1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57 * Check if any of the ctx, dispatch list or elevator
58 * have pending work in this hardware queue.
59 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 return !list_empty_careful(&hctx->dispatch) ||
63 sbitmap_any_bit_set(&hctx->ctx_map) ||
64 blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68 * Mark this ctx as having pending work in this hardware queue
69 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 struct blk_mq_ctx *ctx)
72 {
73 const int bit = ctx->index_hw[hctx->type];
74
75 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 struct blk_mq_ctx *ctx)
81 {
82 const int bit = ctx->index_hw[hctx->type];
83
84 sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88 struct block_device *part;
89 unsigned int inflight[2];
90 };
91
blk_mq_check_in_driver(struct request * rq,void * priv)92 static bool blk_mq_check_in_driver(struct request *rq, void *priv)
93 {
94 struct mq_inflight *mi = priv;
95
96 if (rq->rq_flags & RQF_IO_STAT &&
97 (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 mi->inflight[rq_data_dir(rq)]++;
100
101 return true;
102 }
103
blk_mq_in_driver_rw(struct block_device * part,unsigned int inflight[2])104 void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2])
105 {
106 struct mq_inflight mi = { .part = part };
107
108 blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver,
109 &mi);
110 inflight[READ] = mi.inflight[READ];
111 inflight[WRITE] = mi.inflight[WRITE];
112 }
113
114 #ifdef CONFIG_LOCKDEP
blk_freeze_set_owner(struct request_queue * q,struct task_struct * owner)115 static bool blk_freeze_set_owner(struct request_queue *q,
116 struct task_struct *owner)
117 {
118 if (!owner)
119 return false;
120
121 if (!q->mq_freeze_depth) {
122 q->mq_freeze_owner = owner;
123 q->mq_freeze_owner_depth = 1;
124 q->mq_freeze_disk_dead = !q->disk ||
125 test_bit(GD_DEAD, &q->disk->state) ||
126 !blk_queue_registered(q);
127 q->mq_freeze_queue_dying = blk_queue_dying(q);
128 return true;
129 }
130
131 if (owner == q->mq_freeze_owner)
132 q->mq_freeze_owner_depth += 1;
133 return false;
134 }
135
136 /* verify the last unfreeze in owner context */
blk_unfreeze_check_owner(struct request_queue * q)137 static bool blk_unfreeze_check_owner(struct request_queue *q)
138 {
139 if (q->mq_freeze_owner != current)
140 return false;
141 if (--q->mq_freeze_owner_depth == 0) {
142 q->mq_freeze_owner = NULL;
143 return true;
144 }
145 return false;
146 }
147
148 #else
149
blk_freeze_set_owner(struct request_queue * q,struct task_struct * owner)150 static bool blk_freeze_set_owner(struct request_queue *q,
151 struct task_struct *owner)
152 {
153 return false;
154 }
155
blk_unfreeze_check_owner(struct request_queue * q)156 static bool blk_unfreeze_check_owner(struct request_queue *q)
157 {
158 return false;
159 }
160 #endif
161
__blk_freeze_queue_start(struct request_queue * q,struct task_struct * owner)162 bool __blk_freeze_queue_start(struct request_queue *q,
163 struct task_struct *owner)
164 {
165 bool freeze;
166
167 mutex_lock(&q->mq_freeze_lock);
168 freeze = blk_freeze_set_owner(q, owner);
169 if (++q->mq_freeze_depth == 1) {
170 percpu_ref_kill(&q->q_usage_counter);
171 mutex_unlock(&q->mq_freeze_lock);
172 if (queue_is_mq(q))
173 blk_mq_run_hw_queues(q, false);
174 } else {
175 mutex_unlock(&q->mq_freeze_lock);
176 }
177
178 return freeze;
179 }
180
blk_freeze_queue_start(struct request_queue * q)181 void blk_freeze_queue_start(struct request_queue *q)
182 {
183 if (__blk_freeze_queue_start(q, current))
184 blk_freeze_acquire_lock(q);
185 }
186 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
187
blk_mq_freeze_queue_wait(struct request_queue * q)188 void blk_mq_freeze_queue_wait(struct request_queue *q)
189 {
190 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
193
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)194 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
195 unsigned long timeout)
196 {
197 return wait_event_timeout(q->mq_freeze_wq,
198 percpu_ref_is_zero(&q->q_usage_counter),
199 timeout);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
202
blk_mq_freeze_queue_nomemsave(struct request_queue * q)203 void blk_mq_freeze_queue_nomemsave(struct request_queue *q)
204 {
205 blk_freeze_queue_start(q);
206 blk_mq_freeze_queue_wait(q);
207 }
208 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave);
209
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)210 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
211 {
212 bool unfreeze;
213
214 mutex_lock(&q->mq_freeze_lock);
215 if (force_atomic)
216 q->q_usage_counter.data->force_atomic = true;
217 q->mq_freeze_depth--;
218 WARN_ON_ONCE(q->mq_freeze_depth < 0);
219 if (!q->mq_freeze_depth) {
220 percpu_ref_resurrect(&q->q_usage_counter);
221 wake_up_all(&q->mq_freeze_wq);
222 }
223 unfreeze = blk_unfreeze_check_owner(q);
224 mutex_unlock(&q->mq_freeze_lock);
225
226 return unfreeze;
227 }
228
blk_mq_unfreeze_queue_nomemrestore(struct request_queue * q)229 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q)
230 {
231 if (__blk_mq_unfreeze_queue(q, false))
232 blk_unfreeze_release_lock(q);
233 }
234 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore);
235
236 /*
237 * non_owner variant of blk_freeze_queue_start
238 *
239 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
240 * by the same task. This is fragile and should not be used if at all
241 * possible.
242 */
blk_freeze_queue_start_non_owner(struct request_queue * q)243 void blk_freeze_queue_start_non_owner(struct request_queue *q)
244 {
245 __blk_freeze_queue_start(q, NULL);
246 }
247 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
248
249 /* non_owner variant of blk_mq_unfreeze_queue */
blk_mq_unfreeze_queue_non_owner(struct request_queue * q)250 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
251 {
252 __blk_mq_unfreeze_queue(q, false);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
255
256 /*
257 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
258 * mpt3sas driver such that this function can be removed.
259 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)260 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
261 {
262 unsigned long flags;
263
264 spin_lock_irqsave(&q->queue_lock, flags);
265 if (!q->quiesce_depth++)
266 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
267 spin_unlock_irqrestore(&q->queue_lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
270
271 /**
272 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
273 * @set: tag_set to wait on
274 *
275 * Note: it is driver's responsibility for making sure that quiesce has
276 * been started on or more of the request_queues of the tag_set. This
277 * function only waits for the quiesce on those request_queues that had
278 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
279 */
blk_mq_wait_quiesce_done(struct blk_mq_tag_set * set)280 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
281 {
282 if (set->flags & BLK_MQ_F_BLOCKING)
283 synchronize_srcu(set->srcu);
284 else
285 synchronize_rcu();
286 }
287 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
288
289 /**
290 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
291 * @q: request queue.
292 *
293 * Note: this function does not prevent that the struct request end_io()
294 * callback function is invoked. Once this function is returned, we make
295 * sure no dispatch can happen until the queue is unquiesced via
296 * blk_mq_unquiesce_queue().
297 */
blk_mq_quiesce_queue(struct request_queue * q)298 void blk_mq_quiesce_queue(struct request_queue *q)
299 {
300 blk_mq_quiesce_queue_nowait(q);
301 /* nothing to wait for non-mq queues */
302 if (queue_is_mq(q))
303 blk_mq_wait_quiesce_done(q->tag_set);
304 }
305 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
306
307 /*
308 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
309 * @q: request queue.
310 *
311 * This function recovers queue into the state before quiescing
312 * which is done by blk_mq_quiesce_queue.
313 */
blk_mq_unquiesce_queue(struct request_queue * q)314 void blk_mq_unquiesce_queue(struct request_queue *q)
315 {
316 unsigned long flags;
317 bool run_queue = false;
318
319 spin_lock_irqsave(&q->queue_lock, flags);
320 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
321 ;
322 } else if (!--q->quiesce_depth) {
323 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
324 run_queue = true;
325 }
326 spin_unlock_irqrestore(&q->queue_lock, flags);
327
328 /* dispatch requests which are inserted during quiescing */
329 if (run_queue)
330 blk_mq_run_hw_queues(q, true);
331 }
332 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
333
blk_mq_quiesce_tagset(struct blk_mq_tag_set * set)334 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
335 {
336 struct request_queue *q;
337
338 mutex_lock(&set->tag_list_lock);
339 list_for_each_entry(q, &set->tag_list, tag_set_list) {
340 if (!blk_queue_skip_tagset_quiesce(q))
341 blk_mq_quiesce_queue_nowait(q);
342 }
343 mutex_unlock(&set->tag_list_lock);
344
345 blk_mq_wait_quiesce_done(set);
346 }
347 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
348
blk_mq_unquiesce_tagset(struct blk_mq_tag_set * set)349 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
350 {
351 struct request_queue *q;
352
353 mutex_lock(&set->tag_list_lock);
354 list_for_each_entry(q, &set->tag_list, tag_set_list) {
355 if (!blk_queue_skip_tagset_quiesce(q))
356 blk_mq_unquiesce_queue(q);
357 }
358 mutex_unlock(&set->tag_list_lock);
359 }
360 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
361
blk_mq_wake_waiters(struct request_queue * q)362 void blk_mq_wake_waiters(struct request_queue *q)
363 {
364 struct blk_mq_hw_ctx *hctx;
365 unsigned long i;
366
367 queue_for_each_hw_ctx(q, hctx, i)
368 if (blk_mq_hw_queue_mapped(hctx))
369 blk_mq_tag_wakeup_all(hctx->tags, true);
370 }
371
blk_rq_init(struct request_queue * q,struct request * rq)372 void blk_rq_init(struct request_queue *q, struct request *rq)
373 {
374 memset(rq, 0, sizeof(*rq));
375
376 INIT_LIST_HEAD(&rq->queuelist);
377 rq->q = q;
378 rq->__sector = (sector_t) -1;
379 rq->phys_gap_bit = 0;
380 INIT_HLIST_NODE(&rq->hash);
381 RB_CLEAR_NODE(&rq->rb_node);
382 rq->tag = BLK_MQ_NO_TAG;
383 rq->internal_tag = BLK_MQ_NO_TAG;
384 rq->start_time_ns = blk_time_get_ns();
385 blk_crypto_rq_set_defaults(rq);
386 }
387 EXPORT_SYMBOL(blk_rq_init);
388
389 /* Set start and alloc time when the allocated request is actually used */
blk_mq_rq_time_init(struct request * rq,u64 alloc_time_ns)390 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
391 {
392 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
393 if (blk_queue_rq_alloc_time(rq->q))
394 rq->alloc_time_ns = alloc_time_ns;
395 else
396 rq->alloc_time_ns = 0;
397 #endif
398 }
399
blk_mq_bio_issue_init(struct request_queue * q,struct bio * bio)400 static inline void blk_mq_bio_issue_init(struct request_queue *q,
401 struct bio *bio)
402 {
403 #ifdef CONFIG_BLK_CGROUP
404 if (test_bit(QUEUE_FLAG_BIO_ISSUE_TIME, &q->queue_flags))
405 bio->issue_time_ns = blk_time_get_ns();
406 #endif
407 }
408
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag)409 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
410 struct blk_mq_tags *tags, unsigned int tag)
411 {
412 struct blk_mq_ctx *ctx = data->ctx;
413 struct blk_mq_hw_ctx *hctx = data->hctx;
414 struct request_queue *q = data->q;
415 struct request *rq = tags->static_rqs[tag];
416
417 rq->q = q;
418 rq->mq_ctx = ctx;
419 rq->mq_hctx = hctx;
420 rq->cmd_flags = data->cmd_flags;
421
422 if (data->flags & BLK_MQ_REQ_PM)
423 data->rq_flags |= RQF_PM;
424 rq->rq_flags = data->rq_flags;
425
426 if (data->rq_flags & RQF_SCHED_TAGS) {
427 rq->tag = BLK_MQ_NO_TAG;
428 rq->internal_tag = tag;
429 } else {
430 rq->tag = tag;
431 rq->internal_tag = BLK_MQ_NO_TAG;
432 }
433 rq->timeout = 0;
434
435 rq->part = NULL;
436 rq->io_start_time_ns = 0;
437 rq->stats_sectors = 0;
438 rq->nr_phys_segments = 0;
439 rq->nr_integrity_segments = 0;
440 rq->end_io = NULL;
441 rq->end_io_data = NULL;
442
443 blk_crypto_rq_set_defaults(rq);
444 INIT_LIST_HEAD(&rq->queuelist);
445 /* tag was already set */
446 WRITE_ONCE(rq->deadline, 0);
447 req_ref_set(rq, 1);
448
449 if (rq->rq_flags & RQF_USE_SCHED) {
450 struct elevator_queue *e = data->q->elevator;
451
452 INIT_HLIST_NODE(&rq->hash);
453 RB_CLEAR_NODE(&rq->rb_node);
454
455 if (e->type->ops.prepare_request)
456 e->type->ops.prepare_request(rq);
457 }
458
459 return rq;
460 }
461
462 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data)463 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
464 {
465 unsigned int tag, tag_offset;
466 struct blk_mq_tags *tags;
467 struct request *rq;
468 unsigned long tag_mask;
469 int i, nr = 0;
470
471 do {
472 tag_mask = blk_mq_get_tags(data, data->nr_tags - nr, &tag_offset);
473 if (unlikely(!tag_mask)) {
474 if (nr == 0)
475 return NULL;
476 break;
477 }
478 tags = blk_mq_tags_from_data(data);
479 for (i = 0; tag_mask; i++) {
480 if (!(tag_mask & (1UL << i)))
481 continue;
482 tag = tag_offset + i;
483 prefetch(tags->static_rqs[tag]);
484 tag_mask &= ~(1UL << i);
485 rq = blk_mq_rq_ctx_init(data, tags, tag);
486 rq_list_add_head(data->cached_rqs, rq);
487 nr++;
488 }
489 } while (data->nr_tags > nr);
490
491 if (!(data->rq_flags & RQF_SCHED_TAGS))
492 blk_mq_add_active_requests(data->hctx, nr);
493 /* caller already holds a reference, add for remainder */
494 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
495 data->nr_tags -= nr;
496
497 return rq_list_pop(data->cached_rqs);
498 }
499
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)500 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
501 {
502 struct request_queue *q = data->q;
503 u64 alloc_time_ns = 0;
504 struct request *rq;
505 unsigned int tag;
506
507 /* alloc_time includes depth and tag waits */
508 if (blk_queue_rq_alloc_time(q))
509 alloc_time_ns = blk_time_get_ns();
510
511 if (data->cmd_flags & REQ_NOWAIT)
512 data->flags |= BLK_MQ_REQ_NOWAIT;
513
514 retry:
515 data->ctx = blk_mq_get_ctx(q);
516 data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx);
517
518 if (q->elevator) {
519 /*
520 * All requests use scheduler tags when an I/O scheduler is
521 * enabled for the queue.
522 */
523 data->rq_flags |= RQF_SCHED_TAGS;
524
525 /*
526 * Flush/passthrough requests are special and go directly to the
527 * dispatch list.
528 */
529 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
530 !blk_op_is_passthrough(data->cmd_flags)) {
531 struct elevator_mq_ops *ops = &q->elevator->type->ops;
532
533 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
534
535 data->rq_flags |= RQF_USE_SCHED;
536 if (ops->limit_depth)
537 ops->limit_depth(data->cmd_flags, data);
538 }
539 } else {
540 blk_mq_tag_busy(data->hctx);
541 }
542
543 if (data->flags & BLK_MQ_REQ_RESERVED)
544 data->rq_flags |= RQF_RESV;
545
546 /*
547 * Try batched alloc if we want more than 1 tag.
548 */
549 if (data->nr_tags > 1) {
550 rq = __blk_mq_alloc_requests_batch(data);
551 if (rq) {
552 blk_mq_rq_time_init(rq, alloc_time_ns);
553 return rq;
554 }
555 data->nr_tags = 1;
556 }
557
558 /*
559 * Waiting allocations only fail because of an inactive hctx. In that
560 * case just retry the hctx assignment and tag allocation as CPU hotplug
561 * should have migrated us to an online CPU by now.
562 */
563 tag = blk_mq_get_tag(data);
564 if (tag == BLK_MQ_NO_TAG) {
565 if (data->flags & BLK_MQ_REQ_NOWAIT)
566 return NULL;
567 /*
568 * Give up the CPU and sleep for a random short time to
569 * ensure that thread using a realtime scheduling class
570 * are migrated off the CPU, and thus off the hctx that
571 * is going away.
572 */
573 msleep(3);
574 goto retry;
575 }
576
577 if (!(data->rq_flags & RQF_SCHED_TAGS))
578 blk_mq_inc_active_requests(data->hctx);
579 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
580 blk_mq_rq_time_init(rq, alloc_time_ns);
581 return rq;
582 }
583
blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)584 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
585 struct blk_plug *plug,
586 blk_opf_t opf,
587 blk_mq_req_flags_t flags)
588 {
589 struct blk_mq_alloc_data data = {
590 .q = q,
591 .flags = flags,
592 .shallow_depth = 0,
593 .cmd_flags = opf,
594 .rq_flags = 0,
595 .nr_tags = plug->nr_ios,
596 .cached_rqs = &plug->cached_rqs,
597 .ctx = NULL,
598 .hctx = NULL
599 };
600 struct request *rq;
601
602 if (blk_queue_enter(q, flags))
603 return NULL;
604
605 plug->nr_ios = 1;
606
607 rq = __blk_mq_alloc_requests(&data);
608 if (unlikely(!rq))
609 blk_queue_exit(q);
610 return rq;
611 }
612
blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)613 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
614 blk_opf_t opf,
615 blk_mq_req_flags_t flags)
616 {
617 struct blk_plug *plug = current->plug;
618 struct request *rq;
619
620 if (!plug)
621 return NULL;
622
623 if (rq_list_empty(&plug->cached_rqs)) {
624 if (plug->nr_ios == 1)
625 return NULL;
626 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
627 if (!rq)
628 return NULL;
629 } else {
630 rq = rq_list_peek(&plug->cached_rqs);
631 if (!rq || rq->q != q)
632 return NULL;
633
634 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
635 return NULL;
636 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
637 return NULL;
638
639 rq_list_pop(&plug->cached_rqs);
640 blk_mq_rq_time_init(rq, blk_time_get_ns());
641 }
642
643 rq->cmd_flags = opf;
644 INIT_LIST_HEAD(&rq->queuelist);
645 return rq;
646 }
647
blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)648 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
649 blk_mq_req_flags_t flags)
650 {
651 struct request *rq;
652
653 rq = blk_mq_alloc_cached_request(q, opf, flags);
654 if (!rq) {
655 struct blk_mq_alloc_data data = {
656 .q = q,
657 .flags = flags,
658 .shallow_depth = 0,
659 .cmd_flags = opf,
660 .rq_flags = 0,
661 .nr_tags = 1,
662 .cached_rqs = NULL,
663 .ctx = NULL,
664 .hctx = NULL
665 };
666 int ret;
667
668 ret = blk_queue_enter(q, flags);
669 if (ret)
670 return ERR_PTR(ret);
671
672 rq = __blk_mq_alloc_requests(&data);
673 if (!rq)
674 goto out_queue_exit;
675 }
676 rq->__data_len = 0;
677 rq->phys_gap_bit = 0;
678 rq->__sector = (sector_t) -1;
679 rq->bio = rq->biotail = NULL;
680 return rq;
681 out_queue_exit:
682 blk_queue_exit(q);
683 return ERR_PTR(-EWOULDBLOCK);
684 }
685 EXPORT_SYMBOL(blk_mq_alloc_request);
686
blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)687 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
688 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
689 {
690 struct blk_mq_alloc_data data = {
691 .q = q,
692 .flags = flags,
693 .shallow_depth = 0,
694 .cmd_flags = opf,
695 .rq_flags = 0,
696 .nr_tags = 1,
697 .cached_rqs = NULL,
698 .ctx = NULL,
699 .hctx = NULL
700 };
701 u64 alloc_time_ns = 0;
702 struct request *rq;
703 unsigned int cpu;
704 unsigned int tag;
705 int ret;
706
707 /* alloc_time includes depth and tag waits */
708 if (blk_queue_rq_alloc_time(q))
709 alloc_time_ns = blk_time_get_ns();
710
711 /*
712 * If the tag allocator sleeps we could get an allocation for a
713 * different hardware context. No need to complicate the low level
714 * allocator for this for the rare use case of a command tied to
715 * a specific queue.
