1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
4 * Copyright (c) 2012 Bosch Sensortec GmbH
5 * Copyright (c) 2012 Unixphere AB
6 * Copyright (c) 2014 Intel Corporation
7 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
8 *
9 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
10 *
11 * Datasheet:
12 * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
13 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
14 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
15 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf
16 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp390-ds002.pdf
17 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf
18 *
19 * Sensor API:
20 * https://github.com/boschsensortec/BME280_SensorAPI
21 * https://github.com/boschsensortec/BMP3_SensorAPI
22 * https://github.com/boschsensortec/BMP5_SensorAPI
23 *
24 * Notice:
25 * The link to the bmp180 datasheet points to an outdated version missing these changes:
26 * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26
27 * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4
28 * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26
29 */
30
31 #define pr_fmt(fmt) "bmp280: " fmt
32
33 #include <linux/bitops.h>
34 #include <linux/bitfield.h>
35 #include <linux/cleanup.h>
36 #include <linux/completion.h>
37 #include <linux/delay.h>
38 #include <linux/device.h>
39 #include <linux/gpio/consumer.h>
40 #include <linux/interrupt.h>
41 #include <linux/irq.h> /* For irq_get_irq_data() */
42 #include <linux/module.h>
43 #include <linux/nvmem-provider.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/property.h>
46 #include <linux/random.h>
47 #include <linux/regmap.h>
48 #include <linux/regulator/consumer.h>
49 #include <linux/types.h>
50
51 #include <linux/iio/buffer.h>
52 #include <linux/iio/iio.h>
53 #include <linux/iio/trigger.h>
54 #include <linux/iio/trigger_consumer.h>
55 #include <linux/iio/triggered_buffer.h>
56
57 #include <linux/unaligned.h>
58
59 #include "bmp280.h"
60
61 /*
62 * These enums are used for indexing into the array of calibration
63 * coefficients for BMP180.
64 */
65 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
66
67 enum bmp380_odr {
68 BMP380_ODR_200HZ,
69 BMP380_ODR_100HZ,
70 BMP380_ODR_50HZ,
71 BMP380_ODR_25HZ,
72 BMP380_ODR_12_5HZ,
73 BMP380_ODR_6_25HZ,
74 BMP380_ODR_3_125HZ,
75 BMP380_ODR_1_5625HZ,
76 BMP380_ODR_0_78HZ,
77 BMP380_ODR_0_39HZ,
78 BMP380_ODR_0_2HZ,
79 BMP380_ODR_0_1HZ,
80 BMP380_ODR_0_05HZ,
81 BMP380_ODR_0_02HZ,
82 BMP380_ODR_0_01HZ,
83 BMP380_ODR_0_006HZ,
84 BMP380_ODR_0_003HZ,
85 BMP380_ODR_0_0015HZ,
86 };
87
88 enum bmp580_odr {
89 BMP580_ODR_240HZ,
90 BMP580_ODR_218HZ,
91 BMP580_ODR_199HZ,
92 BMP580_ODR_179HZ,
93 BMP580_ODR_160HZ,
94 BMP580_ODR_149HZ,
95 BMP580_ODR_140HZ,
96 BMP580_ODR_129HZ,
97 BMP580_ODR_120HZ,
98 BMP580_ODR_110HZ,
99 BMP580_ODR_100HZ,
100 BMP580_ODR_89HZ,
101 BMP580_ODR_80HZ,
102 BMP580_ODR_70HZ,
103 BMP580_ODR_60HZ,
104 BMP580_ODR_50HZ,
105 BMP580_ODR_45HZ,
106 BMP580_ODR_40HZ,
107 BMP580_ODR_35HZ,
108 BMP580_ODR_30HZ,
109 BMP580_ODR_25HZ,
110 BMP580_ODR_20HZ,
111 BMP580_ODR_15HZ,
112 BMP580_ODR_10HZ,
113 BMP580_ODR_5HZ,
114 BMP580_ODR_4HZ,
115 BMP580_ODR_3HZ,
116 BMP580_ODR_2HZ,
117 BMP580_ODR_1HZ,
118 BMP580_ODR_0_5HZ,
119 BMP580_ODR_0_25HZ,
120 BMP580_ODR_0_125HZ,
121 };
122
123 /*
124 * These enums are used for indexing into the array of compensation
125 * parameters for BMP280.
126 */
127 enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 };
128
129 enum {
130 /* Temperature calib indexes */
131 BMP380_T1 = 0,
132 BMP380_T2 = 2,
133 BMP380_T3 = 4,
134 /* Pressure calib indexes */
135 BMP380_P1 = 5,
136 BMP380_P2 = 7,
137 BMP380_P3 = 9,
138 BMP380_P4 = 10,
139 BMP380_P5 = 11,
140 BMP380_P6 = 13,
141 BMP380_P7 = 15,
142 BMP380_P8 = 16,
143 BMP380_P9 = 17,
144 BMP380_P10 = 19,
145 BMP380_P11 = 20,
146 };
147
148 enum bmp280_scan {
149 BMP280_PRESS,
150 BMP280_TEMP,
151 BME280_HUMID,
152 };
153
154 static const struct iio_chan_spec bmp280_channels[] = {
155 {
156 .type = IIO_PRESSURE,
157 /* PROCESSED maintained for ABI backwards compatibility */
158 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
159 BIT(IIO_CHAN_INFO_RAW) |
160 BIT(IIO_CHAN_INFO_SCALE) |
161 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
162 .scan_index = 0,
163 .scan_type = {
164 .sign = 'u',
165 .realbits = 32,
166 .storagebits = 32,
167 .endianness = IIO_CPU,
168 },
169 },
170 {
171 .type = IIO_TEMP,
172 /* PROCESSED maintained for ABI backwards compatibility */
173 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
174 BIT(IIO_CHAN_INFO_RAW) |
175 BIT(IIO_CHAN_INFO_SCALE) |
176 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
177 .scan_index = 1,
178 .scan_type = {
179 .sign = 's',
180 .realbits = 32,
181 .storagebits = 32,
182 .endianness = IIO_CPU,
183 },
184 },
185 IIO_CHAN_SOFT_TIMESTAMP(2),
186 };
187
188 static const struct iio_chan_spec bme280_channels[] = {
189 {
190 .type = IIO_PRESSURE,
191 /* PROCESSED maintained for ABI backwards compatibility */
192 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
193 BIT(IIO_CHAN_INFO_RAW) |
194 BIT(IIO_CHAN_INFO_SCALE) |
195 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
196 .scan_index = 0,
197 .scan_type = {
198 .sign = 'u',
199 .realbits = 32,
200 .storagebits = 32,
201 .endianness = IIO_CPU,
202 },
203 },
204 {
205 .type = IIO_TEMP,
206 /* PROCESSED maintained for ABI backwards compatibility */
207 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
208 BIT(IIO_CHAN_INFO_RAW) |
209 BIT(IIO_CHAN_INFO_SCALE) |
210 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
211 .scan_index = 1,
212 .scan_type = {
213 .sign = 's',
214 .realbits = 32,
215 .storagebits = 32,
216 .endianness = IIO_CPU,
217 },
218 },
219 {
220 .type = IIO_HUMIDITYRELATIVE,
221 /* PROCESSED maintained for ABI backwards compatibility */
222 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
223 BIT(IIO_CHAN_INFO_RAW) |
224 BIT(IIO_CHAN_INFO_SCALE) |
225 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
226 .scan_index = 2,
227 .scan_type = {
228 .sign = 'u',
229 .realbits = 32,
230 .storagebits = 32,
231 .endianness = IIO_CPU,
232 },
233 },
234 IIO_CHAN_SOFT_TIMESTAMP(3),
235 };
236
237 static const struct iio_chan_spec bmp380_channels[] = {
238 {
239 .type = IIO_PRESSURE,
240 /* PROCESSED maintained for ABI backwards compatibility */
241 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
242 BIT(IIO_CHAN_INFO_RAW) |
243 BIT(IIO_CHAN_INFO_SCALE) |
244 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
245 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
246 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
247 .scan_index = 0,
248 .scan_type = {
249 .sign = 'u',
250 .realbits = 32,
251 .storagebits = 32,
252 .endianness = IIO_CPU,
253 },
254 },
255 {
256 .type = IIO_TEMP,
257 /* PROCESSED maintained for ABI backwards compatibility */
258 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
259 BIT(IIO_CHAN_INFO_RAW) |
260 BIT(IIO_CHAN_INFO_SCALE) |
261 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
262 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
263 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
264 .scan_index = 1,
265 .scan_type = {
266 .sign = 's',
267 .realbits = 32,
268 .storagebits = 32,
269 .endianness = IIO_CPU,
270 },
271 },
272 IIO_CHAN_SOFT_TIMESTAMP(2),
273 };
274
275 static const struct iio_chan_spec bmp580_channels[] = {
276 {
277 .type = IIO_PRESSURE,
278 /* PROCESSED maintained for ABI backwards compatibility */
279 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
280 BIT(IIO_CHAN_INFO_RAW) |
281 BIT(IIO_CHAN_INFO_SCALE) |
282 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
283 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
284 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
285 .scan_index = 0,
286 .scan_type = {
287 .sign = 'u',
288 .realbits = 24,
289 .storagebits = 32,
290 .endianness = IIO_LE,
291 },
292 },
293 {
294 .type = IIO_TEMP,
295 /* PROCESSED maintained for ABI backwards compatibility */
296 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
297 BIT(IIO_CHAN_INFO_RAW) |
298 BIT(IIO_CHAN_INFO_SCALE) |
299 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
300 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
301 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
302 .scan_index = 1,
303 .scan_type = {
304 .sign = 's',
305 .realbits = 24,
306 .storagebits = 32,
307 .endianness = IIO_LE,
308 },
309 },
310 IIO_CHAN_SOFT_TIMESTAMP(2),
311 };
312
bmp280_read_calib(struct bmp280_data * data)313 static int bmp280_read_calib(struct bmp280_data *data)
314 {
315 struct bmp280_calib *calib = &data->calib.bmp280;
316 int ret;
317
318 /* Read temperature and pressure calibration values. */
319 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
320 data->bmp280_cal_buf,
321 sizeof(data->bmp280_cal_buf));
322 if (ret) {
323 dev_err(data->dev,
324 "failed to read calibration parameters\n");
325 return ret;
326 }
327
328 /* Toss calibration data into the entropy pool */
329 add_device_randomness(data->bmp280_cal_buf,
330 sizeof(data->bmp280_cal_buf));
331
332 /* Parse temperature calibration values. */
333 calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]);
334 calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]);
335 calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]);
336
337 /* Parse pressure calibration values. */
338 calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]);
339 calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]);
340 calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]);
341 calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]);
342 calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]);
343 calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]);
344 calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]);
345 calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]);
346 calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]);
347
348 return 0;
349 }
350
351 /*
352 * These enums are used for indexing into the array of humidity parameters
353 * for BME280. Due to some weird indexing, unaligned BE/LE accesses co-exist in
354 * order to prepare the FIELD_{GET/PREP}() fields. Table 16 in Section 4.2.2 of
355 * the datasheet.
356 */
357 enum { H2 = 0, H3 = 2, H4 = 3, H5 = 4, H6 = 6 };
358
bme280_read_calib(struct bmp280_data * data)359 static int bme280_read_calib(struct bmp280_data *data)
360 {
361 struct bmp280_calib *calib = &data->calib.bmp280;
362 struct device *dev = data->dev;
363 s16 h4_upper, h4_lower, tmp_1, tmp_2, tmp_3;
364 unsigned int tmp;
365 int ret;
366
367 /* Load shared calibration params with bmp280 first */
368 ret = bmp280_read_calib(data);
369 if (ret)
370 return ret;
371
372 ret = regmap_read(data->regmap, BME280_REG_COMP_H1, &tmp);
373 if (ret) {
374 dev_err(dev, "failed to read H1 comp value\n");
375 return ret;
376 }
377 calib->H1 = tmp;
378
379 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H2,
380 data->bme280_humid_cal_buf,
381 sizeof(data->bme280_humid_cal_buf));
382 if (ret) {
383 dev_err(dev, "failed to read humidity calibration values\n");
384 return ret;
385 }
386
387 calib->H2 = get_unaligned_le16(&data->bme280_humid_cal_buf[H2]);
388 calib->H3 = data->bme280_humid_cal_buf[H3];
389 tmp_1 = get_unaligned_be16(&data->bme280_humid_cal_buf[H4]);
390 tmp_2 = FIELD_GET(BME280_COMP_H4_GET_MASK_UP, tmp_1);
391 h4_upper = FIELD_PREP(BME280_COMP_H4_PREP_MASK_UP, tmp_2);
392 h4_lower = FIELD_GET(BME280_COMP_H4_MASK_LOW, tmp_1);
393 calib->H4 = sign_extend32(h4_upper | h4_lower, 11);
394 tmp_3 = get_unaligned_le16(&data->bme280_humid_cal_buf[H5]);
395 calib->H5 = sign_extend32(FIELD_GET(BME280_COMP_H5_MASK, tmp_3), 11);
396 calib->H6 = data->bme280_humid_cal_buf[H6];
397
398 return 0;
399 }
400
bme280_read_humid_adc(struct bmp280_data * data,u16 * adc_humidity)401 static int bme280_read_humid_adc(struct bmp280_data *data, u16 *adc_humidity)
402 {
403 u16 value_humidity;
404 int ret;
405
406 ret = regmap_bulk_read(data->regmap, BME280_REG_HUMIDITY_MSB,
407 &data->be16, BME280_NUM_HUMIDITY_BYTES);
408 if (ret) {
409 dev_err(data->dev, "failed to read humidity\n");
410 return ret;
411 }
412
413 value_humidity = be16_to_cpu(data->be16);
414 if (value_humidity == BMP280_HUMIDITY_SKIPPED) {
415 dev_err(data->dev, "reading humidity skipped\n");
416 return -EIO;
417 }
418 *adc_humidity = value_humidity;
419
420 return 0;
421 }
422
423 /*
424 * Returns humidity in percent, resolution is 0.01 percent. Output value of
425 * "47445" represents 47445/1024 = 46.333 %RH.
426 *
427 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
428 */
bme280_compensate_humidity(struct bmp280_data * data,u16 adc_humidity,s32 t_fine)429 static u32 bme280_compensate_humidity(struct bmp280_data *data,
430 u16 adc_humidity, s32 t_fine)
431 {
432 struct bmp280_calib *calib = &data->calib.bmp280;
433 s32 var;
434
435 var = t_fine - (s32)76800;
436 var = (((((s32)adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
437 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
438 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
439 + (s32)2097152) * calib->H2 + 8192) >> 14);
440 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
441
442 var = clamp_val(var, 0, 419430400);
443
444 return var >> 12;
445 }
446
bmp280_read_temp_adc(struct bmp280_data * data,u32 * adc_temp)447 static int bmp280_read_temp_adc(struct bmp280_data *data, u32 *adc_temp)
448 {
449 u32 value_temp;
450 int ret;
451
452 ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
453 data->buf, BMP280_NUM_TEMP_BYTES);
454 if (ret) {
455 dev_err(data->dev, "failed to read temperature\n");
456 return ret;
457 }
458
459 value_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
460 if (value_temp == BMP280_TEMP_SKIPPED) {
461 dev_err(data->dev, "reading temperature skipped\n");
462 return -EIO;
463 }
464 *adc_temp = value_temp;
465
466 return 0;
467 }
468
469 /*
470 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of
471 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global
472 * value.
