     BN_ULONG *rp;
114 
115     max = n * 2;
116     ap = a;
117     rp = r;
118     rp[0] = rp[max - 1] = 0;
119     rp++;
120     j = n;
121 
122     if (--j > 0) {
123         ap++;
124         rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
125         rp += 2;
126     }
127 
128     for (i = n - 2; i > 0; i--) {
129         j--;
130         ap++;
131         rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);
132         rp += 2;
133     }
134 
135     bn_add_words(r, r, r, max);
136 
137     /* There will not be a carry */
138 
139     bn_sqr_words(tmp, a, n);
140 
141     bn_add_words(r, r, tmp, max);
142 }
143 
144 #ifdef BN_RECURSION
145 /*-
146  * r is 2*n words in size,
147  * a and b are both n words in size.    (There's not actually a 'b' here ...)
148  * n must be a power of 2.
149  * We multiply and return the result.
150  * t must be 2*n words in size
151  * We calculate
152  * a[0]*b[0]
153  * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
154  * a[1]*b[1]
155  */
bn_sqr_recursive(BN_ULONG * r,const BN_ULONG * a,int n2,BN_ULONG * t)156 void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t)
157 {
158     int n = n2 / 2;
159     int zero, c1;
160     BN_ULONG ln, lo, *p;
161 
162     if (n2 == 4) {
163 # ifndef BN_SQR_COMBA
164         bn_sqr_normal(r, a, 4, t);
165 # else
166         bn_sqr_comba4(r, a);
167 # endif
168         return;
169     } else if (n2 == 8) {
170 # ifndef BN_SQR_COMBA
171         bn_sqr_normal(r, a, 8, t);
172 # else
173         bn_sqr_comba8(r, a);
174 # endif
175         return;
176     }
177     if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
178         bn_sqr_normal(r, a, n2, t);
179         return;
180     }
181     /* r=(a[0]-a[1])*(a[1]-a[0]) */
182     c1 = bn_cmp_words(a, &(a[n]), n);
183     zero = 0;
184     if (c1 > 0)
185         bn_sub_words(t, a, &(a[n]), n);
186     else if (c1 < 0)
187         bn_sub_words(t, &(a[n]), a, n);
188     else
189         zero = 1;
190 
191     /* The result will always be negative unless it is zero */
192     p = &(t[n2 * 2]);
193 
194     if (!zero)
195         bn_sqr_recursive(&(t[n2]), t, n, p);
196     else
197         memset(&t[n2], 0, sizeof(*t) * n2);
198     bn_sqr_recursive(r, a, n, p);
199     bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
200 
201     /*-
202      * t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
203      * r[10] holds (a[0]*b[0])
204      * r[32] holds (b[1]*b[1])
205      */
206 
207     c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
208 
209     /* t[32] is negative */
210     c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
211 
212     /*-
213      * t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
214      * r[10] holds (a[0]*a[0])
215      * r[32] holds (a[1]*a[1])
216      * c1 holds the carry bits
217      */
218     c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
219     if (c1) {
220         p = &(r[n + n2]);
221         lo = *p;
222         ln = (lo + c1) & BN_MASK2;
223         *p = ln;
224 
225         /*
226          * The overflow will stop before we over write words we should not
227          * overwrite
228          */
229         if (ln < (BN_ULONG)c1) {
230             do {
231                 p++;
232                 lo = *p;
233                 ln = (lo + 1) & BN_MASK2;
234                 *p = ln;
235             } while (ln == 0);
236         }
237     }
238 }
239 #endif
240