716 */
717 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
718 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
719 return ERR_PTR(-EINVAL);
720
721 if (hctx_idx >= q->nr_hw_queues)
722 return ERR_PTR(-EIO);
723
724 ret = blk_queue_enter(q, flags);
725 if (ret)
726 return ERR_PTR(ret);
727
728 /*
729 * Check if the hardware context is actually mapped to anything.
730 * If not tell the caller that it should skip this queue.
731 */
732 ret = -EXDEV;
733 data.hctx = q->queue_hw_ctx[hctx_idx];
734 if (!blk_mq_hw_queue_mapped(data.hctx))
735 goto out_queue_exit;
736 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
737 if (cpu >= nr_cpu_ids)
738 goto out_queue_exit;
739 data.ctx = __blk_mq_get_ctx(q, cpu);
740
741 if (q->elevator)
742 data.rq_flags |= RQF_SCHED_TAGS;
743 else
744 blk_mq_tag_busy(data.hctx);
745
746 if (flags & BLK_MQ_REQ_RESERVED)
747 data.rq_flags |= RQF_RESV;
748
749 ret = -EWOULDBLOCK;
750 tag = blk_mq_get_tag(&data);
751 if (tag == BLK_MQ_NO_TAG)
752 goto out_queue_exit;
753 if (!(data.rq_flags & RQF_SCHED_TAGS))
754 blk_mq_inc_active_requests(data.hctx);
755 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
756 blk_mq_rq_time_init(rq, alloc_time_ns);
757 rq->__data_len = 0;
758 rq->phys_gap_bit = 0;
759 rq->__sector = (sector_t) -1;
760 rq->bio = rq->biotail = NULL;
761 return rq;
762
763 out_queue_exit:
764 blk_queue_exit(q);
765 return ERR_PTR(ret);
766 }
767 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
768
blk_mq_finish_request(struct request * rq)769 static void blk_mq_finish_request(struct request *rq)
770 {
771 struct request_queue *q = rq->q;
772
773 blk_zone_finish_request(rq);
774
775 if (rq->rq_flags & RQF_USE_SCHED) {
776 q->elevator->type->ops.finish_request(rq);
777 /*
778 * For postflush request that may need to be
779 * completed twice, we should clear this flag
780 * to avoid double finish_request() on the rq.
781 */
782 rq->rq_flags &= ~RQF_USE_SCHED;
783 }
784 }
785
__blk_mq_free_request(struct request * rq)786 static void __blk_mq_free_request(struct request *rq)
787 {
788 struct request_queue *q = rq->q;
789 struct blk_mq_ctx *ctx = rq->mq_ctx;
790 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
791 const int sched_tag = rq->internal_tag;
792
793 blk_crypto_free_request(rq);
794 blk_pm_mark_last_busy(rq);
795 rq->mq_hctx = NULL;
796
797 if (rq->tag != BLK_MQ_NO_TAG) {
798 blk_mq_dec_active_requests(hctx);
799 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
800 }
801 if (sched_tag != BLK_MQ_NO_TAG)
802 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
803 blk_mq_sched_restart(hctx);
804 blk_queue_exit(q);
805 }
806
blk_mq_free_request(struct request * rq)807 void blk_mq_free_request(struct request *rq)
808 {
809 struct request_queue *q = rq->q;
810
811 blk_mq_finish_request(rq);
812
813 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
814 laptop_io_completion(q->disk->bdi);
815
816 rq_qos_done(q, rq);
817
818 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
819 if (req_ref_put_and_test(rq))
820 __blk_mq_free_request(rq);
821 }
822 EXPORT_SYMBOL_GPL(blk_mq_free_request);
823
blk_mq_free_plug_rqs(struct blk_plug * plug)824 void blk_mq_free_plug_rqs(struct blk_plug *plug)
825 {
826 struct request *rq;
827
828 while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
829 blk_mq_free_request(rq);
830 }
831
blk_dump_rq_flags(struct request * rq,char * msg)832 void blk_dump_rq_flags(struct request *rq, char *msg)
833 {
834 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
835 rq->q->disk ? rq->q->disk->disk_name : "?",
836 (__force unsigned long long) rq->cmd_flags);
837
838 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
839 (unsigned long long)blk_rq_pos(rq),
840 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
841 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
842 rq->bio, rq->biotail, blk_rq_bytes(rq));
843 }
844 EXPORT_SYMBOL(blk_dump_rq_flags);
845
blk_account_io_completion(struct request * req,unsigned int bytes)846 static void blk_account_io_completion(struct request *req, unsigned int bytes)
847 {
848 if (req->rq_flags & RQF_IO_STAT) {
849 const int sgrp = op_stat_group(req_op(req));
850
851 part_stat_lock();
852 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
853 part_stat_unlock();
854 }
855 }
856
blk_print_req_error(struct request * req,blk_status_t status)857 static void blk_print_req_error(struct request *req, blk_status_t status)
858 {
859 printk_ratelimited(KERN_ERR
860 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
861 "phys_seg %u prio class %u\n",
862 blk_status_to_str(status),
863 req->q->disk ? req->q->disk->disk_name : "?",
864 blk_rq_pos(req), (__force u32)req_op(req),
865 blk_op_str(req_op(req)),
866 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
867 req->nr_phys_segments,
868 IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
869 }
870
871 /*
872 * Fully end IO on a request. Does not support partial completions, or
873 * errors.
874 */
blk_complete_request(struct request * req)875 static void blk_complete_request(struct request *req)
876 {
877 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
878 int total_bytes = blk_rq_bytes(req);
879 struct bio *bio = req->bio;
880
881 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
882
883 if (!bio)
884 return;
885
886 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
887 blk_integrity_complete(req, total_bytes);
888
889 /*
890 * Upper layers may call blk_crypto_evict_key() anytime after the last
891 * bio_endio(). Therefore, the keyslot must be released before that.
892 */
893 blk_crypto_rq_put_keyslot(req);
894
895 blk_account_io_completion(req, total_bytes);
896
897 do {
898 struct bio *next = bio->bi_next;
899
900 /* Completion has already been traced */
901 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
902
903 if (blk_req_bio_is_zone_append(req, bio))
904 blk_zone_append_update_request_bio(req, bio);
905
906 if (!is_flush)
907 bio_endio(bio);
908 bio = next;
909 } while (bio);
910
911 /*
912 * Reset counters so that the request stacking driver
913 * can find how many bytes remain in the request
914 * later.
915 */
916 if (!req->end_io) {
917 req->bio = NULL;
918 req->__data_len = 0;
919 }
920 }
921
922 /**
923 * blk_update_request - Complete multiple bytes without completing the request
924 * @req: the request being processed
925 * @error: block status code
926 * @nr_bytes: number of bytes to complete for @req
927 *
928 * Description:
929 * Ends I/O on a number of bytes attached to @req, but doesn't complete
930 * the request structure even if @req doesn't have leftover.
931 * If @req has leftover, sets it up for the next range of segments.
932 *
933 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
934 * %false return from this function.
935 *
936 * Note:
937 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
938 * except in the consistency check at the end of this function.
939 *
940 * Return:
941 * %false - this request doesn't have any more data
942 * %true - this request has more data
943 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)944 bool blk_update_request(struct request *req, blk_status_t error,
945 unsigned int nr_bytes)
946 {
947 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
948 bool quiet = req->rq_flags & RQF_QUIET;
949 int total_bytes;
950
951 trace_block_rq_complete(req, error, nr_bytes);
952
953 if (!req->bio)
954 return false;
955
956 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
957 error == BLK_STS_OK)
958 blk_integrity_complete(req, nr_bytes);
959
960 /*
961 * Upper layers may call blk_crypto_evict_key() anytime after the last
962 * bio_endio(). Therefore, the keyslot must be released before that.
963 */
964 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
965 __blk_crypto_rq_put_keyslot(req);
966
967 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
968 !test_bit(GD_DEAD, &req->q->disk->state)) {
969 blk_print_req_error(req, error);
970 trace_block_rq_error(req, error, nr_bytes);
971 }
972
973 blk_account_io_completion(req, nr_bytes);
974
975 total_bytes = 0;
976 while (req->bio) {
977 struct bio *bio = req->bio;
978 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
979
980 if (unlikely(error))
981 bio->bi_status = error;
982
983 if (bio_bytes == bio->bi_iter.bi_size) {
984 req->bio = bio->bi_next;
985 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
986 /*
987 * Partial zone append completions cannot be supported
988 * as the BIO fragments may end up not being written
989 * sequentially.
990 */
991 bio->bi_status = BLK_STS_IOERR;
992 }
993
994 /* Completion has already been traced */
995 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
996 if (unlikely(quiet))
997 bio_set_flag(bio, BIO_QUIET);
998
999 bio_advance(bio, bio_bytes);
1000
1001 /* Don't actually finish bio if it's part of flush sequence */
1002 if (!bio->bi_iter.bi_size) {
1003 if (blk_req_bio_is_zone_append(req, bio))
1004 blk_zone_append_update_request_bio(req, bio);
1005 if (!is_flush)
1006 bio_endio(bio);
1007 }
1008
1009 total_bytes += bio_bytes;
1010 nr_bytes -= bio_bytes;
1011
1012 if (!nr_bytes)
1013 break;
1014 }
1015
1016 /*
1017 * completely done
1018 */
1019 if (!req->bio) {
1020 /*
1021 * Reset counters so that the request stacking driver
1022 * can find how many bytes remain in the request
1023 * later.
1024 */
1025 req->__data_len = 0;
1026 return false;
1027 }
1028
1029 req->__data_len -= total_bytes;
1030
1031 /* update sector only for requests with clear definition of sector */
1032 if (!blk_rq_is_passthrough(req))
1033 req->__sector += total_bytes >> 9;
1034
1035 /* mixed attributes always follow the first bio */
1036 if (req->rq_flags & RQF_MIXED_MERGE) {
1037 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1038 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1039 }
1040
1041 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1042 /*
1043 * If total number of sectors is less than the first segment
1044 * size, something has gone terribly wrong.
1045 */
1046 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1047 blk_dump_rq_flags(req, "request botched");
1048 req->__data_len = blk_rq_cur_bytes(req);
1049 }
1050
1051 /* recalculate the number of segments */
1052 req->nr_phys_segments = blk_recalc_rq_segments(req);
1053 }
1054
1055 return true;
1056 }
1057 EXPORT_SYMBOL_GPL(blk_update_request);
1058
blk_account_io_done(struct request * req,u64 now)1059 static inline void blk_account_io_done(struct request *req, u64 now)
1060 {
1061 trace_block_io_done(req);
1062
1063 /*
1064 * Account IO completion. flush_rq isn't accounted as a
1065 * normal IO on queueing nor completion. Accounting the
1066 * containing request is enough.
1067 */
1068 if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1069 const int sgrp = op_stat_group(req_op(req));
1070
1071 part_stat_lock();
1072 update_io_ticks(req->part, jiffies, true);
1073 part_stat_inc(req->part, ios[sgrp]);
1074 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1075 part_stat_local_dec(req->part,
1076 in_flight[op_is_write(req_op(req))]);
1077 part_stat_unlock();
1078 }
1079 }
1080
blk_rq_passthrough_stats(struct request * req)1081 static inline bool blk_rq_passthrough_stats(struct request *req)
1082 {
1083 struct bio *bio = req->bio;
1084
1085 if (!blk_queue_passthrough_stat(req->q))
1086 return false;
1087
1088 /* Requests without a bio do not transfer data. */
1089 if (!bio)
1090 return false;
1091
1092 /*
1093 * Stats are accumulated in the bdev, so must have one attached to a
1094 * bio to track stats. Most drivers do not set the bdev for passthrough
1095 * requests, but nvme is one that will set it.
1096 */
1097 if (!bio->bi_bdev)
1098 return false;
1099
1100 /*
1101 * We don't know what a passthrough command does, but we know the
1102 * payload size and data direction. Ensuring the size is aligned to the
1103 * block size filters out most commands with payloads that don't
1104 * represent sector access.
1105 */
1106 if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1107 return false;
1108 return true;
1109 }
1110
blk_account_io_start(struct request * req)1111 static inline void blk_account_io_start(struct request *req)
1112 {
1113 trace_block_io_start(req);
1114
1115 if (!blk_queue_io_stat(req->q))
1116 return;
1117 if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1118 return;
1119
1120 req->rq_flags |= RQF_IO_STAT;
1121 req->start_time_ns = blk_time_get_ns();
1122
1123 /*
1124 * All non-passthrough requests are created from a bio with one
1125 * exception: when a flush command that is part of a flush sequence
1126 * generated by the state machine in blk-flush.c is cloned onto the
1127 * lower device by dm-multipath we can get here without a bio.
1128 */
1129 if (req->bio)
1130 req->part = req->bio->bi_bdev;
1131 else
1132 req->part = req->q->disk->part0;
1133
1134 part_stat_lock();
1135 update_io_ticks(req->part, jiffies, false);
1136 part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1137 part_stat_unlock();
1138 }
1139
__blk_mq_end_request_acct(struct request * rq,u64 now)1140 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1141 {
1142 if (rq->rq_flags & RQF_STATS)
1143 blk_stat_add(rq, now);
1144
1145 blk_mq_sched_completed_request(rq, now);
1146 blk_account_io_done(rq, now);
1147 }
1148
__blk_mq_end_request(struct request * rq,blk_status_t error)1149 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1150 {
1151 if (blk_mq_need_time_stamp(rq))
1152 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1153
1154 blk_mq_finish_request(rq);
1155
1156 if (rq->end_io) {
1157 rq_qos_done(rq->q, rq);
1158 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1159 blk_mq_free_request(rq);
1160 } else {
1161 blk_mq_free_request(rq);
1162 }
1163 }
1164 EXPORT_SYMBOL(__blk_mq_end_request);
1165
blk_mq_end_request(struct request * rq,blk_status_t error)1166 void blk_mq_end_request(struct request *rq, blk_status_t error)
1167 {
1168 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1169 BUG();
1170 __blk_mq_end_request(rq, error);
1171 }
1172 EXPORT_SYMBOL(blk_mq_end_request);
1173
1174 #define TAG_COMP_BATCH 32
1175
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1176 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1177 int *tag_array, int nr_tags)
1178 {
1179 struct request_queue *q = hctx->queue;
1180
1181 blk_mq_sub_active_requests(hctx, nr_tags);
1182
1183 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1184 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1185 }
1186
blk_mq_end_request_batch(struct io_comp_batch * iob)1187 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1188 {
1189 int tags[TAG_COMP_BATCH], nr_tags = 0;
1190 struct blk_mq_hw_ctx *cur_hctx = NULL;
1191 struct request *rq;
1192 u64 now = 0;
1193
1194 if (iob->need_ts)
1195 now = blk_time_get_ns();
1196
1197 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1198 prefetch(rq->bio);
1199 prefetch(rq->rq_next);
1200
1201 blk_complete_request(rq);
1202 if (iob->need_ts)
1203 __blk_mq_end_request_acct(rq, now);
1204
1205 blk_mq_finish_request(rq);
1206
1207 rq_qos_done(rq->q, rq);
1208
1209 /*
1210 * If end_io handler returns NONE, then it still has
1211 * ownership of the request.
1212 */
1213 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1214 continue;
1215
1216 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1217 if (!req_ref_put_and_test(rq))
1218 continue;
1219
1220 blk_crypto_free_request(rq);
1221 blk_pm_mark_last_busy(rq);
1222
1223 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1224 if (cur_hctx)
1225 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1226 nr_tags = 0;
1227 cur_hctx = rq->mq_hctx;
1228 }
1229 tags[nr_tags++] = rq->tag;
1230 }
1231
1232 if (nr_tags)
1233 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1234 }
1235 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1236
blk_complete_reqs(struct llist_head * list)1237 static void blk_complete_reqs(struct llist_head *list)
1238 {
1239 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1240 struct request *rq, *next;
1241
1242 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1243 rq->q->mq_ops->complete(rq);
1244 }
1245
blk_done_softirq(void)1246 static __latent_entropy void blk_done_softirq(void)
1247 {
1248 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1249 }
1250
blk_softirq_cpu_dead(unsigned int cpu)1251 static int blk_softirq_cpu_dead(unsigned int cpu)
1252 {
1253 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1254 return 0;
1255 }
1256
__blk_mq_complete_request_remote(void * data)1257 static void __blk_mq_complete_request_remote(void *data)
1258 {
1259 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1260 }
1261
blk_mq_complete_need_ipi(struct request * rq)1262 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1263 {
1264 int cpu = raw_smp_processor_id();
1265
1266 if (!IS_ENABLED(CONFIG_SMP) ||
1267 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1268 return false;
1269 /*
1270 * With force threaded interrupts enabled, raising softirq from an SMP
1271 * function call will always result in waking the ksoftirqd thread.
1272 * This is probably worse than completing the request on a different
1273 * cache domain.
1274 */
1275 if (force_irqthreads())
1276 return false;
1277
1278 /* same CPU or cache domain and capacity? Complete locally */
1279 if (cpu == rq->mq_ctx->cpu ||
1280 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1281 cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1282 cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1283 return false;
1284
1285 /* don't try to IPI to an offline CPU */
1286 return cpu_online(rq->mq_ctx->cpu);
1287 }
1288
blk_mq_complete_send_ipi(struct request * rq)1289 static void blk_mq_complete_send_ipi(struct request *rq)
1290 {
1291 unsigned int cpu;
1292
1293 cpu = rq->mq_ctx->cpu;
1294 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1295 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1296 }
1297
blk_mq_raise_softirq(struct request * rq)1298 static void blk_mq_raise_softirq(struct request *rq)
1299 {
1300 struct llist_head *list;
1301
1302 preempt_disable();
1303 list = this_cpu_ptr(&blk_cpu_done);
1304 if (llist_add(&rq->ipi_list, list))
1305 raise_softirq(BLOCK_SOFTIRQ);
1306 preempt_enable();
1307 }
1308
blk_mq_complete_request_remote(struct request * rq)1309 bool blk_mq_complete_request_remote(struct request *rq)
1310 {
1311 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1312
1313 /*
1314 * For request which hctx has only one ctx mapping,
1315 * or a polled request, always complete locally,
1316 * it's pointless to redirect the completion.
1317 */
1318 if ((rq->mq_hctx->nr_ctx == 1 &&
1319 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1320 rq->cmd_flags & REQ_POLLED)
1321 return false;
1322
1323 if (blk_mq_complete_need_ipi(rq)) {
1324 blk_mq_complete_send_ipi(rq);
1325 return true;
1326 }
1327
1328 if (rq->q->nr_hw_queues == 1) {
1329 blk_mq_raise_softirq(rq);
1330 return true;
1331 }
1332 return false;
1333 }
1334 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1335
1336 /**
1337 * blk_mq_complete_request - end I/O on a request
1338 * @rq: the request being processed
1339 *
1340 * Description:
1341 * Complete a request by scheduling the ->complete_rq operation.
1342 **/
blk_mq_complete_request(struct request * rq)1343 void blk_mq_complete_request(struct request *rq)
1344 {
1345 if (!blk_mq_complete_request_remote(rq))
1346 rq->q->mq_ops->complete(rq);
1347 }
1348 EXPORT_SYMBOL(blk_mq_complete_request);
1349
1350 /**
1351 * blk_mq_start_request - Start processing a request
1352 * @rq: Pointer to request to be started
1353 *
1354 * Function used by device drivers to notify the block layer that a request
1355 * is going to be processed now, so blk layer can do proper initializations
1356 * such as starting the timeout timer.
1357 */
blk_mq_start_request(struct request * rq)1358 void blk_mq_start_request(struct request *rq)
1359 {
1360 struct request_queue *q = rq->q;
1361
1362 trace_block_rq_issue(rq);
1363
1364 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1365 !blk_rq_is_passthrough(rq)) {
1366 rq->io_start_time_ns = blk_time_get_ns();
1367 rq->stats_sectors = blk_rq_sectors(rq);
1368 rq->rq_flags |= RQF_STATS;
1369 rq_qos_issue(q, rq);
1370 }
1371
1372 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1373
1374 blk_add_timer(rq);
1375 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1376 rq->mq_hctx->tags->rqs[rq->tag] = rq;
1377
1378 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1379 blk_integrity_prepare(rq);
1380
1381 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1382 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1383 }
1384 EXPORT_SYMBOL(blk_mq_start_request);
1385
1386 /*
1387 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1388 * queues. This is important for md arrays to benefit from merging
1389 * requests.