473 *
474 * Taken from datasheet, Section 3.11.3, "Compensation formula".
475 */
bmp280_calc_t_fine(struct bmp280_data * data,u32 adc_temp)476 static s32 bmp280_calc_t_fine(struct bmp280_data *data, u32 adc_temp)
477 {
478 struct bmp280_calib *calib = &data->calib.bmp280;
479 s32 var1, var2;
480
481 var1 = (((((s32)adc_temp) >> 3) - ((s32)calib->T1 << 1)) *
482 ((s32)calib->T2)) >> 11;
483 var2 = (((((((s32)adc_temp) >> 4) - ((s32)calib->T1)) *
484 ((((s32)adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
485 ((s32)calib->T3))) >> 14;
486 return var1 + var2; /* t_fine = var1 + var2 */
487 }
488
bmp280_get_t_fine(struct bmp280_data * data,s32 * t_fine)489 static int bmp280_get_t_fine(struct bmp280_data *data, s32 *t_fine)
490 {
491 u32 adc_temp;
492 int ret;
493
494 ret = bmp280_read_temp_adc(data, &adc_temp);
495 if (ret)
496 return ret;
497
498 *t_fine = bmp280_calc_t_fine(data, adc_temp);
499
500 return 0;
501 }
502
bmp280_compensate_temp(struct bmp280_data * data,u32 adc_temp)503 static s32 bmp280_compensate_temp(struct bmp280_data *data, u32 adc_temp)
504 {
505 return (bmp280_calc_t_fine(data, adc_temp) * 5 + 128) / 256;
506 }
507
bmp280_read_press_adc(struct bmp280_data * data,u32 * adc_press)508 static int bmp280_read_press_adc(struct bmp280_data *data, u32 *adc_press)
509 {
510 u32 value_press;
511 int ret;
512
513 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
514 data->buf, BMP280_NUM_PRESS_BYTES);
515 if (ret) {
516 dev_err(data->dev, "failed to read pressure\n");
517 return ret;
518 }
519
520 value_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
521 if (value_press == BMP280_PRESS_SKIPPED) {
522 dev_err(data->dev, "reading pressure skipped\n");
523 return -EIO;
524 }
525 *adc_press = value_press;
526
527 return 0;
528 }
529
530 /*
531 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
532 * integer bits and 8 fractional bits). Output value of "24674867"
533 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
534 *
535 * Taken from datasheet, Section 3.11.3, "Compensation formula".
536 */
bmp280_compensate_press(struct bmp280_data * data,u32 adc_press,s32 t_fine)537 static u32 bmp280_compensate_press(struct bmp280_data *data,
538 u32 adc_press, s32 t_fine)
539 {
540 struct bmp280_calib *calib = &data->calib.bmp280;
541 s64 var1, var2, p;
542
543 var1 = ((s64)t_fine) - 128000;
544 var2 = var1 * var1 * (s64)calib->P6;
545 var2 += (var1 * (s64)calib->P5) << 17;
546 var2 += ((s64)calib->P4) << 35;
547 var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
548 ((var1 * (s64)calib->P2) << 12);
549 var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
550
551 if (var1 == 0)
552 return 0;
553
554 p = ((((s64)1048576 - (s32)adc_press) << 31) - var2) * 3125;
555 p = div64_s64(p, var1);
556 var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
557 var2 = ((s64)(calib->P8) * p) >> 19;
558 p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
559
560 return (u32)p;
561 }
562
bmp280_read_temp(struct bmp280_data * data,s32 * comp_temp)563 static int bmp280_read_temp(struct bmp280_data *data, s32 *comp_temp)
564 {
565 u32 adc_temp;
566 int ret;
567
568 ret = bmp280_read_temp_adc(data, &adc_temp);
569 if (ret)
570 return ret;
571
572 *comp_temp = bmp280_compensate_temp(data, adc_temp);
573
574 return 0;
575 }
576
bmp280_read_press(struct bmp280_data * data,u32 * comp_press)577 static int bmp280_read_press(struct bmp280_data *data, u32 *comp_press)
578 {
579 u32 adc_press;
580 s32 t_fine;
581 int ret;
582
583 ret = bmp280_get_t_fine(data, &t_fine);
584 if (ret)
585 return ret;
586
587 ret = bmp280_read_press_adc(data, &adc_press);
588 if (ret)
589 return ret;
590
591 *comp_press = bmp280_compensate_press(data, adc_press, t_fine);
592
593 return 0;
594 }
595
bme280_read_humid(struct bmp280_data * data,u32 * comp_humidity)596 static int bme280_read_humid(struct bmp280_data *data, u32 *comp_humidity)
597 {
598 u16 adc_humidity;
599 s32 t_fine;
600 int ret;
601
602 ret = bmp280_get_t_fine(data, &t_fine);
603 if (ret)
604 return ret;
605
606 ret = bme280_read_humid_adc(data, &adc_humidity);
607 if (ret)
608 return ret;
609
610 *comp_humidity = bme280_compensate_humidity(data, adc_humidity, t_fine);
611
612 return 0;
613 }
614
bmp280_read_raw_impl(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)615 static int bmp280_read_raw_impl(struct iio_dev *indio_dev,
616 struct iio_chan_spec const *chan,
617 int *val, int *val2, long mask)
618 {
619 struct bmp280_data *data = iio_priv(indio_dev);
620 int chan_value;
621 int ret;
622
623 guard(mutex)(&data->lock);
624
625 switch (mask) {
626 case IIO_CHAN_INFO_PROCESSED:
627 ret = data->chip_info->set_mode(data, BMP280_FORCED);
628 if (ret)
629 return ret;
630
631 ret = data->chip_info->wait_conv(data);
632 if (ret)
633 return ret;
634
635 switch (chan->type) {
636 case IIO_HUMIDITYRELATIVE:
637 ret = data->chip_info->read_humid(data, &chan_value);
638 if (ret)
639 return ret;
640
641 *val = data->chip_info->humid_coeffs[0] * chan_value;
642 *val2 = data->chip_info->humid_coeffs[1];
643 return data->chip_info->humid_coeffs_type;
644 case IIO_PRESSURE:
645 ret = data->chip_info->read_press(data, &chan_value);
646 if (ret)
647 return ret;
648
649 *val = data->chip_info->press_coeffs[0] * chan_value;
650 *val2 = data->chip_info->press_coeffs[1];
651 return data->chip_info->press_coeffs_type;
652 case IIO_TEMP:
653 ret = data->chip_info->read_temp(data, &chan_value);
654 if (ret)
655 return ret;
656
657 *val = data->chip_info->temp_coeffs[0] * chan_value;
658 *val2 = data->chip_info->temp_coeffs[1];
659 return data->chip_info->temp_coeffs_type;
660 default:
661 return -EINVAL;
662 }
663 case IIO_CHAN_INFO_RAW:
664 ret = data->chip_info->set_mode(data, BMP280_FORCED);
665 if (ret)
666 return ret;
667
668 ret = data->chip_info->wait_conv(data);
669 if (ret)
670 return ret;
671
672 switch (chan->type) {
673 case IIO_HUMIDITYRELATIVE:
674 ret = data->chip_info->read_humid(data, &chan_value);
675 if (ret)
676 return ret;
677
678 *val = chan_value;
679 return IIO_VAL_INT;
680 case IIO_PRESSURE:
681 ret = data->chip_info->read_press(data, &chan_value);
682 if (ret)
683 return ret;
684
685 *val = chan_value;
686 return IIO_VAL_INT;
687 case IIO_TEMP:
688 ret = data->chip_info->read_temp(data, &chan_value);
689 if (ret)
690 return ret;
691
692 *val = chan_value;
693 return IIO_VAL_INT;
694 default:
695 return -EINVAL;
696 }
697 case IIO_CHAN_INFO_SCALE:
698 switch (chan->type) {
699 case IIO_HUMIDITYRELATIVE:
700 *val = data->chip_info->humid_coeffs[0];
701 *val2 = data->chip_info->humid_coeffs[1];
702 return data->chip_info->humid_coeffs_type;
703 case IIO_PRESSURE:
704 *val = data->chip_info->press_coeffs[0];
705 *val2 = data->chip_info->press_coeffs[1];
706 return data->chip_info->press_coeffs_type;
707 case IIO_TEMP:
708 *val = data->chip_info->temp_coeffs[0];
709 *val2 = data->chip_info->temp_coeffs[1];
710 return data->chip_info->temp_coeffs_type;
711 default:
712 return -EINVAL;
713 }
714 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
715 switch (chan->type) {
716 case IIO_HUMIDITYRELATIVE:
717 *val = 1 << data->oversampling_humid;
718 return IIO_VAL_INT;
719 case IIO_PRESSURE:
720 *val = 1 << data->oversampling_press;
721 return IIO_VAL_INT;
722 case IIO_TEMP:
723 *val = 1 << data->oversampling_temp;
724 return IIO_VAL_INT;
725 default:
726 return -EINVAL;
727 }
728 case IIO_CHAN_INFO_SAMP_FREQ:
729 if (!data->chip_info->sampling_freq_avail)
730 return -EINVAL;
731
732 *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0];
733 *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1];
734 return IIO_VAL_INT_PLUS_MICRO;
735 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
736 if (!data->chip_info->iir_filter_coeffs_avail)
737 return -EINVAL;
738
739 *val = (1 << data->iir_filter_coeff) - 1;
740 return IIO_VAL_INT;
741 default:
742 return -EINVAL;
743 }
744 }
745
bmp280_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)746 static int bmp280_read_raw(struct iio_dev *indio_dev,
747 struct iio_chan_spec const *chan,
748 int *val, int *val2, long mask)
749 {
750 struct bmp280_data *data = iio_priv(indio_dev);
751 int ret;
752
753 pm_runtime_get_sync(data->dev);
754 ret = bmp280_read_raw_impl(indio_dev, chan, val, val2, mask);
755 pm_runtime_put_autosuspend(data->dev);
756
757 return ret;
758 }
759
bme280_write_oversampling_ratio_humid(struct bmp280_data * data,int val)760 static int bme280_write_oversampling_ratio_humid(struct bmp280_data *data,
761 int val)
762 {
763 const int *avail = data->chip_info->oversampling_humid_avail;
764 const int n = data->chip_info->num_oversampling_humid_avail;
765 int ret, prev;
766 int i;
767
768 for (i = 0; i < n; i++) {
769 if (avail[i] == val) {
770 prev = data->oversampling_humid;
771 data->oversampling_humid = ilog2(val);
772
773 ret = data->chip_info->chip_config(data);
774 if (ret) {
775 data->oversampling_humid = prev;
776 data->chip_info->chip_config(data);
777 return ret;
778 }
779 return 0;
780 }
781 }
782 return -EINVAL;
783 }
784
bmp280_write_oversampling_ratio_temp(struct bmp280_data * data,int val)785 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
786 int val)
787 {
788 const int *avail = data->chip_info->oversampling_temp_avail;
789 const int n = data->chip_info->num_oversampling_temp_avail;
790 int ret, prev;
791 int i;
792
793 for (i = 0; i < n; i++) {
794 if (avail[i] == val) {
795 prev = data->oversampling_temp;
796 data->oversampling_temp = ilog2(val);
797
798 ret = data->chip_info->chip_config(data);
799 if (ret) {
800 data->oversampling_temp = prev;
801 data->chip_info->chip_config(data);
802 return ret;
803 }
804 return 0;
805 }
806 }
807 return -EINVAL;
808 }
809
bmp280_write_oversampling_ratio_press(struct bmp280_data * data,int val)810 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
811 int val)
812 {
813 const int *avail = data->chip_info->oversampling_press_avail;
814 const int n = data->chip_info->num_oversampling_press_avail;
815 int ret, prev;
816 int i;
817
818 for (i = 0; i < n; i++) {
819 if (avail[i] == val) {
820 prev = data->oversampling_press;
821 data->oversampling_press = ilog2(val);
822
823 ret = data->chip_info->chip_config(data);
824 if (ret) {
825 data->oversampling_press = prev;
826 data->chip_info->chip_config(data);
827 return ret;
828 }
829 return 0;
830 }
831 }
832 return -EINVAL;
833 }
834
bmp280_write_sampling_frequency(struct bmp280_data * data,int val,int val2)835 static int bmp280_write_sampling_frequency(struct bmp280_data *data,
836 int val, int val2)
837 {
838 const int (*avail)[2] = data->chip_info->sampling_freq_avail;
839 const int n = data->chip_info->num_sampling_freq_avail;
840 int ret, prev;
841 int i;
842
843 for (i = 0; i < n; i++) {
844 if (avail[i][0] == val && avail[i][1] == val2) {
845 prev = data->sampling_freq;
846 data->sampling_freq = i;
847
848 ret = data->chip_info->chip_config(data);
849 if (ret) {
850 data->sampling_freq = prev;
851 data->chip_info->chip_config(data);
852 return ret;
853 }
854 return 0;
855 }
856 }
857 return -EINVAL;
858 }
859
bmp280_write_iir_filter_coeffs(struct bmp280_data * data,int val)860 static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val)
861 {
862 const int *avail = data->chip_info->iir_filter_coeffs_avail;
863 const int n = data->chip_info->num_iir_filter_coeffs_avail;
864 int ret, prev;
865 int i;
866
867 for (i = 0; i < n; i++) {
868 if (avail[i] - 1 == val) {
869 prev = data->iir_filter_coeff;
870 data->iir_filter_coeff = i;
871
872 ret = data->chip_info->chip_config(data);
873 if (ret) {
874 data->iir_filter_coeff = prev;
875 data->chip_info->chip_config(data);
876 return ret;
877
878 }
879 return 0;
880 }
881 }
882 return -EINVAL;
883 }
884
bmp280_write_raw_impl(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)885 static int bmp280_write_raw_impl(struct iio_dev *indio_dev,
886 struct iio_chan_spec const *chan,
887 int val, int val2, long mask)
888 {
889 struct bmp280_data *data = iio_priv(indio_dev);
890
891 guard(mutex)(&data->lock);
892
893 /*
894 * Helper functions to update sensor running configuration.
895 * If an error happens applying new settings, will try restore
896 * previous parameters to ensure the sensor is left in a known
897 * working configuration.
898 */
899 switch (mask) {
900 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
901 switch (chan->type) {
902 case IIO_HUMIDITYRELATIVE:
903 return bme280_write_oversampling_ratio_humid(data, val);
904 case IIO_PRESSURE:
905 return bmp280_write_oversampling_ratio_press(data, val);
906 case IIO_TEMP:
907 return bmp280_write_oversampling_ratio_temp(data, val);
908 default:
909 return -EINVAL;
910 }
911 case IIO_CHAN_INFO_SAMP_FREQ:
912 return bmp280_write_sampling_frequency(data, val, val2);
913 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
914 return bmp280_write_iir_filter_coeffs(data, val);
915 default:
916 return -EINVAL;
917 }
918 }
919
bmp280_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)920 static int bmp280_write_raw(struct iio_dev *indio_dev,
921 struct iio_chan_spec const *chan,
922 int val, int val2, long mask)
923 {
924 struct bmp280_data *data = iio_priv(indio_dev);
925 int ret;
926
927 pm_runtime_get_sync(data->dev);
928 ret = bmp280_write_raw_impl(indio_dev, chan, val, val2, mask);
929 pm_runtime_put_autosuspend(data->dev);
930
931 return ret;
932 }
933
bmp280_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)934 static int bmp280_read_avail(struct iio_dev *indio_dev,
935 struct iio_chan_spec const *chan,
936 const int **vals, int *type, int *length,
937 long mask)
938 {
939 struct bmp280_data *data = iio_priv(indio_dev);
940
941 switch (mask) {
942 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
943 switch (chan->type) {
944 case IIO_PRESSURE:
945 *vals = data->chip_info->oversampling_press_avail;
946 *length = data->chip_info->num_oversampling_press_avail;
947 break;
948 case IIO_TEMP:
949 *vals = data->chip_info->oversampling_temp_avail;
950 *length = data->chip_info->num_oversampling_temp_avail;
951 break;
952 default:
953 return -EINVAL;
954 }
955 *type = IIO_VAL_INT;
956 return IIO_AVAIL_LIST;
957 case IIO_CHAN_INFO_SAMP_FREQ:
958 *vals = (const int *)data->chip_info->sampling_freq_avail;
959 *type = IIO_VAL_INT_PLUS_MICRO;
960 /* Values are stored in a 2D matrix */
961 *length = data->chip_info->num_sampling_freq_avail;
962 return IIO_AVAIL_LIST;
963 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
964 *vals = data->chip_info->iir_filter_coeffs_avail;
965 *type = IIO_VAL_INT;
966 *length = data->chip_info->num_iir_filter_coeffs_avail;
967 return IIO_AVAIL_LIST;
968 default:
969 return -EINVAL;
970 }
971 }
972
973 static const struct iio_info bmp280_info = {
974 .read_raw = &bmp280_read_raw,
975 .read_avail = &bmp280_read_avail,
976 .write_raw = &bmp280_write_raw,
977 };
978
979 static const unsigned long bmp280_avail_scan_masks[] = {
980 BIT(BMP280_TEMP) | BIT(BMP280_PRESS),
981 0
982 };
983
984 static const unsigned long bme280_avail_scan_masks[] = {
985 BIT(BME280_HUMID) | BIT(BMP280_TEMP) | BIT(BMP280_PRESS),
986 0
987 };
988
bmp280_preinit(struct bmp280_data * data)989 static int bmp280_preinit(struct bmp280_data *data)
990 {
991 struct device *dev = data->dev;
992 unsigned int reg;
993 int ret;
994
995 ret = regmap_write(data->regmap, BMP280_REG_RESET, BMP280_RST_SOFT_CMD);
996 if (ret)
997 return dev_err_probe(dev, ret, "Failed to reset device.\n");
998
999 /*
1000 * According to the datasheet in Chapter 1: Specification, Table 2,
1001 * after resetting, the device uses the complete power-on sequence so
1002 * it needs to wait for the defined start-up time.
1003 */
1004 fsleep(data->start_up_time_us);
1005
1006 ret = regmap_read(data->regmap, BMP280_REG_STATUS, ®);
1007 if (ret)
1008 return dev_err_probe(dev, ret, "Failed to read status register.\n");
1009
1010 if (reg & BMP280_REG_STATUS_IM_UPDATE)
1011 return dev_err_probe(dev, -EIO, "Failed to copy NVM contents.\n");
1012
1013 return 0;
1014 }
1015
1016 static const u8 bmp280_operation_mode[] = {
1017 [BMP280_SLEEP] = BMP280_MODE_SLEEP,
1018 [BMP280_FORCED] = BMP280_MODE_FORCED,
1019 [BMP280_NORMAL] = BMP280_MODE_NORMAL,
1020 };
1021
bmp280_set_mode(struct bmp280_data * data,enum bmp280_op_mode mode)1022 static int bmp280_set_mode(struct bmp280_data *data, enum bmp280_op_mode mode)
1023 {
1024 int ret;
1025
1026 ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
1027 BMP280_MODE_MASK, bmp280_operation_mode[mode]);
1028 if (ret) {
1029 dev_err(data->dev, "failed to write ctrl_meas register.\n");
1030 return ret;
1031 }
1032
1033 data->op_mode = mode;
1034
1035 return 0;
1036 }
1037
bmp280_wait_conv(struct bmp280_data * data)1038 static int bmp280_wait_conv(struct bmp280_data *data)
1039 {
1040 unsigned int reg, meas_time_us;
1041 int ret;
1042
1043 /* Constant part of the measurement time */
1044 meas_time_us = BMP280_MEAS_OFFSET;
1045
1046 /*
1047 * Check if we are using a BME280 device,
1048 * Humidity measurement time
1049 */
1050 if (data->chip_info->oversampling_humid_avail)
1051 meas_time_us += BMP280_PRESS_HUMID_MEAS_OFFSET +
1052 BIT(data->oversampling_humid) * BMP280_MEAS_DUR;
1053
1054 /* Pressure measurement time */
1055 meas_time_us += BMP280_PRESS_HUMID_MEAS_OFFSET +
1056 BIT(data->oversampling_press) * BMP280_MEAS_DUR;
1057
1058 /* Temperature measurement time */
1059 meas_time_us += BIT(data->oversampling_temp) * BMP280_MEAS_DUR;
1060
1061 /* Waiting time according to the BM(P/E)2 Sensor API */
1062 fsleep(meas_time_us);
1063
1064 ret = regmap_read(data->regmap, BMP280_REG_STATUS, ®);
1065 if (ret) {
1066 dev_err(data->dev, "failed to read status register.\n");
1067 return ret;
1068 }
1069
1070 if (reg & BMP280_REG_STATUS_MEAS_BIT) {
1071 dev_err(data->dev, "Measurement cycle didn't complete.\n");
1072 return -EBUSY;
1073 }
1074
1075 return 0;
1076 }
1077
bmp280_chip_config(struct bmp280_data * data)1078 static int bmp280_chip_config(struct bmp280_data *data)
1079 {
1080 u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) |
1081 FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1);
1082 int ret;
1083
1084 ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
1085 BMP280_OSRS_TEMP_MASK |
1086 BMP280_OSRS_PRESS_MASK |
1087 BMP280_MODE_MASK,
1088 osrs | BMP280_MODE_SLEEP);
1089 if (ret) {
1090 dev_err(data->dev, "failed to write ctrl_meas register\n");
1091 return ret;
1092 }
1093
1094 ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
1095 BMP280_FILTER_MASK,
1096 BMP280_FILTER_4X);
1097 if (ret) {
1098 dev_err(data->dev, "failed to write config register\n");
1099 return ret;
1100 }
1101
1102 return ret;
1103 }
1104
bmp280_trigger_handler(int irq,void * p)1105 static irqreturn_t bmp280_trigger_handler(int irq, void *p)
1106 {
1107 struct iio_poll_func *pf = p;
1108 struct iio_dev *indio_dev = pf->indio_dev;
1109 struct bmp280_data *data = iio_priv(indio_dev);
1110 u32 adc_temp, adc_press;
1111 s32 t_fine;
1112 struct {
1113 u32 comp_press;
1114 s32 comp_temp;
1115 aligned_s64 timestamp;
1116 } buffer;
1117 int ret;
1118
1119 guard(mutex)(&data->lock);
1120
1121 /* Burst read data registers */
1122 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
1123 data->buf, BMP280_BURST_READ_BYTES);
1124 if (ret) {
1125 dev_err(data->dev, "failed to burst read sensor data\n");
1126 goto out;
1127 }
1128
1129 /* Temperature calculations */
1130 adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3]));
1131 if (adc_temp == BMP280_TEMP_SKIPPED) {
1132 dev_err(data->dev, "reading temperature skipped\n");
1133 goto out;
1134 }
1135
1136 buffer.comp_temp = bmp280_compensate_temp(data, adc_temp);
1137
1138 /* Pressure calculations */
1139 adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0]));
1140 if (adc_press == BMP280_PRESS_SKIPPED) {
1141 dev_err(data->dev, "reading pressure skipped\n");
1142 goto out;
1143 }
1144
1145 t_fine = bmp280_calc_t_fine(data, adc_temp);
1146 buffer.comp_press = bmp280_compensate_press(data, adc_press, t_fine);
1147
1148 iio_push_to_buffers_with_ts(indio_dev, &buffer, sizeof(buffer),
1149 iio_get_time_ns(indio_dev));
1150
1151 out:
1152 iio_trigger_notify_done(indio_dev->trig);
1153
1154 return IRQ_HANDLED;
1155 }
1156
1157 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
1158 static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID };
1159 static const int bmp280_temp_coeffs[] = { 10, 1 };
1160 static const int bmp280_press_coeffs[] = { 1, 256000 };
1161
1162 const struct bmp280_chip_info bmp280_chip_info = {
1163 .id_reg = BMP280_REG_ID,
1164 .chip_id = bmp280_chip_ids,
1165 .num_chip_id = ARRAY_SIZE(bmp280_chip_ids),
1166 .regmap_config = &bmp280_regmap_config,
1167 .start_up_time_us = 2000,
1168 .channels = bmp280_channels,
1169 .num_channels = ARRAY_SIZE(bmp280_channels),
1170 .avail_scan_masks = bmp280_avail_scan_masks,
1171
1172 .oversampling_temp_avail = bmp280_oversampling_avail,
1173 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
1174 /*
1175 * Oversampling config values on BMx280 have one additional setting
1176 * that other generations of the family don't:
1177 * The value 0 means the measurement is bypassed instead of
1178 * oversampling set to x1.
1179 *
1180 * To account for this difference, and preserve the same common
1181 * config logic, this is handled later on chip_config callback
1182 * incrementing one unit the oversampling setting.
1183 */
1184 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
1185
1186 .oversampling_press_avail = bmp280_oversampling_avail,
1187 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
1188 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
1189
1190 .temp_coeffs = bmp280_temp_coeffs,
1191 .temp_coeffs_type = IIO_VAL_FRACTIONAL,
1192 .press_coeffs = bmp280_press_coeffs,
1193 .press_coeffs_type = IIO_VAL_FRACTIONAL,
1194
1195 .chip_config = bmp280_chip_config,
1196 .read_temp = bmp280_read_temp,
1197 .read_press = bmp280_read_press,
1198 .read_calib = bmp280_read_calib,
1199 .set_mode = bmp280_set_mode,
1200 .wait_conv = bmp280_wait_conv,
1201 .preinit = bmp280_preinit,
1202
1203 .trigger_handler = bmp280_trigger_handler,
1204 };
1205 EXPORT_SYMBOL_NS(bmp280_chip_info, "IIO_BMP280");
1206
bme280_chip_config(struct bmp280_data * data)1207 static int bme280_chip_config(struct bmp280_data *data)
1208 {
1209 u8 osrs = FIELD_PREP(BME280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1);
1210 int ret;
1211
1212 /*
1213 * Oversampling of humidity must be set before oversampling of
1214 * temperature/pressure is set to become effective.
1215 */
1216 ret = regmap_update_bits(data->regmap, BME280_REG_CTRL_HUMIDITY,
1217 BME280_OSRS_HUMIDITY_MASK, osrs);
1218 if (ret) {
1219 dev_err(data->dev, "failed to set humidity oversampling");
1220 return ret;
1221 }
1222
1223 return bmp280_chip_config(data);
1224 }
1225
bme280_trigger_handler(int irq,void * p)1226 static irqreturn_t bme280_trigger_handler(int irq, void *p)
1227 {
1228 struct iio_poll_func *pf = p;
1229 struct iio_dev *indio_dev = pf->indio_dev;
1230 struct bmp280_data *data = iio_priv(indio_dev);
1231 u32 adc_temp, adc_press, adc_humidity;
1232 s32 t_fine;
1233 struct {
1234 u32 comp_press;
1235 s32 comp_temp;
1236 u32 comp_humidity;
1237 aligned_s64 timestamp;
1238 } buffer = { }; /* Don't leak uninitialized stack to userspace. */
1239 int ret;
1240
1241 guard(mutex)(&data->lock);
1242
1243 /* Burst read data registers */
1244 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
1245 data->buf, BME280_BURST_READ_BYTES);
1246 if (ret) {
1247 dev_err(data->dev, "failed to burst read sensor data\n");
1248 goto out;
1249 }
1250
1251 /* Temperature calculations */
1252 adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3]));
1253 if (adc_temp == BMP280_TEMP_SKIPPED) {
1254 dev_err(data->dev, "reading temperature skipped\n");
1255 goto out;
1256 }
1257
1258 buffer.comp_temp = bmp280_compensate_temp(data, adc_temp);
1259
1260 /* Pressure calculations */
1261 adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0]));
1262 if (adc_press == BMP280_PRESS_SKIPPED) {
1263 dev_err(data->dev, "reading pressure skipped\n");
1264 goto out;
1265 }
1266
1267 t_fine = bmp280_calc_t_fine(data, adc_temp);
1268 buffer.comp_press = bmp280_compensate_press(data, adc_press, t_fine);
1269
1270 /* Humidity calculations */
1271 adc_humidity = get_unaligned_be16(&data->buf[6]);
1272
1273 if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
1274 dev_err(data->dev, "reading humidity skipped\n");
1275 goto out;
1276 }
1277
1278 buffer.comp_humidity = bme280_compensate_humidity(data, adc_humidity,
1279 t_fine);
1280
1281 iio_push_to_buffers_with_ts(indio_dev, &buffer, sizeof(buffer),
1282 iio_get_time_ns(indio_dev));
1283
1284 out:
1285 iio_trigger_notify_done(indio_dev->trig);
1286
1287 return IRQ_HANDLED;
1288 }
1289
__bmp280_trigger_probe(struct iio_dev * indio_dev,const struct iio_trigger_ops * trigger_ops,int (* int_pin_config)(struct bmp280_data * data),irq_handler_t irq_thread_handler)1290 static int __bmp280_trigger_probe(struct iio_dev *indio_dev,
1291 const struct iio_trigger_ops *trigger_ops,
1292 int (*int_pin_config)(struct bmp280_data *data),
1293 irq_handler_t irq_thread_handler)
1294 {
1295 struct bmp280_data *data = iio_priv(indio_dev);
1296 struct device *dev = data->dev;
1297 u32 irq_type;
1298 int ret, irq;
1299
1300 irq = fwnode_irq_get(dev_fwnode(dev), 0);
1301 if (irq < 0)
1302 return dev_err_probe(dev, irq, "No interrupt found.\n");
1303
1304 irq_type = irq_get_trigger_type(irq);
1305 switch (irq_type) {
1306 case IRQF_TRIGGER_RISING:
1307 data->trig_active_high = true;
1308 break;
1309 case IRQF_TRIGGER_FALLING:
1310 data->trig_active_high = false;
1311 break;
1312 default:
1313 return dev_err_probe(dev, -EINVAL, "Invalid interrupt type specified.\n");
1314 }
1315
1316 data->trig_open_drain =
1317 fwnode_property_read_bool(dev_fwnode(dev), "int-open-drain");
1318
1319 ret = int_pin_config(data);
1320 if (ret)
1321 return ret;
1322
1323 data->trig = devm_iio_trigger_alloc(data->dev, "%s-dev%d",
1324 indio_dev->name,
1325 iio_device_id(indio_dev));
1326 if (!data->trig)
1327 return -ENOMEM;
1328
1329 data->trig->ops = trigger_ops;
1330 iio_trigger_set_drvdata(data->trig, data);
1331
1332 ret = devm_request_threaded_irq(data->dev, irq, NULL,
1333 irq_thread_handler, IRQF_ONESHOT,
1334 indio_dev->name, indio_dev);
1335 if (ret)
1336 return dev_err_probe(dev, ret, "request IRQ failed.\n");
1337
1338 ret = devm_iio_trigger_register(data->dev, data->trig);
1339 if (ret)
1340 return dev_err_probe(dev, ret, "iio trigger register failed.\n");
1341
1342 indio_dev->trig = iio_trigger_get(data->trig);
1343
1344 return 0;
1345 }
1346
1347 static const u8 bme280_chip_ids[] = { BME280_CHIP_ID };
1348 static const int bme280_humid_coeffs[] = { 1000, 1024 };
1349
1350 const struct bmp280_chip_info bme280_chip_info = {
1351 .id_reg = BMP280_REG_ID,
1352 .chip_id = bme280_chip_ids,
1353 .num_chip_id = ARRAY_SIZE(bme280_chip_ids),
1354 .regmap_config = &bme280_regmap_config,
1355 .start_up_time_us = 2000,
1356 .channels = bme280_channels,
1357 .num_channels = ARRAY_SIZE(bme280_channels),
1358 .avail_scan_masks = bme280_avail_scan_masks,
1359
1360 .oversampling_temp_avail = bmp280_oversampling_avail,
1361 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
1362 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
1363
1364 .oversampling_press_avail = bmp280_oversampling_avail,
1365 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
1366 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
1367
1368 .oversampling_humid_avail = bmp280_oversampling_avail,
1369 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
1370 .oversampling_humid_default = BME280_OSRS_HUMIDITY_16X - 1,
1371
1372 .temp_coeffs = bmp280_temp_coeffs,
1373 .temp_coeffs_type = IIO_VAL_FRACTIONAL,
1374 .press_coeffs = bmp280_press_coeffs,
1375 .press_coeffs_type = IIO_VAL_FRACTIONAL,
1376 .humid_coeffs = bme280_humid_coeffs,
1377 .humid_coeffs_type = IIO_VAL_FRACTIONAL,
1378
1379 .chip_config = bme280_chip_config,
1380 .read_temp = bmp280_read_temp,
1381 .read_press = bmp280_read_press,
1382 .read_humid = bme280_read_humid,
1383 .read_calib = bme280_read_calib,
1384 .set_mode = bmp280_set_mode,
1385 .wait_conv = bmp280_wait_conv,
1386 .preinit = bmp280_preinit,
1387
1388 .trigger_handler = bme280_trigger_handler,
1389 };
1390 EXPORT_SYMBOL_NS(bme280_chip_info, "IIO_BMP280");
1391
1392 /*
1393 * Helper function to send a command to BMP3XX sensors.