1390 */
blk_plug_max_rq_count(struct blk_plug * plug)1391 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1392 {
1393 if (plug->multiple_queues)
1394 return BLK_MAX_REQUEST_COUNT * 2;
1395 return BLK_MAX_REQUEST_COUNT;
1396 }
1397
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1398 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1399 {
1400 struct request *last = rq_list_peek(&plug->mq_list);
1401
1402 if (!plug->rq_count) {
1403 trace_block_plug(rq->q);
1404 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1405 (!blk_queue_nomerges(rq->q) &&
1406 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1407 blk_mq_flush_plug_list(plug, false);
1408 last = NULL;
1409 trace_block_plug(rq->q);
1410 }
1411
1412 if (!plug->multiple_queues && last && last->q != rq->q)
1413 plug->multiple_queues = true;
1414 /*
1415 * Any request allocated from sched tags can't be issued to
1416 * ->queue_rqs() directly
1417 */
1418 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1419 plug->has_elevator = true;
1420 rq_list_add_tail(&plug->mq_list, rq);
1421 plug->rq_count++;
1422 }
1423
1424 /**
1425 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1426 * @rq: request to insert
1427 * @at_head: insert request at head or tail of queue
1428 *
1429 * Description:
1430 * Insert a fully prepared request at the back of the I/O scheduler queue
1431 * for execution. Don't wait for completion.
1432 *
1433 * Note:
1434 * This function will invoke @done directly if the queue is dead.
1435 */
blk_execute_rq_nowait(struct request * rq,bool at_head)1436 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1437 {
1438 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1439
1440 WARN_ON(irqs_disabled());
1441 WARN_ON(!blk_rq_is_passthrough(rq));
1442
1443 blk_account_io_start(rq);
1444
1445 if (current->plug && !at_head) {
1446 blk_add_rq_to_plug(current->plug, rq);
1447 return;
1448 }
1449
1450 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1451 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1452 }
1453 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1454
1455 struct blk_rq_wait {
1456 struct completion done;
1457 blk_status_t ret;
1458 };
1459
blk_end_sync_rq(struct request * rq,blk_status_t ret)1460 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1461 {
1462 struct blk_rq_wait *wait = rq->end_io_data;
1463
1464 wait->ret = ret;
1465 complete(&wait->done);
1466 return RQ_END_IO_NONE;
1467 }
1468
blk_rq_is_poll(struct request * rq)1469 bool blk_rq_is_poll(struct request *rq)
1470 {
1471 if (!rq->mq_hctx)
1472 return false;
1473 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1474 return false;
1475 return true;
1476 }
1477 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1478
blk_rq_poll_completion(struct request * rq,struct completion * wait)1479 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1480 {
1481 do {
1482 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1483 cond_resched();
1484 } while (!completion_done(wait));
1485 }
1486
1487 /**
1488 * blk_execute_rq - insert a request into queue for execution
1489 * @rq: request to insert
1490 * @at_head: insert request at head or tail of queue
1491 *
1492 * Description:
1493 * Insert a fully prepared request at the back of the I/O scheduler queue
1494 * for execution and wait for completion.
1495 * Return: The blk_status_t result provided to blk_mq_end_request().
1496 */
blk_execute_rq(struct request * rq,bool at_head)1497 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1498 {
1499 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1500 struct blk_rq_wait wait = {
1501 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1502 };
1503
1504 WARN_ON(irqs_disabled());
1505 WARN_ON(!blk_rq_is_passthrough(rq));
1506
1507 rq->end_io_data = &wait;
1508 rq->end_io = blk_end_sync_rq;
1509
1510 blk_account_io_start(rq);
1511 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1512 blk_mq_run_hw_queue(hctx, false);
1513
1514 if (blk_rq_is_poll(rq))
1515 blk_rq_poll_completion(rq, &wait.done);
1516 else
1517 blk_wait_io(&wait.done);
1518
1519 return wait.ret;
1520 }
1521 EXPORT_SYMBOL(blk_execute_rq);
1522
__blk_mq_requeue_request(struct request * rq)1523 static void __blk_mq_requeue_request(struct request *rq)
1524 {
1525 struct request_queue *q = rq->q;
1526
1527 blk_mq_put_driver_tag(rq);
1528
1529 trace_block_rq_requeue(rq);
1530 rq_qos_requeue(q, rq);
1531
1532 if (blk_mq_request_started(rq)) {
1533 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1534 rq->rq_flags &= ~RQF_TIMED_OUT;
1535 }
1536 }
1537
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1538 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1539 {
1540 struct request_queue *q = rq->q;
1541 unsigned long flags;
1542
1543 __blk_mq_requeue_request(rq);
1544
1545 /* this request will be re-inserted to io scheduler queue */
1546 blk_mq_sched_requeue_request(rq);
1547
1548 spin_lock_irqsave(&q->requeue_lock, flags);
1549 list_add_tail(&rq->queuelist, &q->requeue_list);
1550 spin_unlock_irqrestore(&q->requeue_lock, flags);
1551
1552 if (kick_requeue_list)
1553 blk_mq_kick_requeue_list(q);
1554 }
1555 EXPORT_SYMBOL(blk_mq_requeue_request);
1556
blk_mq_requeue_work(struct work_struct * work)1557 static void blk_mq_requeue_work(struct work_struct *work)
1558 {
1559 struct request_queue *q =
1560 container_of(work, struct request_queue, requeue_work.work);
1561 LIST_HEAD(rq_list);
1562 LIST_HEAD(flush_list);
1563 struct request *rq;
1564
1565 spin_lock_irq(&q->requeue_lock);
1566 list_splice_init(&q->requeue_list, &rq_list);
1567 list_splice_init(&q->flush_list, &flush_list);
1568 spin_unlock_irq(&q->requeue_lock);
1569
1570 while (!list_empty(&rq_list)) {
1571 rq = list_entry(rq_list.next, struct request, queuelist);
1572 list_del_init(&rq->queuelist);
1573 /*
1574 * If RQF_DONTPREP is set, the request has been started by the
1575 * driver already and might have driver-specific data allocated
1576 * already. Insert it into the hctx dispatch list to avoid
1577 * block layer merges for the request.
1578 */
1579 if (rq->rq_flags & RQF_DONTPREP)
1580 blk_mq_request_bypass_insert(rq, 0);
1581 else
1582 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1583 }
1584
1585 while (!list_empty(&flush_list)) {
1586 rq = list_entry(flush_list.next, struct request, queuelist);
1587 list_del_init(&rq->queuelist);
1588 blk_mq_insert_request(rq, 0);
1589 }
1590
1591 blk_mq_run_hw_queues(q, false);
1592 }
1593
blk_mq_kick_requeue_list(struct request_queue * q)1594 void blk_mq_kick_requeue_list(struct request_queue *q)
1595 {
1596 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1597 }
1598 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1599
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1600 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1601 unsigned long msecs)
1602 {
1603 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1604 msecs_to_jiffies(msecs));
1605 }
1606 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1607
blk_is_flush_data_rq(struct request * rq)1608 static bool blk_is_flush_data_rq(struct request *rq)
1609 {
1610 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1611 }
1612
blk_mq_rq_inflight(struct request * rq,void * priv)1613 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1614 {
1615 /*
1616 * If we find a request that isn't idle we know the queue is busy
1617 * as it's checked in the iter.
1618 * Return false to stop the iteration.
1619 *
1620 * In case of queue quiesce, if one flush data request is completed,
1621 * don't count it as inflight given the flush sequence is suspended,
1622 * and the original flush data request is invisible to driver, just
1623 * like other pending requests because of quiesce
1624 */
1625 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1626 blk_is_flush_data_rq(rq) &&
1627 blk_mq_request_completed(rq))) {
1628 bool *busy = priv;
1629
1630 *busy = true;
1631 return false;
1632 }
1633
1634 return true;
1635 }
1636
blk_mq_queue_inflight(struct request_queue * q)1637 bool blk_mq_queue_inflight(struct request_queue *q)
1638 {
1639 bool busy = false;
1640
1641 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1642 return busy;
1643 }
1644 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1645
blk_mq_rq_timed_out(struct request * req)1646 static void blk_mq_rq_timed_out(struct request *req)
1647 {
1648 req->rq_flags |= RQF_TIMED_OUT;
1649 if (req->q->mq_ops->timeout) {
1650 enum blk_eh_timer_return ret;
1651
1652 ret = req->q->mq_ops->timeout(req);
1653 if (ret == BLK_EH_DONE)
1654 return;
1655 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1656 }
1657
1658 blk_add_timer(req);
1659 }
1660
1661 struct blk_expired_data {
1662 bool has_timedout_rq;
1663 unsigned long next;
1664 unsigned long timeout_start;
1665 };
1666
blk_mq_req_expired(struct request * rq,struct blk_expired_data * expired)1667 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1668 {
1669 unsigned long deadline;
1670
1671 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1672 return false;
1673 if (rq->rq_flags & RQF_TIMED_OUT)
1674 return false;
1675
1676 deadline = READ_ONCE(rq->deadline);
1677 if (time_after_eq(expired->timeout_start, deadline))
1678 return true;
1679
1680 if (expired->next == 0)
1681 expired->next = deadline;
1682 else if (time_after(expired->next, deadline))
1683 expired->next = deadline;
1684 return false;
1685 }
1686
blk_mq_put_rq_ref(struct request * rq)1687 void blk_mq_put_rq_ref(struct request *rq)
1688 {
1689 if (is_flush_rq(rq)) {
1690 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1691 blk_mq_free_request(rq);
1692 } else if (req_ref_put_and_test(rq)) {
1693 __blk_mq_free_request(rq);
1694 }
1695 }
1696
blk_mq_check_expired(struct request * rq,void * priv)1697 static bool blk_mq_check_expired(struct request *rq, void *priv)
1698 {
1699 struct blk_expired_data *expired = priv;
1700
1701 /*
1702 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1703 * be reallocated underneath the timeout handler's processing, then
1704 * the expire check is reliable. If the request is not expired, then
1705 * it was completed and reallocated as a new request after returning
1706 * from blk_mq_check_expired().
1707 */
1708 if (blk_mq_req_expired(rq, expired)) {
1709 expired->has_timedout_rq = true;
1710 return false;
1711 }
1712 return true;
1713 }
1714
blk_mq_handle_expired(struct request * rq,void * priv)1715 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1716 {
1717 struct blk_expired_data *expired = priv;
1718
1719 if (blk_mq_req_expired(rq, expired))
1720 blk_mq_rq_timed_out(rq);
1721 return true;
1722 }
1723
blk_mq_timeout_work(struct work_struct * work)1724 static void blk_mq_timeout_work(struct work_struct *work)
1725 {
1726 struct request_queue *q =
1727 container_of(work, struct request_queue, timeout_work);
1728 struct blk_expired_data expired = {
1729 .timeout_start = jiffies,
1730 };
1731 struct blk_mq_hw_ctx *hctx;
1732 unsigned long i;
1733
1734 /* A deadlock might occur if a request is stuck requiring a
1735 * timeout at the same time a queue freeze is waiting
1736 * completion, since the timeout code would not be able to
1737 * acquire the queue reference here.
1738 *
1739 * That's why we don't use blk_queue_enter here; instead, we use
1740 * percpu_ref_tryget directly, because we need to be able to
1741 * obtain a reference even in the short window between the queue
1742 * starting to freeze, by dropping the first reference in
1743 * blk_freeze_queue_start, and the moment the last request is
1744 * consumed, marked by the instant q_usage_counter reaches
1745 * zero.
1746 */
1747 if (!percpu_ref_tryget(&q->q_usage_counter))
1748 return;
1749
1750 /* check if there is any timed-out request */
1751 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1752 if (expired.has_timedout_rq) {
1753 /*
1754 * Before walking tags, we must ensure any submit started
1755 * before the current time has finished. Since the submit
1756 * uses srcu or rcu, wait for a synchronization point to
1757 * ensure all running submits have finished
1758 */
1759 blk_mq_wait_quiesce_done(q->tag_set);
1760
1761 expired.next = 0;
1762 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1763 }
1764
1765 if (expired.next != 0) {
1766 mod_timer(&q->timeout, expired.next);
1767 } else {
1768 /*
1769 * Request timeouts are handled as a forward rolling timer. If
1770 * we end up here it means that no requests are pending and
1771 * also that no request has been pending for a while. Mark
1772 * each hctx as idle.
1773 */
1774 queue_for_each_hw_ctx(q, hctx, i) {
1775 /* the hctx may be unmapped, so check it here */
1776 if (blk_mq_hw_queue_mapped(hctx))
1777 blk_mq_tag_idle(hctx);
1778 }
1779 }
1780 blk_queue_exit(q);
1781 }
1782
1783 struct flush_busy_ctx_data {
1784 struct blk_mq_hw_ctx *hctx;
1785 struct list_head *list;
1786 };
1787
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1788 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1789 {
1790 struct flush_busy_ctx_data *flush_data = data;
1791 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1792 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1793 enum hctx_type type = hctx->type;
1794
1795 spin_lock(&ctx->lock);
1796 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1797 sbitmap_clear_bit(sb, bitnr);
1798 spin_unlock(&ctx->lock);
1799 return true;
1800 }
1801
1802 /*
1803 * Process software queues that have been marked busy, splicing them
1804 * to the for-dispatch
1805 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1806 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1807 {
1808 struct flush_busy_ctx_data data = {
1809 .hctx = hctx,
1810 .list = list,
1811 };
1812
1813 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1814 }
1815
1816 struct dispatch_rq_data {
1817 struct blk_mq_hw_ctx *hctx;
1818 struct request *rq;
1819 };
1820
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1821 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1822 void *data)
1823 {
1824 struct dispatch_rq_data *dispatch_data = data;
1825 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1826 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1827 enum hctx_type type = hctx->type;
1828
1829 spin_lock(&ctx->lock);
1830 if (!list_empty(&ctx->rq_lists[type])) {
1831 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1832 list_del_init(&dispatch_data->rq->queuelist);
1833 if (list_empty(&ctx->rq_lists[type]))
1834 sbitmap_clear_bit(sb, bitnr);
1835 }
1836 spin_unlock(&ctx->lock);
1837
1838 return !dispatch_data->rq;
1839 }
1840
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1841 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1842 struct blk_mq_ctx *start)
1843 {
1844 unsigned off = start ? start->index_hw[hctx->type] : 0;
1845 struct dispatch_rq_data data = {
1846 .hctx = hctx,
1847 .rq = NULL,
1848 };
1849
1850 __sbitmap_for_each_set(&hctx->ctx_map, off,
1851 dispatch_rq_from_ctx, &data);
1852
1853 return data.rq;
1854 }
1855
__blk_mq_alloc_driver_tag(struct request * rq)1856 bool __blk_mq_alloc_driver_tag(struct request *rq)
1857 {
1858 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1859 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1860 int tag;
1861
1862 blk_mq_tag_busy(rq->mq_hctx);
1863
1864 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1865 bt = &rq->mq_hctx->tags->breserved_tags;
1866 tag_offset = 0;
1867 } else {
1868 if (!hctx_may_queue(rq->mq_hctx, bt))
1869 return false;
1870 }
1871
1872 tag = __sbitmap_queue_get(bt);
1873 if (tag == BLK_MQ_NO_TAG)
1874 return false;
1875
1876 rq->tag = tag + tag_offset;
1877 blk_mq_inc_active_requests(rq->mq_hctx);
1878 return true;
1879 }
1880
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1881 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1882 int flags, void *key)
1883 {
1884 struct blk_mq_hw_ctx *hctx;
1885
1886 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1887
1888 spin_lock(&hctx->dispatch_wait_lock);
1889 if (!list_empty(&wait->entry)) {
1890 struct sbitmap_queue *sbq;
1891
1892 list_del_init(&wait->entry);
1893 sbq = &hctx->tags->bitmap_tags;
1894 atomic_dec(&sbq->ws_active);
1895 }
1896 spin_unlock(&hctx->dispatch_wait_lock);
1897
1898 blk_mq_run_hw_queue(hctx, true);
1899 return 1;
1900 }
1901
1902 /*
1903 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1904 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1905 * restart. For both cases, take care to check the condition again after
1906 * marking us as waiting.
1907 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1908 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1909 struct request *rq)
1910 {
1911 struct sbitmap_queue *sbq;
1912 struct wait_queue_head *wq;
1913 wait_queue_entry_t *wait;
1914 bool ret;
1915
1916 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1917 !(blk_mq_is_shared_tags(hctx->flags))) {
1918 blk_mq_sched_mark_restart_hctx(hctx);
1919
1920 /*
1921 * It's possible that a tag was freed in the window between the
1922 * allocation failure and adding the hardware queue to the wait
1923 * queue.
1924 *
1925 * Don't clear RESTART here, someone else could have set it.
1926 * At most this will cost an extra queue run.
1927 */
1928 return blk_mq_get_driver_tag(rq);
1929 }
1930
1931 wait = &hctx->dispatch_wait;
1932 if (!list_empty_careful(&wait->entry))
1933 return false;
1934
1935 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1936 sbq = &hctx->tags->breserved_tags;
1937 else
1938 sbq = &hctx->tags->bitmap_tags;
1939 wq = &bt_wait_ptr(sbq, hctx)->wait;
1940
1941 spin_lock_irq(&wq->lock);
1942 spin_lock(&hctx->dispatch_wait_lock);
1943 if (!list_empty(&wait->entry)) {
1944 spin_unlock(&hctx->dispatch_wait_lock);
1945 spin_unlock_irq(&wq->lock);
1946 return false;
1947 }
1948
1949 atomic_inc(&sbq->ws_active);
1950 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1951 __add_wait_queue(wq, wait);
1952
1953 /*
1954 * Add one explicit barrier since blk_mq_get_driver_tag() may
1955 * not imply barrier in case of failure.
1956 *
1957 * Order adding us to wait queue and allocating driver tag.
1958 *
1959 * The pair is the one implied in sbitmap_queue_wake_up() which
1960 * orders clearing sbitmap tag bits and waitqueue_active() in
1961 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1962 *
1963 * Otherwise, re-order of adding wait queue and getting driver tag
1964 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1965 * the waitqueue_active() may not observe us in wait queue.
1966 */
1967 smp_mb();
1968
1969 /*
1970 * It's possible that a tag was freed in the window between the
1971 * allocation failure and adding the hardware queue to the wait
1972 * queue.
1973 */
1974 ret = blk_mq_get_driver_tag(rq);
1975 if (!ret) {
1976 spin_unlock(&hctx->dispatch_wait_lock);
1977 spin_unlock_irq(&wq->lock);
1978 return false;
1979 }
1980
1981 /*
1982 * We got a tag, remove ourselves from the wait queue to ensure
1983 * someone else gets the wakeup.
1984 */
1985 list_del_init(&wait->entry);
1986 atomic_dec(&sbq->ws_active);
1987 spin_unlock(&hctx->dispatch_wait_lock);
1988 spin_unlock_irq(&wq->lock);
1989
1990 return true;
1991 }
1992
1993 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1994 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1995 /*
1996 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1997 * - EWMA is one simple way to compute running average value
1998 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1999 * - take 4 as factor for avoiding to get too small(0) result, and this
2000 * factor doesn't matter because EWMA decreases exponentially
2001 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)2002 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
2003 {
2004 unsigned int ewma;
2005
2006 ewma = hctx->dispatch_busy;
2007
2008 if (!ewma && !busy)
2009 return;
2010
2011 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
2012 if (busy)
2013 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
2014 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
2015
2016 hctx->dispatch_busy = ewma;
2017 }
2018
2019 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
2020
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)2021 static void blk_mq_handle_dev_resource(struct request *rq,
2022 struct list_head *list)
2023 {
2024 list_add(&rq->queuelist, list);
2025 __blk_mq_requeue_request(rq);
2026 }
2027
2028 enum prep_dispatch {
2029 PREP_DISPATCH_OK,
2030 PREP_DISPATCH_NO_TAG,
2031 PREP_DISPATCH_NO_BUDGET,
2032 };
2033
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)2034 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2035 bool need_budget)
2036 {
2037 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2038 int budget_token = -1;
2039
2040 if (need_budget) {
2041 budget_token = blk_mq_get_dispatch_budget(rq->q);
2042 if (budget_token < 0) {
2043 blk_mq_put_driver_tag(rq);
2044 return PREP_DISPATCH_NO_BUDGET;
2045 }
2046 blk_mq_set_rq_budget_token(rq, budget_token);
2047 }
2048
2049 if (!blk_mq_get_driver_tag(rq)) {
2050 /*
2051 * The initial allocation attempt failed, so we need to
2052 * rerun the hardware queue when a tag is freed. The
2053 * waitqueue takes care of that. If the queue is run
2054 * before we add this entry back on the dispatch list,
2055 * we'll re-run it below.