1394 *
1395 * Sensor processes commands written to the CMD register and signals
1396 * execution result through "cmd_rdy" and "cmd_error" flags available on
1397 * STATUS and ERROR registers.
1398 */
bmp380_cmd(struct bmp280_data * data,u8 cmd)1399 static int bmp380_cmd(struct bmp280_data *data, u8 cmd)
1400 {
1401 unsigned int reg;
1402 int ret;
1403
1404 /* Check if device is ready to process a command */
1405 ret = regmap_read(data->regmap, BMP380_REG_STATUS, ®);
1406 if (ret) {
1407 dev_err(data->dev, "failed to read error register\n");
1408 return ret;
1409 }
1410 if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) {
1411 dev_err(data->dev, "device is not ready to accept commands\n");
1412 return -EBUSY;
1413 }
1414
1415 /* Send command to process */
1416 ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd);
1417 if (ret) {
1418 dev_err(data->dev, "failed to send command to device\n");
1419 return ret;
1420 }
1421 /* Wait for 2ms for command to be processed */
1422 fsleep(data->start_up_time_us);
1423 /* Check for command processing error */
1424 ret = regmap_read(data->regmap, BMP380_REG_ERROR, ®);
1425 if (ret) {
1426 dev_err(data->dev, "error reading ERROR reg\n");
1427 return ret;
1428 }
1429 if (reg & BMP380_ERR_CMD_MASK) {
1430 dev_err(data->dev, "error processing command 0x%X\n", cmd);
1431 return -EINVAL;
1432 }
1433
1434 return 0;
1435 }
1436
bmp380_read_temp_adc(struct bmp280_data * data,u32 * adc_temp)1437 static int bmp380_read_temp_adc(struct bmp280_data *data, u32 *adc_temp)
1438 {
1439 u32 value_temp;
1440 int ret;
1441
1442 ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB,
1443 data->buf, BMP280_NUM_TEMP_BYTES);
1444 if (ret) {
1445 dev_err(data->dev, "failed to read temperature\n");
1446 return ret;
1447 }
1448
1449 value_temp = get_unaligned_le24(data->buf);
1450 if (value_temp == BMP380_TEMP_SKIPPED) {
1451 dev_err(data->dev, "reading temperature skipped\n");
1452 return -EIO;
1453 }
1454 *adc_temp = value_temp;
1455
1456 return 0;
1457 }
1458
1459 /*
1460 * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value
1461 * of "5123" equals 51.2º C. t_fine carries fine temperature as global value.
1462 *
1463 * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo
1464 * https://github.com/BoschSensortec/BMP3-Sensor-API.
1465 */
bmp380_calc_t_fine(struct bmp280_data * data,u32 adc_temp)1466 static s32 bmp380_calc_t_fine(struct bmp280_data *data, u32 adc_temp)
1467 {
1468 s64 var1, var2, var3, var4, var5, var6;
1469 struct bmp380_calib *calib = &data->calib.bmp380;
1470
1471 var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8);
1472 var2 = var1 * ((s64) calib->T2);
1473 var3 = var1 * var1;
1474 var4 = var3 * ((s64) calib->T3);
1475 var5 = (var2 << 18) + var4;
1476 var6 = var5 >> 32;
1477 return (s32)var6; /* t_fine = var6 */
1478 }
1479
bmp380_get_t_fine(struct bmp280_data * data,s32 * t_fine)1480 static int bmp380_get_t_fine(struct bmp280_data *data, s32 *t_fine)
1481 {
1482 s32 adc_temp;
1483 int ret;
1484
1485 ret = bmp380_read_temp_adc(data, &adc_temp);
1486 if (ret)
1487 return ret;
1488
1489 *t_fine = bmp380_calc_t_fine(data, adc_temp);
1490
1491 return 0;
1492 }
1493
bmp380_compensate_temp(struct bmp280_data * data,u32 adc_temp)1494 static int bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp)
1495 {
1496 s64 comp_temp;
1497 s32 var6;
1498
1499 var6 = bmp380_calc_t_fine(data, adc_temp);
1500 comp_temp = (var6 * 25) >> 14;
1501
1502 comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP);
1503 return (s32) comp_temp;
1504 }
1505
bmp380_read_press_adc(struct bmp280_data * data,u32 * adc_press)1506 static int bmp380_read_press_adc(struct bmp280_data *data, u32 *adc_press)
1507 {
1508 u32 value_press;
1509 int ret;
1510
1511 ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB,
1512 data->buf, BMP280_NUM_PRESS_BYTES);
1513 if (ret) {
1514 dev_err(data->dev, "failed to read pressure\n");
1515 return ret;
1516 }
1517
1518 value_press = get_unaligned_le24(data->buf);
1519 if (value_press == BMP380_PRESS_SKIPPED) {
1520 dev_err(data->dev, "reading pressure skipped\n");
1521 return -EIO;
1522 }
1523 *adc_press = value_press;
1524
1525 return 0;
1526 }
1527
1528 /*
1529 * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal.
1530 * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa.
1531 *
1532 * Taken from datasheet, Section 9.3. "Pressure compensation" and repository
1533 * https://github.com/BoschSensortec/BMP3-Sensor-API.
1534 */
bmp380_compensate_press(struct bmp280_data * data,u32 adc_press,s32 t_fine)1535 static u32 bmp380_compensate_press(struct bmp280_data *data,
1536 u32 adc_press, s32 t_fine)
1537 {
1538 s64 var1, var2, var3, var4, var5, var6, offset, sensitivity;
1539 struct bmp380_calib *calib = &data->calib.bmp380;
1540 u32 comp_press;
1541
1542 var1 = (s64)t_fine * (s64)t_fine;
1543 var2 = var1 >> 6;
1544 var3 = (var2 * ((s64)t_fine)) >> 8;
1545 var4 = ((s64)calib->P8 * var3) >> 5;
1546 var5 = ((s64)calib->P7 * var1) << 4;
1547 var6 = ((s64)calib->P6 * (s64)t_fine) << 22;
1548 offset = ((s64)calib->P5 << 47) + var4 + var5 + var6;
1549 var2 = ((s64)calib->P4 * var3) >> 5;
1550 var4 = ((s64)calib->P3 * var1) << 2;
1551 var5 = ((s64)calib->P2 - ((s64)1 << 14)) *
1552 ((s64)t_fine << 21);
1553 sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) +
1554 var2 + var4 + var5;
1555 var1 = (sensitivity >> 24) * (s64)adc_press;
1556 var2 = (s64)calib->P10 * (s64)t_fine;
1557 var3 = var2 + ((s64)calib->P9 << 16);
1558 var4 = (var3 * (s64)adc_press) >> 13;
1559
1560 /*
1561 * Dividing by 10 followed by multiplying by 10 to avoid
1562 * possible overflow caused by (uncomp_data->pressure * partial_data4).
1563 */
1564 var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9;
1565 var5 *= 10;
1566 var6 = (s64)adc_press * (s64)adc_press;
1567 var2 = ((s64)calib->P11 * var6) >> 16;
1568 var3 = (var2 * (s64)adc_press) >> 7;
1569 var4 = (offset >> 2) + var1 + var5 + var3;
1570 comp_press = ((u64)var4 * 25) >> 40;
1571
1572 comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES);
1573 return comp_press;
1574 }
1575
bmp380_read_temp(struct bmp280_data * data,s32 * comp_temp)1576 static int bmp380_read_temp(struct bmp280_data *data, s32 *comp_temp)
1577 {
1578 u32 adc_temp;
1579 int ret;
1580
1581 ret = bmp380_read_temp_adc(data, &adc_temp);
1582 if (ret)
1583 return ret;
1584
1585 *comp_temp = bmp380_compensate_temp(data, adc_temp);
1586
1587 return 0;
1588 }
1589
bmp380_read_press(struct bmp280_data * data,u32 * comp_press)1590 static int bmp380_read_press(struct bmp280_data *data, u32 *comp_press)
1591 {
1592 u32 adc_press, t_fine;
1593 int ret;
1594
1595 ret = bmp380_get_t_fine(data, &t_fine);
1596 if (ret)
1597 return ret;
1598
1599 ret = bmp380_read_press_adc(data, &adc_press);
1600 if (ret)
1601 return ret;
1602
1603 *comp_press = bmp380_compensate_press(data, adc_press, t_fine);
1604
1605 return 0;
1606 }
1607
bmp380_read_calib(struct bmp280_data * data)1608 static int bmp380_read_calib(struct bmp280_data *data)
1609 {
1610 struct bmp380_calib *calib = &data->calib.bmp380;
1611 int ret;
1612
1613 /* Read temperature and pressure calibration data */
1614 ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START,
1615 data->bmp380_cal_buf,
1616 sizeof(data->bmp380_cal_buf));
1617 if (ret) {
1618 dev_err(data->dev,
1619 "failed to read calibration parameters\n");
1620 return ret;
1621 }
1622
1623 /* Toss the temperature calibration data into the entropy pool */
1624 add_device_randomness(data->bmp380_cal_buf,
1625 sizeof(data->bmp380_cal_buf));
1626
1627 /* Parse calibration values */
1628 calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]);
1629 calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]);
1630 calib->T3 = data->bmp380_cal_buf[BMP380_T3];
1631 calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]);
1632 calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]);
1633 calib->P3 = data->bmp380_cal_buf[BMP380_P3];
1634 calib->P4 = data->bmp380_cal_buf[BMP380_P4];
1635 calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]);
1636 calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]);
1637 calib->P7 = data->bmp380_cal_buf[BMP380_P7];
1638 calib->P8 = data->bmp380_cal_buf[BMP380_P8];
1639 calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]);
1640 calib->P10 = data->bmp380_cal_buf[BMP380_P10];
1641 calib->P11 = data->bmp380_cal_buf[BMP380_P11];
1642
1643 return 0;
1644 }
1645
1646 static const int bmp380_odr_table[][2] = {
1647 [BMP380_ODR_200HZ] = {200, 0},
1648 [BMP380_ODR_100HZ] = {100, 0},
1649 [BMP380_ODR_50HZ] = {50, 0},
1650 [BMP380_ODR_25HZ] = {25, 0},
1651 [BMP380_ODR_12_5HZ] = {12, 500000},
1652 [BMP380_ODR_6_25HZ] = {6, 250000},
1653 [BMP380_ODR_3_125HZ] = {3, 125000},
1654 [BMP380_ODR_1_5625HZ] = {1, 562500},
1655 [BMP380_ODR_0_78HZ] = {0, 781250},
1656 [BMP380_ODR_0_39HZ] = {0, 390625},
1657 [BMP380_ODR_0_2HZ] = {0, 195313},
1658 [BMP380_ODR_0_1HZ] = {0, 97656},
1659 [BMP380_ODR_0_05HZ] = {0, 48828},
1660 [BMP380_ODR_0_02HZ] = {0, 24414},
1661 [BMP380_ODR_0_01HZ] = {0, 12207},
1662 [BMP380_ODR_0_006HZ] = {0, 6104},
1663 [BMP380_ODR_0_003HZ] = {0, 3052},
1664 [BMP380_ODR_0_0015HZ] = {0, 1526},
1665 };
1666
bmp380_preinit(struct bmp280_data * data)1667 static int bmp380_preinit(struct bmp280_data *data)
1668 {
1669 /* BMP3xx requires soft-reset as part of initialization */
1670 return bmp380_cmd(data, BMP380_CMD_SOFT_RESET);
1671 }
1672
1673 static const u8 bmp380_operation_mode[] = {
1674 [BMP280_SLEEP] = BMP380_MODE_SLEEP,
1675 [BMP280_FORCED] = BMP380_MODE_FORCED,
1676 [BMP280_NORMAL] = BMP380_MODE_NORMAL,
1677 };
1678
bmp380_set_mode(struct bmp280_data * data,enum bmp280_op_mode mode)1679 static int bmp380_set_mode(struct bmp280_data *data, enum bmp280_op_mode mode)
1680 {
1681 int ret;
1682
1683 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1684 BMP380_MODE_MASK,
1685 FIELD_PREP(BMP380_MODE_MASK,
1686 bmp380_operation_mode[mode]));
1687 if (ret) {
1688 dev_err(data->dev, "failed to write power control register.\n");
1689 return ret;
1690 }
1691
1692 data->op_mode = mode;
1693
1694 return 0;
1695 }
1696
bmp380_wait_conv(struct bmp280_data * data)1697 static int bmp380_wait_conv(struct bmp280_data *data)
1698 {
1699 unsigned int reg;
1700 int ret, meas_time_us;
1701
1702 /* Offset measurement time */
1703 meas_time_us = BMP380_MEAS_OFFSET;
1704
1705 /* Pressure measurement time */
1706 meas_time_us += BMP380_PRESS_MEAS_OFFSET +
1707 BIT(data->oversampling_press) * BMP380_MEAS_DUR;
1708
1709 /* Temperature measurement time */
1710 meas_time_us += BMP380_TEMP_MEAS_OFFSET +
1711 BIT(data->oversampling_temp) * BMP380_MEAS_DUR;
1712
1713 /* Measurement time defined in Datasheet Section 3.9.2 */
1714 fsleep(meas_time_us);
1715
1716 ret = regmap_read(data->regmap, BMP380_REG_STATUS, ®);
1717 if (ret) {
1718 dev_err(data->dev, "failed to read status register.\n");
1719 return ret;
1720 }
1721
1722 if (!((reg & BMP380_STATUS_DRDY_PRESS_MASK) &&
1723 (reg & BMP380_STATUS_DRDY_TEMP_MASK))) {
1724 dev_err(data->dev, "Measurement cycle didn't complete.\n");
1725 return -EBUSY;
1726 }
1727
1728 return 0;
1729 }
1730
bmp380_chip_config(struct bmp280_data * data)1731 static int bmp380_chip_config(struct bmp280_data *data)
1732 {
1733 bool change = false, aux;
1734 unsigned int tmp;
1735 u8 osrs;
1736 int ret;
1737
1738 /* Configure power control register */
1739 ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1740 BMP380_CTRL_SENSORS_MASK,
1741 BMP380_CTRL_SENSORS_PRESS_EN |
1742 BMP380_CTRL_SENSORS_TEMP_EN);
1743 if (ret) {
1744 dev_err(data->dev,
1745 "failed to write operation control register\n");
1746 return ret;
1747 }
1748
1749 /* Configure oversampling */
1750 osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) |
1751 FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press);
1752
1753 ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR,
1754 BMP380_OSRS_TEMP_MASK |
1755 BMP380_OSRS_PRESS_MASK,
1756 osrs, &aux);
1757 if (ret) {
1758 dev_err(data->dev, "failed to write oversampling register\n");
1759 return ret;
1760 }
1761 change = change || aux;
1762
1763 /* Configure output data rate */
1764 ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR,
1765 BMP380_ODRS_MASK, data->sampling_freq,
1766 &aux);
1767 if (ret) {
1768 dev_err(data->dev, "failed to write ODR selection register\n");
1769 return ret;
1770 }
1771 change = change || aux;
1772
1773 /* Set filter data */
1774 ret = regmap_update_bits(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK,
1775 FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff));
1776 if (ret) {
1777 dev_err(data->dev, "failed to write config register\n");
1778 return ret;
1779 }
1780
1781 if (change) {
1782 /*
1783 * The configurations errors are detected on the fly during a
1784 * measurement cycle. If the sampling frequency is too low, it's
1785 * faster to reset the measurement loop than wait until the next
1786 * measurement is due.