2056 */
2057 if (!blk_mq_mark_tag_wait(hctx, rq)) {
2058 /*
2059 * All budgets not got from this function will be put
2060 * together during handling partial dispatch
2061 */
2062 if (need_budget)
2063 blk_mq_put_dispatch_budget(rq->q, budget_token);
2064 return PREP_DISPATCH_NO_TAG;
2065 }
2066 }
2067
2068 return PREP_DISPATCH_OK;
2069 }
2070
2071 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)2072 static void blk_mq_release_budgets(struct request_queue *q,
2073 struct list_head *list)
2074 {
2075 struct request *rq;
2076
2077 list_for_each_entry(rq, list, queuelist) {
2078 int budget_token = blk_mq_get_rq_budget_token(rq);
2079
2080 if (budget_token >= 0)
2081 blk_mq_put_dispatch_budget(q, budget_token);
2082 }
2083 }
2084
2085 /*
2086 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2087 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2088 * details)
2089 * Attention, we should explicitly call this in unusual cases:
2090 * 1) did not queue everything initially scheduled to queue
2091 * 2) the last attempt to queue a request failed
2092 */
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int queued,bool from_schedule)2093 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2094 bool from_schedule)
2095 {
2096 if (hctx->queue->mq_ops->commit_rqs && queued) {
2097 trace_block_unplug(hctx->queue, queued, !from_schedule);
2098 hctx->queue->mq_ops->commit_rqs(hctx);
2099 }
2100 }
2101
2102 /*
2103 * Returns true if we did some work AND can potentially do more.
2104 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,bool get_budget)2105 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2106 bool get_budget)
2107 {
2108 enum prep_dispatch prep;
2109 struct request_queue *q = hctx->queue;
2110 struct request *rq;
2111 int queued;
2112 blk_status_t ret = BLK_STS_OK;
2113 bool needs_resource = false;
2114
2115 if (list_empty(list))
2116 return false;
2117
2118 /*
2119 * Now process all the entries, sending them to the driver.
2120 */
2121 queued = 0;
2122 do {
2123 struct blk_mq_queue_data bd;
2124
2125 rq = list_first_entry(list, struct request, queuelist);
2126
2127 WARN_ON_ONCE(hctx != rq->mq_hctx);
2128 prep = blk_mq_prep_dispatch_rq(rq, get_budget);
2129 if (prep != PREP_DISPATCH_OK)
2130 break;
2131
2132 list_del_init(&rq->queuelist);
2133
2134 bd.rq = rq;
2135 bd.last = list_empty(list);
2136
2137 ret = q->mq_ops->queue_rq(hctx, &bd);
2138 switch (ret) {
2139 case BLK_STS_OK:
2140 queued++;
2141 break;
2142 case BLK_STS_RESOURCE:
2143 needs_resource = true;
2144 fallthrough;
2145 case BLK_STS_DEV_RESOURCE:
2146 blk_mq_handle_dev_resource(rq, list);
2147 goto out;
2148 default:
2149 blk_mq_end_request(rq, ret);
2150 }
2151 } while (!list_empty(list));
2152 out:
2153 /* If we didn't flush the entire list, we could have told the driver
2154 * there was more coming, but that turned out to be a lie.
2155 */
2156 if (!list_empty(list) || ret != BLK_STS_OK)
2157 blk_mq_commit_rqs(hctx, queued, false);
2158
2159 /*
2160 * Any items that need requeuing? Stuff them into hctx->dispatch,
2161 * that is where we will continue on next queue run.
2162 */
2163 if (!list_empty(list)) {
2164 bool needs_restart;
2165 /* For non-shared tags, the RESTART check will suffice */
2166 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2167 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2168 blk_mq_is_shared_tags(hctx->flags));
2169
2170 /*
2171 * If the caller allocated budgets, free the budgets of the
2172 * requests that have not yet been passed to the block driver.
2173 */
2174 if (!get_budget)
2175 blk_mq_release_budgets(q, list);
2176
2177 spin_lock(&hctx->lock);
2178 list_splice_tail_init(list, &hctx->dispatch);
2179 spin_unlock(&hctx->lock);
2180
2181 /*
2182 * Order adding requests to hctx->dispatch and checking
2183 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2184 * in blk_mq_sched_restart(). Avoid restart code path to
2185 * miss the new added requests to hctx->dispatch, meantime
2186 * SCHED_RESTART is observed here.
2187 */
2188 smp_mb();
2189
2190 /*
2191 * If SCHED_RESTART was set by the caller of this function and
2192 * it is no longer set that means that it was cleared by another
2193 * thread and hence that a queue rerun is needed.
2194 *
2195 * If 'no_tag' is set, that means that we failed getting
2196 * a driver tag with an I/O scheduler attached. If our dispatch
2197 * waitqueue is no longer active, ensure that we run the queue
2198 * AFTER adding our entries back to the list.
2199 *
2200 * If no I/O scheduler has been configured it is possible that
2201 * the hardware queue got stopped and restarted before requests
2202 * were pushed back onto the dispatch list. Rerun the queue to
2203 * avoid starvation. Notes:
2204 * - blk_mq_run_hw_queue() checks whether or not a queue has
2205 * been stopped before rerunning a queue.
2206 * - Some but not all block drivers stop a queue before
2207 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2208 * and dm-rq.
2209 *
2210 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2211 * bit is set, run queue after a delay to avoid IO stalls
2212 * that could otherwise occur if the queue is idle. We'll do
2213 * similar if we couldn't get budget or couldn't lock a zone
2214 * and SCHED_RESTART is set.
2215 */
2216 needs_restart = blk_mq_sched_needs_restart(hctx);
2217 if (prep == PREP_DISPATCH_NO_BUDGET)
2218 needs_resource = true;
2219 if (!needs_restart ||
2220 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2221 blk_mq_run_hw_queue(hctx, true);
2222 else if (needs_resource)
2223 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2224
2225 blk_mq_update_dispatch_busy(hctx, true);
2226 return false;
2227 }
2228
2229 blk_mq_update_dispatch_busy(hctx, false);
2230 return true;
2231 }
2232
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2233 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2234 {
2235 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2236
2237 if (cpu >= nr_cpu_ids)
2238 cpu = cpumask_first(hctx->cpumask);
2239 return cpu;
2240 }
2241
2242 /*
2243 * ->next_cpu is always calculated from hctx->cpumask, so simply use
2244 * it for speeding up the check
2245 */
blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx * hctx)2246 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2247 {
2248 return hctx->next_cpu >= nr_cpu_ids;
2249 }
2250
2251 /*
2252 * It'd be great if the workqueue API had a way to pass
2253 * in a mask and had some smarts for more clever placement.
2254 * For now we just round-robin here, switching for every
2255 * BLK_MQ_CPU_WORK_BATCH queued items.
2256 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2257 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2258 {
2259 bool tried = false;
2260 int next_cpu = hctx->next_cpu;
2261
2262 /* Switch to unbound if no allowable CPUs in this hctx */
2263 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2264 return WORK_CPU_UNBOUND;
2265
2266 if (--hctx->next_cpu_batch <= 0) {
2267 select_cpu:
2268 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2269 cpu_online_mask);
2270 if (next_cpu >= nr_cpu_ids)
2271 next_cpu = blk_mq_first_mapped_cpu(hctx);
2272 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2273 }
2274
2275 /*
2276 * Do unbound schedule if we can't find a online CPU for this hctx,
2277 * and it should only happen in the path of handling CPU DEAD.
2278 */
2279 if (!cpu_online(next_cpu)) {
2280 if (!tried) {
2281 tried = true;
2282 goto select_cpu;
2283 }
2284
2285 /*
2286 * Make sure to re-select CPU next time once after CPUs
2287 * in hctx->cpumask become online again.
2288 */
2289 hctx->next_cpu = next_cpu;
2290 hctx->next_cpu_batch = 1;
2291 return WORK_CPU_UNBOUND;
2292 }
2293
2294 hctx->next_cpu = next_cpu;
2295 return next_cpu;
2296 }
2297
2298 /**
2299 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2300 * @hctx: Pointer to the hardware queue to run.
2301 * @msecs: Milliseconds of delay to wait before running the queue.
2302 *
2303 * Run a hardware queue asynchronously with a delay of @msecs.
2304 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2305 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2306 {
2307 if (unlikely(blk_mq_hctx_stopped(hctx)))
2308 return;
2309 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2310 msecs_to_jiffies(msecs));
2311 }
2312 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2313
blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx * hctx)2314 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2315 {
2316 bool need_run;
2317
2318 /*
2319 * When queue is quiesced, we may be switching io scheduler, or
2320 * updating nr_hw_queues, or other things, and we can't run queue
2321 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2322 *
2323 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2324 * quiesced.
2325 */
2326 __blk_mq_run_dispatch_ops(hctx->queue, false,
2327 need_run = !blk_queue_quiesced(hctx->queue) &&
2328 blk_mq_hctx_has_pending(hctx));
2329 return need_run;
2330 }
2331
2332 /**
2333 * blk_mq_run_hw_queue - Start to run a hardware queue.
2334 * @hctx: Pointer to the hardware queue to run.
2335 * @async: If we want to run the queue asynchronously.
2336 *
2337 * Check if the request queue is not in a quiesced state and if there are
2338 * pending requests to be sent. If this is true, run the queue to send requests
2339 * to hardware.
2340 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2341 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2342 {
2343 bool need_run;
2344
2345 /*
2346 * We can't run the queue inline with interrupts disabled.
2347 */
2348 WARN_ON_ONCE(!async && in_interrupt());
2349
2350 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2351
2352 need_run = blk_mq_hw_queue_need_run(hctx);
2353 if (!need_run) {
2354 unsigned long flags;
2355
2356 /*
2357 * Synchronize with blk_mq_unquiesce_queue(), because we check
2358 * if hw queue is quiesced locklessly above, we need the use
2359 * ->queue_lock to make sure we see the up-to-date status to
2360 * not miss rerunning the hw queue.
2361 */
2362 spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2363 need_run = blk_mq_hw_queue_need_run(hctx);
2364 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2365
2366 if (!need_run)
2367 return;
2368 }
2369
2370 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2371 blk_mq_delay_run_hw_queue(hctx, 0);
2372 return;
2373 }
2374
2375 blk_mq_run_dispatch_ops(hctx->queue,
2376 blk_mq_sched_dispatch_requests(hctx));
2377 }
2378 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2379
2380 /*
2381 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2382 * scheduler.
2383 */
blk_mq_get_sq_hctx(struct request_queue * q)2384 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2385 {
2386 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2387 /*
2388 * If the IO scheduler does not respect hardware queues when
2389 * dispatching, we just don't bother with multiple HW queues and
2390 * dispatch from hctx for the current CPU since running multiple queues
2391 * just causes lock contention inside the scheduler and pointless cache
2392 * bouncing.
2393 */
2394 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2395
2396 if (!blk_mq_hctx_stopped(hctx))
2397 return hctx;
2398 return NULL;
2399 }
2400
2401 /**
2402 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2403 * @q: Pointer to the request queue to run.
2404 * @async: If we want to run the queue asynchronously.
2405 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2406 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2407 {
2408 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2409 unsigned long i;
2410
2411 sq_hctx = NULL;
2412 if (blk_queue_sq_sched(q))
2413 sq_hctx = blk_mq_get_sq_hctx(q);
2414 queue_for_each_hw_ctx(q, hctx, i) {
2415 if (blk_mq_hctx_stopped(hctx))
2416 continue;
2417 /*
2418 * Dispatch from this hctx either if there's no hctx preferred
2419 * by IO scheduler or if it has requests that bypass the
2420 * scheduler.
2421 */
2422 if (!sq_hctx || sq_hctx == hctx ||
2423 !list_empty_careful(&hctx->dispatch))
2424 blk_mq_run_hw_queue(hctx, async);
2425 }
2426 }
2427 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2428
2429 /**
2430 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2431 * @q: Pointer to the request queue to run.
2432 * @msecs: Milliseconds of delay to wait before running the queues.
2433 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2434 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2435 {
2436 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2437 unsigned long i;
2438
2439 sq_hctx = NULL;
2440 if (blk_queue_sq_sched(q))
2441 sq_hctx = blk_mq_get_sq_hctx(q);
2442 queue_for_each_hw_ctx(q, hctx, i) {
2443 if (blk_mq_hctx_stopped(hctx))
2444 continue;
2445 /*
2446 * If there is already a run_work pending, leave the
2447 * pending delay untouched. Otherwise, a hctx can stall
2448 * if another hctx is re-delaying the other's work
2449 * before the work executes.
2450 */
2451 if (delayed_work_pending(&hctx->run_work))
2452 continue;
2453 /*
2454 * Dispatch from this hctx either if there's no hctx preferred
2455 * by IO scheduler or if it has requests that bypass the
2456 * scheduler.
2457 */
2458 if (!sq_hctx || sq_hctx == hctx ||
2459 !list_empty_careful(&hctx->dispatch))
2460 blk_mq_delay_run_hw_queue(hctx, msecs);
2461 }
2462 }
2463 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2464
2465 /*
2466 * This function is often used for pausing .queue_rq() by driver when
2467 * there isn't enough resource or some conditions aren't satisfied, and
2468 * BLK_STS_RESOURCE is usually returned.
2469 *
2470 * We do not guarantee that dispatch can be drained or blocked
2471 * after blk_mq_stop_hw_queue() returns. Please use
2472 * blk_mq_quiesce_queue() for that requirement.
2473 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2474 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2475 {
2476 cancel_delayed_work(&hctx->run_work);
2477
2478 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2479 }
2480 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2481
2482 /*
2483 * This function is often used for pausing .queue_rq() by driver when
2484 * there isn't enough resource or some conditions aren't satisfied, and
2485 * BLK_STS_RESOURCE is usually returned.
2486 *
2487 * We do not guarantee that dispatch can be drained or blocked
2488 * after blk_mq_stop_hw_queues() returns. Please use
2489 * blk_mq_quiesce_queue() for that requirement.
2490 */
blk_mq_stop_hw_queues(struct request_queue * q)2491 void blk_mq_stop_hw_queues(struct request_queue *q)
2492 {
2493 struct blk_mq_hw_ctx *hctx;
2494 unsigned long i;
2495
2496 queue_for_each_hw_ctx(q, hctx, i)
2497 blk_mq_stop_hw_queue(hctx);
2498 }
2499 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2500
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2501 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2502 {
2503 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2504
2505 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2506 }
2507 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2508
blk_mq_start_hw_queues(struct request_queue * q)2509 void blk_mq_start_hw_queues(struct request_queue *q)
2510 {
2511 struct blk_mq_hw_ctx *hctx;
2512 unsigned long i;
2513
2514 queue_for_each_hw_ctx(q, hctx, i)
2515 blk_mq_start_hw_queue(hctx);
2516 }
2517 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2518
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2519 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2520 {
2521 if (!blk_mq_hctx_stopped(hctx))
2522 return;
2523
2524 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2525 /*
2526 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2527 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2528 * list in the subsequent routine.
2529 */
2530 smp_mb__after_atomic();
2531 blk_mq_run_hw_queue(hctx, async);
2532 }
2533 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2534
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2535 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2536 {
2537 struct blk_mq_hw_ctx *hctx;
2538 unsigned long i;
2539
2540 queue_for_each_hw_ctx(q, hctx, i)
2541 blk_mq_start_stopped_hw_queue(hctx, async ||
2542 (hctx->flags & BLK_MQ_F_BLOCKING));
2543 }
2544 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2545
blk_mq_run_work_fn(struct work_struct * work)2546 static void blk_mq_run_work_fn(struct work_struct *work)
2547 {
2548 struct blk_mq_hw_ctx *hctx =
2549 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2550
2551 blk_mq_run_dispatch_ops(hctx->queue,
2552 blk_mq_sched_dispatch_requests(hctx));
2553 }
2554
2555 /**
2556 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2557 * @rq: Pointer to request to be inserted.
2558 * @flags: BLK_MQ_INSERT_*
2559 *
2560 * Should only be used carefully, when the caller knows we want to
2561 * bypass a potential IO scheduler on the target device.
2562 */
blk_mq_request_bypass_insert(struct request * rq,blk_insert_t flags)2563 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2564 {
2565 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2566
2567 spin_lock(&hctx->lock);
2568 if (flags & BLK_MQ_INSERT_AT_HEAD)
2569 list_add(&rq->queuelist, &hctx->dispatch);
2570 else
2571 list_add_tail(&rq->queuelist, &hctx->dispatch);
2572 spin_unlock(&hctx->lock);
2573 }
2574
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)2575 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2576 struct blk_mq_ctx *ctx, struct list_head *list,
2577 bool run_queue_async)
2578 {
2579 struct request *rq;
2580 enum hctx_type type = hctx->type;
2581
2582 /*
2583 * Try to issue requests directly if the hw queue isn't busy to save an
2584 * extra enqueue & dequeue to the sw queue.
2585 */
2586 if (!hctx->dispatch_busy && !run_queue_async) {
2587 blk_mq_run_dispatch_ops(hctx->queue,
2588 blk_mq_try_issue_list_directly(hctx, list));
2589 if (list_empty(list))
2590 goto out;
2591 }
2592
2593 /*
2594 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2595 * offline now
2596 */
2597 list_for_each_entry(rq, list, queuelist) {
2598 BUG_ON(rq->mq_ctx != ctx);
2599 trace_block_rq_insert(rq);
2600 if (rq->cmd_flags & REQ_NOWAIT)
2601 run_queue_async = true;
2602 }
2603
2604 spin_lock(&ctx->lock);
2605 list_splice_tail_init(list, &ctx->rq_lists[type]);
2606 blk_mq_hctx_mark_pending(hctx, ctx);
2607 spin_unlock(&ctx->lock);
2608 out:
2609 blk_mq_run_hw_queue(hctx, run_queue_async);
2610 }
2611
blk_mq_insert_request(struct request * rq,blk_insert_t flags)2612 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2613 {
2614 struct request_queue *q = rq->q;
2615 struct blk_mq_ctx *ctx = rq->mq_ctx;
2616 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2617
2618 if (blk_rq_is_passthrough(rq)) {
2619 /*
2620 * Passthrough request have to be added to hctx->dispatch
2621 * directly. The device may be in a situation where it can't
2622 * handle FS request, and always returns BLK_STS_RESOURCE for
2623 * them, which gets them added to hctx->dispatch.
2624 *
2625 * If a passthrough request is required to unblock the queues,
2626 * and it is added to the scheduler queue, there is no chance to
2627 * dispatch it given we prioritize requests in hctx->dispatch.
2628 */
2629 blk_mq_request_bypass_insert(rq, flags);
2630 } else if (req_op(rq) == REQ_OP_FLUSH) {
2631 /*
2632 * Firstly normal IO request is inserted to scheduler queue or
2633 * sw queue, meantime we add flush request to dispatch queue(
2634 * hctx->dispatch) directly and there is at most one in-flight
2635 * flush request for each hw queue, so it doesn't matter to add
2636 * flush request to tail or front of the dispatch queue.
2637 *
2638 * Secondly in case of NCQ, flush request belongs to non-NCQ
2639 * command, and queueing it will fail when there is any
2640 * in-flight normal IO request(NCQ command). When adding flush
2641 * rq to the front of hctx->dispatch, it is easier to introduce
2642 * extra time to flush rq's latency because of S_SCHED_RESTART
2643 * compared with adding to the tail of dispatch queue, then
2644 * chance of flush merge is increased, and less flush requests
2645 * will be issued to controller. It is observed that ~10% time
2646 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2647 * drive when adding flush rq to the front of hctx->dispatch.
2648 *
2649 * Simply queue flush rq to the front of hctx->dispatch so that
2650 * intensive flush workloads can benefit in case of NCQ HW.