1787 *
1788 * Resets sensor measurement loop toggling between sleep and
1789 * normal operating modes.
1790 */
1791 ret = bmp380_set_mode(data, BMP280_SLEEP);
1792 if (ret) {
1793 dev_err(data->dev, "failed to set sleep mode\n");
1794 return ret;
1795 }
1796
1797 /*
1798 * According to the BMP3 Sensor API, the sensor needs 5ms
1799 * in order to go to the sleep mode.
1800 */
1801 fsleep(5 * USEC_PER_MSEC);
1802
1803 ret = bmp380_set_mode(data, BMP280_NORMAL);
1804 if (ret) {
1805 dev_err(data->dev, "failed to set normal mode\n");
1806 return ret;
1807 }
1808 /*
1809 * Waits for measurement before checking configuration error
1810 * flag. Selected longest measurement time, calculated from
1811 * formula in datasheet section 3.9.2 with an offset of ~+15%
1812 * as it seen as well in table 3.9.1.
1813 */
1814 fsleep(150 * USEC_PER_MSEC);
1815
1816 /* Check config error flag */
1817 ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp);
1818 if (ret) {
1819 dev_err(data->dev, "failed to read error register\n");
1820 return ret;
1821 }
1822 if (tmp & BMP380_ERR_CONF_MASK) {
1823 dev_warn(data->dev,
1824 "sensor flagged configuration as incompatible\n");
1825 return -EINVAL;
1826 }
1827 }
1828
1829 /* Dummy read to empty data registers. */
1830 ret = bmp380_read_press(data, &tmp);
1831 if (ret)
1832 return ret;
1833
1834 ret = bmp380_set_mode(data, BMP280_SLEEP);
1835 if (ret)
1836 dev_err(data->dev, "failed to set sleep mode.\n");
1837
1838 return ret;
1839 }
1840
bmp380_data_rdy_trigger_set_state(struct iio_trigger * trig,bool state)1841 static int bmp380_data_rdy_trigger_set_state(struct iio_trigger *trig,
1842 bool state)
1843 {
1844 struct bmp280_data *data = iio_trigger_get_drvdata(trig);
1845 int ret;
1846
1847 guard(mutex)(&data->lock);
1848
1849 ret = regmap_update_bits(data->regmap, BMP380_REG_INT_CONTROL,
1850 BMP380_INT_CTRL_DRDY_EN,
1851 FIELD_PREP(BMP380_INT_CTRL_DRDY_EN, !!state));
1852 if (ret)
1853 dev_err(data->dev,
1854 "Could not %s interrupt.\n", str_enable_disable(state));
1855 return ret;
1856 }
1857
1858 static const struct iio_trigger_ops bmp380_trigger_ops = {
1859 .set_trigger_state = &bmp380_data_rdy_trigger_set_state,
1860 };
1861
bmp380_int_pin_config(struct bmp280_data * data)1862 static int bmp380_int_pin_config(struct bmp280_data *data)
1863 {
1864 int pin_drive_cfg = FIELD_PREP(BMP380_INT_CTRL_OPEN_DRAIN,
1865 data->trig_open_drain);
1866 int pin_level_cfg = FIELD_PREP(BMP380_INT_CTRL_LEVEL,
1867 data->trig_active_high);
1868 int ret, int_pin_cfg = pin_drive_cfg | pin_level_cfg;
1869
1870 ret = regmap_update_bits(data->regmap, BMP380_REG_INT_CONTROL,
1871 BMP380_INT_CTRL_SETTINGS_MASK, int_pin_cfg);
1872 if (ret)
1873 dev_err(data->dev, "Could not set interrupt settings.\n");
1874
1875 return ret;
1876 }
1877
bmp380_irq_thread_handler(int irq,void * p)1878 static irqreturn_t bmp380_irq_thread_handler(int irq, void *p)
1879 {
1880 struct iio_dev *indio_dev = p;
1881 struct bmp280_data *data = iio_priv(indio_dev);
1882 unsigned int int_ctrl;
1883 int ret;
1884
1885 ret = regmap_read(data->regmap, BMP380_REG_INT_STATUS, &int_ctrl);
1886 if (ret)
1887 return IRQ_NONE;
1888
1889 if (FIELD_GET(BMP380_INT_STATUS_DRDY, int_ctrl))
1890 iio_trigger_poll_nested(data->trig);
1891
1892 return IRQ_HANDLED;
1893 }
1894
bmp380_trigger_probe(struct iio_dev * indio_dev)1895 static int bmp380_trigger_probe(struct iio_dev *indio_dev)
1896 {
1897 return __bmp280_trigger_probe(indio_dev, &bmp380_trigger_ops,
1898 bmp380_int_pin_config,
1899 bmp380_irq_thread_handler);
1900 }
1901
bmp380_trigger_handler(int irq,void * p)1902 static irqreturn_t bmp380_trigger_handler(int irq, void *p)
1903 {
1904 struct iio_poll_func *pf = p;
1905 struct iio_dev *indio_dev = pf->indio_dev;
1906 struct bmp280_data *data = iio_priv(indio_dev);
1907 u32 adc_temp, adc_press;
1908 s32 t_fine;
1909 struct {
1910 u32 comp_press;
1911 s32 comp_temp;
1912 aligned_s64 timestamp;
1913 } buffer;
1914 int ret;
1915
1916 guard(mutex)(&data->lock);
1917
1918 /* Burst read data registers */
1919 ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB,
1920 data->buf, BMP280_BURST_READ_BYTES);
1921 if (ret) {
1922 dev_err(data->dev, "failed to burst read sensor data\n");
1923 goto out;
1924 }
1925
1926 /* Temperature calculations */
1927 adc_temp = get_unaligned_le24(&data->buf[3]);
1928 if (adc_temp == BMP380_TEMP_SKIPPED) {
1929 dev_err(data->dev, "reading temperature skipped\n");
1930 goto out;
1931 }
1932
1933 buffer.comp_temp = bmp380_compensate_temp(data, adc_temp);
1934
1935 /* Pressure calculations */
1936 adc_press = get_unaligned_le24(&data->buf[0]);
1937 if (adc_press == BMP380_PRESS_SKIPPED) {
1938 dev_err(data->dev, "reading pressure skipped\n");
1939 goto out;
1940 }
1941
1942 t_fine = bmp380_calc_t_fine(data, adc_temp);
1943 buffer.comp_press = bmp380_compensate_press(data, adc_press, t_fine);
1944
1945 iio_push_to_buffers_with_ts(indio_dev, &buffer, sizeof(buffer),
1946 iio_get_time_ns(indio_dev));
1947
1948 out:
1949 iio_trigger_notify_done(indio_dev->trig);
1950
1951 return IRQ_HANDLED;
1952 }
1953
1954 static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 };
1955 static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128};
1956 static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID, BMP390_CHIP_ID };
1957 static const int bmp380_temp_coeffs[] = { 10, 1 };
1958 static const int bmp380_press_coeffs[] = { 1, 100000 };
1959
1960 const struct bmp280_chip_info bmp380_chip_info = {
1961 .id_reg = BMP380_REG_ID,
1962 .chip_id = bmp380_chip_ids,
1963 .num_chip_id = ARRAY_SIZE(bmp380_chip_ids),
1964 .regmap_config = &bmp380_regmap_config,
1965 .spi_read_extra_byte = true,
1966 .start_up_time_us = 2000,
1967 .channels = bmp380_channels,
1968 .num_channels = ARRAY_SIZE(bmp380_channels),
1969 .avail_scan_masks = bmp280_avail_scan_masks,
1970
1971 .oversampling_temp_avail = bmp380_oversampling_avail,
1972 .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1973 .oversampling_temp_default = ilog2(1),
1974
1975 .oversampling_press_avail = bmp380_oversampling_avail,
1976 .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1977 .oversampling_press_default = ilog2(4),
1978
1979 .sampling_freq_avail = bmp380_odr_table,
1980 .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2,
1981 .sampling_freq_default = BMP380_ODR_50HZ,
1982
1983 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1984 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1985 .iir_filter_coeff_default = 2,
1986
1987 .temp_coeffs = bmp380_temp_coeffs,
1988 .temp_coeffs_type = IIO_VAL_FRACTIONAL,
1989 .press_coeffs = bmp380_press_coeffs,
1990 .press_coeffs_type = IIO_VAL_FRACTIONAL,
1991
1992 .chip_config = bmp380_chip_config,
1993 .read_temp = bmp380_read_temp,
1994 .read_press = bmp380_read_press,
1995 .read_calib = bmp380_read_calib,
1996 .set_mode = bmp380_set_mode,
1997 .wait_conv = bmp380_wait_conv,
1998 .preinit = bmp380_preinit,
1999
2000 .trigger_probe = bmp380_trigger_probe,
2001 .trigger_handler = bmp380_trigger_handler,
2002 };
2003 EXPORT_SYMBOL_NS(bmp380_chip_info, "IIO_BMP280");
2004
bmp580_soft_reset(struct bmp280_data * data)2005 static int bmp580_soft_reset(struct bmp280_data *data)
2006 {
2007 unsigned int reg;
2008 int ret;
2009
2010 ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET);
2011 if (ret) {
2012 dev_err(data->dev, "failed to send reset command to device\n");
2013 return ret;
2014 }
2015 /* From datasheet's table 4: electrical characteristics */
2016 fsleep(2000);
2017
2018 /* Dummy read of chip_id */
2019 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®);
2020 if (ret) {
2021 dev_err(data->dev, "failed to reestablish comms after reset\n");
2022 return ret;
2023 }
2024
2025 ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, ®);
2026 if (ret) {
2027 dev_err(data->dev, "error reading interrupt status register\n");
2028 return ret;
2029 }
2030 if (!(reg & BMP580_INT_STATUS_POR_MASK)) {
2031 dev_err(data->dev, "error resetting sensor\n");
2032 return -EINVAL;
2033 }
2034
2035 return 0;
2036 }
2037
2038 /**
2039 * bmp580_nvm_operation() - Helper function to commit NVM memory operations
2040 * @data: sensor data struct
2041 * @is_write: flag to signal write operation
2042 */
bmp580_nvm_operation(struct bmp280_data * data,bool is_write)2043 static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write)
2044 {
2045 unsigned long timeout, poll;
2046 unsigned int reg;
2047 int ret;
2048
2049 /* Check NVM ready flag */
2050 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®);
2051 if (ret) {
2052 dev_err(data->dev, "failed to check nvm status\n");
2053 return ret;
2054 }
2055 if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) {
2056 dev_err(data->dev, "sensor's nvm is not ready\n");
2057 return -EIO;
2058 }
2059
2060 /* Start NVM operation sequence */
2061 ret = regmap_write(data->regmap, BMP580_REG_CMD,
2062 BMP580_CMD_NVM_OP_SEQ_0);
2063 if (ret) {
2064 dev_err(data->dev,
2065 "failed to send nvm operation's first sequence\n");
2066 return ret;
2067 }
2068 if (is_write) {
2069 /* Send NVM write sequence */
2070 ret = regmap_write(data->regmap, BMP580_REG_CMD,
2071 BMP580_CMD_NVM_WRITE_SEQ_1);
2072 if (ret) {
2073 dev_err(data->dev,
2074 "failed to send nvm write sequence\n");
2075 return ret;
2076 }
2077 /* Datasheet says on 4.8.1.2 it takes approximately 10ms */
2078 poll = 2000;
2079 timeout = 12000;
2080 } else {
2081 /* Send NVM read sequence */
2082 ret = regmap_write(data->regmap, BMP580_REG_CMD,
2083 BMP580_CMD_NVM_READ_SEQ_1);
2084 if (ret) {
2085 dev_err(data->dev,
2086 "failed to send nvm read sequence\n");
2087 return ret;
2088 }
2089 /* Datasheet says on 4.8.1.1 it takes approximately 200us */
2090 poll = 50;
2091 timeout = 400;
2092 }
2093
2094 /* Wait until NVM is ready again */
2095 ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg,
2096 (reg & BMP580_STATUS_NVM_RDY_MASK),
2097 poll, timeout);
2098 if (ret) {
2099 dev_err(data->dev, "error checking nvm operation status\n");
2100 return ret;
2101 }
2102
2103 /* Check NVM error flags */
2104 if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) {
2105 dev_err(data->dev, "error processing nvm operation\n");
2106 return -EIO;
2107 }
2108
2109 return 0;
2110 }
2111
2112 /*
2113 * Contrary to previous sensors families, compensation algorithm is builtin.