2651 */
2652 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2653 } else if (q->elevator) {
2654 LIST_HEAD(list);
2655
2656 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2657
2658 list_add(&rq->queuelist, &list);
2659 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2660 } else {
2661 trace_block_rq_insert(rq);
2662
2663 spin_lock(&ctx->lock);
2664 if (flags & BLK_MQ_INSERT_AT_HEAD)
2665 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2666 else
2667 list_add_tail(&rq->queuelist,
2668 &ctx->rq_lists[hctx->type]);
2669 blk_mq_hctx_mark_pending(hctx, ctx);
2670 spin_unlock(&ctx->lock);
2671 }
2672 }
2673
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2674 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2675 unsigned int nr_segs)
2676 {
2677 int err;
2678
2679 if (bio->bi_opf & REQ_RAHEAD)
2680 rq->cmd_flags |= REQ_FAILFAST_MASK;
2681
2682 rq->bio = rq->biotail = bio;
2683 rq->__sector = bio->bi_iter.bi_sector;
2684 rq->__data_len = bio->bi_iter.bi_size;
2685 rq->phys_gap_bit = bio->bi_bvec_gap_bit;
2686
2687 rq->nr_phys_segments = nr_segs;
2688 if (bio_integrity(bio))
2689 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2690 bio);
2691
2692 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2693 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2694 WARN_ON_ONCE(err);
2695
2696 blk_account_io_start(rq);
2697 }
2698
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2699 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2700 struct request *rq, bool last)
2701 {
2702 struct request_queue *q = rq->q;
2703 struct blk_mq_queue_data bd = {
2704 .rq = rq,
2705 .last = last,
2706 };
2707 blk_status_t ret;
2708
2709 /*
2710 * For OK queue, we are done. For error, caller may kill it.
2711 * Any other error (busy), just add it to our list as we
2712 * previously would have done.
2713 */
2714 ret = q->mq_ops->queue_rq(hctx, &bd);
2715 switch (ret) {
2716 case BLK_STS_OK:
2717 blk_mq_update_dispatch_busy(hctx, false);
2718 break;
2719 case BLK_STS_RESOURCE:
2720 case BLK_STS_DEV_RESOURCE:
2721 blk_mq_update_dispatch_busy(hctx, true);
2722 __blk_mq_requeue_request(rq);
2723 break;
2724 default:
2725 blk_mq_update_dispatch_busy(hctx, false);
2726 break;
2727 }
2728
2729 return ret;
2730 }
2731
blk_mq_get_budget_and_tag(struct request * rq)2732 static bool blk_mq_get_budget_and_tag(struct request *rq)
2733 {
2734 int budget_token;
2735
2736 budget_token = blk_mq_get_dispatch_budget(rq->q);
2737 if (budget_token < 0)
2738 return false;
2739 blk_mq_set_rq_budget_token(rq, budget_token);
2740 if (!blk_mq_get_driver_tag(rq)) {
2741 blk_mq_put_dispatch_budget(rq->q, budget_token);
2742 return false;
2743 }
2744 return true;
2745 }
2746
2747 /**
2748 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2749 * @hctx: Pointer of the associated hardware queue.
2750 * @rq: Pointer to request to be sent.
2751 *
2752 * If the device has enough resources to accept a new request now, send the
2753 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2754 * we can try send it another time in the future. Requests inserted at this
2755 * queue have higher priority.
2756 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2757 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2758 struct request *rq)
2759 {
2760 blk_status_t ret;
2761
2762 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2763 blk_mq_insert_request(rq, 0);
2764 blk_mq_run_hw_queue(hctx, false);
2765 return;
2766 }
2767
2768 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2769 blk_mq_insert_request(rq, 0);
2770 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2771 return;
2772 }
2773
2774 ret = __blk_mq_issue_directly(hctx, rq, true);
2775 switch (ret) {
2776 case BLK_STS_OK:
2777 break;
2778 case BLK_STS_RESOURCE:
2779 case BLK_STS_DEV_RESOURCE:
2780 blk_mq_request_bypass_insert(rq, 0);
2781 blk_mq_run_hw_queue(hctx, false);
2782 break;
2783 default:
2784 blk_mq_end_request(rq, ret);
2785 break;
2786 }
2787 }
2788
blk_mq_request_issue_directly(struct request * rq,bool last)2789 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2790 {
2791 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2792
2793 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2794 blk_mq_insert_request(rq, 0);
2795 blk_mq_run_hw_queue(hctx, false);
2796 return BLK_STS_OK;
2797 }
2798
2799 if (!blk_mq_get_budget_and_tag(rq))
2800 return BLK_STS_RESOURCE;
2801 return __blk_mq_issue_directly(hctx, rq, last);
2802 }
2803
blk_mq_issue_direct(struct rq_list * rqs)2804 static void blk_mq_issue_direct(struct rq_list *rqs)
2805 {
2806 struct blk_mq_hw_ctx *hctx = NULL;
2807 struct request *rq;
2808 int queued = 0;
2809 blk_status_t ret = BLK_STS_OK;
2810
2811 while ((rq = rq_list_pop(rqs))) {
2812 bool last = rq_list_empty(rqs);
2813
2814 if (hctx != rq->mq_hctx) {
2815 if (hctx) {
2816 blk_mq_commit_rqs(hctx, queued, false);
2817 queued = 0;
2818 }
2819 hctx = rq->mq_hctx;
2820 }
2821
2822 ret = blk_mq_request_issue_directly(rq, last);
2823 switch (ret) {
2824 case BLK_STS_OK:
2825 queued++;
2826 break;
2827 case BLK_STS_RESOURCE:
2828 case BLK_STS_DEV_RESOURCE:
2829 blk_mq_request_bypass_insert(rq, 0);
2830 blk_mq_run_hw_queue(hctx, false);
2831 goto out;
2832 default:
2833 blk_mq_end_request(rq, ret);
2834 break;
2835 }
2836 }
2837
2838 out:
2839 if (ret != BLK_STS_OK)
2840 blk_mq_commit_rqs(hctx, queued, false);
2841 }
2842
__blk_mq_flush_list(struct request_queue * q,struct rq_list * rqs)2843 static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs)
2844 {
2845 if (blk_queue_quiesced(q))
2846 return;
2847 q->mq_ops->queue_rqs(rqs);
2848 }
2849
blk_mq_extract_queue_requests(struct rq_list * rqs,struct rq_list * queue_rqs)2850 static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs,
2851 struct rq_list *queue_rqs)
2852 {
2853 struct request *rq = rq_list_pop(rqs);
2854 struct request_queue *this_q = rq->q;
2855 struct request **prev = &rqs->head;
2856 struct rq_list matched_rqs = {};
2857 struct request *last = NULL;
2858 unsigned depth = 1;
2859
2860 rq_list_add_tail(&matched_rqs, rq);
2861 while ((rq = *prev)) {
2862 if (rq->q == this_q) {
2863 /* move rq from rqs to matched_rqs */
2864 *prev = rq->rq_next;
2865 rq_list_add_tail(&matched_rqs, rq);
2866 depth++;
2867 } else {
2868 /* leave rq in rqs */
2869 prev = &rq->rq_next;
2870 last = rq;
2871 }
2872 }
2873
2874 rqs->tail = last;
2875 *queue_rqs = matched_rqs;
2876 return depth;
2877 }
2878
blk_mq_dispatch_queue_requests(struct rq_list * rqs,unsigned depth)2879 static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth)
2880 {
2881 struct request_queue *q = rq_list_peek(rqs)->q;
2882
2883 trace_block_unplug(q, depth, true);
2884
2885 /*
2886 * Peek first request and see if we have a ->queue_rqs() hook.
2887 * If we do, we can dispatch the whole list in one go.
2888 * We already know at this point that all requests belong to the
2889 * same queue, caller must ensure that's the case.
2890 */
2891 if (q->mq_ops->queue_rqs) {
2892 blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs));
2893 if (rq_list_empty(rqs))
2894 return;
2895 }
2896
2897 blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs));
2898 }
2899
blk_mq_dispatch_list(struct rq_list * rqs,bool from_sched)2900 static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched)
2901 {
2902 struct blk_mq_hw_ctx *this_hctx = NULL;
2903 struct blk_mq_ctx *this_ctx = NULL;
2904 struct rq_list requeue_list = {};
2905 unsigned int depth = 0;
2906 bool is_passthrough = false;
2907 LIST_HEAD(list);
2908
2909 do {
2910 struct request *rq = rq_list_pop(rqs);
2911
2912 if (!this_hctx) {
2913 this_hctx = rq->mq_hctx;
2914 this_ctx = rq->mq_ctx;
2915 is_passthrough = blk_rq_is_passthrough(rq);
2916 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2917 is_passthrough != blk_rq_is_passthrough(rq)) {
2918 rq_list_add_tail(&requeue_list, rq);
2919 continue;
2920 }
2921 list_add_tail(&rq->queuelist, &list);
2922 depth++;
2923 } while (!rq_list_empty(rqs));
2924
2925 *rqs = requeue_list;
2926 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2927
2928 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2929 /* passthrough requests should never be issued to the I/O scheduler */
2930 if (is_passthrough) {
2931 spin_lock(&this_hctx->lock);
2932 list_splice_tail_init(&list, &this_hctx->dispatch);
2933 spin_unlock(&this_hctx->lock);
2934 blk_mq_run_hw_queue(this_hctx, from_sched);
2935 } else if (this_hctx->queue->elevator) {
2936 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2937 &list, 0);
2938 blk_mq_run_hw_queue(this_hctx, from_sched);
2939 } else {
2940 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2941 }
2942 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2943 }
2944
blk_mq_dispatch_multiple_queue_requests(struct rq_list * rqs)2945 static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs)
2946 {
2947 do {
2948 struct rq_list queue_rqs;
2949 unsigned depth;
2950
2951 depth = blk_mq_extract_queue_requests(rqs, &queue_rqs);
2952 blk_mq_dispatch_queue_requests(&queue_rqs, depth);
2953 while (!rq_list_empty(&queue_rqs))
2954 blk_mq_dispatch_list(&queue_rqs, false);
2955 } while (!rq_list_empty(rqs));
2956 }
2957
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2958 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2959 {
2960 unsigned int depth;
2961
2962 /*
2963 * We may have been called recursively midway through handling
2964 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2965 * To avoid mq_list changing under our feet, clear rq_count early and
2966 * bail out specifically if rq_count is 0 rather than checking
2967 * whether the mq_list is empty.
2968 */
2969 if (plug->rq_count == 0)
2970 return;
2971 depth = plug->rq_count;
2972 plug->rq_count = 0;
2973
2974 if (!plug->has_elevator && !from_schedule) {
2975 if (plug->multiple_queues) {
2976 blk_mq_dispatch_multiple_queue_requests(&plug->mq_list);
2977 return;
2978 }
2979
2980 blk_mq_dispatch_queue_requests(&plug->mq_list, depth);
2981 if (rq_list_empty(&plug->mq_list))
2982 return;
2983 }
2984
2985 do {
2986 blk_mq_dispatch_list(&plug->mq_list, from_schedule);
2987 } while (!rq_list_empty(&plug->mq_list));
2988 }
2989
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2990 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2991 struct list_head *list)
2992 {
2993 int queued = 0;
2994 blk_status_t ret = BLK_STS_OK;
2995
2996 while (!list_empty(list)) {
2997 struct request *rq = list_first_entry(list, struct request,
2998 queuelist);
2999
3000 list_del_init(&rq->queuelist);
3001 ret = blk_mq_request_issue_directly(rq, list_empty(list));
3002 switch (ret) {
3003 case BLK_STS_OK:
3004 queued++;
3005 break;
3006 case BLK_STS_RESOURCE:
3007 case BLK_STS_DEV_RESOURCE:
3008 blk_mq_request_bypass_insert(rq, 0);
3009 if (list_empty(list))
3010 blk_mq_run_hw_queue(hctx, false);
3011 goto out;
3012 default:
3013 blk_mq_end_request(rq, ret);
3014 break;
3015 }
3016 }
3017
3018 out:
3019 if (ret != BLK_STS_OK)
3020 blk_mq_commit_rqs(hctx, queued, false);
3021 }
3022
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)3023 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
3024 struct bio *bio, unsigned int nr_segs)
3025 {
3026 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
3027 if (blk_attempt_plug_merge(q, bio, nr_segs))
3028 return true;
3029 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
3030 return true;
3031 }
3032 return false;
3033 }
3034
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio)3035 static struct request *blk_mq_get_new_requests(struct request_queue *q,
3036 struct blk_plug *plug,
3037 struct bio *bio)
3038 {
3039 struct blk_mq_alloc_data data = {
3040 .q = q,
3041 .flags = 0,
3042 .shallow_depth = 0,
3043 .cmd_flags = bio->bi_opf,
3044 .rq_flags = 0,
3045 .nr_tags = 1,
3046 .cached_rqs = NULL,
3047 .ctx = NULL,
3048 .hctx = NULL
3049 };
3050 struct request *rq;
3051
3052 rq_qos_throttle(q, bio);
3053
3054 if (plug) {
3055 data.nr_tags = plug->nr_ios;
3056 plug->nr_ios = 1;
3057 data.cached_rqs = &plug->cached_rqs;
3058 }
3059
3060 rq = __blk_mq_alloc_requests(&data);
3061 if (unlikely(!rq))
3062 rq_qos_cleanup(q, bio);
3063 return rq;
3064 }
3065
3066 /*
3067 * Check if there is a suitable cached request and return it.
3068 */
blk_mq_peek_cached_request(struct blk_plug * plug,struct request_queue * q,blk_opf_t opf)3069 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
3070 struct request_queue *q, blk_opf_t opf)
3071 {
3072 enum hctx_type type = blk_mq_get_hctx_type(opf);
3073 struct request *rq;
3074
3075 if (!plug)
3076 return NULL;
3077 rq = rq_list_peek(&plug->cached_rqs);
3078 if (!rq || rq->q != q)
3079 return NULL;
3080 if (type != rq->mq_hctx->type &&
3081 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3082 return NULL;
3083 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3084 return NULL;
3085 return rq;
3086 }
3087
blk_mq_use_cached_rq(struct request * rq,struct blk_plug * plug,struct bio * bio)3088 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3089 struct bio *bio)
3090 {
3091 if (rq_list_pop(&plug->cached_rqs) != rq)
3092 WARN_ON_ONCE(1);
3093
3094 /*
3095 * If any qos ->throttle() end up blocking, we will have flushed the
3096 * plug and hence killed the cached_rq list as well. Pop this entry
3097 * before we throttle.
3098 */
3099 rq_qos_throttle(rq->q, bio);
3100
3101 blk_mq_rq_time_init(rq, blk_time_get_ns());
3102 rq->cmd_flags = bio->bi_opf;
3103 INIT_LIST_HEAD(&rq->queuelist);
3104 }
3105
bio_unaligned(const struct bio * bio,struct request_queue * q)3106 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3107 {
3108 unsigned int bs_mask = queue_logical_block_size(q) - 1;
3109
3110 /* .bi_sector of any zero sized bio need to be initialized */
3111 if ((bio->bi_iter.bi_size & bs_mask) ||
3112 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3113 return true;
3114 return false;
3115 }
3116
3117 /**
3118 * blk_mq_submit_bio - Create and send a request to block device.
3119 * @bio: Bio pointer.
3120 *
3121 * Builds up a request structure from @q and @bio and send to the device. The
3122 * request may not be queued directly to hardware if:
3123 * * This request can be merged with another one
3124 * * We want to place request at plug queue for possible future merging
3125 * * There is an IO scheduler active at this queue
3126 *
3127 * It will not queue the request if there is an error with the bio, or at the
3128 * request creation.
3129 */
blk_mq_submit_bio(struct bio * bio)3130 void blk_mq_submit_bio(struct bio *bio)
3131 {
3132 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3133 struct blk_plug *plug = current->plug;
3134 const int is_sync = op_is_sync(bio->bi_opf);
3135 struct blk_mq_hw_ctx *hctx;
3136 unsigned int nr_segs;
3137 struct request *rq;
3138 blk_status_t ret;
3139
3140 /*
3141 * If the plug has a cached request for this queue, try to use it.
3142 */
3143 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3144
3145 /*
3146 * A BIO that was released from a zone write plug has already been
3147 * through the preparation in this function, already holds a reference
3148 * on the queue usage counter, and is the only write BIO in-flight for
3149 * the target zone. Go straight to preparing a request for it.
3150 */
3151 if (bio_zone_write_plugging(bio)) {
3152 nr_segs = bio->__bi_nr_segments;
3153 if (rq)
3154 blk_queue_exit(q);
3155 goto new_request;
3156 }
3157
3158 /*
3159 * The cached request already holds a q_usage_counter reference and we
3160 * don't have to acquire a new one if we use it.
3161 */
3162 if (!rq) {
3163 if (unlikely(bio_queue_enter(bio)))
3164 return;
3165 }
3166
3167 /*
3168 * Device reconfiguration may change logical block size or reduce the
3169 * number of poll queues, so the checks for alignment and poll support
3170 * have to be done with queue usage counter held.
3171 */
3172 if (unlikely(bio_unaligned(bio, q))) {
3173 bio_io_error(bio);
3174 goto queue_exit;
3175 }
3176
3177 if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3178 bio->bi_status = BLK_STS_NOTSUPP;
3179 bio_endio(bio);
3180 goto queue_exit;
3181 }
3182
3183 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3184 if (!bio)
3185 goto queue_exit;
3186
3187 if (!bio_integrity_prep(bio))
3188 goto queue_exit;
3189
3190 blk_mq_bio_issue_init(q, bio);
3191 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3192 goto queue_exit;
3193
3194 if (bio_needs_zone_write_plugging(bio)) {
3195 if (blk_zone_plug_bio(bio, nr_segs))
3196 goto queue_exit;
3197 }
3198
3199 new_request:
3200 if (rq) {
3201 blk_mq_use_cached_rq(rq, plug, bio);
3202 } else {
3203 rq = blk_mq_get_new_requests(q, plug, bio);
3204 if (unlikely(!rq)) {
3205 if (bio->bi_opf & REQ_NOWAIT)
3206 bio_wouldblock_error(bio);
3207 goto queue_exit;
3208 }
3209 }
3210
3211 trace_block_getrq(bio);
3212
3213 rq_qos_track(q, rq, bio);
3214
3215 blk_mq_bio_to_request(rq, bio, nr_segs);
3216
3217 ret = blk_crypto_rq_get_keyslot(rq);
3218 if (ret != BLK_STS_OK) {
3219 bio->bi_status = ret;
3220 bio_endio(bio);
3221 blk_mq_free_request(rq);
3222 return;
3223 }
3224
3225 if (bio_zone_write_plugging(bio))
3226 blk_zone_write_plug_init_request(rq);
3227
3228 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3229 return;
3230
3231 if (plug) {
3232 blk_add_rq_to_plug(plug, rq);
3233 return;
3234 }
3235
3236 hctx = rq->mq_hctx;
3237 if ((rq->rq_flags & RQF_USE_SCHED) ||
3238 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3239 blk_mq_insert_request(rq, 0);
3240 blk_mq_run_hw_queue(hctx, true);
3241 } else {
3242 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3243 }
3244 return;
3245
3246 queue_exit:
3247 /*
3248 * Don't drop the queue reference if we were trying to use a cached
3249 * request and thus didn't acquire one.
3250 */
3251 if (!rq)
3252 blk_queue_exit(q);
3253 }
3254
3255 #ifdef CONFIG_BLK_MQ_STACKING
3256 /**
3257 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3258 * @rq: the request being queued
3259 */
blk_insert_cloned_request(struct request * rq)3260 blk_status_t blk_insert_cloned_request(struct request *rq)
3261 {
3262 struct request_queue *q = rq->q;
3263 unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3264 unsigned int max_segments = blk_rq_get_max_segments(rq);
3265 blk_status_t ret;
3266
3267 if (blk_rq_sectors(rq) > max_sectors) {
3268 /*
3269 * SCSI device does not have a good way to return if
3270 * Write Same/Zero is actually supported. If a device rejects
3271 * a non-read/write command (discard, write same,etc.) the
3272 * low-level device driver will set the relevant queue limit to
3273 * 0 to prevent blk-lib from issuing more of the offending
3274 * operations. Commands queued prior to the queue limit being
3275 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3276 * errors being propagated to upper layers.
3277 */
3278 if (max_sectors == 0)
3279 return BLK_STS_NOTSUPP;
3280
3281 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3282 __func__, blk_rq_sectors(rq), max_sectors);
3283 return BLK_STS_IOERR;
3284 }
3285
3286 /*
3287 * The queue settings related to segment counting may differ from the
3288 * original queue.