2114 * We are only required to read the register raw data and adapt the ranges
2115 * for what is expected on IIO ABI.
2116 */
2117
bmp580_read_temp(struct bmp280_data * data,s32 * raw_temp)2118 static int bmp580_read_temp(struct bmp280_data *data, s32 *raw_temp)
2119 {
2120 s32 value_temp;
2121 int ret;
2122
2123 ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB,
2124 data->buf, BMP280_NUM_TEMP_BYTES);
2125 if (ret) {
2126 dev_err(data->dev, "failed to read temperature\n");
2127 return ret;
2128 }
2129
2130 value_temp = get_unaligned_le24(data->buf);
2131 if (value_temp == BMP580_TEMP_SKIPPED) {
2132 dev_err(data->dev, "reading temperature skipped\n");
2133 return -EIO;
2134 }
2135 *raw_temp = sign_extend32(value_temp, 23);
2136
2137 return 0;
2138 }
2139
bmp580_read_press(struct bmp280_data * data,u32 * raw_press)2140 static int bmp580_read_press(struct bmp280_data *data, u32 *raw_press)
2141 {
2142 u32 value_press;
2143 int ret;
2144
2145 ret = regmap_bulk_read(data->regmap, BMP580_REG_PRESS_XLSB,
2146 data->buf, BMP280_NUM_PRESS_BYTES);
2147 if (ret) {
2148 dev_err(data->dev, "failed to read pressure\n");
2149 return ret;
2150 }
2151
2152 value_press = get_unaligned_le24(data->buf);
2153 if (value_press == BMP580_PRESS_SKIPPED) {
2154 dev_err(data->dev, "reading pressure skipped\n");
2155 return -EIO;
2156 }
2157 *raw_press = value_press;
2158
2159 return 0;
2160 }
2161
2162 static const int bmp580_odr_table[][2] = {
2163 [BMP580_ODR_240HZ] = {240, 0},
2164 [BMP580_ODR_218HZ] = {218, 0},
2165 [BMP580_ODR_199HZ] = {199, 0},
2166 [BMP580_ODR_179HZ] = {179, 0},
2167 [BMP580_ODR_160HZ] = {160, 0},
2168 [BMP580_ODR_149HZ] = {149, 0},
2169 [BMP580_ODR_140HZ] = {140, 0},
2170 [BMP580_ODR_129HZ] = {129, 0},
2171 [BMP580_ODR_120HZ] = {120, 0},
2172 [BMP580_ODR_110HZ] = {110, 0},
2173 [BMP580_ODR_100HZ] = {100, 0},
2174 [BMP580_ODR_89HZ] = {89, 0},
2175 [BMP580_ODR_80HZ] = {80, 0},
2176 [BMP580_ODR_70HZ] = {70, 0},
2177 [BMP580_ODR_60HZ] = {60, 0},
2178 [BMP580_ODR_50HZ] = {50, 0},
2179 [BMP580_ODR_45HZ] = {45, 0},
2180 [BMP580_ODR_40HZ] = {40, 0},
2181 [BMP580_ODR_35HZ] = {35, 0},
2182 [BMP580_ODR_30HZ] = {30, 0},
2183 [BMP580_ODR_25HZ] = {25, 0},
2184 [BMP580_ODR_20HZ] = {20, 0},
2185 [BMP580_ODR_15HZ] = {15, 0},
2186 [BMP580_ODR_10HZ] = {10, 0},
2187 [BMP580_ODR_5HZ] = {5, 0},
2188 [BMP580_ODR_4HZ] = {4, 0},
2189 [BMP580_ODR_3HZ] = {3, 0},
2190 [BMP580_ODR_2HZ] = {2, 0},
2191 [BMP580_ODR_1HZ] = {1, 0},
2192 [BMP580_ODR_0_5HZ] = {0, 500000},
2193 [BMP580_ODR_0_25HZ] = {0, 250000},
2194 [BMP580_ODR_0_125HZ] = {0, 125000},
2195 };
2196
2197 static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 };
2198
bmp580_nvmem_read_impl(void * priv,unsigned int offset,void * val,size_t bytes)2199 static int bmp580_nvmem_read_impl(void *priv, unsigned int offset, void *val,
2200 size_t bytes)
2201 {
2202 struct bmp280_data *data = priv;
2203 u16 *dst = val;
2204 int ret, addr;
2205
2206 guard(mutex)(&data->lock);
2207
2208 /* Set sensor in standby mode */
2209 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
2210 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
2211 BMP580_ODR_DEEPSLEEP_DIS |
2212 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
2213 if (ret) {
2214 dev_err(data->dev, "failed to change sensor to standby mode\n");
2215 goto exit;
2216 }
2217 /* Wait standby transition time */
2218 fsleep(2500);
2219
2220 while (bytes >= sizeof(*dst)) {
2221 addr = bmp580_nvmem_addrs[offset / sizeof(*dst)];
2222
2223 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR,
2224 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
2225 if (ret) {
2226 dev_err(data->dev, "error writing nvm address\n");
2227 goto exit;
2228 }
2229
2230 ret = bmp580_nvm_operation(data, false);
2231 if (ret)
2232 goto exit;
2233
2234 ret = regmap_bulk_read(data->regmap, BMP580_REG_NVM_DATA_LSB,
2235 &data->le16, sizeof(data->le16));
2236 if (ret) {
2237 dev_err(data->dev, "error reading nvm data regs\n");
2238 goto exit;
2239 }
2240
2241 *dst++ = le16_to_cpu(data->le16);
2242 bytes -= sizeof(*dst);
2243 offset += sizeof(*dst);
2244 }
2245 exit:
2246 /* Restore chip config */
2247 data->chip_info->chip_config(data);
2248 return ret;
2249 }
2250
bmp580_nvmem_read(void * priv,unsigned int offset,void * val,size_t bytes)2251 static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val,
2252 size_t bytes)
2253 {
2254 struct bmp280_data *data = priv;
2255 int ret;
2256
2257 pm_runtime_get_sync(data->dev);
2258 ret = bmp580_nvmem_read_impl(priv, offset, val, bytes);
2259 pm_runtime_put_autosuspend(data->dev);
2260
2261 return ret;
2262 }
2263
bmp580_nvmem_write_impl(void * priv,unsigned int offset,void * val,size_t bytes)2264 static int bmp580_nvmem_write_impl(void *priv, unsigned int offset, void *val,
2265 size_t bytes)
2266 {
2267 struct bmp280_data *data = priv;
2268 u16 *buf = val;
2269 int ret, addr;
2270
2271 guard(mutex)(&data->lock);
2272
2273 /* Set sensor in standby mode */
2274 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
2275 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
2276 BMP580_ODR_DEEPSLEEP_DIS |
2277 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
2278 if (ret) {
2279 dev_err(data->dev, "failed to change sensor to standby mode\n");
2280 goto exit;
2281 }
2282 /* Wait standby transition time */
2283 fsleep(2500);
2284
2285 while (bytes >= sizeof(*buf)) {
2286 addr = bmp580_nvmem_addrs[offset / sizeof(*buf)];
2287
2288 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR,
2289 BMP580_NVM_PROG_EN |
2290 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
2291 if (ret) {
2292 dev_err(data->dev, "error writing nvm address\n");
2293 goto exit;
2294 }
2295 data->le16 = cpu_to_le16(*buf++);
2296
2297 ret = regmap_bulk_write(data->regmap, BMP580_REG_NVM_DATA_LSB,
2298 &data->le16, sizeof(data->le16));
2299 if (ret) {
2300 dev_err(data->dev, "error writing LSB NVM data regs\n");
2301 goto exit;
2302 }
2303
2304 ret = bmp580_nvm_operation(data, true);
2305 if (ret)
2306 goto exit;
2307
2308 /* Disable programming mode bit */
2309 ret = regmap_clear_bits(data->regmap, BMP580_REG_NVM_ADDR,
2310 BMP580_NVM_PROG_EN);
2311 if (ret) {
2312 dev_err(data->dev, "error resetting nvm write\n");
2313 goto exit;
2314 }
2315
2316 bytes -= sizeof(*buf);
2317 offset += sizeof(*buf);
2318 }
2319 exit:
2320 /* Restore chip config */
2321 data->chip_info->chip_config(data);
2322 return ret;
2323 }
2324
bmp580_nvmem_write(void * priv,unsigned int offset,void * val,size_t bytes)2325 static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val,
2326 size_t bytes)
2327 {
2328 struct bmp280_data *data = priv;
2329 int ret;
2330
2331 pm_runtime_get_sync(data->dev);
2332 ret = bmp580_nvmem_write_impl(priv, offset, val, bytes);
2333 pm_runtime_put_autosuspend(data->dev);
2334
2335 return ret;
2336 }
2337
bmp580_preinit(struct bmp280_data * data)2338 static int bmp580_preinit(struct bmp280_data *data)
2339 {
2340 struct nvmem_config config = {
2341 .dev = data->dev,
2342 .priv = data,
2343 .name = "bmp580_nvmem",
2344 .word_size = sizeof(u16),
2345 .stride = sizeof(u16),
2346 .size = 3 * sizeof(u16),
2347 .reg_read = bmp580_nvmem_read,
2348 .reg_write = bmp580_nvmem_write,
2349 };
2350 unsigned int reg;
2351 int ret;
2352
2353 /* Issue soft-reset command */
2354 ret = bmp580_soft_reset(data);
2355 if (ret)
2356 return ret;
2357
2358 /* Post powerup sequence */
2359 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®);
2360 if (ret) {
2361 dev_err(data->dev, "failed to establish comms with the chip\n");
2362 return ret;
2363 }
2364
2365 /* Print warn message if we don't know the chip id */
2366 if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT)
2367 dev_warn(data->dev, "unexpected chip_id\n");
2368
2369 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®);
2370 if (ret) {
2371 dev_err(data->dev, "failed to read nvm status\n");
2372 return ret;
2373 }
2374
2375 /* Check nvm status */
2376 if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) {
2377 dev_err(data->dev, "nvm error on powerup sequence\n");
2378 return -EIO;
2379 }
2380
2381 /* Register nvmem device */
2382 return PTR_ERR_OR_ZERO(devm_nvmem_register(config.dev, &config));
2383 }
2384
2385 static const u8 bmp580_operation_mode[] = {
2386 [BMP280_SLEEP] = BMP580_MODE_SLEEP,
2387 [BMP280_FORCED] = BMP580_MODE_FORCED,
2388 [BMP280_NORMAL] = BMP580_MODE_NORMAL,
2389 };
2390
bmp580_set_mode(struct bmp280_data * data,enum bmp280_op_mode mode)2391 static int bmp580_set_mode(struct bmp280_data *data, enum bmp280_op_mode mode)
2392 {
2393 struct device *dev = data->dev;
2394 int ret;
2395
2396 if (mode == BMP280_FORCED) {
2397 ret = regmap_set_bits(data->regmap, BMP580_REG_DSP_CONFIG,
2398 BMP580_DSP_IIR_FORCED_FLUSH);
2399 if (ret) {
2400 dev_err(dev, "Could not flush IIR filter constants.\n");
2401 return ret;
2402 }
2403 }
2404
2405 ret = regmap_write_bits(data->regmap, BMP580_REG_ODR_CONFIG,
2406 BMP580_MODE_MASK,
2407 FIELD_PREP(BMP580_MODE_MASK,
2408 bmp580_operation_mode[mode]));
2409 if (ret) {
2410 dev_err(dev, "failed to write power control register.\n");
2411 return ret;
2412 }
2413
2414 data->op_mode = mode;
2415
2416 return 0;
2417 }
2418
bmp580_wait_conv(struct bmp280_data * data)2419 static int bmp580_wait_conv(struct bmp280_data *data)
2420 {
2421 /*
2422 * Taken from datasheet, Section 2 "Specification, Table 3 "Electrical
2423 * characteristics.
2424 */
2425 static const int time_conv_press[] = {
2426 0, 1050, 1785, 3045, 5670, 10920, 21420, 42420,
2427 84420,
2428 };
2429 static const int time_conv_temp[] = {
2430 0, 1050, 1105, 1575, 2205, 3465, 6090, 11340,
2431 21840,
2432 };
2433 int meas_time_us;
2434
2435 meas_time_us = 4 * USEC_PER_MSEC +
2436 time_conv_temp[data->oversampling_temp] +
2437 time_conv_press[data->oversampling_press];
2438
2439 /*
2440 * Measurement time mentioned in Chapter 2, Table 4 of the datasheet.
2441 * The extra 4ms is the required mode change to start of measurement
2442 * time.
2443 */
2444 fsleep(meas_time_us);
2445
2446 return 0;
2447 }
2448
bmp580_chip_config(struct bmp280_data * data)2449 static int bmp580_chip_config(struct bmp280_data *data)
2450 {
2451 bool change = false, aux;
2452 unsigned int tmp;
2453 u8 reg_val;
2454 int ret;
2455
2456 /* Sets sensor in standby mode */
2457 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
2458 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
2459 BMP580_ODR_DEEPSLEEP_DIS |
2460 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
2461 if (ret) {
2462 dev_err(data->dev, "failed to change sensor to standby mode\n");
2463 return ret;
2464 }
2465 /* From datasheet's table 4: electrical characteristics */
2466 fsleep(2500);
2467
2468 /* Set default DSP mode settings */
2469 reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) |
2470 BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN;
2471
2472 ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_CONFIG,
2473 BMP580_DSP_COMP_MASK |
2474 BMP580_DSP_SHDW_IIR_TEMP_EN |
2475 BMP580_DSP_SHDW_IIR_PRESS_EN, reg_val);
2476 if (ret) {
2477 dev_err(data->dev, "failed to change DSP mode settings\n");
2478 return ret;
2479 }
2480
2481 /* Configure oversampling */
2482 reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) |
2483 FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) |
2484 BMP580_OSR_PRESS_EN;
2485
2486 ret = regmap_update_bits_check(data->regmap, BMP580_REG_OSR_CONFIG,
2487 BMP580_OSR_TEMP_MASK |
2488 BMP580_OSR_PRESS_MASK |
2489 BMP580_OSR_PRESS_EN,
2490 reg_val, &aux);
2491 if (ret) {
2492 dev_err(data->dev, "failed to write oversampling register\n");
2493 return ret;
2494 }
2495 change = change || aux;
2496
2497 /* Configure output data rate */
2498 ret = regmap_update_bits_check(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK,
2499 FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq),
2500 &aux);
2501 if (ret) {
2502 dev_err(data->dev, "failed to write ODR configuration register\n");
2503 return ret;
2504 }
2505 change = change || aux;
2506
2507 /* Set filter data */
2508 reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) |
2509 FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff);
2510
2511 ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_IIR,
2512 BMP580_DSP_IIR_PRESS_MASK | BMP580_DSP_IIR_TEMP_MASK,
2513 reg_val);
2514 if (ret) {
2515 dev_err(data->dev, "failed to write config register\n");
2516 return ret;
2517 }
2518
2519 if (change) {
2520 /*
2521 * Check if ODR and OSR settings are valid or we are
2522 * operating in a degraded mode.
2523 */
2524 ret = regmap_read(data->regmap, BMP580_REG_EFF_OSR, &tmp);
2525 if (ret) {
2526 dev_err(data->dev,
2527 "error reading effective OSR register\n");
2528 return ret;
2529 }
2530 if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) {
2531 dev_warn(data->dev, "OSR and ODR incompatible settings detected\n");
2532 /* Set current OSR settings from data on effective OSR */
2533 data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp);
2534 data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp);
2535 return -EINVAL;
2536 }
2537 }
2538
2539 return 0;
2540 }
2541
bmp580_data_rdy_trigger_set_state(struct iio_trigger * trig,bool state)2542 static int bmp580_data_rdy_trigger_set_state(struct iio_trigger *trig,
2543 bool state)
2544 {
2545 struct bmp280_data *data = iio_trigger_get_drvdata(trig);
2546 int ret;
2547
2548 guard(mutex)(&data->lock);
2549
2550 ret = regmap_update_bits(data->regmap, BMP580_REG_INT_CONFIG,
2551 BMP580_INT_CONFIG_INT_EN,
2552 FIELD_PREP(BMP580_INT_CONFIG_INT_EN, !!state));
2553 if (ret)
2554 dev_err(data->dev,
2555 "Could not %s interrupt.\n", str_enable_disable(state));
2556 return ret;
2557 }
2558
2559 static const struct iio_trigger_ops bmp580_trigger_ops = {
2560 .set_trigger_state = &bmp580_data_rdy_trigger_set_state,
2561 };
2562
bmp580_int_pin_config(struct bmp280_data * data)2563 static int bmp580_int_pin_config(struct bmp280_data *data)
2564 {
2565 int pin_drive_cfg = FIELD_PREP(BMP580_INT_CONFIG_OPEN_DRAIN,
2566 data->trig_open_drain);
2567 int pin_level_cfg = FIELD_PREP(BMP580_INT_CONFIG_LEVEL,
2568 data->trig_active_high);
2569 int ret, int_pin_cfg = pin_drive_cfg | pin_level_cfg;
2570
2571 ret = regmap_update_bits(data->regmap, BMP580_REG_INT_CONFIG,
2572 BMP580_INT_CONFIG_MASK, int_pin_cfg);
2573 if (ret) {
2574 dev_err(data->dev, "Could not set interrupt settings.\n");
2575 return ret;
2576 }
2577
2578 ret = regmap_set_bits(data->regmap, BMP580_REG_INT_SOURCE,
2579 BMP580_INT_SOURCE_DRDY);
2580 if (ret)
2581 dev_err(data->dev, "Could not set interrupt source.\n");
2582
2583 return ret;
2584 }
2585
bmp580_irq_thread_handler(int irq,void * p)2586 static irqreturn_t bmp580_irq_thread_handler(int irq, void *p)
2587 {
2588 struct iio_dev *indio_dev = p;
2589 struct bmp280_data *data = iio_priv(indio_dev);
2590 unsigned int int_ctrl;
2591 int ret;
2592
2593 ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, &int_ctrl);
2594 if (ret)
2595 return IRQ_NONE;
2596
2597 if (FIELD_GET(BMP580_INT_STATUS_DRDY_MASK, int_ctrl))
2598 iio_trigger_poll_nested(data->trig);
2599
2600 return IRQ_HANDLED;
2601 }
2602
bmp580_trigger_probe(struct iio_dev * indio_dev)2603 static int bmp580_trigger_probe(struct iio_dev *indio_dev)
2604 {
2605 return __bmp280_trigger_probe(indio_dev, &bmp580_trigger_ops,
2606 bmp580_int_pin_config,
2607 bmp580_irq_thread_handler);
2608 }
2609
bmp580_trigger_handler(int irq,void * p)2610 static irqreturn_t bmp580_trigger_handler(int irq, void *p)
2611 {
2612 struct iio_poll_func *pf = p;
2613 struct iio_dev *indio_dev = pf->indio_dev;
2614 struct bmp280_data *data = iio_priv(indio_dev);
2615 struct {
2616 __le32 comp_temp;
2617 __le32 comp_press;
2618 aligned_s64 timestamp;
2619 } buffer;
2620 int ret;
2621
2622 guard(mutex)(&data->lock);
2623
2624 /* Burst read data registers */
2625 ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB,
2626 data->buf, BMP280_BURST_READ_BYTES);
2627 if (ret) {
2628 dev_err(data->dev, "failed to burst read sensor data\n");
2629 goto out;
2630 }
2631
2632 /* Pressure calculations */
2633 memcpy(&buffer.comp_press, &data->buf[3], 3);
2634
2635 /* Temperature calculations */
2636 memcpy(&buffer.comp_temp, &data->buf[0], 3);
2637
2638 iio_push_to_buffers_with_ts(indio_dev, &buffer, sizeof(buffer),
2639 iio_get_time_ns(indio_dev));
2640
2641 out:
2642 iio_trigger_notify_done(indio_dev->trig);
2643
2644 return IRQ_HANDLED;
2645 }
2646
2647 static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 };
2648 static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT };
2649 /* Instead of { 1000, 16 } we do this, to avoid overflow issues */
2650 static const int bmp580_temp_coeffs[] = { 125, 13 };
2651 static const int bmp580_press_coeffs[] = { 1, 64000};
2652
2653 const struct bmp280_chip_info bmp580_chip_info = {
2654 .id_reg = BMP580_REG_CHIP_ID,
2655 .chip_id = bmp580_chip_ids,
2656 .num_chip_id = ARRAY_SIZE(bmp580_chip_ids),
2657 .regmap_config = &bmp580_regmap_config,
2658 .start_up_time_us = 2000,
2659 .channels = bmp580_channels,
2660 .num_channels = ARRAY_SIZE(bmp580_channels),
2661 .avail_scan_masks = bmp280_avail_scan_masks,
2662
2663 .oversampling_temp_avail = bmp580_oversampling_avail,
2664 .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail),
2665 .oversampling_temp_default = ilog2(1),
2666
2667 .oversampling_press_avail = bmp580_oversampling_avail,
2668 .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail),
2669 .oversampling_press_default = ilog2(4),
2670
2671 .sampling_freq_avail = bmp580_odr_table,
2672 .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2,
2673 .sampling_freq_default = BMP580_ODR_50HZ,
2674
2675 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
2676 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
2677 .iir_filter_coeff_default = 2,
2678
2679 .temp_coeffs = bmp580_temp_coeffs,
2680 .temp_coeffs_type = IIO_VAL_FRACTIONAL_LOG2,
2681 .press_coeffs = bmp580_press_coeffs,
2682 .press_coeffs_type = IIO_VAL_FRACTIONAL,
2683
2684 .chip_config = bmp580_chip_config,
2685 .read_temp = bmp580_read_temp,
2686 .read_press = bmp580_read_press,
2687 .set_mode = bmp580_set_mode,
2688 .wait_conv = bmp580_wait_conv,
2689 .preinit = bmp580_preinit,
2690
2691 .trigger_probe = bmp580_trigger_probe,
2692 .trigger_handler = bmp580_trigger_handler,
2693 };
2694 EXPORT_SYMBOL_NS(bmp580_chip_info, "IIO_BMP280");
2695
bmp180_wait_for_eoc(struct bmp280_data * data,u8 ctrl_meas)2696 static int bmp180_wait_for_eoc(struct bmp280_data *data, u8 ctrl_meas)
2697 {
2698 static const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
2699 unsigned int delay_us;
2700 unsigned int ctrl;
2701 int ret;
2702
2703 if (data->use_eoc)
2704 reinit_completion(&data->done);
2705
2706 ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
2707 if (ret) {
2708 dev_err(data->dev, "failed to write crtl_meas register\n");
2709 return ret;
2710 }
2711
2712 if (data->use_eoc) {
2713 /*
2714 * If we have a completion interrupt, use it, wait up to
2715 * 100ms. The longest conversion time listed is 76.5 ms for
2716 * advanced resolution mode.
2717 */
2718 ret = wait_for_completion_timeout(&data->done,
2719 1 + msecs_to_jiffies(100));
2720 if (!ret)
2721 dev_err(data->dev, "timeout waiting for completion\n");
2722 } else {
2723 if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP)
2724 delay_us = 4500;
2725 else
2726 delay_us =
2727 conversion_time_max[data->oversampling_press];
2728
2729 fsleep(delay_us);
2730 }
2731
2732 ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
2733 if (ret) {
2734 dev_err(data->dev, "failed to read ctrl_meas register\n");
2735 return ret;
2736 }
2737
2738 /* The value of this bit reset to "0" after conversion is complete */
2739 if (ctrl & BMP180_MEAS_SCO) {
2740 dev_err(data->dev, "conversion didn't complete\n");
2741 return -EIO;
2742 }
2743
2744 return 0;
2745 }
2746
bmp180_read_temp_adc(struct bmp280_data * data,u32 * adc_temp)2747 static int bmp180_read_temp_adc(struct bmp280_data *data, u32 *adc_temp)
2748 {
2749 int ret;
2750
2751 ret = bmp180_wait_for_eoc(data,
2752 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) |
2753 BMP180_MEAS_SCO);
2754 if (ret)
2755 return ret;
2756
2757 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
2758 &data->be16, sizeof(data->be16));
2759 if (ret) {
2760 dev_err(data->dev, "failed to read temperature\n");
2761 return ret;
2762 }
2763
2764 *adc_temp = be16_to_cpu(data->be16);
2765
2766 return 0;
2767 }
2768
bmp180_read_calib(struct bmp280_data * data)2769 static int bmp180_read_calib(struct bmp280_data *data)
2770 {
2771 struct bmp180_calib *calib = &data->calib.bmp180;
2772 int ret;
2773 int i;
2774
2775 ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START,
2776 data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf));
2777 if (ret) {
2778 dev_err(data->dev, "failed to read calibration parameters\n");
2779 return ret;
2780 }
2781
2782 /* None of the words has the value 0 or 0xFFFF */
2783 for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) {
2784 if (data->bmp180_cal_buf[i] == cpu_to_be16(0) ||
2785 data->bmp180_cal_buf[i] == cpu_to_be16(0xffff))
2786 return -EIO;
2787 }
2788
2789 /* Toss the calibration data into the entropy pool */
2790 add_device_randomness(data->bmp180_cal_buf,
2791 sizeof(data->bmp180_cal_buf));
2792
2793 calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]);
2794 calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]);
2795 calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]);
2796 calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]);
2797 calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]);
2798 calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]);
2799 calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]);
2800 calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]);
2801 calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]);
2802 calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]);
2803 calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]);
2804
2805 return 0;
2806 }
2807
2808 /*
2809 * Returns temperature in DegC, resolution is 0.1 DegC.
2810 * t_fine carries fine temperature as global value.
2811 *
2812 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
2813 */
2814
bmp180_calc_t_fine(struct bmp280_data * data,u32 adc_temp)2815 static s32 bmp180_calc_t_fine(struct bmp280_data *data, u32 adc_temp)
2816 {
2817 struct bmp180_calib *calib = &data->calib.bmp180;
2818 s32 x1, x2;
2819
2820 x1 = ((((s32)adc_temp) - calib->AC6) * calib->AC5) >> 15;
2821 x2 = (calib->MC << 11) / (x1 + calib->MD);
2822 return x1 + x2; /* t_fine = x1 + x2; */
2823 }
2824
bmp180_get_t_fine(struct bmp280_data * data,s32 * t_fine)2825 static int bmp180_get_t_fine(struct bmp280_data *data, s32 *t_fine)
2826 {
2827 s32 adc_temp;
2828 int ret;
2829
2830 ret = bmp180_read_temp_adc(data, &adc_temp);
2831 if (ret)
2832 return ret;
2833
2834 *t_fine = bmp180_calc_t_fine(data, adc_temp);
2835
2836 return 0;
2837 }
2838
bmp180_compensate_temp(struct bmp280_data * data,u32 adc_temp)2839 static s32 bmp180_compensate_temp(struct bmp280_data *data, u32 adc_temp)
2840 {
2841 return (bmp180_calc_t_fine(data, adc_temp) + 8) / 16;
2842 }
2843
bmp180_read_temp(struct bmp280_data * data,s32 * comp_temp)2844 static int bmp180_read_temp(struct bmp280_data *data, s32 *comp_temp)
2845 {
2846 u32 adc_temp;
2847 int ret;
2848
2849 ret = bmp180_read_temp_adc(data, &adc_temp);
2850 if (ret)
2851 return ret;
2852
2853 *comp_temp = bmp180_compensate_temp(data, adc_temp);
2854
2855 return 0;
2856 }
2857
bmp180_read_press_adc(struct bmp280_data * data,u32 * adc_press)2858 static int bmp180_read_press_adc(struct bmp280_data *data, u32 *adc_press)
2859 {
2860 u8 oss = data->oversampling_press;
2861 int ret;
2862
2863 ret = bmp180_wait_for_eoc(data,
2864 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) |
2865 FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) |
2866 BMP180_MEAS_SCO);
2867 if (ret)
2868 return ret;
2869
2870 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
2871 data->buf, BMP280_NUM_PRESS_BYTES);
2872 if (ret) {
2873 dev_err(data->dev, "failed to read pressure\n");
2874 return ret;
2875 }
2876
2877 *adc_press = get_unaligned_be24(data->buf) >> (8 - oss);
2878
2879 return 0;
2880 }
2881
2882 /*
2883 * Returns pressure in Pa, resolution is 1 Pa.