3289 */
3290 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3291 if (rq->nr_phys_segments > max_segments) {
3292 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3293 __func__, rq->nr_phys_segments, max_segments);
3294 return BLK_STS_IOERR;
3295 }
3296
3297 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3298 return BLK_STS_IOERR;
3299
3300 ret = blk_crypto_rq_get_keyslot(rq);
3301 if (ret != BLK_STS_OK)
3302 return ret;
3303
3304 blk_account_io_start(rq);
3305
3306 /*
3307 * Since we have a scheduler attached on the top device,
3308 * bypass a potential scheduler on the bottom device for
3309 * insert.
3310 */
3311 blk_mq_run_dispatch_ops(q,
3312 ret = blk_mq_request_issue_directly(rq, true));
3313 if (ret)
3314 blk_account_io_done(rq, blk_time_get_ns());
3315 return ret;
3316 }
3317 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3318
3319 /**
3320 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3321 * @rq: the clone request to be cleaned up
3322 *
3323 * Description:
3324 * Free all bios in @rq for a cloned request.
3325 */
blk_rq_unprep_clone(struct request * rq)3326 void blk_rq_unprep_clone(struct request *rq)
3327 {
3328 struct bio *bio;
3329
3330 while ((bio = rq->bio) != NULL) {
3331 rq->bio = bio->bi_next;
3332
3333 bio_put(bio);
3334 }
3335 }
3336 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3337
3338 /**
3339 * blk_rq_prep_clone - Helper function to setup clone request
3340 * @rq: the request to be setup
3341 * @rq_src: original request to be cloned
3342 * @bs: bio_set that bios for clone are allocated from
3343 * @gfp_mask: memory allocation mask for bio
3344 * @bio_ctr: setup function to be called for each clone bio.
3345 * Returns %0 for success, non %0 for failure.
3346 * @data: private data to be passed to @bio_ctr
3347 *
3348 * Description:
3349 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3350 * Also, pages which the original bios are pointing to are not copied
3351 * and the cloned bios just point same pages.
3352 * So cloned bios must be completed before original bios, which means
3353 * the caller must complete @rq before @rq_src.
3354 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3355 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3356 struct bio_set *bs, gfp_t gfp_mask,
3357 int (*bio_ctr)(struct bio *, struct bio *, void *),
3358 void *data)
3359 {
3360 struct bio *bio_src;
3361
3362 if (!bs)
3363 bs = &fs_bio_set;
3364
3365 __rq_for_each_bio(bio_src, rq_src) {
3366 struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src,
3367 gfp_mask, bs);
3368 if (!bio)
3369 goto free_and_out;
3370
3371 if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3372 bio_put(bio);
3373 goto free_and_out;
3374 }
3375
3376 if (rq->bio) {
3377 rq->biotail->bi_next = bio;
3378 rq->biotail = bio;
3379 } else {
3380 rq->bio = rq->biotail = bio;
3381 }
3382 }
3383
3384 /* Copy attributes of the original request to the clone request. */
3385 rq->__sector = blk_rq_pos(rq_src);
3386 rq->__data_len = blk_rq_bytes(rq_src);
3387 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3388 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3389 rq->special_vec = rq_src->special_vec;
3390 }
3391 rq->nr_phys_segments = rq_src->nr_phys_segments;
3392 rq->nr_integrity_segments = rq_src->nr_integrity_segments;
3393 rq->phys_gap_bit = rq_src->phys_gap_bit;
3394
3395 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3396 goto free_and_out;
3397
3398 return 0;
3399
3400 free_and_out:
3401 blk_rq_unprep_clone(rq);
3402
3403 return -ENOMEM;
3404 }
3405 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3406 #endif /* CONFIG_BLK_MQ_STACKING */
3407
3408 /*
3409 * Steal bios from a request and add them to a bio list.
3410 * The request must not have been partially completed before.
3411 */
blk_steal_bios(struct bio_list * list,struct request * rq)3412 void blk_steal_bios(struct bio_list *list, struct request *rq)
3413 {
3414 if (rq->bio) {
3415 if (list->tail)
3416 list->tail->bi_next = rq->bio;
3417 else
3418 list->head = rq->bio;
3419 list->tail = rq->biotail;
3420
3421 rq->bio = NULL;
3422 rq->biotail = NULL;
3423 }
3424
3425 rq->__data_len = 0;
3426 }
3427 EXPORT_SYMBOL_GPL(blk_steal_bios);
3428
order_to_size(unsigned int order)3429 static size_t order_to_size(unsigned int order)
3430 {
3431 return (size_t)PAGE_SIZE << order;
3432 }
3433
3434 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3435 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3436 struct blk_mq_tags *tags)
3437 {
3438 struct page *page;
3439
3440 /*
3441 * There is no need to clear mapping if driver tags is not initialized
3442 * or the mapping belongs to the driver tags.
3443 */
3444 if (!drv_tags || drv_tags == tags)
3445 return;
3446
3447 list_for_each_entry(page, &tags->page_list, lru) {
3448 unsigned long start = (unsigned long)page_address(page);
3449 unsigned long end = start + order_to_size(page->private);
3450 int i;
3451
3452 for (i = 0; i < drv_tags->nr_tags; i++) {
3453 struct request *rq = drv_tags->rqs[i];
3454 unsigned long rq_addr = (unsigned long)rq;
3455
3456 if (rq_addr >= start && rq_addr < end) {
3457 WARN_ON_ONCE(req_ref_read(rq) != 0);
3458 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3459 }
3460 }
3461 }
3462 }
3463
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3464 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3465 unsigned int hctx_idx)
3466 {
3467 struct blk_mq_tags *drv_tags;
3468
3469 if (list_empty(&tags->page_list))
3470 return;
3471
3472 if (blk_mq_is_shared_tags(set->flags))
3473 drv_tags = set->shared_tags;
3474 else
3475 drv_tags = set->tags[hctx_idx];
3476
3477 if (tags->static_rqs && set->ops->exit_request) {
3478 int i;
3479
3480 for (i = 0; i < tags->nr_tags; i++) {
3481 struct request *rq = tags->static_rqs[i];
3482
3483 if (!rq)
3484 continue;
3485 set->ops->exit_request(set, rq, hctx_idx);
3486 tags->static_rqs[i] = NULL;
3487 }
3488 }
3489
3490 blk_mq_clear_rq_mapping(drv_tags, tags);
3491 /*
3492 * Free request pages in SRCU callback, which is called from
3493 * blk_mq_free_tags().
3494 */
3495 }
3496
blk_mq_free_rq_map(struct blk_mq_tag_set * set,struct blk_mq_tags * tags)3497 void blk_mq_free_rq_map(struct blk_mq_tag_set *set, struct blk_mq_tags *tags)
3498 {
3499 kfree(tags->rqs);
3500 tags->rqs = NULL;
3501 kfree(tags->static_rqs);
3502 tags->static_rqs = NULL;
3503
3504 blk_mq_free_tags(set, tags);
3505 }
3506
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3507 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3508 unsigned int hctx_idx)
3509 {
3510 int i;
3511
3512 for (i = 0; i < set->nr_maps; i++) {
3513 unsigned int start = set->map[i].queue_offset;
3514 unsigned int end = start + set->map[i].nr_queues;
3515
3516 if (hctx_idx >= start && hctx_idx < end)
3517 break;
3518 }
3519
3520 if (i >= set->nr_maps)
3521 i = HCTX_TYPE_DEFAULT;
3522
3523 return i;
3524 }
3525
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3526 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3527 unsigned int hctx_idx)
3528 {
3529 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3530
3531 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3532 }
3533
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3534 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3535 unsigned int hctx_idx,
3536 unsigned int nr_tags,
3537 unsigned int reserved_tags)
3538 {
3539 int node = blk_mq_get_hctx_node(set, hctx_idx);
3540 struct blk_mq_tags *tags;
3541
3542 if (node == NUMA_NO_NODE)
3543 node = set->numa_node;
3544
3545 tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node);
3546 if (!tags)
3547 return NULL;
3548
3549 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3550 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3551 node);
3552 if (!tags->rqs)
3553 goto err_free_tags;
3554
3555 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3556 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3557 node);
3558 if (!tags->static_rqs)
3559 goto err_free_rqs;
3560
3561 return tags;
3562
3563 err_free_rqs:
3564 kfree(tags->rqs);
3565 err_free_tags:
3566 blk_mq_free_tags(set, tags);
3567 return NULL;
3568 }
3569
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3570 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3571 unsigned int hctx_idx, int node)
3572 {
3573 int ret;
3574
3575 if (set->ops->init_request) {
3576 ret = set->ops->init_request(set, rq, hctx_idx, node);
3577 if (ret)
3578 return ret;
3579 }
3580
3581 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3582 return 0;
3583 }
3584
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3585 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3586 struct blk_mq_tags *tags,
3587 unsigned int hctx_idx, unsigned int depth)
3588 {
3589 unsigned int i, j, entries_per_page, max_order = 4;
3590 int node = blk_mq_get_hctx_node(set, hctx_idx);
3591 size_t rq_size, left;
3592
3593 if (node == NUMA_NO_NODE)
3594 node = set->numa_node;
3595
3596 /*
3597 * rq_size is the size of the request plus driver payload, rounded
3598 * to the cacheline size
3599 */
3600 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3601 cache_line_size());
3602 left = rq_size * depth;
3603
3604 for (i = 0; i < depth; ) {
3605 int this_order = max_order;
3606 struct page *page;
3607 int to_do;
3608 void *p;
3609
3610 while (this_order && left < order_to_size(this_order - 1))
3611 this_order--;
3612
3613 do {
3614 page = alloc_pages_node(node,
3615 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3616 this_order);
3617 if (page)
3618 break;
3619 if (!this_order--)
3620 break;
3621 if (order_to_size(this_order) < rq_size)
3622 break;
3623 } while (1);
3624
3625 if (!page)
3626 goto fail;
3627
3628 page->private = this_order;
3629 list_add_tail(&page->lru, &tags->page_list);
3630
3631 p = page_address(page);
3632 /*
3633 * Allow kmemleak to scan these pages as they contain pointers
3634 * to additional allocations like via ops->init_request().
3635 */
3636 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3637 entries_per_page = order_to_size(this_order) / rq_size;
3638 to_do = min(entries_per_page, depth - i);
3639 left -= to_do * rq_size;
3640 for (j = 0; j < to_do; j++) {
3641 struct request *rq = p;
3642
3643 tags->static_rqs[i] = rq;
3644 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3645 tags->static_rqs[i] = NULL;
3646 goto fail;
3647 }
3648
3649 p += rq_size;
3650 i++;
3651 }
3652 }
3653 return 0;
3654
3655 fail:
3656 blk_mq_free_rqs(set, tags, hctx_idx);
3657 return -ENOMEM;
3658 }
3659
3660 struct rq_iter_data {
3661 struct blk_mq_hw_ctx *hctx;
3662 bool has_rq;
3663 };
3664
blk_mq_has_request(struct request * rq,void * data)3665 static bool blk_mq_has_request(struct request *rq, void *data)
3666 {
3667 struct rq_iter_data *iter_data = data;
3668
3669 if (rq->mq_hctx != iter_data->hctx)
3670 return true;
3671 iter_data->has_rq = true;
3672 return false;
3673 }
3674
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3675 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3676 {
3677 struct blk_mq_tags *tags = hctx->sched_tags ?
3678 hctx->sched_tags : hctx->tags;
3679 struct rq_iter_data data = {
3680 .hctx = hctx,
3681 };
3682 int srcu_idx;
3683
3684 srcu_idx = srcu_read_lock(&hctx->queue->tag_set->tags_srcu);
3685 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3686 srcu_read_unlock(&hctx->queue->tag_set->tags_srcu, srcu_idx);
3687
3688 return data.has_rq;
3689 }
3690
blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx * hctx,unsigned int this_cpu)3691 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3692 unsigned int this_cpu)
3693 {
3694 enum hctx_type type = hctx->type;
3695 int cpu;
3696
3697 /*
3698 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3699 * might submit IOs on these isolated CPUs, so use the queue map to
3700 * check if all CPUs mapped to this hctx are offline
3701 */
3702 for_each_online_cpu(cpu) {
3703 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3704 type, cpu);
3705
3706 if (h != hctx)
3707 continue;
3708
3709 /* this hctx has at least one online CPU */
3710 if (this_cpu != cpu)
3711 return true;
3712 }
3713
3714 return false;
3715 }
3716
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3717 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3718 {
3719 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3720 struct blk_mq_hw_ctx, cpuhp_online);
3721
3722 if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3723 return 0;
3724
3725 /*
3726 * Prevent new request from being allocated on the current hctx.
3727 *
3728 * The smp_mb__after_atomic() Pairs with the implied barrier in
3729 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3730 * seen once we return from the tag allocator.
3731 */
3732 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3733 smp_mb__after_atomic();
3734
3735 /*
3736 * Try to grab a reference to the queue and wait for any outstanding
3737 * requests. If we could not grab a reference the queue has been
3738 * frozen and there are no requests.
3739 */
3740 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3741 while (blk_mq_hctx_has_requests(hctx))
3742 msleep(5);
3743 percpu_ref_put(&hctx->queue->q_usage_counter);
3744 }
3745
3746 return 0;
3747 }
3748
3749 /*
3750 * Check if one CPU is mapped to the specified hctx
3751 *
3752 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3753 * to be used for scheduling kworker only. For other usage, please call this
3754 * helper for checking if one CPU belongs to the specified hctx
3755 */
blk_mq_cpu_mapped_to_hctx(unsigned int cpu,const struct blk_mq_hw_ctx * hctx)3756 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3757 const struct blk_mq_hw_ctx *hctx)
3758 {
3759 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3760 hctx->type, cpu);
3761
3762 return mapped_hctx == hctx;
3763 }
3764
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3765 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3766 {
3767 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3768 struct blk_mq_hw_ctx, cpuhp_online);
3769
3770 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3771 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3772 return 0;
3773 }
3774
3775 /*
3776 * 'cpu' is going away. splice any existing rq_list entries from this
3777 * software queue to the hw queue dispatch list, and ensure that it
3778 * gets run.
3779 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3780 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3781 {
3782 struct blk_mq_hw_ctx *hctx;
3783 struct blk_mq_ctx *ctx;
3784 LIST_HEAD(tmp);
3785 enum hctx_type type;
3786
3787 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3788 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3789 return 0;
3790
3791 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3792 type = hctx->type;
3793
3794 spin_lock(&ctx->lock);
3795 if (!list_empty(&ctx->rq_lists[type])) {
3796 list_splice_init(&ctx->rq_lists[type], &tmp);
3797 blk_mq_hctx_clear_pending(hctx, ctx);
3798 }
3799 spin_unlock(&ctx->lock);
3800
3801 if (list_empty(&tmp))
3802 return 0;
3803
3804 spin_lock(&hctx->lock);
3805 list_splice_tail_init(&tmp, &hctx->dispatch);
3806 spin_unlock(&hctx->lock);
3807
3808 blk_mq_run_hw_queue(hctx, true);
3809 return 0;
3810 }
3811
__blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3812 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3813 {
3814 lockdep_assert_held(&blk_mq_cpuhp_lock);
3815
3816 if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3817 !hlist_unhashed(&hctx->cpuhp_online)) {
3818 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3819 &hctx->cpuhp_online);
3820 INIT_HLIST_NODE(&hctx->cpuhp_online);
3821 }
3822
3823 if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3824 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3825 &hctx->cpuhp_dead);
3826 INIT_HLIST_NODE(&hctx->cpuhp_dead);
3827 }
3828 }
3829
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3830 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3831 {
3832 mutex_lock(&blk_mq_cpuhp_lock);
3833 __blk_mq_remove_cpuhp(hctx);
3834 mutex_unlock(&blk_mq_cpuhp_lock);
3835 }
3836
__blk_mq_add_cpuhp(struct blk_mq_hw_ctx * hctx)3837 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3838 {
3839 lockdep_assert_held(&blk_mq_cpuhp_lock);
3840
3841 if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3842 hlist_unhashed(&hctx->cpuhp_online))
3843 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3844 &hctx->cpuhp_online);
3845
3846 if (hlist_unhashed(&hctx->cpuhp_dead))
3847 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3848 &hctx->cpuhp_dead);
3849 }
3850
__blk_mq_remove_cpuhp_list(struct list_head * head)3851 static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3852 {
3853 struct blk_mq_hw_ctx *hctx;
3854
3855 lockdep_assert_held(&blk_mq_cpuhp_lock);
3856
3857 list_for_each_entry(hctx, head, hctx_list)
3858 __blk_mq_remove_cpuhp(hctx);
3859 }
3860
3861 /*
3862 * Unregister cpuhp callbacks from exited hw queues
3863 *
3864 * Safe to call if this `request_queue` is live
3865 */
blk_mq_remove_hw_queues_cpuhp(struct request_queue * q)3866 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3867 {
3868 LIST_HEAD(hctx_list);
3869
3870 spin_lock(&q->unused_hctx_lock);
3871 list_splice_init(&q->unused_hctx_list, &hctx_list);
3872 spin_unlock(&q->unused_hctx_lock);
3873
3874 mutex_lock(&blk_mq_cpuhp_lock);
3875 __blk_mq_remove_cpuhp_list(&hctx_list);
3876 mutex_unlock(&blk_mq_cpuhp_lock);
3877
3878 spin_lock(&q->unused_hctx_lock);
3879 list_splice(&hctx_list, &q->unused_hctx_list);
3880 spin_unlock(&q->unused_hctx_lock);
3881 }
3882
3883 /*
3884 * Register cpuhp callbacks from all hw queues
3885 *
3886 * Safe to call if this `request_queue` is live
3887 */
blk_mq_add_hw_queues_cpuhp(struct request_queue * q)3888 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3889 {
3890 struct blk_mq_hw_ctx *hctx;
3891 unsigned long i;
3892
3893 mutex_lock(&blk_mq_cpuhp_lock);
3894 queue_for_each_hw_ctx(q, hctx, i)
3895 __blk_mq_add_cpuhp(hctx);
3896 mutex_unlock(&blk_mq_cpuhp_lock);
3897 }
3898
3899 /*
3900 * Before freeing hw queue, clearing the flush request reference in
3901 * tags->rqs[] for avoiding potential UAF.