2884 *
2885 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
2886 */
bmp180_compensate_press(struct bmp280_data * data,u32 adc_press,s32 t_fine)2887 static u32 bmp180_compensate_press(struct bmp280_data *data, u32 adc_press,
2888 s32 t_fine)
2889 {
2890 struct bmp180_calib *calib = &data->calib.bmp180;
2891 s32 oss = data->oversampling_press;
2892 s32 x1, x2, x3, p;
2893 s32 b3, b6;
2894 u32 b4, b7;
2895
2896 b6 = t_fine - 4000;
2897 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
2898 x2 = calib->AC2 * b6 >> 11;
2899 x3 = x1 + x2;
2900 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
2901 x1 = calib->AC3 * b6 >> 13;
2902 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
2903 x3 = (x1 + x2 + 2) >> 2;
2904 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
2905 b7 = (adc_press - b3) * (50000 >> oss);
2906 if (b7 < 0x80000000)
2907 p = (b7 * 2) / b4;
2908 else
2909 p = (b7 / b4) * 2;
2910
2911 x1 = (p >> 8) * (p >> 8);
2912 x1 = (x1 * 3038) >> 16;
2913 x2 = (-7357 * p) >> 16;
2914
2915 return p + ((x1 + x2 + 3791) >> 4);
2916 }
2917
bmp180_read_press(struct bmp280_data * data,u32 * comp_press)2918 static int bmp180_read_press(struct bmp280_data *data, u32 *comp_press)
2919 {
2920 u32 adc_press;
2921 s32 t_fine;
2922 int ret;
2923
2924 ret = bmp180_get_t_fine(data, &t_fine);
2925 if (ret)
2926 return ret;
2927
2928 ret = bmp180_read_press_adc(data, &adc_press);
2929 if (ret)
2930 return ret;
2931
2932 *comp_press = bmp180_compensate_press(data, adc_press, t_fine);
2933
2934 return 0;
2935 }
2936
2937 /* Keep compatibility with newer generations of the sensor */
bmp180_set_mode(struct bmp280_data * data,enum bmp280_op_mode mode)2938 static int bmp180_set_mode(struct bmp280_data *data, enum bmp280_op_mode mode)
2939 {
2940 return 0;
2941 }
2942
2943 /* Keep compatibility with newer generations of the sensor */
bmp180_wait_conv(struct bmp280_data * data)2944 static int bmp180_wait_conv(struct bmp280_data *data)
2945 {
2946 return 0;
2947 }
2948
2949 /* Keep compatibility with newer generations of the sensor */
bmp180_chip_config(struct bmp280_data * data)2950 static int bmp180_chip_config(struct bmp280_data *data)
2951 {
2952 return 0;
2953 }
2954
bmp180_trigger_handler(int irq,void * p)2955 static irqreturn_t bmp180_trigger_handler(int irq, void *p)
2956 {
2957 struct iio_poll_func *pf = p;
2958 struct iio_dev *indio_dev = pf->indio_dev;
2959 struct bmp280_data *data = iio_priv(indio_dev);
2960 struct {
2961 u32 comp_press;
2962 s32 comp_temp;
2963 aligned_s64 timestamp;
2964 } buffer;
2965 int ret;
2966
2967 guard(mutex)(&data->lock);
2968
2969 ret = bmp180_read_temp(data, &buffer.comp_temp);
2970 if (ret)
2971 goto out;
2972
2973
2974 ret = bmp180_read_press(data, &buffer.comp_press);
2975 if (ret)
2976 goto out;
2977
2978 iio_push_to_buffers_with_ts(indio_dev, &buffer, sizeof(buffer),
2979 iio_get_time_ns(indio_dev));
2980
2981 out:
2982 iio_trigger_notify_done(indio_dev->trig);
2983
2984 return IRQ_HANDLED;
2985 }
2986
2987 static const int bmp180_oversampling_temp_avail[] = { 1 };
2988 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
2989 static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID };
2990 static const int bmp180_temp_coeffs[] = { 100, 1 };
2991 static const int bmp180_press_coeffs[] = { 1, 1000 };
2992
2993 const struct bmp280_chip_info bmp180_chip_info = {
2994 .id_reg = BMP280_REG_ID,
2995 .chip_id = bmp180_chip_ids,
2996 .num_chip_id = ARRAY_SIZE(bmp180_chip_ids),
2997 .regmap_config = &bmp180_regmap_config,
2998 .start_up_time_us = 2000,
2999 .channels = bmp280_channels,
3000 .num_channels = ARRAY_SIZE(bmp280_channels),
3001 .avail_scan_masks = bmp280_avail_scan_masks,
3002
3003 .oversampling_temp_avail = bmp180_oversampling_temp_avail,
3004 .num_oversampling_temp_avail =
3005 ARRAY_SIZE(bmp180_oversampling_temp_avail),
3006 .oversampling_temp_default = 0,
3007
3008 .oversampling_press_avail = bmp180_oversampling_press_avail,
3009 .num_oversampling_press_avail =
3010 ARRAY_SIZE(bmp180_oversampling_press_avail),
3011 .oversampling_press_default = BMP180_MEAS_PRESS_8X,
3012
3013 .temp_coeffs = bmp180_temp_coeffs,
3014 .temp_coeffs_type = IIO_VAL_FRACTIONAL,
3015 .press_coeffs = bmp180_press_coeffs,
3016 .press_coeffs_type = IIO_VAL_FRACTIONAL,
3017
3018 .chip_config = bmp180_chip_config,
3019 .read_temp = bmp180_read_temp,
3020 .read_press = bmp180_read_press,
3021 .read_calib = bmp180_read_calib,
3022 .set_mode = bmp180_set_mode,
3023 .wait_conv = bmp180_wait_conv,
3024
3025 .trigger_handler = bmp180_trigger_handler,
3026 };
3027 EXPORT_SYMBOL_NS(bmp180_chip_info, "IIO_BMP280");
3028
bmp085_eoc_irq(int irq,void * d)3029 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
3030 {
3031 struct bmp280_data *data = d;
3032
3033 complete(&data->done);
3034
3035 return IRQ_HANDLED;
3036 }
3037
bmp085_trigger_probe(struct iio_dev * indio_dev)3038 static int bmp085_trigger_probe(struct iio_dev *indio_dev)
3039 {
3040 struct bmp280_data *data = iio_priv(indio_dev);
3041 struct device *dev = data->dev;
3042 unsigned long irq_trig;
3043 int ret, irq;
3044
3045 irq = fwnode_irq_get(dev_fwnode(dev), 0);
3046 if (irq < 0)
3047 return dev_err_probe(dev, irq, "No interrupt found.\n");
3048
3049 irq_trig = irq_get_trigger_type(irq);
3050 if (irq_trig != IRQF_TRIGGER_RISING) {
3051 dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n");
3052 irq_trig = IRQF_TRIGGER_RISING;
3053 }
3054
3055 init_completion(&data->done);
3056
3057 ret = devm_request_irq(dev, irq, bmp085_eoc_irq, irq_trig,
3058 indio_dev->name, data);
3059 if (ret) {
3060 /* Bail out without IRQ but keep the driver in place */
3061 dev_err(dev, "unable to request DRDY IRQ\n");
3062 return 0;
3063 }
3064
3065 data->use_eoc = true;
3066
3067 return 0;
3068 }
3069
3070 /* Identical to bmp180_chip_info + bmp085_trigger_probe */
3071 const struct bmp280_chip_info bmp085_chip_info = {
3072 .id_reg = BMP280_REG_ID,
3073 .chip_id = bmp180_chip_ids,
3074 .num_chip_id = ARRAY_SIZE(bmp180_chip_ids),
3075 .regmap_config = &bmp180_regmap_config,
3076 .start_up_time_us = 2000,
3077 .channels = bmp280_channels,
3078 .num_channels = ARRAY_SIZE(bmp280_channels),
3079 .avail_scan_masks = bmp280_avail_scan_masks,
3080
3081 .oversampling_temp_avail = bmp180_oversampling_temp_avail,
3082 .num_oversampling_temp_avail =
3083 ARRAY_SIZE(bmp180_oversampling_temp_avail),
3084 .oversampling_temp_default = 0,
3085
3086 .oversampling_press_avail = bmp180_oversampling_press_avail,
3087 .num_oversampling_press_avail =
3088 ARRAY_SIZE(bmp180_oversampling_press_avail),
3089 .oversampling_press_default = BMP180_MEAS_PRESS_8X,
3090
3091 .temp_coeffs = bmp180_temp_coeffs,
3092 .temp_coeffs_type = IIO_VAL_FRACTIONAL,
3093 .press_coeffs = bmp180_press_coeffs,
3094 .press_coeffs_type = IIO_VAL_FRACTIONAL,
3095
3096 .chip_config = bmp180_chip_config,
3097 .read_temp = bmp180_read_temp,
3098 .read_press = bmp180_read_press,
3099 .read_calib = bmp180_read_calib,
3100 .set_mode = bmp180_set_mode,
3101 .wait_conv = bmp180_wait_conv,
3102
3103 .trigger_probe = bmp085_trigger_probe,
3104 .trigger_handler = bmp180_trigger_handler,
3105 };
3106 EXPORT_SYMBOL_NS(bmp085_chip_info, "IIO_BMP280");
3107
bmp280_buffer_preenable(struct iio_dev * indio_dev)3108 static int bmp280_buffer_preenable(struct iio_dev *indio_dev)
3109 {
3110 struct bmp280_data *data = iio_priv(indio_dev);
3111
3112 pm_runtime_get_sync(data->dev);
3113 data->chip_info->set_mode(data, BMP280_NORMAL);
3114
3115 return 0;
3116 }
3117
bmp280_buffer_postdisable(struct iio_dev * indio_dev)3118 static int bmp280_buffer_postdisable(struct iio_dev *indio_dev)
3119 {
3120 struct bmp280_data *data = iio_priv(indio_dev);
3121
3122 pm_runtime_put_autosuspend(data->dev);
3123
3124 return 0;
3125 }
3126
3127 static const struct iio_buffer_setup_ops bmp280_buffer_setup_ops = {
3128 .preenable = bmp280_buffer_preenable,
3129 .postdisable = bmp280_buffer_postdisable,
3130 };
3131
bmp280_pm_disable(void * data)3132 static void bmp280_pm_disable(void *data)
3133 {
3134 struct device *dev = data;
3135
3136 pm_runtime_get_sync(dev);
3137 pm_runtime_put_noidle(dev);
3138 pm_runtime_disable(dev);
3139 }
3140
bmp280_regulators_disable(void * data)3141 static void bmp280_regulators_disable(void *data)
3142 {
3143 struct regulator_bulk_data *supplies = data;
3144
3145 regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies);
3146 }
3147
bmp280_common_probe(struct device * dev,struct regmap * regmap,const struct bmp280_chip_info * chip_info,const char * name,int irq)3148 int bmp280_common_probe(struct device *dev,
3149 struct regmap *regmap,
3150 const struct bmp280_chip_info *chip_info,
3151 const char *name,
3152 int irq)
3153 {
3154 struct iio_dev *indio_dev;
3155 struct bmp280_data *data;
3156 struct gpio_desc *gpiod;
3157 unsigned int chip_id;
3158 unsigned int i;
3159 int ret;
3160
3161 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
3162 if (!indio_dev)
3163 return -ENOMEM;
3164
3165 data = iio_priv(indio_dev);
3166 mutex_init(&data->lock);
3167 data->dev = dev;
3168
3169 indio_dev->name = name;
3170 indio_dev->info = &bmp280_info;
3171 indio_dev->modes = INDIO_DIRECT_MODE;
3172
3173 data->chip_info = chip_info;
3174
3175 /* Apply initial values from chip info structure */
3176 indio_dev->channels = chip_info->channels;
3177 indio_dev->num_channels = chip_info->num_channels;
3178 indio_dev->available_scan_masks = chip_info->avail_scan_masks;
3179 data->oversampling_press = chip_info->oversampling_press_default;
3180 data->oversampling_humid = chip_info->oversampling_humid_default;
3181 data->oversampling_temp = chip_info->oversampling_temp_default;
3182 data->iir_filter_coeff = chip_info->iir_filter_coeff_default;
3183 data->sampling_freq = chip_info->sampling_freq_default;
3184 data->start_up_time_us = chip_info->start_up_time_us;
3185
3186 /* Bring up regulators */
3187 regulator_bulk_set_supply_names(data->supplies,
3188 bmp280_supply_names,
3189 BMP280_NUM_SUPPLIES);
3190
3191 ret = devm_regulator_bulk_get(dev,
3192 BMP280_NUM_SUPPLIES, data->supplies);
3193 if (ret) {
3194 dev_err(dev, "failed to get regulators\n");
3195 return ret;
3196 }
3197
3198 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
3199 if (ret) {
3200 dev_err(dev, "failed to enable regulators\n");
3201 return ret;
3202 }
3203
3204 ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
3205 data->supplies);
3206 if (ret)
3207 return ret;
3208
3209 /* Wait to make sure we started up properly */
3210 fsleep(data->start_up_time_us);
3211
3212 /* Bring chip out of reset if there is an assigned GPIO line */
3213 gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
3214 if (IS_ERR(gpiod))
3215 return dev_err_probe(dev, PTR_ERR(gpiod), "failed to get reset GPIO\n");
3216
3217 /* Deassert the signal */
3218 gpiod_set_value_cansleep(gpiod, 0);
3219
3220 data->regmap = regmap;
3221
3222 ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id);
3223 if (ret) {
3224 dev_err(data->dev, "failed to read chip id\n");
3225 return ret;
3226 }
3227
3228 for (i = 0; i < data->chip_info->num_chip_id; i++) {
3229 if (chip_id == data->chip_info->chip_id[i]) {
3230 dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name);
3231 break;
3232 }
3233 }
3234
3235 if (i == data->chip_info->num_chip_id)
3236 dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id);
3237
3238 if (data->chip_info->preinit) {
3239 ret = data->chip_info->preinit(data);
3240 if (ret)
3241 return dev_err_probe(data->dev, ret,
3242 "error running preinit tasks\n");
3243 }
3244
3245 ret = data->chip_info->chip_config(data);
3246 if (ret)
3247 return ret;
3248
3249 dev_set_drvdata(dev, indio_dev);
3250
3251 /*
3252 * Some chips have calibration parameters "programmed into the devices'
3253 * non-volatile memory during production". Let's read them out at probe
3254 * time once. They will not change.
3255 */
3256
3257 if (data->chip_info->read_calib) {
3258 ret = data->chip_info->read_calib(data);
3259 if (ret)
3260 return dev_err_probe(data->dev, ret,
3261 "failed to read calibration coefficients\n");
3262 }
3263
3264 ret = devm_iio_triggered_buffer_setup(data->dev, indio_dev,
3265 iio_pollfunc_store_time,
3266 data->chip_info->trigger_handler,
3267 &bmp280_buffer_setup_ops);
3268 if (ret)
3269 return dev_err_probe(data->dev, ret,
3270 "iio triggered buffer setup failed\n");
3271
3272 /*
3273 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
3274 * however as it happens, the BMP085 shares the chip ID of BMP180
3275 * so we look for an IRQ if we have that.
3276 */
3277 if (irq > 0) {
3278 if (data->chip_info->trigger_probe)
3279 ret = data->chip_info->trigger_probe(indio_dev);
3280 if (ret)
3281 return ret;
3282 }
3283
3284 ret = data->chip_info->set_mode(data, BMP280_SLEEP);
3285 if (ret)
3286 return dev_err_probe(dev, ret, "Failed to set sleep mode\n");
3287
3288 /* Enable runtime PM */
3289 pm_runtime_get_noresume(dev);
3290 pm_runtime_set_active(dev);
3291 pm_runtime_enable(dev);
3292 /*
3293 * Set autosuspend to two orders of magnitude larger than the
3294 * start-up time.
3295 */
3296 pm_runtime_set_autosuspend_delay(dev, data->start_up_time_us / 10);
3297 pm_runtime_use_autosuspend(dev);
3298 pm_runtime_put(dev);
3299
3300 ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
3301 if (ret)
3302 return ret;
3303
3304 return devm_iio_device_register(dev, indio_dev);
3305 }
3306 EXPORT_SYMBOL_NS(bmp280_common_probe, "IIO_BMP280");
3307
bmp280_runtime_suspend(struct device * dev)3308 static int bmp280_runtime_suspend(struct device *dev)
3309 {
3310 struct iio_dev *indio_dev = dev_get_drvdata(dev);
3311 struct bmp280_data *data = iio_priv(indio_dev);
3312
3313 data->chip_info->set_mode(data, BMP280_SLEEP);
3314
3315 fsleep(data->start_up_time_us);
3316 return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies);
3317 }
3318
bmp280_runtime_resume(struct device * dev)3319 static int bmp280_runtime_resume(struct device *dev)
3320 {
3321 struct iio_dev *indio_dev = dev_get_drvdata(dev);
3322 struct bmp280_data *data = iio_priv(indio_dev);
3323 int ret;
3324
3325 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
3326 if (ret)
3327 return ret;
3328
3329 fsleep(data->start_up_time_us);
3330
3331 ret = data->chip_info->chip_config(data);
3332 if (ret)
3333 return ret;
3334
3335 return data->chip_info->set_mode(data, data->op_mode);
3336 }
3337
3338 EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend,
3339 bmp280_runtime_resume, NULL);
3340
3341 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
3342 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
3343 MODULE_LICENSE("GPL v2");
3344