3902 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3903 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3904 unsigned int queue_depth, struct request *flush_rq)
3905 {
3906 int i;
3907
3908 /* The hw queue may not be mapped yet */
3909 if (!tags)
3910 return;
3911
3912 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3913
3914 for (i = 0; i < queue_depth; i++)
3915 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3916 }
3917
blk_free_flush_queue_callback(struct rcu_head * head)3918 static void blk_free_flush_queue_callback(struct rcu_head *head)
3919 {
3920 struct blk_flush_queue *fq =
3921 container_of(head, struct blk_flush_queue, rcu_head);
3922
3923 blk_free_flush_queue(fq);
3924 }
3925
3926 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3927 static void blk_mq_exit_hctx(struct request_queue *q,
3928 struct blk_mq_tag_set *set,
3929 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3930 {
3931 struct request *flush_rq = hctx->fq->flush_rq;
3932
3933 if (blk_mq_hw_queue_mapped(hctx))
3934 blk_mq_tag_idle(hctx);
3935
3936 if (blk_queue_init_done(q))
3937 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3938 set->queue_depth, flush_rq);
3939 if (set->ops->exit_request)
3940 set->ops->exit_request(set, flush_rq, hctx_idx);
3941
3942 if (set->ops->exit_hctx)
3943 set->ops->exit_hctx(hctx, hctx_idx);
3944
3945 call_srcu(&set->tags_srcu, &hctx->fq->rcu_head,
3946 blk_free_flush_queue_callback);
3947 hctx->fq = NULL;
3948
3949 spin_lock(&q->unused_hctx_lock);
3950 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3951 spin_unlock(&q->unused_hctx_lock);
3952 }
3953
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3954 static void blk_mq_exit_hw_queues(struct request_queue *q,
3955 struct blk_mq_tag_set *set, int nr_queue)
3956 {
3957 struct blk_mq_hw_ctx *hctx;
3958 unsigned long i;
3959
3960 queue_for_each_hw_ctx(q, hctx, i) {
3961 if (i == nr_queue)
3962 break;
3963 blk_mq_remove_cpuhp(hctx);
3964 blk_mq_exit_hctx(q, set, hctx, i);
3965 }
3966 }
3967
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3968 static int blk_mq_init_hctx(struct request_queue *q,
3969 struct blk_mq_tag_set *set,
3970 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3971 {
3972 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3973
3974 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3975 if (!hctx->fq)
3976 goto fail;
3977
3978 hctx->queue_num = hctx_idx;
3979
3980 hctx->tags = set->tags[hctx_idx];
3981
3982 if (set->ops->init_hctx &&
3983 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3984 goto fail_free_fq;
3985
3986 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3987 hctx->numa_node))
3988 goto exit_hctx;
3989
3990 return 0;
3991
3992 exit_hctx:
3993 if (set->ops->exit_hctx)
3994 set->ops->exit_hctx(hctx, hctx_idx);
3995 fail_free_fq:
3996 blk_free_flush_queue(hctx->fq);
3997 hctx->fq = NULL;
3998 fail:
3999 return -1;
4000 }
4001
4002 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)4003 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
4004 int node)
4005 {
4006 struct blk_mq_hw_ctx *hctx;
4007 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
4008
4009 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
4010 if (!hctx)
4011 goto fail_alloc_hctx;
4012
4013 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
4014 goto free_hctx;
4015
4016 atomic_set(&hctx->nr_active, 0);
4017 if (node == NUMA_NO_NODE)
4018 node = set->numa_node;
4019 hctx->numa_node = node;
4020
4021 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
4022 spin_lock_init(&hctx->lock);
4023 INIT_LIST_HEAD(&hctx->dispatch);
4024 INIT_HLIST_NODE(&hctx->cpuhp_dead);
4025 INIT_HLIST_NODE(&hctx->cpuhp_online);
4026 hctx->queue = q;
4027 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
4028
4029 INIT_LIST_HEAD(&hctx->hctx_list);
4030
4031 /*
4032 * Allocate space for all possible cpus to avoid allocation at
4033 * runtime
4034 */
4035 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
4036 gfp, node);
4037 if (!hctx->ctxs)
4038 goto free_cpumask;
4039
4040 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
4041 gfp, node, false, false))
4042 goto free_ctxs;
4043 hctx->nr_ctx = 0;
4044
4045 spin_lock_init(&hctx->dispatch_wait_lock);
4046 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
4047 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
4048
4049 blk_mq_hctx_kobj_init(hctx);
4050
4051 return hctx;
4052
4053 free_ctxs:
4054 kfree(hctx->ctxs);
4055 free_cpumask:
4056 free_cpumask_var(hctx->cpumask);
4057 free_hctx:
4058 kfree(hctx);
4059 fail_alloc_hctx:
4060 return NULL;
4061 }
4062
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)4063 static void blk_mq_init_cpu_queues(struct request_queue *q,
4064 unsigned int nr_hw_queues)
4065 {
4066 struct blk_mq_tag_set *set = q->tag_set;
4067 unsigned int i, j;
4068
4069 for_each_possible_cpu(i) {
4070 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4071 struct blk_mq_hw_ctx *hctx;
4072 int k;
4073
4074 __ctx->cpu = i;
4075 spin_lock_init(&__ctx->lock);
4076 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4077 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4078
4079 __ctx->queue = q;
4080
4081 /*
4082 * Set local node, IFF we have more than one hw queue. If
4083 * not, we remain on the home node of the device
4084 */
4085 for (j = 0; j < set->nr_maps; j++) {
4086 hctx = blk_mq_map_queue_type(q, j, i);
4087 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4088 hctx->numa_node = cpu_to_node(i);
4089 }
4090 }
4091 }
4092
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)4093 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4094 unsigned int hctx_idx,
4095 unsigned int depth)
4096 {
4097 struct blk_mq_tags *tags;
4098 int ret;
4099
4100 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4101 if (!tags)
4102 return NULL;
4103
4104 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4105 if (ret) {
4106 blk_mq_free_rq_map(set, tags);
4107 return NULL;
4108 }
4109
4110 return tags;
4111 }
4112
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)4113 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4114 int hctx_idx)
4115 {
4116 if (blk_mq_is_shared_tags(set->flags)) {
4117 set->tags[hctx_idx] = set->shared_tags;
4118
4119 return true;
4120 }
4121
4122 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4123 set->queue_depth);
4124
4125 return set->tags[hctx_idx];
4126 }
4127
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)4128 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4129 struct blk_mq_tags *tags,
4130 unsigned int hctx_idx)
4131 {
4132 if (tags) {
4133 blk_mq_free_rqs(set, tags, hctx_idx);
4134 blk_mq_free_rq_map(set, tags);
4135 }
4136 }
4137
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)4138 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4139 unsigned int hctx_idx)
4140 {
4141 if (!blk_mq_is_shared_tags(set->flags))
4142 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4143
4144 set->tags[hctx_idx] = NULL;
4145 }
4146
blk_mq_map_swqueue(struct request_queue * q)4147 static void blk_mq_map_swqueue(struct request_queue *q)
4148 {
4149 unsigned int j, hctx_idx;
4150 unsigned long i;
4151 struct blk_mq_hw_ctx *hctx;
4152 struct blk_mq_ctx *ctx;
4153 struct blk_mq_tag_set *set = q->tag_set;
4154
4155 queue_for_each_hw_ctx(q, hctx, i) {
4156 cpumask_clear(hctx->cpumask);
4157 hctx->nr_ctx = 0;
4158 hctx->dispatch_from = NULL;
4159 }
4160
4161 /*
4162 * Map software to hardware queues.
4163 *
4164 * If the cpu isn't present, the cpu is mapped to first hctx.
4165 */
4166 for_each_possible_cpu(i) {
4167
4168 ctx = per_cpu_ptr(q->queue_ctx, i);
4169 for (j = 0; j < set->nr_maps; j++) {
4170 if (!set->map[j].nr_queues) {
4171 ctx->hctxs[j] = blk_mq_map_queue_type(q,
4172 HCTX_TYPE_DEFAULT, i);
4173 continue;
4174 }
4175 hctx_idx = set->map[j].mq_map[i];
4176 /* unmapped hw queue can be remapped after CPU topo changed */
4177 if (!set->tags[hctx_idx] &&
4178 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4179 /*
4180 * If tags initialization fail for some hctx,
4181 * that hctx won't be brought online. In this
4182 * case, remap the current ctx to hctx[0] which
4183 * is guaranteed to always have tags allocated
4184 */
4185 set->map[j].mq_map[i] = 0;
4186 }
4187
4188 hctx = blk_mq_map_queue_type(q, j, i);
4189 ctx->hctxs[j] = hctx;
4190 /*
4191 * If the CPU is already set in the mask, then we've
4192 * mapped this one already. This can happen if
4193 * devices share queues across queue maps.
4194 */
4195 if (cpumask_test_cpu(i, hctx->cpumask))
4196 continue;
4197
4198 cpumask_set_cpu(i, hctx->cpumask);
4199 hctx->type = j;
4200 ctx->index_hw[hctx->type] = hctx->nr_ctx;
4201 hctx->ctxs[hctx->nr_ctx++] = ctx;
4202
4203 /*
4204 * If the nr_ctx type overflows, we have exceeded the
4205 * amount of sw queues we can support.
4206 */
4207 BUG_ON(!hctx->nr_ctx);
4208 }
4209
4210 for (; j < HCTX_MAX_TYPES; j++)
4211 ctx->hctxs[j] = blk_mq_map_queue_type(q,
4212 HCTX_TYPE_DEFAULT, i);
4213 }
4214
4215 queue_for_each_hw_ctx(q, hctx, i) {
4216 int cpu;
4217
4218 /*
4219 * If no software queues are mapped to this hardware queue,
4220 * disable it and free the request entries.
4221 */
4222 if (!hctx->nr_ctx) {
4223 /* Never unmap queue 0. We need it as a
4224 * fallback in case of a new remap fails
4225 * allocation
4226 */
4227 if (i)
4228 __blk_mq_free_map_and_rqs(set, i);
4229
4230 hctx->tags = NULL;
4231 continue;
4232 }
4233
4234 hctx->tags = set->tags[i];
4235 WARN_ON(!hctx->tags);
4236
4237 /*
4238 * Set the map size to the number of mapped software queues.
4239 * This is more accurate and more efficient than looping
4240 * over all possibly mapped software queues.
4241 */
4242 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4243
4244 /*
4245 * Rule out isolated CPUs from hctx->cpumask to avoid
4246 * running block kworker on isolated CPUs
4247 */
4248 for_each_cpu(cpu, hctx->cpumask) {
4249 if (cpu_is_isolated(cpu))
4250 cpumask_clear_cpu(cpu, hctx->cpumask);
4251 }
4252
4253 /*
4254 * Initialize batch roundrobin counts
4255 */
4256 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4257 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4258 }
4259 }
4260
4261 /*
4262 * Caller needs to ensure that we're either frozen/quiesced, or that
4263 * the queue isn't live yet.
4264 */
queue_set_hctx_shared(struct request_queue * q,bool shared)4265 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4266 {
4267 struct blk_mq_hw_ctx *hctx;
4268 unsigned long i;
4269
4270 queue_for_each_hw_ctx(q, hctx, i) {
4271 if (shared) {
4272 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4273 } else {
4274 blk_mq_tag_idle(hctx);
4275 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4276 }
4277 }
4278 }
4279
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)4280 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4281 bool shared)
4282 {
4283 struct request_queue *q;
4284 unsigned int memflags;
4285
4286 lockdep_assert_held(&set->tag_list_lock);
4287
4288 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4289 memflags = blk_mq_freeze_queue(q);
4290 queue_set_hctx_shared(q, shared);
4291 blk_mq_unfreeze_queue(q, memflags);
4292 }
4293 }
4294
blk_mq_del_queue_tag_set(struct request_queue * q)4295 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4296 {
4297 struct blk_mq_tag_set *set = q->tag_set;
4298
4299 mutex_lock(&set->tag_list_lock);
4300 list_del(&q->tag_set_list);
4301 if (list_is_singular(&set->tag_list)) {
4302 /* just transitioned to unshared */
4303 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4304 /* update existing queue */
4305 blk_mq_update_tag_set_shared(set, false);
4306 }
4307 mutex_unlock(&set->tag_list_lock);
4308 INIT_LIST_HEAD(&q->tag_set_list);
4309 }
4310
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)4311 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4312 struct request_queue *q)
4313 {
4314 mutex_lock(&set->tag_list_lock);
4315
4316 /*
4317 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4318 */
4319 if (!list_empty(&set->tag_list) &&
4320 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4321 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4322 /* update existing queue */
4323 blk_mq_update_tag_set_shared(set, true);
4324 }
4325 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4326 queue_set_hctx_shared(q, true);
4327 list_add_tail(&q->tag_set_list, &set->tag_list);
4328
4329 mutex_unlock(&set->tag_list_lock);
4330 }
4331
4332 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)4333 static int blk_mq_alloc_ctxs(struct request_queue *q)
4334 {
4335 struct blk_mq_ctxs *ctxs;
4336 int cpu;
4337
4338 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4339 if (!ctxs)
4340 return -ENOMEM;
4341
4342 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4343 if (!ctxs->queue_ctx)
4344 goto fail;
4345
4346 for_each_possible_cpu(cpu) {
4347 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4348 ctx->ctxs = ctxs;
4349 }
4350
4351 q->mq_kobj = &ctxs->kobj;
4352 q->queue_ctx = ctxs->queue_ctx;
4353
4354 return 0;
4355 fail:
4356 kfree(ctxs);
4357 return -ENOMEM;
4358 }
4359
4360 /*
4361 * It is the actual release handler for mq, but we do it from
4362 * request queue's release handler for avoiding use-after-free
4363 * and headache because q->mq_kobj shouldn't have been introduced,
4364 * but we can't group ctx/kctx kobj without it.
4365 */
blk_mq_release(struct request_queue * q)4366 void blk_mq_release(struct request_queue *q)
4367 {
4368 struct blk_mq_hw_ctx *hctx, *next;
4369 unsigned long i;
4370
4371 queue_for_each_hw_ctx(q, hctx, i)
4372 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4373
4374 /* all hctx are in .unused_hctx_list now */
4375 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4376 list_del_init(&hctx->hctx_list);
4377 kobject_put(&hctx->kobj);
4378 }
4379
4380 kfree(q->queue_hw_ctx);
4381
4382 /*
4383 * release .mq_kobj and sw queue's kobject now because
4384 * both share lifetime with request queue.
4385 */
4386 blk_mq_sysfs_deinit(q);
4387 }
4388
blk_mq_alloc_queue(struct blk_mq_tag_set * set,struct queue_limits * lim,void * queuedata)4389 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4390 struct queue_limits *lim, void *queuedata)
4391 {
4392 struct queue_limits default_lim = { };
4393 struct request_queue *q;
4394 int ret;
4395
4396 if (!lim)
4397 lim = &default_lim;
4398 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4399 if (set->nr_maps > HCTX_TYPE_POLL)
4400 lim->features |= BLK_FEAT_POLL;
4401
4402 q = blk_alloc_queue(lim, set->numa_node);
4403 if (IS_ERR(q))
4404 return q;
4405 q->queuedata = queuedata;
4406 ret = blk_mq_init_allocated_queue(set, q);
4407 if (ret) {
4408 blk_put_queue(q);
4409 return ERR_PTR(ret);
4410 }
4411 return q;
4412 }
4413 EXPORT_SYMBOL(blk_mq_alloc_queue);
4414
4415 /**
4416 * blk_mq_destroy_queue - shutdown a request queue
4417 * @q: request queue to shutdown
4418 *
4419 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4420 * requests will be failed with -ENODEV. The caller is responsible for dropping
4421 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4422 *
4423 * Context: can sleep
4424 */
blk_mq_destroy_queue(struct request_queue * q)4425 void blk_mq_destroy_queue(struct request_queue *q)
4426 {
4427 WARN_ON_ONCE(!queue_is_mq(q));
4428 WARN_ON_ONCE(blk_queue_registered(q));
4429
4430 might_sleep();
4431
4432 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4433 blk_queue_start_drain(q);
4434 blk_mq_freeze_queue_wait(q);
4435
4436 blk_sync_queue(q);
4437 blk_mq_cancel_work_sync(q);
4438 blk_mq_exit_queue(q);
4439 }
4440 EXPORT_SYMBOL(blk_mq_destroy_queue);
4441
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,struct queue_limits * lim,void * queuedata,struct lock_class_key * lkclass)4442 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4443 struct queue_limits *lim, void *queuedata,
4444 struct lock_class_key *lkclass)
4445 {
4446 struct request_queue *q;
4447 struct gendisk *disk;
4448
4449 q = blk_mq_alloc_queue(set, lim, queuedata);
4450 if (IS_ERR(q))
4451 return ERR_CAST(q);
4452
4453 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4454 if (!disk) {
4455 blk_mq_destroy_queue(q);
4456 blk_put_queue(q);
4457 return ERR_PTR(-ENOMEM);
4458 }
4459 set_bit(GD_OWNS_QUEUE, &disk->state);
4460 return disk;
4461 }
4462 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4463
blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4464 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4465 struct lock_class_key *lkclass)
4466 {
4467 struct gendisk *disk;
4468
4469 if (!blk_get_queue(q))
4470 return NULL;
4471 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4472 if (!disk)
4473 blk_put_queue(q);
4474 return disk;
4475 }
4476 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4477
4478 /*
4479 * Only hctx removed from cpuhp list can be reused
4480 */
blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx * hctx)4481 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4482 {
4483 return hlist_unhashed(&hctx->cpuhp_online) &&
4484 hlist_unhashed(&hctx->cpuhp_dead);
4485 }
4486
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4487 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4488 struct blk_mq_tag_set *set, struct request_queue *q,
4489 int hctx_idx, int node)
4490 {
4491 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4492
4493 /* reuse dead hctx first */
4494 spin_lock(&q->unused_hctx_lock);
4495 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4496 if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4497 hctx = tmp;
4498 break;
4499 }
4500 }
4501 if (hctx)
4502 list_del_init(&hctx->hctx_list);
4503 spin_unlock(&q->unused_hctx_lock);
4504
4505 if (!hctx)
4506 hctx = blk_mq_alloc_hctx(q, set, node);
4507 if (!hctx)
4508 goto fail;
4509
4510 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4511 goto free_hctx;
4512
4513 return hctx;
4514
4515 free_hctx:
4516 kobject_put(&hctx->kobj);
4517 fail:
4518 return NULL;
4519 }
4520
__blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4521 static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4522 struct request_queue *q)
4523 {
4524 int i, j, end;
4525 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
4526
4527 if (q->nr_hw_queues < set->nr_hw_queues) {
4528 struct blk_mq_hw_ctx **new_hctxs;
4529
4530 new_hctxs = kcalloc_node(set->nr_hw_queues,
4531 sizeof(*new_hctxs), GFP_KERNEL,
4532 set->numa_node);
4533 if (!new_hctxs)
4534 return;
4535 if (hctxs)
4536 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
4537 sizeof(*hctxs));
4538 rcu_assign_pointer(q->queue_hw_ctx, new_hctxs);
4539 /*
4540 * Make sure reading the old queue_hw_ctx from other
4541 * context concurrently won't trigger uaf.
4542 */
4543 synchronize_rcu_expedited();
4544 kfree(hctxs);
4545 hctxs = new_hctxs;
4546 }
4547
4548 for (i = 0; i < set->nr_hw_queues; i++) {
4549 int old_node;
4550 int node = blk_mq_get_hctx_node(set, i);
4551 struct blk_mq_hw_ctx *old_hctx = hctxs[i];
4552
4553 if (old_hctx) {
4554 old_node = old_hctx->numa_node;
4555 blk_mq_exit_hctx(q, set, old_hctx, i);
4556 }
4557
4558 hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i, node);
4559 if (!hctxs[i]) {
4560 if (!old_hctx)
4561 break;
4562 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4563 node, old_node);
4564 hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i,
4565 old_node);
4566 WARN_ON_ONCE(!hctxs[i]);
4567 }
4568 }
4569 /*
4570 * Increasing nr_hw_queues fails. Free the newly allocated
4571 * hctxs and keep the previous q->nr_hw_queues.
4572 */
4573 if (i != set->nr_hw_queues) {
4574 j = q->nr_hw_queues;
4575 end = i;
4576 } else {
4577 j = i;
4578 end = q->nr_hw_queues;
4579 q->nr_hw_queues = set->nr_hw_queues;
4580 }
4581
4582 for (; j < end; j++) {
4583 struct blk_mq_hw_ctx *hctx = hctxs[j];
4584
4585 if (hctx) {
4586 blk_mq_exit_hctx(q, set, hctx, j);
4587 hctxs[j] = NULL;
4588 }
4589 }
4590 }
4591
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4592 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4593 struct request_queue *q)
4594 {
4595 __blk_mq_realloc_hw_ctxs(set, q);
4596
4597 /* unregister cpuhp callbacks for exited hctxs */
4598 blk_mq_remove_hw_queues_cpuhp(q);
4599
4600 /* register cpuhp for new initialized hctxs */
4601 blk_mq_add_hw_queues_cpuhp(q);
4602 }
4603
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4604 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4605 struct request_queue *q)
4606 {
4607 /* mark the queue as mq asap */
4608 q->mq_ops = set->ops;
4609
4610 /*
4611 * ->tag_set has to be setup before initialize hctx, which cpuphp
4612 * handler needs it for checking queue mapping
4613 */
4614 q->tag_set = set;
4615
4616 if (blk_mq_alloc_ctxs(q))
4617 goto err_exit;
4618
4619 /* init q->mq_kobj and sw queues' kobjects */
4620 blk_mq_sysfs_init(q);
4621
4622 INIT_LIST_HEAD(&q->unused_hctx_list);
4623 spin_lock_init(&q->unused_hctx_lock);
4624
4625 blk_mq_realloc_hw_ctxs(set, q);
4626 if (!q->nr_hw_queues)
4627 goto err_hctxs;
4628
4629 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4630 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4631
4632 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4633
4634 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4635 INIT_LIST_HEAD(&q->flush_list);
4636 INIT_LIST_HEAD(&q->requeue_list);
4637 spin_lock_init(&q->requeue_lock);
4638
4639 q->nr_requests = set->queue_depth;
4640
4641 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4642 blk_mq_map_swqueue(q);
4643 blk_mq_add_queue_tag_set(set, q);
4644 return 0;
4645
4646 err_hctxs:
4647 blk_mq_release(q);
4648 err_exit:
4649 q->mq_ops = NULL;
4650 return -ENOMEM;
4651 }
4652 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4653
4654 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4655 void blk_mq_exit_queue(struct request_queue *q)
4656 {
4657 struct blk_mq_tag_set *set = q->tag_set;
4658
4659 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4660 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4661 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4662 blk_mq_del_queue_tag_set(q);
4663 }
4664
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4665 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4666 {
4667 int i;
4668
4669 if (blk_mq_is_shared_tags(set->flags)) {
4670 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4671 BLK_MQ_NO_HCTX_IDX,
4672 set->queue_depth);
4673 if (!set->shared_tags)
4674 return -ENOMEM;
4675 }
4676
4677 for (i = 0; i < set->nr_hw_queues; i++) {
4678 if (!__blk_mq_alloc_map_and_rqs(set, i))
4679 goto out_unwind;
4680 cond_resched();
4681 }
4682
4683 return 0;
4684
4685 out_unwind:
4686 while (--i >= 0)
4687 __blk_mq_free_map_and_rqs(set, i);
4688
4689 if (blk_mq_is_shared_tags(set->flags)) {
4690 blk_mq_free_map_and_rqs(set, set->shared_tags,
4691 BLK_MQ_NO_HCTX_IDX);
4692 }
4693
4694 return -ENOMEM;
4695 }
4696
4697 /*
4698 * Allocate the request maps associated with this tag_set. Note that this
4699 * may reduce the depth asked for, if memory is tight. set->queue_depth
4700 * will be updated to reflect the allocated depth.
4701 */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4702 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4703 {
4704 unsigned int depth;
4705 int err;
4706
4707 depth = set->queue_depth;
4708 do {
4709 err = __blk_mq_alloc_rq_maps(set);
4710 if (!err)
4711 break;
4712
4713 set->queue_depth >>= 1;
4714 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4715 err = -ENOMEM;
4716 break;
4717 }
4718 } while (set->queue_depth);
4719
4720 if (!set->queue_depth || err) {
4721 pr_err("blk-mq: failed to allocate request map\n");
4722 return -ENOMEM;
4723 }
4724
4725 if (depth != set->queue_depth)
4726 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4727 depth, set->queue_depth);
4728
4729 return 0;
4730 }
4731
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4732 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4733 {
4734 /*
4735 * blk_mq_map_queues() and multiple .map_queues() implementations
4736 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4737 * number of hardware queues.
4738 */
4739 if (set->nr_maps == 1)
4740 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4741
4742 if (set->ops->map_queues) {
4743 int i;
4744
4745 /*
4746 * transport .map_queues is usually done in the following
4747 * way:
4748 *
4749 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4750 * mask = get_cpu_mask(queue)
4751 * for_each_cpu(cpu, mask)
4752 * set->map[x].mq_map[cpu] = queue;
4753 * }
4754 *
4755 * When we need to remap, the table has to be cleared for
4756 * killing stale mapping since one CPU may not be mapped
4757 * to any hw queue.
4758 */
4759 for (i = 0; i < set->nr_maps; i++)
4760 blk_mq_clear_mq_map(&set->map[i]);
4761
4762 set->ops->map_queues(set);
4763 } else {
4764 BUG_ON(set->nr_maps > 1);
4765 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4766 }
4767 }
4768
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4769 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4770 int new_nr_hw_queues)
4771 {
4772 struct blk_mq_tags **new_tags;
4773 int i;
4774
4775 if (set->nr_hw_queues >= new_nr_hw_queues)
4776 goto done;
4777
4778 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4779 GFP_KERNEL, set->numa_node);
4780 if (!new_tags)
4781 return -ENOMEM;
4782
4783 if (set->tags)
4784 memcpy(new_tags, set->tags, set->nr_hw_queues *
4785 sizeof(*set->tags));
4786 kfree(set->tags);
4787 set->tags = new_tags;
4788
4789 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4790 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4791 while (--i >= set->nr_hw_queues)
4792 __blk_mq_free_map_and_rqs(set, i);
4793 return -ENOMEM;
4794 }
4795 cond_resched();
4796 }
4797
4798 done:
4799 set->nr_hw_queues = new_nr_hw_queues;
4800 return 0;
4801 }
4802
4803 /*
4804 * Alloc a tag set to be associated with one or more request queues.
4805 * May fail with EINVAL for various error conditions. May adjust the
4806 * requested depth down, if it's too large. In that case, the set
4807 * value will be stored in set->queue_depth.
4808 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4809 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4810 {
4811 int i, ret;
4812
4813 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4814
4815 if (!set->nr_hw_queues)
4816 return -EINVAL;
4817 if (!set->queue_depth)
4818 return -EINVAL;
4819 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4820 return -EINVAL;
4821
4822 if (!set->ops->queue_rq)
4823 return -EINVAL;
4824
4825 if (!set->ops->get_budget ^ !set->ops->put_budget)
4826 return -EINVAL;
4827
4828 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4829 pr_info("blk-mq: reduced tag depth to %u\n",
4830 BLK_MQ_MAX_DEPTH);
4831 set->queue_depth = BLK_MQ_MAX_DEPTH;
4832 }
4833
4834 if (!set->nr_maps)
4835 set->nr_maps = 1;
4836 else if (set->nr_maps > HCTX_MAX_TYPES)
4837 return -EINVAL;
4838
4839 /*
4840 * If a crashdump is active, then we are potentially in a very
4841 * memory constrained environment. Limit us to 64 tags to prevent
4842 * using too much memory.
4843 */
4844 if (is_kdump_kernel())
4845 set->queue_depth = min(64U, set->queue_depth);
4846
4847 /*
4848 * There is no use for more h/w queues than cpus if we just have
4849 * a single map
4850 */
4851 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4852 set->nr_hw_queues = nr_cpu_ids;
4853
4854 if (set->flags & BLK_MQ_F_BLOCKING) {
4855 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4856 if (!set->srcu)
4857 return -ENOMEM;
4858 ret = init_srcu_struct(set->srcu);
4859 if (ret)
4860 goto out_free_srcu;
4861 }
4862 ret = init_srcu_struct(&set->tags_srcu);
4863 if (ret)
4864 goto out_cleanup_srcu;
4865
4866 init_rwsem(&set->update_nr_hwq_lock);
4867
4868 ret = -ENOMEM;
4869 set->tags = kcalloc_node(set->nr_hw_queues,
4870 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4871 set->numa_node);
4872 if (!set->tags)
4873 goto out_cleanup_tags_srcu;
4874
4875 for (i = 0; i < set->nr_maps; i++) {
4876 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4877 sizeof(set->map[i].mq_map[0]),
4878 GFP_KERNEL, set->numa_node);
4879 if (!set->map[i].mq_map)
4880 goto out_free_mq_map;
4881 set->map[i].nr_queues = set->nr_hw_queues;
4882 }
4883
4884 blk_mq_update_queue_map(set);
4885
4886 ret = blk_mq_alloc_set_map_and_rqs(set);
4887 if (ret)
4888 goto out_free_mq_map;
4889
4890 mutex_init(&set->tag_list_lock);
4891 INIT_LIST_HEAD(&set->tag_list);
4892
4893 return 0;
4894
4895 out_free_mq_map:
4896 for (i = 0; i < set->nr_maps; i++) {
4897 kfree(set->map[i].mq_map);
4898 set->map[i].mq_map = NULL;
4899 }
4900 kfree(set->tags);
4901 set->tags = NULL;
4902 out_cleanup_tags_srcu:
4903 cleanup_srcu_struct(&set->tags_srcu);
4904 out_cleanup_srcu:
4905 if (set->flags & BLK_MQ_F_BLOCKING)
4906 cleanup_srcu_struct(set->srcu);
4907 out_free_srcu:
4908 if (set->flags & BLK_MQ_F_BLOCKING)
4909 kfree(set->srcu);
4910 return ret;
4911 }
4912 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4913
4914 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4915 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4916 const struct blk_mq_ops *ops, unsigned int queue_depth,
4917 unsigned int set_flags)
4918 {
4919 memset(set, 0, sizeof(*set));
4920 set->ops = ops;
4921 set->nr_hw_queues = 1;
4922 set->nr_maps = 1;
4923 set->queue_depth = queue_depth;
4924 set->numa_node = NUMA_NO_NODE;
4925 set->flags = set_flags;
4926 return blk_mq_alloc_tag_set(set);
4927 }
4928 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4929
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4930 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4931 {
4932 int i, j;
4933
4934 for (i = 0; i < set->nr_hw_queues; i++)
4935 __blk_mq_free_map_and_rqs(set, i);
4936
4937 if (blk_mq_is_shared_tags(set->flags)) {
4938 blk_mq_free_map_and_rqs(set, set->shared_tags,
4939 BLK_MQ_NO_HCTX_IDX);
4940 }
4941
4942 for (j = 0; j < set->nr_maps; j++) {
4943 kfree(set->map[j].mq_map);
4944 set->map[j].mq_map = NULL;
4945 }
4946
4947 kfree(set->tags);
4948 set->tags = NULL;
4949
4950 srcu_barrier(&set->tags_srcu);
4951 cleanup_srcu_struct(&set->tags_srcu);
4952 if (set->flags & BLK_MQ_F_BLOCKING) {
4953 cleanup_srcu_struct(set->srcu);
4954 kfree(set->srcu);
4955 }
4956 }
4957 EXPORT_SYMBOL(blk_mq_free_tag_set);
4958
blk_mq_update_nr_requests(struct request_queue * q,struct elevator_tags * et,unsigned int nr)4959 struct elevator_tags *blk_mq_update_nr_requests(struct request_queue *q,
4960 struct elevator_tags *et,
4961 unsigned int nr)
4962 {
4963 struct blk_mq_tag_set *set = q->tag_set;
4964 struct elevator_tags *old_et = NULL;
4965 struct blk_mq_hw_ctx *hctx;
4966 unsigned long i;
4967
4968 blk_mq_quiesce_queue(q);
4969
4970 if (blk_mq_is_shared_tags(set->flags)) {
4971 /*
4972 * Shared tags, for sched tags, we allocate max initially hence
4973 * tags can't grow, see blk_mq_alloc_sched_tags().
4974 */
4975 if (q->elevator)
4976 blk_mq_tag_update_sched_shared_tags(q, nr);
4977 else
4978 blk_mq_tag_resize_shared_tags(set, nr);
4979 } else if (!q->elevator) {
4980 /*
4981 * Non-shared hardware tags, nr is already checked from
4982 * queue_requests_store() and tags can't grow.
4983 */
4984 queue_for_each_hw_ctx(q, hctx, i) {
4985 if (!hctx->tags)
4986 continue;
4987 sbitmap_queue_resize(&hctx->tags->bitmap_tags,
4988 nr - hctx->tags->nr_reserved_tags);
4989 }
4990 } else if (nr <= q->elevator->et->nr_requests) {
4991 /* Non-shared sched tags, and tags don't grow. */
4992 queue_for_each_hw_ctx(q, hctx, i) {
4993 if (!hctx->sched_tags)
4994 continue;
4995 sbitmap_queue_resize(&hctx->sched_tags->bitmap_tags,
4996 nr - hctx->sched_tags->nr_reserved_tags);
4997 }
4998 } else {
4999 /* Non-shared sched tags, and tags grow */
5000 queue_for_each_hw_ctx(q, hctx, i)
5001 hctx->sched_tags = et->tags[i];
5002 old_et = q->elevator->et;
5003 q->elevator->et = et;
5004 }
5005
5006 q->nr_requests = nr;
5007 if (q->elevator && q->elevator->type->ops.depth_updated)
5008 q->elevator->type->ops.depth_updated(q);
5009
5010 blk_mq_unquiesce_queue(q);
5011 return old_et;
5012 }
5013
5014 /*
5015 * Switch back to the elevator type stored in the xarray.
5016 */
blk_mq_elv_switch_back(struct request_queue * q,struct xarray * elv_tbl)5017 static void blk_mq_elv_switch_back(struct request_queue *q,
5018 struct xarray *elv_tbl)
5019 {
5020 struct elv_change_ctx *ctx = xa_load(elv_tbl, q->id);
5021
5022 if (WARN_ON_ONCE(!ctx))
5023 return;
5024
5025 /* The elv_update_nr_hw_queues unfreezes the queue. */
5026 elv_update_nr_hw_queues(q, ctx);
5027
5028 /* Drop the reference acquired in blk_mq_elv_switch_none. */
5029 if (ctx->type)
5030 elevator_put(ctx->type);
5031 }
5032
5033 /*
5034 * Stores elevator name and type in ctx and set current elevator to none.
5035 */
blk_mq_elv_switch_none(struct request_queue * q,struct xarray * elv_tbl)5036 static int blk_mq_elv_switch_none(struct request_queue *q,
5037 struct xarray *elv_tbl)
5038 {
5039 struct elv_change_ctx *ctx;
5040
5041 lockdep_assert_held_write(&q->tag_set->update_nr_hwq_lock);
5042
5043 /*
5044 * Accessing q->elevator without holding q->elevator_lock is safe here
5045 * because we're called from nr_hw_queue update which is protected by
5046 * set->update_nr_hwq_lock in the writer context. So, scheduler update/
5047 * switch code (which acquires the same lock in the reader context)
5048 * can't run concurrently.
5049 */
5050 if (q->elevator) {
5051 ctx = xa_load(elv_tbl, q->id);
5052 if (WARN_ON_ONCE(!ctx))
5053 return -ENOENT;
5054
5055 ctx->name = q->elevator->type->elevator_name;
5056
5057 /*
5058 * Before we switch elevator to 'none', take a reference to
5059 * the elevator module so that while nr_hw_queue update is
5060 * running, no one can remove elevator module. We'd put the
5061 * reference to elevator module later when we switch back
5062 * elevator.
5063 */
5064 __elevator_get(q->elevator->type);
5065
5066 /*
5067 * Store elevator type so that we can release the reference
5068 * taken above later.
5069 */
5070 ctx->type = q->elevator->type;
5071 elevator_set_none(q);
5072 }
5073 return 0;
5074 }
5075
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)5076 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
5077 int nr_hw_queues)
5078 {
5079 struct request_queue *q;
5080 int prev_nr_hw_queues = set->nr_hw_queues;
5081 unsigned int memflags;
5082 int i;
5083 struct xarray elv_tbl;
5084 bool queues_frozen = false;
5085
5086 lockdep_assert_held(&set->tag_list_lock);
5087
5088 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
5089 nr_hw_queues = nr_cpu_ids;
5090 if (nr_hw_queues < 1)
5091 return;
5092 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
5093 return;
5094
5095 memflags = memalloc_noio_save();
5096
5097 xa_init(&elv_tbl);
5098 if (blk_mq_alloc_sched_ctx_batch(&elv_tbl, set) < 0)
5099 goto out_free_ctx;
5100
5101 if (blk_mq_alloc_sched_res_batch(&elv_tbl, set, nr_hw_queues) < 0)
5102 goto out_free_ctx;
5103
5104 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5105 blk_mq_debugfs_unregister_hctxs(q);
5106 blk_mq_sysfs_unregister_hctxs(q);
5107 }
5108
5109 /*
5110 * Switch IO scheduler to 'none', cleaning up the data associated
5111 * with the previous scheduler. We will switch back once we are done
5112 * updating the new sw to hw queue mappings.
5113 */
5114 list_for_each_entry(q, &set->tag_list, tag_set_list)
5115 if (blk_mq_elv_switch_none(q, &elv_tbl))
5116 goto switch_back;
5117
5118 list_for_each_entry(q, &set->tag_list, tag_set_list)
5119 blk_mq_freeze_queue_nomemsave(q);
5120 queues_frozen = true;
5121 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5122 goto switch_back;
5123
5124 fallback:
5125 blk_mq_update_queue_map(set);
5126 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5127 __blk_mq_realloc_hw_ctxs(set, q);
5128
5129 if (q->nr_hw_queues != set->nr_hw_queues) {
5130 int i = prev_nr_hw_queues;
5131
5132 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5133 nr_hw_queues, prev_nr_hw_queues);
5134 for (; i < set->nr_hw_queues; i++)
5135 __blk_mq_free_map_and_rqs(set, i);
5136
5137 set->nr_hw_queues = prev_nr_hw_queues;
5138 goto fallback;
5139 }
5140 blk_mq_map_swqueue(q);
5141 }
5142 switch_back:
5143 /* The blk_mq_elv_switch_back unfreezes queue for us. */
5144 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5145 /* switch_back expects queue to be frozen */
5146 if (!queues_frozen)
5147 blk_mq_freeze_queue_nomemsave(q);
5148 blk_mq_elv_switch_back(q, &elv_tbl);
5149 }
5150
5151 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5152 blk_mq_sysfs_register_hctxs(q);
5153 blk_mq_debugfs_register_hctxs(q);
5154
5155 blk_mq_remove_hw_queues_cpuhp(q);
5156 blk_mq_add_hw_queues_cpuhp(q);
5157 }
5158
5159 out_free_ctx:
5160 blk_mq_free_sched_ctx_batch(&elv_tbl);
5161 xa_destroy(&elv_tbl);
5162 memalloc_noio_restore(memflags);
5163
5164 /* Free the excess tags when nr_hw_queues shrink. */
5165 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5166 __blk_mq_free_map_and_rqs(set, i);
5167 }
5168
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)5169 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5170 {
5171 down_write(&set->update_nr_hwq_lock);
5172 mutex_lock(&set->tag_list_lock);
5173 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5174 mutex_unlock(&set->tag_list_lock);
5175 up_write(&set->update_nr_hwq_lock);
5176 }
5177 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5178
blk_hctx_poll(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob,unsigned int flags)5179 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5180 struct io_comp_batch *iob, unsigned int flags)
5181 {
5182 long state = get_current_state();
5183 int ret;
5184
5185 do {
5186 ret = q->mq_ops->poll(hctx, iob);
5187 if (ret > 0) {
5188 __set_current_state(TASK_RUNNING);
5189 return ret;
5190 }
5191
5192 if (signal_pending_state(state, current))
5193 __set_current_state(TASK_RUNNING);
5194 if (task_is_running(current))
5195 return 1;
5196
5197 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5198 break;
5199 cpu_relax();
5200 } while (!need_resched());
5201
5202 __set_current_state(TASK_RUNNING);
5203 return 0;
5204 }
5205
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)5206 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5207 struct io_comp_batch *iob, unsigned int flags)
5208 {
5209 if (!blk_mq_can_poll(q))
5210 return 0;
5211 return blk_hctx_poll(q, q->queue_hw_ctx[cookie], iob, flags);
5212 }
5213
blk_rq_poll(struct request * rq,struct io_comp_batch * iob,unsigned int poll_flags)5214 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5215 unsigned int poll_flags)
5216 {
5217 struct request_queue *q = rq->q;
5218 int ret;
5219
5220 if (!blk_rq_is_poll(rq))
5221 return 0;
5222 if (!percpu_ref_tryget(&q->q_usage_counter))
5223 return 0;
5224
5225 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5226 blk_queue_exit(q);
5227
5228 return ret;
5229 }
5230 EXPORT_SYMBOL_GPL(blk_rq_poll);
5231
blk_mq_rq_cpu(struct request * rq)5232 unsigned int blk_mq_rq_cpu(struct request *rq)
5233 {
5234 return rq->mq_ctx->cpu;
5235 }
5236 EXPORT_SYMBOL(blk_mq_rq_cpu);
5237
blk_mq_cancel_work_sync(struct request_queue * q)5238 void blk_mq_cancel_work_sync(struct request_queue *q)
5239 {
5240 struct blk_mq_hw_ctx *hctx;
5241 unsigned long i;
5242
5243 cancel_delayed_work_sync(&q->requeue_work);
5244
5245 queue_for_each_hw_ctx(q, hctx, i)
5246 cancel_delayed_work_sync(&hctx->run_work);
5247 }
5248
blk_mq_init(void)5249 static int __init blk_mq_init(void)
5250 {
5251 int i;
5252
5253 for_each_possible_cpu(i)
5254 init_llist_head(&per_cpu(blk_cpu_done, i));
5255 for_each_possible_cpu(i)
5256 INIT_CSD(&per_cpu(blk_cpu_csd, i),
5257 __blk_mq_complete_request_remote, NULL);
5258 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5259
5260 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5261 "block/softirq:dead", NULL,
5262 blk_softirq_cpu_dead);
5263 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5264 blk_mq_hctx_notify_dead);
5265 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5266 blk_mq_hctx_notify_online,
5267 blk_mq_hctx_notify_offline);
5268 return 0;
5269 }
5270 subsys_initcall(blk_mq_init);
5271